1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "interp_masm_sparc.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterRuntime.hpp"
  30 #include "logging/log.hpp"
  31 #include "oops/arrayOop.hpp"
  32 #include "oops/markWord.hpp"
  33 #include "oops/methodData.hpp"
  34 #include "oops/method.hpp"
  35 #include "oops/methodCounters.hpp"
  36 #include "prims/jvmtiExport.hpp"
  37 #include "prims/jvmtiThreadState.hpp"
  38 #include "runtime/basicLock.hpp"
  39 #include "runtime/biasedLocking.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/safepointMechanism.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/thread.inline.hpp"
  44 #include "utilities/align.hpp"
  45 #include "utilities/powerOfTwo.hpp"
  46 
  47 // Implementation of InterpreterMacroAssembler
  48 
  49 // This file specializes the assember with interpreter-specific macros
  50 
  51 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
  52 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
  53 
  54 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  55   assert(entry, "Entry must have been generated by now");
  56   AddressLiteral al(entry);
  57   jump_to(al, G3_scratch);
  58   delayed()->nop();
  59 }
  60 
  61 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
  62   // Note: this algorithm is also used by C1's OSR entry sequence.
  63   // Any changes should also be applied to CodeEmitter::emit_osr_entry().
  64   assert_different_registers(args_size, locals_size);
  65   // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
  66   subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
  67   // Use br/mov combination because it works on both V8 and V9 and is
  68   // faster.
  69   Label skip_move;
  70   br(Assembler::negative, true, Assembler::pt, skip_move);
  71   delayed()->mov(G0, delta);
  72   bind(skip_move);
  73   align_up(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
  74   sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
  75 }
  76 
  77 // Dispatch code executed in the prolog of a bytecode which does not do it's
  78 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
  79 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
  80   assert_not_delayed();
  81   ldub( Lbcp, bcp_incr, Lbyte_code);                    // load next bytecode
  82   // dispatch table to use
  83   AddressLiteral tbl(Interpreter::dispatch_table(state));
  84   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
  85   set(tbl, G3_scratch);                                 // compute addr of table
  86   ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
  87 }
  88 
  89 
  90 // Dispatch code executed in the epilog of a bytecode which does not do it's
  91 // own dispatch. The dispatch address in IdispatchAddress is used for the
  92 // dispatch.
  93 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
  94   assert_not_delayed();
  95   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  96   jmp( IdispatchAddress, 0 );
  97   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
  98   else                delayed()->nop();
  99 }
 100 
 101 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr, bool generate_poll) {
 102   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
 103   assert_not_delayed();
 104   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
 105   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, true, generate_poll);
 106 }
 107 
 108 
 109 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
 110   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
 111   assert_not_delayed();
 112   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
 113   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
 114 }
 115 
 116 
 117 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 118   // load current bytecode
 119   assert_not_delayed();
 120   ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
 121   dispatch_base(state, table);
 122 }
 123 
 124 
 125 void InterpreterMacroAssembler::call_VM_leaf_base(
 126   Register java_thread,
 127   address  entry_point,
 128   int      number_of_arguments
 129 ) {
 130   if (!java_thread->is_valid())
 131     java_thread = L7_thread_cache;
 132   // super call
 133   MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
 134 }
 135 
 136 
 137 void InterpreterMacroAssembler::call_VM_base(
 138   Register        oop_result,
 139   Register        java_thread,
 140   Register        last_java_sp,
 141   address         entry_point,
 142   int             number_of_arguments,
 143   bool            check_exception
 144 ) {
 145   if (!java_thread->is_valid())
 146     java_thread = L7_thread_cache;
 147   // See class ThreadInVMfromInterpreter, which assumes that the interpreter
 148   // takes responsibility for setting its own thread-state on call-out.
 149   // However, ThreadInVMfromInterpreter resets the state to "in_Java".
 150 
 151   //save_bcp();                                  // save bcp
 152   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
 153   //restore_bcp();                               // restore bcp
 154   //restore_locals();                            // restore locals pointer
 155 }
 156 
 157 
 158 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
 159   if (JvmtiExport::can_pop_frame()) {
 160     Label L;
 161 
 162     // Check the "pending popframe condition" flag in the current thread
 163     ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
 164 
 165     // Initiate popframe handling only if it is not already being processed.  If the flag
 166     // has the popframe_processing bit set, it means that this code is called *during* popframe
 167     // handling - we don't want to reenter.
 168     btst(JavaThread::popframe_pending_bit, scratch_reg);
 169     br(zero, false, pt, L);
 170     delayed()->nop();
 171     btst(JavaThread::popframe_processing_bit, scratch_reg);
 172     br(notZero, false, pt, L);
 173     delayed()->nop();
 174 
 175     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 176     // address of the same-named entrypoint in the generated interpreter code.
 177     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 178 
 179     // Jump to Interpreter::_remove_activation_preserving_args_entry
 180     jmpl(O0, G0, G0);
 181     delayed()->nop();
 182     bind(L);
 183   }
 184 }
 185 
 186 
 187 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 188   Register thr_state = G4_scratch;
 189   ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
 190   const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
 191   const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
 192   const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
 193   switch (state) {
 194   case ltos: ld_long(val_addr, Otos_l);                   break;
 195   case atos: ld_ptr(oop_addr, Otos_l);
 196              st_ptr(G0, oop_addr);                        break;
 197   case btos:                                           // fall through
 198   case ztos:                                           // fall through
 199   case ctos:                                           // fall through
 200   case stos:                                           // fall through
 201   case itos: ld(val_addr, Otos_l1);                       break;
 202   case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
 203   case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
 204   case vtos: /* nothing to do */                          break;
 205   default  : ShouldNotReachHere();
 206   }
 207   // Clean up tos value in the jvmti thread state
 208   or3(G0, ilgl, G3_scratch);
 209   stw(G3_scratch, tos_addr);
 210   st_long(G0, val_addr);
 211   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 212 }
 213 
 214 
 215 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
 216   if (JvmtiExport::can_force_early_return()) {
 217     Label L;
 218     Register thr_state = G3_scratch;
 219     ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
 220     br_null_short(thr_state, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
 221 
 222     // Initiate earlyret handling only if it is not already being processed.
 223     // If the flag has the earlyret_processing bit set, it means that this code
 224     // is called *during* earlyret handling - we don't want to reenter.
 225     ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
 226     cmp_and_br_short(G4_scratch, JvmtiThreadState::earlyret_pending, Assembler::notEqual, pt, L);
 227 
 228     // Call Interpreter::remove_activation_early_entry() to get the address of the
 229     // same-named entrypoint in the generated interpreter code
 230     ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
 231     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
 232 
 233     // Jump to Interpreter::_remove_activation_early_entry
 234     jmpl(O0, G0, G0);
 235     delayed()->nop();
 236     bind(L);
 237   }
 238 }
 239 
 240 
 241 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
 242   mov(arg_1, O0);
 243   mov(arg_2, O1);
 244   MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
 245 }
 246 
 247 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
 248   assert_not_delayed();
 249   dispatch_Lbyte_code(state, table);
 250 }
 251 
 252 
 253 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
 254   dispatch_base(state, Interpreter::normal_table(state));
 255 }
 256 
 257 
 258 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 259   dispatch_base(state, Interpreter::dispatch_table(state));
 260 }
 261 
 262 
 263 // common code to dispatch and dispatch_only
 264 // dispatch value in Lbyte_code and increment Lbcp
 265 
 266 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify, bool generate_poll) {
 267   // %%%%% maybe implement +VerifyActivationFrameSize here
 268   //verify_thread(); //too slow; we will just verify on method entry & exit
 269   if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 270   // dispatch table to use
 271   AddressLiteral tbl(table);
 272   Label dispatch;
 273 
 274   if (generate_poll) {
 275     AddressLiteral sfpt_tbl(Interpreter::safept_table(state));
 276     Label no_safepoint;
 277 
 278     if (tbl.value() != sfpt_tbl.value()) {
 279       ldx(Address(G2_thread, Thread::polling_page_offset()), G3_scratch, 0);
 280       // Armed page has poll_bit set, if poll bit is cleared just continue.
 281       and3(G3_scratch, SafepointMechanism::poll_bit(), G3_scratch);
 282 
 283       br_null_short(G3_scratch, Assembler::pt, no_safepoint);
 284       set(sfpt_tbl, G3_scratch);
 285       ba_short(dispatch);
 286     }
 287     bind(no_safepoint);
 288   }
 289 
 290   set(tbl, G3_scratch);                               // compute addr of table
 291   bind(dispatch);
 292   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
 293   ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
 294   jmp( G3_scratch, 0 );
 295   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
 296   else                delayed()->nop();
 297 }
 298 
 299 
 300 // Helpers for expression stack
 301 
 302 // Longs and doubles are Category 2 computational types in the
 303 // JVM specification (section 3.11.1) and take 2 expression stack or
 304 // local slots.
 305 // Aligning them on 32 bit with tagged stacks is hard because the code generated
 306 // for the dup* bytecodes depends on what types are already on the stack.
 307 // If the types are split into the two stack/local slots, that is much easier
 308 // (and we can use 0 for non-reference tags).
 309 
 310 // Known good alignment in _LP64 but unknown otherwise
 311 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
 312   assert_not_delayed();
 313 
 314   ldf(FloatRegisterImpl::D, r1, offset, d);
 315 }
 316 
 317 // Known good alignment in _LP64 but unknown otherwise
 318 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
 319   assert_not_delayed();
 320 
 321   stf(FloatRegisterImpl::D, d, r1, offset);
 322   // store something more useful here
 323   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
 324 }
 325 
 326 
 327 // Known good alignment in _LP64 but unknown otherwise
 328 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
 329   assert_not_delayed();
 330   ldx(r1, offset, rd);
 331 }
 332 
 333 // Known good alignment in _LP64 but unknown otherwise
 334 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
 335   assert_not_delayed();
 336 
 337   stx(l, r1, offset);
 338   // store something more useful here
 339   stx(G0, r1, offset+Interpreter::stackElementSize);
 340 }
 341 
 342 void InterpreterMacroAssembler::pop_i(Register r) {
 343   assert_not_delayed();
 344   ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 345   inc(Lesp, Interpreter::stackElementSize);
 346   debug_only(verify_esp(Lesp));
 347 }
 348 
 349 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
 350   assert_not_delayed();
 351   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 352   inc(Lesp, Interpreter::stackElementSize);
 353   debug_only(verify_esp(Lesp));
 354 }
 355 
 356 void InterpreterMacroAssembler::pop_l(Register r) {
 357   assert_not_delayed();
 358   load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 359   inc(Lesp, 2*Interpreter::stackElementSize);
 360   debug_only(verify_esp(Lesp));
 361 }
 362 
 363 
 364 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
 365   assert_not_delayed();
 366   ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
 367   inc(Lesp, Interpreter::stackElementSize);
 368   debug_only(verify_esp(Lesp));
 369 }
 370 
 371 
 372 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
 373   assert_not_delayed();
 374   load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
 375   inc(Lesp, 2*Interpreter::stackElementSize);
 376   debug_only(verify_esp(Lesp));
 377 }
 378 
 379 
 380 void InterpreterMacroAssembler::push_i(Register r) {
 381   assert_not_delayed();
 382   debug_only(verify_esp(Lesp));
 383   st(r, Lesp, 0);
 384   dec(Lesp, Interpreter::stackElementSize);
 385 }
 386 
 387 void InterpreterMacroAssembler::push_ptr(Register r) {
 388   assert_not_delayed();
 389   st_ptr(r, Lesp, 0);
 390   dec(Lesp, Interpreter::stackElementSize);
 391 }
 392 
 393 // remember: our convention for longs in SPARC is:
 394 // O0 (Otos_l1) has high-order part in first word,
 395 // O1 (Otos_l2) has low-order part in second word
 396 
 397 void InterpreterMacroAssembler::push_l(Register r) {
 398   assert_not_delayed();
 399   debug_only(verify_esp(Lesp));
 400   // Longs are stored in memory-correct order, even if unaligned.
