1 /*
   2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // output_c.cpp - Class CPP file output routines for architecture definition
  26 
  27 #include "adlc.hpp"
  28 
  29 // Utilities to characterize effect statements
  30 static bool is_def(int usedef) {
  31   switch(usedef) {
  32   case Component::DEF:
  33   case Component::USE_DEF: return true; break;
  34   }
  35   return false;
  36 }
  37 
  38 // Define  an array containing the machine register names, strings.
  39 static void defineRegNames(FILE *fp, RegisterForm *registers) {
  40   if (registers) {
  41     fprintf(fp,"\n");
  42     fprintf(fp,"// An array of character pointers to machine register names.\n");
  43     fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
  44 
  45     // Output the register name for each register in the allocation classes
  46     RegDef *reg_def = NULL;
  47     RegDef *next = NULL;
  48     registers->reset_RegDefs();
  49     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
  50       next = registers->iter_RegDefs();
  51       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  52       fprintf(fp,"  \"%s\"%s\n", reg_def->_regname, comma);
  53     }
  54 
  55     // Finish defining enumeration
  56     fprintf(fp,"};\n");
  57 
  58     fprintf(fp,"\n");
  59     fprintf(fp,"// An array of character pointers to machine register names.\n");
  60     fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
  61     reg_def = NULL;
  62     next = NULL;
  63     registers->reset_RegDefs();
  64     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
  65       next = registers->iter_RegDefs();
  66       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  67       fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma);
  68     }
  69     // Finish defining array
  70     fprintf(fp,"\t};\n");
  71     fprintf(fp,"\n");
  72 
  73     fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
  74 
  75   }
  76 }
  77 
  78 // Define an array containing the machine register encoding values
  79 static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
  80   if (registers) {
  81     fprintf(fp,"\n");
  82     fprintf(fp,"// An array of the machine register encode values\n");
  83     fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
  84 
  85     // Output the register encoding for each register in the allocation classes
  86     RegDef *reg_def = NULL;
  87     RegDef *next    = NULL;
  88     registers->reset_RegDefs();
  89     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
  90       next = registers->iter_RegDefs();
  91       const char* register_encode = reg_def->register_encode();
  92       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  93       int encval;
  94       if (!ADLParser::is_int_token(register_encode, encval)) {
  95         fprintf(fp,"  %s%s  // %s\n", register_encode, comma, reg_def->_regname);
  96       } else {
  97         // Output known constants in hex char format (backward compatibility).
  98         assert(encval < 256, "Exceeded supported width for register encoding");
  99         fprintf(fp,"  (unsigned char)'\\x%X'%s  // %s\n", encval, comma, reg_def->_regname);
 100       }
 101     }
 102     // Finish defining enumeration
 103     fprintf(fp,"};\n");
 104 
 105   } // Done defining array
 106 }
 107 
 108 // Output an enumeration of register class names
 109 static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
 110   if (registers) {
 111     // Output an enumeration of register class names
 112     fprintf(fp,"\n");
 113     fprintf(fp,"// Enumeration of register class names\n");
 114     fprintf(fp, "enum machRegisterClass {\n");
 115     registers->_rclasses.reset();
 116     for (const char *class_name = NULL; (class_name = registers->_rclasses.iter()) != NULL;) {
 117       const char * class_name_to_upper = toUpper(class_name);
 118       fprintf(fp,"  %s,\n", class_name_to_upper);
 119       delete[] class_name_to_upper;
 120     }
 121     // Finish defining enumeration
 122     fprintf(fp, "  _last_Mach_Reg_Class\n");
 123     fprintf(fp, "};\n");
 124   }
 125 }
 126 
 127 // Declare an enumeration of user-defined register classes
 128 // and a list of register masks, one for each class.
 129 void ArchDesc::declare_register_masks(FILE *fp_hpp) {
 130   const char  *rc_name;
 131 
 132   if (_register) {
 133     // Build enumeration of user-defined register classes.
 134     defineRegClassEnum(fp_hpp, _register);
 135 
 136     // Generate a list of register masks, one for each class.
 137     fprintf(fp_hpp,"\n");
 138     fprintf(fp_hpp,"// Register masks, one for each register class.\n");
 139     _register->_rclasses.reset();
 140     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
 141       RegClass *reg_class = _register->getRegClass(rc_name);
 142       assert(reg_class, "Using an undefined register class");
 143       reg_class->declare_register_masks(fp_hpp);
 144     }
 145   }
 146 }
 147 
 148 // Generate an enumeration of user-defined register classes
 149 // and a list of register masks, one for each class.
 150 void ArchDesc::build_register_masks(FILE *fp_cpp) {
 151   const char  *rc_name;
 152 
 153   if (_register) {
 154     // Generate a list of register masks, one for each class.
 155     fprintf(fp_cpp,"\n");
 156     fprintf(fp_cpp,"// Register masks, one for each register class.\n");
 157     _register->_rclasses.reset();
 158     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
 159       RegClass *reg_class = _register->getRegClass(rc_name);
 160       assert(reg_class, "Using an undefined register class");
 161       reg_class->build_register_masks(fp_cpp);
 162     }
 163   }
 164 }
 165 
 166 // Compute an index for an array in the pipeline_reads_NNN arrays
 167 static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
 168 {
 169   int templen = 1;
 170   int paramcount = 0;
 171   const char *paramname;
 172 
 173   if (pipeclass->_parameters.count() == 0)
 174     return -1;
 175 
 176   pipeclass->_parameters.reset();
 177   paramname = pipeclass->_parameters.iter();
 178   const PipeClassOperandForm *pipeopnd =
 179     (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 180   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
 181     pipeclass->_parameters.reset();
 182 
 183   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
 184     const PipeClassOperandForm *tmppipeopnd =
 185         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 186 
 187     if (tmppipeopnd)
 188       templen += 10 + (int)strlen(tmppipeopnd->_stage);
 189     else
 190       templen += 19;
 191 
 192     paramcount++;
 193   }
 194 
 195   // See if the count is zero
 196   if (paramcount == 0) {
 197     return -1;
 198   }
 199 
 200   char *operand_stages = new char [templen];
 201   operand_stages[0] = 0;
 202   int i = 0;
 203   templen = 0;
 204 
 205   pipeclass->_parameters.reset();
 206   paramname = pipeclass->_parameters.iter();
 207   pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 208   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
 209     pipeclass->_parameters.reset();
 210 
 211   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
 212     const PipeClassOperandForm *tmppipeopnd =
 213         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 214     templen += sprintf(&operand_stages[templen], "  stage_%s%c\n",
 215       tmppipeopnd ? tmppipeopnd->_stage : "undefined",
 216       (++i < paramcount ? ',' : ' ') );
 217   }
 218 
 219   // See if the same string is in the table
 220   int ndx = pipeline_reads.index(operand_stages);
 221 
 222   // No, add it to the table
 223   if (ndx < 0) {
 224     pipeline_reads.addName(operand_stages);
 225     ndx = pipeline_reads.index(operand_stages);
 226 
 227     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
 228       ndx+1, paramcount, operand_stages);
 229   }
 230   else
 231     delete [] operand_stages;
 232 
 233   return (ndx);
 234 }
 235 
 236 // Compute an index for an array in the pipeline_res_stages_NNN arrays
 237 static int pipeline_res_stages_initializer(
 238   FILE *fp_cpp,
 239   PipelineForm *pipeline,
 240   NameList &pipeline_res_stages,
 241   PipeClassForm *pipeclass)
 242 {
 243   const PipeClassResourceForm *piperesource;
 244   int * res_stages = new int [pipeline->_rescount];
 245   int i;
 246 
 247   for (i = 0; i < pipeline->_rescount; i++)
 248      res_stages[i] = 0;
 249 
 250   for (pipeclass->_resUsage.reset();
 251        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 252     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 253     for (i = 0; i < pipeline->_rescount; i++)
 254       if ((1 << i) & used_mask) {
 255         int stage = pipeline->_stages.index(piperesource->_stage);
 256         if (res_stages[i] < stage+1)
 257           res_stages[i] = stage+1;
 258       }
 259   }
 260 
 261   // Compute the length needed for the resource list
 262   int commentlen = 0;
 263   int max_stage = 0;
 264   for (i = 0; i < pipeline->_rescount; i++) {
 265     if (res_stages[i] == 0) {
 266       if (max_stage < 9)
 267         max_stage = 9;
 268     }
 269     else {
 270       int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
 271       if (max_stage < stagelen)
 272         max_stage = stagelen;
 273     }
 274 
 275     commentlen += (int)strlen(pipeline->_reslist.name(i));
 276   }
 277 
 278   int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
 279 
 280   // Allocate space for the resource list
 281   char * resource_stages = new char [templen];
 282 
 283   templen = 0;
 284   for (i = 0; i < pipeline->_rescount; i++) {
 285     const char * const resname =
 286       res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
 287 
 288     templen += sprintf(&resource_stages[templen], "  stage_%s%-*s // %s\n",
 289       resname, max_stage - (int)strlen(resname) + 1,
 290       (i < pipeline->_rescount-1) ? "," : "",
 291       pipeline->_reslist.name(i));
 292   }
 293 
 294   // See if the same string is in the table
 295   int ndx = pipeline_res_stages.index(resource_stages);
 296 
 297   // No, add it to the table
 298   if (ndx < 0) {
 299     pipeline_res_stages.addName(resource_stages);
 300     ndx = pipeline_res_stages.index(resource_stages);
 301 
 302     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
 303       ndx+1, pipeline->_rescount, resource_stages);
 304   }
 305   else
 306     delete [] resource_stages;
 307 
 308   delete [] res_stages;
 309 
 310   return (ndx);
 311 }
 312 
 313 // Compute an index for an array in the pipeline_res_cycles_NNN arrays
 314 static int pipeline_res_cycles_initializer(
 315   FILE *fp_cpp,
 316   PipelineForm *pipeline,
 317   NameList &pipeline_res_cycles,
 318   PipeClassForm *pipeclass)
 319 {
 320   const PipeClassResourceForm *piperesource;
 321   int * res_cycles = new int [pipeline->_rescount];
 322   int i;
 323 
 324   for (i = 0; i < pipeline->_rescount; i++)
 325      res_cycles[i] = 0;
 326 
 327   for (pipeclass->_resUsage.reset();
 328        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 329     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 330     for (i = 0; i < pipeline->_rescount; i++)
 331       if ((1 << i) & used_mask) {
 332         int cycles = piperesource->_cycles;
 333         if (res_cycles[i] < cycles)
 334           res_cycles[i] = cycles;
 335       }
 336   }
 337 
 338   // Pre-compute the string length
 339   int templen;
 340   int cyclelen = 0, commentlen = 0;
 341   int max_cycles = 0;
 342   char temp[32];
 343 
 344   for (i = 0; i < pipeline->_rescount; i++) {
 345     if (max_cycles < res_cycles[i])
 346       max_cycles = res_cycles[i];
 347     templen = sprintf(temp, "%d", res_cycles[i]);
 348     if (cyclelen < templen)
 349       cyclelen = templen;
 350     commentlen += (int)strlen(pipeline->_reslist.name(i));
 351   }
 352 
 353   templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
 354 
 355   // Allocate space for the resource list
 356   char * resource_cycles = new char [templen];
 357 
 358   templen = 0;
 359 
 360   for (i = 0; i < pipeline->_rescount; i++) {
 361     templen += sprintf(&resource_cycles[templen], "  %*d%c // %s\n",
 362       cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
 363   }
 364 
 365   // See if the same string is in the table
 366   int ndx = pipeline_res_cycles.index(resource_cycles);
 367 
 368   // No, add it to the table
 369   if (ndx < 0) {
 370     pipeline_res_cycles.addName(resource_cycles);
 371     ndx = pipeline_res_cycles.index(resource_cycles);
 372 
 373     fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
 374       ndx+1, pipeline->_rescount, resource_cycles);
 375   }
 376   else
 377     delete [] resource_cycles;
 378 
 379   delete [] res_cycles;
 380 
 381   return (ndx);
 382 }
 383 
 384 //typedef unsigned long long uint64_t;
 385 
 386 // Compute an index for an array in the pipeline_res_mask_NNN arrays
 387 static int pipeline_res_mask_initializer(
 388   FILE *fp_cpp,
 389   PipelineForm *pipeline,
 390   NameList &pipeline_res_mask,
 391   NameList &pipeline_res_args,
 392   PipeClassForm *pipeclass)
 393 {
 394   const PipeClassResourceForm *piperesource;
 395   const uint rescount      = pipeline->_rescount;
 396   const uint maxcycleused  = pipeline->_maxcycleused;
 397   const uint cyclemasksize = (maxcycleused + 31) >> 5;
 398 
 399   int i, j;
 400   int element_count = 0;
 401   uint *res_mask = new uint [cyclemasksize];
 402   uint resources_used             = 0;
 403   uint resources_used_exclusively = 0;
 404 
 405   for (pipeclass->_resUsage.reset();
 406        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
 407     element_count++;
 408   }
 409 
 410   // Pre-compute the string length
 411   int templen;
 412   int commentlen = 0;
 413   int max_cycles = 0;
 414 
 415   int cyclelen = ((maxcycleused + 3) >> 2);
 416   int masklen = (rescount + 3) >> 2;
 417 
 418   int cycledigit = 0;
 419   for (i = maxcycleused; i > 0; i /= 10)
 420     cycledigit++;
 421 
 422   int maskdigit = 0;
 423   for (i = rescount; i > 0; i /= 10)
 424     maskdigit++;
 425 
 426   static const char* pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
 427   static const char* pipeline_use_element    = "Pipeline_Use_Element";
 428 
 429   templen = 1 +
 430     (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
 431      (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
 432 
 433   // Allocate space for the resource list
 434   char * resource_mask = new char [templen];
 435   char * last_comma = NULL;
 436 
 437   templen = 0;
 438 
 439   for (pipeclass->_resUsage.reset();
 440        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
 441     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 442 
 443     if (!used_mask) {
 444       fprintf(stderr, "*** used_mask is 0 ***\n");
 445     }
 446 
 447     resources_used |= used_mask;
 448 
 449     uint lb, ub;
 450 
 451     for (lb =  0; (used_mask & (1 << lb)) == 0; lb++);
 452     for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
 453 
 454     if (lb == ub) {
 455       resources_used_exclusively |= used_mask;
 456     }
 457 
 458     int formatlen =
 459       sprintf(&resource_mask[templen], "  %s(0x%0*x, %*d, %*d, %s %s(",
 460         pipeline_use_element,
 461         masklen, used_mask,
 462         cycledigit, lb, cycledigit, ub,
 463         ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
 464         pipeline_use_cycle_mask);
 465 
 466     templen += formatlen;
 467 
 468     memset(res_mask, 0, cyclemasksize * sizeof(uint));
 469 
 470     int cycles = piperesource->_cycles;
 471     uint stage          = pipeline->_stages.index(piperesource->_stage);
 472     if ((uint)NameList::Not_in_list == stage) {
 473       fprintf(stderr,
 474               "pipeline_res_mask_initializer: "
 475               "semantic error: "
 476               "pipeline stage undeclared: %s\n",
 477               piperesource->_stage);
 478       exit(1);
 479     }
 480     uint upper_limit    = stage + cycles - 1;
 481     uint lower_limit    = stage - 1;
 482     uint upper_idx      = upper_limit >> 5;
 483     uint lower_idx      = lower_limit >> 5;
 484     uint upper_position = upper_limit & 0x1f;
 485     uint lower_position = lower_limit & 0x1f;
 486 
 487     uint mask = (((uint)1) << upper_position) - 1;
 488 
 489     while (upper_idx > lower_idx) {
 490       res_mask[upper_idx--] |= mask;
 491       mask = (uint)-1;
 492     }
 493 
 494     mask -= (((uint)1) << lower_position) - 1;
 495     res_mask[upper_idx] |= mask;
 496 
 497     for (j = cyclemasksize-1; j >= 0; j--) {
 498       formatlen =
 499         sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
 500       templen += formatlen;
 501     }
 502 
 503     resource_mask[templen++] = ')';
 504     resource_mask[templen++] = ')';
 505     last_comma = &resource_mask[templen];
 506     resource_mask[templen++] = ',';
 507     resource_mask[templen++] = '\n';
 508   }
 509 
 510   resource_mask[templen] = 0;
 511   if (last_comma) {
 512     last_comma[0] = ' ';
 513   }
 514 
 515   // See if the same string is in the table
 516   int ndx = pipeline_res_mask.index(resource_mask);
 517 
 518   // No, add it to the table
 519   if (ndx < 0) {
 520     pipeline_res_mask.addName(resource_mask);
 521     ndx = pipeline_res_mask.index(resource_mask);
 522 
 523     if (strlen(resource_mask) > 0)
 524       fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
 525         ndx+1, element_count, resource_mask);
 526 
 527     char* args = new char [9 + 2*masklen + maskdigit];
 528 
 529     sprintf(args, "0x%0*x, 0x%0*x, %*d",
 530       masklen, resources_used,
 531       masklen, resources_used_exclusively,
 532       maskdigit, element_count);
 533 
 534     pipeline_res_args.addName(args);
 535   }
 536   else {
 537     delete [] resource_mask;
 538   }
 539 
 540   delete [] res_mask;
 541 //delete [] res_masks;
 542 
 543   return (ndx);
 544 }
 545 
 546 void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
 547   const char *classname;
 548   const char *resourcename;
 549   int resourcenamelen = 0;
 550   NameList pipeline_reads;
 551   NameList pipeline_res_stages;
 552   NameList pipeline_res_cycles;
 553   NameList pipeline_res_masks;
 554   NameList pipeline_res_args;
 555   const int default_latency = 1;
 556   const int non_operand_latency = 0;
 557   const int node_latency = 0;
 558 
 559   if (!_pipeline) {
 560     fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
 561     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
 562     fprintf(fp_cpp, "  return %d;\n", non_operand_latency);
 563     fprintf(fp_cpp, "}\n");
 564     return;
 565   }
 566 
 567   fprintf(fp_cpp, "\n");
 568   fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
 569   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 570   fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
 571   fprintf(fp_cpp, "  static const char * const _stage_names[] = {\n");
 572   fprintf(fp_cpp, "    \"undefined\"");
 573 
 574   for (int s = 0; s < _pipeline->_stagecnt; s++)
 575     fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
 576 
 577   fprintf(fp_cpp, "\n  };\n\n");
 578   fprintf(fp_cpp, "  return (s <= %d ? _stage_names[s] : \"???\");\n",
 579     _pipeline->_stagecnt);
 580   fprintf(fp_cpp, "}\n");
 581   fprintf(fp_cpp, "#endif\n\n");
 582 
 583   fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
 584   fprintf(fp_cpp, "  // See if the functional units overlap\n");
 585 #if 0
 586   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 587   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 588   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
 589   fprintf(fp_cpp, "  }\n");
 590   fprintf(fp_cpp, "#endif\n\n");
 591 #endif
 592   fprintf(fp_cpp, "  uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
 593   fprintf(fp_cpp, "  if (mask == 0)\n    return (start);\n\n");
 594 #if 0
 595   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 596   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 597   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
 598   fprintf(fp_cpp, "  }\n");
 599   fprintf(fp_cpp, "#endif\n\n");
 600 #endif
 601   fprintf(fp_cpp, "  for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
 602   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
 603   fprintf(fp_cpp, "    if (predUse->multiple())\n");
 604   fprintf(fp_cpp, "      continue;\n\n");
 605   fprintf(fp_cpp, "    for (uint j = 0; j < resourceUseCount(); j++) {\n");
 606   fprintf(fp_cpp, "      const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
