/* * Copyright (c) 2015, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "code/relocInfo.hpp" #include "compiler/compilerDefinitions.hpp" #include "oops/metadata.hpp" #include "runtime/os.hpp" #include "interpreter/invocationCounter.hpp" #include "runtime/arguments.hpp" #include "runtime/flags/jvmFlag.hpp" #include "runtime/flags/jvmFlagConstraintsCompiler.hpp" #include "runtime/globals.hpp" #include "runtime/globals_extension.hpp" #include "utilities/powerOfTwo.hpp" JVMFlag::Error AliasLevelConstraintFunc(intx value, bool verbose) { if ((value <= 1) && (Arguments::mode() == Arguments::_comp || Arguments::mode() == Arguments::_mixed)) { JVMFlag::printError(verbose, "AliasLevel (" INTX_FORMAT ") is not " "compatible with -Xcomp or -Xmixed\n", value); return JVMFlag::VIOLATES_CONSTRAINT; } else { return JVMFlag::SUCCESS; } } /** * Validate the minimum number of compiler threads needed to run the * JVM. The following configurations are possible. * * 1) The JVM is build using an interpreter only. As a result, the minimum number of * compiler threads is 0. * 2) The JVM is build using the compiler(s) and tiered compilation is disabled. As * a result, either C1 or C2 is used, so the minimum number of compiler threads is 1. * 3) The JVM is build using the compiler(s) and tiered compilation is enabled. However, * the option "TieredStopAtLevel < CompLevel_full_optimization". As a result, only * C1 can be used, so the minimum number of compiler threads is 1. * 4) The JVM is build using the compilers and tiered compilation is enabled. The option * 'TieredStopAtLevel = CompLevel_full_optimization' (the default value). As a result, * the minimum number of compiler threads is 2. * 5) Non-tiered emulation mode is on. CompilationModeFlag::disable_intermediate() == true. * The minimum number of threads is 2. But if CompilationModeFlag::quick_internal() == false, then it's 1. */ JVMFlag::Error CICompilerCountConstraintFunc(intx value, bool verbose) { int min_number_of_compiler_threads = 0; #if !defined(COMPILER1) && !defined(COMPILER2) && !INCLUDE_JVMCI // case 1 #elif defined(TIERED) if (TieredCompilation) { if (TieredStopAtLevel < CompLevel_full_optimization || CompilationModeFlag::quick_only()) { min_number_of_compiler_threads = 1; // case 3 } else if (CompilationModeFlag::disable_intermediate()) { // case 5 if (CompilationModeFlag::quick_internal()) { min_number_of_compiler_threads = 2; } else { min_number_of_compiler_threads = 1; } } else { min_number_of_compiler_threads = 2; // case 4 (tiered) } } else { min_number_of_compiler_threads = 1; // case 2 } #else min_number_of_compiler_threads = 1; // case 2 #endif // The default CICompilerCount's value is CI_COMPILER_COUNT. // With a client VM, -XX:+TieredCompilation causes TieredCompilation // to be true here (the option is validated later) and // min_number_of_compiler_threads to exceed CI_COMPILER_COUNT. min_number_of_compiler_threads = MIN2(min_number_of_compiler_threads, CI_COMPILER_COUNT); if (value < (intx)min_number_of_compiler_threads) { JVMFlag::printError(verbose, "CICompilerCount (" INTX_FORMAT ") must be " "at least %d \n", value, min_number_of_compiler_threads); return JVMFlag::VIOLATES_CONSTRAINT; } else { return JVMFlag::SUCCESS; } } JVMFlag::Error AllocatePrefetchDistanceConstraintFunc(intx value, bool verbose) { if (value < 0 || value > 512) { JVMFlag::printError(verbose, "AllocatePrefetchDistance (" INTX_FORMAT ") must be " "between 0 and %d\n", AllocatePrefetchDistance, 512); return JVMFlag::VIOLATES_CONSTRAINT; } return JVMFlag::SUCCESS; } JVMFlag::Error AllocatePrefetchStepSizeConstraintFunc(intx value, bool verbose) { if (AllocatePrefetchStyle == 3) { if (value % wordSize != 0) { JVMFlag::printError(verbose, "AllocatePrefetchStepSize (" INTX_FORMAT ") must be multiple of %d\n", value, wordSize); return JVMFlag::VIOLATES_CONSTRAINT; } } return JVMFlag::SUCCESS; } JVMFlag::Error AllocatePrefetchInstrConstraintFunc(intx value, bool verbose) { intx max_value = max_intx; #if defined(X86) max_value = 3; #endif if (value < 0 || value > max_value) { JVMFlag::printError(verbose, "AllocatePrefetchInstr (" INTX_FORMAT ") must be " "between 0 and " INTX_FORMAT "\n", value, max_value); return JVMFlag::VIOLATES_CONSTRAINT; } return JVMFlag::SUCCESS; } JVMFlag::Error CompileThresholdConstraintFunc(intx value, bool verbose) { if (value < 0 || value > INT_MAX >> InvocationCounter::count_shift) { JVMFlag::printError(verbose, "CompileThreshold (" INTX_FORMAT ") " "must be between 0 and %d\n", value, INT_MAX >> InvocationCounter::count_shift); return JVMFlag::VIOLATES_CONSTRAINT; } return JVMFlag::SUCCESS; } JVMFlag::Error OnStackReplacePercentageConstraintFunc(intx value, bool verbose) { int64_t max_percentage_limit = INT_MAX; if (!ProfileInterpreter) { max_percentage_limit = (max_percentage_limit>>InvocationCounter::count_shift); } max_percentage_limit = CompileThreshold == 0 ? max_percentage_limit*100 : max_percentage_limit*100/CompileThreshold; if (ProfileInterpreter) { if (value < InterpreterProfilePercentage) { JVMFlag::printError(verbose, "OnStackReplacePercentage (" INTX_FORMAT ") must be " "larger than InterpreterProfilePercentage (" INTX_FORMAT ")\n", value, InterpreterProfilePercentage); return JVMFlag::VIOLATES_CONSTRAINT; } max_percentage_limit += InterpreterProfilePercentage; if (value > max_percentage_limit) { JVMFlag::printError(verbose, "OnStackReplacePercentage (" INTX_FORMAT ") must be between 0 and " INT64_FORMAT "\n", value, max_percentage_limit); return JVMFlag::VIOLATES_CONSTRAINT; } } else { if (value < 0) { JVMFlag::printError(verbose, "OnStackReplacePercentage (" INTX_FORMAT ") must be " "non-negative\n", value); return JVMFlag::VIOLATES_CONSTRAINT; } if (value > max_percentage_limit) { JVMFlag::printError(verbose, "OnStackReplacePercentage (" INTX_FORMAT ") must be between 0 and " INT64_FORMAT "\n", value, max_percentage_limit); return JVMFlag::VIOLATES_CONSTRAINT; } } return JVMFlag::SUCCESS; } JVMFlag::Error CodeCacheSegmentSizeConstraintFunc(uintx value, bool verbose) { if (CodeCacheSegmentSize < (uintx)CodeEntryAlignment) { JVMFlag::printError(verbose, "CodeCacheSegmentSize (" UINTX_FORMAT ") must be " "larger than or equal to CodeEntryAlignment (" INTX_FORMAT ") " "to align entry points\n", CodeCacheSegmentSize, CodeEntryAlignment); return JVMFlag::VIOLATES_CONSTRAINT; } if (CodeCacheSegmentSize < sizeof(jdouble)) { JVMFlag::printError(verbose, "CodeCacheSegmentSize (" UINTX_FORMAT ") must be " "at least " SIZE_FORMAT " to align constants\n", CodeCacheSegmentSize, sizeof(jdouble)); return JVMFlag::VIOLATES_CONSTRAINT; } #ifdef COMPILER2 if (CodeCacheSegmentSize < (uintx)OptoLoopAlignment) { JVMFlag::printError(verbose, "CodeCacheSegmentSize (" UINTX_FORMAT ") must be " "larger than or equal to OptoLoopAlignment (" INTX_FORMAT ") " "to align inner loops\n", CodeCacheSegmentSize, OptoLoopAlignment); return JVMFlag::VIOLATES_CONSTRAINT; } #endif return JVMFlag::SUCCESS; } JVMFlag::Error CompilerThreadPriorityConstraintFunc(intx value, bool verbose) { return JVMFlag::SUCCESS; } JVMFlag::Error CodeEntryAlignmentConstraintFunc(intx value, bool verbose) { if (!is_power_of_2(value)) { JVMFlag::printError(verbose, "CodeEntryAlignment (" INTX_FORMAT ") must be " "a power of two\n", CodeEntryAlignment); return