1 //
   2 // Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 // 64-bit build means 64-bit pointers means hi/lo pairs
 315 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 316                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 317                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 318                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 319 // Lock encodings use G3 and G4 internally
 320 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 321                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 322                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 323                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 324 // Special class for storeP instructions, which can store SP or RPC to TLS.
 325 // It is also used for memory addressing, allowing direct TLS addressing.
 326 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 327                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 328                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 329                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 330 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 331 // We use it to save R_G2 across calls out of Java.
 332 reg_class l7_regP(R_L7H,R_L7);
 333 
 334 // Other special pointer regs
 335 reg_class g1_regP(R_G1H,R_G1);
 336 reg_class g2_regP(R_G2H,R_G2);
 337 reg_class g3_regP(R_G3H,R_G3);
 338 reg_class g4_regP(R_G4H,R_G4);
 339 reg_class g5_regP(R_G5H,R_G5);
 340 reg_class i0_regP(R_I0H,R_I0);
 341 reg_class o0_regP(R_O0H,R_O0);
 342 reg_class o1_regP(R_O1H,R_O1);
 343 reg_class o2_regP(R_O2H,R_O2);
 344 reg_class o7_regP(R_O7H,R_O7);
 345 
 346 
 347 // ----------------------------
 348 // Long Register Classes
 349 // ----------------------------
 350 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 351 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 352 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 353                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 354 // 64-bit, longs in 1 register: use all 64-bit integer registers
 355                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 356                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 357                   );
 358 
 359 reg_class g1_regL(R_G1H,R_G1);
 360 reg_class g3_regL(R_G3H,R_G3);
 361 reg_class o2_regL(R_O2H,R_O2);
 362 reg_class o7_regL(R_O7H,R_O7);
 363 
 364 // ----------------------------
 365 // Special Class for Condition Code Flags Register
 366 reg_class int_flags(CCR);
 367 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 368 reg_class float_flag0(FCC0);
 369 
 370 
 371 // ----------------------------
 372 // Float Point Register Classes
 373 // ----------------------------
 374 // Skip F30/F31, they are reserved for mem-mem copies
 375 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 376 
 377 // Paired floating point registers--they show up in the same order as the floats,
 378 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 379 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 380                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 381                    /* Use extra V9 double registers; this AD file does not support V8 */
 382                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 383                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 384                    );
 385 
 386 // Paired floating point registers--they show up in the same order as the floats,
 387 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 388 // This class is usable for mis-aligned loads as happen in I2C adapters.
 389 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 390                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 391 %}
 392 
 393 //----------DEFINITION BLOCK---------------------------------------------------
 394 // Define name --> value mappings to inform the ADLC of an integer valued name
 395 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 396 // Format:
 397 //        int_def  <name>         ( <int_value>, <expression>);
 398 // Generated Code in ad_<arch>.hpp
 399 //        #define  <name>   (<expression>)
 400 //        // value == <int_value>
 401 // Generated code in ad_<arch>.cpp adlc_verification()
 402 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 403 //
 404 definitions %{
 405 // The default cost (of an ALU instruction).
 406   int_def DEFAULT_COST      (    100,     100);
 407   int_def HUGE_COST         (1000000, 1000000);
 408 
 409 // Memory refs are twice as expensive as run-of-the-mill.
 410   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 411 
 412 // Branches are even more expensive.
 413   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 414   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 415 %}
 416 
 417 
 418 //----------SOURCE BLOCK-------------------------------------------------------
 419 // This is a block of C++ code which provides values, functions, and
 420 // definitions necessary in the rest of the architecture description
 421 source_hpp %{
 422 // Header information of the source block.
 423 // Method declarations/definitions which are used outside
 424 // the ad-scope can conveniently be defined here.
 425 //
 426 // To keep related declarations/definitions/uses close together,
 427 // we switch between source %{ }% and source_hpp %{ }% freely as needed.
 428 
 429 // Must be visible to the DFA in dfa_sparc.cpp
 430 extern bool can_branch_register( Node *bol, Node *cmp );
 431 
 432 extern bool use_block_zeroing(Node* count);
 433 
 434 // Macros to extract hi & lo halves from a long pair.
 435 // G0 is not part of any long pair, so assert on that.
 436 // Prevents accidentally using G1 instead of G0.
 437 #define LONG_HI_REG(x) (x)
 438 #define LONG_LO_REG(x) (x)
 439 
 440 class CallStubImpl {
 441 
 442   //--------------------------------------------------------------
 443   //---<  Used for optimization in Compile::Shorten_branches  >---
 444   //--------------------------------------------------------------
 445 
 446  public:
 447   // Size of call trampoline stub.
 448   static uint size_call_trampoline() {
 449     return 0; // no call trampolines on this platform
 450   }
 451 
 452   // number of relocations needed by a call trampoline stub
 453   static uint reloc_call_trampoline() {
 454     return 0; // no call trampolines on this platform
 455   }
 456 };
 457 
 458 class HandlerImpl {
 459 
 460  public:
 461 
 462   static int emit_exception_handler(CodeBuffer &cbuf);
 463   static int emit_deopt_handler(CodeBuffer& cbuf);
 464 
 465   static uint size_exception_handler() {
 466     return ( NativeJump::instruction_size ); // sethi;jmp;nop
 467   }
 468 
 469   static uint size_deopt_handler() {
 470     return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
 471   }
 472 };
 473 
 474 class Node::PD {
 475 public:
 476   enum NodeFlags {
 477     _last_flag = Node::_last_flag
 478   };
 479 };
 480 
 481 %}
 482 
 483 source %{
 484 #define __ _masm.
 485 
 486 // tertiary op of a LoadP or StoreP encoding
 487 #define REGP_OP true
 488 
 489 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 490 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 491 static Register reg_to_register_object(int register_encoding);
 492 
 493 void PhaseOutput::pd_perform_mach_node_analysis() {
 494 }
 495 
 496 int MachNode::pd_alignment_required() const {
 497   return 1;
 498 }
 499 
 500 int MachNode::compute_padding(int current_offset) const {
 501   return 0;
 502 }
 503 
 504 // Used by the DFA in dfa_sparc.cpp.
 505 // Check for being able to use a V9 branch-on-register.  Requires a
 506 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 507 // extended.  Doesn't work following an integer ADD, for example, because of
 508 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 509 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 510 // replace them with zero, which could become sign-extension in a different OS
 511 // release.  There's no obvious reason why an interrupt will ever fill these
 512 // bits with non-zero junk (the registers are reloaded with standard LD
 513 // instructions which either zero-fill or sign-fill).
 514 bool can_branch_register( Node *bol, Node *cmp ) {
 515   if( !BranchOnRegister ) return false;
 516   if( cmp->Opcode() == Op_CmpP )
 517     return true;  // No problems with pointer compares
 518   if( cmp->Opcode() == Op_CmpL )
 519     return true;  // No problems with long compares
 520 
 521   if( !SparcV9RegsHiBitsZero ) return false;
 522   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 523       bol->as_Bool()->_test._test != BoolTest::eq )
 524      return false;
 525 
 526   // Check for comparing against a 'safe' value.  Any operation which
 527   // clears out the high word is safe.  Thus, loads and certain shifts
 528   // are safe, as are non-negative constants.  Any operation which
 529   // preserves zero bits in the high word is safe as long as each of its
 530   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 531   // inputs are safe.  At present, the only important case to recognize
 532   // seems to be loads.  Constants should fold away, and shifts &
 533   // logicals can use the 'cc' forms.
 534   Node *x = cmp->in(1);
 535   if( x->is_Load() ) return true;
 536   if( x->is_Phi() ) {
 537     for( uint i = 1; i < x->req(); i++ )
 538       if( !x->in(i)->is_Load() )
 539         return false;
 540     return true;
 541   }
 542   return false;
 543 }
 544 
 545 bool use_block_zeroing(Node* count) {
 546   // Use BIS for zeroing if count is not constant
 547   // or it is >= BlockZeroingLowLimit.
 548   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
 549 }
 550 
 551 // ****************************************************************************
 552 
 553 // REQUIRED FUNCTIONALITY
 554 
 555 // !!!!! Special hack to get all type of calls to specify the byte offset
 556 //       from the start of the call to the point where the return address
 557 //       will point.
 558 //       The "return address" is the address of the call instruction, plus 8.
 559 
 560 int MachCallStaticJavaNode::ret_addr_offset() {
 561   int offset = NativeCall::instruction_size;  // call; delay slot
 562   if (_method_handle_invoke)
 563     offset += 4;  // restore SP
 564   return offset;
 565 }
 566 
 567 int MachCallDynamicJavaNode::ret_addr_offset() {
 568   int vtable_index = this->_vtable_index;
 569   if (vtable_index < 0) {
 570     // must be invalid_vtable_index, not nonvirtual_vtable_index
 571     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
 572     return (NativeMovConstReg::instruction_size +
 573            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 574   } else {
 575     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 576     int entry_offset = in_bytes(Klass::vtable_start_offset()) + vtable_index*vtableEntry::size_in_bytes();
 577     int v_off = entry_offset + vtableEntry::method_offset_in_bytes();
 578     int klass_load_size;
 579     if (UseCompressedClassPointers) {
 580       assert(Universe::heap() != NULL, "java heap should be initialized");
 581       klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
 582     } else {
 583       klass_load_size = 1*BytesPerInstWord;
 584     }
 585     if (Assembler::is_simm13(v_off)) {
 586       return klass_load_size +
 587              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 588              NativeCall::instruction_size);  // call; delay slot
 589     } else {
 590       return klass_load_size +
 591              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 592              NativeCall::instruction_size);  // call; delay slot
 593     }
 594   }
 595 }
 596 
 597 int MachCallRuntimeNode::ret_addr_offset() {
 598   if (MacroAssembler::is_far_target(entry_point())) {
 599     return NativeFarCall::instruction_size;
 600   } else {
 601     return NativeCall::instruction_size;
 602   }
 603 }
 604 
 605 // Indicate if the safepoint node needs the polling page as an input.
 606 // Since Sparc does not have absolute addressing, it does.
 607 bool SafePointNode::needs_polling_address_input() {
 608   return true;
 609 }
 610 
 611 // emit an interrupt that is caught by the debugger (for debugging compiler)
 612 void emit_break(CodeBuffer &cbuf) {
 613   C2_MacroAssembler _masm(&cbuf);
 614   __ breakpoint_trap();
 615 }
 616 
 617 #ifndef PRODUCT
 618 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 619   st->print("TA");
 620 }
 621 #endif
 622 
 623 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 624   emit_break(cbuf);
 625 }
 626 
 627 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 628   return MachNode::size(ra_);
 629 }
 630 
 631 // Traceable jump
 632 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 633   C2_MacroAssembler _masm(&cbuf);
 634   Register rdest = reg_to_register_object(jump_target);
 635   __ JMP(rdest, 0);
 636   __ delayed()->nop();
 637 }
 638 
 639 // Traceable jump and set exception pc
 640 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 641   C2_MacroAssembler _masm(&cbuf);
 642   Register rdest = reg_to_register_object(jump_target);
 643   __ JMP(rdest, 0);
 644   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 645 }
 646 
 647 void emit_nop(CodeBuffer &cbuf) {
 648   C2_MacroAssembler _masm(&cbuf);
 649   __ nop();
 650 }
 651 
 652 void emit_illtrap(CodeBuffer &cbuf) {
 653   C2_MacroAssembler _masm(&cbuf);
 654   __ illtrap(0);
 655 }
 656 
 657 
 658 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 659   assert(n->rule() != loadUB_rule, "");
 660 
 661   intptr_t offset = 0;
 662   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 663   const Node* addr = n->get_base_and_disp(offset, adr_type);
 664   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 665   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 666   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 667   atype = atype->add_offset(offset);
 668   assert(disp32 == offset, "wrong disp32");
 669   return atype->_offset;
 670 }
 671 
 672 
 673 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 674   assert(n->rule() != loadUB_rule, "");
 675 
 676   intptr_t offset = 0;
 677   Node* addr = n->in(2);
 678   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 679   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 680     Node* a = addr->in(2/*AddPNode::Address*/);
 681     Node* o = addr->in(3/*AddPNode::Offset*/);
 682     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 683     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 684     assert(atype->isa_oop_ptr(), "still an oop");
 685   }
 686   offset = atype->is_ptr()->_offset;
 687   if (offset != Type::OffsetBot)  offset += disp32;
 688   return offset;
 689 }
 690 
 691 static inline jlong replicate_immI(int con, int count, int width) {
 692   // Load a constant replicated "count" times with width "width"
 693   assert(count*width == 8 && width <= 4, "sanity");
 694   int bit_width = width * 8;
 695   jlong val = con;
 696   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
 697   for (int i = 0; i < count - 1; i++) {
 698     val |= (val << bit_width);
 699   }
 700   return val;
 701 }
 702 
 703 static inline jlong replicate_immF(float con) {
 704   // Replicate float con 2 times and pack into vector.