 607   fprintf(fp_cpp, "      if (currUse->multiple())\n");
 608   fprintf(fp_cpp, "        continue;\n\n");
 609   fprintf(fp_cpp, "      if (predUse->used() & currUse->used()) {\n");
 610   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
 611   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
 612   fprintf(fp_cpp, "        for ( y <<= start; x.overlaps(y); start++ )\n");
 613   fprintf(fp_cpp, "          y <<= 1;\n");
 614   fprintf(fp_cpp, "      }\n");
 615   fprintf(fp_cpp, "    }\n");
 616   fprintf(fp_cpp, "  }\n\n");
 617   fprintf(fp_cpp, "  // There is the potential for overlap\n");
 618   fprintf(fp_cpp, "  return (start);\n");
 619   fprintf(fp_cpp, "}\n\n");
 620   fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
 621   fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
 622   fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
 623   fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
 624   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
 625   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
 626   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
 627   fprintf(fp_cpp, "      uint min_delay = %d;\n",
 628     _pipeline->_maxcycleused+1);
 629   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
 630   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 631   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
 632   fprintf(fp_cpp, "        uint curr_delay = delay;\n");
 633   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
 634   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
 635   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
 636   fprintf(fp_cpp, "          for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
 637   fprintf(fp_cpp, "            y <<= 1;\n");
 638   fprintf(fp_cpp, "        }\n");
 639   fprintf(fp_cpp, "        if (min_delay > curr_delay)\n          min_delay = curr_delay;\n");
 640   fprintf(fp_cpp, "      }\n");
 641   fprintf(fp_cpp, "      if (delay < min_delay)\n      delay = min_delay;\n");
 642   fprintf(fp_cpp, "    }\n");
 643   fprintf(fp_cpp, "    else {\n");
 644   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 645   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
 646   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
 647   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
 648   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
 649   fprintf(fp_cpp, "          for ( y <<= delay; x.overlaps(y); delay++ )\n");
 650   fprintf(fp_cpp, "            y <<= 1;\n");
 651   fprintf(fp_cpp, "        }\n");
 652   fprintf(fp_cpp, "      }\n");
 653   fprintf(fp_cpp, "    }\n");
 654   fprintf(fp_cpp, "  }\n\n");
 655   fprintf(fp_cpp, "  return (delay);\n");
 656   fprintf(fp_cpp, "}\n\n");
 657   fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
 658   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
 659   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
 660   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
 661   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
 662   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 663   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
 664   fprintf(fp_cpp, "        if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
 665   fprintf(fp_cpp, "          currUse->_used |= (1 << j);\n");
 666   fprintf(fp_cpp, "          _resources_used |= (1 << j);\n");
 667   fprintf(fp_cpp, "          currUse->_mask.Or(predUse->_mask);\n");
 668   fprintf(fp_cpp, "          break;\n");
 669   fprintf(fp_cpp, "        }\n");
 670   fprintf(fp_cpp, "      }\n");
 671   fprintf(fp_cpp, "    }\n");
 672   fprintf(fp_cpp, "    else {\n");
 673   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 674   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
 675   fprintf(fp_cpp, "        currUse->_used |= (1 << j);\n");
 676   fprintf(fp_cpp, "        _resources_used |= (1 << j);\n");
 677   fprintf(fp_cpp, "        currUse->_mask.Or(predUse->_mask);\n");
 678   fprintf(fp_cpp, "      }\n");
 679   fprintf(fp_cpp, "    }\n");
 680   fprintf(fp_cpp, "  }\n");
 681   fprintf(fp_cpp, "}\n\n");
 682 
 683   fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
 684   fprintf(fp_cpp, "  int const default_latency = 1;\n");
 685   fprintf(fp_cpp, "\n");
 686 #if 0
 687   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 688   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 689   fprintf(fp_cpp, "    tty->print(\"#   operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
 690   fprintf(fp_cpp, "  }\n");
 691   fprintf(fp_cpp, "#endif\n\n");
 692 #endif
 693   fprintf(fp_cpp, "  assert(this, \"NULL pipeline info\");\n");
 694   fprintf(fp_cpp, "  assert(pred, \"NULL predecessor pipline info\");\n\n");
 695   fprintf(fp_cpp, "  if (pred->hasFixedLatency())\n    return (pred->fixedLatency());\n\n");
 696   fprintf(fp_cpp, "  // If this is not an operand, then assume a dependence with 0 latency\n");
 697   fprintf(fp_cpp, "  if (opnd > _read_stage_count)\n    return (0);\n\n");
 698   fprintf(fp_cpp, "  uint writeStage = pred->_write_stage;\n");
 699   fprintf(fp_cpp, "  uint readStage  = _read_stages[opnd-1];\n");
 700 #if 0
 701   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 702   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 703   fprintf(fp_cpp, "    tty->print(\"#   operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
 704   fprintf(fp_cpp, "  }\n");
 705   fprintf(fp_cpp, "#endif\n\n");
 706 #endif
 707   fprintf(fp_cpp, "\n");
 708   fprintf(fp_cpp, "  if (writeStage == stage_undefined || readStage == stage_undefined)\n");
 709   fprintf(fp_cpp, "    return (default_latency);\n");
 710   fprintf(fp_cpp, "\n");
 711   fprintf(fp_cpp, "  int delta = writeStage - readStage;\n");
 712   fprintf(fp_cpp, "  if (delta < 0) delta = 0;\n\n");
 713 #if 0
 714   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 715   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 716   fprintf(fp_cpp, "    tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
 717   fprintf(fp_cpp, "  }\n");
 718   fprintf(fp_cpp, "#endif\n\n");
 719 #endif
 720   fprintf(fp_cpp, "  return (delta);\n");
 721   fprintf(fp_cpp, "}\n\n");
 722 
 723   if (!_pipeline)
 724     /* Do Nothing */;
 725 
 726   else if (_pipeline->_maxcycleused <=
 727     32
 728       ) {
 729     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 730     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
 731     fprintf(fp_cpp, "}\n\n");
 732     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 733     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
 734     fprintf(fp_cpp, "}\n\n");
 735   }
 736   else {
 737     uint l;
 738     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 739     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 740     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
 741     for (l = 1; l <= masklen; l++)
 742       fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
 743     fprintf(fp_cpp, ");\n");
 744     fprintf(fp_cpp, "}\n\n");
 745     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 746     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
 747     for (l = 1; l <= masklen; l++)
 748       fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
 749     fprintf(fp_cpp, ");\n");
 750     fprintf(fp_cpp, "}\n\n");
 751     fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
 752     for (l = 1; l <= masklen; l++)
 753       fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
 754     fprintf(fp_cpp, "\n}\n\n");
 755   }
 756 
 757   /* Get the length of all the resource names */
 758   for (_pipeline->_reslist.reset(), resourcenamelen = 0;
 759        (resourcename = _pipeline->_reslist.iter()) != NULL;
 760        resourcenamelen += (int)strlen(resourcename));
 761 
 762   // Create the pipeline class description
 763 
 764   fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
 765   fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
 766 
 767   fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
 768   for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
 769     fprintf(fp_cpp, "  Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
 770     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 771     for (int i2 = masklen-1; i2 >= 0; i2--)
 772       fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
 773     fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
 774   }
 775   fprintf(fp_cpp, "};\n\n");
 776 
 777   fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
 778     _pipeline->_rescount);
 779 
 780   for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
 781     fprintf(fp_cpp, "\n");
 782     fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
 783     PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
 784     int maxWriteStage = -1;
 785     int maxMoreInstrs = 0;
 786     int paramcount = 0;
 787     int i = 0;
 788     const char *paramname;
 789     int resource_count = (_pipeline->_rescount + 3) >> 2;
 790 
 791     // Scan the operands, looking for last output stage and number of inputs
 792     for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
 793       const PipeClassOperandForm *pipeopnd =
 794           (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 795       if (pipeopnd) {
 796         if (pipeopnd->_iswrite) {
 797            int stagenum  = _pipeline->_stages.index(pipeopnd->_stage);
 798            int moreinsts = pipeopnd->_more_instrs;
 799           if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
 800             maxWriteStage = stagenum;
 801             maxMoreInstrs = moreinsts;
 802           }
 803         }
 804       }
 805 
 806       if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
 807         paramcount++;
 808     }
 809 
 810     // Create the list of stages for the operands that are read
 811     // Note that we will build a NameList to reduce the number of copies
 812 
 813     int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
 814 
 815     int pipeline_res_stages_index = pipeline_res_stages_initializer(
 816       fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
 817 
 818     int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
 819       fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
 820 
 821     int pipeline_res_mask_index = pipeline_res_mask_initializer(
 822       fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
 823 
 824 #if 0
 825     // Process the Resources
 826     const PipeClassResourceForm *piperesource;
 827 
 828     unsigned resources_used = 0;
 829     unsigned exclusive_resources_used = 0;
 830     unsigned resource_groups = 0;
 831     for (pipeclass->_resUsage.reset();
 832          (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 833       int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 834       if (used_mask)
 835         resource_groups++;
 836       resources_used |= used_mask;
 837       if ((used_mask & (used_mask-1)) == 0)
 838         exclusive_resources_used |= used_mask;
 839     }
 840 
 841     if (resource_groups > 0) {
 842       fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
 843         pipeclass->_num, resource_groups);
 844       for (pipeclass->_resUsage.reset(), i = 1;
 845            (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
 846            i++ ) {
 847         int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 848         if (used_mask) {
 849           fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
 850         }
 851       }
 852       fprintf(fp_cpp, "};\n\n");
 853     }
 854 #endif
 855 
 856     // Create the pipeline class description
 857     fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
 858       pipeclass->_num);
 859     if (maxWriteStage < 0)
 860       fprintf(fp_cpp, "(uint)stage_undefined");
 861     else if (maxMoreInstrs == 0)
 862       fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
 863     else
 864       fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
 865     fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
 866       paramcount,
 867       pipeclass->hasFixedLatency() ? "true" : "false",
 868       pipeclass->fixedLatency(),
 869       pipeclass->InstructionCount(),
 870       pipeclass->hasBranchDelay() ? "true" : "false",
 871       pipeclass->hasMultipleBundles() ? "true" : "false",
 872       pipeclass->forceSerialization() ? "true" : "false",
 873       pipeclass->mayHaveNoCode() ? "true" : "false" );
 874     if (paramcount > 0) {
 875       fprintf(fp_cpp, "\n  (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
 876         pipeline_reads_index+1);
 877     }
 878     else
 879       fprintf(fp_cpp, " NULL,");
 880     fprintf(fp_cpp, "  (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
 881       pipeline_res_stages_index+1);
 882     fprintf(fp_cpp, "  (uint * const) pipeline_res_cycles_%03d,\n",
 883       pipeline_res_cycles_index+1);
 884     fprintf(fp_cpp, "  Pipeline_Use(%s, (Pipeline_Use_Element *)",
 885       pipeline_res_args.name(pipeline_res_mask_index));
 886     if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
 887       fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
 888         pipeline_res_mask_index+1);
 889     else
 890       fprintf(fp_cpp, "NULL");
 891     fprintf(fp_cpp, "));\n");
 892   }
 893 
 894   // Generate the Node::latency method if _pipeline defined
 895   fprintf(fp_cpp, "\n");
 896   fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
 897   fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
 898   if (_pipeline) {
 899 #if 0
 900     fprintf(fp_cpp, "#ifndef PRODUCT\n");
 901     fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
 902     fprintf(fp_cpp, "    tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
 903     fprintf(fp_cpp, " }\n");
 904     fprintf(fp_cpp, "#endif\n");
 905 #endif
 906     fprintf(fp_cpp, "  uint j;\n");
 907     fprintf(fp_cpp, "  // verify in legal range for inputs\n");
 908     fprintf(fp_cpp, "  assert(i < len(), \"index not in range\");\n\n");
 909     fprintf(fp_cpp, "  // verify input is not null\n");
 910     fprintf(fp_cpp, "  Node *pred = in(i);\n");
 911     fprintf(fp_cpp, "  if (!pred)\n    return %d;\n\n",
 912       non_operand_latency);
 913     fprintf(fp_cpp, "  if (pred->is_Proj())\n    pred = pred->in(0);\n\n");
 914     fprintf(fp_cpp, "  // if either node does not have pipeline info, use default\n");
 915     fprintf(fp_cpp, "  const Pipeline *predpipe = pred->pipeline();\n");
 916     fprintf(fp_cpp, "  assert(predpipe, \"no predecessor pipeline info\");\n\n");
 917     fprintf(fp_cpp, "  if (predpipe->hasFixedLatency())\n    return predpipe->fixedLatency();\n\n");
 918     fprintf(fp_cpp, "  const Pipeline *currpipe = pipeline();\n");
 919     fprintf(fp_cpp, "  assert(currpipe, \"no pipeline info\");\n\n");
 920     fprintf(fp_cpp, "  if (!is_Mach())\n    return %d;\n\n",
 921       node_latency);
 922     fprintf(fp_cpp, "  const MachNode *m = as_Mach();\n");
 923     fprintf(fp_cpp, "  j = m->oper_input_base();\n");
 924     fprintf(fp_cpp, "  if (i < j)\n    return currpipe->functional_unit_latency(%d, predpipe);\n\n",
 925       non_operand_latency);
 926     fprintf(fp_cpp, "  // determine which operand this is in\n");
 927     fprintf(fp_cpp, "  uint n = m->num_opnds();\n");
 928     fprintf(fp_cpp, "  int delta = %d;\n\n",
 929       non_operand_latency);
 930     fprintf(fp_cpp, "  uint k;\n");
 931     fprintf(fp_cpp, "  for (k = 1; k < n; k++) {\n");
 932     fprintf(fp_cpp, "    j += m->_opnds[k]->num_edges();\n");
 933     fprintf(fp_cpp, "    if (i < j)\n");
 934     fprintf(fp_cpp, "      break;\n");
 935     fprintf(fp_cpp, "  }\n");
 936     fprintf(fp_cpp, "  if (k < n)\n");
 937     fprintf(fp_cpp, "    delta = currpipe->operand_latency(k,predpipe);\n\n");
 938     fprintf(fp_cpp, "  return currpipe->functional_unit_latency(delta, predpipe);\n");
 939   }
 940   else {
 941     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
 942     fprintf(fp_cpp, "  return %d;\n",
 943       non_operand_latency);
 944   }
 945   fprintf(fp_cpp, "}\n\n");
 946 
 947   // Output the list of nop nodes
 948   fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
 949   const char *nop;
 950   int nopcnt = 0;
 951   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
 952 
 953   fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d]) {\n", nopcnt);
 954   int i = 0;
 955   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
 956     fprintf(fp_cpp, "  nop_list[%d] = (MachNode *) new %sNode();\n", i, nop);
 957   }
 958   fprintf(fp_cpp, "};\n\n");
 959   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 960   fprintf(fp_cpp, "void Bundle::dump(outputStream *st) const {\n");
 961   fprintf(fp_cpp, "  static const char * bundle_flags[] = {\n");
 962   fprintf(fp_cpp, "    \"\",\n");
 963   fprintf(fp_cpp, "    \"use nop delay\",\n");
 964   fprintf(fp_cpp, "    \"use unconditional delay\",\n");
 965   fprintf(fp_cpp, "    \"use conditional delay\",\n");
 966   fprintf(fp_cpp, "    \"used in conditional delay\",\n");
 967   fprintf(fp_cpp, "    \"used in unconditional delay\",\n");
 968   fprintf(fp_cpp, "    \"used in all conditional delays\",\n");
 969   fprintf(fp_cpp, "  };\n\n");
 970 
 971   fprintf(fp_cpp, "  static const char *resource_names[%d] = {", _pipeline->_rescount);
 972   for (i = 0; i < _pipeline->_rescount; i++)
 973     fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
 974   fprintf(fp_cpp, "};\n\n");
 975 
 976   // See if the same string is in the table
 977   fprintf(fp_cpp, "  bool needs_comma = false;\n\n");
 978   fprintf(fp_cpp, "  if (_flags) {\n");
 979   fprintf(fp_cpp, "    st->print(\"%%s\", bundle_flags[_flags]);\n");
 980   fprintf(fp_cpp, "    needs_comma = true;\n");
 981   fprintf(fp_cpp, "  };\n");
 982   fprintf(fp_cpp, "  if (instr_count()) {\n");
 983   fprintf(fp_cpp, "    st->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
 984   fprintf(fp_cpp, "    needs_comma = true;\n");
 985   fprintf(fp_cpp, "  };\n");
 986   fprintf(fp_cpp, "  uint r = resources_used();\n");
 987   fprintf(fp_cpp, "  if (r) {\n");
 988   fprintf(fp_cpp, "    st->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
 989   fprintf(fp_cpp, "    for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
 990   fprintf(fp_cpp, "      if ((r & (1 << i)) != 0)\n");
 991   fprintf(fp_cpp, "        st->print(\" %%s\", resource_names[i]);\n");
 992   fprintf(fp_cpp, "    needs_comma = true;\n");
 993   fprintf(fp_cpp, "  };\n");
 994   fprintf(fp_cpp, "  st->print(\"\\n\");\n");
 995   fprintf(fp_cpp, "}\n");
 996   fprintf(fp_cpp, "#endif\n");
 997 }
 998 
 999 // ---------------------------------------------------------------------------
1000 //------------------------------Utilities to build Instruction Classes--------
1001 // ---------------------------------------------------------------------------
1002 
1003 static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
1004   fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
1005           node, regMask);
1006 }
1007 
1008 static void print_block_index(FILE *fp, int inst_position) {
1009   assert( inst_position >= 0, "Instruction number less than zero");
1010   fprintf(fp, "block_index");
1011   if( inst_position != 0 ) {
1012     fprintf(fp, " - %d", inst_position);
1013   }
1014 }
1015 
1016 // Scan the peepmatch and output a test for each instruction
1017 static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1018   int         parent        = -1;
1019   int         inst_position = 0;
1020   const char* inst_name     = NULL;
1021   int         input         = 0;
1022   fprintf(fp, "  // Check instruction sub-tree\n");
1023   pmatch->reset();
1024   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1025        inst_name != NULL;
1026        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1027     // If this is not a placeholder
1028     if( ! pmatch->is_placeholder() ) {
1029       // Define temporaries 'inst#', based on parent and parent's input index
1030       if( parent != -1 ) {                // root was initialized
1031         fprintf(fp, "  // Identify previous instruction if inside this block\n");
1032         fprintf(fp, "  if( ");
1033         print_block_index(fp, inst_position);
1034         fprintf(fp, " > 0 ) {\n    Node *n = block->get_node(");
1035         print_block_index(fp, inst_position);
1036         fprintf(fp, ");\n    inst%d = (n->is_Mach()) ? ", inst_position);
1037         fprintf(fp, "n->as_Mach() : NULL;\n  }\n");
1038       }
1039 
1040       // When not the root
1041       // Test we have the correct instruction by comparing the rule.