JVMFlag::VIOLATES_CONSTRAINT; } if (CodeEntryAlignment < 16) { JVMFlag::printError(verbose, "CodeEntryAlignment (" INTX_FORMAT ") must be " "greater than or equal to %d\n", CodeEntryAlignment, 16); return JVMFlag::VIOLATES_CONSTRAINT; } return JVMFlag::SUCCESS; } JVMFlag::Error OptoLoopAlignmentConstraintFunc(intx value, bool verbose) { if (!is_power_of_2(value)) { JVMFlag::printError(verbose, "OptoLoopAlignment (" INTX_FORMAT ") " "must be a power of two\n", value); return JVMFlag::VIOLATES_CONSTRAINT; } // Relevant on ppc, s390. Will be optimized where // addr_unit() == 1. if (OptoLoopAlignment % relocInfo::addr_unit() != 0) { JVMFlag::printError(verbose, "OptoLoopAlignment (" INTX_FORMAT ") must be " "multiple of NOP size (%d)\n", value, relocInfo::addr_unit()); return JVMFlag::VIOLATES_CONSTRAINT; } return JVMFlag::SUCCESS; } JVMFlag::Error ArraycopyDstPrefetchDistanceConstraintFunc(uintx value, bool verbose) { if (value >= 4032) { JVMFlag::printError(verbose, "ArraycopyDstPrefetchDistance (" UINTX_FORMAT ") must be" "between 0 and 4031\n", value); return JVMFlag::VIOLATES_CONSTRAINT; } return JVMFlag::SUCCESS; } JVMFlag::Error ArraycopySrcPrefetchDistanceConstraintFunc(uintx value, bool verbose) { if (value >= 4032) { JVMFlag::printError(verbose, "ArraycopySrcPrefetchDistance (" UINTX_FORMAT ") must be" "between 0 and 4031\n", value); return JVMFlag::VIOLATES_CONSTRAINT; } return JVMFlag::SUCCESS; } JVMFlag::Error TypeProfileLevelConstraintFunc(uintx value, bool verbose) { for (int i = 0; i < 3; i++) { if (value % 10 > 2) { JVMFlag::printError(verbose, "Invalid value (" UINTX_FORMAT ") " "in TypeProfileLevel at position %d\n", value, i); return JVMFlag::VIOLATES_CONSTRAINT; } value = value / 10; } return JVMFlag::SUCCESS; } JVMFlag::Error InitArrayShortSizeConstraintFunc(intx value, bool verbose) { if (value % BytesPerLong != 0) { return JVMFlag::VIOLATES_CONSTRAINT; } else { return JVMFlag::SUCCESS; } } #ifdef COMPILER2 JVMFlag::Error InteriorEntryAlignmentConstraintFunc(intx value, bool verbose) { if (InteriorEntryAlignment > CodeEntryAlignment) { JVMFlag::printError(verbose, "InteriorEntryAlignment (" INTX_FORMAT ") must be " "less than or equal to CodeEntryAlignment (" INTX_FORMAT ")\n", InteriorEntryAlignment, CodeEntryAlignment); return JVMFlag::VIOLATES_CONSTRAINT; } if (!is_power_of_2(value)) { JVMFlag::printError(verbose, "InteriorEntryAlignment (" INTX_FORMAT ") must be " "a power of two\n", InteriorEntryAlignment); return JVMFlag::VIOLATES_CONSTRAINT; } int minimum_alignment = 16; #if defined(X86) && !defined(AMD64) minimum_alignment = 4; #elif defined(S390) minimum_alignment = 2; #endif if (InteriorEntryAlignment < minimum_alignment) { JVMFlag::printError(verbose, "InteriorEntryAlignment (" INTX_FORMAT ") must be " "greater than or equal to %d\n", InteriorEntryAlignment, minimum_alignment); return JVMFlag::VIOLATES_CONSTRAINT; } return JVMFlag::SUCCESS; } JVMFlag::Error NodeLimitFudgeFactorConstraintFunc(intx value, bool verbose) { if (value < MaxNodeLimit * 2 / 100 || value > MaxNodeLimit * 40 / 100) { JVMFlag::printError(verbose, "NodeLimitFudgeFactor must be between 2%% and 40%% " "of MaxNodeLimit (" INTX_FORMAT ")\n", MaxNodeLimit); return JVMFlag::VIOLATES_CONSTRAINT; } return JVMFlag::SUCCESS; } #endif // COMPILER2 JVMFlag::Error RTMTotalCountIncrRateConstraintFunc(int value, bool verbose) { #if INCLUDE_RTM_OPT if (UseRTMLocking && !is_power_of_2(RTMTotalCountIncrRate)) { JVMFlag::printError(verbose, "RTMTotalCountIncrRate (%d) must be " "a power of 2, resetting it to 64\n", RTMTotalCountIncrRate); FLAG_SET_DEFAULT(RTMTotalCountIncrRate, 64); } #endif return JVMFlag::SUCCESS; }