 705   int val = *((int*)&con);
 706   jlong lval = val;
 707   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
 708   return lval;
 709 }
 710 
 711 // Standard Sparc opcode form2 field breakdown
 712 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 713   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 714   int op = (f30 << 30) |
 715            (f29 << 29) |
 716            (f25 << 25) |
 717            (f22 << 22) |
 718            (f20 << 20) |
 719            (f19 << 19) |
 720            (f0  <<  0);
 721   cbuf.insts()->emit_int32(op);
 722 }
 723 
 724 // Standard Sparc opcode form2 field breakdown
 725 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 726   f0 >>= 10;           // Drop 10 bits
 727   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 728   int op = (f30 << 30) |
 729            (f25 << 25) |
 730            (f22 << 22) |
 731            (f0  <<  0);
 732   cbuf.insts()->emit_int32(op);
 733 }
 734 
 735 // Standard Sparc opcode form3 field breakdown
 736 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 737   int op = (f30 << 30) |
 738            (f25 << 25) |
 739            (f19 << 19) |
 740            (f14 << 14) |
 741            (f5  <<  5) |
 742            (f0  <<  0);
 743   cbuf.insts()->emit_int32(op);
 744 }
 745 
 746 // Standard Sparc opcode form3 field breakdown
 747 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 748   simm13 &= (1<<13)-1; // Mask to 13 bits
 749   int op = (f30 << 30) |
 750            (f25 << 25) |
 751            (f19 << 19) |
 752            (f14 << 14) |
 753            (1   << 13) | // bit to indicate immediate-mode
 754            (simm13<<0);
 755   cbuf.insts()->emit_int32(op);
 756 }
 757 
 758 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 759   simm10 &= (1<<10)-1; // Mask to 10 bits
 760   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 761 }
 762 
 763 #ifdef ASSERT
 764 // Helper function for VerifyOops in emit_form3_mem_reg
 765 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 766   warning("VerifyOops encountered unexpected instruction:");
 767   n->dump(2);
 768   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 769 }
 770 #endif
 771 
 772 
 773 void emit_form3_mem_reg(CodeBuffer &cbuf, PhaseRegAlloc* ra, const MachNode* n, int primary, int tertiary,
 774                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 775 
 776 #ifdef ASSERT
 777   // The following code implements the +VerifyOops feature.
 778   // It verifies oop values which are loaded into or stored out of
 779   // the current method activation.  +VerifyOops complements techniques
 780   // like ScavengeALot, because it eagerly inspects oops in transit,
 781   // as they enter or leave the stack, as opposed to ScavengeALot,
 782   // which inspects oops "at rest", in the stack or heap, at safepoints.
 783   // For this reason, +VerifyOops can sometimes detect bugs very close
 784   // to their point of creation.  It can also serve as a cross-check
 785   // on the validity of oop maps, when used toegether with ScavengeALot.
 786 
 787   // It would be good to verify oops at other points, especially
 788   // when an oop is used as a base pointer for a load or store.
 789   // This is presently difficult, because it is hard to know when
 790   // a base address is biased or not.  (If we had such information,
 791   // it would be easy and useful to make a two-argument version of
 792   // verify_oop which unbiases the base, and performs verification.)
 793 
 794   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 795   bool is_verified_oop_base  = false;
 796   bool is_verified_oop_load  = false;
 797   bool is_verified_oop_store = false;
 798   int tmp_enc = -1;
 799   if (VerifyOops && src1_enc != R_SP_enc) {
 800     // classify the op, mainly for an assert check
 801     int st_op = 0, ld_op = 0;
 802     switch (primary) {
 803     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 804     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 805     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 806     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 807     case Assembler::std_op3:  st_op = Op_StoreL; break;
 808     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 809     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 810 
 811     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 812     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
 813     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 814     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 815     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 816     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 817     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 818     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 819     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 820     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 821     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 822 
 823     default: ShouldNotReachHere();
 824     }
 825     if (tertiary == REGP_OP) {
 826       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 827       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 828       else                          ShouldNotReachHere();
 829       if (st_op) {
 830         // a store
 831         // inputs are (0:control, 1:memory, 2:address, 3:value)
 832         Node* n2 = n->in(3);
 833         if (n2 != NULL) {
 834           const Type* t = n2->bottom_type();
 835           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 836         }
 837       } else {
 838         // a load
 839         const Type* t = n->bottom_type();
 840         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 841       }
 842     }
 843 
 844     if (ld_op) {
 845       // a Load
 846       // inputs are (0:control, 1:memory, 2:address)
 847       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 848           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 849           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 850           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 851           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 852           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 853           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 854           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 855           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 856           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 857           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 858           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
 859           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
 860           !(n->rule() == loadUB_rule)) {
 861         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 862       }
 863     } else if (st_op) {
 864       // a Store
 865       // inputs are (0:control, 1:memory, 2:address, 3:value)
 866       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 867           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 868           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 869           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 870           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 871           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
 872           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 873         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 874       }
 875     }
 876 
 877     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 878       Node* addr = n->in(2);
 879       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 880         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 881         if (atype != NULL) {
 882           intptr_t offset = get_offset_from_base(n, atype, disp32);
 883           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 884           if (offset != offset_2) {
 885             get_offset_from_base(n, atype, disp32);
 886             get_offset_from_base_2(n, atype, disp32);
 887           }
 888           assert(offset == offset_2, "different offsets");
 889           if (offset == disp32) {
 890             // we now know that src1 is a true oop pointer
 891             is_verified_oop_base = true;
 892             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 893               if( primary == Assembler::ldd_op3 ) {
 894                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 895               } else {
 896                 tmp_enc = dst_enc;
 897                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 898                 assert(src1_enc != dst_enc, "");
 899               }
 900             }
 901           }
 902           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 903                        || offset == oopDesc::mark_offset_in_bytes())) {
 904                       // loading the mark should not be allowed either, but
 905                       // we don't check this since it conflicts with InlineObjectHash
 906                       // usage of LoadINode to get the mark. We could keep the
 907                       // check if we create a new LoadMarkNode
 908             // but do not verify the object before its header is initialized
 909             ShouldNotReachHere();
 910           }
 911         }
 912       }
 913     }
 914   }
 915 #endif
 916 
 917   uint instr = (Assembler::ldst_op << 30)
 918              | (dst_enc        << 25)
 919              | (primary        << 19)
 920              | (src1_enc       << 14);
 921 
 922   uint index = src2_enc;
 923   int disp = disp32;
 924 
 925   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc) {
 926     disp += STACK_BIAS;
 927     // Check that stack offset fits, load into O7 if not
 928     if (!Assembler::is_simm13(disp)) {
 929       C2_MacroAssembler _masm(&cbuf);
 930       __ set(disp, O7);
 931       if (index != R_G0_enc) {
 932         __ add(O7, reg_to_register_object(index), O7);
 933       }
 934       index = R_O7_enc;
 935       disp = 0;
 936     }
 937   }
 938 
 939   if( disp == 0 ) {
 940     // use reg-reg form
 941     // bit 13 is already zero
 942     instr |= index;
 943   } else {
 944     // use reg-imm form
 945     instr |= 0x00002000;          // set bit 13 to one
 946     instr |= disp & 0x1FFF;
 947   }
 948 
 949   cbuf.insts()->emit_int32(instr);
 950 
 951 #ifdef ASSERT
 952   if (VerifyOops) {
 953     C2_MacroAssembler _masm(&cbuf);
 954     if (is_verified_oop_base) {
 955       __ verify_oop(reg_to_register_object(src1_enc));
 956     }
 957     if (is_verified_oop_store) {
 958       __ verify_oop(reg_to_register_object(dst_enc));
 959     }
 960     if (tmp_enc != -1) {
 961       __ mov(O7, reg_to_register_object(tmp_enc));
 962     }
 963     if (is_verified_oop_load) {
 964       __ verify_oop(reg_to_register_object(dst_enc));
 965     }
 966   }
 967 #endif
 968 }
 969 
 970 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, RelocationHolder const& rspec, bool preserve_g2 = false) {
 971   // The method which records debug information at every safepoint
 972   // expects the call to be the first instruction in the snippet as
 973   // it creates a PcDesc structure which tracks the offset of a call
 974   // from the start of the codeBlob. This offset is computed as
 975   // code_end() - code_begin() of the code which has been emitted
 976   // so far.
 977   // In this particular case we have skirted around the problem by
 978   // putting the "mov" instruction in the delay slot but the problem
 979   // may bite us again at some other point and a cleaner/generic
 980   // solution using relocations would be needed.
 981   C2_MacroAssembler _masm(&cbuf);
 982   __ set_inst_mark();
 983 
 984   // We flush the current window just so that there is a valid stack copy
 985   // the fact that the current window becomes active again instantly is
 986   // not a problem there is nothing live in it.
 987 
 988 #ifdef ASSERT
 989   int startpos = __ offset();
 990 #endif /* ASSERT */
 991 
 992   __ call((address)entry_point, rspec);
 993 
 994   if (preserve_g2)   __ delayed()->mov(G2, L7);
 995   else __ delayed()->nop();
 996 
 997   if (preserve_g2)   __ mov(L7, G2);
 998 
 999 #ifdef ASSERT
1000   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
1001     // Trash argument dump slots.
1002     __ set(0xb0b8ac0db0b8ac0d, G1);
1003     __ mov(G1, G5);
1004     __ stx(G1, SP, STACK_BIAS + 0x80);
1005     __ stx(G1, SP, STACK_BIAS + 0x88);
1006     __ stx(G1, SP, STACK_BIAS + 0x90);
1007     __ stx(G1, SP, STACK_BIAS + 0x98);
1008     __ stx(G1, SP, STACK_BIAS + 0xA0);
1009     __ stx(G1, SP, STACK_BIAS + 0xA8);
1010   }
1011 #endif /*ASSERT*/
1012 }
1013 
1014 //=============================================================================
1015 // REQUIRED FUNCTIONALITY for encoding
1016 void emit_lo(CodeBuffer &cbuf, int val) {  }
1017 void emit_hi(CodeBuffer &cbuf, int val) {  }
1018 
1019 
1020 //=============================================================================
1021 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
1022 
1023 int ConstantTable::calculate_table_base_offset() const {
1024   if (UseRDPCForConstantTableBase) {
1025     // The table base offset might be less but then it fits into
1026     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
1027     return Assembler::min_simm13();
1028   } else {
1029     int offset = -(size() / 2);
1030     if (!Assembler::is_simm13(offset)) {
1031       offset = Assembler::min_simm13();
1032     }
1033     return offset;
1034   }
1035 }
1036 
1037 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
1038 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
1039   ShouldNotReachHere();
1040 }
1041 
1042 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1043   Compile* C = ra_->C;
1044   ConstantTable& constant_table = C->output()->constant_table();
1045   C2_MacroAssembler _masm(&cbuf);
1046 
1047   Register r = as_Register(ra_->get_encode(this));
1048   CodeSection* consts_section = __ code()->consts();
1049   int consts_size = consts_section->align_at_start(consts_section->size());
1050   assert(constant_table.size() == consts_size, "must be: %d == %d", constant_table.size(), consts_size);
1051 
1052   if (UseRDPCForConstantTableBase) {
1053     // For the following RDPC logic to work correctly the consts
1054     // section must be allocated right before the insts section.  This
1055     // assert checks for that.  The layout and the SECT_* constants
1056     // are defined in src/share/vm/asm/codeBuffer.hpp.
1057     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1058     int insts_offset = __ offset();
1059 
1060     // Layout:
1061     //
1062     // |----------- consts section ------------|----------- insts section -----------...
1063     // |------ constant table -----|- padding -|------------------x----
1064     //                                                            \ current PC (RDPC instruction)
1065     // |<------------- consts_size ----------->|<- insts_offset ->|
1066     //                                                            \ table base
1067     // The table base offset is later added to the load displacement
1068     // so it has to be negative.
1069     int table_base_offset = -(consts_size + insts_offset);
1070     int disp;
1071 
1072     // If the displacement from the current PC to the constant table
1073     // base fits into simm13 we set the constant table base to the
1074     // current PC.
1075     if (Assembler::is_simm13(table_base_offset)) {
1076       constant_table.set_table_base_offset(table_base_offset);
1077       disp = 0;
1078     } else {
1079       // Otherwise we set the constant table base offset to the
1080       // maximum negative displacement of load instructions to keep
1081       // the disp as small as possible:
1082       //
1083       // |<------------- consts_size ----------->|<- insts_offset ->|
1084       // |<--------- min_simm13 --------->|<-------- disp --------->|
1085       //                                  \ table base
1086       table_base_offset = Assembler::min_simm13();
1087       constant_table.set_table_base_offset(table_base_offset);
1088       disp = (consts_size + insts_offset) + table_base_offset;
1089     }
1090 
1091     __ rdpc(r);
1092 
1093     if (disp == 0) {
1094       // Emitting an additional 'nop' instruction in order not to cause a code
1095       // size adjustment in the code following the table setup (if the instruction
1096       // immediately following after this section is a CTI).
1097       __ nop();
1098     }
1099     else {
1100       assert(r != O7, "need temporary");
1101       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1102     }
1103   }
1104   else {
1105     // Materialize the constant table base.
1106     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
1107     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1108     AddressLiteral base(baseaddr, rspec);
1109     __ set(base, r);
1110   }
1111 }
1112 
1113 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1114   if (UseRDPCForConstantTableBase) {
1115     // This is really the worst case but generally it's only 1 instruction.
1116     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1117   } else {
1118     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1119   }
1120 }
1121 
1122 #ifndef PRODUCT
1123 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1124   char reg[128];
1125   ra_->dump_register(this, reg);
1126   if (UseRDPCForConstantTableBase) {
1127     st->print("RDPC   %s\t! constant table base", reg);
1128   } else {
1129     st->print("SET    &constanttable,%s\t! constant table base", reg);
1130   }
1131 }
1132 #endif
1133 
1134 
1135 //=============================================================================
1136 
1137 #ifndef PRODUCT
1138 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1139   Compile* C = ra_->C;
1140 
1141   for (int i = 0; i < OptoPrologueNops; i++) {
1142     st->print_cr("NOP"); st->print("\t");
1143   }
1144 
1145   if( VerifyThread ) {
1146     st->print_cr("Verify_Thread"); st->print("\t");
1147   }
1148 
1149   size_t framesize = C->output()->frame_size_in_bytes();
1150   int bangsize = C->output()->bang_size_in_bytes();
1151 
1152   // Calls to C2R adapters often do not accept exceptional returns.