1042       if( parent != -1 ) {
1043         fprintf(fp, "  matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
1044                 inst_position, inst_position, inst_name);
1045       }
1046     } else {
1047       // Check that user did not try to constrain a placeholder
1048       assert( ! pconstraint->constrains_instruction(inst_position),
1049               "fatal(): Can not constrain a placeholder instruction");
1050     }
1051   }
1052 }
1053 
1054 // Build mapping for register indices, num_edges to input
1055 static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
1056   int         parent        = -1;
1057   int         inst_position = 0;
1058   const char* inst_name     = NULL;
1059   int         input         = 0;
1060   fprintf(fp, "      // Build map to register info\n");
1061   pmatch->reset();
1062   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1063        inst_name != NULL;
1064        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1065     // If this is not a placeholder
1066     if( ! pmatch->is_placeholder() ) {
1067       // Define temporaries 'inst#', based on self's inst_position
1068       InstructForm *inst = globals[inst_name]->is_instruction();
1069       if( inst != NULL ) {
1070         char inst_prefix[]  = "instXXXX_";
1071         sprintf(inst_prefix, "inst%d_",   inst_position);
1072         char receiver[]     = "instXXXX->";
1073         sprintf(receiver,    "inst%d->", inst_position);
1074         inst->index_temps( fp, globals, inst_prefix, receiver );
1075       }
1076     }
1077   }
1078 }
1079 
1080 // Generate tests for the constraints
1081 static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1082   fprintf(fp, "\n");
1083   fprintf(fp, "      // Check constraints on sub-tree-leaves\n");
1084 
1085   // Build mapping from num_edges to local variables
1086   build_instruction_index_mapping( fp, globals, pmatch );
1087 
1088   // Build constraint tests
1089   if( pconstraint != NULL ) {
1090     fprintf(fp, "      matches = matches &&");
1091     bool   first_constraint = true;
1092     while( pconstraint != NULL ) {
1093       // indentation and connecting '&&'
1094       const char *indentation = "      ";
1095       fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : "  "));
1096 
1097       // Only have '==' relation implemented
1098       if( strcmp(pconstraint->_relation,"==") != 0 ) {
1099         assert( false, "Unimplemented()" );
1100       }
1101 
1102       // LEFT
1103       int left_index       = pconstraint->_left_inst;
1104       const char *left_op  = pconstraint->_left_op;
1105       // Access info on the instructions whose operands are compared
1106       InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
1107       assert( inst_left, "Parser should guaranty this is an instruction");
1108       int left_op_base  = inst_left->oper_input_base(globals);
1109       // Access info on the operands being compared
1110       int left_op_index  = inst_left->operand_position(left_op, Component::USE);
1111       if( left_op_index == -1 ) {
1112         left_op_index = inst_left->operand_position(left_op, Component::DEF);
1113         if( left_op_index == -1 ) {
1114           left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
1115         }
1116       }
1117       assert( left_op_index  != NameList::Not_in_list, "Did not find operand in instruction");
1118       ComponentList components_left = inst_left->_components;
1119       const char *left_comp_type = components_left.at(left_op_index)->_type;
1120       OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
1121       Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
1122 
1123 
1124       // RIGHT
1125       int right_op_index = -1;
1126       int right_index      = pconstraint->_right_inst;
1127       const char *right_op = pconstraint->_right_op;
1128       if( right_index != -1 ) { // Match operand
1129         // Access info on the instructions whose operands are compared
1130         InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
1131         assert( inst_right, "Parser should guaranty this is an instruction");
1132         int right_op_base = inst_right->oper_input_base(globals);
1133         // Access info on the operands being compared
1134         right_op_index = inst_right->operand_position(right_op, Component::USE);
1135         if( right_op_index == -1 ) {
1136           right_op_index = inst_right->operand_position(right_op, Component::DEF);
1137           if( right_op_index == -1 ) {
1138             right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
1139           }
1140         }
1141         assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
1142         ComponentList components_right = inst_right->_components;
1143         const char *right_comp_type = components_right.at(right_op_index)->_type;
1144         OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1145         Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
1146         assert( right_interface_type == left_interface_type, "Both must be same interface");
1147 
1148       } else {                  // Else match register
1149         // assert( false, "should be a register" );
1150       }
1151 
1152       //
1153       // Check for equivalence
1154       //
1155       // fprintf(fp, "phase->eqv( ");
1156       // fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */",
1157       //         left_index,  left_op_base,  left_op_index,  left_op,
1158       //         right_index, right_op_base, right_op_index, right_op );
1159       // fprintf(fp, ")");
1160       //
1161       switch( left_interface_type ) {
1162       case Form::register_interface: {
1163         // Check that they are allocated to the same register
1164         // Need parameter for index position if not result operand
1165         char left_reg_index[] = ",instXXXX_idxXXXX";
1166         if( left_op_index != 0 ) {
1167           assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
1168           // Must have index into operands
1169           sprintf(left_reg_index,",inst%d_idx%d", (int)left_index, left_op_index);
1170         } else {
1171           strcpy(left_reg_index, "");
1172         }
1173         fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s)  /* %d.%s */",
1174                 left_index,  left_op_index, left_index, left_reg_index, left_index, left_op );
1175         fprintf(fp, " == ");
1176 
1177         if( right_index != -1 ) {
1178           char right_reg_index[18] = ",instXXXX_idxXXXX";
1179           if( right_op_index != 0 ) {
1180             assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
1181             // Must have index into operands
1182             sprintf(right_reg_index,",inst%d_idx%d", (int)right_index, right_op_index);
1183           } else {
1184             strcpy(right_reg_index, "");
1185           }
1186           fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
1187                   right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
1188         } else {
1189           fprintf(fp, "%s_enc", right_op );
1190         }
1191         fprintf(fp,")");
1192         break;
1193       }
1194       case Form::constant_interface: {
1195         // Compare the '->constant()' values
1196         fprintf(fp, "(inst%d->_opnds[%d]->constant()  /* %d.%s */",
1197                 left_index,  left_op_index,  left_index, left_op );
1198         fprintf(fp, " == ");
1199         fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
1200                 right_index, right_op, right_index, right_op_index );
1201         break;
1202       }
1203       case Form::memory_interface: {
1204         // Compare 'base', 'index', 'scale', and 'disp'
1205         // base
1206         fprintf(fp, "( \n");
1207         fprintf(fp, "  (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$base */",
1208           left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1209         fprintf(fp, " == ");
1210         fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
1211                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1212         // index
1213         fprintf(fp, "  (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$index */",
1214                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1215         fprintf(fp, " == ");
1216         fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
1217                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1218         // scale
1219         fprintf(fp, "  (inst%d->_opnds[%d]->scale()  /* %d.%s$$scale */",
1220                 left_index,  left_op_index,  left_index, left_op );
1221         fprintf(fp, " == ");
1222         fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
1223                 right_index, right_op, right_index, right_op_index );
1224         // disp
1225         fprintf(fp, "  (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$disp */",
1226                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1227         fprintf(fp, " == ");
1228         fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
1229                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1230         fprintf(fp, ") \n");
1231         break;
1232       }
1233       case Form::conditional_interface: {
1234         // Compare the condition code being tested
1235         assert( false, "Unimplemented()" );
1236         break;
1237       }
1238       default: {
1239         assert( false, "ShouldNotReachHere()" );
1240         break;
1241       }
1242       }
1243 
1244       // Advance to next constraint
1245       pconstraint = pconstraint->next();
1246       first_constraint = false;
1247     }
1248 
1249     fprintf(fp, ";\n");
1250   }
1251 }
1252 
1253 // // EXPERIMENTAL -- TEMPORARY code
1254 // static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
1255 //   int op_index = instr->operand_position(op_name, Component::USE);
1256 //   if( op_index == -1 ) {
1257 //     op_index = instr->operand_position(op_name, Component::DEF);
1258 //     if( op_index == -1 ) {
1259 //       op_index = instr->operand_position(op_name, Component::USE_DEF);
1260 //     }
1261 //   }
1262 //   assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
1263 //
1264 //   ComponentList components_right = instr->_components;
1265 //   char *right_comp_type = components_right.at(op_index)->_type;
1266 //   OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1267 //   Form::InterfaceType  right_interface_type = right_opclass->interface_type(globals);
1268 //
1269 //   return;
1270 // }
1271 
1272 // Construct the new sub-tree
1273 static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
1274   fprintf(fp, "      // IF instructions and constraints matched\n");
1275   fprintf(fp, "      if( matches ) {\n");
1276   fprintf(fp, "        // generate the new sub-tree\n");
1277   fprintf(fp, "        assert( true, \"Debug stopping point\");\n");
1278   if( preplace != NULL ) {
1279     // Get the root of the new sub-tree
1280     const char *root_inst = NULL;
1281     preplace->next_instruction(root_inst);
1282     InstructForm *root_form = globals[root_inst]->is_instruction();
1283     assert( root_form != NULL, "Replacement instruction was not previously defined");
1284     fprintf(fp, "        %sNode *root = new %sNode();\n", root_inst, root_inst);
1285 
1286     int         inst_num;
1287     const char *op_name;
1288     int         opnds_index = 0;            // define result operand
1289     // Then install the use-operands for the new sub-tree
1290     // preplace->reset();             // reset breaks iteration
1291     for( preplace->next_operand( inst_num, op_name );
1292          op_name != NULL;
1293          preplace->next_operand( inst_num, op_name ) ) {
1294       InstructForm *inst_form;
1295       inst_form  = globals[pmatch->instruction_name(inst_num)]->is_instruction();
1296       assert( inst_form, "Parser should guaranty this is an instruction");
1297       int inst_op_num = inst_form->operand_position(op_name, Component::USE);
1298       if( inst_op_num == NameList::Not_in_list )
1299         inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
1300       assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
1301       // find the name of the OperandForm from the local name
1302       const Form *form   = inst_form->_localNames[op_name];
1303       OperandForm  *op_form = form->is_operand();
1304       if( opnds_index == 0 ) {
1305         // Initial setup of new instruction
1306         fprintf(fp, "        // ----- Initial setup -----\n");
1307         //
1308         // Add control edge for this node
1309         fprintf(fp, "        root->add_req(_in[0]);                // control edge\n");
1310         // Add unmatched edges from root of match tree
1311         int op_base = root_form->oper_input_base(globals);
1312         for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
1313           fprintf(fp, "        root->add_req(inst%d->in(%d));        // unmatched ideal edge\n",
1314                                           inst_num, unmatched_edge);
1315         }
1316         // If new instruction captures bottom type
1317         if( root_form->captures_bottom_type(globals) ) {
1318           // Get bottom type from instruction whose result we are replacing
1319           fprintf(fp, "        root->_bottom_type = inst%d->bottom_type();\n", inst_num);
1320         }
1321         // Define result register and result operand
1322         fprintf(fp, "        ra_->add_reference(root, inst%d);\n", inst_num);
1323         fprintf(fp, "        ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
1324         fprintf(fp, "        ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
1325         fprintf(fp, "        root->_opnds[0] = inst%d->_opnds[0]->clone(); // result\n", inst_num);
1326         fprintf(fp, "        // ----- Done with initial setup -----\n");
1327       } else {
1328         if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
1329           // Do not have ideal edges for constants after matching
1330           fprintf(fp, "        for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
1331                   inst_op_num, inst_num, inst_op_num,
1332                   inst_op_num, inst_num, inst_op_num+1, inst_op_num );
1333           fprintf(fp, "          root->add_req( inst%d->in(x%d) );\n",
1334                   inst_num, inst_op_num );
1335         } else {
1336           fprintf(fp, "        // no ideal edge for constants after matching\n");
1337         }
1338         fprintf(fp, "        root->_opnds[%d] = inst%d->_opnds[%d]->clone();\n",
1339                 opnds_index, inst_num, inst_op_num );
1340       }
1341       ++opnds_index;
1342     }
1343   }else {
1344     // Replacing subtree with empty-tree
1345     assert( false, "ShouldNotReachHere();");
1346   }
1347 
1348   // Return the new sub-tree
1349   fprintf(fp, "        deleted = %d;\n", max_position+1 /*zero to one based*/);
1350   fprintf(fp, "        return root;  // return new root;\n");
1351   fprintf(fp, "      }\n");
1352 }
1353 
1354 
1355 // Define the Peephole method for an instruction node
1356 void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
1357   // Generate Peephole function header
1358   fprintf(fp, "MachNode *%sNode::peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted) {\n", node->_ident);
1359   fprintf(fp, "  bool  matches = true;\n");
1360 
1361   // Identify the maximum instruction position,
1362   // generate temporaries that hold current instruction
1363   //
1364   //   MachNode  *inst0 = NULL;
1365   //   ...
1366   //   MachNode  *instMAX = NULL;
1367   //
1368   int max_position = 0;
1369   Peephole *peep;
1370   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1371     PeepMatch *pmatch = peep->match();
1372     assert( pmatch != NULL, "fatal(), missing peepmatch rule");
1373     if( max_position < pmatch->max_position() )  max_position = pmatch->max_position();
1374   }
1375   for( int i = 0; i <= max_position; ++i ) {
1376     if( i == 0 ) {
1377       fprintf(fp, "  MachNode *inst0 = this;\n");
1378     } else {
1379       fprintf(fp, "  MachNode *inst%d = NULL;\n", i);
1380     }
1381   }
1382 
1383   // For each peephole rule in architecture description
1384   //   Construct a test for the desired instruction sub-tree
1385   //   then check the constraints
1386   //   If these match, Generate the new subtree
1387   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1388     int         peephole_number = peep->peephole_number();
1389     PeepMatch      *pmatch      = peep->match();
1390     PeepConstraint *pconstraint = peep->constraints();
1391     PeepReplace    *preplace    = peep->replacement();
1392 
1393     // Root of this peephole is the current MachNode
1394     assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
1395             "root of PeepMatch does not match instruction");
1396 
1397     // Make each peephole rule individually selectable
1398     fprintf(fp, "  if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
1399     fprintf(fp, "    matches = true;\n");
1400     // Scan the peepmatch and output a test for each instruction
1401     check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
1402 
1403     // Check constraints and build replacement inside scope
1404     fprintf(fp, "    // If instruction subtree matches\n");
1405     fprintf(fp, "    if( matches ) {\n");
1406 
1407     // Generate tests for the constraints
1408     check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
1409 
1410     // Construct the new sub-tree
1411     generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
1412 
1413     // End of scope for this peephole's constraints
1414     fprintf(fp, "    }\n");
1415     // Closing brace '}' to make each peephole rule individually selectable
1416     fprintf(fp, "  } // end of peephole rule #%d\n", peephole_number);
1417     fprintf(fp, "\n");
1418   }
1419 
1420   fprintf(fp, "  return NULL;  // No peephole rules matched\n");
1421   fprintf(fp, "}\n");
1422   fprintf(fp, "\n");
1423 }
1424 
1425 // Define the Expand method for an instruction node
1426 void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
1427   unsigned      cnt  = 0;          // Count nodes we have expand into
1428   unsigned      i;
1429 
1430   // Generate Expand function header
1431   fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident);
1432   fprintf(fp, "  Compile* C = Compile::current();\n");
1433   // Generate expand code
1434   if( node->expands() ) {
1435     const char   *opid;
1436     int           new_pos, exp_pos;
1437     const char   *new_id   = NULL;
1438     const Form   *frm      = NULL;
1439     InstructForm *new_inst = NULL;
1440     OperandForm  *new_oper = NULL;
1441     unsigned      numo     = node->num_opnds() +
1442                                 node->_exprule->_newopers.count();
1443 
1444     // If necessary, generate any operands created in expand rule
1445     if (node->_exprule->_newopers.count()) {
1446       for(node->_exprule->_newopers.reset();
1447           (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
1448         frm = node->_localNames[new_id];
1449         assert(frm, "Invalid entry in new operands list of expand rule");
1450         new_oper = frm->is_operand();
1451         char *tmp = (char *)node->_exprule->_newopconst[new_id];
1452         if (tmp == NULL) {
1453           fprintf(fp,"  MachOper *op%d = new %sOper();\n",
1454                   cnt, new_oper->_ident);
1455         }
1456         else {
1457           fprintf(fp,"  MachOper *op%d = new %sOper(%s);\n",
1458                   cnt, new_oper->_ident, tmp);
1459         }
1460       }
1461     }
1462     cnt = 0;
1463     // Generate the temps to use for DAG building
1464     for(i = 0; i < numo; i++) {
1465       if (i < node->num_opnds()) {
1466         fprintf(fp,"  MachNode *tmp%d = this;\n", i);
1467       }
1468       else {
1469         fprintf(fp,"  MachNode *tmp%d = NULL;\n", i);
1470       }
1471     }
1472     // Build mapping from num_edges to local variables
1473     fprintf(fp,"  unsigned num0 = 0;\n");
1474     for( i = 1; i < node->num_opnds(); i++ ) {
1475       fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
1476     }
1477 
1478     // Build a mapping from operand index to input edges
1479     fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
1480 
1481     // The order in which the memory input is added to a node is very
1482     // strange.  Store nodes get a memory input before Expand is
1483     // called and other nodes get it afterwards or before depending on
1484     // match order so oper_input_base is wrong during expansion.  This
1485     // code adjusts it so that expansion will work correctly.
1486     int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames);
1487     if (has_memory_edge) {
1488       fprintf(fp,"  if (mem == (Node*)1) {\n");
1489       fprintf(fp,"    idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
1490       fprintf(fp,"  }\n");
1491     }
1492 
1493     for( i = 0; i < node->num_opnds(); i++ ) {
1494       fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
1495               i+1,i,i);
1496     }
1497 
1498     // Declare variable to hold root of expansion
1499     fprintf(fp,"  MachNode *result = NULL;\n");
1500 
1501     // Iterate over the instructions 'node' expands into
1502     ExpandRule  *expand       = node->_exprule;
1503     NameAndList *expand_instr = NULL;
1504     for (expand->reset_instructions();
1505          (expand_instr = expand->iter_instructions()) != NULL; cnt++) {
1506       new_id = expand_instr->name();
1507 
1508       InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
1509 
1510       if (!expand_instruction) {
1511         globalAD->syntax_err(node->_linenum, "In %s: instruction %s used in expand not declared\n",
1512                              node->_ident, new_id);
1513         continue;
1514       }
1515 
1516       // Build the node for the instruction
1517       fprintf(fp,"\n  %sNode *n%d = new %sNode();\n", new_id, cnt, new_id);
1518       // Add control edge for this node
1519       fprintf(fp,"  n%d->add_req(_in[0]);\n", cnt);
1520       // Build the operand for the value this node defines.
1521       Form *form = (Form*)_globalNames[new_id];
1522       assert(form, "'new_id' must be a defined form name");
1523       // Grab the InstructForm for the new instruction
1524       new_inst = form->is_instruction();
1525       assert(new_inst, "'new_id' must be an instruction name");
1526       if (node->is_ideal_if() && new_inst->is_ideal_if()) {
1527         fprintf(fp, "  ((MachIfNode*)n%d)->_prob = _prob;\n", cnt);
1528         fprintf(fp, "  ((MachIfNode*)n%d)->_fcnt = _fcnt;\n", cnt);
1529       }
1530 
1531       if (node->is_ideal_fastlock() && new_inst->is_ideal_fastlock()) {
1532         fprintf(fp, "  ((MachFastLockNode*)n%d)->_counters = _counters;\n", cnt);
1533         fprintf(fp, "  ((MachFastLockNode*)n%d)->_rtm_counters = _rtm_counters;\n", cnt);
1534         fprintf(fp, "  ((MachFastLockNode*)n%d)->_stack_rtm_counters = _stack_rtm_counters;\n", cnt);
1535       }
1536 
1537       // Fill in the bottom_type where requested
1538       if (node->captures_bottom_type(_globalNames) &&
1539           new_inst->captures_bottom_type(_globalNames)) {
1540         fprintf(fp, "  ((MachTypeNode*)n%d)->_bottom_type = bottom_type();\n", cnt);
1541       }
1542 
1543       const char *resultOper = new_inst->reduce_result();
1544       fprintf(fp,"  n%d->set_opnd_array(0, state->MachOperGenerator(%s));\n",
1545               cnt, machOperEnum(resultOper));
1546 
1547       // get the formal operand NameList
1548       NameList *formal_lst = &new_inst->_parameters;
1549       formal_lst->reset();
1550 
1551       // Handle any memory operand
1552       int memory_operand = new_inst->memory_operand(_globalNames);
1553       if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
1554         int node_mem_op = node->memory_operand(_globalNames);
1555         assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
1556                 "expand rule member needs memory but top-level inst doesn't have any" );
1557         if (has_memory_edge) {
1558           // Copy memory edge
1559           fprintf(fp,"  if (mem != (Node*)1) {\n");
1560           fprintf(fp,"    n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
1561           fprintf(fp,"  }\n");
1562         }
1563       }
1564 
1565       // Iterate over the new instruction's operands
1566       int prev_pos = -1;
1567       for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1568         // Use 'parameter' at current position in list of new instruction's formals
1569         // instead of 'opid' when looking up info internal to new_inst
1570         const char *parameter = formal_lst->iter();
1571         if (!parameter) {
1572           globalAD->syntax_err(node->_linenum, "Operand %s of expand instruction %s has"
1573                                " no equivalent in new instruction %s.",
1574                                opid, node->_ident, new_inst->_ident);
1575           assert(0, "Wrong expand");
1576         }
1577 
1578         // Check for an operand which is created in the expand rule
1579         if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
1580           new_pos = new_inst->operand_position(parameter,Component::USE);
1581           exp_pos += node->num_opnds();
1582           // If there is no use of the created operand, just skip it
1583           if (new_pos != NameList::Not_in_list) {
1584             //Copy the operand from the original made above
1585             fprintf(fp,"  n%d->set_opnd_array(%d, op%d->clone()); // %s\n",
1586                     cnt, new_pos, exp_pos-node->num_opnds(), opid);
1587             // Check for who defines this operand & add edge if needed
1588             fprintf(fp,"  if(tmp%d != NULL)\n", exp_pos);
1589             fprintf(fp,"    n%d->add_req(tmp%d);\n", cnt, exp_pos);
1590           }
1591         }
1592         else {
1593           // Use operand name to get an index into instruction component list
1594           // ins = (InstructForm *) _globalNames[new_id];
1595           exp_pos = node->operand_position_format(opid);
1596           assert(exp_pos != -1, "Bad expand rule");
1597           if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
1598             // For the add_req calls below to work correctly they need
1599             // to added in the same order that a match would add them.
1600             // This means that they would need to be in the order of
1601             // the components list instead of the formal parameters.
1602             // This is a sort of hidden invariant that previously
1603             // wasn't checked and could lead to incorrectly
1604             // constructed nodes.
1605             syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
1606                        node->_ident, new_inst->_ident);
1607           }
1608           prev_pos = exp_pos;
1609 
1610           new_pos = new_inst->operand_position(parameter,Component::USE);
1611           if (new_pos != -1) {
1612             // Copy the operand from the ExpandNode to the new node
1613             fprintf(fp,"  n%d->set_opnd_array(%d, opnd_array(%d)->clone()); // %s\n",
1614                     cnt, new_pos, exp_pos, opid);
1615             // For each operand add appropriate input edges by looking at tmp's
1616             fprintf(fp,"  if(tmp%d == this) {\n", exp_pos);
1617             // Grab corresponding edges from ExpandNode and insert them here
1618             fprintf(fp,"    for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
1619             fprintf(fp,"      n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
1620             fprintf(fp,"    }\n");
1621             fprintf(fp,"  }\n");
1622             // This value is generated by one of the new instructions
1623             fprintf(fp,"  else n%d->add_req(tmp%d);\n", cnt, exp_pos);
1624           }
1625         }
1626 
1627         // Update the DAG tmp's for values defined by this instruction
1628         int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
1629         Effect *eform = (Effect *)new_inst->_effects[parameter];
1630         // If this operand is a definition in either an effects rule
1631         // or a match rule
1632         if((eform) && (is_def(eform->_use_def))) {
1633           // Update the temp associated with this operand
1634           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1635         }
1636         else if( new_def_pos != -1 ) {
1637           // Instruction defines a value but user did not declare it
1638           // in the 'effect' clause
1639           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1640         }
1641       } // done iterating over a new instruction's operands
1642 
1643       // Fix number of operands, as we do not generate redundant ones.
1644       // The matcher generates some redundant operands, which are removed
1645       // in the expand function (of the node we generate here). We don't
1646       // generate the redundant operands here, so set the correct _num_opnds.
1647       if (expand_instruction->num_opnds() != expand_instruction->num_unique_opnds()) {
1648         fprintf(fp, "  n%d->_num_opnds = %d; // Only unique opnds generated.\n",
1649                 cnt, expand_instruction->num_unique_opnds());
1650       }
1651 
1652       // Invoke Expand() for the newly created instruction.