 401   int offset = -Interpreter::stackElementSize;
 402   store_unaligned_long(r, Lesp, offset);
 403   dec(Lesp, 2 * Interpreter::stackElementSize);
 404 }
 405 
 406 
 407 void InterpreterMacroAssembler::push_f(FloatRegister f) {
 408   assert_not_delayed();
 409   debug_only(verify_esp(Lesp));
 410   stf(FloatRegisterImpl::S, f, Lesp, 0);
 411   dec(Lesp, Interpreter::stackElementSize);
 412 }
 413 
 414 
 415 void InterpreterMacroAssembler::push_d(FloatRegister d)   {
 416   assert_not_delayed();
 417   debug_only(verify_esp(Lesp));
 418   // Longs are stored in memory-correct order, even if unaligned.
 419   int offset = -Interpreter::stackElementSize;
 420   store_unaligned_double(d, Lesp, offset);
 421   dec(Lesp, 2 * Interpreter::stackElementSize);
 422 }
 423 
 424 
 425 void InterpreterMacroAssembler::push(TosState state) {
 426   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 427   switch (state) {
 428     case atos: push_ptr();            break;
 429     case btos:                        // fall through
 430     case ztos:                        // fall through
 431     case ctos:                        // fall through
 432     case stos:                        // fall through
 433     case itos: push_i();              break;
 434     case ltos: push_l();              break;
 435     case ftos: push_f();              break;
 436     case dtos: push_d();              break;
 437     case vtos: /* nothing to do */    break;
 438     default  : ShouldNotReachHere();
 439   }
 440 }
 441 
 442 
 443 void InterpreterMacroAssembler::pop(TosState state) {
 444   switch (state) {
 445     case atos: pop_ptr();            break;
 446     case btos:                       // fall through
 447     case ztos:                       // fall through
 448     case ctos:                       // fall through
 449     case stos:                       // fall through
 450     case itos: pop_i();              break;
 451     case ltos: pop_l();              break;
 452     case ftos: pop_f();              break;
 453     case dtos: pop_d();              break;
 454     case vtos: /* nothing to do */   break;
 455     default  : ShouldNotReachHere();
 456   }
 457   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 458 }
 459 
 460 
 461 // Helpers for swap and dup
 462 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 463   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
 464 }
 465 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 466   st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
 467 }
 468 
 469 
 470 void InterpreterMacroAssembler::load_receiver(Register param_count,
 471                                               Register recv) {
 472   sll(param_count, Interpreter::logStackElementSize, param_count);
 473   ld_ptr(Lesp, param_count, recv);  // gets receiver oop
 474 }
 475 
 476 void InterpreterMacroAssembler::empty_expression_stack() {
 477   // Reset Lesp.
 478   sub( Lmonitors, wordSize, Lesp );
 479 
 480   // Reset SP by subtracting more space from Lesp.
 481   Label done;
 482   assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
 483 
 484   // A native does not need to do this, since its callee does not change SP.
 485   ld(Lmethod, Method::access_flags_offset(), Gframe_size);  // Load access flags.
 486   btst(JVM_ACC_NATIVE, Gframe_size);
 487   br(Assembler::notZero, false, Assembler::pt, done);
 488   delayed()->nop();
 489 
 490   // Compute max expression stack+register save area
 491   ld_ptr(Lmethod, in_bytes(Method::const_offset()), Gframe_size);
 492   lduh(Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size);  // Load max stack.
 493   add(Gframe_size, frame::memory_parameter_word_sp_offset+Method::extra_stack_entries(), Gframe_size );
 494 
 495   //
 496   // now set up a stack frame with the size computed above
 497   //
 498   //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
 499   sll( Gframe_size, LogBytesPerWord, Gframe_size );
 500   sub( Lesp, Gframe_size, Gframe_size );
 501   and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
 502   debug_only(verify_sp(Gframe_size, G4_scratch));
 503   sub(Gframe_size, STACK_BIAS, Gframe_size );
 504   mov(Gframe_size, SP);
 505 
 506   bind(done);
 507 }
 508 
 509 
 510 #ifdef ASSERT
 511 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
 512   Label Bad, OK;
 513 
 514   // Saved SP must be aligned.
 515   btst(2*BytesPerWord-1, Rsp);
 516   br(Assembler::notZero, false, Assembler::pn, Bad);
 517   delayed()->nop();
 518 
 519   // Saved SP, plus register window size, must not be above FP.
 520   add(Rsp, frame::register_save_words * wordSize, Rtemp);
 521   sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
 522   cmp_and_brx_short(Rtemp, FP, Assembler::greaterUnsigned, Assembler::pn, Bad);
 523 
 524   // Saved SP must not be ridiculously below current SP.
 525   size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
 526   set(maxstack, Rtemp);
 527   sub(SP, Rtemp, Rtemp);
 528   add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
 529   cmp_and_brx_short(Rsp, Rtemp, Assembler::lessUnsigned, Assembler::pn, Bad);
 530 
 531   ba_short(OK);
 532 
 533   bind(Bad);
 534   stop("on return to interpreted call, restored SP is corrupted");
 535 
 536   bind(OK);
 537 }
 538 
 539 
 540 void InterpreterMacroAssembler::verify_esp(Register Resp) {
 541   // about to read or write Resp[0]
 542   // make sure it is not in the monitors or the register save area
 543   Label OK1, OK2;
 544 
 545   cmp(Resp, Lmonitors);
 546   brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
 547   delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
 548   stop("too many pops:  Lesp points into monitor area");
 549   bind(OK1);
 550   sub(Resp, STACK_BIAS, Resp);
 551   cmp(Resp, SP);
 552   brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
 553   delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
 554   stop("too many pushes:  Lesp points into register window");
 555   bind(OK2);
 556 }
 557 #endif // ASSERT
 558 
 559 // Load compiled (i2c) or interpreter entry when calling from interpreted and
 560 // do the call. Centralized so that all interpreter calls will do the same actions.
 561 // If jvmti single stepping is on for a thread we must not call compiled code.
 562 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
 563 
 564   // Assume we want to go compiled if available
 565 
 566   ld_ptr(G5_method, in_bytes(Method::from_interpreted_offset()), target);
 567 
 568   if (JvmtiExport::can_post_interpreter_events()) {
 569     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 570     // compiled code in threads for which the event is enabled.  Check here for
 571     // interp_only_mode if these events CAN be enabled.
 572     verify_thread();
 573     Label skip_compiled_code;
 574 
 575     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
 576     ld(interp_only, scratch);
 577     cmp_zero_and_br(Assembler::notZero, scratch, skip_compiled_code, true, Assembler::pn);
 578     delayed()->ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), target);
 579     bind(skip_compiled_code);
 580   }
 581 
 582   // the i2c_adapters need Method* in G5_method (right? %%%)
 583   // do the call
 584 #ifdef ASSERT
 585   {
 586     Label ok;
 587     br_notnull_short(target, Assembler::pt, ok);
 588     stop("null entry point");
 589     bind(ok);
 590   }
 591 #endif // ASSERT
 592 
 593   // Adjust Rret first so Llast_SP can be same as Rret
 594   add(Rret, -frame::pc_return_offset, O7);
 595   add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
 596   // Record SP so we can remove any stack space allocated by adapter transition
 597   jmp(target, 0);
 598   delayed()->mov(SP, Llast_SP);
 599 }
 600 
 601 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
 602   assert_not_delayed();
 603 
 604   Label not_taken;
 605   if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
 606   else             br (cc, false, Assembler::pn, not_taken);
 607   delayed()->nop();
 608 
 609   TemplateTable::branch(false,false);
 610 
 611   bind(not_taken);
 612 
 613   profile_not_taken_branch(G3_scratch);
 614 }
 615 
 616 
 617 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
 618                                   int         bcp_offset,
 619                                   Register    Rtmp,
 620                                   Register    Rdst,
 621                                   signedOrNot is_signed,
 622                                   setCCOrNot  should_set_CC ) {
 623   assert(Rtmp != Rdst, "need separate temp register");
 624   assert_not_delayed();
 625   switch (is_signed) {
 626    default: ShouldNotReachHere();
 627 
 628    case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
 629    case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
 630   }
 631   ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
 632   sll( Rdst, BitsPerByte, Rdst);
 633   switch (should_set_CC ) {
 634    default: ShouldNotReachHere();
 635 
 636    case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
 637    case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
 638   }
 639 }
 640 
 641 
 642 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
 643                                   int        bcp_offset,
 644                                   Register   Rtmp,
 645                                   Register   Rdst,
 646                                   setCCOrNot should_set_CC ) {
 647   assert(Rtmp != Rdst, "need separate temp register");
 648   assert_not_delayed();
 649   add( Lbcp, bcp_offset, Rtmp);
 650   andcc( Rtmp, 3, G0);
 651   Label aligned;
 652   switch (should_set_CC ) {
 653    default: ShouldNotReachHere();
 654 
 655    case      set_CC: break;
 656    case dont_set_CC: break;
 657   }
 658 
 659   br(Assembler::zero, true, Assembler::pn, aligned);
 660   delayed()->ldsw(Rtmp, 0, Rdst);
 661 
 662   ldub(Lbcp, bcp_offset + 3, Rdst);
 663   ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
 664   ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
 665   ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
 666   or3(Rtmp, Rdst, Rdst );
 667 
 668   bind(aligned);
 669   if (should_set_CC == set_CC) tst(Rdst);
 670 }
 671 
 672 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register temp, Register index,
 673                                                        int bcp_offset, size_t index_size) {
 674   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 675   if (index_size == sizeof(u2)) {
 676     get_2_byte_integer_at_bcp(bcp_offset, temp, index, Unsigned);
 677   } else if (index_size == sizeof(u4)) {
 678     get_4_byte_integer_at_bcp(bcp_offset, temp, index);
 679     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 680     xor3(index, -1, index);  // convert to plain index
 681   } else if (index_size == sizeof(u1)) {
 682     ldub(Lbcp, bcp_offset, index);
 683   } else {
 684     ShouldNotReachHere();
 685   }
 686 }
 687 
 688 
 689 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
 690                                                            int bcp_offset, size_t index_size) {
 691   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 692   assert_different_registers(cache, tmp);
 693   assert_not_delayed();
 694   get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size);
 695   // convert from field index to ConstantPoolCacheEntry index and from
 696   // word index to byte offset
 697   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
 698   add(LcpoolCache, tmp, cache);
 699 }
 700 
 701 
 702 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 703                                                                         Register temp,
 704                                                                         Register bytecode,
 705                                                                         int byte_no,
 706                                                                         int bcp_offset,
 707                                                                         size_t index_size) {
 708   get_cache_and_index_at_bcp(cache, temp, bcp_offset, index_size);
 709   ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset(), bytecode);
 710   const int shift_count = (1 + byte_no) * BitsPerByte;
 711   assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
 712          (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
 713          "correct shift count");
 714   srl(bytecode, shift_count, bytecode);
 715   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
 716   and3(bytecode, ConstantPoolCacheEntry::bytecode_1_mask, bytecode);
 717 }
 718 
 719 
 720 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
 721                                                                int bcp_offset, size_t index_size) {
 722   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 723   assert_different_registers(cache, tmp);
 724   assert_not_delayed();
 725   if (index_size == sizeof(u2)) {
 726     get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
 727   } else {
 728     ShouldNotReachHere();  // other sizes not supported here
 729   }
 730               // convert from field index to ConstantPoolCacheEntry index
 731               // and from word index to byte offset
 732   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
 733               // skip past the header
 734   add(tmp, in_bytes(ConstantPoolCache::base_offset()), tmp);
 735               // construct pointer to cache entry
 736   add(LcpoolCache, tmp, cache);
 737 }
 738 
 739 
 740 // Load object from cpool->resolved_references(index)
 741 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 742                                            Register result, Register index, Register tmp) {
 743   assert_different_registers(result, index, tmp);
 744   assert_not_delayed();
 745   // convert from field index to resolved_references() index and from
 746   // word index to byte offset. Since this is a java object, it can be compressed
 747   sll(index, LogBytesPerHeapOop, index);
 748   get_constant_pool(result);
 749   // load pointer for resolved_references[] objArray
 750   ld_ptr(result, ConstantPool::cache_offset_in_bytes(), result);
 751   ld_ptr(result, ConstantPoolCache::resolved_references_offset_in_bytes(), result);
 752   resolve_oop_handle(result, tmp);
 753   // Add in the index
 754   add(result, index, result);
 755   load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result, tmp);
 756   // The resulting oop is null if the reference is not yet resolved.