1153   // We require that their callers must bang for them.  But be careful, because
1154   // some VM calls (such as call site linkage) can use several kilobytes of
1155   // stack.  But the stack safety zone should account for that.
1156   // See bugs 4446381, 4468289, 4497237.
1157   if (C->output()->need_stack_bang(bangsize)) {
1158     st->print_cr("! stack bang (%d bytes)", bangsize); st->print("\t");
1159   }
1160 
1161   if (Assembler::is_simm13(-framesize)) {
1162     st->print   ("SAVE   R_SP,-" SIZE_FORMAT ",R_SP",framesize);
1163   } else {
1164     st->print_cr("SETHI  R_SP,hi%%(-" SIZE_FORMAT "),R_G3",framesize); st->print("\t");
1165     st->print_cr("ADD    R_G3,lo%%(-" SIZE_FORMAT "),R_G3",framesize); st->print("\t");
1166     st->print   ("SAVE   R_SP,R_G3,R_SP");
1167   }
1168 
1169 }
1170 #endif
1171 
1172 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1173   Compile* C = ra_->C;
1174   C2_MacroAssembler _masm(&cbuf);
1175 
1176   for (int i = 0; i < OptoPrologueNops; i++) {
1177     __ nop();
1178   }
1179 
1180   __ verify_thread();
1181 
1182   size_t framesize = C->output()->frame_size_in_bytes();
1183   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1184   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1185   int bangsize = C->output()->bang_size_in_bytes();
1186 
1187   // Calls to C2R adapters often do not accept exceptional returns.
1188   // We require that their callers must bang for them.  But be careful, because
1189   // some VM calls (such as call site linkage) can use several kilobytes of
1190   // stack.  But the stack safety zone should account for that.
1191   // See bugs 4446381, 4468289, 4497237.
1192   if (C->output()->need_stack_bang(bangsize)) {
1193     __ generate_stack_overflow_check(bangsize);
1194   }
1195 
1196   if (Assembler::is_simm13(-framesize)) {
1197     __ save(SP, -framesize, SP);
1198   } else {
1199     __ sethi(-framesize & ~0x3ff, G3);
1200     __ add(G3, -framesize & 0x3ff, G3);
1201     __ save(SP, G3, SP);
1202   }
1203   C->output()->set_frame_complete( __ offset() );
1204 
1205   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
1206     // NOTE: We set the table base offset here because users might be
1207     // emitted before MachConstantBaseNode.
1208     ConstantTable& constant_table = C->output()->constant_table();
1209     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
1210   }
1211 }
1212 
1213 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1214   return MachNode::size(ra_);
1215 }
1216 
1217 int MachPrologNode::reloc() const {
1218   return 10; // a large enough number
1219 }
1220 
1221 //=============================================================================
1222 #ifndef PRODUCT
1223 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1224   Compile* C = ra_->C;
1225 
1226   if(do_polling() && ra_->C->is_method_compilation()) {
1227     st->print("LDX    [R_G2 + #poll_offset],L0\t! Load local polling address\n\t");
1228     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1229   }
1230 
1231   if(do_polling()) {
1232     if (UseCBCond && !ra_->C->is_method_compilation()) {
1233       st->print("NOP\n\t");
1234     }
1235     st->print("RET\n\t");
1236   }
1237 
1238   st->print("RESTORE");
1239 }
1240 #endif
1241 
1242 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1243   C2_MacroAssembler _masm(&cbuf);
1244   Compile* C = ra_->C;
1245 
1246   __ verify_thread();
1247 
1248   if (StackReservedPages > 0 && C->has_reserved_stack_access()) {
1249     __ reserved_stack_check();
1250   }
1251 
1252   // If this does safepoint polling, then do it here
1253   if(do_polling() && ra_->C->is_method_compilation()) {
1254     __ ld_ptr(Address(G2_thread, Thread::polling_page_offset()), L0);
1255     __ relocate(relocInfo::poll_return_type);
1256     __ ld_ptr(L0, 0, G0);
1257   }
1258 
1259   // If this is a return, then stuff the restore in the delay slot
1260   if(do_polling()) {
1261     if (UseCBCond && !ra_->C->is_method_compilation()) {
1262       // Insert extra padding for the case when the epilogue is preceded by
1263       // a cbcond jump, which can't be followed by a CTI instruction
1264       __ nop();
1265     }
1266     __ ret();
1267     __ delayed()->restore();
1268   } else {
1269     __ restore();
1270   }
1271 }
1272 
1273 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1274   return MachNode::size(ra_);
1275 }
1276 
1277 int MachEpilogNode::reloc() const {
1278   return 16; // a large enough number
1279 }
1280 
1281 const Pipeline * MachEpilogNode::pipeline() const {
1282   return MachNode::pipeline_class();
1283 }
1284 
1285 //=============================================================================
1286 
1287 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1288 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1289 static enum RC rc_class( OptoReg::Name reg ) {
1290   if (!OptoReg::is_valid(reg)) return rc_bad;
1291   if (OptoReg::is_stack(reg)) return rc_stack;
1292   VMReg r = OptoReg::as_VMReg(reg);
1293   if (r->is_Register()) return rc_int;
1294   assert(r->is_FloatRegister(), "must be");
1295   return rc_float;
1296 }
1297 
1298 #ifndef PRODUCT
1299 ATTRIBUTE_PRINTF(2, 3)
1300 static void print_helper(outputStream* st, const char* format, ...) {
1301   const int tab_size = 8;
1302   if (st->position() > tab_size) {
1303     st->cr();
1304     st->sp();
1305   }
1306   va_list ap;
1307   va_start(ap, format);
1308   st->vprint(format, ap);
1309   va_end(ap);
1310 }
1311 #endif // !PRODUCT
1312 
1313 static void impl_helper(const MachNode* mach, CodeBuffer* cbuf, PhaseRegAlloc* ra, bool is_load, int offset, int reg, int opcode, const char *op_str, outputStream* st) {
1314   if (cbuf) {
1315     emit_form3_mem_reg(*cbuf, ra, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1316   }
1317 #ifndef PRODUCT
1318   else {
1319     if (is_load) {
1320       print_helper(st, "%s   [R_SP + #%d],R_%s\t! spill", op_str, offset, OptoReg::regname(reg));
1321     } else {
1322       print_helper(st, "%s   R_%s,[R_SP + #%d]\t! spill", op_str, OptoReg::regname(reg), offset);
1323     }
1324   }
1325 #endif
1326 }
1327 
1328 static void impl_mov_helper(CodeBuffer *cbuf, int src, int dst, int op1, int op2, const char *op_str, outputStream* st) {
1329   if (cbuf) {
1330     emit3(*cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src]);
1331   }
1332 #ifndef PRODUCT
1333   else {
1334     print_helper(st, "%s  R_%s,R_%s\t! spill", op_str, OptoReg::regname(src), OptoReg::regname(dst));
1335   }
1336 #endif
1337 }
1338 
1339 static void mach_spill_copy_implementation_helper(const MachNode* mach,
1340                                                   CodeBuffer *cbuf,
1341                                                   PhaseRegAlloc *ra_,
1342                                                   outputStream* st) {
1343   // Get registers to move
1344   OptoReg::Name src_second = ra_->get_reg_second(mach->in(1));
1345   OptoReg::Name src_first  = ra_->get_reg_first(mach->in(1));
1346   OptoReg::Name dst_second = ra_->get_reg_second(mach);
1347   OptoReg::Name dst_first  = ra_->get_reg_first(mach);
1348 
1349   enum RC src_second_rc = rc_class(src_second);
1350   enum RC src_first_rc  = rc_class(src_first);
1351   enum RC dst_second_rc = rc_class(dst_second);
1352   enum RC dst_first_rc  = rc_class(dst_first);
1353 
1354   assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register");
1355 
1356   if (src_first == dst_first && src_second == dst_second) {
1357     return; // Self copy, no move
1358   }
1359 
1360   // --------------------------------------
1361   // Check for mem-mem move.  Load into unused float registers and fall into
1362   // the float-store case.
1363   if (src_first_rc == rc_stack && dst_first_rc == rc_stack) {
1364     int offset = ra_->reg2offset(src_first);
1365     // Further check for aligned-adjacent pair, so we can use a double load
1366     if ((src_first&1) == 0 && src_first+1 == src_second) {
1367       src_second    = OptoReg::Name(R_F31_num);
1368       src_second_rc = rc_float;
1369       impl_helper(mach, cbuf, ra_, true, offset, R_F30_num, Assembler::lddf_op3, "LDDF", st);
1370     } else {
1371       impl_helper(mach, cbuf, ra_, true, offset, R_F30_num, Assembler::ldf_op3, "LDF ", st);
1372     }
1373     src_first    = OptoReg::Name(R_F30_num);
1374     src_first_rc = rc_float;
1375   }
1376 
1377   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1378     int offset = ra_->reg2offset(src_second);
1379     impl_helper(mach, cbuf, ra_, true, offset, R_F31_num, Assembler::ldf_op3, "LDF ", st);
1380     src_second    = OptoReg::Name(R_F31_num);
1381     src_second_rc = rc_float;
1382   }
1383 
1384   // --------------------------------------
1385   // Check for float->int copy; requires a trip through memory
1386   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1387     int offset = frame::register_save_words*wordSize;
1388     if (cbuf) {
1389       emit3_simm13(*cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16);
1390       impl_helper(mach, cbuf, ra_, false, offset, src_first,  Assembler::stf_op3, "STF ", st);
1391       impl_helper(mach, cbuf, ra_,  true, offset, dst_first, Assembler::lduw_op3, "LDUW", st);
1392       emit3_simm13(*cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16);
1393     }
1394 #ifndef PRODUCT
1395     else {
1396       print_helper(st, "SUB    R_SP,16,R_SP");
1397       impl_helper(mach, cbuf, ra_, false, offset, src_first,  Assembler::stf_op3, "STF ", st);
1398       impl_helper(mach, cbuf, ra_,  true, offset, dst_first, Assembler::lduw_op3, "LDUW", st);
1399       print_helper(st, "ADD    R_SP,16,R_SP");
1400     }
1401 #endif
1402   }
1403 
1404   // Check for float->int copy on T4
1405   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1406     // Further check for aligned-adjacent pair, so we can use a double move
1407     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1408       impl_mov_helper(cbuf, src_first, dst_first, Assembler::mftoi_op3, Assembler::mdtox_opf, "MOVDTOX", st);
1409       return;
1410     }
1411     impl_mov_helper(cbuf, src_first, dst_first, Assembler::mftoi_op3, Assembler::mstouw_opf, "MOVSTOUW", st);
1412   }
1413   // Check for int->float copy on T4
1414   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1415     // Further check for aligned-adjacent pair, so we can use a double move
1416     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1417       impl_mov_helper(cbuf, src_first, dst_first, Assembler::mftoi_op3, Assembler::mxtod_opf, "MOVXTOD", st);
1418       return;
1419     }
1420     impl_mov_helper(cbuf, src_first, dst_first, Assembler::mftoi_op3, Assembler::mwtos_opf, "MOVWTOS", st);
1421   }
1422 
1423   // --------------------------------------
1424   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1425   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1426   // hardware does the flop for me.  Doubles are always aligned, so no problem
1427   // there.  Misaligned sources only come from native-long-returns (handled
1428   // special below).
1429 
1430   // --------------------------------------
1431   // Check for integer reg-reg copy
1432   if (src_first_rc == rc_int && dst_first_rc == rc_int) {
1433     // Else normal reg-reg copy
1434     assert(src_second != dst_first, "smashed second before evacuating it");
1435     impl_mov_helper(cbuf, src_first, dst_first, Assembler::or_op3, 0, "MOV  ", st);
1436     assert((src_first & 1) == 0 && (dst_first & 1) == 0, "never move second-halves of int registers");
1437     // This moves an aligned adjacent pair.
1438     // See if we are done.
1439     if (src_first + 1 == src_second && dst_first + 1 == dst_second) {
1440       return;
1441     }
1442   }
1443 
1444   // Check for integer store
1445   if (src_first_rc == rc_int && dst_first_rc == rc_stack) {
1446     int offset = ra_->reg2offset(dst_first);
1447     // Further check for aligned-adjacent pair, so we can use a double store
1448     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1449       impl_helper(mach, cbuf, ra_, false, offset, src_first, Assembler::stx_op3, "STX ", st);
1450       return;
1451     }
1452     impl_helper(mach, cbuf, ra_, false, offset, src_first, Assembler::stw_op3, "STW ", st);
1453   }
1454 
1455   // Check for integer load
1456   if (dst_first_rc == rc_int && src_first_rc == rc_stack) {
1457     int offset = ra_->reg2offset(src_first);
1458     // Further check for aligned-adjacent pair, so we can use a double load
1459     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1460       impl_helper(mach, cbuf, ra_, true, offset, dst_first, Assembler::ldx_op3, "LDX ", st);
1461       return;
1462     }
1463     impl_helper(mach, cbuf, ra_, true, offset, dst_first, Assembler::lduw_op3, "LDUW", st);
1464   }
1465 
1466   // Check for float reg-reg copy
1467   if (src_first_rc == rc_float && dst_first_rc == rc_float) {
1468     // Further check for aligned-adjacent pair, so we can use a double move
1469     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1470       impl_mov_helper(cbuf, src_first, dst_first, Assembler::fpop1_op3, Assembler::fmovd_opf, "FMOVD", st);
1471       return;
1472     }
1473     impl_mov_helper(cbuf, src_first, dst_first, Assembler::fpop1_op3, Assembler::fmovs_opf, "FMOVS", st);
1474   }
1475 
1476   // Check for float store
1477   if (src_first_rc == rc_float && dst_first_rc == rc_stack) {
1478     int offset = ra_->reg2offset(dst_first);
1479     // Further check for aligned-adjacent pair, so we can use a double store
1480     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1481       impl_helper(mach, cbuf, ra_, false, offset, src_first, Assembler::stdf_op3, "STDF", st);
1482       return;
1483     }
1484     impl_helper(mach, cbuf, ra_, false, offset, src_first, Assembler::stf_op3, "STF ", st);
1485   }
1486 
1487   // Check for float load
1488   if (dst_first_rc == rc_float && src_first_rc == rc_stack) {
1489     int offset = ra_->reg2offset(src_first);
1490     // Further check for aligned-adjacent pair, so we can use a double load
1491     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1492       impl_helper(mach, cbuf, ra_, true, offset, dst_first, Assembler::lddf_op3, "LDDF", st);
1493       return;
1494     }
1495     impl_helper(mach, cbuf, ra_, true, offset, dst_first, Assembler::ldf_op3, "LDF ", st);
1496   }
1497 
1498   // --------------------------------------------------------------------
1499   // Check for hi bits still needing moving.  Only happens for misaligned
1500   // arguments to native calls.