1653       fprintf(fp,"  result = n%d->Expand( state, proj_list, mem );\n", cnt);
1654       assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
1655     } // done iterating over new instructions
1656     fprintf(fp,"\n");
1657   } // done generating expand rule
1658 
1659   // Generate projections for instruction's additional DEFs and KILLs
1660   if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
1661     // Get string representing the MachNode that projections point at
1662     const char *machNode = "this";
1663     // Generate the projections
1664     fprintf(fp,"  // Add projection edges for additional defs or kills\n");
1665 
1666     // Examine each component to see if it is a DEF or KILL
1667     node->_components.reset();
1668     // Skip the first component, if already handled as (SET dst (...))
1669     Component *comp = NULL;
1670     // For kills, the choice of projection numbers is arbitrary
1671     int proj_no = 1;
1672     bool declared_def  = false;
1673     bool declared_kill = false;
1674 
1675     while ((comp = node->_components.iter()) != NULL) {
1676       // Lookup register class associated with operand type
1677       Form *form = (Form*)_globalNames[comp->_type];
1678       assert(form, "component type must be a defined form");
1679       OperandForm *op = form->is_operand();
1680 
1681       if (comp->is(Component::TEMP) ||
1682           comp->is(Component::TEMP_DEF)) {
1683         fprintf(fp, "  // TEMP %s\n", comp->_name);
1684         if (!declared_def) {
1685           // Define the variable "def" to hold new MachProjNodes
1686           fprintf(fp, "  MachTempNode *def;\n");
1687           declared_def = true;
1688         }
1689         if (op && op->_interface && op->_interface->is_RegInterface()) {
1690           fprintf(fp,"  def = new MachTempNode(state->MachOperGenerator(%s));\n",
1691                   machOperEnum(op->_ident));
1692           fprintf(fp,"  add_req(def);\n");
1693           // The operand for TEMP is already constructed during
1694           // this mach node construction, see buildMachNode().
1695           //
1696           // int idx  = node->operand_position_format(comp->_name);
1697           // fprintf(fp,"  set_opnd_array(%d, state->MachOperGenerator(%s));\n",
1698           //         idx, machOperEnum(op->_ident));
1699         } else {
1700           assert(false, "can't have temps which aren't registers");
1701         }
1702       } else if (comp->isa(Component::KILL)) {
1703         fprintf(fp, "  // DEF/KILL %s\n", comp->_name);
1704 
1705         if (!declared_kill) {
1706           // Define the variable "kill" to hold new MachProjNodes
1707           fprintf(fp, "  MachProjNode *kill;\n");
1708           declared_kill = true;
1709         }
1710 
1711         assert(op, "Support additional KILLS for base operands");
1712         const char *regmask    = reg_mask(*op);
1713         const char *ideal_type = op->ideal_type(_globalNames, _register);
1714 
1715         if (!op->is_bound_register()) {
1716           syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
1717                      node->_ident, comp->_type, comp->_name);
1718         }
1719 
1720         fprintf(fp,"  kill = ");
1721         fprintf(fp,"new MachProjNode( %s, %d, (%s), Op_%s );\n",
1722                 machNode, proj_no++, regmask, ideal_type);
1723         fprintf(fp,"  proj_list.push(kill);\n");
1724       }
1725     }
1726   }
1727 
1728   if( !node->expands() && node->_matrule != NULL ) {
1729     // Remove duplicated operands and inputs which use the same name.
1730     // Search through match operands for the same name usage.
1731     // The matcher generates these non-unique operands. If the node
1732     // was constructed by an expand rule, there are no unique operands.
1733     uint cur_num_opnds = node->num_opnds();
1734     if (cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds()) {
1735       Component *comp = NULL;
1736       fprintf(fp, "  // Remove duplicated operands and inputs which use the same name.\n");
1737       fprintf(fp, "  if (num_opnds() == %d) {\n", cur_num_opnds);
1738       // Build mapping from num_edges to local variables
1739       fprintf(fp,"    unsigned num0 = 0;\n");
1740       for (i = 1; i < cur_num_opnds; i++) {
1741         fprintf(fp,"    unsigned num%d = opnd_array(%d)->num_edges();", i, i);
1742         fprintf(fp, " \t// %s\n", node->opnd_ident(i));
1743       }
1744       // Build a mapping from operand index to input edges
1745       fprintf(fp,"    unsigned idx0 = oper_input_base();\n");
1746       for (i = 0; i < cur_num_opnds; i++) {
1747         fprintf(fp,"    unsigned idx%d = idx%d + num%d;\n", i+1, i, i);
1748       }
1749 
1750       uint new_num_opnds = 1;
1751       node->_components.reset();
1752       // Skip first unique operands.
1753       for (i = 1; i < cur_num_opnds; i++) {
1754         comp = node->_components.iter();
1755         if (i != node->unique_opnds_idx(i)) {
1756           break;
1757         }
1758         new_num_opnds++;
1759       }
1760       // Replace not unique operands with next unique operands.
1761       for ( ; i < cur_num_opnds; i++) {
1762         comp = node->_components.iter();
1763         uint j = node->unique_opnds_idx(i);
1764         // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
1765         if (j != node->unique_opnds_idx(j)) {
1766           fprintf(fp,"    set_opnd_array(%d, opnd_array(%d)->clone()); // %s\n",
1767                   new_num_opnds, i, comp->_name);
1768           // Delete not unique edges here.
1769           fprintf(fp,"    for (unsigned i = 0; i < num%d; i++) {\n", i);
1770           fprintf(fp,"      set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
1771           fprintf(fp,"    }\n");
1772           fprintf(fp,"    num%d = num%d;\n", new_num_opnds, i);
1773           fprintf(fp,"    idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
1774           new_num_opnds++;
1775         }
1776       }
1777       // Delete the rest of edges.
1778       fprintf(fp,"    for (int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
1779       fprintf(fp,"      del_req(i);\n");
1780       fprintf(fp,"    }\n");
1781       fprintf(fp,"    _num_opnds = %d;\n", new_num_opnds);
1782       assert(new_num_opnds == node->num_unique_opnds(), "what?");
1783       fprintf(fp, "  } else {\n");
1784       fprintf(fp, "    assert(_num_opnds == %d, \"There should be either %d or %d operands.\");\n",
1785                   new_num_opnds, new_num_opnds, cur_num_opnds);
1786       fprintf(fp, "  }\n");
1787     }
1788   }
1789 
1790   // If the node is a MachConstantNode, insert the MachConstantBaseNode edge.
1791   // NOTE: this edge must be the last input (see MachConstantNode::mach_constant_base_node_input).
1792   // There are nodes that don't use $constantablebase, but still require that it
1793   // is an input to the node. Example: divF_reg_immN, Repl32B_imm on x86_64.
1794   if (node->is_mach_constant() || node->needs_constant_base()) {
1795     if (node->is_ideal_call() != Form::invalid_type &&
1796         node->is_ideal_call() != Form::JAVA_LEAF) {
1797       fprintf(fp, "  // MachConstantBaseNode added in matcher.\n");
1798       _needs_clone_jvms = true;
1799     } else {
1800       fprintf(fp, "  add_req(C->mach_constant_base_node());\n");
1801     }
1802   }
1803 
1804   fprintf(fp, "\n");
1805   if (node->expands()) {
1806     fprintf(fp, "  return result;\n");
1807   } else {
1808     fprintf(fp, "  return this;\n");
1809   }
1810   fprintf(fp, "}\n");
1811   fprintf(fp, "\n");
1812 }
1813 
1814 
1815 //------------------------------Emit Routines----------------------------------
1816 // Special classes and routines for defining node emit routines which output
1817 // target specific instruction object encodings.
1818 // Define the ___Node::emit() routine
1819 //
1820 // (1) void  ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1821 // (2)   // ...  encoding defined by user
1822 // (3)
1823 // (4) }
1824 //
1825 
1826 class DefineEmitState {
1827 private:
1828   enum reloc_format { RELOC_NONE        = -1,
1829                       RELOC_IMMEDIATE   =  0,
1830                       RELOC_DISP        =  1,
1831                       RELOC_CALL_DISP   =  2 };
1832   enum literal_status{ LITERAL_NOT_SEEN  = 0,
1833                        LITERAL_SEEN      = 1,
1834                        LITERAL_ACCESSED  = 2,
1835                        LITERAL_OUTPUT    = 3 };
1836   // Temporaries that describe current operand
1837   bool          _cleared;
1838   OpClassForm  *_opclass;
1839   OperandForm  *_operand;
1840   int           _operand_idx;
1841   const char   *_local_name;
1842   const char   *_operand_name;
1843   bool          _doing_disp;
1844   bool          _doing_constant;
1845   Form::DataType _constant_type;
1846   DefineEmitState::literal_status _constant_status;
1847   DefineEmitState::literal_status _reg_status;
1848   bool          _doing_emit8;
1849   bool          _doing_emit_d32;
1850   bool          _doing_emit_d16;
1851   bool          _doing_emit_hi;
1852   bool          _doing_emit_lo;
1853   bool          _may_reloc;
1854   reloc_format  _reloc_form;
1855   const char *  _reloc_type;
1856   bool          _processing_noninput;
1857 
1858   NameList      _strings_to_emit;
1859 
1860   // Stable state, set by constructor
1861   ArchDesc     &_AD;
1862   FILE         *_fp;
1863   EncClass     &_encoding;
1864   InsEncode    &_ins_encode;
1865   InstructForm &_inst;
1866 
1867 public:
1868   DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
1869                   InsEncode &ins_encode, InstructForm &inst)
1870     : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
1871       clear();
1872   }
1873 
1874   void clear() {
1875     _cleared       = true;
1876     _opclass       = NULL;
1877     _operand       = NULL;
1878     _operand_idx   = 0;
1879     _local_name    = "";
1880     _operand_name  = "";
1881     _doing_disp    = false;
1882     _doing_constant= false;
1883     _constant_type = Form::none;
1884     _constant_status = LITERAL_NOT_SEEN;
1885     _reg_status      = LITERAL_NOT_SEEN;
1886     _doing_emit8   = false;
1887     _doing_emit_d32= false;
1888     _doing_emit_d16= false;
1889     _doing_emit_hi = false;
1890     _doing_emit_lo = false;
1891     _may_reloc     = false;
1892     _reloc_form    = RELOC_NONE;
1893     _reloc_type    = AdlcVMDeps::none_reloc_type();
1894     _strings_to_emit.clear();
1895   }
1896 
1897   // Track necessary state when identifying a replacement variable
1898   // @arg rep_var: The formal parameter of the encoding.
1899   void update_state(const char *rep_var) {
1900     // A replacement variable or one of its subfields
1901     // Obtain replacement variable from list
1902     if ( (*rep_var) != '$' ) {
1903       // A replacement variable, '$' prefix
1904       // check_rep_var( rep_var );
1905       if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
1906         // No state needed.
1907         assert( _opclass == NULL,
1908                 "'primary', 'secondary' and 'tertiary' don't follow operand.");
1909       }
1910       else if ((strcmp(rep_var, "constanttablebase") == 0) ||
1911                (strcmp(rep_var, "constantoffset")    == 0) ||
1912                (strcmp(rep_var, "constantaddress")   == 0)) {
1913         if (!(_inst.is_mach_constant() || _inst.needs_constant_base())) {
1914           _AD.syntax_err(_encoding._linenum,
1915                          "Replacement variable %s not allowed in instruct %s (only in MachConstantNode or MachCall).\n",
1916                          rep_var, _encoding._name);
1917         }
1918       }
1919       else {
1920         // Lookup its position in (formal) parameter list of encoding
1921         int   param_no  = _encoding.rep_var_index(rep_var);
1922         if ( param_no == -1 ) {
1923           _AD.syntax_err( _encoding._linenum,
1924                           "Replacement variable %s not found in enc_class %s.\n",
1925                           rep_var, _encoding._name);
1926         }
1927 
1928         // Lookup the corresponding ins_encode parameter
1929         // This is the argument (actual parameter) to the encoding.
1930         const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
1931         if (inst_rep_var == NULL) {
1932           _AD.syntax_err( _ins_encode._linenum,
1933                           "Parameter %s not passed to enc_class %s from instruct %s.\n",
1934                           rep_var, _encoding._name, _inst._ident);
1935           assert(false, "inst_rep_var == NULL, cannot continue.");
1936         }
1937 
1938         // Check if instruction's actual parameter is a local name in the instruction
1939         const Form  *local     = _inst._localNames[inst_rep_var];
1940         OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
1941         // Note: assert removed to allow constant and symbolic parameters
1942         // assert( opc, "replacement variable was not found in local names");
1943         // Lookup the index position iff the replacement variable is a localName
1944         int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
1945 
1946         if ( idx != -1 ) {
1947           // This is a local in the instruction
1948           // Update local state info.
1949           _opclass        = opc;
1950           _operand_idx    = idx;
1951           _local_name     = rep_var;
1952           _operand_name   = inst_rep_var;
1953 
1954           // !!!!!
1955           // Do not support consecutive operands.
1956           assert( _operand == NULL, "Unimplemented()");
1957           _operand = opc->is_operand();
1958         }
1959         else if( ADLParser::is_literal_constant(inst_rep_var) ) {
1960           // Instruction provided a constant expression
1961           // Check later that encoding specifies $$$constant to resolve as constant
1962           _constant_status   = LITERAL_SEEN;
1963         }
1964         else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
1965           // Instruction provided an opcode: "primary", "secondary", "tertiary"
1966           // Check later that encoding specifies $$$constant to resolve as constant
1967           _constant_status   = LITERAL_SEEN;
1968         }
1969         else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
1970           // Instruction provided a literal register name for this parameter
1971           // Check that encoding specifies $$$reg to resolve.as register.
1972           _reg_status        = LITERAL_SEEN;
1973         }
1974         else {
1975           // Check for unimplemented functionality before hard failure
1976           assert(opc != NULL && strcmp(opc->_ident, "label") == 0, "Unimplemented Label");
1977           assert(false, "ShouldNotReachHere()");
1978         }
1979       } // done checking which operand this is.
1980     } else {
1981       //
1982       // A subfield variable, '$$' prefix
1983       // Check for fields that may require relocation information.
1984       // Then check that literal register parameters are accessed with 'reg' or 'constant'
1985       //
1986       if ( strcmp(rep_var,"$disp") == 0 ) {
1987         _doing_disp = true;
1988         assert( _opclass, "Must use operand or operand class before '$disp'");
1989         if( _operand == NULL ) {
1990           // Only have an operand class, generate run-time check for relocation
1991           _may_reloc    = true;
1992           _reloc_form   = RELOC_DISP;
1993           _reloc_type   = AdlcVMDeps::oop_reloc_type();
1994         } else {
1995           // Do precise check on operand: is it a ConP or not
1996           //
1997           // Check interface for value of displacement
1998           assert( ( _operand->_interface != NULL ),
1999                   "$disp can only follow memory interface operand");
2000           MemInterface *mem_interface= _operand->_interface->is_MemInterface();
2001           assert( mem_interface != NULL,
2002                   "$disp can only follow memory interface operand");
2003           const char *disp = mem_interface->_disp;
2004 
2005           if( disp != NULL && (*disp == '$') ) {
2006             // MemInterface::disp contains a replacement variable,
2007             // Check if this matches a ConP
2008             //
2009             // Lookup replacement variable, in operand's component list
2010             const char *rep_var_name = disp + 1; // Skip '$'
2011             const Component *comp = _operand->_components.search(rep_var_name);
2012             assert( comp != NULL,"Replacement variable not found in components");
2013             const char      *type = comp->_type;
2014             // Lookup operand form for replacement variable's type
2015             const Form *form = _AD.globalNames()[type];
2016             assert( form != NULL, "Replacement variable's type not found");
2017             OperandForm *op = form->is_operand();
2018             assert( op, "Attempting to emit a non-register or non-constant");
2019             // Check if this is a constant
2020             if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
2021               // Check which constant this name maps to: _c0, _c1, ..., _cn
2022               // const int idx = _operand.constant_position(_AD.globalNames(), comp);
2023               // assert( idx != -1, "Constant component not found in operand");
2024               Form::DataType dtype = op->is_base_constant(_AD.globalNames());
2025               if ( dtype == Form::idealP ) {
2026                 _may_reloc    = true;
2027                 // No longer true that idealP is always an oop
2028                 _reloc_form   = RELOC_DISP;
2029                 _reloc_type   = AdlcVMDeps::oop_reloc_type();
2030               }
2031             }
2032 
2033             else if( _operand->is_user_name_for_sReg() != Form::none ) {
2034               // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
2035               assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
2036               _may_reloc   = false;
2037             } else {
2038               assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
2039             }
2040           }
2041         } // finished with precise check of operand for relocation.
2042       } // finished with subfield variable
2043       else if ( strcmp(rep_var,"$constant") == 0 ) {
2044         _doing_constant = true;
2045         if ( _constant_status == LITERAL_NOT_SEEN ) {
2046           // Check operand for type of constant
2047           assert( _operand, "Must use operand before '$$constant'");
2048           Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
2049           _constant_type = dtype;
2050           if ( dtype == Form::idealP ) {
2051             _may_reloc    = true;
2052             // No longer true that idealP is always an oop
2053             // // _must_reloc   = true;
2054             _reloc_form   = RELOC_IMMEDIATE;
2055             _reloc_type   = AdlcVMDeps::oop_reloc_type();
2056           } else {
2057             // No relocation information needed
2058           }
2059         } else {
2060           // User-provided literals may not require relocation information !!!!!
2061           assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
2062         }
2063       }
2064       else if ( strcmp(rep_var,"$label") == 0 ) {
2065         // Calls containing labels require relocation
2066         if ( _inst.is_ideal_call() )  {
2067           _may_reloc    = true;
2068           // !!!!! !!!!!
2069           _reloc_type   = AdlcVMDeps::none_reloc_type();
2070         }
2071       }
2072 
2073       // literal register parameter must be accessed as a 'reg' field.
2074       if ( _reg_status != LITERAL_NOT_SEEN ) {
2075         assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
2076         if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
2077           _reg_status  = LITERAL_ACCESSED;
2078         } else {
2079           _AD.syntax_err(_encoding._linenum,
2080                          "Invalid access to literal register parameter '%s' in %s.\n",
2081                          rep_var, _encoding._name);
2082           assert( false, "invalid access to literal register parameter");
2083         }
2084       }
2085       // literal constant parameters must be accessed as a 'constant' field
2086       if (_constant_status != LITERAL_NOT_SEEN) {
2087         assert(_constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
2088         if (strcmp(rep_var,"$constant") == 0) {
2089           _constant_status = LITERAL_ACCESSED;
2090         } else {
2091           _AD.syntax_err(_encoding._linenum,
2092                          "Invalid access to literal constant parameter '%s' in %s.\n",
2093                          rep_var, _encoding._name);
2094         }
2095       }
2096     } // end replacement and/or subfield
2097 
2098   }
2099 
2100   void add_rep_var(const char *rep_var) {
2101     // Handle subfield and replacement variables.
2102     if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
2103       // Check for emit prefix, '$$emit32'
2104       assert( _cleared, "Can not nest $$$emit32");
2105       if ( strcmp(rep_var,"$$emit32") == 0 ) {
2106         _doing_emit_d32 = true;
2107       }
2108       else if ( strcmp(rep_var,"$$emit16") == 0 ) {
2109         _doing_emit_d16 = true;
2110       }
2111       else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
2112         _doing_emit_hi  = true;
2113       }
2114       else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
2115         _doing_emit_lo  = true;
2116       }
2117       else if ( strcmp(rep_var,"$$emit8") == 0 ) {
2118         _doing_emit8    = true;
2119       }
2120       else {
2121         _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
2122         assert( false, "fatal();");
2123       }
2124     }
2125     else {
2126       // Update state for replacement variables
2127       update_state( rep_var );
2128       _strings_to_emit.addName(rep_var);
2129     }
2130     _cleared  = false;
2131   }
2132 
2133   void emit_replacement() {
2134     // A replacement variable or one of its subfields
2135     // Obtain replacement variable from list
2136     // const char *ec_rep_var = encoding->_rep_vars.iter();
2137     const char *rep_var;
2138     _strings_to_emit.reset();
2139     while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
2140 
2141       if ( (*rep_var) == '$' ) {
2142         // A subfield variable, '$$' prefix
2143         emit_field( rep_var );
2144       } else {
2145         if (_strings_to_emit.peek() != NULL &&
2146             strcmp(_strings_to_emit.peek(), "$Address") == 0) {
2147           fprintf(_fp, "Address::make_raw(");
2148 
2149           emit_rep_var( rep_var );
2150           fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx);
2151 
2152           _reg_status = LITERAL_ACCESSED;
2153           emit_rep_var( rep_var );
2154           fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx);
2155 
2156           _reg_status = LITERAL_ACCESSED;
2157           emit_rep_var( rep_var );
2158           fprintf(_fp,"->scale(), ");
2159 
2160           _reg_status = LITERAL_ACCESSED;
2161           emit_rep_var( rep_var );
2162           Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2163           if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2164             fprintf(_fp,"->disp(ra_,this,0), ");
2165           } else {
2166             fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx);
2167           }
2168 
2169           _reg_status = LITERAL_ACCESSED;
2170           emit_rep_var( rep_var );
2171           fprintf(_fp,"->disp_reloc())");
2172 
2173           // skip trailing $Address
2174           _strings_to_emit.iter();
2175         } else {
2176           // A replacement variable, '$' prefix
2177           const char* next = _strings_to_emit.peek();
2178           const char* next2 = _strings_to_emit.peek(2);
2179           if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 &&
2180               (strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) {
2181             // handle $rev_var$$base$$Register and $rev_var$$index$$Register by
2182             // producing as_Register(opnd_array(#)->base(ra_,this,idx1)).