 757   // It is Universe::the_null_sentinel() if the reference resolved to NULL via condy.
 758 }
 759 
 760 
 761 // load cpool->resolved_klass_at(index)
 762 void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register Rcpool,
 763                                            Register Roffset, Register Rklass) {
 764   // int value = *this_cp->int_at_addr(which);
 765   // int resolved_klass_index = extract_low_short_from_int(value);
 766   //
 767   // Because SPARC is big-endian, the low_short is at (cpool->int_at_addr(which) + 2 bytes)
 768   add(Roffset, Rcpool, Roffset);
 769   lduh(Roffset, sizeof(ConstantPool) + 2, Roffset);  // Roffset = resolved_klass_index
 770 
 771   Register Rresolved_klasses = Rklass;
 772   ld_ptr(Rcpool, ConstantPool::resolved_klasses_offset_in_bytes(), Rresolved_klasses);
 773   sll(Roffset, LogBytesPerWord, Roffset);
 774   add(Roffset, Array<Klass*>::base_offset_in_bytes(), Roffset);
 775   ld_ptr(Rresolved_klasses, Roffset, Rklass);
 776 }
 777 
 778 
 779 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
 780 // a subtype of super_klass.  Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
 781 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 782                                                   Register Rsuper_klass,
 783                                                   Register Rtmp1,
 784                                                   Register Rtmp2,
 785                                                   Register Rtmp3,
 786                                                   Label &ok_is_subtype ) {
 787   Label not_subtype;
 788 
 789   // Profile the not-null value's klass.
 790   profile_typecheck(Rsub_klass, Rtmp1);
 791 
 792   check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
 793                                 Rtmp1, Rtmp2,
 794                                 &ok_is_subtype, &not_subtype, NULL);
 795 
 796   check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
 797                                 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
 798                                 &ok_is_subtype, NULL);
 799 
 800   bind(not_subtype);
 801   profile_typecheck_failed(Rtmp1);
 802 }
 803 
 804 // Separate these two to allow for delay slot in middle
 805 // These are used to do a test and full jump to exception-throwing code.
 806 
 807 // %%%%% Could possibly reoptimize this by testing to see if could use
 808 // a single conditional branch (i.e. if span is small enough.
 809 // If you go that route, than get rid of the split and give up
 810 // on the delay-slot hack.
 811 
 812 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
 813                                                     Label&    ok ) {
 814   assert_not_delayed();
 815   br(ok_condition, true, pt, ok);
 816   // DELAY SLOT
 817 }
 818 
 819 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
 820                                                     Label&    ok ) {
 821   assert_not_delayed();
 822   bp( ok_condition, true, Assembler::xcc, pt, ok);
 823   // DELAY SLOT
 824 }
 825 
 826 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
 827                                                   Label&    ok ) {
 828   assert_not_delayed();
 829   brx(ok_condition, true, pt, ok);
 830   // DELAY SLOT
 831 }
 832 
 833 void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
 834                                                 Register Rscratch,
 835                                                 Label&   ok ) {
 836   assert(throw_entry_point != NULL, "entry point must be generated by now");
 837   AddressLiteral dest(throw_entry_point);
 838   jump_to(dest, Rscratch);
 839   delayed()->nop();
 840   bind(ok);
 841 }
 842 
 843 
 844 // And if you cannot use the delay slot, here is a shorthand:
 845 
 846 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
 847                                                   address   throw_entry_point,
 848                                                   Register  Rscratch ) {
 849   Label ok;
 850   if (ok_condition != never) {
 851     throw_if_not_1_icc( ok_condition, ok);
 852     delayed()->nop();
 853   }
 854   throw_if_not_2( throw_entry_point, Rscratch, ok);
 855 }
 856 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
 857                                                   address   throw_entry_point,
 858                                                   Register  Rscratch ) {
 859   Label ok;
 860   if (ok_condition != never) {
 861     throw_if_not_1_xcc( ok_condition, ok);
 862     delayed()->nop();
 863   }
 864   throw_if_not_2( throw_entry_point, Rscratch, ok);
 865 }
 866 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
 867                                                 address   throw_entry_point,
 868                                                 Register  Rscratch ) {
 869   Label ok;
 870   if (ok_condition != never) {
 871     throw_if_not_1_x( ok_condition, ok);
 872     delayed()->nop();
 873   }
 874   throw_if_not_2( throw_entry_point, Rscratch, ok);
 875 }
 876 
 877 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
 878 // Note: res is still shy of address by array offset into object.
 879 
 880 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
 881   assert_not_delayed();
 882 
 883   verify_oop(array);
 884   // Sign extend since tos (index) can be a 32bit value.
 885   sra(index, G0, index);
 886 
 887   // Check array.
 888   Label ptr_ok;
 889   tst(array);
 890   throw_if_not_1_x(notZero, ptr_ok);
 891   delayed()->ld(array, arrayOopDesc::length_offset_in_bytes(), tmp); // Check index.
 892   throw_if_not_2(Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
 893 
 894   Label index_ok;
 895   cmp(index, tmp);
 896   throw_if_not_1_icc(lessUnsigned, index_ok);
 897   if (index_shift > 0) {
 898     delayed()->sll(index, index_shift, index);
 899   } else {
 900     delayed()->add(array, index, res); // addr - const offset in index
 901   }
 902   // Pass the array to create more detailed exceptions.
 903   // Convention: move aberrant index into Otos_i for exception message.
 904   mov(index, Otos_i);
 905   mov(array, G3_scratch);
 906   throw_if_not_2(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
 907 
 908   // add offset if didn't do it in delay slot
 909   if (index_shift > 0) { add(array, index, res); } // addr - const offset in index
 910 }
 911 
 912 
 913 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
 914   assert_not_delayed();
 915 
 916   // pop array
 917   pop_ptr(array);
 918 
 919   // check array
 920   index_check_without_pop(array, index, index_shift, tmp, res);
 921 }
 922 
 923 
 924 void InterpreterMacroAssembler::get_const(Register Rdst) {
 925   ld_ptr(Lmethod, in_bytes(Method::const_offset()), Rdst);
 926 }
 927 
 928 
 929 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
 930   get_const(Rdst);
 931   ld_ptr(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
 932 }
 933 
 934 
 935 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
 936   get_constant_pool(Rdst);
 937   ld_ptr(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
 938 }
 939 
 940 
 941 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
 942   get_constant_pool(Rcpool);
 943   ld_ptr(Rcpool, ConstantPool::tags_offset_in_bytes(), Rtags);
 944 }
 945 
 946 
 947 // unlock if synchronized method
 948 //
 949 // Unlock the receiver if this is a synchronized method.
 950 // Unlock any Java monitors from syncronized blocks.
 951 //
 952 // If there are locked Java monitors
 953 //    If throw_monitor_exception
 954 //       throws IllegalMonitorStateException
 955 //    Else if install_monitor_exception
 956 //       installs IllegalMonitorStateException
 957 //    Else
 958 //       no error processing
 959 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
 960                                                               bool throw_monitor_exception,
 961                                                               bool install_monitor_exception) {
 962   Label unlocked, unlock, no_unlock;
 963 
 964   // get the value of _do_not_unlock_if_synchronized into G1_scratch
 965   const Address do_not_unlock_if_synchronized(G2_thread,
 966     JavaThread::do_not_unlock_if_synchronized_offset());
 967   ldbool(do_not_unlock_if_synchronized, G1_scratch);
 968   stbool(G0, do_not_unlock_if_synchronized); // reset the flag
 969 
 970   // check if synchronized method
 971   const Address access_flags(Lmethod, Method::access_flags_offset());
 972   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 973   push(state); // save tos
 974   ld(access_flags, G3_scratch); // Load access flags.
 975   btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
 976   br(zero, false, pt, unlocked);
 977   delayed()->nop();
 978 
 979   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 980   // is set.
 981   cmp_zero_and_br(Assembler::notZero, G1_scratch, no_unlock);
 982   delayed()->nop();
 983 
 984   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
 985   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
 986 
 987   //Intel: if (throw_monitor_exception) ... else ...
 988   // Entry already unlocked, need to throw exception
 989   //...
 990 
 991   // pass top-most monitor elem
 992   add( top_most_monitor(), O1 );
 993 
 994   ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
 995   br_notnull_short(G3_scratch, pt, unlock);
 996 
 997   if (throw_monitor_exception) {
 998     // Entry already unlocked need to throw an exception
 999     MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1000     should_not_reach_here();
1001   } else {
1002     // Monitor already unlocked during a stack unroll.
1003     // If requested, install an illegal_monitor_state_exception.
1004     // Continue with stack unrolling.