1501   if (src_second == dst_second) {
1502     return; // Self copy; no move
1503   }
1504   assert(src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad");
1505 
1506   Unimplemented();
1507 }
1508 
1509 uint MachSpillCopyNode::implementation(CodeBuffer *cbuf,
1510                                        PhaseRegAlloc *ra_,
1511                                        bool do_size,
1512                                        outputStream* st) const {
1513   assert(!do_size, "not supported");
1514   mach_spill_copy_implementation_helper(this, cbuf, ra_, st);
1515   return 0;
1516 }
1517 
1518 #ifndef PRODUCT
1519 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1520   implementation( NULL, ra_, false, st );
1521 }
1522 #endif
1523 
1524 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1525   implementation( &cbuf, ra_, false, NULL );
1526 }
1527 
1528 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1529   return MachNode::size(ra_);
1530 }
1531 
1532 //=============================================================================
1533 #ifndef PRODUCT
1534 void MachNopNode::format(PhaseRegAlloc *, outputStream *st) const {
1535   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1536 }
1537 #endif
1538 
1539 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *) const {
1540   C2_MacroAssembler _masm(&cbuf);
1541   for (int i = 0; i < _count; i += 1) {
1542     __ nop();
1543   }
1544 }
1545 
1546 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1547   return 4 * _count;
1548 }
1549 
1550 
1551 //=============================================================================
1552 #ifndef PRODUCT
1553 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1554   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1555   int reg = ra_->get_reg_first(this);
1556   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1557 }
1558 #endif
1559 
1560 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1561   C2_MacroAssembler _masm(&cbuf);
1562   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1563   int reg = ra_->get_encode(this);
1564 
1565   if (Assembler::is_simm13(offset)) {
1566      __ add(SP, offset, reg_to_register_object(reg));
1567   } else {
1568      __ set(offset, O7);
1569      __ add(SP, O7, reg_to_register_object(reg));
1570   }
1571 }
1572 
1573 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1574   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1575   assert(ra_ == ra_->C->regalloc(), "sanity");
1576   return ra_->C->output()->scratch_emit_size(this);
1577 }
1578 
1579 //=============================================================================
1580 #ifndef PRODUCT
1581 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1582   st->print_cr("\nUEP:");
1583   if (UseCompressedClassPointers) {
1584     assert(Universe::heap() != NULL, "java heap should be initialized");
1585     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1586     if (CompressedKlassPointers::base() != 0) {
1587       st->print_cr("\tSET    CompressedKlassPointers::base,R_G6_heap_base");
1588       if (CompressedKlassPointers::shift() != 0) {
1589         st->print_cr("\tSLL    R_G5,CompressedKlassPointers::shift,R_G5");
1590       }
1591       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1592       st->print_cr("\tSET    CompressedOops::ptrs_base,R_G6_heap_base");
1593     } else {
1594       st->print_cr("\tSLL    R_G5,CompressedKlassPointers::shift,R_G5");
1595     }
1596   } else {
1597     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1598   }
1599   st->print_cr("\tCMP    R_G5,R_G3" );
1600   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1601 }
1602 #endif
1603 
1604 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1605   C2_MacroAssembler _masm(&cbuf);
1606   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1607   Register temp_reg   = G3;
1608   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1609 
1610   // Load klass from receiver
1611   __ load_klass(O0, temp_reg);
1612   // Compare against expected klass
1613   __ cmp(temp_reg, G5_ic_reg);
1614   // Branch to miss code, checks xcc or icc depending
1615   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1616 }
1617 
1618 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1619   return MachNode::size(ra_);
1620 }
1621 
1622 
1623 //=============================================================================
1624 
1625 
1626 // Emit exception handler code.
1627 int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf) {
1628   Register temp_reg = G3;
1629   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1630   C2_MacroAssembler _masm(&cbuf);
1631 
1632   address base = __ start_a_stub(size_exception_handler());
1633   if (base == NULL) {
1634     ciEnv::current()->record_failure("CodeCache is full");
1635     return 0;  // CodeBuffer::expand failed
1636   }
1637 
1638   int offset = __ offset();
1639 
1640   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1641   __ delayed()->nop();
1642 
1643   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1644 
1645   __ end_a_stub();
1646 
1647   return offset;
1648 }
1649 
1650 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
1651   // Can't use any of the current frame's registers as we may have deopted
1652   // at a poll and everything (including G3) can be live.
1653   Register temp_reg = L0;
1654   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1655   C2_MacroAssembler _masm(&cbuf);
1656 
1657   address base = __ start_a_stub(size_deopt_handler());
1658   if (base == NULL) {
1659     ciEnv::current()->record_failure("CodeCache is full");
1660     return 0;  // CodeBuffer::expand failed
1661   }
1662 
1663   int offset = __ offset();
1664   __ save_frame(0);
1665   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1666   __ delayed()->restore();
1667 
1668   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1669 
1670   __ end_a_stub();
1671   return offset;
1672 
1673 }
1674 
1675 // Given a register encoding, produce a Integer Register object
1676 static Register reg_to_register_object(int register_encoding) {
1677   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1678   return as_Register(register_encoding);
1679 }
1680 
1681 // Given a register encoding, produce a single-precision Float Register object
1682 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1683   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1684   return as_SingleFloatRegister(register_encoding);
1685 }
1686 
1687 // Given a register encoding, produce a double-precision Float Register object
1688 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1689   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1690   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1691   return as_DoubleFloatRegister(register_encoding);
1692 }
1693 
1694 const bool Matcher::match_rule_supported(int opcode) {
1695   if (!has_match_rule(opcode))
1696     return false;
1697 
1698   switch (opcode) {
1699   case Op_CountLeadingZerosI:
1700   case Op_CountLeadingZerosL:
1701   case Op_CountTrailingZerosI:
1702   case Op_CountTrailingZerosL:
1703   case Op_PopCountI:
1704   case Op_PopCountL:
1705     if (!UsePopCountInstruction)
1706       return false;
1707   case Op_CompareAndSwapL:
1708   case Op_CompareAndSwapP:
1709     if (!VM_Version::supports_cx8())
1710       return false;
1711     break;
1712   }
1713 
1714   return true;  // Per default match rules are supported.
1715 }
1716 
1717 const bool Matcher::match_rule_supported_vector(int opcode, int vlen, BasicType bt) {
1718 
1719   // TODO
1720   // identify extra cases that we might want to provide match rules for
1721   // e.g. Op_ vector nodes and other intrinsics while guarding with vlen
1722   bool ret_value = match_rule_supported(opcode);
1723   // Add rules here.
1724 
1725   return ret_value;  // Per default match rules are supported.
1726 }
1727 
1728 const bool Matcher::has_predicated_vectors(void) {
1729   return false;
1730 }
1731 
1732 const int Matcher::float_pressure(int default_pressure_threshold) {
1733   return default_pressure_threshold;
1734 }
1735 
1736 int Matcher::regnum_to_fpu_offset(int regnum) {
1737   return regnum - 32; // The FP registers are in the second chunk
1738 }
1739 
1740 #ifdef ASSERT
1741 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1742 #endif
1743 
1744 // Vector width in bytes
1745 const int Matcher::vector_width_in_bytes(BasicType bt) {
1746   assert(MaxVectorSize == 8, "");
1747   return 8;
1748 }
1749 
1750 // Vector ideal reg
1751 const uint Matcher::vector_ideal_reg(int size) {
1752   assert(MaxVectorSize == 8, "");
1753   return Op_RegD;
1754 }
1755 
1756 // Limits on vector size (number of elements) loaded into vector.
1757 const int Matcher::max_vector_size(const BasicType bt) {
1758   assert(is_java_primitive(bt), "only primitive type vectors");
1759   return vector_width_in_bytes(bt)/type2aelembytes(bt);
1760 }
1761 
1762 const int Matcher::min_vector_size(const BasicType bt) {
1763   return max_vector_size(bt); // Same as max.
1764 }
1765 
1766 // SPARC doesn't support misaligned vectors store/load.
1767 const bool Matcher::misaligned_vectors_ok() {
1768   return false;
1769 }
1770 
1771 // Current (2013) SPARC platforms need to read original key
1772 // to construct decryption expanded key
1773 const bool Matcher::pass_original_key_for_aes() {
1774   return true;
1775 }
1776 
1777 // NOTE: All currently supported SPARC HW provides fast conversion.
1778 const bool Matcher::convL2FSupported(void) { return true; }
1779 
1780 // Is this branch offset short enough that a short branch can be used?
1781 //
1782 // NOTE: If the platform does not provide any short branch variants, then
1783 //       this method should return false for offset 0.
1784 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1785   // The passed offset is relative to address of the branch.
1786   // Don't need to adjust the offset.
1787   return UseCBCond && Assembler::is_simm12(offset);
1788 }
1789 
1790 const bool Matcher::isSimpleConstant64(jlong value) {
1791   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1792   // Depends on optimizations in MacroAssembler::setx.
1793   int hi = (int)(value >> 32);
1794   int lo = (int)(value & ~0);
1795   return (hi == 0) || (hi == -1) || (lo == 0);
1796 }
1797 
1798 // No scaling for the parameter the ClearArray node.
1799 const bool Matcher::init_array_count_is_in_bytes = true;
1800 
1801 // No additional cost for CMOVL.
1802 const int Matcher::long_cmove_cost() { return 0; }
1803 
1804 // CMOVF/CMOVD are expensive on e.g., T4 and SPARC64.
1805 const int Matcher::float_cmove_cost() {
1806   return VM_Version::has_fast_cmove() ? 0 : ConditionalMoveLimit;
1807 }
1808 
1809 // Does the CPU require late expand (see block.cpp for description of late expand)?
1810 const bool Matcher::require_postalloc_expand = false;
1811 
1812 // Do we need to mask the count passed to shift instructions or does
1813 // the cpu only look at the lower 5/6 bits anyway?
1814 const bool Matcher::need_masked_shift_count = false;
1815 
1816 // No support for generic vector operands.
1817 const bool Matcher::supports_generic_vector_operands  = false;
1818 
1819 MachOper* Matcher::pd_specialize_generic_vector_operand(MachOper* original_opnd, uint ideal_reg, bool is_temp) {
1820   ShouldNotReachHere(); // generic vector operands not supported
1821   return NULL;
1822 }
1823 
1824 bool Matcher::is_generic_reg2reg_move(MachNode* m) {
1825   ShouldNotReachHere();  // generic vector operands not supported
1826   return false;
1827 }
1828 
1829 bool Matcher::is_generic_vector(MachOper* opnd)  {
1830   ShouldNotReachHere();  // generic vector operands not supported
1831   return false;
1832 }
1833 
1834 bool Matcher::narrow_oop_use_complex_address() {
1835   assert(UseCompressedOops, "only for compressed oops code");
1836   return false;
1837 }
1838 
1839 bool Matcher::narrow_klass_use_complex_address() {
1840   assert(UseCompressedClassPointers, "only for compressed klass code");
1841   return false;
1842 }
1843 
1844 bool Matcher::const_oop_prefer_decode() {
1845   // TODO: Check if loading ConP from TOC in heap-based mode is better:
1846   // Prefer ConN+DecodeN over ConP in simple compressed oops mode.
1847   // return CompressedOops::base() == NULL;
1848   return true;
1849 }
1850 
1851 bool Matcher::const_klass_prefer_decode() {
1852   // TODO: Check if loading ConP from TOC in heap-based mode is better:
1853   // Prefer ConNKlass+DecodeNKlass over ConP in simple compressed klass mode.
1854   // return CompressedKlassPointers::base() == NULL;
1855   return true;
1856 }
1857 
1858 // Is it better to copy float constants, or load them directly from memory?
1859 // Intel can load a float constant from a direct address, requiring no
1860 // extra registers.  Most RISCs will have to materialize an address into a
1861 // register first, so they would do better to copy the constant from stack.
1862 const bool Matcher::rematerialize_float_constants = false;
1863 
1864 // If CPU can load and store mis-aligned doubles directly then no fixup is
1865 // needed.  Else we split the double into 2 integer pieces and move it
1866 // piece-by-piece.  Only happens when passing doubles into C code as the
1867 // Java calling convention forces doubles to be aligned.