2183             fprintf(_fp, "as_Register(");
2184             // emit the operand reference
2185             emit_rep_var( rep_var );
2186             rep_var = _strings_to_emit.iter();
2187             assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern");
2188             // handle base or index
2189             emit_field(rep_var);
2190             rep_var = _strings_to_emit.iter();
2191             assert(strcmp(rep_var, "$Register") == 0, "bad pattern");
2192             // close up the parens
2193             fprintf(_fp, ")");
2194           } else {
2195             emit_rep_var( rep_var );
2196           }
2197         }
2198       } // end replacement and/or subfield
2199     }
2200   }
2201 
2202   void emit_reloc_type(const char* type) {
2203     fprintf(_fp, "%s", type)
2204       ;
2205   }
2206 
2207 
2208   void emit() {
2209     //
2210     //   "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
2211     //
2212     // Emit the function name when generating an emit function
2213     if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
2214       const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
2215       // In general, relocatable isn't known at compiler compile time.
2216       // Check results of prior scan
2217       if ( ! _may_reloc ) {
2218         // Definitely don't need relocation information
2219         fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
2220         emit_replacement(); fprintf(_fp, ")");
2221       }
2222       else {
2223         // Emit RUNTIME CHECK to see if value needs relocation info
2224         // If emitting a relocatable address, use 'emit_d32_reloc'
2225         const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
2226         assert( (_doing_disp || _doing_constant)
2227                 && !(_doing_disp && _doing_constant),
2228                 "Must be emitting either a displacement or a constant");
2229         fprintf(_fp,"\n");
2230         fprintf(_fp,"if ( opnd_array(%d)->%s_reloc() != relocInfo::none ) {\n",
2231                 _operand_idx, disp_constant);
2232         fprintf(_fp,"  ");
2233         fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_hi_lo );
2234         emit_replacement();             fprintf(_fp,", ");
2235         fprintf(_fp,"opnd_array(%d)->%s_reloc(), ",
2236                 _operand_idx, disp_constant);
2237         fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
2238         fprintf(_fp,"\n");
2239         fprintf(_fp,"} else {\n");
2240         fprintf(_fp,"  emit_%s(cbuf, ", d32_hi_lo);
2241         emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
2242       }
2243     }
2244     else if ( _doing_emit_d16 ) {
2245       // Relocation of 16-bit values is not supported
2246       fprintf(_fp,"emit_d16(cbuf, ");
2247       emit_replacement(); fprintf(_fp, ")");
2248       // No relocation done for 16-bit values
2249     }
2250     else if ( _doing_emit8 ) {
2251       // Relocation of 8-bit values is not supported
2252       fprintf(_fp,"emit_d8(cbuf, ");
2253       emit_replacement(); fprintf(_fp, ")");
2254       // No relocation done for 8-bit values
2255     }
2256     else {
2257       // Not an emit# command, just output the replacement string.
2258       emit_replacement();
2259     }
2260 
2261     // Get ready for next state collection.
2262     clear();
2263   }
2264 
2265 private:
2266 
2267   // recognizes names which represent MacroAssembler register types
2268   // and return the conversion function to build them from OptoReg
2269   const char* reg_conversion(const char* rep_var) {
2270     if (strcmp(rep_var,"$Register") == 0)      return "as_Register";
2271     if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
2272 #if defined(IA32) || defined(AMD64)
2273     if (strcmp(rep_var,"$XMMRegister") == 0)   return "as_XMMRegister";
2274 #endif
2275     if (strcmp(rep_var,"$CondRegister") == 0)  return "as_ConditionRegister";
2276 #if defined(PPC64)
2277     if (strcmp(rep_var,"$VectorRegister") == 0)   return "as_VectorRegister";
2278     if (strcmp(rep_var,"$VectorSRegister") == 0)  return "as_VectorSRegister";
2279 #endif
2280     return NULL;
2281   }
2282 
2283   void emit_field(const char *rep_var) {
2284     const char* reg_convert = reg_conversion(rep_var);
2285 
2286     // A subfield variable, '$$subfield'
2287     if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
2288       // $reg form or the $Register MacroAssembler type conversions
2289       assert( _operand_idx != -1,
2290               "Must use this subfield after operand");
2291       if( _reg_status == LITERAL_NOT_SEEN ) {
2292         if (_processing_noninput) {
2293           const Form  *local     = _inst._localNames[_operand_name];
2294           OperandForm *oper      = local->is_operand();
2295           const RegDef* first = oper->get_RegClass()->find_first_elem();
2296           if (reg_convert != NULL) {
2297             fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
2298           } else {
2299             fprintf(_fp, "%s_enc", first->_regname);
2300           }
2301         } else {
2302           fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
2303           // Add parameter for index position, if not result operand
2304           if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
2305           fprintf(_fp,")");
2306           fprintf(_fp, "/* %s */", _operand_name);
2307         }
2308       } else {
2309         assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
2310         // Register literal has already been sent to output file, nothing more needed
2311       }
2312     }
2313     else if ( strcmp(rep_var,"$base") == 0 ) {
2314       assert( _operand_idx != -1,
2315               "Must use this subfield after operand");
2316       assert( ! _may_reloc, "UnImplemented()");
2317       fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
2318     }
2319     else if ( strcmp(rep_var,"$index") == 0 ) {
2320       assert( _operand_idx != -1,
2321               "Must use this subfield after operand");
2322       assert( ! _may_reloc, "UnImplemented()");
2323       fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
2324     }
2325     else if ( strcmp(rep_var,"$scale") == 0 ) {
2326       assert( ! _may_reloc, "UnImplemented()");
2327       fprintf(_fp,"->scale()");
2328     }
2329     else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
2330       assert( ! _may_reloc, "UnImplemented()");
2331       fprintf(_fp,"->ccode()");
2332     }
2333     else if ( strcmp(rep_var,"$constant") == 0 ) {
2334       if( _constant_status == LITERAL_NOT_SEEN ) {
2335         if ( _constant_type == Form::idealD ) {
2336           fprintf(_fp,"->constantD()");
2337         } else if ( _constant_type == Form::idealF ) {
2338           fprintf(_fp,"->constantF()");
2339         } else if ( _constant_type == Form::idealL ) {
2340           fprintf(_fp,"->constantL()");
2341         } else {
2342           fprintf(_fp,"->constant()");
2343         }
2344       } else {
2345         assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
2346         // Constant literal has already been sent to output file, nothing more needed
2347       }
2348     }
2349     else if ( strcmp(rep_var,"$disp") == 0 ) {
2350       Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2351       if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2352         fprintf(_fp,"->disp(ra_,this,0)");
2353       } else {
2354         fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
2355       }
2356     }
2357     else if ( strcmp(rep_var,"$label") == 0 ) {
2358       fprintf(_fp,"->label()");
2359     }
2360     else if ( strcmp(rep_var,"$method") == 0 ) {
2361       fprintf(_fp,"->method()");
2362     }
2363     else {
2364       printf("emit_field: %s\n",rep_var);
2365       globalAD->syntax_err(_inst._linenum, "Unknown replacement variable %s in format statement of %s.",
2366                            rep_var, _inst._ident);
2367       assert( false, "UnImplemented()");
2368     }
2369   }
2370 
2371 
2372   void emit_rep_var(const char *rep_var) {
2373     _processing_noninput = false;
2374     // A replacement variable, originally '$'
2375     if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
2376       if ((_inst._opcode == NULL) || !_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
2377         // Missing opcode
2378         _AD.syntax_err( _inst._linenum,
2379                         "Missing $%s opcode definition in %s, used by encoding %s\n",
2380                         rep_var, _inst._ident, _encoding._name);
2381       }
2382     }
2383     else if (strcmp(rep_var, "constanttablebase") == 0) {
2384       fprintf(_fp, "as_Register(ra_->get_encode(in(mach_constant_base_node_input())))");
2385     }
2386     else if (strcmp(rep_var, "constantoffset") == 0) {
2387       fprintf(_fp, "constant_offset()");
2388     }
2389     else if (strcmp(rep_var, "constantaddress") == 0) {
2390       fprintf(_fp, "InternalAddress(__ code()->consts()->start() + constant_offset())");
2391     }
2392     else {
2393       // Lookup its position in parameter list
2394       int   param_no  = _encoding.rep_var_index(rep_var);
2395       if ( param_no == -1 ) {
2396         _AD.syntax_err( _encoding._linenum,
2397                         "Replacement variable %s not found in enc_class %s.\n",
2398                         rep_var, _encoding._name);
2399       }
2400       // Lookup the corresponding ins_encode parameter
2401       const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
2402 
2403       // Check if instruction's actual parameter is a local name in the instruction
2404       const Form  *local     = _inst._localNames[inst_rep_var];
2405       OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
2406       // Note: assert removed to allow constant and symbolic parameters
2407       // assert( opc, "replacement variable was not found in local names");
2408       // Lookup the index position iff the replacement variable is a localName
2409       int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
2410       if( idx != -1 ) {
2411         if (_inst.is_noninput_operand(idx)) {
2412           // This operand isn't a normal input so printing it is done
2413           // specially.
2414           _processing_noninput = true;
2415         } else {
2416           // Output the emit code for this operand
2417           fprintf(_fp,"opnd_array(%d)",idx);
2418         }
2419         assert( _operand == opc->is_operand(),
2420                 "Previous emit $operand does not match current");
2421       }
2422       else if( ADLParser::is_literal_constant(inst_rep_var) ) {
2423         // else check if it is a constant expression
2424         // Removed following assert to allow primitive C types as arguments to encodings
2425         // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2426         fprintf(_fp,"(%s)", inst_rep_var);
2427         _constant_status = LITERAL_OUTPUT;
2428       }
2429       else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
2430         // else check if "primary", "secondary", "tertiary"
2431         assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2432         if ((_inst._opcode == NULL) || !_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
2433           // Missing opcode
2434           _AD.syntax_err( _inst._linenum,
2435                           "Missing $%s opcode definition in %s\n",
2436                           rep_var, _inst._ident);
2437 
2438         }
2439         _constant_status = LITERAL_OUTPUT;
2440       }
2441       else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
2442         // Instruction provided a literal register name for this parameter
2443         // Check that encoding specifies $$$reg to resolve.as register.
2444         assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
2445         fprintf(_fp,"(%s_enc)", inst_rep_var);
2446         _reg_status = LITERAL_OUTPUT;
2447       }
2448       else {
2449         // Check for unimplemented functionality before hard failure
2450         assert(opc != NULL && strcmp(opc->_ident, "label") == 0, "Unimplemented Label");
2451         assert(false, "ShouldNotReachHere()");
2452       }
2453       // all done
2454     }
2455   }
2456 
2457 };  // end class DefineEmitState
2458 
2459 
2460 void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
2461 
2462   //(1)
2463   // Output instruction's emit prototype
2464   fprintf(fp,"uint %sNode::size(PhaseRegAlloc *ra_) const {\n",
2465           inst._ident);
2466 
2467   fprintf(fp, "  assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);
2468 
2469   //(2)
2470   // Print the size
2471   fprintf(fp, "  return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
2472 
2473   // (3) and (4)
2474   fprintf(fp,"}\n\n");
2475 }
2476 
2477 // Emit postalloc expand function.
2478 void ArchDesc::define_postalloc_expand(FILE *fp, InstructForm &inst) {
2479   InsEncode *ins_encode = inst._insencode;
2480 
2481   // Output instruction's postalloc_expand prototype.
2482   fprintf(fp, "void  %sNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {\n",
2483           inst._ident);
2484 
2485   assert((_encode != NULL) && (ins_encode != NULL), "You must define an encode section.");
2486 
2487   // Output each operand's offset into the array of registers.
2488   inst.index_temps(fp, _globalNames);
2489 
2490   // Output variables "unsigned idx_<par_name>", Node *n_<par_name> and "MachOpnd *op_<par_name>"
2491   // for each parameter <par_name> specified in the encoding.
2492   ins_encode->reset();
2493   const char *ec_name = ins_encode->encode_class_iter();
2494   assert(ec_name != NULL, "Postalloc expand must specify an encoding.");
2495 
2496   EncClass *encoding = _encode->encClass(ec_name);
2497   if (encoding == NULL) {
2498     fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2499     abort();
2500   }
2501   if (ins_encode->current_encoding_num_args() != encoding->num_args()) {
2502     globalAD->syntax_err(ins_encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2503                          inst._ident, ins_encode->current_encoding_num_args(),
2504                          ec_name, encoding->num_args());
2505   }
2506 
2507   fprintf(fp, "  // Access to ins and operands for postalloc expand.\n");
2508   const int buflen = 2000;
2509   char idxbuf[buflen]; char *ib = idxbuf; idxbuf[0] = '\0';
2510   char nbuf  [buflen]; char *nb = nbuf;   nbuf[0]   = '\0';
2511   char opbuf [buflen]; char *ob = opbuf;  opbuf[0]  = '\0';
2512 
2513   encoding->_parameter_type.reset();
2514   encoding->_parameter_name.reset();
2515   const char *type = encoding->_parameter_type.iter();
2516   const char *name = encoding->_parameter_name.iter();
2517   int param_no = 0;
2518   for (; (type != NULL) && (name != NULL);
2519        (type = encoding->_parameter_type.iter()), (name = encoding->_parameter_name.iter())) {
2520     const char* arg_name = ins_encode->rep_var_name(inst, param_no);
2521     int idx = inst.operand_position_format(arg_name);
2522     if (strcmp(arg_name, "constanttablebase") == 0) {
2523       ib += sprintf(ib, "  unsigned idx_%-5s = mach_constant_base_node_input(); \t// %s, \t%s\n",
2524                     name, type, arg_name);
2525       nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
2526       // There is no operand for the constanttablebase.
2527     } else if (inst.is_noninput_operand(idx)) {
2528       globalAD->syntax_err(inst._linenum,
2529                            "In %s: you can not pass the non-input %s to a postalloc expand encoding.\n",
2530                            inst._ident, arg_name);
2531     } else {
2532       ib += sprintf(ib, "  unsigned idx_%-5s = idx%d; \t// %s, \t%s\n",
2533                     name, idx, type, arg_name);
2534       nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
2535       ob += sprintf(ob, "  %sOper *op_%s = (%sOper *)opnd_array(%d);\n", type, name, type, idx);
2536     }
2537     param_no++;
2538   }
2539   assert(ib < &idxbuf[buflen-1] && nb < &nbuf[buflen-1] && ob < &opbuf[buflen-1], "buffer overflow");
2540 
2541   fprintf(fp, "%s", idxbuf);
2542   fprintf(fp, "  Node    *n_region  = lookup(0);\n");
2543   fprintf(fp, "%s%s", nbuf, opbuf);
2544   fprintf(fp, "  Compile *C = ra_->C;\n");
2545 
2546   // Output this instruction's encodings.
2547   fprintf(fp, "  {");
2548   const char *ec_code    = NULL;
2549   const char *ec_rep_var = NULL;
2550   assert(encoding == _encode->encClass(ec_name), "");
2551 
2552   DefineEmitState pending(fp, *this, *encoding, *ins_encode, inst);
2553   encoding->_code.reset();
2554   encoding->_rep_vars.reset();
2555   // Process list of user-defined strings,
2556   // and occurrences of replacement variables.
2557   // Replacement Vars are pushed into a list and then output.
2558   while ((ec_code = encoding->_code.iter()) != NULL) {
2559     if (! encoding->_code.is_signal(ec_code)) {
2560       // Emit pending code.
2561       pending.emit();
2562       pending.clear();
2563       // Emit this code section.
2564       fprintf(fp, "%s", ec_code);
2565     } else {
2566       // A replacement variable or one of its subfields.
2567       // Obtain replacement variable from list.
2568       ec_rep_var = encoding->_rep_vars.iter();
2569       pending.add_rep_var(ec_rep_var);
2570     }
2571   }
2572   // Emit pending code.
2573   pending.emit();
2574   pending.clear();
2575   fprintf(fp, "  }\n");
2576 
2577   fprintf(fp, "}\n\n");
2578 
2579   ec_name = ins_encode->encode_class_iter();
2580   assert(ec_name == NULL, "Postalloc expand may only have one encoding.");
2581 }
2582 
2583 // defineEmit -----------------------------------------------------------------
2584 void ArchDesc::defineEmit(FILE* fp, InstructForm& inst) {
2585   InsEncode* encode = inst._insencode;
2586 
2587   // (1)
2588   // Output instruction's emit prototype
2589   fprintf(fp, "void %sNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {\n", inst._ident);
2590 
2591   // If user did not define an encode section,
2592   // provide stub that does not generate any machine code.
2593   if( (_encode == NULL) || (encode == NULL) ) {
2594     fprintf(fp, "  // User did not define an encode section.\n");
2595     fprintf(fp, "}\n");
2596     return;
2597   }
2598 
2599   // Save current instruction's starting address (helps with relocation).
2600   fprintf(fp, "  cbuf.set_insts_mark();\n");
2601 
2602   // For MachConstantNodes which are ideal jump nodes, fill the jump table.
2603   if (inst.is_mach_constant() && inst.is_ideal_jump()) {
2604     fprintf(fp, "  ra_->C->output()->constant_table().fill_jump_table(cbuf, (MachConstantNode*) this, _index2label);\n");
2605   }
2606 
2607   // Output each operand's offset into the array of registers.
2608   inst.index_temps(fp, _globalNames);
2609 
2610   // Output this instruction's encodings
2611   const char *ec_name;
2612   bool        user_defined = false;
2613   encode->reset();
2614   while ((ec_name = encode->encode_class_iter()) != NULL) {
2615     fprintf(fp, "  {\n");
2616     // Output user-defined encoding
2617     user_defined           = true;
2618 
2619     const char *ec_code    = NULL;
2620     const char *ec_rep_var = NULL;
2621     EncClass   *encoding   = _encode->encClass(ec_name);
2622     if (encoding == NULL) {
2623       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2624       abort();
2625     }
2626 
2627     if (encode->current_encoding_num_args() != encoding->num_args()) {
2628       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2629                            inst._ident, encode->current_encoding_num_args(),
2630                            ec_name, encoding->num_args());
2631     }
2632 
2633     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2634     encoding->_code.reset();
2635     encoding->_rep_vars.reset();
2636     // Process list of user-defined strings,
2637     // and occurrences of replacement variables.
2638     // Replacement Vars are pushed into a list and then output
2639     while ((ec_code = encoding->_code.iter()) != NULL) {
2640       if (!encoding->_code.is_signal(ec_code)) {
2641         // Emit pending code
2642         pending.emit();
2643         pending.clear();
2644         // Emit this code section
2645         fprintf(fp, "%s", ec_code);
2646       } else {
2647         // A replacement variable or one of its subfields
2648         // Obtain replacement variable from list
2649         ec_rep_var  = encoding->_rep_vars.iter();
2650         pending.add_rep_var(ec_rep_var);
2651       }
2652     }
2653     // Emit pending code
2654     pending.emit();
2655     pending.clear();
2656     fprintf(fp, "  }\n");
2657   } // end while instruction's encodings
2658 
2659   // Check if user stated which encoding to user
2660   if ( user_defined == false ) {
2661     fprintf(fp, "  // User did not define which encode class to use.\n");
2662   }
2663 
2664   // (3) and (4)
2665   fprintf(fp, "}\n\n");
2666 }
2667 
2668 // defineEvalConstant ---------------------------------------------------------
2669 void ArchDesc::defineEvalConstant(FILE* fp, InstructForm& inst) {
2670   InsEncode* encode = inst._constant;
2671 
2672   // (1)
2673   // Output instruction's emit prototype
2674   fprintf(fp, "void %sNode::eval_constant(Compile* C) {\n", inst._ident);
2675 
2676   // For ideal jump nodes, add a jump-table entry.
2677   if (inst.is_ideal_jump()) {
2678     fprintf(fp, "  _constant = C->output()->constant_table().add_jump_table(this);\n");
2679   }
2680 
2681   // If user did not define an encode section,
2682   // provide stub that does not generate any machine code.