1005     if (install_monitor_exception) {
1006       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1007     }
1008     ba_short(unlocked);
1009   }
1010 
1011   bind(unlock);
1012 
1013   unlock_object(O1);
1014 
1015   bind(unlocked);
1016 
1017   // I0, I1: Might contain return value
1018 
1019   // Check that all monitors are unlocked
1020   { Label loop, exception, entry, restart;
1021 
1022     Register Rmptr   = O0;
1023     Register Rtemp   = O1;
1024     Register Rlimit  = Lmonitors;
1025     const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1026     assert( (delta & LongAlignmentMask) == 0,
1027             "sizeof BasicObjectLock must be even number of doublewords");
1028 
1029     #ifdef ASSERT
1030     add(top_most_monitor(), Rmptr, delta);
1031     { Label L;
1032       // ensure that Rmptr starts out above (or at) Rlimit
1033       cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
1034       stop("monitor stack has negative size");
1035       bind(L);
1036     }
1037     #endif
1038     bind(restart);
1039     ba(entry);
1040     delayed()->
1041     add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry
1042 
1043     // Entry is still locked, need to throw exception
1044     bind(exception);
1045     if (throw_monitor_exception) {
1046       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1047       should_not_reach_here();
1048     } else {
1049       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
1050       // Unlock does not block, so don't have to worry about the frame
1051       unlock_object(Rmptr);
1052       if (install_monitor_exception) {
1053         MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1054       }
1055       ba_short(restart);
1056     }
1057 
1058     bind(loop);
1059     cmp(Rtemp, G0);                             // check if current entry is used
1060     brx(Assembler::notEqual, false, pn, exception);
1061     delayed()->
1062     dec(Rmptr, delta);                          // otherwise advance to next entry
1063     #ifdef ASSERT
1064     { Label L;
1065       // ensure that Rmptr has not somehow stepped below Rlimit
1066       cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
1067       stop("ran off the end of the monitor stack");
1068       bind(L);
1069     }
1070     #endif
1071     bind(entry);
1072     cmp(Rmptr, Rlimit);                         // check if bottom reached
1073     brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
1074     delayed()->
1075     ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
1076   }
1077 
1078   bind(no_unlock);
1079   pop(state);
1080   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1081 }
1082 
1083 void InterpreterMacroAssembler::narrow(Register result) {
1084 
1085   ld_ptr(Address(Lmethod, Method::const_offset()), G3_scratch);
1086   ldub(G3_scratch, in_bytes(ConstMethod::result_type_offset()), G3_scratch);
1087 
1088   Label notBool, notByte, notChar, done;
1089 
1090   // common case first
1091   cmp(G3_scratch, T_INT);
1092   br(Assembler::equal, true, pn, done);
1093   delayed()->nop();
1094 
1095   cmp(G3_scratch, T_BOOLEAN);
1096   br(Assembler::notEqual, true, pn, notBool);
1097   delayed()->cmp(G3_scratch, T_BYTE);
1098   and3(result, 1, result);
1099   ba(done);
1100   delayed()->nop();
1101 
1102   bind(notBool);
1103   // cmp(G3_scratch, T_BYTE);
1104   br(Assembler::notEqual, true, pn, notByte);
1105   delayed()->cmp(G3_scratch, T_CHAR);
1106   sll(result, 24, result);
1107   sra(result, 24, result);
1108   ba(done);
1109   delayed()->nop();
1110 
1111   bind(notByte);
1112   // cmp(G3_scratch, T_CHAR);
1113   sll(result, 16, result);
1114   br(Assembler::notEqual, true, pn, done);
1115   delayed()->sra(result, 16, result);
1116   // sll(result, 16, result);
1117   srl(result, 16, result);
1118 
1119   // bind(notChar);
1120   // must be short, instructions already executed in delay slot
1121   // sll(result, 16, result);
1122   // sra(result, 16, result);
1123 
1124   bind(done);
1125 }
1126 
1127 // remove activation
1128 //
1129 // Unlock the receiver if this is a synchronized method.
1130 // Unlock any Java monitors from syncronized blocks.
1131 // Remove the activation from the stack.
1132 //
1133 // If there are locked Java monitors
1134 //    If throw_monitor_exception
1135 //       throws IllegalMonitorStateException
1136 //    Else if install_monitor_exception
1137 //       installs IllegalMonitorStateException
1138 //    Else
1139 //       no error processing
1140 void InterpreterMacroAssembler::remove_activation(TosState state,
1141                                                   bool throw_monitor_exception,
1142                                                   bool install_monitor_exception) {
1143 
1144   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
1145 
1146   // save result (push state before jvmti call and pop it afterwards) and notify jvmti
1147   notify_method_exit(false, state, NotifyJVMTI);
1148 
1149   if (StackReservedPages > 0) {
1150     // testing if Stack Reserved Area needs to be re-enabled
1151     Label no_reserved_zone_enabling;
1152     ld_ptr(G2_thread, JavaThread::reserved_stack_activation_offset(), G3_scratch);
1153     cmp_and_brx_short(SP, G3_scratch, Assembler::lessUnsigned, Assembler::pt, no_reserved_zone_enabling);
1154 
1155     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), G2_thread);
1156     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError), G2_thread);
1157     should_not_reach_here();
1158 
1159     bind(no_reserved_zone_enabling);
1160   }
1161 
1162   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1163   verify_thread();
1164 
1165   // return tos
1166   assert(Otos_l1 == Otos_i, "adjust code below");
1167   switch (state) {
1168   case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
1169   case btos:                                      // fall through
1170   case ztos:                                      // fall through
1171   case ctos:
1172   case stos:                                      // fall through
1173   case atos:                                      // fall through
1174   case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
1175   case ftos:                                      // fall through
1176   case dtos:                                      // fall through
1177   case vtos: /* nothing to do */                     break;
1178   default  : ShouldNotReachHere();
1179   }
1180 }
1181 
1182 // Lock object
1183 //
1184 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
1185 //            it must be initialized with the object to lock
1186 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
1187   if (UseHeavyMonitors) {
1188     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1189   }
1190   else {
1191     Register obj_reg = Object;
1192     Register mark_reg = G4_scratch;
1193     Register temp_reg = G1_scratch;
1194     Address  lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
1195     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1196     Label    done;
1197 
1198     Label slow_case;
1199 
1200     assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
1201 
1202     // load markWord from object into mark_reg
1203     ld_ptr(mark_addr, mark_reg);
1204 
1205     if (UseBiasedLocking) {
1206       biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
1207     }
1208 
1209     // get the address of basicLock on stack that will be stored in the object
1210     // we need a temporary register here as we do not want to clobber lock_reg
1211     // (cas clobbers the destination register)
1212     mov(lock_reg, temp_reg);
1213     // set mark reg to be (markWord of object | UNLOCK_VALUE)
1214     or3(mark_reg, markWord::unlocked_value, mark_reg);
1215     // initialize the box  (Must happen before we update the object mark!)
1216     st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1217     // compare and exchange object_addr, markWord | 1, stack address of basicLock
1218     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1219     cas_ptr(mark_addr.base(), mark_reg, temp_reg);
1220 
1221     // if the compare and exchange succeeded we are done (we saw an unlocked object)
1222     cmp_and_brx_short(mark_reg, temp_reg, Assembler::equal, Assembler::pt, done);
1223 
1224     // We did not see an unlocked object so try the fast recursive case
1225 
1226     // Check if owner is self by comparing the value in the markWord of object
1227     // with the stack pointer
1228     sub(temp_reg, SP, temp_reg);
1229     sub(temp_reg, STACK_BIAS, temp_reg);
1230     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
1231 
1232     // Composite "andcc" test:
1233     // (a) %sp -vs- markword proximity check, and,
1234     // (b) verify mark word LSBs == 0 (Stack-locked).
1235     //
1236     // FFFFF003/FFFFFFFFFFFF003 is (markWord::lock_mask_in_place | -os::vm_page_size())
1237     // Note that the page size used for %sp proximity testing is arbitrary and is
1238     // unrelated to the actual MMU page size.  We use a 'logical' page size of
1239     // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
1240     // field of the andcc instruction.
1241     andcc (temp_reg, 0xFFFFF003, G0) ;
1242 
1243     // if condition is true we are done and hence we can store 0 in the displaced
1244     // header indicating it is a recursive lock and be done
1245     brx(Assembler::zero, true, Assembler::pt, done);
1246     delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1247 
1248     // none of the above fast optimizations worked so we have to get into the
1249     // slow case of monitor enter
1250     bind(slow_case);
1251     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1252 
1253     bind(done);
1254   }
1255 }
1256 
1257 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
1258 //
1259 // Argument - lock_reg points to the BasicObjectLock for lock
1260 // Throw IllegalMonitorException if object is not locked by current thread
1261 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1262   if (UseHeavyMonitors) {
1263     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1264   } else {
1265     Register obj_reg = G3_scratch;
1266     Register mark_reg = G4_scratch;
1267     Register displaced_header_reg = G1_scratch;
1268     Address  lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
1269     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1270     Label    done;
1271 
1272     if (UseBiasedLocking) {
1273       // load the object out of the BasicObjectLock
1274       ld_ptr(lockobj_addr, obj_reg);
1275       biased_locking_exit(mark_addr, mark_reg, done, true);
1276       st_ptr(G0, lockobj_addr);  // free entry
1277     }
1278 
1279     // Test first if we are in the fast recursive case
1280     Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
1281     ld_ptr(lock_addr, displaced_header_reg);
1282     br_null(displaced_header_reg, true, Assembler::pn, done);
1283     delayed()->st_ptr(G0, lockobj_addr);  // free entry
1284 
1285     // See if it is still a light weight lock, if so we just unlock
1286     // the object and we are done
1287 
1288     if (!UseBiasedLocking) {
1289       // load the object out of the BasicObjectLock
1290       ld_ptr(lockobj_addr, obj_reg);
1291     }
1292 
1293     // we have the displaced header in displaced_header_reg
1294     // we expect to see the stack address of the basicLock in case the
1295     // lock is still a light weight lock (lock_reg)
1296     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1297     cas_ptr(mark_addr.base(), lock_reg, displaced_header_reg);
1298     cmp(lock_reg, displaced_header_reg);
1299     brx(Assembler::equal, true, Assembler::pn, done);
1300     delayed()->st_ptr(G0, lockobj_addr);  // free entry
1301 
1302     // The lock has been converted into a heavy lock and hence
1303     // we need to get into the slow case
1304 
1305     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1306 
1307     bind(done);
1308   }
1309 }
1310 
1311 // Get the method data pointer from the Method* and set the
1312 // specified register to its value.
1313 
1314 void InterpreterMacroAssembler::set_method_data_pointer() {
1315   assert(ProfileInterpreter, "must be profiling interpreter");
1316   Label get_continue;
1317 
1318   ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
1319   test_method_data_pointer(get_continue);
1320   add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
1321   bind(get_continue);
1322 }
1323 
1324 // Set the method data pointer for the current bcp.
1325 
1326 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1327   assert(ProfileInterpreter, "must be profiling interpreter");
1328   Label zero_continue;
1329 
1330   // Test MDO to avoid the call if it is NULL.
1331   ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
1332   test_method_data_pointer(zero_continue);
1333   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
1334   add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
1335   add(ImethodDataPtr, O0, ImethodDataPtr);
1336   bind(zero_continue);
1337 }
1338 
1339 // Test ImethodDataPtr.  If it is null, continue at the specified label
1340 
1341 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1342   assert(ProfileInterpreter, "must be profiling interpreter");
1343   br_null_short(ImethodDataPtr, Assembler::pn, zero_continue);
1344 }
1345 
1346 void InterpreterMacroAssembler::verify_method_data_pointer() {
1347   assert(ProfileInterpreter, "must be profiling interpreter");
1348 #ifdef ASSERT
1349   Label verify_continue;
1350   test_method_data_pointer(verify_continue);
1351 
1352   // If the mdp is valid, it will point to a DataLayout header which is
1353   // consistent with the bcp.  The converse is highly probable also.