1868 const bool Matcher::misaligned_doubles_ok = true;
1869 
1870 // No-op on SPARC.
1871 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1872 }
1873 
1874 // Advertise here if the CPU requires explicit rounding operations to implement strictfp mode.
1875 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1876 
1877 // Are floats converted to double when stored to stack during deoptimization?
1878 // Sparc does not handle callee-save floats.
1879 bool Matcher::float_in_double() { return false; }
1880 
1881 // Do ints take an entire long register or just half?
1882 // Note that we if-def off of _LP64.
1883 // The relevant question is how the int is callee-saved.  In _LP64
1884 // the whole long is written but de-opt'ing will have to extract
1885 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1886 const bool Matcher::int_in_long = true;
1887 
1888 // Return whether or not this register is ever used as an argument.  This
1889 // function is used on startup to build the trampoline stubs in generateOptoStub.
1890 // Registers not mentioned will be killed by the VM call in the trampoline, and
1891 // arguments in those registers not be available to the callee.
1892 bool Matcher::can_be_java_arg( int reg ) {
1893   // Standard sparc 6 args in registers
1894   if( reg == R_I0_num ||
1895       reg == R_I1_num ||
1896       reg == R_I2_num ||
1897       reg == R_I3_num ||
1898       reg == R_I4_num ||
1899       reg == R_I5_num ) return true;
1900   // 64-bit builds can pass 64-bit pointers and longs in
1901   // the high I registers
1902   if( reg == R_I0H_num ||
1903       reg == R_I1H_num ||
1904       reg == R_I2H_num ||
1905       reg == R_I3H_num ||
1906       reg == R_I4H_num ||
1907       reg == R_I5H_num ) return true;
1908 
1909   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1910     return true;
1911   }
1912 
1913   // A few float args in registers
1914   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1915 
1916   return false;
1917 }
1918 
1919 bool Matcher::is_spillable_arg( int reg ) {
1920   return can_be_java_arg(reg);
1921 }
1922 
1923 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1924   // Use hardware SDIVX instruction when it is
1925   // faster than a code which use multiply.
1926   return VM_Version::has_fast_idiv();
1927 }
1928 
1929 // Register for DIVI projection of divmodI
1930 RegMask Matcher::divI_proj_mask() {
1931   ShouldNotReachHere();
1932   return RegMask();
1933 }
1934 
1935 // Register for MODI projection of divmodI
1936 RegMask Matcher::modI_proj_mask() {
1937   ShouldNotReachHere();
1938   return RegMask();
1939 }
1940 
1941 // Register for DIVL projection of divmodL
1942 RegMask Matcher::divL_proj_mask() {
1943   ShouldNotReachHere();
1944   return RegMask();
1945 }
1946 
1947 // Register for MODL projection of divmodL
1948 RegMask Matcher::modL_proj_mask() {
1949   ShouldNotReachHere();
1950   return RegMask();
1951 }
1952 
1953 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1954   return L7_REGP_mask();
1955 }
1956 
1957 
1958 const bool Matcher::convi2l_type_required = true;
1959 
1960 // Should the matcher clone input 'm' of node 'n'?
1961 bool Matcher::pd_clone_node(Node* n, Node* m, Matcher::MStack& mstack) {
1962   return false;
1963 }
1964 
1965 // Should the Matcher clone shifts on addressing modes, expecting them
1966 // to be subsumed into complex addressing expressions or compute them
1967 // into registers?
1968 bool Matcher::pd_clone_address_expressions(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) {
1969   return clone_base_plus_offset_address(m, mstack, address_visited);
1970 }
1971 
1972 void Compile::reshape_address(AddPNode* addp) {
1973 }
1974 
1975 %}
1976 
1977 
1978 // The intptr_t operand types, defined by textual substitution.
1979 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
1980 #define immX      immL
1981 #define immX13    immL13
1982 #define immX13m7  immL13m7
1983 #define iRegX     iRegL
1984 #define g1RegX    g1RegL
1985 
1986 //----------ENCODING BLOCK-----------------------------------------------------
1987 // This block specifies the encoding classes used by the compiler to output
1988 // byte streams.  Encoding classes are parameterized macros used by
1989 // Machine Instruction Nodes in order to generate the bit encoding of the
1990 // instruction.  Operands specify their base encoding interface with the
1991 // interface keyword.  There are currently supported four interfaces,
1992 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1993 // operand to generate a function which returns its register number when
1994 // queried.   CONST_INTER causes an operand to generate a function which
1995 // returns the value of the constant when queried.  MEMORY_INTER causes an
1996 // operand to generate four functions which return the Base Register, the
1997 // Index Register, the Scale Value, and the Offset Value of the operand when
1998 // queried.  COND_INTER causes an operand to generate six functions which
1999 // return the encoding code (ie - encoding bits for the instruction)
2000 // associated with each basic boolean condition for a conditional instruction.
2001 //
2002 // Instructions specify two basic values for encoding.  Again, a function
2003 // is available to check if the constant displacement is an oop. They use the
2004 // ins_encode keyword to specify their encoding classes (which must be
2005 // a sequence of enc_class names, and their parameters, specified in
2006 // the encoding block), and they use the
2007 // opcode keyword to specify, in order, their primary, secondary, and
2008 // tertiary opcode.  Only the opcode sections which a particular instruction
2009 // needs for encoding need to be specified.
2010 encode %{
2011   enc_class enc_untested %{
2012 #ifdef ASSERT
2013     C2_MacroAssembler _masm(&cbuf);
2014     __ untested("encoding");
2015 #endif
2016   %}
2017 
2018   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
2019     emit_form3_mem_reg(cbuf, ra_, this, $primary, $tertiary,
2020                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2021   %}
2022 
2023   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
2024     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2025                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2026   %}
2027 
2028   enc_class form3_mem_prefetch_read( memory mem ) %{
2029     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2030                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2031   %}
2032 
2033   enc_class form3_mem_prefetch_write( memory mem ) %{
2034     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2035                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2036   %}
2037 
2038   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2039     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2040     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2041     guarantee($mem$$index == R_G0_enc, "double index?");
2042     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2043     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2044     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2045     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2046   %}
2047 
2048   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2049     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2050     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2051     guarantee($mem$$index == R_G0_enc, "double index?");
2052     // Load long with 2 instructions
2053     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2054     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2055   %}
2056 
2057   //%%% form3_mem_plus_4_reg is a hack--get rid of it
2058   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2059     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2060     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2061   %}
2062 
2063   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2064     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2065     if( $rs2$$reg != $rd$$reg )
2066       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2067   %}
2068 
2069   // Target lo half of long
2070   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2071     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2072     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2073       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2074   %}
2075 
2076   // Source lo half of long
2077   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2078     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2079     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2080       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2081   %}
2082 
2083   // Target hi half of long
2084   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2085     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2086   %}
2087 
2088   // Source lo half of long, and leave it sign extended.
2089   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2090     // Sign extend low half
2091     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2092   %}
2093 
2094   // Source hi half of long, and leave it sign extended.
2095   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2096     // Shift high half to low half
2097     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2098   %}
2099 
2100   // Source hi half of long
2101   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2102     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2103     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2104       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2105   %}
2106 
2107   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2108     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2109   %}
2110 
2111   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2112     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2113     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2114   %}
2115 
2116   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2117     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2118     // clear if nothing else is happening
2119     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2120     // blt,a,pn done
2121     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2122     // mov dst,-1 in delay slot
2123     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2124   %}
2125 
2126   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2127     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2128   %}
2129 
2130   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2131     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2132   %}
2133 
2134   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2135     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2136   %}
2137 
2138   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2139     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2140   %}
2141 
2142   enc_class move_return_pc_to_o1() %{
2143     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2144   %}
2145 
2146   /* %%% merge with enc_to_bool */
2147   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2148     C2_MacroAssembler _masm(&cbuf);
2149 
2150     Register   src_reg = reg_to_register_object($src$$reg);
2151     Register   dst_reg = reg_to_register_object($dst$$reg);
2152     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2153   %}
2154 
2155   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2156     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2157     C2_MacroAssembler _masm(&cbuf);
2158 
2159     Register   p_reg = reg_to_register_object($p$$reg);
2160     Register   q_reg = reg_to_register_object($q$$reg);
2161     Register   y_reg = reg_to_register_object($y$$reg);
2162     Register tmp_reg = reg_to_register_object($tmp$$reg);
2163 
2164     __ subcc( p_reg, q_reg,   p_reg );
2165     __ add  ( p_reg, y_reg, tmp_reg );
2166     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2167   %}
2168 
2169   enc_class form_d2i_helper(regD src, regF dst) %{
2170     // fcmp %fcc0,$src,$src
2171     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2172     // branch %fcc0 not-nan, predict taken
2173     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2174     // fdtoi $src,$dst
2175     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2176     // fitos $dst,$dst (if nan)
2177     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2178     // clear $dst (if nan)
2179     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2180     // carry on here...
2181   %}
2182 
2183   enc_class form_d2l_helper(regD src, regD dst) %{
2184     // fcmp %fcc0,$src,$src  check for NAN
2185     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2186     // branch %fcc0 not-nan, predict taken
2187     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2188     // fdtox $src,$dst   convert in delay slot
2189     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2190     // fxtod $dst,$dst  (if nan)
2191     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2192     // clear $dst (if nan)
2193     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2194     // carry on here...
2195   %}
2196 
2197   enc_class form_f2i_helper(regF src, regF dst) %{
2198     // fcmps %fcc0,$src,$src
2199     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2200     // branch %fcc0 not-nan, predict taken
2201     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2202     // fstoi $src,$dst
2203     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2204     // fitos $dst,$dst (if nan)
2205     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2206     // clear $dst (if nan)
2207     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2208     // carry on here...
2209   %}
2210 
2211   enc_class form_f2l_helper(regF src, regD dst) %{
2212     // fcmps %fcc0,$src,$src
2213     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2214     // branch %fcc0 not-nan, predict taken
2215     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2216     // fstox $src,$dst
2217     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2218     // fxtod $dst,$dst (if nan)
2219     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2220     // clear $dst (if nan)
2221     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2222     // carry on here...
2223   %}
2224 
2225   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2226   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2227   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2228   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2229 
2230   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2231 
2232   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2233   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2234 
2235   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2236     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2237   %}
2238 
2239   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2240     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2241   %}
2242 
2243   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2244     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2245   %}
2246 
2247   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2248     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2249   %}
2250 
2251   enc_class form3_convI2F(regF rs2, regF rd) %{
2252     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2253   %}
2254 
2255   // Encloding class for traceable jumps
2256   enc_class form_jmpl(g3RegP dest) %{
2257     emit_jmpl(cbuf, $dest$$reg);
2258   %}
2259 
2260   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2261     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2262   %}
2263 
2264   enc_class form2_nop() %{
2265     emit_nop(cbuf);
2266   %}
2267 
2268   enc_class form2_illtrap() %{
2269     emit_illtrap(cbuf);
2270   %}
2271 
2272 
2273   // Compare longs and convert into -1, 0, 1.
2274   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2275     // CMP $src1,$src2
2276     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2277     // blt,a,pn done
2278     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2279     // mov dst,-1 in delay slot
2280     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2281     // bgt,a,pn done
2282     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2283     // mov dst,1 in delay slot
2284     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2285     // CLR    $dst
2286     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2287   %}
2288 
2289   enc_class enc_PartialSubtypeCheck() %{
2290     C2_MacroAssembler _masm(&cbuf);
2291     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2292     __ delayed()->nop();
2293   %}
2294 
2295   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
2296     C2_MacroAssembler _masm(&cbuf);
2297     Label* L = $labl$$label;
2298     Assembler::Predict predict_taken =
2299       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2300 
2301     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
2302     __ delayed()->nop();
2303   %}
2304 
2305   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
2306     C2_MacroAssembler _masm(&cbuf);
2307     Label* L = $labl$$label;
2308     Assembler::Predict predict_taken =
2309       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2310 
2311     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
2312     __ delayed()->nop();
2313   %}
2314 
2315   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2316     int op = (Assembler::arith_op << 30) |
2317              ($dst$$reg << 25) |
2318              (Assembler::movcc_op3 << 19) |
2319              (1 << 18) |                    // cc2 bit for 'icc'
2320              ($cmp$$cmpcode << 14) |
2321              (0 << 13) |                    // select register move
2322              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2323              ($src$$reg << 0);
2324     cbuf.insts()->emit_int32(op);
2325   %}
2326 
2327   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2328     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2329     int op = (Assembler::arith_op << 30) |
2330              ($dst$$reg << 25) |
2331              (Assembler::movcc_op3 << 19) |
2332              (1 << 18) |                    // cc2 bit for 'icc'
2333              ($cmp$$cmpcode << 14) |
2334              (1 << 13) |                    // select immediate move
2335              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2336              (simm11 << 0);
2337     cbuf.insts()->emit_int32(op);
2338   %}
2339 
2340   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2341     int op = (Assembler::arith_op << 30) |
2342              ($dst$$reg << 25) |
2343              (Assembler::movcc_op3 << 19) |
2344              (0 << 18) |                    // cc2 bit for 'fccX'
2345              ($cmp$$cmpcode << 14) |
2346              (0 << 13) |                    // select register move
2347              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2348              ($src$$reg << 0);
2349     cbuf.insts()->emit_int32(op);
2350   %}
2351 
2352   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2353     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2354     int op = (Assembler::arith_op << 30) |
2355              ($dst$$reg << 25) |
2356              (Assembler::movcc_op3 << 19) |
2357              (0 << 18) |                    // cc2 bit for 'fccX'
2358              ($cmp$$cmpcode << 14) |
2359              (1 << 13) |                    // select immediate move
2360              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2361              (simm11 << 0);
2362     cbuf.insts()->emit_int32(op);
2363   %}
2364 
2365   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2366     int op = (Assembler::arith_op << 30) |
2367              ($dst$$reg << 25) |
2368              (Assembler::fpop2_op3 << 19) |
2369              (0 << 18) |
2370              ($cmp$$cmpcode << 14) |
2371              (1 << 13) |                    // select register move
2372              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2373              ($primary << 5) |              // select single, double or quad
2374              ($src$$reg << 0);
2375     cbuf.insts()->emit_int32(op);
2376   %}
2377 
2378   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2379     int op = (Assembler::arith_op << 30) |
2380              ($dst$$reg << 25) |
2381              (Assembler::fpop2_op3 << 19) |
2382              (0 << 18) |
2383              ($cmp$$cmpcode << 14) |
2384              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2385              ($primary << 5) |              // select single, double or quad
2386              ($src$$reg << 0);
2387     cbuf.insts()->emit_int32(op);
2388   %}
2389 
2390   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2391   // the condition comes from opcode-field instead of an argument.