2683   if ((_encode == NULL) || (encode == NULL)) {
2684     fprintf(fp, "  // User did not define an encode section.\n");
2685     fprintf(fp, "}\n");
2686     return;
2687   }
2688 
2689   // Output this instruction's encodings
2690   const char *ec_name;
2691   bool        user_defined = false;
2692   encode->reset();
2693   while ((ec_name = encode->encode_class_iter()) != NULL) {
2694     fprintf(fp, "  {\n");
2695     // Output user-defined encoding
2696     user_defined           = true;
2697 
2698     const char *ec_code    = NULL;
2699     const char *ec_rep_var = NULL;
2700     EncClass   *encoding   = _encode->encClass(ec_name);
2701     if (encoding == NULL) {
2702       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2703       abort();
2704     }
2705 
2706     if (encode->current_encoding_num_args() != encoding->num_args()) {
2707       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2708                            inst._ident, encode->current_encoding_num_args(),
2709                            ec_name, encoding->num_args());
2710     }
2711 
2712     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2713     encoding->_code.reset();
2714     encoding->_rep_vars.reset();
2715     // Process list of user-defined strings,
2716     // and occurrences of replacement variables.
2717     // Replacement Vars are pushed into a list and then output
2718     while ((ec_code = encoding->_code.iter()) != NULL) {
2719       if (!encoding->_code.is_signal(ec_code)) {
2720         // Emit pending code
2721         pending.emit();
2722         pending.clear();
2723         // Emit this code section
2724         fprintf(fp, "%s", ec_code);
2725       } else {
2726         // A replacement variable or one of its subfields
2727         // Obtain replacement variable from list
2728         ec_rep_var  = encoding->_rep_vars.iter();
2729         pending.add_rep_var(ec_rep_var);
2730       }
2731     }
2732     // Emit pending code
2733     pending.emit();
2734     pending.clear();
2735     fprintf(fp, "  }\n");
2736   } // end while instruction's encodings
2737 
2738   // Check if user stated which encoding to user
2739   if (user_defined == false) {
2740     fprintf(fp, "  // User did not define which encode class to use.\n");
2741   }
2742 
2743   // (3) and (4)
2744   fprintf(fp, "}\n");
2745 }
2746 
2747 // ---------------------------------------------------------------------------
2748 //--------Utilities to build MachOper and MachNode derived Classes------------
2749 // ---------------------------------------------------------------------------
2750 
2751 //------------------------------Utilities to build Operand Classes------------
2752 static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
2753   uint num_edges = oper.num_edges(globals);
2754   if( num_edges != 0 ) {
2755     // Method header
2756     fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
2757             oper._ident);
2758 
2759     // Assert that the index is in range.
2760     fprintf(fp, "  assert(0 <= index && index < %d, \"index out of range\");\n",
2761             num_edges);
2762 
2763     // Figure out if all RegMasks are the same.
2764     const char* first_reg_class = oper.in_reg_class(0, globals);
2765     bool all_same = true;
2766     assert(first_reg_class != NULL, "did not find register mask");
2767 
2768     for (uint index = 1; all_same && index < num_edges; index++) {
2769       const char* some_reg_class = oper.in_reg_class(index, globals);
2770       assert(some_reg_class != NULL, "did not find register mask");
2771       if (strcmp(first_reg_class, some_reg_class) != 0) {
2772         all_same = false;
2773       }
2774     }
2775 
2776     if (all_same) {
2777       // Return the sole RegMask.
2778       if (strcmp(first_reg_class, "stack_slots") == 0) {
2779         fprintf(fp,"  return &(Compile::current()->FIRST_STACK_mask());\n");
2780       } else if (strcmp(first_reg_class, "dynamic") == 0) {
2781         fprintf(fp,"  return &RegMask::Empty;\n");
2782       } else {
2783         const char* first_reg_class_to_upper = toUpper(first_reg_class);
2784         fprintf(fp,"  return &%s_mask();\n", first_reg_class_to_upper);
2785         delete[] first_reg_class_to_upper;
2786       }
2787     } else {
2788       // Build a switch statement to return the desired mask.
2789       fprintf(fp,"  switch (index) {\n");
2790 
2791       for (uint index = 0; index < num_edges; index++) {
2792         const char *reg_class = oper.in_reg_class(index, globals);
2793         assert(reg_class != NULL, "did not find register mask");
2794         if( !strcmp(reg_class, "stack_slots") ) {
2795           fprintf(fp, "  case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
2796         } else {
2797           const char* reg_class_to_upper = toUpper(reg_class);
2798           fprintf(fp, "  case %d: return &%s_mask();\n", index, reg_class_to_upper);
2799           delete[] reg_class_to_upper;
2800         }
2801       }
2802       fprintf(fp,"  }\n");
2803       fprintf(fp,"  ShouldNotReachHere();\n");
2804       fprintf(fp,"  return NULL;\n");
2805     }
2806 
2807     // Method close
2808     fprintf(fp, "}\n\n");
2809   }
2810 }
2811 
2812 // generate code to create a clone for a class derived from MachOper
2813 //
2814 // (0)  MachOper  *MachOperXOper::clone() const {
2815 // (1)    return new MachXOper( _ccode, _c0, _c1, ..., _cn);
2816 // (2)  }
2817 //
2818 static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
2819   fprintf(fp,"MachOper *%sOper::clone() const {\n", oper._ident);
2820   // Check for constants that need to be copied over
2821   const int  num_consts    = oper.num_consts(globalNames);
2822   const bool is_ideal_bool = oper.is_ideal_bool();
2823   if( (num_consts > 0) ) {
2824     fprintf(fp,"  return new %sOper(", oper._ident);
2825     // generate parameters for constants
2826     int i = 0;
2827     fprintf(fp,"_c%d", i);
2828     for( i = 1; i < num_consts; ++i) {
2829       fprintf(fp,", _c%d", i);
2830     }
2831     // finish line (1)
2832     fprintf(fp,");\n");
2833   }
2834   else {
2835     assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
2836     fprintf(fp,"  return new %sOper();\n", oper._ident);
2837   }
2838   // finish method
2839   fprintf(fp,"}\n");
2840 }
2841 
2842 // Helper functions for bug 4796752, abstracted with minimal modification
2843 // from define_oper_interface()
2844 OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
2845   OperandForm *op = NULL;
2846   // Check for replacement variable
2847   if( *encoding == '$' ) {
2848     // Replacement variable
2849     const char *rep_var = encoding + 1;
2850     // Lookup replacement variable, rep_var, in operand's component list
2851     const Component *comp = oper._components.search(rep_var);
2852     assert( comp != NULL, "Replacement variable not found in components");
2853     // Lookup operand form for replacement variable's type
2854     const char      *type = comp->_type;
2855     Form            *form = (Form*)globals[type];
2856     assert( form != NULL, "Replacement variable's type not found");
2857     op = form->is_operand();
2858     assert( op, "Attempting to emit a non-register or non-constant");
2859   }
2860 
2861   return op;
2862 }
2863 
2864 int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
2865   int idx = -1;
2866   // Check for replacement variable
2867   if( *encoding == '$' ) {
2868     // Replacement variable
2869     const char *rep_var = encoding + 1;
2870     // Lookup replacement variable, rep_var, in operand's component list
2871     const Component *comp = oper._components.search(rep_var);
2872     assert( comp != NULL, "Replacement variable not found in components");
2873     // Lookup operand form for replacement variable's type
2874     const char      *type = comp->_type;
2875     Form            *form = (Form*)globals[type];
2876     assert( form != NULL, "Replacement variable's type not found");
2877     OperandForm *op = form->is_operand();
2878     assert( op, "Attempting to emit a non-register or non-constant");
2879     // Check that this is a constant and find constant's index:
2880     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2881       idx  = oper.constant_position(globals, comp);
2882     }
2883   }
2884 
2885   return idx;
2886 }
2887 
2888 bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
2889   bool is_regI = false;
2890 
2891   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2892   if( op != NULL ) {
2893     // Check that this is a register
2894     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2895       // Register
2896       const char* ideal  = op->ideal_type(globals);
2897       is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
2898     }
2899   }
2900 
2901   return is_regI;
2902 }
2903 
2904 bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
2905   bool is_conP = false;
2906 
2907   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2908   if( op != NULL ) {
2909     // Check that this is a constant pointer
2910     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2911       // Constant
2912       Form::DataType dtype = op->is_base_constant(globals);
2913       is_conP = (dtype == Form::idealP);
2914     }
2915   }
2916 
2917   return is_conP;
2918 }
2919 
2920 
2921 // Define a MachOper interface methods
2922 void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
2923                                      const char *name, const char *encoding) {
2924   bool emit_position = false;
2925   int position = -1;
2926 
2927   fprintf(fp,"  virtual int            %s", name);
2928   // Generate access method for base, index, scale, disp, ...
2929   if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
2930     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2931     emit_position = true;
2932   } else if ( (strcmp(name,"disp") == 0) ) {
2933     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2934   } else {
2935     fprintf(fp, "() const {\n");
2936   }
2937 
2938   // Check for hexadecimal value OR replacement variable
2939   if( *encoding == '$' ) {
2940     // Replacement variable
2941     const char *rep_var = encoding + 1;
2942     fprintf(fp,"    // Replacement variable: %s\n", encoding+1);
2943     // Lookup replacement variable, rep_var, in operand's component list
2944     const Component *comp = oper._components.search(rep_var);
2945     assert( comp != NULL, "Replacement variable not found in components");
2946     // Lookup operand form for replacement variable's type
2947     const char      *type = comp->_type;
2948     Form            *form = (Form*)globals[type];
2949     assert( form != NULL, "Replacement variable's type not found");
2950     OperandForm *op = form->is_operand();
2951     assert( op, "Attempting to emit a non-register or non-constant");
2952     // Check that this is a register or a constant and generate code:
2953     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2954       // Register
2955       int idx_offset = oper.register_position( globals, rep_var);
2956       position = idx_offset;
2957       fprintf(fp,"    return (int)ra_->get_encode(node->in(idx");
2958       if ( idx_offset > 0 ) fprintf(fp,                      "+%d",idx_offset);
2959       fprintf(fp,"));\n");
2960     } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
2961       // StackSlot for an sReg comes either from input node or from self, when idx==0
2962       fprintf(fp,"    if( idx != 0 ) {\n");
2963       fprintf(fp,"      // Access stack offset (register number) for input operand\n");
2964       fprintf(fp,"      return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
2965       fprintf(fp,"    }\n");
2966       fprintf(fp,"    // Access stack offset (register number) from myself\n");
2967       fprintf(fp,"    return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
2968     } else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2969       // Constant
2970       // Check which constant this name maps to: _c0, _c1, ..., _cn
2971       const int idx = oper.constant_position(globals, comp);
2972       assert( idx != -1, "Constant component not found in operand");
2973       // Output code for this constant, type dependent.
2974       fprintf(fp,"    return (int)" );
2975       oper.access_constant(fp, globals, (uint)idx /* , const_type */);
2976       fprintf(fp,";\n");
2977     } else {
2978       assert( false, "Attempting to emit a non-register or non-constant");
2979     }
2980   }
2981   else if( *encoding == '0' && *(encoding+1) == 'x' ) {
2982     // Hex value
2983     fprintf(fp,"    return %s;\n", encoding);
2984   } else {
2985     globalAD->syntax_err(oper._linenum, "In operand %s: Do not support this encode constant: '%s' for %s.",
2986                          oper._ident, encoding, name);
2987     assert( false, "Do not support octal or decimal encode constants");
2988   }
2989   fprintf(fp,"  }\n");
2990 
2991   if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
2992     fprintf(fp,"  virtual int            %s_position() const { return %d; }\n", name, position);
2993     MemInterface *mem_interface = oper._interface->is_MemInterface();
2994     const char *base = mem_interface->_base;
2995     const char *disp = mem_interface->_disp;
2996     if( emit_position && (strcmp(name,"base") == 0)
2997         && base != NULL && is_regI(base, oper, globals)
2998         && disp != NULL && is_conP(disp, oper, globals) ) {
2999       // Found a memory access using a constant pointer for a displacement
3000       // and a base register containing an integer offset.
3001       // In this case the base and disp are reversed with respect to what
3002       // is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
3003       // Provide a non-NULL return for disp_as_type() that will allow adr_type()
3004       // to correctly compute the access type for alias analysis.
3005       //
3006       // See BugId 4796752, operand indOffset32X in i486.ad
3007       int idx = rep_var_to_constant_index(disp, oper, globals);
3008       fprintf(fp,"  virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
3009     }
3010   }
3011 }
3012 
3013 //
3014 // Construct the method to copy _idx, inputs and operands to new node.
3015 static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
3016   fprintf(fp_cpp, "\n");
3017   fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
3018   fprintf(fp_cpp, "void MachNode::fill_new_machnode(MachNode* node) const {\n");
3019   if( !used ) {
3020     fprintf(fp_cpp, "  // This architecture does not have cisc or short branch instructions\n");
3021     fprintf(fp_cpp, "  ShouldNotCallThis();\n");
3022     fprintf(fp_cpp, "}\n");
3023   } else {
3024     // New node must use same node index for access through allocator's tables
3025     fprintf(fp_cpp, "  // New node must use same node index\n");
3026     fprintf(fp_cpp, "  node->set_idx( _idx );\n");
3027     // Copy machine-independent inputs
3028     fprintf(fp_cpp, "  // Copy machine-independent inputs\n");
3029     fprintf(fp_cpp, "  for( uint j = 0; j < req(); j++ ) {\n");
3030     fprintf(fp_cpp, "    node->add_req(in(j));\n");
3031     fprintf(fp_cpp, "  }\n");
3032     // Copy machine operands to new MachNode
3033     fprintf(fp_cpp, "  // Copy my operands, except for cisc position\n");
3034     fprintf(fp_cpp, "  int nopnds = num_opnds();\n");
3035     fprintf(fp_cpp, "  assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
3036     fprintf(fp_cpp, "  MachOper **to = node->_opnds;\n");
3037     fprintf(fp_cpp, "  for( int i = 0; i < nopnds; i++ ) {\n");
3038     fprintf(fp_cpp, "    if( i != cisc_operand() ) \n");
3039     fprintf(fp_cpp, "      to[i] = _opnds[i]->clone();\n");
3040     fprintf(fp_cpp, "  }\n");
3041     fprintf(fp_cpp, "}\n");
3042   }
3043   fprintf(fp_cpp, "\n");
3044 }
3045 
3046 //------------------------------defineClasses----------------------------------
3047 // Define members of MachNode and MachOper classes based on
3048 // operand and instruction lists
3049 void ArchDesc::defineClasses(FILE *fp) {
3050 
3051   // Define the contents of an array containing the machine register names
3052   defineRegNames(fp, _register);
3053   // Define an array containing the machine register encoding values
3054   defineRegEncodes(fp, _register);
3055   // Generate an enumeration of user-defined register classes
3056   // and a list of register masks, one for each class.
3057   // Only define the RegMask value objects in the expand file.
3058   // Declare each as an extern const RegMask ...; in ad_<arch>.hpp
3059   declare_register_masks(_HPP_file._fp);
3060   // build_register_masks(fp);
3061   build_register_masks(_CPP_EXPAND_file._fp);
3062   // Define the pipe_classes
3063   build_pipe_classes(_CPP_PIPELINE_file._fp);
3064 
3065   // Generate Machine Classes for each operand defined in AD file
3066   fprintf(fp,"\n");
3067   fprintf(fp,"\n");
3068   fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
3069   // Iterate through all operands
3070   _operands.reset();
3071   OperandForm *oper;
3072   for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
3073     // Ensure this is a machine-world instruction
3074     if ( oper->ideal_only() ) continue;
3075     // !!!!!
3076     // The declaration of labelOper is in machine-independent file: machnode
3077     if ( strcmp(oper->_ident,"label") == 0 ) {
3078       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3079 
3080       fprintf(fp,"MachOper  *%sOper::clone() const {\n", oper->_ident);
3081       fprintf(fp,"  return  new %sOper(_label, _block_num);\n", oper->_ident);
3082       fprintf(fp,"}\n");
3083 
3084       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3085               oper->_ident, machOperEnum(oper->_ident));
3086       // // Currently all XXXOper::Hash() methods are identical (990820)
3087       // define_hash(fp, oper->_ident);
3088       // // Currently all XXXOper::Cmp() methods are identical (990820)
3089       // define_cmp(fp, oper->_ident);
3090       fprintf(fp,"\n");
3091 
3092       continue;
3093     }
3094 
3095     // The declaration of methodOper is in machine-independent file: machnode
3096     if ( strcmp(oper->_ident,"method") == 0 ) {
3097       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3098 
3099       fprintf(fp,"MachOper  *%sOper::clone() const {\n", oper->_ident);
3100       fprintf(fp,"  return  new %sOper(_method);\n", oper->_ident);
3101       fprintf(fp,"}\n");
3102 
3103       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3104               oper->_ident, machOperEnum(oper->_ident));
3105       // // Currently all XXXOper::Hash() methods are identical (990820)
3106       // define_hash(fp, oper->_ident);
3107       // // Currently all XXXOper::Cmp() methods are identical (990820)
3108       // define_cmp(fp, oper->_ident);
3109       fprintf(fp,"\n");
3110 
3111       continue;
3112     }
3113 
3114     defineIn_RegMask(fp, _globalNames, *oper);
3115     defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
3116     // // Currently all XXXOper::Hash() methods are identical (990820)
3117     // define_hash(fp, oper->_ident);
3118     // // Currently all XXXOper::Cmp() methods are identical (990820)
3119     // define_cmp(fp, oper->_ident);
3120 
3121     // side-call to generate output that used to be in the header file:
3122     extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
3123     gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
3124 
3125   }
3126 
3127 
3128   // Generate Machine Classes for each instruction defined in AD file
3129   fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
3130   // Output the definitions for out_RegMask() // & kill_RegMask()
3131   _instructions.reset();
3132   InstructForm *instr;
3133   MachNodeForm *machnode;
3134   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3135     // Ensure this is a machine-world instruction
3136     if ( instr->ideal_only() ) continue;
3137 
3138     defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
3139   }
3140 
3141   bool used = false;
3142   // Output the definitions for expand rules & peephole rules
3143   _instructions.reset();
3144   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3145     // Ensure this is a machine-world instruction
3146     if ( instr->ideal_only() ) continue;
3147     // If there are multiple defs/kills, or an explicit expand rule, build rule
3148     if( instr->expands() || instr->needs_projections() ||
3149         instr->has_temps() ||
3150         instr->is_mach_constant() ||
3151         instr->needs_constant_base() ||
3152         (instr->_matrule != NULL &&
3153          instr->num_opnds() != instr->num_unique_opnds()) )
3154       defineExpand(_CPP_EXPAND_file._fp, instr);
3155     // If there is an explicit peephole rule, build it
3156     if ( instr->peepholes() )
3157       definePeephole(_CPP_PEEPHOLE_file._fp, instr);
3158 
3159     // Output code to convert to the cisc version, if applicable
3160     used |= instr->define_cisc_version(*this, fp);
3161 
3162     // Output code to convert to the short branch version, if applicable
3163     used |= instr->define_short_branch_methods(*this, fp);
3164   }
3165 
3166   // Construct the method called by cisc_version() to copy inputs and operands.
3167   define_fill_new_machnode(used, fp);
3168 
3169   // Output the definitions for labels
3170   _instructions.reset();
3171   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3172     // Ensure this is a machine-world instruction
3173     if ( instr->ideal_only() ) continue;
3174 
3175     // Access the fields for operand Label
3176     int label_position = instr->label_position();
3177     if( label_position != -1 ) {
3178       // Set the label
3179       fprintf(fp,"void %sNode::label_set( Label* label, uint block_num ) {\n", instr->_ident);
3180       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
3181               label_position );
3182       fprintf(fp,"  oper->_label     = label;\n");
3183       fprintf(fp,"  oper->_block_num = block_num;\n");
3184       fprintf(fp,"}\n");
3185       // Save the label
3186       fprintf(fp,"void %sNode::save_label( Label** label, uint* block_num ) {\n", instr->_ident);
3187       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
3188               label_position );
3189       fprintf(fp,"  *label = oper->_label;\n");
3190       fprintf(fp,"  *block_num = oper->_block_num;\n");
3191       fprintf(fp,"}\n");
3192     }
3193   }
3194 
3195   // Output the definitions for methods
3196   _instructions.reset();
3197   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3198     // Ensure this is a machine-world instruction
3199     if ( instr->ideal_only() ) continue;
3200 
3201     // Access the fields for operand Label
3202     int method_position = instr->method_position();
3203     if( method_position != -1 ) {
3204       // Access the method's address
3205       fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
3206       fprintf(fp,"  ((methodOper*)opnd_array(%d))->_method = method;\n",
3207               method_position );
3208       fprintf(fp,"}\n");
3209       fprintf(fp,"\n");
3210     }
3211   }
3212 
3213   // Define this instruction's number of relocation entries, base is '0'
3214   _instructions.reset();
3215   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3216     // Output the definition for number of relocation entries
3217     uint reloc_size = instr->reloc(_globalNames);
3218     if ( reloc_size != 0 ) {
3219       fprintf(fp,"int %sNode::reloc() const {\n", instr->_ident);
3220       fprintf(fp,"  return %d;\n", reloc_size);
3221       fprintf(fp,"}\n");
3222       fprintf(fp,"\n");
3223     }
3224   }
3225   fprintf(fp,"\n");
3226 
3227   // Output the definitions for code generation
3228   //
3229   // address  ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
3230   //   // ...  encoding defined by user
3231   //   return ptr;
3232   // }
3233   //
3234   _instructions.reset();
3235   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3236     // Ensure this is a machine-world instruction
3237     if ( instr->ideal_only() ) continue;
3238 
3239     if (instr->_insencode) {
3240       if (instr->postalloc_expands()) {
3241         // Don't write this to _CPP_EXPAND_file, as the code generated calls C-code
3242         // from code sections in ad file that is dumped to fp.