1354   lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
1355   ld_ptr(Lmethod, Method::const_offset(), O5);
1356   add(G3_scratch, in_bytes(ConstMethod::codes_offset()), G3_scratch);
1357   add(G3_scratch, O5, G3_scratch);
1358   cmp(Lbcp, G3_scratch);
1359   brx(Assembler::equal, false, Assembler::pt, verify_continue);
1360 
1361   Register temp_reg = O5;
1362   delayed()->mov(ImethodDataPtr, temp_reg);
1363   // %%% should use call_VM_leaf here?
1364   //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
1365   save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
1366   Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
1367   stf(FloatRegisterImpl::D, Ftos_d, d_save);
1368   mov(temp_reg->after_save(), O2);
1369   save_thread(L7_thread_cache);
1370   call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
1371   delayed()->nop();
1372   restore_thread(L7_thread_cache);
1373   ldf(FloatRegisterImpl::D, d_save, Ftos_d);
1374   restore();
1375   bind(verify_continue);
1376 #endif // ASSERT
1377 }
1378 
1379 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1380                                                                 Register method_counters,
1381                                                                 Register Rtmp,
1382                                                                 Label &profile_continue) {
1383   assert(ProfileInterpreter, "must be profiling interpreter");
1384   // Control will flow to "profile_continue" if the counter is less than the
1385   // limit or if we call profile_method()
1386 
1387   Label done;
1388 
1389   // if no method data exists, and the counter is high enough, make one
1390   br_notnull_short(ImethodDataPtr, Assembler::pn, done);
1391 
1392   // Test to see if we should create a method data oop
1393   Address profile_limit(method_counters, MethodCounters::interpreter_profile_limit_offset());
1394   ld(profile_limit, Rtmp);
1395   cmp(invocation_count, Rtmp);
1396   // Use long branches because call_VM() code and following code generated by
1397   // test_backedge_count_for_osr() is large in debug VM.
1398   br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
1399   delayed()->nop();
1400 
1401   // Build it now.
1402   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1403   set_method_data_pointer_for_bcp();
1404   ba(profile_continue);
1405   delayed()->nop();
1406   bind(done);
1407 }
1408 
1409 // Store a value at some constant offset from the method data pointer.
1410 
1411 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1412   assert(ProfileInterpreter, "must be profiling interpreter");
1413   st_ptr(value, ImethodDataPtr, constant);
1414 }
1415 
1416 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
1417                                                       Register bumped_count,
1418                                                       bool decrement) {
1419   assert(ProfileInterpreter, "must be profiling interpreter");
1420 
1421   // Load the counter.
1422   ld_ptr(counter, bumped_count);
1423 
1424   if (decrement) {
1425     // Decrement the register.  Set condition codes.
1426     subcc(bumped_count, DataLayout::counter_increment, bumped_count);
1427 
1428     // If the decrement causes the counter to overflow, stay negative
1429     Label L;
1430     brx(Assembler::negative, true, Assembler::pn, L);
1431 
1432     // Store the decremented counter, if it is still negative.
1433     delayed()->st_ptr(bumped_count, counter);
1434     bind(L);
1435   } else {
1436     // Increment the register.  Set carry flag.
1437     addcc(bumped_count, DataLayout::counter_increment, bumped_count);
1438 
1439     // If the increment causes the counter to overflow, pull back by 1.
1440     assert(DataLayout::counter_increment == 1, "subc works");
1441     subc(bumped_count, G0, bumped_count);
1442 
1443     // Store the incremented counter.
1444     st_ptr(bumped_count, counter);
1445   }
1446 }
1447 
1448 // Increment the value at some constant offset from the method data pointer.
1449 
1450 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1451                                                       Register bumped_count,
1452                                                       bool decrement) {
1453   // Locate the counter at a fixed offset from the mdp:
1454   Address counter(ImethodDataPtr, constant);
1455   increment_mdp_data_at(counter, bumped_count, decrement);
1456 }
1457 
1458 // Increment the value at some non-fixed (reg + constant) offset from
1459 // the method data pointer.
1460 
1461 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1462                                                       int constant,
1463                                                       Register bumped_count,
1464                                                       Register scratch2,
1465                                                       bool decrement) {
1466   // Add the constant to reg to get the offset.
1467   add(ImethodDataPtr, reg, scratch2);
1468   Address counter(scratch2, constant);
1469   increment_mdp_data_at(counter, bumped_count, decrement);
1470 }
1471 
1472 // Set a flag value at the current method data pointer position.
1473 // Updates a single byte of the header, to avoid races with other header bits.
1474 
1475 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1476                                                 Register scratch) {
1477   assert(ProfileInterpreter, "must be profiling interpreter");
1478   // Load the data header
1479   ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
1480 
1481   // Set the flag
1482   or3(scratch, flag_constant, scratch);
1483 
1484   // Store the modified header.
1485   stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
1486 }
1487 
1488 // Test the location at some offset from the method data pointer.
1489 // If it is not equal to value, branch to the not_equal_continue Label.
1490 // Set condition codes to match the nullness of the loaded value.
1491 
1492 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1493                                                  Register value,
1494                                                  Label& not_equal_continue,
1495                                                  Register scratch) {
1496   assert(ProfileInterpreter, "must be profiling interpreter");
1497   ld_ptr(ImethodDataPtr, offset, scratch);
1498   cmp(value, scratch);
1499   brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
1500   delayed()->tst(scratch);
1501 }
1502 
1503 // Update the method data pointer by the displacement located at some fixed
1504 // offset from the method data pointer.
1505 
1506 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1507                                                      Register scratch) {
1508   assert(ProfileInterpreter, "must be profiling interpreter");
1509   ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
1510   add(ImethodDataPtr, scratch, ImethodDataPtr);
1511 }
1512 
1513 // Update the method data pointer by the displacement located at the
1514 // offset (reg + offset_of_disp).
1515 
1516 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1517                                                      int offset_of_disp,
1518                                                      Register scratch) {
1519   assert(ProfileInterpreter, "must be profiling interpreter");
1520   add(reg, offset_of_disp, scratch);
1521   ld_ptr(ImethodDataPtr, scratch, scratch);
1522   add(ImethodDataPtr, scratch, ImethodDataPtr);
1523 }
1524 
1525 // Update the method data pointer by a simple constant displacement.
1526 
1527 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1528   assert(ProfileInterpreter, "must be profiling interpreter");
1529   add(ImethodDataPtr, constant, ImethodDataPtr);
1530 }
1531 
1532 // Update the method data pointer for a _ret bytecode whose target
1533 // was not among our cached targets.
1534 
1535 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1536                                                    Register return_bci) {
1537   assert(ProfileInterpreter, "must be profiling interpreter");
1538   push(state);
1539   st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
1540   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1541   ld_ptr(l_tmp, return_bci);
1542   pop(state);
1543 }
1544 
1545 // Count a taken branch in the bytecodes.
1546 
1547 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1548   if (ProfileInterpreter) {
1549     Label profile_continue;
1550 
1551     // If no method data exists, go to profile_continue.
1552     test_method_data_pointer(profile_continue);
1553 
1554     // We are taking a branch.  Increment the taken count.
1555     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
1556 
1557     // The method data pointer needs to be updated to reflect the new target.
1558     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1559     bind (profile_continue);
1560   }
1561 }
1562 
1563 
1564 // Count a not-taken branch in the bytecodes.
1565 
1566 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
1567   if (ProfileInterpreter) {
1568     Label profile_continue;
1569 
1570     // If no method data exists, go to profile_continue.
1571     test_method_data_pointer(profile_continue);
1572 
1573     // We are taking a branch.  Increment the not taken count.
1574     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
1575 
1576     // The method data pointer needs to be updated to correspond to the
1577     // next bytecode.
1578     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1579     bind (profile_continue);
1580   }
1581 }
1582 
1583 
1584 // Count a non-virtual call in the bytecodes.
1585 
1586 void InterpreterMacroAssembler::profile_call(Register scratch) {
1587   if (ProfileInterpreter) {
1588     Label profile_continue;
1589 
1590     // If no method data exists, go to profile_continue.
1591     test_method_data_pointer(profile_continue);
1592 
1593     // We are making a call.  Increment the count.
1594     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1595 
1596     // The method data pointer needs to be updated to reflect the new target.
1597     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1598     bind (profile_continue);
1599   }
1600 }
1601 
1602 
1603 // Count a final call in the bytecodes.
1604 
1605 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
1606   if (ProfileInterpreter) {
1607     Label profile_continue;
1608 
1609     // If no method data exists, go to profile_continue.
1610     test_method_data_pointer(profile_continue);
1611 
1612     // We are making a call.  Increment the count.
1613     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1614 
1615     // The method data pointer needs to be updated to reflect the new target.
1616     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1617     bind (profile_continue);
1618   }
1619 }
1620 
1621 
1622 // Count a virtual call in the bytecodes.
1623 
1624 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1625                                                      Register scratch,
1626                                                      bool receiver_can_be_null) {
1627   if (ProfileInterpreter) {
1628     Label profile_continue;
1629 
1630     // If no method data exists, go to profile_continue.
1631     test_method_data_pointer(profile_continue);
1632 
1633 
1634     Label skip_receiver_profile;
1635     if (receiver_can_be_null) {
1636       Label not_null;
1637       br_notnull_short(receiver, Assembler::pt, not_null);
1638       // We are making a call.  Increment the count for null receiver.
1639       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1640       ba_short(skip_receiver_profile);
1641       bind(not_null);
1642     }
1643 
1644     // Record the receiver type.
1645     record_klass_in_profile(receiver, scratch, true);
1646     bind(skip_receiver_profile);
1647 
1648     // The method data pointer needs to be updated to reflect the new target.
1649     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1650     bind(profile_continue);
1651   }
1652 }
1653 
1654 void InterpreterMacroAssembler::record_klass_in_profile_helper(Register receiver, Register scratch,
1655                                                                Label& done, bool is_virtual_call) {
1656   if (TypeProfileWidth == 0) {
1657     if (is_virtual_call) {
1658       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1659     }
1660 #if INCLUDE_JVMCI
1661     else if (EnableJVMCI) {
1662       increment_mdp_data_at(in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()), scratch);
1663     }
1664 #endif
1665   } else {
1666     int non_profiled_offset = -1;
1667     if (is_virtual_call) {
1668       non_profiled_offset = in_bytes(CounterData::count_offset());
1669     }
1670 #if INCLUDE_JVMCI
1671     else if (EnableJVMCI) {
1672       non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
1673     }
1674 #endif
1675 
1676     record_item_in_profile_helper(receiver, scratch, 0, done, TypeProfileWidth,
1677       &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
1678   }
1679 }
1680 
1681 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item,
1682                                           Register scratch, int start_row, Label& done, int total_rows,
1683                                           OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
1684                                           int non_profiled_offset) {
1685   int last_row = total_rows - 1;
1686   assert(start_row <= last_row, "must be work left to do");
1687   // Test this row for both the item and for null.
1688   // Take any of three different outcomes:
1689   //   1. found item => increment count and goto done
1690   //   2. found null => keep looking for case 1, maybe allocate this cell
1691   //   3. found something else => keep looking for cases 1 and 2
1692   // Case 3 is handled by a recursive call.