2392   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2393     int op = (Assembler::arith_op << 30) |
2394              ($dst$$reg << 25) |
2395              (Assembler::movcc_op3 << 19) |
2396              (1 << 18) |                    // cc2 bit for 'icc'
2397              ($primary << 14) |
2398              (0 << 13) |                    // select register move
2399              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2400              ($src$$reg << 0);
2401     cbuf.insts()->emit_int32(op);
2402   %}
2403 
2404   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2405     int op = (Assembler::arith_op << 30) |
2406              ($dst$$reg << 25) |
2407              (Assembler::movcc_op3 << 19) |
2408              (6 << 16) |                    // cc2 bit for 'xcc'
2409              ($primary << 14) |
2410              (0 << 13) |                    // select register move
2411              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2412              ($src$$reg << 0);
2413     cbuf.insts()->emit_int32(op);
2414   %}
2415 
2416   enc_class Set13( immI13 src, iRegI rd ) %{
2417     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2418   %}
2419 
2420   enc_class SetHi22( immI src, iRegI rd ) %{
2421     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2422   %}
2423 
2424   enc_class Set32( immI src, iRegI rd ) %{
2425     C2_MacroAssembler _masm(&cbuf);
2426     __ set($src$$constant, reg_to_register_object($rd$$reg));
2427   %}
2428 
2429   enc_class call_epilog %{
2430     if( VerifyStackAtCalls ) {
2431       C2_MacroAssembler _masm(&cbuf);
2432       int framesize = ra_->C->output()->frame_size_in_bytes();
2433       Register temp_reg = G3;
2434       __ add(SP, framesize, temp_reg);
2435       __ cmp(temp_reg, FP);
2436       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2437     }
2438   %}
2439 
2440   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2441   // to G1 so the register allocator will not have to deal with the misaligned register
2442   // pair.
2443   enc_class adjust_long_from_native_call %{
2444   %}
2445 
2446   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2447     // CALL directly to the runtime
2448     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2449     emit_call_reloc(cbuf, $meth$$method, runtime_call_Relocation::spec(), /*preserve_g2=*/true);
2450   %}
2451 
2452   enc_class preserve_SP %{
2453     C2_MacroAssembler _masm(&cbuf);
2454     __ mov(SP, L7_mh_SP_save);
2455   %}
2456 
2457   enc_class restore_SP %{
2458     C2_MacroAssembler _masm(&cbuf);
2459     __ mov(L7_mh_SP_save, SP);
2460   %}
2461 
2462   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2463     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2464     // who we intended to call.
2465     if (!_method) {
2466       emit_call_reloc(cbuf, $meth$$method, runtime_call_Relocation::spec());
2467     } else {
2468       int method_index = resolved_method_index(cbuf);
2469       RelocationHolder rspec = _optimized_virtual ? opt_virtual_call_Relocation::spec(method_index)
2470                                                   : static_call_Relocation::spec(method_index);
2471       emit_call_reloc(cbuf, $meth$$method, rspec);
2472 
2473       // Emit stub for static call.
2474       address stub = CompiledStaticCall::emit_to_interp_stub(cbuf);
2475       if (stub == NULL) {
2476         ciEnv::current()->record_failure("CodeCache is full");
2477         return;
2478       }
2479     }
2480   %}
2481 
2482   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2483     C2_MacroAssembler _masm(&cbuf);
2484     __ set_inst_mark();
2485     int vtable_index = this->_vtable_index;
2486     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2487     if (vtable_index < 0) {
2488       // must be invalid_vtable_index, not nonvirtual_vtable_index
2489       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
2490       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2491       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2492       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2493       __ ic_call((address)$meth$$method, /*emit_delay=*/true, resolved_method_index(cbuf));
2494     } else {
2495       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2496       // Just go thru the vtable
2497       // get receiver klass (receiver already checked for non-null)
2498       // If we end up going thru a c2i adapter interpreter expects method in G5
2499       int off = __ offset();
2500       __ load_klass(O0, G3_scratch);
2501       int klass_load_size;
2502       if (UseCompressedClassPointers) {
2503         assert(Universe::heap() != NULL, "java heap should be initialized");
2504         klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
2505       } else {
2506         klass_load_size = 1*BytesPerInstWord;
2507       }
2508       int entry_offset = in_bytes(Klass::vtable_start_offset()) + vtable_index*vtableEntry::size_in_bytes();
2509       int v_off = entry_offset + vtableEntry::method_offset_in_bytes();
2510       if (Assembler::is_simm13(v_off)) {
2511         __ ld_ptr(G3, v_off, G5_method);
2512       } else {
2513         // Generate 2 instructions
2514         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2515         __ or3(G5_method, v_off & 0x3ff, G5_method);
2516         // ld_ptr, set_hi, set
2517         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2518                "Unexpected instruction size(s)");
2519         __ ld_ptr(G3, G5_method, G5_method);
2520       }
2521       // NOTE: for vtable dispatches, the vtable entry will never be null.
2522       // However it may very well end up in handle_wrong_method if the
2523       // method is abstract for the particular class.
2524       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
2525       // jump to target (either compiled code or c2iadapter)
2526       __ jmpl(G3_scratch, G0, O7);
2527       __ delayed()->nop();
2528     }
2529   %}
2530 
2531   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2532     C2_MacroAssembler _masm(&cbuf);
2533 
2534     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2535     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2536                               // we might be calling a C2I adapter which needs it.
2537 
2538     assert(temp_reg != G5_ic_reg, "conflicting registers");
2539     // Load nmethod
2540     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
2541 
2542     // CALL to compiled java, indirect the contents of G3
2543     __ set_inst_mark();
2544     __ callr(temp_reg, G0);
2545     __ delayed()->nop();
2546   %}
2547 
2548 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2549     C2_MacroAssembler _masm(&cbuf);
2550     Register Rdividend = reg_to_register_object($src1$$reg);
2551     Register Rdivisor = reg_to_register_object($src2$$reg);
2552     Register Rresult = reg_to_register_object($dst$$reg);
2553 
2554     __ sra(Rdivisor, 0, Rdivisor);
2555     __ sra(Rdividend, 0, Rdividend);
2556     __ sdivx(Rdividend, Rdivisor, Rresult);
2557 %}
2558 
2559 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2560     C2_MacroAssembler _masm(&cbuf);
2561 
2562     Register Rdividend = reg_to_register_object($src1$$reg);
2563     int divisor = $imm$$constant;
2564     Register Rresult = reg_to_register_object($dst$$reg);
2565 
2566     __ sra(Rdividend, 0, Rdividend);
2567     __ sdivx(Rdividend, divisor, Rresult);
2568 %}
2569 
2570 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2571     C2_MacroAssembler _masm(&cbuf);
2572     Register Rsrc1 = reg_to_register_object($src1$$reg);
2573     Register Rsrc2 = reg_to_register_object($src2$$reg);
2574     Register Rdst  = reg_to_register_object($dst$$reg);
2575 
2576     __ sra( Rsrc1, 0, Rsrc1 );
2577     __ sra( Rsrc2, 0, Rsrc2 );
2578     __ mulx( Rsrc1, Rsrc2, Rdst );
2579     __ srlx( Rdst, 32, Rdst );
2580 %}
2581 
2582 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2583     C2_MacroAssembler _masm(&cbuf);
2584     Register Rdividend = reg_to_register_object($src1$$reg);
2585     Register Rdivisor = reg_to_register_object($src2$$reg);
2586     Register Rresult = reg_to_register_object($dst$$reg);
2587     Register Rscratch = reg_to_register_object($scratch$$reg);
2588 
2589     assert(Rdividend != Rscratch, "");
2590     assert(Rdivisor  != Rscratch, "");
2591 
2592     __ sra(Rdividend, 0, Rdividend);
2593     __ sra(Rdivisor, 0, Rdivisor);
2594     __ sdivx(Rdividend, Rdivisor, Rscratch);
2595     __ mulx(Rscratch, Rdivisor, Rscratch);
2596     __ sub(Rdividend, Rscratch, Rresult);
2597 %}
2598 
2599 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2600     C2_MacroAssembler _masm(&cbuf);
2601 
2602     Register Rdividend = reg_to_register_object($src1$$reg);
2603     int divisor = $imm$$constant;
2604     Register Rresult = reg_to_register_object($dst$$reg);
2605     Register Rscratch = reg_to_register_object($scratch$$reg);
2606 
2607     assert(Rdividend != Rscratch, "");
2608 
2609     __ sra(Rdividend, 0, Rdividend);
2610     __ sdivx(Rdividend, divisor, Rscratch);
2611     __ mulx(Rscratch, divisor, Rscratch);
2612     __ sub(Rdividend, Rscratch, Rresult);
2613 %}
2614 
2615 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2616     C2_MacroAssembler _masm(&cbuf);
2617 
2618     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2619     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2620 
2621     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2622 %}
2623 
2624 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2625     C2_MacroAssembler _masm(&cbuf);
2626 
2627     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2628     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2629 
2630     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2631 %}
2632 
2633 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2634     C2_MacroAssembler _masm(&cbuf);
2635 
2636     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2637     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2638 
2639     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2640 %}
2641 
2642 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2643     C2_MacroAssembler _masm(&cbuf);
2644 
2645     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2646     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2647 
2648     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2649 %}
2650 
2651 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2652     C2_MacroAssembler _masm(&cbuf);
2653 
2654     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2655     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2656 
2657     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2658 %}
2659 
2660 
2661 enc_class fmadds (sflt_reg dst, sflt_reg a, sflt_reg b, sflt_reg c) %{
2662     C2_MacroAssembler _masm(&cbuf);
2663 
2664     FloatRegister Frd = reg_to_SingleFloatRegister_object($dst$$reg);
2665     FloatRegister Fra = reg_to_SingleFloatRegister_object($a$$reg);
2666     FloatRegister Frb = reg_to_SingleFloatRegister_object($b$$reg);
2667     FloatRegister Frc = reg_to_SingleFloatRegister_object($c$$reg);
2668 
2669     __ fmadd(FloatRegisterImpl::S, Fra, Frb, Frc, Frd);
2670 %}
2671 
2672 enc_class fmaddd (dflt_reg dst, dflt_reg a, dflt_reg b, dflt_reg c) %{
2673     C2_MacroAssembler _masm(&cbuf);
2674 
2675     FloatRegister Frd = reg_to_DoubleFloatRegister_object($dst$$reg);
2676     FloatRegister Fra = reg_to_DoubleFloatRegister_object($a$$reg);
2677     FloatRegister Frb = reg_to_DoubleFloatRegister_object($b$$reg);
2678     FloatRegister Frc = reg_to_DoubleFloatRegister_object($c$$reg);
2679 
2680     __ fmadd(FloatRegisterImpl::D, Fra, Frb, Frc, Frd);
2681 %}
2682 
2683 enc_class fmsubs (sflt_reg dst, sflt_reg a, sflt_reg b, sflt_reg c) %{
2684     C2_MacroAssembler _masm(&cbuf);
2685 
2686     FloatRegister Frd = reg_to_SingleFloatRegister_object($dst$$reg);
2687     FloatRegister Fra = reg_to_SingleFloatRegister_object($a$$reg);
2688     FloatRegister Frb = reg_to_SingleFloatRegister_object($b$$reg);
2689     FloatRegister Frc = reg_to_SingleFloatRegister_object($c$$reg);
2690 
2691     __ fmsub(FloatRegisterImpl::S, Fra, Frb, Frc, Frd);
2692 %}
2693 
2694 enc_class fmsubd (dflt_reg dst, dflt_reg a, dflt_reg b, dflt_reg c) %{
2695     C2_MacroAssembler _masm(&cbuf);
2696 
2697     FloatRegister Frd = reg_to_DoubleFloatRegister_object($dst$$reg);
2698     FloatRegister Fra = reg_to_DoubleFloatRegister_object($a$$reg);
2699     FloatRegister Frb = reg_to_DoubleFloatRegister_object($b$$reg);
2700     FloatRegister Frc = reg_to_DoubleFloatRegister_object($c$$reg);
2701 
2702     __ fmsub(FloatRegisterImpl::D, Fra, Frb, Frc, Frd);
2703 %}
2704 
2705 enc_class fnmadds (sflt_reg dst, sflt_reg a, sflt_reg b, sflt_reg c) %{
2706     C2_MacroAssembler _masm(&cbuf);
2707 
2708     FloatRegister Frd = reg_to_SingleFloatRegister_object($dst$$reg);
2709     FloatRegister Fra = reg_to_SingleFloatRegister_object($a$$reg);
2710     FloatRegister Frb = reg_to_SingleFloatRegister_object($b$$reg);
2711     FloatRegister Frc = reg_to_SingleFloatRegister_object($c$$reg);
2712 
2713     __ fnmadd(FloatRegisterImpl::S, Fra, Frb, Frc, Frd);
2714 %}
2715 
2716 enc_class fnmaddd (dflt_reg dst, dflt_reg a, dflt_reg b, dflt_reg c) %{
2717     C2_MacroAssembler _masm(&cbuf);
2718 
2719     FloatRegister Frd = reg_to_DoubleFloatRegister_object($dst$$reg);
2720     FloatRegister Fra = reg_to_DoubleFloatRegister_object($a$$reg);
2721     FloatRegister Frb = reg_to_DoubleFloatRegister_object($b$$reg);
2722     FloatRegister Frc = reg_to_DoubleFloatRegister_object($c$$reg);
2723 
2724     __ fnmadd(FloatRegisterImpl::D, Fra, Frb, Frc, Frd);
2725 %}
2726 
2727 enc_class fnmsubs (sflt_reg dst, sflt_reg a, sflt_reg b, sflt_reg c) %{
2728     C2_MacroAssembler _masm(&cbuf);
2729 
2730     FloatRegister Frd = reg_to_SingleFloatRegister_object($dst$$reg);
2731     FloatRegister Fra = reg_to_SingleFloatRegister_object($a$$reg);
2732     FloatRegister Frb = reg_to_SingleFloatRegister_object($b$$reg);
2733     FloatRegister Frc = reg_to_SingleFloatRegister_object($c$$reg);
2734 
2735     __ fnmsub(FloatRegisterImpl::S, Fra, Frb, Frc, Frd);
2736 %}
2737 
2738 enc_class fnmsubd (dflt_reg dst, dflt_reg a, dflt_reg b, dflt_reg c) %{
2739     C2_MacroAssembler _masm(&cbuf);
2740 
2741     FloatRegister Frd = reg_to_DoubleFloatRegister_object($dst$$reg);
2742     FloatRegister Fra = reg_to_DoubleFloatRegister_object($a$$reg);
2743     FloatRegister Frb = reg_to_DoubleFloatRegister_object($b$$reg);
2744     FloatRegister Frc = reg_to_DoubleFloatRegister_object($c$$reg);
2745 
2746     __ fnmsub(FloatRegisterImpl::D, Fra, Frb, Frc, Frd);
2747 %}
2748 