3243         define_postalloc_expand(fp, *instr);
3244       } else {
3245         defineEmit(fp, *instr);
3246       }
3247     }
3248     if (instr->is_mach_constant()) defineEvalConstant(fp, *instr);
3249     if (instr->_size)              defineSize        (fp, *instr);
3250 
3251     // side-call to generate output that used to be in the header file:
3252     extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
3253     gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
3254   }
3255 
3256   // Output the definitions for alias analysis
3257   _instructions.reset();
3258   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3259     // Ensure this is a machine-world instruction
3260     if ( instr->ideal_only() ) continue;
3261 
3262     // Analyze machine instructions that either USE or DEF memory.
3263     int memory_operand = instr->memory_operand(_globalNames);
3264 
3265     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
3266       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
3267         fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
3268         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
3269       } else {
3270         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
3271   }
3272     }
3273   }
3274 
3275   // Get the length of the longest identifier
3276   int max_ident_len = 0;
3277   _instructions.reset();
3278 
3279   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3280     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3281       int ident_len = (int)strlen(instr->_ident);
3282       if( max_ident_len < ident_len )
3283         max_ident_len = ident_len;
3284     }
3285   }
3286 
3287   // Emit specifically for Node(s)
3288   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3289     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3290   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
3291     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3292   fprintf(_CPP_PIPELINE_file._fp, "\n");
3293 
3294   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3295     max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
3296   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
3297     max_ident_len, "MachNode");
3298   fprintf(_CPP_PIPELINE_file._fp, "\n");
3299 
3300   // Output the definitions for machine node specific pipeline data
3301   _machnodes.reset();
3302 
3303   if (_pipeline != NULL) {
3304     for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
3305       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3306               machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
3307     }
3308   }
3309 
3310   fprintf(_CPP_PIPELINE_file._fp, "\n");
3311 
3312   // Output the definitions for instruction pipeline static data references
3313   _instructions.reset();
3314 
3315   if (_pipeline != NULL) {
3316     for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3317       if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3318         fprintf(_CPP_PIPELINE_file._fp, "\n");
3319         fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
3320                 max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3321         fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3322                 max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3323       }
3324     }
3325   }
3326 }
3327 
3328 
3329 // -------------------------------- maps ------------------------------------
3330 
3331 // Information needed to generate the ReduceOp mapping for the DFA
3332 class OutputReduceOp : public OutputMap {
3333 public:
3334   OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3335     : OutputMap(hpp, cpp, globals, AD, "reduceOp") {};
3336 
3337   void declaration() { fprintf(_hpp, "extern const int   reduceOp[];\n"); }
3338   void definition()  { fprintf(_cpp, "const        int   reduceOp[] = {\n"); }
3339   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3340                        OutputMap::closing();
3341   }
3342   void map(OpClassForm &opc)  {
3343     const char *reduce = opc._ident;
3344     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3345     else          fprintf(_cpp, "  0");
3346   }
3347   void map(OperandForm &oper) {
3348     // Most operands without match rules, e.g.  eFlagsReg, do not have a result operand
3349     const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
3350     // operand stackSlot does not have a match rule, but produces a stackSlot
3351     if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
3352     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3353     else          fprintf(_cpp, "  0");
3354   }
3355   void map(InstructForm &inst) {
3356     const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
3357     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3358     else          fprintf(_cpp, "  0");
3359   }
3360   void map(char         *reduce) {
3361     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3362     else          fprintf(_cpp, "  0");
3363   }
3364 };
3365 
3366 // Information needed to generate the LeftOp mapping for the DFA
3367 class OutputLeftOp : public OutputMap {
3368 public:
3369   OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3370     : OutputMap(hpp, cpp, globals, AD, "leftOp") {};
3371 
3372   void declaration() { fprintf(_hpp, "extern const int   leftOp[];\n"); }
3373   void definition()  { fprintf(_cpp, "const        int   leftOp[] = {\n"); }
3374   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3375                        OutputMap::closing();
3376   }
3377   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
3378   void map(OperandForm &oper) {
3379     const char *reduce = oper.reduce_left(_globals);
3380     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3381     else          fprintf(_cpp, "  0");
3382   }
3383   void map(char        *name) {
3384     const char *reduce = _AD.reduceLeft(name);
3385     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3386     else          fprintf(_cpp, "  0");
3387   }
3388   void map(InstructForm &inst) {
3389     const char *reduce = inst.reduce_left(_globals);
3390     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3391     else          fprintf(_cpp, "  0");
3392   }
3393 };
3394 
3395 
3396 // Information needed to generate the RightOp mapping for the DFA
3397 class OutputRightOp : public OutputMap {
3398 public:
3399   OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3400     : OutputMap(hpp, cpp, globals, AD, "rightOp") {};
3401 
3402   void declaration() { fprintf(_hpp, "extern const int   rightOp[];\n"); }
3403   void definition()  { fprintf(_cpp, "const        int   rightOp[] = {\n"); }
3404   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3405                        OutputMap::closing();
3406   }
3407   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
3408   void map(OperandForm &oper) {
3409     const char *reduce = oper.reduce_right(_globals);
3410     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3411     else          fprintf(_cpp, "  0");
3412   }
3413   void map(char        *name) {
3414     const char *reduce = _AD.reduceRight(name);
3415     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3416     else          fprintf(_cpp, "  0");
3417   }
3418   void map(InstructForm &inst) {
3419     const char *reduce = inst.reduce_right(_globals);
3420     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3421     else          fprintf(_cpp, "  0");
3422   }
3423 };
3424 
3425 
3426 // Information needed to generate the Rule names for the DFA
3427 class OutputRuleName : public OutputMap {
3428 public:
3429   OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3430     : OutputMap(hpp, cpp, globals, AD, "ruleName") {};
3431 
3432   void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
3433   void definition()  { fprintf(_cpp, "const char        *ruleName[] = {\n"); }
3434   void closing()     { fprintf(_cpp, "  \"invalid rule name\" // no trailing comma\n");
3435                        OutputMap::closing();
3436   }
3437   void map(OpClassForm &opc)  { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(opc._ident) ); }
3438   void map(OperandForm &oper) { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(oper._ident) ); }
3439   void map(char        *name) { fprintf(_cpp, "  \"%s\"", name ? name : "0"); }
3440   void map(InstructForm &inst){ fprintf(_cpp, "  \"%s\"", inst._ident ? inst._ident : "0"); }
3441 };
3442 
3443 
3444 // Information needed to generate the swallowed mapping for the DFA
3445 class OutputSwallowed : public OutputMap {
3446 public:
3447   OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3448     : OutputMap(hpp, cpp, globals, AD, "swallowed") {};
3449 
3450   void declaration() { fprintf(_hpp, "extern const bool  swallowed[];\n"); }
3451   void definition()  { fprintf(_cpp, "const        bool  swallowed[] = {\n"); }
3452   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3453                        OutputMap::closing();
3454   }
3455   void map(OperandForm &oper) { // Generate the entry for this opcode
3456     const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
3457     fprintf(_cpp, "  %s", swallowed);
3458   }
3459   void map(OpClassForm &opc)  { fprintf(_cpp, "  false"); }
3460   void map(char        *name) { fprintf(_cpp, "  false"); }
3461   void map(InstructForm &inst){ fprintf(_cpp, "  false"); }
3462 };
3463 
3464 
3465 // Information needed to generate the decision array for instruction chain rule
3466 class OutputInstChainRule : public OutputMap {
3467 public:
3468   OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3469     : OutputMap(hpp, cpp, globals, AD, "instruction_chain_rule") {};
3470 
3471   void declaration() { fprintf(_hpp, "extern const bool  instruction_chain_rule[];\n"); }
3472   void definition()  { fprintf(_cpp, "const        bool  instruction_chain_rule[] = {\n"); }
3473   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3474                        OutputMap::closing();
3475   }
3476   void map(OpClassForm &opc)   { fprintf(_cpp, "  false"); }
3477   void map(OperandForm &oper)  { fprintf(_cpp, "  false"); }
3478   void map(char        *name)  { fprintf(_cpp, "  false"); }
3479   void map(InstructForm &inst) { // Check for simple chain rule
3480     const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
3481     fprintf(_cpp, "  %s", chain);
3482   }
3483 };
3484 
3485 
3486 //---------------------------build_map------------------------------------
3487 // Build  mapping from enumeration for densely packed operands
3488 // TO result and child types.
3489 void ArchDesc::build_map(OutputMap &map) {
3490   FILE         *fp_hpp = map.decl_file();
3491   FILE         *fp_cpp = map.def_file();
3492   int           idx    = 0;
3493   OperandForm  *op;
3494   OpClassForm  *opc;
3495   InstructForm *inst;
3496 
3497   // Construct this mapping
3498   map.declaration();
3499   fprintf(fp_cpp,"\n");
3500   map.definition();
3501 
3502   // Output the mapping for operands
3503   map.record_position(OutputMap::BEGIN_OPERANDS, idx );
3504   _operands.reset();
3505   for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
3506     // Ensure this is a machine-world instruction
3507     if ( op->ideal_only() )  continue;
3508 
3509     // Generate the entry for this opcode
3510     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*op); fprintf(fp_cpp, ",\n");
3511     ++idx;
3512   };
3513   fprintf(fp_cpp, "  // last operand\n");
3514 
3515   // Place all user-defined operand classes into the mapping
3516   map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
3517   _opclass.reset();
3518   for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
3519     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*opc); fprintf(fp_cpp, ",\n");
3520     ++idx;
3521   };
3522   fprintf(fp_cpp, "  // last operand class\n");
3523 
3524   // Place all internally defined operands into the mapping
3525   map.record_position(OutputMap::BEGIN_INTERNALS, idx );
3526   _internalOpNames.reset();
3527   char *name = NULL;
3528   for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
3529     fprintf(fp_cpp, "  /* %4d */", idx); map.map(name); fprintf(fp_cpp, ",\n");
3530     ++idx;
3531   };
3532   fprintf(fp_cpp, "  // last internally defined operand\n");
3533 
3534   // Place all user-defined instructions into the mapping
3535   if( map.do_instructions() ) {
3536     map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
3537     // Output all simple instruction chain rules first
3538     map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
3539     {
3540       _instructions.reset();
3541       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3542         // Ensure this is a machine-world instruction
3543         if ( inst->ideal_only() )  continue;
3544         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3545         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3546 
3547         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3548         ++idx;
3549       };
3550       map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
3551       _instructions.reset();
3552       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3553         // Ensure this is a machine-world instruction
3554         if ( inst->ideal_only() )  continue;
3555         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3556         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3557 
3558         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3559         ++idx;
3560       };
3561       map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
3562     }
3563     // Output all instructions that are NOT simple chain rules
3564     {
3565       _instructions.reset();
3566       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3567         // Ensure this is a machine-world instruction
3568         if ( inst->ideal_only() )  continue;
3569         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3570         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3571 
3572         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3573         ++idx;
3574       };
3575       map.record_position(OutputMap::END_REMATERIALIZE, idx );
3576       _instructions.reset();
3577       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3578         // Ensure this is a machine-world instruction
3579         if ( inst->ideal_only() )  continue;
3580         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3581         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3582 
3583         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3584         ++idx;
3585       };
3586     }
3587     fprintf(fp_cpp, "  // last instruction\n");
3588     map.record_position(OutputMap::END_INSTRUCTIONS, idx );
3589   }
3590   // Finish defining table
3591   map.closing();
3592 };
3593 
3594 
3595 // Helper function for buildReduceMaps
3596 char reg_save_policy(const char *calling_convention) {
3597   char callconv;
3598 
3599   if      (!strcmp(calling_convention, "NS"))  callconv = 'N';
3600   else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
3601   else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
3602   else if (!strcmp(calling_convention, "AS"))  callconv = 'A';
3603   else                                         callconv = 'Z';
3604 
3605   return callconv;
3606 }
3607 
3608 void ArchDesc::generate_needs_clone_jvms(FILE *fp_cpp) {
3609   fprintf(fp_cpp, "bool Compile::needs_clone_jvms() { return %s; }\n\n",
3610           _needs_clone_jvms ? "true" : "false");
3611 }
3612 
3613 //---------------------------generate_assertion_checks-------------------
3614 void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
3615   fprintf(fp_cpp, "\n");
3616 
3617   fprintf(fp_cpp, "#ifndef PRODUCT\n");
3618   fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
3619   globalDefs().print_asserts(fp_cpp);
3620   fprintf(fp_cpp, "}\n");
3621   fprintf(fp_cpp, "#endif\n");
3622   fprintf(fp_cpp, "\n");
3623 }
3624 
3625 //---------------------------addSourceBlocks-----------------------------
3626 void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
3627   if (_source.count() > 0)
3628     _source.output(fp_cpp);
3629 
3630   generate_adlc_verification(fp_cpp);
3631 }
3632 //---------------------------addHeaderBlocks-----------------------------
3633 void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
3634   if (_header.count() > 0)
3635     _header.output(fp_hpp);
3636 }
3637 //-------------------------addPreHeaderBlocks----------------------------
3638 void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
3639   // Output #defines from definition block
3640   globalDefs().print_defines(fp_hpp);
3641 
3642   if (_pre_header.count() > 0)
3643     _pre_header.output(fp_hpp);
3644 }
3645 
3646 //---------------------------buildReduceMaps-----------------------------
3647 // Build  mapping from enumeration for densely packed operands
3648 // TO result and child types.
3649 void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
3650   RegDef       *rdef;
3651   RegDef       *next;
3652 
3653   // The emit bodies currently require functions defined in the source block.
3654 
3655   // Build external declarations for mappings
3656   fprintf(fp_hpp, "\n");
3657   fprintf(fp_hpp, "extern const char  register_save_policy[];\n");
3658   fprintf(fp_hpp, "extern const char  c_reg_save_policy[];\n");
3659   fprintf(fp_hpp, "extern const int   register_save_type[];\n");
3660   fprintf(fp_hpp, "\n");
3661 
3662   // Construct Save-Policy array
3663   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
3664   fprintf(fp_cpp, "const        char register_save_policy[] = {\n");
3665   _register->reset_RegDefs();
3666   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3667     next              = _register->iter_RegDefs();
3668     char policy       = reg_save_policy(rdef->_callconv);
3669     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3670     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
3671   }
3672   fprintf(fp_cpp, "};\n\n");
3673 
3674   // Construct Native Save-Policy array
3675   fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
3676   fprintf(fp_cpp, "const        char c_reg_save_policy[] = {\n");
3677   _register->reset_RegDefs();
3678   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3679     next        = _register->iter_RegDefs();
3680     char policy = reg_save_policy(rdef->_c_conv);
3681     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3682     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
3683   }
3684   fprintf(fp_cpp, "};\n\n");
3685 
3686   // Construct Register Save Type array
3687   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
3688   fprintf(fp_cpp, "const        int register_save_type[] = {\n");
3689   _register->reset_RegDefs();
3690   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3691     next = _register->iter_RegDefs();
3692     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3693     fprintf(fp_cpp, "  %s%s\n", rdef->_idealtype, comma);
3694   }
3695   fprintf(fp_cpp, "};\n\n");
3696 
3697   // Construct the table for reduceOp
3698   OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
3699   build_map(output_reduce_op);
3700   // Construct the table for leftOp
3701   OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
3702   build_map(output_left_op);
3703   // Construct the table for rightOp
3704   OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
3705   build_map(output_right_op);
3706   // Construct the table of rule names
3707   OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
3708   build_map(output_rule_name);
3709   // Construct the boolean table for subsumed operands
3710   OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
3711   build_map(output_swallowed);
3712   // // // Preserve in case we decide to use this table instead of another
3713   //// Construct the boolean table for instruction chain rules
3714   //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
3715   //build_map(output_inst_chain);
3716 
3717 }
3718 
3719 
3720 //---------------------------buildMachOperGenerator---------------------------
3721 
3722 // Recurse through match tree, building path through corresponding state tree,
3723 // Until we reach the constant we are looking for.
3724 static void path_to_constant(FILE *fp, FormDict &globals,
3725                              MatchNode *mnode, uint idx) {
3726   if ( ! mnode) return;
3727 
3728   unsigned    position = 0;
3729   const char *result   = NULL;
3730   const char *name     = NULL;
3731   const char *optype   = NULL;
3732 
3733   // Base Case: access constant in ideal node linked to current state node
3734   // Each type of constant has its own access function
3735   if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
3736        && mnode->base_operand(position, globals, result, name, optype) ) {
3737     if (         strcmp(optype,"ConI") == 0 ) {
3738       fprintf(fp, "_leaf->get_int()");
3739     } else if ( (strcmp(optype,"ConP") == 0) ) {
3740       fprintf(fp, "_leaf->bottom_type()->is_ptr()");
3741     } else if ( (strcmp(optype,"ConN") == 0) ) {
3742       fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
3743     } else if ( (strcmp(optype,"ConNKlass") == 0) ) {
3744       fprintf(fp, "_leaf->bottom_type()->is_narrowklass()");
3745     } else if ( (strcmp(optype,"ConF") == 0) ) {
3746       fprintf(fp, "_leaf->getf()");
3747     } else if ( (strcmp(optype,"ConD") == 0) ) {
3748       fprintf(fp, "_leaf->getd()");
3749     } else if ( (strcmp(optype,"ConL") == 0) ) {
3750       fprintf(fp, "_leaf->get_long()");
3751     } else if ( (strcmp(optype,"Con")==0) ) {
3752       // !!!!! - Update if adding a machine-independent constant type
3753       fprintf(fp, "_leaf->get_int()");
3754       assert( false, "Unsupported constant type, pointer or indefinite");
3755     } else if ( (strcmp(optype,"Bool") == 0) ) {
3756       fprintf(fp, "_leaf->as_Bool()->_test._test");
3757     } else {
3758       assert( false, "Unsupported constant type");
3759     }
3760     return;
3761   }
3762 
3763   // If constant is in left child, build path and recurse
3764   uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
3765   uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
3766   if ( (mnode->_lChild) && (lConsts > idx) ) {
3767     fprintf(fp, "_kids[0]->");
3768     path_to_constant(fp, globals, mnode->_lChild, idx);
3769     return;
3770   }
3771   // If constant is in right child, build path and recurse
3772   if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
3773     idx = idx - lConsts;
3774     fprintf(fp, "_kids[1]->");
3775     path_to_constant(fp, globals, mnode->_rChild, idx);
3776     return;
3777   }
3778   assert( false, "ShouldNotReachHere()");
3779 }
3780 
3781 // Generate code that is executed when generating a specific Machine Operand
3782 static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
3783                             OperandForm &op) {
3784   const char *opName         = op._ident;
3785   const char *opEnumName     = AD.machOperEnum(opName);
3786   uint        num_consts     = op.num_consts(globalNames);
3787 
3788   // Generate the case statement for this opcode
3789   fprintf(fp, "  case %s:", opEnumName);
3790   fprintf(fp, "\n    return new %sOper(", opName);
3791   // Access parameters for constructor from the stat object
3792   //
3793   // Build access to condition code value
3794   if ( (num_consts > 0) ) {
3795     uint i = 0;
3796     path_to_constant(fp, globalNames, op._matrule, i);
3797     for ( i = 1; i < num_consts; ++i ) {
3798       fprintf(fp, ", ");
3799       path_to_constant(fp, globalNames, op._matrule, i);
3800     }
3801   }
3802   fprintf(fp, " );\n");
3803 }
3804 
3805 
3806 // Build switch to invoke "new" MachNode or MachOper
3807 void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
3808   int idx = 0;
3809 
3810   // Build switch to invoke 'new' for a specific MachOper
3811   fprintf(fp_cpp, "\n");
3812   fprintf(fp_cpp, "\n");
3813   fprintf(fp_cpp,
3814           "//------------------------- MachOper Generator ---------------\n");
3815   fprintf(fp_cpp,
3816           "// A switch statement on the dense-packed user-defined type system\n"
3817           "// that invokes 'new' on the corresponding class constructor.\n");
3818   fprintf(fp_cpp, "\n");
3819   fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
3820   fprintf(fp_cpp, "(int opcode)");
3821   fprintf(fp_cpp, "{\n");
3822   fprintf(fp_cpp, "\n");
3823   fprintf(fp_cpp, "  switch(opcode) {\n");
3824 
3825   // Place all user-defined operands into the mapping
3826   _operands.reset();
3827   int  opIndex = 0;
3828   OperandForm *op;
3829   for( ; (op =  (OperandForm*)_operands.iter()) != NULL; ) {
3830     // Ensure this is a machine-world instruction
3831     if ( op->ideal_only() )  continue;
3832 
3833     genMachOperCase(fp_cpp, _globalNames, *this, *op);
3834   };
3835 
3836   // Do not iterate over operand classes for the  operand generator!!!