1693   for (int row = start_row; row <= last_row; row++) {
1694     Label next_test;
1695     bool test_for_null_also = (row == start_row);
1696 
1697     // See if the item is item[n].
1698     int item_offset = in_bytes(item_offset_fn(row));
1699     test_mdp_data_at(item_offset, item, next_test, scratch);
1700     // delayed()->tst(scratch);
1701 
1702     // The receiver is item[n].  Increment count[n].
1703     int count_offset = in_bytes(item_count_offset_fn(row));
1704     increment_mdp_data_at(count_offset, scratch);
1705     ba_short(done);
1706     bind(next_test);
1707 
1708     if (test_for_null_also) {
1709       Label found_null;
1710       // Failed the equality check on item[n]...  Test for null.
1711       if (start_row == last_row) {
1712         // The only thing left to do is handle the null case.
1713         if (non_profiled_offset >= 0) {
1714           brx(Assembler::zero, false, Assembler::pn, found_null);
1715           delayed()->nop();
1716           // Item did not match any saved item and there is no empty row for it.
1717           // Increment total counter to indicate polymorphic case.
1718           increment_mdp_data_at(non_profiled_offset, scratch);
1719           ba_short(done);
1720           bind(found_null);
1721         } else {
1722           brx(Assembler::notZero, false, Assembler::pt, done);
1723           delayed()->nop();
1724         }
1725         break;
1726       }
1727       // Since null is rare, make it be the branch-taken case.
1728       brx(Assembler::zero, false, Assembler::pn, found_null);
1729       delayed()->nop();
1730 
1731       // Put all the "Case 3" tests here.
1732       record_item_in_profile_helper(item, scratch, start_row + 1, done, total_rows,
1733         item_offset_fn, item_count_offset_fn, non_profiled_offset);
1734 
1735       // Found a null.  Keep searching for a matching item,
1736       // but remember that this is an empty (unused) slot.
1737       bind(found_null);
1738     }
1739   }
1740 
1741   // In the fall-through case, we found no matching item, but we
1742   // observed the item[start_row] is NULL.
1743 
1744   // Fill in the item field and increment the count.
1745   int item_offset = in_bytes(item_offset_fn(start_row));
1746   set_mdp_data_at(item_offset, item);
1747   int count_offset = in_bytes(item_count_offset_fn(start_row));
1748   mov(DataLayout::counter_increment, scratch);
1749   set_mdp_data_at(count_offset, scratch);
1750   if (start_row > 0) {
1751     ba_short(done);
1752   }
1753 }
1754 
1755 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1756                                                         Register scratch, bool is_virtual_call) {
1757   assert(ProfileInterpreter, "must be profiling");
1758   Label done;
1759 
1760   record_klass_in_profile_helper(receiver, scratch, done, is_virtual_call);
1761 
1762   bind (done);
1763 }
1764 
1765 
1766 // Count a ret in the bytecodes.
1767 
1768 void InterpreterMacroAssembler::profile_ret(TosState state,
1769                                             Register return_bci,
1770                                             Register scratch) {
1771   if (ProfileInterpreter) {
1772     Label profile_continue;
1773     uint row;
1774 
1775     // If no method data exists, go to profile_continue.
1776     test_method_data_pointer(profile_continue);
1777 
1778     // Update the total ret count.
1779     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1780 
1781     for (row = 0; row < RetData::row_limit(); row++) {
1782       Label next_test;
1783 
1784       // See if return_bci is equal to bci[n]:
1785       test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
1786                        return_bci, next_test, scratch);
1787 
1788       // return_bci is equal to bci[n].  Increment the count.
1789       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
1790 
1791       // The method data pointer needs to be updated to reflect the new target.
1792       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
1793       ba_short(profile_continue);
1794       bind(next_test);
1795     }
1796 
1797     update_mdp_for_ret(state, return_bci);
1798 
1799     bind (profile_continue);
1800   }
1801 }
1802 
1803 // Profile an unexpected null in the bytecodes.
1804 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
1805   if (ProfileInterpreter) {
1806     Label profile_continue;
1807 
1808     // If no method data exists, go to profile_continue.
1809     test_method_data_pointer(profile_continue);
1810 
1811     set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
1812 
1813     // The method data pointer needs to be updated.
1814     int mdp_delta = in_bytes(BitData::bit_data_size());
1815     if (TypeProfileCasts) {
1816       mdp_delta = in_bytes(ReceiverTypeData::receiver_type_data_size());
1817     }
1818     update_mdp_by_constant(mdp_delta);
1819 
1820     bind (profile_continue);
1821   }
1822 }
1823 
1824 void InterpreterMacroAssembler::profile_typecheck(Register klass,
1825                                                   Register scratch) {
1826   if (ProfileInterpreter) {
1827     Label profile_continue;
1828 
1829     // If no method data exists, go to profile_continue.
1830     test_method_data_pointer(profile_continue);
1831 
1832     int mdp_delta = in_bytes(BitData::bit_data_size());
1833     if (TypeProfileCasts) {
1834       mdp_delta = in_bytes(ReceiverTypeData::receiver_type_data_size());
1835 
1836       // Record the object type.
1837       record_klass_in_profile(klass, scratch, false);
1838     }
1839 
1840     // The method data pointer needs to be updated.
1841     update_mdp_by_constant(mdp_delta);
1842 
1843     bind (profile_continue);
1844   }
1845 }
1846 
1847 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
1848   if (ProfileInterpreter && TypeProfileCasts) {
1849     Label profile_continue;
1850 
1851     // If no method data exists, go to profile_continue.
1852     test_method_data_pointer(profile_continue);
1853 
1854     int count_offset = in_bytes(CounterData::count_offset());
1855     // Back up the address, since we have already bumped the mdp.
1856     count_offset -= in_bytes(ReceiverTypeData::receiver_type_data_size());
1857 
1858     // *Decrement* the counter.  We expect to see zero or small negatives.
1859     increment_mdp_data_at(count_offset, scratch, true);
1860 
1861     bind (profile_continue);
1862   }
1863 }
1864 
1865 // Count the default case of a switch construct.
1866 
1867 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
1868   if (ProfileInterpreter) {
1869     Label profile_continue;
1870 
1871     // If no method data exists, go to profile_continue.
1872     test_method_data_pointer(profile_continue);
1873 
1874     // Update the default case count
1875     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1876                           scratch);
1877 
1878     // The method data pointer needs to be updated.
1879     update_mdp_by_offset(
1880                     in_bytes(MultiBranchData::default_displacement_offset()),
1881                     scratch);
1882 
1883     bind (profile_continue);
1884   }
1885 }
1886 
1887 // Count the index'th case of a switch construct.
1888 
1889 void InterpreterMacroAssembler::profile_switch_case(Register index,
1890                                                     Register scratch,
1891                                                     Register scratch2,
1892                                                     Register scratch3) {
1893   if (ProfileInterpreter) {
1894     Label profile_continue;
1895 
1896     // If no method data exists, go to profile_continue.
1897     test_method_data_pointer(profile_continue);
1898 
1899     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
1900     set(in_bytes(MultiBranchData::per_case_size()), scratch);
1901     smul(index, scratch, scratch);
1902     add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
1903 
1904     // Update the case count
1905     increment_mdp_data_at(scratch,
1906                           in_bytes(MultiBranchData::relative_count_offset()),
1907                           scratch2,
1908                           scratch3);
1909 
1910     // The method data pointer needs to be updated.
1911     update_mdp_by_offset(scratch,
1912                      in_bytes(MultiBranchData::relative_displacement_offset()),
1913                      scratch2);
1914 
1915     bind (profile_continue);
1916   }
1917 }
1918 
1919 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr, Register tmp) {
1920   Label not_null, do_nothing, do_update;
1921 
1922   assert_different_registers(obj, mdo_addr.base(), tmp);
1923 
1924   verify_oop(obj);
1925 
1926   ld_ptr(mdo_addr, tmp);
1927 
1928   br_notnull_short(obj, pt, not_null);
1929   or3(tmp, TypeEntries::null_seen, tmp);
1930   ba_short(do_update);
1931 
1932   bind(not_null);
1933   load_klass(obj, obj);
1934 
1935   xor3(obj, tmp, obj);
1936   btst(TypeEntries::type_klass_mask, obj);
1937   // klass seen before, nothing to do. The unknown bit may have been
1938   // set already but no need to check.
1939   brx(zero, false, pt, do_nothing);
1940   delayed()->
1941 
1942   btst(TypeEntries::type_unknown, obj);
1943   // already unknown. Nothing to do anymore.
1944   brx(notZero, false, pt, do_nothing);
1945   delayed()->
1946 
1947   btst(TypeEntries::type_mask, tmp);
1948   brx(zero, true, pt, do_update);
1949   // first time here. Set profile type.
1950   delayed()->or3(tmp, obj, tmp);
1951 
1952   // different than before. Cannot keep accurate profile.
1953   or3(tmp, TypeEntries::type_unknown, tmp);
1954 
1955   bind(do_update);
1956   // update profile
1957   st_ptr(tmp, mdo_addr);
1958 
1959   bind(do_nothing);
1960 }
1961 
1962 void InterpreterMacroAssembler::profile_arguments_type(Register callee, Register tmp1, Register tmp2, bool is_virtual) {
1963   if (!ProfileInterpreter) {
1964     return;
1965   }
1966 
1967   assert_different_registers(callee, tmp1, tmp2, ImethodDataPtr);
1968 
1969   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1970     Label profile_continue;
1971 
1972     test_method_data_pointer(profile_continue);
1973 
1974     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1975 
1976     ldub(ImethodDataPtr, in_bytes(DataLayout::tag_offset()) - off_to_start, tmp1);
1977     cmp_and_br_short(tmp1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag, notEqual, pn, profile_continue);
1978 
1979     if (MethodData::profile_arguments()) {
1980       Label done;
1981       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1982       add(ImethodDataPtr, off_to_args, ImethodDataPtr);
1983 
1984       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1985         if (i > 0 || MethodData::profile_return()) {
1986           // If return value type is profiled we may have no argument to profile
1987           ld_ptr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, tmp1);
1988           sub(tmp1, i*TypeStackSlotEntries::per_arg_count(), tmp1);
1989           cmp_and_br_short(tmp1, TypeStackSlotEntries::per_arg_count(), less, pn, done);
1990         }
1991         ld_ptr(Address(callee, Method::const_offset()), tmp1);
1992         lduh(Address(tmp1, ConstMethod::size_of_parameters_offset()), tmp1);
1993         // stack offset o (zero based) from the start of the argument
1994         // list, for n arguments translates into offset n - o - 1 from
1995         // the end of the argument list. But there's an extra slot at
1996         // the stop of the stack. So the offset is n - o from Lesp.
1997         ld_ptr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args, tmp2);
1998         sub(tmp1, tmp2, tmp1);
1999 
2000         // Can't use MacroAssembler::argument_address() which needs Gargs to be set up
2001         sll(tmp1, Interpreter::logStackElementSize, tmp1);
2002         ld_ptr(Lesp, tmp1, tmp1);
2003 
2004         Address mdo_arg_addr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
2005         profile_obj_type(tmp1, mdo_arg_addr, tmp2);
2006 
2007         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
2008         add(ImethodDataPtr, to_add, ImethodDataPtr);
2009         off_to_args += to_add;
2010       }
2011 
2012       if (MethodData::profile_return()) {
2013         ld_ptr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, tmp1);
2014         sub(tmp1, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count(), tmp1);
2015       }
2016 
2017       bind(done);
2018 
2019       if (MethodData::profile_return()) {
2020         // We're right after the type profile for the last
2021         // argument. tmp1 is the number of cells left in the
2022         // CallTypeData/VirtualCallTypeData to reach its end. Non null
2023         // if there's a return to profile.