2749 
2750 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2751     C2_MacroAssembler _masm(&cbuf);
2752 
2753     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2754     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2755 
2756     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2757 %}
2758 
2759 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2760     C2_MacroAssembler _masm(&cbuf);
2761 
2762     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2763     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2764 
2765     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2766 %}
2767 
2768 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2769     C2_MacroAssembler _masm(&cbuf);
2770 
2771     Register Roop  = reg_to_register_object($oop$$reg);
2772     Register Rbox  = reg_to_register_object($box$$reg);
2773     Register Rscratch = reg_to_register_object($scratch$$reg);
2774     Register Rmark =    reg_to_register_object($scratch2$$reg);
2775 
2776     assert(Roop  != Rscratch, "");
2777     assert(Roop  != Rmark, "");
2778     assert(Rbox  != Rscratch, "");
2779     assert(Rbox  != Rmark, "");
2780 
2781     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2782 %}
2783 
2784 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2785     C2_MacroAssembler _masm(&cbuf);
2786 
2787     Register Roop  = reg_to_register_object($oop$$reg);
2788     Register Rbox  = reg_to_register_object($box$$reg);
2789     Register Rscratch = reg_to_register_object($scratch$$reg);
2790     Register Rmark =    reg_to_register_object($scratch2$$reg);
2791 
2792     assert(Roop  != Rscratch, "");
2793     assert(Roop  != Rmark, "");
2794     assert(Rbox  != Rscratch, "");
2795     assert(Rbox  != Rmark, "");
2796 
2797     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2798   %}
2799 
2800   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2801     C2_MacroAssembler _masm(&cbuf);
2802     Register Rmem = reg_to_register_object($mem$$reg);
2803     Register Rold = reg_to_register_object($old$$reg);
2804     Register Rnew = reg_to_register_object($new$$reg);
2805 
2806     __ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2807     __ cmp( Rold, Rnew );
2808   %}
2809 
2810   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2811     Register Rmem = reg_to_register_object($mem$$reg);
2812     Register Rold = reg_to_register_object($old$$reg);
2813     Register Rnew = reg_to_register_object($new$$reg);
2814 
2815     C2_MacroAssembler _masm(&cbuf);
2816     __ mov(Rnew, O7);
2817     __ casx(Rmem, Rold, O7);
2818     __ cmp( Rold, O7 );
2819   %}
2820 
2821   // raw int cas, used for compareAndSwap
2822   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2823     Register Rmem = reg_to_register_object($mem$$reg);
2824     Register Rold = reg_to_register_object($old$$reg);
2825     Register Rnew = reg_to_register_object($new$$reg);
2826 
2827     C2_MacroAssembler _masm(&cbuf);
2828     __ mov(Rnew, O7);
2829     __ cas(Rmem, Rold, O7);
2830     __ cmp( Rold, O7 );
2831   %}
2832 
2833   // raw int cas without using tmp register for compareAndExchange
2834   enc_class enc_casi_exch( iRegP mem, iRegL old, iRegL new) %{
2835     Register Rmem = reg_to_register_object($mem$$reg);
2836     Register Rold = reg_to_register_object($old$$reg);
2837     Register Rnew = reg_to_register_object($new$$reg);
2838 
2839     C2_MacroAssembler _masm(&cbuf);
2840     __ cas(Rmem, Rold, Rnew);
2841   %}
2842 
2843   // 64-bit cas without using tmp register for compareAndExchange
2844   enc_class enc_casx_exch( iRegP mem, iRegL old, iRegL new) %{
2845     Register Rmem = reg_to_register_object($mem$$reg);
2846     Register Rold = reg_to_register_object($old$$reg);
2847     Register Rnew = reg_to_register_object($new$$reg);
2848 
2849     C2_MacroAssembler _masm(&cbuf);
2850     __ casx(Rmem, Rold, Rnew);
2851   %}
2852 
2853   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2854     Register Rres = reg_to_register_object($res$$reg);
2855 
2856     C2_MacroAssembler _masm(&cbuf);
2857     __ mov(1, Rres);
2858     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2859   %}
2860 
2861   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2862     Register Rres = reg_to_register_object($res$$reg);
2863 
2864     C2_MacroAssembler _masm(&cbuf);
2865     __ mov(1, Rres);
2866     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2867   %}
2868 
2869   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2870     C2_MacroAssembler _masm(&cbuf);
2871     Register Rdst = reg_to_register_object($dst$$reg);
2872     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2873                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2874     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2875                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2876 
2877     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2878     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2879   %}
2880 
2881   enc_class enc_rethrow() %{
2882     cbuf.set_insts_mark();
2883     Register temp_reg = G3;
2884     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
2885     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
2886     C2_MacroAssembler _masm(&cbuf);
2887 #ifdef ASSERT
2888     __ save_frame(0);
2889     AddressLiteral last_rethrow_addrlit(&last_rethrow);
2890     __ sethi(last_rethrow_addrlit, L1);
2891     Address addr(L1, last_rethrow_addrlit.low10());
2892     __ rdpc(L2);
2893     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
2894     __ st_ptr(L2, addr);
2895     __ restore();
2896 #endif
2897     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
2898     __ delayed()->nop();
2899   %}
2900 
2901   enc_class emit_mem_nop() %{
2902     // Generates the instruction LDUXA [o6,g0],#0x82,g0
2903     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
2904   %}
2905 
2906   enc_class emit_fadd_nop() %{
2907     // Generates the instruction FMOVS f31,f31
2908     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
2909   %}
2910 
2911   enc_class emit_br_nop() %{
2912     // Generates the instruction BPN,PN .
2913     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
2914   %}
2915 
2916   enc_class enc_membar_acquire %{
2917     C2_MacroAssembler _masm(&cbuf);
2918     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
2919   %}
2920 
2921   enc_class enc_membar_release %{
2922     C2_MacroAssembler _masm(&cbuf);
2923     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
2924   %}
2925 
2926   enc_class enc_membar_volatile %{
2927     C2_MacroAssembler _masm(&cbuf);
2928     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
2929   %}
2930 
2931 %}
2932 
2933 //----------FRAME--------------------------------------------------------------
2934 // Definition of frame structure and management information.
2935 //
2936 //  S T A C K   L A Y O U T    Allocators stack-slot number
2937 //                             |   (to get allocators register number
2938 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
2939 //  r   CALLER     |        |
2940 //  o     |        +--------+      pad to even-align allocators stack-slot
2941 //  w     V        |  pad0  |        numbers; owned by CALLER
2942 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
2943 //  h     ^        |   in   |  5
2944 //        |        |  args  |  4   Holes in incoming args owned by SELF
2945 //  |     |        |        |  3
2946 //  |     |        +--------+
2947 //  V     |        | old out|      Empty on Intel, window on Sparc
2948 //        |    old |preserve|      Must be even aligned.
2949 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
2950 //        |        |   in   |  3   area for Intel ret address
2951 //     Owned by    |preserve|      Empty on Sparc.
2952 //       SELF      +--------+
2953 //        |        |  pad2  |  2   pad to align old SP
2954 //        |        +--------+  1
2955 //        |        | locks  |  0
2956 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
2957 //        |        |  pad1  | 11   pad to align new SP
2958 //        |        +--------+
2959 //        |        |        | 10
2960 //        |        | spills |  9   spills
2961 //        V        |        |  8   (pad0 slot for callee)
2962 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
2963 //        ^        |  out   |  7
2964 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
2965 //     Owned by    +--------+
2966 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
2967 //        |    new |preserve|      Must be even-aligned.
2968 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
2969 //        |        |        |
2970 //
2971 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
2972 //         known from SELF's arguments and the Java calling convention.
2973 //         Region 6-7 is determined per call site.
2974 // Note 2: If the calling convention leaves holes in the incoming argument
2975 //         area, those holes are owned by SELF.  Holes in the outgoing area
2976 //         are owned by the CALLEE.  Holes should not be nessecary in the
2977 //         incoming area, as the Java calling convention is completely under
2978 //         the control of the AD file.  Doubles can be sorted and packed to
2979 //         avoid holes.  Holes in the outgoing arguments may be necessary for
2980 //         varargs C calling conventions.
2981 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
2982 //         even aligned with pad0 as needed.
2983 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
2984 //         region 6-11 is even aligned; it may be padded out more so that
2985 //         the region from SP to FP meets the minimum stack alignment.
2986 
2987 frame %{
2988   // What direction does stack grow in (assumed to be same for native & Java)
2989   stack_direction(TOWARDS_LOW);
2990 
2991   // These two registers define part of the calling convention
2992   // between compiled code and the interpreter.
2993   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
2994   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
2995 
2996   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
2997   cisc_spilling_operand_name(indOffset);
2998 
2999   // Number of stack slots consumed by a Monitor enter
3000   sync_stack_slots(2);
3001 
3002   // Compiled code's Frame Pointer
3003   frame_pointer(R_SP);
3004 
3005   // Stack alignment requirement
3006   stack_alignment(StackAlignmentInBytes);
3007   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3008   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3009 
3010   // Number of stack slots between incoming argument block and the start of
3011   // a new frame.  The PROLOG must add this many slots to the stack.  The
3012   // EPILOG must remove this many slots.
3013   in_preserve_stack_slots(0);
3014 
3015   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3016   // for calls to C.  Supports the var-args backing area for register parms.
3017   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3018   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3019   varargs_C_out_slots_killed(12);
3020 
3021   // The after-PROLOG location of the return address.  Location of
3022   // return address specifies a type (REG or STACK) and a number
3023   // representing the register number (i.e. - use a register name) or
3024   // stack slot.
3025   return_addr(REG R_I7);          // Ret Addr is in register I7
3026 
3027   // Body of function which returns an OptoRegs array locating
3028   // arguments either in registers or in stack slots for calling
3029   // java
3030   calling_convention %{
3031     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3032 
3033   %}
3034 
3035   // Body of function which returns an OptoRegs array locating
3036   // arguments either in registers or in stack slots for calling
3037   // C.
3038   c_calling_convention %{
3039     // This is obviously always outgoing
3040     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
3041   %}
3042 
3043   // Location of native (C/C++) and interpreter return values.  This is specified to
3044   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3045   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3046   // to and from the register pairs is done by the appropriate call and epilog
3047   // opcodes.  This simplifies the register allocator.
3048   c_return_value %{
3049     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3050     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3051     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3052     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3053     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3054     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3055                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3056   %}
3057 
3058   // Location of compiled Java return values.  Same as C
3059   return_value %{
3060     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3061     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3062     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3063     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3064     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3065     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3066                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3067   %}
3068 
3069 %}
3070 
3071 
3072 //----------ATTRIBUTES---------------------------------------------------------
3073 //----------Operand Attributes-------------------------------------------------
3074 op_attrib op_cost(1);          // Required cost attribute
3075 
3076 //----------Instruction Attributes---------------------------------------------
3077 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3078 ins_attrib ins_size(32);           // Required size attribute (in bits)
3079 
3080 // avoid_back_to_back attribute is an expression that must return
3081 // one of the following values defined in MachNode:
3082 // AVOID_NONE   - instruction can be placed anywhere
3083 // AVOID_BEFORE - instruction cannot be placed after an
3084 //                instruction with MachNode::AVOID_AFTER
3085 // AVOID_AFTER  - the next instruction cannot be the one
3086 //                with MachNode::AVOID_BEFORE
3087 // AVOID_BEFORE_AND_AFTER - BEFORE and AFTER attributes at
3088 //                          the same time
3089 ins_attrib ins_avoid_back_to_back(MachNode::AVOID_NONE);
3090 
3091 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
3092                                    // non-matching short branch variant of some
3093                                                             // long branch?
