/* * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * FUNCTION * Internal functions for mlib_ImageConv* on U8/S16/U16 types and * MLIB_EDGE_DST_NO_WRITE mask */ #include "mlib_image.h" #include "mlib_ImageConv.h" #include "mlib_c_ImageConv.h" /* This define switches between functions of different data types */ #define IMG_TYPE 1 /***************************************************************/ #if IMG_TYPE == 1 #define DTYPE mlib_u8 #define CONV_FUNC(KERN) mlib_c_conv##KERN##nw_u8 #define CONV_FUNC_I(KERN) mlib_i_conv##KERN##nw_u8 #define DSCALE (1 << 24) #define FROM_S32(x) (((x) >> 24) ^ 128) #define S64TOS32(x) (x) #define SAT_OFF -(1u << 31) #elif IMG_TYPE == 2 #define DTYPE mlib_s16 #define CONV_FUNC(KERN) mlib_conv##KERN##nw_s16 #define CONV_FUNC_I(KERN) mlib_i_conv##KERN##nw_s16 #define DSCALE 65536.0 #define FROM_S32(x) ((x) >> 16) #define S64TOS32(x) ((x) & 0xffffffff) #define SAT_OFF #elif IMG_TYPE == 3 #define DTYPE mlib_u16 #define CONV_FUNC(KERN) mlib_conv##KERN##nw_u16 #define CONV_FUNC_I(KERN) mlib_i_conv##KERN##nw_u16 #define DSCALE 65536.0 #define FROM_S32(x) (((x) >> 16) ^ 0x8000) #define S64TOS32(x) (x) #define SAT_OFF -(1u << 31) #endif /* IMG_TYPE == 1 */ /***************************************************************/ #define BUFF_SIZE 1600 #define CACHE_SIZE (64*1024) /***************************************************************/ #define FTYPE mlib_d64 #ifndef MLIB_USE_FTOI_CLAMPING #define CLAMP_S32(x) \ (((x) <= MLIB_S32_MIN) ? MLIB_S32_MIN : (((x) >= MLIB_S32_MAX) ? MLIB_S32_MAX : (mlib_s32)(x))) #else #define CLAMP_S32(x) ((mlib_s32)(x)) #endif /* MLIB_USE_FTOI_CLAMPING */ /***************************************************************/ #define D2I(x) CLAMP_S32((x) SAT_OFF) /***************************************************************/ #ifdef _LITTLE_ENDIAN #define STORE2(res0, res1) \ dp[0 ] = res1; \ dp[chan1] = res0 #else #define STORE2(res0, res1) \ dp[0 ] = res0; \ dp[chan1] = res1 #endif /* _LITTLE_ENDIAN */ /***************************************************************/ #ifdef _NO_LONGLONG #define LOAD_BUFF(buff) \ buff[i ] = sp[0]; \ buff[i + 1] = sp[chan1] #else /* _NO_LONGLONG */ #ifdef _LITTLE_ENDIAN #define LOAD_BUFF(buff) \ *(mlib_s64*)(buff + i) = (((mlib_s64)sp[chan1]) << 32) | S64TOS32((mlib_s64)sp[0]) #else /* _LITTLE_ENDIAN */ #define LOAD_BUFF(buff) \ *(mlib_s64*)(buff + i) = (((mlib_s64)sp[0]) << 32) | S64TOS32((mlib_s64)sp[chan1]) #endif /* _LITTLE_ENDIAN */ #endif /* _NO_LONGLONG */ /***************************************************************/ typedef union { mlib_d64 d64; struct { mlib_s32 i0; mlib_s32 i1; } i32s; struct { mlib_s32 f0; mlib_s32 f1; } f32s; } d64_2x32; /***************************************************************/ #define DEF_VARS(type) \ type *adr_src, *sl, *sp = NULL; \ type *adr_dst, *dl, *dp = NULL; \ FTYPE *pbuff = buff; \ mlib_s32 wid, hgt, sll, dll; \ mlib_s32 nchannel, chan1; \ mlib_s32 i, j, c /***************************************************************/ #define GET_SRC_DST_PARAMETERS(type) \ hgt = mlib_ImageGetHeight(src); \ wid = mlib_ImageGetWidth(src); \ nchannel = mlib_ImageGetChannels(src); \ sll = mlib_ImageGetStride(src) / sizeof(type); \ dll = mlib_ImageGetStride(dst) / sizeof(type); \ adr_src = (type *)mlib_ImageGetData(src); \ adr_dst = (type *)mlib_ImageGetData(dst) /***************************************************************/ #if IMG_TYPE == 1 /* Test for the presence of any "1" bit in bits 8 to 31 of val. If present, then val is either negative or >255. If over/underflows of 8 bits are uncommon, then this technique can be a win, since only a single test, rather than two, is necessary to determine if clamping is needed. On the other hand, if over/underflows are common, it adds an extra test. */ #define CLAMP_STORE(dst, val) \ if (val & 0xffffff00) { \ if (val < MLIB_U8_MIN) \ dst = MLIB_U8_MIN; \ else \ dst = MLIB_U8_MAX; \ } else { \ dst = (mlib_u8)val; \ } #elif IMG_TYPE == 2 #define CLAMP_STORE(dst, val) \ if (val >= MLIB_S16_MAX) \ dst = MLIB_S16_MAX; \ else if (val <= MLIB_S16_MIN) \ dst = MLIB_S16_MIN; \ else \ dst = (mlib_s16)val #elif IMG_TYPE == 3 #define CLAMP_STORE(dst, val) \ if (val >= MLIB_U16_MAX) \ dst = MLIB_U16_MAX; \ else if (val <= MLIB_U16_MIN) \ dst = MLIB_U16_MIN; \ else \ dst = (mlib_u16)val #endif /* IMG_TYPE == 1 */ /***************************************************************/ #define MAX_KER 7 #define MAX_N 15 static mlib_status mlib_ImageConv1xN(mlib_image *dst, const mlib_image *src, const mlib_d64 *k, mlib_s32 n, mlib_s32 dn, mlib_s32 cmask) { FTYPE buff[BUFF_SIZE]; mlib_s32 off, kh; mlib_s32 d0, d1; const FTYPE *pk; FTYPE k0, k1, k2, k3; FTYPE p0, p1, p2, p3, p4; DEF_VARS(DTYPE); DTYPE *sl_c, *dl_c, *sl0; mlib_s32 l, hsize, max_hsize; GET_SRC_DST_PARAMETERS(DTYPE); hgt -= (n - 1); adr_dst += dn*dll; max_hsize = (CACHE_SIZE/sizeof(DTYPE))/sll; if (!max_hsize) max_hsize = 1; if (max_hsize > BUFF_SIZE) { pbuff = mlib_malloc(sizeof(FTYPE)*max_hsize); } chan1 = nchannel; sl_c = adr_src; dl_c = adr_dst; for (l = 0; l < hgt; l += hsize) { hsize = hgt - l; if (hsize > max_hsize) hsize = max_hsize; for (c = 0; c < nchannel; c++) { if (!(cmask & (1 << (chan1 - 1 - c)))) continue; sl = sl_c + c; dl = dl_c + c; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (j = 0; j < hsize; j++) pbuff[j] = 0.0; for (i = 0; i < wid; i++) { sl0 = sl; for (off = 0; off < (n - 4); off += 4) { pk = k + off; sp = sl0; k0 = pk[0]; k1 = pk[1]; k2 = pk[2]; k3 = pk[3]; p2 = sp[0]; p3 = sp[sll]; p4 = sp[2*sll]; sp += 3*sll; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (j = 0; j < hsize; j += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = sp[0]; p4 = sp[sll]; pbuff[j ] += p0*k0 + p1*k1 + p2*k2 + p3*k3; pbuff[j + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3; sp += 2*sll; } sl0 += 4*sll; } pk = k + off; sp = sl0; k0 = pk[0]; k1 = pk[1]; k2 = pk[2]; k3 = pk[3]; p2 = sp[0]; p3 = sp[sll]; p4 = sp[2*sll]; dp = dl; kh = n - off; if (kh == 4) { sp += 3*sll; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (j = 0; j <= (hsize - 2); j += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = sp[0]; p4 = sp[sll]; d0 = D2I(p0*k0 + p1*k1 + p2*k2 + p3*k3 + pbuff[j]); d1 = D2I(p1*k0 + p2*k1 + p3*k2 + p4*k3 + pbuff[j + 1]); dp[0 ] = FROM_S32(d0); dp[dll] = FROM_S32(d1); pbuff[j] = 0; pbuff[j + 1] = 0; sp += 2*sll; dp += 2*dll; } if (j < hsize) { p0 = p2; p1 = p3; p2 = p4; p3 = sp[0]; d0 = D2I(p0*k0 + p1*k1 + p2*k2 + p3*k3 + pbuff[j]); pbuff[j] = 0; dp[0] = FROM_S32(d0); } } else if (kh == 3) { sp += 2*sll; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (j = 0; j <= (hsize - 2); j += 2) { p0 = p2; p1 = p3; p2 = sp[0]; p3 = sp[sll]; d0 = D2I(p0*k0 + p1*k1 + p2*k2 + pbuff[j]); d1 = D2I(p1*k0 + p2*k1 + p3*k2 + pbuff[j + 1]); dp[0 ] = FROM_S32(d0); dp[dll] = FROM_S32(d1); pbuff[j] = 0; pbuff[j + 1] = 0; sp += 2*sll; dp += 2*dll; } if (j < hsize) { p0 = p2; p1 = p3; p2 = sp[0]; d0 = D2I(p0*k0 + p1*k1 + p2*k2 + pbuff[j]); pbuff[j] = 0; dp[0] = FROM_S32(d0); } } else if (kh == 2) { sp += sll; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (j = 0; j <= (hsize - 2); j += 2) { p0 = p2; p1 = sp[0]; p2 = sp[sll]; d0 = D2I(p0*k0 + p1*k1 + pbuff[j]); d1 = D2I(p1*k0 + p2*k1 + pbuff[j + 1]); dp[0 ] = FROM_S32(d0); dp[dll] = FROM_S32(d1); pbuff[j] = 0; pbuff[j + 1] = 0; sp += 2*sll; dp += 2*dll; } if (j < hsize) { p0 = p2; p1 = sp[0]; d0 = D2I(p0*k0 + p1*k1 + pbuff[j]); pbuff[j] = 0; dp[0] = FROM_S32(d0); } } else /* if (kh == 1) */ { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (j = 0; j < hsize; j++) { p0 = sp[0]; d0 = D2I(p0*k0 + pbuff[j]); dp[0] = FROM_S32(d0); pbuff[j] = 0; sp += sll; dp += dll; } } sl += chan1; dl += chan1; } } sl_c += max_hsize*sll; dl_c += max_hsize*dll; } if (pbuff != buff) mlib_free(pbuff); return MLIB_SUCCESS; } /***************************************************************/ mlib_status CONV_FUNC(MxN)(mlib_image *dst, const mlib_image *src, const mlib_s32 *kernel, mlib_s32 m, mlib_s32 n, mlib_s32 dm, mlib_s32 dn, mlib_s32 scale, mlib_s32 cmask) { FTYPE buff[BUFF_SIZE], *buffs_arr[2*(MAX_N + 1)]; FTYPE **buffs = buffs_arr, *buffd; FTYPE akernel[256], *k = akernel, fscale = DSCALE; mlib_s32 mn, l, off, kw, bsize, buff_ind; mlib_s32 d0, d1; FTYPE k0, k1, k2, k3, k4, k5, k6; FTYPE p0, p1, p2, p3, p4, p5, p6, p7; d64_2x32 dd; DEF_VARS(DTYPE); mlib_s32 chan2; mlib_s32 *buffo, *buffi; mlib_status status = MLIB_SUCCESS; GET_SRC_DST_PARAMETERS(DTYPE); if (scale > 30) { fscale *= 1.0/(1 << 30); scale -= 30; } fscale /= (1 << scale); mn = m*n; if (mn > 256) { k = mlib_malloc(mn*sizeof(mlib_d64)); if (k == NULL) return MLIB_FAILURE; } for (i = 0; i < mn; i++) { k[i] = kernel[i]*fscale; } if (m == 1) { status = mlib_ImageConv1xN(dst, src, k, n, dn, cmask); FREE_AND_RETURN_STATUS; } bsize = (n + 3)*wid; if ((bsize > BUFF_SIZE) || (n > MAX_N)) { pbuff = mlib_malloc(sizeof(FTYPE)*bsize + sizeof(FTYPE *)*2*(n + 1)); if (pbuff == NULL) { status = MLIB_FAILURE; FREE_AND_RETURN_STATUS; } buffs = (FTYPE **)(pbuff + bsize); } for (l = 0; l < (n + 1); l++) buffs[l] = pbuff + l*wid; for (l = 0; l < (n + 1); l++) buffs[l + (n + 1)] = buffs[l]; buffd = buffs[n] + wid; buffo = (mlib_s32*)(buffd + wid); buffi = buffo + (wid &~ 1); chan1 = nchannel; chan2 = chan1 + chan1; wid -= (m - 1); hgt -= (n - 1); adr_dst += dn*dll + dm*nchannel; for (c = 0; c < nchannel; c++) { if (!(cmask & (1 << (chan1 - 1 - c)))) continue; sl = adr_src + c; dl = adr_dst + c; for (l = 0; l < n; l++) { FTYPE *buff = buffs[l]; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i < wid + (m - 1); i++) { buff[i] = (FTYPE)sl[i*chan1]; } sl += sll; } buff_ind = 0; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i < wid; i++) buffd[i] = 0.0; for (j = 0; j < hgt; j++) { FTYPE **buffc = buffs + buff_ind; FTYPE *buffn = buffc[n]; FTYPE *pk = k; for (l = 0; l < n; l++) { FTYPE *buff_l = buffc[l]; for (off = 0; off < m;) { FTYPE *buff = buff_l + off; kw = m - off; if (kw > 2*MAX_KER) kw = MAX_KER; else if (kw > MAX_KER) kw = kw/2; off += kw; sp = sl; dp = dl; p2 = buff[0]; p3 = buff[1]; p4 = buff[2]; p5 = buff[3]; p6 = buff[4]; p7 = buff[5]; k0 = pk[0]; k1 = pk[1]; k2 = pk[2]; k3 = pk[3]; k4 = pk[4]; k5 = pk[5]; k6 = pk[6]; pk += kw; if (kw == 7) { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6; p5 = p7; p6 = buff[i + 6]; p7 = buff[i + 7]; buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5 + p6*k6; buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5 + p7*k6; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6; p5 = p7; p6 = buff[i + 6]; p7 = buff[i + 7]; LOAD_BUFF(buffi); dd.d64 = *(FTYPE *)(buffi + i); buffn[i ] = (FTYPE)dd.i32s.i0; buffn[i + 1] = (FTYPE)dd.i32s.i1; d0 = D2I(p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5 + p6*k6 + buffd[i ]); d1 = D2I(p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5 + p7*k6 + buffd[i + 1]); dp[0 ] = FROM_S32(d0); dp[chan1] = FROM_S32(d1); buffd[i ] = 0.0; buffd[i + 1] = 0.0; sp += chan2; dp += chan2; } } } else if (kw == 6) { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6; p5 = buff[i + 5]; p6 = buff[i + 6]; buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5; buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6; p5 = buff[i + 5]; p6 = buff[i + 6]; buffn[i ] = (FTYPE)sp[0]; buffn[i + 1] = (FTYPE)sp[chan1]; d0 = D2I(p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5 + buffd[i ]); d1 = D2I(p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5 + buffd[i + 1]); dp[0 ] = FROM_S32(d0); dp[chan1] = FROM_S32(d1); buffd[i ] = 0.0; buffd[i + 1] = 0.0; sp += chan2; dp += chan2; } } } else if (kw == 5) { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = buff[i + 4]; p5 = buff[i + 5]; buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4; buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = buff[i + 4]; p5 = buff[i + 5]; buffn[i ] = (FTYPE)sp[0]; buffn[i + 1] = (FTYPE)sp[chan1]; d0 = D2I(p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + buffd[i ]); d1 = D2I(p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + buffd[i + 1]); dp[0 ] = FROM_S32(d0); dp[chan1] = FROM_S32(d1); buffd[i ] = 0.0; buffd[i + 1] = 0.0; sp += chan2; dp += chan2; } } } else if (kw == 4) { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = buff[i + 3]; p4 = buff[i + 4]; buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3; buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = buff[i + 3]; p4 = buff[i + 4]; buffn[i ] = (FTYPE)sp[0]; buffn[i + 1] = (FTYPE)sp[chan1]; d0 = D2I(p0*k0 + p1*k1 + p2*k2 + p3*k3 + buffd[i ]); d1 = D2I(p1*k0 + p2*k1 + p3*k2 + p4*k3 + buffd[i + 1]); dp[0 ] = FROM_S32(d0); dp[chan1] = FROM_S32(d1); buffd[i ] = 0.0; buffd[i + 1] = 0.0; sp += chan2; dp += chan2; } } } else if (kw == 3) { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = buff[i + 2]; p3 = buff[i + 3]; buffd[i ] += p0*k0 + p1*k1 + p2*k2; buffd[i + 1] += p1*k0 + p2*k1 + p3*k2; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = buff[i + 2]; p3 = buff[i + 3]; buffn[i ] = (FTYPE)sp[0]; buffn[i + 1] = (FTYPE)sp[chan1]; d0 = D2I(p0*k0 + p1*k1 + p2*k2 + buffd[i ]); d1 = D2I(p1*k0 + p2*k1 + p3*k2 + buffd[i + 1]); dp[0 ] = FROM_S32(d0); dp[chan1] = FROM_S32(d1); buffd[i ] = 0.0; buffd[i + 1] = 0.0; sp += chan2; dp += chan2; } } } else /*if (kw == 2)*/ { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = buff[i + 1]; p2 = buff[i + 2]; buffd[i ] += p0*k0 + p1*k1; buffd[i + 1] += p1*k0 + p2*k1; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = buff[i + 1]; p2 = buff[i + 2]; buffn[i ] = (FTYPE)sp[0]; buffn[i + 1] = (FTYPE)sp[chan1]; d0 = D2I(p0*k0 + p1*k1 + buffd[i ]); d1 = D2I(p1*k0 + p2*k1 + buffd[i + 1]); dp[0 ] = FROM_S32(d0); dp[chan1] = FROM_S32(d1); buffd[i ] = 0.0; buffd[i + 1] = 0.0; sp += chan2; dp += chan2; } } } } } /* last pixels */ for (; i < wid; i++) { FTYPE *pk = k, s = 0; mlib_s32 x, d0; for (l = 0; l < n; l++) { FTYPE *buff = buffc[l] + i; for (x = 0; x < m; x++) s += buff[x] * (*pk++); } d0 = D2I(s); dp[0] = FROM_S32(d0); buffn[i] = (FTYPE)sp[0]; sp += chan1; dp += chan1; } for (l = 0; l < (m - 1); l++) buffn[wid + l] = sp[l*chan1]; /* next line */ sl += sll; dl += dll; buff_ind++; if (buff_ind >= n + 1) buff_ind = 0; } } FREE_AND_RETURN_STATUS; } /***************************************************************/ /* for x86, using integer multiplies is faster */ #define STORE_RES(res, x) \ x >>= shift2; \ CLAMP_STORE(res, x) mlib_status CONV_FUNC_I(MxN)(mlib_image *dst, const mlib_image *src, const mlib_s32 *kernel, mlib_s32 m, mlib_s32 n, mlib_s32 dm, mlib_s32 dn, mlib_s32 scale, mlib_s32 cmask) { mlib_s32 buff[BUFF_SIZE], *buffd = buff; mlib_s32 l, off, kw; mlib_s32 d0, d1, shift1, shift2; mlib_s32 k0, k1, k2, k3, k4, k5, k6; mlib_s32 p0, p1, p2, p3, p4, p5, p6, p7; DTYPE *adr_src, *sl, *sp = NULL; DTYPE *adr_dst, *dl, *dp = NULL; mlib_s32 wid, hgt, sll, dll; mlib_s32 nchannel, chan1; mlib_s32 i, j, c; mlib_s32 chan2; mlib_s32 k_locl[MAX_N*MAX_N], *k = k_locl; GET_SRC_DST_PARAMETERS(DTYPE); #if IMG_TYPE != 1 shift1 = 16; #else shift1 = 8; #endif /* IMG_TYPE != 1 */ shift2 = scale - shift1; chan1 = nchannel; chan2 = chan1 + chan1; wid -= (m - 1); hgt -= (n - 1); adr_dst += dn*dll + dm*nchannel; if (wid > BUFF_SIZE) { buffd = mlib_malloc(sizeof(mlib_s32)*wid); if (buffd == NULL) return MLIB_FAILURE; } if (m*n > MAX_N*MAX_N) { k = mlib_malloc(sizeof(mlib_s32)*(m*n)); if (k == NULL) { if (buffd != buff) mlib_free(buffd); return MLIB_FAILURE; } } for (i = 0; i < m*n; i++) { k[i] = kernel[i] >> shift1; } for (c = 0; c < nchannel; c++) { if (!(cmask & (1 << (nchannel - 1 - c)))) continue; sl = adr_src + c; dl = adr_dst + c; #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i < wid; i++) buffd[i] = 0; for (j = 0; j < hgt; j++) { mlib_s32 *pk = k; for (l = 0; l < n; l++) { DTYPE *sp0 = sl + l*sll; for (off = 0; off < m;) { sp = sp0 + off*chan1; dp = dl; kw = m - off; if (kw > 2*MAX_KER) kw = MAX_KER; else if (kw > MAX_KER) kw = kw/2; off += kw; p2 = sp[0]; p3 = sp[chan1]; p4 = sp[chan2]; p5 = sp[chan2 + chan1]; p6 = sp[chan2 + chan2]; p7 = sp[5*chan1]; k0 = pk[0]; k1 = pk[1]; k2 = pk[2]; k3 = pk[3]; k4 = pk[4]; k5 = pk[5]; k6 = pk[6]; pk += kw; sp += (kw - 1)*chan1; if (kw == 7) { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6; p5 = p7; p6 = sp[0]; p7 = sp[chan1]; buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5 + p6*k6; buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5 + p7*k6; sp += chan2; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6; p5 = p7; p6 = sp[0]; p7 = sp[chan1]; d0 = (p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5 + p6*k6 + buffd[i ]); d1 = (p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5 + p7*k6 + buffd[i + 1]); STORE_RES(dp[0 ], d0); STORE_RES(dp[chan1], d1); buffd[i ] = 0; buffd[i + 1] = 0; sp += chan2; dp += chan2; } } } else if (kw == 6) { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6; p5 = sp[0]; p6 = sp[chan1]; buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5; buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5; sp += chan2; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = p6; p5 = sp[0]; p6 = sp[chan1]; d0 = (p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + p5*k5 + buffd[i ]); d1 = (p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + p6*k5 + buffd[i + 1]); STORE_RES(dp[0 ], d0); STORE_RES(dp[chan1], d1); buffd[i ] = 0; buffd[i + 1] = 0; sp += chan2; dp += chan2; } } } else if (kw == 5) { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = sp[0]; p5 = sp[chan1]; buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4; buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4; sp += chan2; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = p5; p4 = sp[0]; p5 = sp[chan1]; d0 = (p0*k0 + p1*k1 + p2*k2 + p3*k3 + p4*k4 + buffd[i ]); d1 = (p1*k0 + p2*k1 + p3*k2 + p4*k3 + p5*k4 + buffd[i + 1]); STORE_RES(dp[0 ], d0); STORE_RES(dp[chan1], d1); buffd[i ] = 0; buffd[i + 1] = 0; sp += chan2; dp += chan2; } } } else if (kw == 4) { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = sp[0]; p4 = sp[chan1]; buffd[i ] += p0*k0 + p1*k1 + p2*k2 + p3*k3; buffd[i + 1] += p1*k0 + p2*k1 + p3*k2 + p4*k3; sp += chan2; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = p4; p3 = sp[0]; p4 = sp[chan1]; d0 = (p0*k0 + p1*k1 + p2*k2 + p3*k3 + buffd[i ]); d1 = (p1*k0 + p2*k1 + p3*k2 + p4*k3 + buffd[i + 1]); STORE_RES(dp[0 ], d0); STORE_RES(dp[chan1], d1); buffd[i ] = 0; buffd[i + 1] = 0; sp += chan2; dp += chan2; } } } else if (kw == 3) { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = sp[0]; p3 = sp[chan1]; buffd[i ] += p0*k0 + p1*k1 + p2*k2; buffd[i + 1] += p1*k0 + p2*k1 + p3*k2; sp += chan2; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = p3; p2 = sp[0]; p3 = sp[chan1]; d0 = (p0*k0 + p1*k1 + p2*k2 + buffd[i ]); d1 = (p1*k0 + p2*k1 + p3*k2 + buffd[i + 1]); STORE_RES(dp[0 ], d0); STORE_RES(dp[chan1], d1); buffd[i ] = 0; buffd[i + 1] = 0; sp += chan2; dp += chan2; } } } else if (kw == 2) { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = sp[0]; p2 = sp[chan1]; buffd[i ] += p0*k0 + p1*k1; buffd[i + 1] += p1*k0 + p2*k1; sp += chan2; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = p2; p1 = sp[0]; p2 = sp[chan1]; d0 = (p0*k0 + p1*k1 + buffd[i ]); d1 = (p1*k0 + p2*k1 + buffd[i + 1]); STORE_RES(dp[0 ], d0); STORE_RES(dp[chan1], d1); buffd[i ] = 0; buffd[i + 1] = 0; sp += chan2; dp += chan2; } } } else /*if (kw == 1)*/ { if (l < (n - 1) || off < m) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = sp[0]; p1 = sp[chan1]; buffd[i ] += p0*k0; buffd[i + 1] += p1*k0; sp += chan2; } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = 0; i <= (wid - 2); i += 2) { p0 = sp[0]; p1 = sp[chan1]; d0 = (p0*k0 + buffd[i ]); d1 = (p1*k0 + buffd[i + 1]); STORE_RES(dp[0 ], d0); STORE_RES(dp[chan1], d1); buffd[i ] = 0; buffd[i + 1] = 0; sp += chan2; dp += chan2; } } } } } /* last pixels */ for (; i < wid; i++) { mlib_s32 *pk = k, s = 0; mlib_s32 x; for (l = 0; l < n; l++) { sp = sl + l*sll + i*chan1; for (x = 0; x < m; x++) { s += sp[0] * pk[0]; sp += chan1; pk ++; } } STORE_RES(dp[0], s); sp += chan1; dp += chan1; } sl += sll; dl += dll; } } if (buffd != buff) mlib_free(buffd); if (k != k_locl) mlib_free(k); return MLIB_SUCCESS; } /***************************************************************/