2024         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
2025         sll(tmp1, exact_log2(DataLayout::cell_size), tmp1);
2026         add(ImethodDataPtr, tmp1, ImethodDataPtr);
2027       }
2028     } else {
2029       assert(MethodData::profile_return(), "either profile call args or call ret");
2030       update_mdp_by_constant(in_bytes(TypeEntriesAtCall::return_only_size()));
2031     }
2032 
2033     // mdp points right after the end of the
2034     // CallTypeData/VirtualCallTypeData, right after the cells for the
2035     // return value type if there's one.
2036 
2037     bind(profile_continue);
2038   }
2039 }
2040 
2041 void InterpreterMacroAssembler::profile_return_type(Register ret, Register tmp1, Register tmp2) {
2042   assert_different_registers(ret, tmp1, tmp2);
2043   if (ProfileInterpreter && MethodData::profile_return()) {
2044     Label profile_continue, done;
2045 
2046     test_method_data_pointer(profile_continue);
2047 
2048     if (MethodData::profile_return_jsr292_only()) {
2049       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
2050 
2051       // If we don't profile all invoke bytecodes we must make sure
2052       // it's a bytecode we indeed profile. We can't go back to the
2053       // begining of the ProfileData we intend to update to check its
2054       // type because we're right after it and we don't known its
2055       // length.
2056       Label do_profile;
2057       ldub(Lbcp, 0, tmp1);
2058       cmp_and_br_short(tmp1, Bytecodes::_invokedynamic, equal, pn, do_profile);
2059       cmp(tmp1, Bytecodes::_invokehandle);
2060       br(equal, false, pn, do_profile);
2061       delayed()->lduh(Lmethod, Method::intrinsic_id_offset_in_bytes(), tmp1);
2062       cmp_and_br_short(tmp1, vmIntrinsics::_compiledLambdaForm, notEqual, pt, profile_continue);
2063 
2064       bind(do_profile);
2065     }
2066 
2067     Address mdo_ret_addr(ImethodDataPtr, -in_bytes(ReturnTypeEntry::size()));
2068     mov(ret, tmp1);
2069     profile_obj_type(tmp1, mdo_ret_addr, tmp2);
2070 
2071     bind(profile_continue);
2072   }
2073 }
2074 
2075 void InterpreterMacroAssembler::profile_parameters_type(Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
2076   if (ProfileInterpreter && MethodData::profile_parameters()) {
2077     Label profile_continue, done;
2078 
2079     test_method_data_pointer(profile_continue);
2080 
2081     // Load the offset of the area within the MDO used for
2082     // parameters. If it's negative we're not profiling any parameters.
2083     lduw(ImethodDataPtr, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()), tmp1);
2084     cmp_and_br_short(tmp1, 0, less, pn, profile_continue);
2085 
2086     // Compute a pointer to the area for parameters from the offset
2087     // and move the pointer to the slot for the last
2088     // parameters. Collect profiling from last parameter down.
2089     // mdo start + parameters offset + array length - 1
2090 
2091     // Pointer to the parameter area in the MDO
2092     Register mdp = tmp1;
2093     add(ImethodDataPtr, tmp1, mdp);
2094 
2095     // offset of the current profile entry to update
2096     Register entry_offset = tmp2;
2097     // entry_offset = array len in number of cells
2098     ld_ptr(mdp, ArrayData::array_len_offset(), entry_offset);
2099 
2100     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
2101     assert(off_base % DataLayout::cell_size == 0, "should be a number of cells");
2102 
2103     // entry_offset (number of cells)  = array len - size of 1 entry + offset of the stack slot field
2104     sub(entry_offset, TypeStackSlotEntries::per_arg_count() - (off_base / DataLayout::cell_size), entry_offset);
2105     // entry_offset in bytes
2106     sll(entry_offset, exact_log2(DataLayout::cell_size), entry_offset);
2107 
2108     Label loop;
2109     bind(loop);
2110 
2111     // load offset on the stack from the slot for this parameter
2112     ld_ptr(mdp, entry_offset, tmp3);
2113     sll(tmp3,Interpreter::logStackElementSize, tmp3);
2114     neg(tmp3);
2115     // read the parameter from the local area
2116     ld_ptr(Llocals, tmp3, tmp3);
2117 
2118     // make entry_offset now point to the type field for this parameter
2119     int type_base = in_bytes(ParametersTypeData::type_offset(0));
2120     assert(type_base > off_base, "unexpected");
2121     add(entry_offset, type_base - off_base, entry_offset);
2122 
2123     // profile the parameter
2124     Address arg_type(mdp, entry_offset);
2125     profile_obj_type(tmp3, arg_type, tmp4);
2126 
2127     // go to next parameter
2128     sub(entry_offset, TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size + (type_base - off_base), entry_offset);
2129     cmp_and_br_short(entry_offset, off_base, greaterEqual, pt, loop);
2130 
2131     bind(profile_continue);
2132   }
2133 }
2134 
2135 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
2136 
2137 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
2138                                                       Register Rtemp,
2139                                                       Register Rtemp2 ) {
2140 
2141   Register Rlimit = Lmonitors;
2142   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2143   assert( (delta & LongAlignmentMask) == 0,
2144           "sizeof BasicObjectLock must be even number of doublewords");
2145 
2146   sub( SP,        delta, SP);
2147   sub( Lesp,      delta, Lesp);
2148   sub( Lmonitors, delta, Lmonitors);
2149 
2150   if (!stack_is_empty) {
2151 
2152     // must copy stack contents down
2153 
2154     Label start_copying, next;
2155 
2156     // untested("monitor stack expansion");
2157     compute_stack_base(Rtemp);
2158     ba(start_copying);
2159     delayed()->cmp(Rtemp, Rlimit); // done? duplicated below
2160 
2161     // note: must copy from low memory upwards
2162     // On entry to loop,
2163     // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
2164     // Loop mutates Rtemp
2165 
2166     bind( next);
2167 
2168     st_ptr(Rtemp2, Rtemp, 0);
2169     inc(Rtemp, wordSize);
2170     cmp(Rtemp, Rlimit); // are we done? (duplicated above)
2171 
2172     bind( start_copying );
2173 
2174     brx( notEqual, true, pn, next );
2175     delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
2176 
2177     // done copying stack
2178   }
2179 }
2180 
2181 // Locals
2182 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
2183   assert_not_delayed();
2184   sll(index, Interpreter::logStackElementSize, index);
2185   sub(Llocals, index, index);
2186   ld_ptr(index, 0, dst);
2187   // Note:  index must hold the effective address--the iinc template uses it
2188 }
2189 
2190 // Just like access_local_ptr but the tag is a returnAddress
2191 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
2192                                                            Register dst ) {
2193   assert_not_delayed();
2194   sll(index, Interpreter::logStackElementSize, index);
2195   sub(Llocals, index, index);
2196   ld_ptr(index, 0, dst);
2197 }
2198 
2199 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
2200   assert_not_delayed();
2201   sll(index, Interpreter::logStackElementSize, index);
2202   sub(Llocals, index, index);
2203   ld(index, 0, dst);
2204   // Note:  index must hold the effective address--the iinc template uses it
2205 }
2206 
2207 
2208 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
2209   assert_not_delayed();
2210   sll(index, Interpreter::logStackElementSize, index);
2211   sub(Llocals, index, index);
2212   // First half stored at index n+1 (which grows down from Llocals[n])
2213   load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
2214 }
2215 
2216 
2217 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
2218   assert_not_delayed();
2219   sll(index, Interpreter::logStackElementSize, index);
2220   sub(Llocals, index, index);
2221   ldf(FloatRegisterImpl::S, index, 0, dst);
2222 }
2223 
2224 
2225 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
2226   assert_not_delayed();
2227   sll(index, Interpreter::logStackElementSize, index);
2228   sub(Llocals, index, index);
2229   load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
2230 }
2231 
2232 
2233 #ifdef ASSERT
2234 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
2235   Label L;
2236 
2237   assert(Rindex != Rscratch, "Registers cannot be same");
2238   assert(Rindex != Rscratch1, "Registers cannot be same");
2239   assert(Rlimit != Rscratch, "Registers cannot be same");
2240   assert(Rlimit != Rscratch1, "Registers cannot be same");
2241   assert(Rscratch1 != Rscratch, "Registers cannot be same");
2242 
2243   // untested("reg area corruption");
2244   add(Rindex, offset, Rscratch);
2245   add(Rlimit, 64 + STACK_BIAS, Rscratch1);
2246   cmp_and_brx_short(Rscratch, Rscratch1, Assembler::greaterEqualUnsigned, pn, L);
2247   stop("regsave area is being clobbered");
2248   bind(L);
2249 }
2250 #endif // ASSERT
2251 
2252 
2253 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
2254   assert_not_delayed();
2255   sll(index, Interpreter::logStackElementSize, index);
2256   sub(Llocals, index, index);
2257   debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
2258   st(src, index, 0);
2259 }
2260 
2261 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
2262   assert_not_delayed();
2263   sll(index, Interpreter::logStackElementSize, index);
2264   sub(Llocals, index, index);
2265 #ifdef ASSERT
2266   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2267 #endif
2268   st_ptr(src, index, 0);
2269 }
2270 
2271 
2272 
2273 void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
2274   st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
2275 }
2276 
2277 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
2278   assert_not_delayed();
2279   sll(index, Interpreter::logStackElementSize, index);
2280   sub(Llocals, index, index);
2281 #ifdef ASSERT
2282   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2283 #endif
2284   store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
2285 }
2286 
2287 
2288 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
2289   assert_not_delayed();
2290   sll(index, Interpreter::logStackElementSize, index);
2291   sub(Llocals, index, index);
2292 #ifdef ASSERT
2293   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2294 #endif
2295   stf(FloatRegisterImpl::S, src, index, 0);
2296 }
2297 
2298 
2299 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
2300   assert_not_delayed();
2301   sll(index, Interpreter::logStackElementSize, index);
2302   sub(Llocals, index, index);
2303 #ifdef ASSERT
2304   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2305 #endif
2306   store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
2307 }
2308 
2309 
2310 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
2311   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2312   int rounded_vm_local_words = align_up((int)frame::interpreter_frame_vm_local_words, WordsPerLong);
2313   return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
2314 }
2315 
2316 
2317 Address InterpreterMacroAssembler::top_most_monitor() {
2318   return Address(FP, top_most_monitor_byte_offset());
2319 }
2320 
2321 
2322 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
2323   add( Lesp,      wordSize,                                    Rdest );
2324 }
2325 
2326 void InterpreterMacroAssembler::get_method_counters(Register method,
2327                                                     Register Rcounters,
2328                                                     Label& skip) {
2329   Label has_counters;
2330   Address method_counters(method, in_bytes(Method::method_counters_offset()));
2331   ld_ptr(method_counters, Rcounters);
2332   br_notnull_short(Rcounters, Assembler::pt, has_counters);
2333   call_VM(noreg, CAST_FROM_FN_PTR(address,
2334           InterpreterRuntime::build_method_counters), method);
2335   ld_ptr(method_counters, Rcounters);
2336   br_null(Rcounters, false, Assembler::pn, skip); // No MethodCounters, OutOfMemory
2337   delayed()->nop();
2338   bind(has_counters);
2339 }
2340 
2341 void InterpreterMacroAssembler::increment_invocation_counter( Register Rcounters, Register Rtmp, Register Rtmp2 ) {
2342   assert(UseCompiler || LogTouchedMethods, "incrementing must be useful");
2343   assert_different_registers(Rcounters, Rtmp, Rtmp2);
2344 
2345   Address inv_counter(Rcounters, MethodCounters::invocation_counter_offset() +
2346                                  InvocationCounter::counter_offset());
2347   Address be_counter (Rcounters, MethodCounters::backedge_counter_offset() +
2348                                  InvocationCounter::counter_offset());
2349   int delta = InvocationCounter::count_increment;
2350 
2351   // Load each counter in a register
2352   ld( inv_counter, Rtmp );
2353   ld( be_counter, Rtmp2 );
2354 
2355   assert( is_simm13( delta ), " delta too large.");
2356 
2357   // Add the delta to the invocation counter and store the result
2358   add( Rtmp, delta, Rtmp );
2359 
2360   // Mask the backedge counter
2361   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2362 
2363   // Store value
2364   st( Rtmp, inv_counter);
2365 
2366   // Add invocation counter + backedge counter
2367   add( Rtmp, Rtmp2, Rtmp);
2368 
2369   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
2370 }
2371 
2372 void InterpreterMacroAssembler::increment_backedge_counter( Register Rcounters, Register Rtmp, Register Rtmp2 ) {
2373   assert(UseCompiler, "incrementing must be useful");
2374   assert_different_registers(Rcounters, Rtmp, Rtmp2);
2375 
2376   Address be_counter (Rcounters, MethodCounters::backedge_counter_offset() +
2377                                  InvocationCounter::counter_offset());
2378   Address inv_counter(Rcounters, MethodCounters::invocation_counter_offset() +
2379                                  InvocationCounter::counter_offset());
2380 
2381   int delta = InvocationCounter::count_increment;
2382   // Load each counter in a register
2383   ld( be_counter, Rtmp );
2384   ld( inv_counter, Rtmp2 );
2385 
2386   // Add the delta to the backedge counter
2387   add( Rtmp, delta, Rtmp );
2388 
2389   // Mask the invocation counter, add to backedge counter
2390   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2391 
2392   // and store the result to memory
2393   st( Rtmp, be_counter );
2394 
2395   // Add backedge + invocation counter
2396   add( Rtmp, Rtmp2, Rtmp );
2397 
2398   // Note that this macro must leave backedge_count + invocation_count in Rtmp!