3837 
3838   // Place all internal operands into the mapping
3839   _internalOpNames.reset();
3840   const char *iopn;
3841   for( ; (iopn =  _internalOpNames.iter()) != NULL; ) {
3842     const char *opEnumName = machOperEnum(iopn);
3843     // Generate the case statement for this opcode
3844     fprintf(fp_cpp, "  case %s:", opEnumName);
3845     fprintf(fp_cpp, "    return NULL;\n");
3846   };
3847 
3848   // Generate the default case for switch(opcode)
3849   fprintf(fp_cpp, "  \n");
3850   fprintf(fp_cpp, "  default:\n");
3851   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
3852   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
3853   fprintf(fp_cpp, "    break;\n");
3854   fprintf(fp_cpp, "  }\n");
3855 
3856   // Generate the closing for method Matcher::MachOperGenerator
3857   fprintf(fp_cpp, "  return NULL;\n");
3858   fprintf(fp_cpp, "};\n");
3859 }
3860 
3861 
3862 //---------------------------buildMachNode-------------------------------------
3863 // Build a new MachNode, for MachNodeGenerator or cisc-spilling
3864 void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
3865   const char *opType  = NULL;
3866   const char *opClass = inst->_ident;
3867 
3868   // Create the MachNode object
3869   fprintf(fp_cpp, "%s %sNode *node = new %sNode();\n",indent, opClass,opClass);
3870 
3871   if ( (inst->num_post_match_opnds() != 0) ) {
3872     // Instruction that contains operands which are not in match rule.
3873     //
3874     // Check if the first post-match component may be an interesting def
3875     bool           dont_care = false;
3876     ComponentList &comp_list = inst->_components;
3877     Component     *comp      = NULL;
3878     comp_list.reset();
3879     if ( comp_list.match_iter() != NULL )    dont_care = true;
3880 
3881     // Insert operands that are not in match-rule.
3882     // Only insert a DEF if the do_care flag is set
3883     comp_list.reset();
3884     while ( (comp = comp_list.post_match_iter()) ) {
3885       // Check if we don't care about DEFs or KILLs that are not USEs
3886       if ( dont_care && (! comp->isa(Component::USE)) ) {
3887         continue;
3888       }
3889       dont_care = true;
3890       // For each operand not in the match rule, call MachOperGenerator
3891       // with the enum for the opcode that needs to be built.
3892       ComponentList clist = inst->_components;
3893       int         index  = clist.operand_position(comp->_name, comp->_usedef, inst);
3894       const char *opcode = machOperEnum(comp->_type);
3895       fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
3896       fprintf(fp_cpp, "MachOperGenerator(%s));\n", opcode);
3897       }
3898   }
3899   else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
3900     // An instruction that chains from a constant!
3901     // In this case, we need to subsume the constant into the node
3902     // at operand position, oper_input_base().
3903     //
3904     // Fill in the constant
3905     fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
3906             inst->oper_input_base(_globalNames));
3907     // #####
3908     // Check for multiple constants and then fill them in.
3909     // Just like MachOperGenerator
3910     const char *opName = inst->_matrule->_rChild->_opType;
3911     fprintf(fp_cpp, "new %sOper(", opName);
3912     // Grab operand form
3913     OperandForm *op = (_globalNames[opName])->is_operand();
3914     // Look up the number of constants
3915     uint num_consts = op->num_consts(_globalNames);
3916     if ( (num_consts > 0) ) {
3917       uint i = 0;
3918       path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3919       for ( i = 1; i < num_consts; ++i ) {
3920         fprintf(fp_cpp, ", ");
3921         path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3922       }
3923     }
3924     fprintf(fp_cpp, " );\n");
3925     // #####
3926   }
3927 
3928   // Fill in the bottom_type where requested
3929   if (inst->captures_bottom_type(_globalNames)) {
3930     if (strncmp("MachCall", inst->mach_base_class(_globalNames), strlen("MachCall"))) {
3931       fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
3932     }
3933   }
3934   if( inst->is_ideal_if() ) {
3935     fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
3936     fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
3937   }
3938   if (inst->is_ideal_halt()) {
3939     fprintf(fp_cpp, "%s node->_halt_reason = _leaf->as_Halt()->_halt_reason;\n", indent);
3940   }
3941   if (inst->is_ideal_jump()) {
3942     fprintf(fp_cpp, "%s node->_probs = _leaf->as_Jump()->_probs;\n", indent);
3943   }
3944   if( inst->is_ideal_fastlock() ) {
3945     fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
3946     fprintf(fp_cpp, "%s node->_rtm_counters = _leaf->as_FastLock()->rtm_counters();\n", indent);
3947     fprintf(fp_cpp, "%s node->_stack_rtm_counters = _leaf->as_FastLock()->stack_rtm_counters();\n", indent);
3948   }
3949 
3950 }
3951 
3952 //---------------------------declare_cisc_version------------------------------
3953 // Build CISC version of this instruction
3954 void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
3955   if( AD.can_cisc_spill() ) {
3956     InstructForm *inst_cisc = cisc_spill_alternate();
3957     if (inst_cisc != NULL) {
3958       fprintf(fp_hpp, "  virtual int            cisc_operand() const { return %d; }\n", cisc_spill_operand());
3959       fprintf(fp_hpp, "  virtual MachNode      *cisc_version(int offset);\n");
3960       fprintf(fp_hpp, "  virtual void           use_cisc_RegMask();\n");
3961       fprintf(fp_hpp, "  virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
3962     }
3963   }
3964 }
3965 
3966 //---------------------------define_cisc_version-------------------------------
3967 // Build CISC version of this instruction
3968 bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
3969   InstructForm *inst_cisc = this->cisc_spill_alternate();
3970   if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
3971     const char   *name      = inst_cisc->_ident;
3972     assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
3973     OperandForm *cisc_oper = AD.cisc_spill_operand();
3974     assert( cisc_oper != NULL, "insanity check");
3975     const char *cisc_oper_name  = cisc_oper->_ident;
3976     assert( cisc_oper_name != NULL, "insanity check");
3977     //
3978     // Set the correct reg_mask_or_stack for the cisc operand
3979     fprintf(fp_cpp, "\n");
3980     fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
3981     // Lookup the correct reg_mask_or_stack
3982     const char *reg_mask_name = cisc_reg_mask_name();
3983     fprintf(fp_cpp, "  _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
3984     fprintf(fp_cpp, "}\n");
3985     //
3986     // Construct CISC version of this instruction
3987     fprintf(fp_cpp, "\n");
3988     fprintf(fp_cpp, "// Build CISC version of this instruction\n");
3989     fprintf(fp_cpp, "MachNode *%sNode::cisc_version(int offset) {\n", this->_ident);
3990     // Create the MachNode object
3991     fprintf(fp_cpp, "  %sNode *node = new %sNode();\n", name, name);
3992     // Fill in the bottom_type where requested
3993     if ( this->captures_bottom_type(AD.globalNames()) ) {
3994       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
3995     }
3996 
3997     uint cur_num_opnds = num_opnds();
3998     if (cur_num_opnds > 1 && cur_num_opnds != num_unique_opnds()) {
3999       fprintf(fp_cpp,"  node->_num_opnds = %d;\n", num_unique_opnds());
4000     }
4001 
4002     fprintf(fp_cpp, "\n");
4003     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
4004     fprintf(fp_cpp, "  fill_new_machnode(node);\n");
4005     // Construct operand to access [stack_pointer + offset]
4006     fprintf(fp_cpp, "  // Construct operand to access [stack_pointer + offset]\n");
4007     fprintf(fp_cpp, "  node->set_opnd_array(cisc_operand(), new %sOper(offset));\n", cisc_oper_name);
4008     fprintf(fp_cpp, "\n");
4009 
4010     // Return result and exit scope
4011     fprintf(fp_cpp, "  return node;\n");
4012     fprintf(fp_cpp, "}\n");
4013     fprintf(fp_cpp, "\n");
4014     return true;
4015   }
4016   return false;
4017 }
4018 
4019 //---------------------------declare_short_branch_methods----------------------
4020 // Build prototypes for short branch methods
4021 void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
4022   if (has_short_branch_form()) {
4023     fprintf(fp_hpp, "  virtual MachNode      *short_branch_version();\n");
4024   }
4025 }
4026 
4027 //---------------------------define_short_branch_methods-----------------------
4028 // Build definitions for short branch methods
4029 bool InstructForm::define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp) {
4030   if (has_short_branch_form()) {
4031     InstructForm *short_branch = short_branch_form();
4032     const char   *name         = short_branch->_ident;
4033 
4034     // Construct short_branch_version() method.
4035     fprintf(fp_cpp, "// Build short branch version of this instruction\n");
4036     fprintf(fp_cpp, "MachNode *%sNode::short_branch_version() {\n", this->_ident);
4037     // Create the MachNode object
4038     fprintf(fp_cpp, "  %sNode *node = new %sNode();\n", name, name);
4039     if( is_ideal_if() ) {
4040       fprintf(fp_cpp, "  node->_prob = _prob;\n");
4041       fprintf(fp_cpp, "  node->_fcnt = _fcnt;\n");
4042     }
4043     // Fill in the bottom_type where requested
4044     if ( this->captures_bottom_type(AD.globalNames()) ) {
4045       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
4046     }
4047 
4048     fprintf(fp_cpp, "\n");
4049     // Short branch version must use same node index for access
4050     // through allocator's tables
4051     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
4052     fprintf(fp_cpp, "  fill_new_machnode(node);\n");
4053 
4054     // Return result and exit scope
4055     fprintf(fp_cpp, "  return node;\n");
4056     fprintf(fp_cpp, "}\n");
4057     fprintf(fp_cpp,"\n");
4058     return true;
4059   }
4060   return false;
4061 }
4062 
4063 
4064 //---------------------------buildMachNodeGenerator----------------------------
4065 // Build switch to invoke appropriate "new" MachNode for an opcode
4066 void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
4067 
4068   // Build switch to invoke 'new' for a specific MachNode
4069   fprintf(fp_cpp, "\n");
4070   fprintf(fp_cpp, "\n");
4071   fprintf(fp_cpp,
4072           "//------------------------- MachNode Generator ---------------\n");
4073   fprintf(fp_cpp,
4074           "// A switch statement on the dense-packed user-defined type system\n"
4075           "// that invokes 'new' on the corresponding class constructor.\n");
4076   fprintf(fp_cpp, "\n");
4077   fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
4078   fprintf(fp_cpp, "(int opcode)");
4079   fprintf(fp_cpp, "{\n");
4080   fprintf(fp_cpp, "  switch(opcode) {\n");
4081 
4082   // Provide constructor for all user-defined instructions
4083   _instructions.reset();
4084   int  opIndex = operandFormCount();
4085   InstructForm *inst;
4086   for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4087     // Ensure that matrule is defined.
4088     if ( inst->_matrule == NULL ) continue;
4089 
4090     int         opcode  = opIndex++;
4091     const char *opClass = inst->_ident;
4092     char       *opType  = NULL;
4093 
4094     // Generate the case statement for this instruction
4095     fprintf(fp_cpp, "  case %s_rule:", opClass);
4096 
4097     // Start local scope
4098     fprintf(fp_cpp, " {\n");
4099     // Generate code to construct the new MachNode
4100     buildMachNode(fp_cpp, inst, "     ");
4101     // Return result and exit scope
4102     fprintf(fp_cpp, "      return node;\n");
4103     fprintf(fp_cpp, "    }\n");
4104   }
4105 
4106   // Generate the default case for switch(opcode)
4107   fprintf(fp_cpp, "  \n");
4108   fprintf(fp_cpp, "  default:\n");
4109   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
4110   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
4111   fprintf(fp_cpp, "    break;\n");
4112   fprintf(fp_cpp, "  };\n");
4113 
4114   // Generate the closing for method Matcher::MachNodeGenerator
4115   fprintf(fp_cpp, "  return NULL;\n");
4116   fprintf(fp_cpp, "}\n");
4117 }
4118 
4119 
4120 //---------------------------buildInstructMatchCheck--------------------------
4121 // Output the method to Matcher which checks whether or not a specific
4122 // instruction has a matching rule for the host architecture.
4123 void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
4124   fprintf(fp_cpp, "\n\n");
4125   fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
4126   fprintf(fp_cpp, "  assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
4127   fprintf(fp_cpp, "  return _hasMatchRule[opcode];\n");
4128   fprintf(fp_cpp, "}\n\n");
4129 
4130   fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
4131   int i;
4132   for (i = 0; i < _last_opcode - 1; i++) {
4133     fprintf(fp_cpp, "    %-5s,  // %s\n",
4134             _has_match_rule[i] ? "true" : "false",
4135             NodeClassNames[i]);
4136   }
4137   fprintf(fp_cpp, "    %-5s   // %s\n",
4138           _has_match_rule[i] ? "true" : "false",
4139           NodeClassNames[i]);
4140   fprintf(fp_cpp, "};\n");
4141 }
4142 
4143 //---------------------------buildFrameMethods---------------------------------
4144 // Output the methods to Matcher which specify frame behavior
4145 void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
4146   fprintf(fp_cpp,"\n\n");
4147   // Stack Direction
4148   fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n",
4149           _frame->_direction ? "true" : "false");
4150   // Sync Stack Slots
4151   fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
4152           _frame->_sync_stack_slots);
4153   // Java Stack Alignment
4154   fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
4155           _frame->_alignment);
4156   // Java Return Address Location
4157   fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
4158   if (_frame->_return_addr_loc) {
4159     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4160             _frame->_return_addr);
4161   }
4162   else {
4163     fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
4164             _frame->_return_addr);
4165   }
4166   // Java Stack Slot Preservation
4167   fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() ");
4168   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots);
4169   // Top Of Stack Slot Preservation, for both Java and C
4170   fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() ");
4171   fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n");
4172   // varargs C out slots killed
4173   fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
4174   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
4175   // Java Argument Position
4176   fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n");
4177   fprintf(fp_cpp,"%s\n", _frame->_calling_convention);
4178   fprintf(fp_cpp,"}\n\n");
4179   // Native Argument Position
4180   fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n");
4181   fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention);
4182   fprintf(fp_cpp,"}\n\n");
4183   // Java Return Value Location
4184   fprintf(fp_cpp,"OptoRegPair Matcher::return_value(uint ideal_reg, bool is_outgoing) {\n");
4185   fprintf(fp_cpp,"%s\n", _frame->_return_value);
4186   fprintf(fp_cpp,"}\n\n");
4187   // Native Return Value Location
4188   fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(uint ideal_reg, bool is_outgoing) {\n");
4189   fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
4190   fprintf(fp_cpp,"}\n\n");
4191 
4192   // Inline Cache Register, mask definition, and encoding
4193   fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
4194   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4195           _frame->_inline_cache_reg);
4196   fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
4197   fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
4198 
4199   // Interpreter's Method Oop Register, mask definition, and encoding
4200   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {");
4201   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4202           _frame->_interpreter_method_oop_reg);
4203   fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {");
4204   fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n");
4205 
4206   // Interpreter's Frame Pointer Register, mask definition, and encoding
4207   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
4208   if (_frame->_interpreter_frame_pointer_reg == NULL)
4209     fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
4210   else
4211     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4212             _frame->_interpreter_frame_pointer_reg);
4213 
4214   // Frame Pointer definition
4215   /* CNC - I can not contemplate having a different frame pointer between
4216      Java and native code; makes my head hurt to think about it.
4217   fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
4218   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4219           _frame->_frame_pointer);
4220   */
4221   // (Native) Frame Pointer definition
4222   fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
4223   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4224           _frame->_frame_pointer);
4225 
4226   // Number of callee-save + always-save registers for calling convention
4227   fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
4228   fprintf(fp_cpp, "int  Matcher::number_of_saved_registers() {\n");
4229   RegDef *rdef;
4230   int nof_saved_registers = 0;
4231   _register->reset_RegDefs();
4232   while( (rdef = _register->iter_RegDefs()) != NULL ) {
4233     if( !strcmp(rdef->_callconv, "SOE") ||  !strcmp(rdef->_callconv, "AS") )
4234       ++nof_saved_registers;
4235   }
4236   fprintf(fp_cpp, "  return %d;\n", nof_saved_registers);
4237   fprintf(fp_cpp, "};\n\n");
4238 }
4239 
4240 
4241 
4242 
4243 static int PrintAdlcCisc = 0;
4244 //---------------------------identify_cisc_spilling----------------------------
4245 // Get info for the CISC_oracle and MachNode::cisc_version()
4246 void ArchDesc::identify_cisc_spill_instructions() {
4247 
4248   if (_frame == NULL)
4249     return;
4250 
4251   // Find the user-defined operand for cisc-spilling
4252   if( _frame->_cisc_spilling_operand_name != NULL ) {
4253     const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
4254     OperandForm *oper = form ? form->is_operand() : NULL;
4255     // Verify the user's suggestion
4256     if( oper != NULL ) {
4257       // Ensure that match field is defined.
4258       if ( oper->_matrule != NULL )  {
4259         MatchRule &mrule = *oper->_matrule;
4260         if( strcmp(mrule._opType,"AddP") == 0 ) {
4261           MatchNode *left = mrule._lChild;
4262           MatchNode *right= mrule._rChild;
4263           if( left != NULL && right != NULL ) {
4264             const Form *left_op  = _globalNames[left->_opType]->is_operand();
4265             const Form *right_op = _globalNames[right->_opType]->is_operand();
4266             if(  (left_op != NULL && right_op != NULL)
4267               && (left_op->interface_type(_globalNames) == Form::register_interface)
4268               && (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
4269               // Successfully verified operand
4270               set_cisc_spill_operand( oper );
4271               if( _cisc_spill_debug ) {
4272                 fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
4273              }
4274             }
4275           }
4276         }
4277       }
4278     }
4279   }
4280 
4281   if( cisc_spill_operand() != NULL ) {
4282     // N^2 comparison of instructions looking for a cisc-spilling version
4283     _instructions.reset();
4284     InstructForm *instr;
4285     for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
4286       // Ensure that match field is defined.
4287       if ( instr->_matrule == NULL )  continue;
4288 
4289       MatchRule &mrule = *instr->_matrule;
4290       Predicate *pred  =  instr->build_predicate();
4291 
4292       // Grab the machine type of the operand
4293       const char *rootOp = instr->_ident;
4294       mrule._machType    = rootOp;
4295 
4296       // Find result type for match
4297       const char *result = instr->reduce_result();
4298 
4299       if( PrintAdlcCisc ) fprintf(stderr, "  new instruction %s \n", instr->_ident ? instr->_ident : " ");
4300       bool  found_cisc_alternate = false;
4301       _instructions.reset2();
4302       InstructForm *instr2;
4303       for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
4304         // Ensure that match field is defined.
4305         if( PrintAdlcCisc ) fprintf(stderr, "  instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
4306         if ( instr2->_matrule != NULL
4307             && (instr != instr2 )                // Skip self
4308             && (instr2->reduce_result() != NULL) // want same result
4309             && (strcmp(result, instr2->reduce_result()) == 0)) {
4310           MatchRule &mrule2 = *instr2->_matrule;
4311           Predicate *pred2  =  instr2->build_predicate();
4312           found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
4313         }
4314       }
4315     }
4316   }
4317 }
4318 
4319 //---------------------------build_cisc_spilling-------------------------------
4320 // Get info for the CISC_oracle and MachNode::cisc_version()
4321 void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
4322   // Output the table for cisc spilling
4323   fprintf(fp_cpp, "//  The following instructions can cisc-spill\n");
4324   _instructions.reset();
4325   InstructForm *inst = NULL;
4326   for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4327     // Ensure this is a machine-world instruction
4328     if ( inst->ideal_only() )  continue;
4329     const char *inst_name = inst->_ident;
4330     int   operand   = inst->cisc_spill_operand();
4331     if( operand != AdlcVMDeps::Not_cisc_spillable ) {
4332       InstructForm *inst2 = inst->cisc_spill_alternate();
4333       fprintf(fp_cpp, "//  %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
4334     }
4335   }
4336   fprintf(fp_cpp, "\n\n");
4337 }
4338 
4339 //---------------------------identify_short_branches----------------------------
4340 // Get info for our short branch replacement oracle.
4341 void ArchDesc::identify_short_branches() {
4342   // Walk over all instructions, checking to see if they match a short
4343   // branching alternate.
4344   _instructions.reset();
4345   InstructForm *instr;
4346   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4347     // The instruction must have a match rule.
4348     if (instr->_matrule != NULL &&
4349         instr->is_short_branch()) {
4350 
4351       _instructions.reset2();
4352       InstructForm *instr2;
4353       while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
4354         instr2->check_branch_variant(*this, instr);
4355       }
4356     }
4357   }
4358 }
4359 
4360 
4361 //---------------------------identify_unique_operands---------------------------
4362 // Identify unique operands.
4363 void ArchDesc::identify_unique_operands() {
4364   // Walk over all instructions.
4365   _instructions.reset();
4366   InstructForm *instr;
4367   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4368     // Ensure this is a machine-world instruction
4369     if (!instr->ideal_only()) {
4370       instr->set_unique_opnds();
4371     }
4372   }
4373 }