2399 }
2400 
2401 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
2402                                                              Register method_counters,
2403                                                              Register branch_bcp,
2404                                                              Register Rtmp ) {
2405   Label did_not_overflow;
2406   Label overflow_with_error;
2407   assert_different_registers(backedge_count, Rtmp, branch_bcp);
2408   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
2409 
2410   Address limit(method_counters, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()));
2411   ld(limit, Rtmp);
2412   cmp_and_br_short(backedge_count, Rtmp, Assembler::lessUnsigned, Assembler::pt, did_not_overflow);
2413 
2414   // When ProfileInterpreter is on, the backedge_count comes from the
2415   // MethodData*, which value does not get reset on the call to
2416   // frequency_counter_overflow().  To avoid excessive calls to the overflow
2417   // routine while the method is being compiled, add a second test to make sure
2418   // the overflow function is called only once every overflow_frequency.
2419   if (ProfileInterpreter) {
2420     const int overflow_frequency = 1024;
2421     andcc(backedge_count, overflow_frequency-1, Rtmp);
2422     brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
2423     delayed()->nop();
2424   }
2425 
2426   // overflow in loop, pass branch bytecode
2427   set(6,Rtmp);
2428   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
2429 
2430   // Was an OSR adapter generated?
2431   // O0 = osr nmethod
2432   br_null_short(O0, Assembler::pn, overflow_with_error);
2433 
2434   // Has the nmethod been invalidated already?
2435   ldub(O0, nmethod::state_offset(), O2);
2436   cmp_and_br_short(O2, nmethod::in_use, Assembler::notEqual, Assembler::pn, overflow_with_error);
2437 
2438   // migrate the interpreter frame off of the stack
2439 
2440   mov(G2_thread, L7);
2441   // save nmethod
2442   mov(O0, L6);
2443   set_last_Java_frame(SP, noreg);
2444   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
2445   reset_last_Java_frame();
2446   mov(L7, G2_thread);
2447 
2448   // move OSR nmethod to I1
2449   mov(L6, I1);
2450 
2451   // OSR buffer to I0
2452   mov(O0, I0);
2453 
2454   // remove the interpreter frame
2455   restore(I5_savedSP, 0, SP);
2456 
2457   // Jump to the osr code.
2458   ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
2459   jmp(O2, G0);
2460   delayed()->nop();
2461 
2462   bind(overflow_with_error);
2463 
2464   bind(did_not_overflow);
2465 }
2466 
2467 
2468 
2469 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
2470   if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
2471 }
2472 
2473 
2474 // local helper function for the verify_oop_or_return_address macro
2475 static bool verify_return_address(Method* m, int bci) {
2476 #ifndef PRODUCT
2477   address pc = (address)(m->constMethod())
2478              + in_bytes(ConstMethod::codes_offset()) + bci;
2479   // assume it is a valid return address if it is inside m and is preceded by a jsr
2480   if (!m->contains(pc))                                          return false;
2481   address jsr_pc;
2482   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2483   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
2484   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2485   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
2486 #endif // PRODUCT
2487   return false;
2488 }
2489 
2490 
2491 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2492   if (!VerifyOops)  return;
2493   // the VM documentation for the astore[_wide] bytecode allows
2494   // the TOS to be not only an oop but also a return address
2495   Label test;
2496   Label skip;
2497   // See if it is an address (in the current method):
2498 
2499   mov(reg, Rtmp);
2500   const int log2_bytecode_size_limit = 16;
2501   srl(Rtmp, log2_bytecode_size_limit, Rtmp);
2502   br_notnull_short( Rtmp, pt, test );
2503 
2504   // %%% should use call_VM_leaf here?
2505   save_frame_and_mov(0, Lmethod, O0, reg, O1);
2506   save_thread(L7_thread_cache);
2507   call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
2508   delayed()->nop();
2509   restore_thread(L7_thread_cache);
2510   br_notnull( O0, false, pt, skip );
2511   delayed()->restore();
2512 
2513   // Perform a more elaborate out-of-line call
2514   // Not an address; verify it:
2515   bind(test);
2516   verify_oop(reg);
2517   bind(skip);
2518 }
2519 
2520 
2521 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
2522 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
2523                                                         int increment, Address mask_addr,
2524                                                         Register scratch1, Register scratch2,
2525                                                         Condition cond, Label *where) {
2526   ld(counter_addr, scratch1);
2527   add(scratch1, increment, scratch1);
2528   ld(mask_addr, scratch2);
2529   andcc(scratch1, scratch2,  G0);
2530   br(cond, false, Assembler::pn, *where);
2531   delayed()->st(scratch1, counter_addr);
2532 }
2533 
2534 // Inline assembly for:
2535 //
2536 // if (thread is in interp_only_mode) {
2537 //   InterpreterRuntime::post_method_entry();
2538 // }
2539 // if (DTraceMethodProbes) {
2540 //   SharedRuntime::dtrace_method_entry(method, receiver);
2541 // }
2542 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2543 //   SharedRuntime::rc_trace_method_entry(method, receiver);
2544 // }
2545 
2546 void InterpreterMacroAssembler::notify_method_entry() {
2547 
2548   // Whenever JVMTI puts a thread in interp_only_mode, method
2549   // entry/exit events are sent for that thread to track stack
2550   // depth.  If it is possible to enter interp_only_mode we add
2551   // the code to check if the event should be sent.
2552   if (JvmtiExport::can_post_interpreter_events()) {
2553     Label L;
2554     Register temp_reg = O5;
2555     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2556     ld(interp_only, temp_reg);
2557     cmp_and_br_short(temp_reg, 0, equal, pt, L);
2558     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
2559     bind(L);
2560   }
2561 
2562   {
2563     Register temp_reg = O5;
2564     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2565     call_VM_leaf(noreg,
2566       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2567       G2_thread, Lmethod);
2568   }
2569 
2570   // RedefineClasses() tracing support for obsolete method entry
2571   if (log_is_enabled(Trace, redefine, class, obsolete)) {
2572     call_VM_leaf(noreg,
2573       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2574       G2_thread, Lmethod);
2575   }
2576 }
2577 
2578 
2579 // Inline assembly for:
2580 //
2581 // if (thread is in interp_only_mode) {
2582 //   // save result
2583 //   InterpreterRuntime::post_method_exit();
2584 //   // restore result
2585 // }
2586 // if (DTraceMethodProbes) {
2587 //   SharedRuntime::dtrace_method_exit(thread, method);
2588 // }
2589 //
2590 // Native methods have their result stored in d_tmp and l_tmp
2591 // Java methods have their result stored in the expression stack
2592 
2593 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
2594                                                    TosState state,
2595                                                    NotifyMethodExitMode mode) {
2596 
2597   // Whenever JVMTI puts a thread in interp_only_mode, method
2598   // entry/exit events are sent for that thread to track stack
2599   // depth.  If it is possible to enter interp_only_mode we add
2600   // the code to check if the event should be sent.
2601   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2602     Label L;
2603     Register temp_reg = O5;
2604     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2605     ld(interp_only, temp_reg);
2606     cmp_and_br_short(temp_reg, 0, equal, pt, L);
2607 
2608     // Note: frame::interpreter_frame_result has a dependency on how the
2609     // method result is saved across the call to post_method_exit. For
2610     // native methods it assumes the result registers are saved to
2611     // l_scratch and d_scratch. If this changes then the interpreter_frame_result
2612     // implementation will need to be updated too.
2613 
2614     save_return_value(state, is_native_method);
2615     call_VM(noreg,
2616             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2617     restore_return_value(state, is_native_method);
2618     bind(L);
2619   }
2620 
2621   {
2622     Register temp_reg = O5;
2623     // Dtrace notification
2624     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2625     save_return_value(state, is_native_method);
2626     call_VM_leaf(
2627       noreg,
2628       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2629       G2_thread, Lmethod);
2630     restore_return_value(state, is_native_method);
2631   }
2632 }
2633 
2634 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
2635   if (is_native_call) {
2636     stf(FloatRegisterImpl::D, F0, d_tmp);
2637     stx(O0, l_tmp);
2638   } else {
2639     push(state);
2640   }
2641 }
2642 
2643 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
2644   if (is_native_call) {
2645     ldf(FloatRegisterImpl::D, d_tmp, F0);
2646     ldx(l_tmp, O0);
2647   } else {
2648     pop(state);
2649   }
2650 }