3094 
3095 //----------OPERANDS-----------------------------------------------------------
3096 // Operand definitions must precede instruction definitions for correct parsing
3097 // in the ADLC because operands constitute user defined types which are used in
3098 // instruction definitions.
3099 
3100 //----------Simple Operands----------------------------------------------------
3101 // Immediate Operands
3102 // Integer Immediate: 32-bit
3103 operand immI() %{
3104   match(ConI);
3105 
3106   op_cost(0);
3107   // formats are generated automatically for constants and base registers
3108   format %{ %}
3109   interface(CONST_INTER);
3110 %}
3111 
3112 // Integer Immediate: 0-bit
3113 operand immI0() %{
3114   predicate(n->get_int() == 0);
3115   match(ConI);
3116   op_cost(0);
3117 
3118   format %{ %}
3119   interface(CONST_INTER);
3120 %}
3121 
3122 // Integer Immediate: 5-bit
3123 operand immI5() %{
3124   predicate(Assembler::is_simm5(n->get_int()));
3125   match(ConI);
3126   op_cost(0);
3127   format %{ %}
3128   interface(CONST_INTER);
3129 %}
3130 
3131 // Integer Immediate: 8-bit
3132 operand immI8() %{
3133   predicate(Assembler::is_simm8(n->get_int()));
3134   match(ConI);
3135   op_cost(0);
3136   format %{ %}
3137   interface(CONST_INTER);
3138 %}
3139 
3140 // Integer Immediate: the value 10
3141 operand immI10() %{
3142   predicate(n->get_int() == 10);
3143   match(ConI);
3144   op_cost(0);
3145 
3146   format %{ %}
3147   interface(CONST_INTER);
3148 %}
3149 
3150 // Integer Immediate: 11-bit
3151 operand immI11() %{
3152   predicate(Assembler::is_simm11(n->get_int()));
3153   match(ConI);
3154   op_cost(0);
3155   format %{ %}
3156   interface(CONST_INTER);
3157 %}
3158 
3159 // Integer Immediate: 13-bit
3160 operand immI13() %{
3161   predicate(Assembler::is_simm13(n->get_int()));
3162   match(ConI);
3163   op_cost(0);
3164 
3165   format %{ %}
3166   interface(CONST_INTER);
3167 %}
3168 
3169 // Integer Immediate: 13-bit minus 7
3170 operand immI13m7() %{
3171   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3172   match(ConI);
3173   op_cost(0);
3174 
3175   format %{ %}
3176   interface(CONST_INTER);
3177 %}
3178 
3179 // Integer Immediate: 16-bit
3180 operand immI16() %{
3181   predicate(Assembler::is_simm16(n->get_int()));
3182   match(ConI);
3183   op_cost(0);
3184   format %{ %}
3185   interface(CONST_INTER);
3186 %}
3187 
3188 // Integer Immediate: the values 1-31
3189 operand immI_1_31() %{
3190   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3191   match(ConI);
3192   op_cost(0);
3193 
3194   format %{ %}
3195   interface(CONST_INTER);
3196 %}
3197 
3198 // Integer Immediate: the values 32-63
3199 operand immI_32_63() %{
3200   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3201   match(ConI);
3202   op_cost(0);
3203 
3204   format %{ %}
3205   interface(CONST_INTER);
3206 %}
3207 
3208 // Immediates for special shifts (sign extend)
3209 
3210 // Integer Immediate: the value 16
3211 operand immI_16() %{
3212   predicate(n->get_int() == 16);
3213   match(ConI);
3214   op_cost(0);
3215 
3216   format %{ %}
3217   interface(CONST_INTER);
3218 %}
3219 
3220 // Integer Immediate: the value 24
3221 operand immI_24() %{
3222   predicate(n->get_int() == 24);
3223   match(ConI);
3224   op_cost(0);
3225 
3226   format %{ %}
3227   interface(CONST_INTER);
3228 %}
3229 // Integer Immediate: the value 255
3230 operand immI_255() %{
3231   predicate( n->get_int() == 255 );
3232   match(ConI);
3233   op_cost(0);
3234 
3235   format %{ %}
3236   interface(CONST_INTER);
3237 %}
3238 
3239 // Integer Immediate: the value 65535
3240 operand immI_65535() %{
3241   predicate(n->get_int() == 65535);
3242   match(ConI);
3243   op_cost(0);
3244 
3245   format %{ %}
3246   interface(CONST_INTER);
3247 %}
3248 
3249 // Integer Immediate: the values 0-31
3250 operand immU5() %{
3251   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3252   match(ConI);
3253   op_cost(0);
3254 
3255   format %{ %}
3256   interface(CONST_INTER);
3257 %}
3258 
3259 // Integer Immediate: 6-bit
3260 operand immU6() %{
3261   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3262   match(ConI);
3263   op_cost(0);
3264   format %{ %}
3265   interface(CONST_INTER);
3266 %}
3267 
3268 // Unsigned Integer Immediate: 12-bit (non-negative that fits in simm13)
3269 operand immU12() %{
3270   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3271   match(ConI);
3272   op_cost(0);
3273 
3274   format %{ %}
3275   interface(CONST_INTER);
3276 %}
3277 
3278 // Unsigned Long Immediate: 12-bit (non-negative that fits in simm13)
3279 operand immUL12() %{
3280   predicate((0 <= n->get_long()) && (n->get_long() == (int)n->get_long()) && Assembler::is_simm13((int)n->get_long()));
3281   match(ConL);
3282   op_cost(0);
3283 
3284   format %{ %}
3285   interface(CONST_INTER);
3286 %}
3287 
3288 // Integer Immediate non-negative
3289 operand immU31()
3290 %{
3291   predicate(n->get_int() >= 0);
3292   match(ConI);
3293 
3294   op_cost(0);
3295   format %{ %}
3296   interface(CONST_INTER);
3297 %}
3298 
3299 // Long Immediate: the value FF
3300 operand immL_FF() %{
3301   predicate( n->get_long() == 0xFFL );
3302   match(ConL);
3303   op_cost(0);
3304 
3305   format %{ %}
3306   interface(CONST_INTER);
3307 %}
3308 
3309 // Long Immediate: the value FFFF
3310 operand immL_FFFF() %{
3311   predicate( n->get_long() == 0xFFFFL );
3312   match(ConL);
3313   op_cost(0);
3314 
3315   format %{ %}
3316   interface(CONST_INTER);
3317 %}
3318 
3319 // Pointer Immediate: 32 or 64-bit
3320 operand immP() %{
3321   match(ConP);
3322 
3323   op_cost(5);
3324   // formats are generated automatically for constants and base registers
3325   format %{ %}
3326   interface(CONST_INTER);
3327 %}
3328 
3329 // Pointer Immediate: 64-bit
3330 operand immP_set() %{
3331   predicate(!VM_Version::has_fast_ld());
3332   match(ConP);
3333 
3334   op_cost(5);
3335   // formats are generated automatically for constants and base registers
3336   format %{ %}
3337   interface(CONST_INTER);
3338 %}
3339 
3340 // Pointer Immediate: 64-bit
3341 // From Niagara2 processors on a load should be better than materializing.
3342 operand immP_load() %{
3343   predicate(VM_Version::has_fast_ld() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3344   match(ConP);
3345 
3346   op_cost(5);
3347   // formats are generated automatically for constants and base registers
3348   format %{ %}
3349   interface(CONST_INTER);
3350 %}
3351 
3352 // Pointer Immediate: 64-bit
3353 operand immP_no_oop_cheap() %{
3354   predicate(VM_Version::has_fast_ld() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3355   match(ConP);
3356 
3357   op_cost(5);
3358   // formats are generated automatically for constants and base registers
3359   format %{ %}
3360   interface(CONST_INTER);
3361 %}
3362 
3363 operand immP13() %{
3364   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3365   match(ConP);
3366   op_cost(0);
3367 
3368   format %{ %}
3369   interface(CONST_INTER);
3370 %}
3371 
3372 operand immP0() %{
3373   predicate(n->get_ptr() == 0);
3374   match(ConP);
3375   op_cost(0);
3376 
3377   format %{ %}
3378   interface(CONST_INTER);
3379 %}
3380 
3381 // Pointer Immediate
3382 operand immN()
3383 %{
3384   match(ConN);
3385 
3386   op_cost(10);
3387   format %{ %}
3388   interface(CONST_INTER);
3389 %}
3390 
3391 operand immNKlass()
3392 %{
3393   match(ConNKlass);
3394 
3395   op_cost(10);
3396   format %{ %}
3397   interface(CONST_INTER);
3398 %}
3399 
3400 // NULL Pointer Immediate
3401 operand immN0()
3402 %{
3403   predicate(n->get_narrowcon() == 0);
3404   match(ConN);
3405 
3406   op_cost(0);
3407   format %{ %}
3408   interface(CONST_INTER);
3409 %}
3410 
3411 operand immL() %{
3412   match(ConL);
3413   op_cost(40);
3414   // formats are generated automatically for constants and base registers
3415   format %{ %}
3416   interface(CONST_INTER);
3417 %}
3418 
3419 operand immL0() %{
3420   predicate(n->get_long() == 0L);
3421   match(ConL);
3422   op_cost(0);
3423   // formats are generated automatically for constants and base registers
3424   format %{ %}
3425   interface(CONST_INTER);
3426 %}
3427 
3428 // Integer Immediate: 5-bit
3429 operand immL5() %{
3430   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
3431   match(ConL);
3432   op_cost(0);
3433   format %{ %}
3434   interface(CONST_INTER);
3435 %}
3436 
3437 // Long Immediate: 13-bit
3438 operand immL13() %{
3439   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3440   match(ConL);
3441   op_cost(0);
3442 
3443   format %{ %}
3444   interface(CONST_INTER);
3445 %}
3446 
3447 // Long Immediate: 13-bit minus 7
3448 operand immL13m7() %{
3449   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3450   match(ConL);
3451   op_cost(0);
3452 
3453   format %{ %}
3454   interface(CONST_INTER);
3455 %}
3456 
3457 // Long Immediate: low 32-bit mask
3458 operand immL_32bits() %{
3459   predicate(n->get_long() == 0xFFFFFFFFL);
3460   match(ConL);
3461   op_cost(0);
3462 
3463   format %{ %}
3464   interface(CONST_INTER);
3465 %}
3466 
3467 // Long Immediate: cheap (materialize in <= 3 instructions)
3468 operand immL_cheap() %{
3469   predicate(!VM_Version::has_fast_ld() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3470   match(ConL);
3471   op_cost(0);
3472 
3473   format %{ %}
3474   interface(CONST_INTER);
3475 %}
3476 
3477 // Long Immediate: expensive (materialize in > 3 instructions)
3478 operand immL_expensive() %{
3479   predicate(VM_Version::has_fast_ld() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3480   match(ConL);
3481   op_cost(0);
3482 
3483   format %{ %}
3484   interface(CONST_INTER);
3485 %}
3486 
3487 // Double Immediate
3488 operand immD() %{
3489   match(ConD);
3490 
3491   op_cost(40);
3492   format %{ %}
3493   interface(CONST_INTER);
3494 %}
3495 
3496 // Double Immediate: +0.0d
3497 operand immD0() %{
3498   predicate(jlong_cast(n->getd()) == 0);
3499   match(ConD);
3500 
3501   op_cost(0);
3502   format %{ %}
3503   interface(CONST_INTER);
3504 %}
3505 
3506 // Float Immediate
3507 operand immF() %{
3508   match(ConF);
3509 
3510   op_cost(20);
3511   format %{ %}
3512   interface(CONST_INTER);
3513 %}
3514 
3515 // Float Immediate: +0.0f
3516 operand immF0() %{
3517   predicate(jint_cast(n->getf()) == 0);
3518   match(ConF);
3519 
3520   op_cost(0);
3521   format %{ %}
3522   interface(CONST_INTER);
3523 %}
3524 
3525 // Integer Register Operands
3526 // Integer Register
3527 operand iRegI() %{
3528   constraint(ALLOC_IN_RC(int_reg));
3529   match(RegI);
3530 
3531   match(notemp_iRegI);
3532   match(g1RegI);
3533   match(o0RegI);
3534   match(iRegIsafe);
3535 
3536   format %{ %}
3537   interface(REG_INTER);
3538 %}
3539 
3540 operand notemp_iRegI() %{
3541   constraint(ALLOC_IN_RC(notemp_int_reg));
3542   match(RegI);
3543 
3544   match(o0RegI);
3545 
3546   format %{ %}
3547   interface(REG_INTER);
3548 %}
3549 
3550 operand o0RegI() %{
3551   constraint(ALLOC_IN_RC(o0_regI));
3552   match(iRegI);
3553 
3554   format %{ %}
3555   interface(REG_INTER);
3556 %}
3557 
3558 // Pointer Register
3559 operand iRegP() %{
3560   constraint(ALLOC_IN_RC(ptr_reg));
3561   match(RegP);
3562 
3563   match(lock_ptr_RegP);
3564   match(g1RegP);
3565   match(g2RegP);
3566   match(g3RegP);
3567   match(g4RegP);
3568   match(i0RegP);
3569   match(o0RegP);
3570   match(o1RegP);
3571   match(l7RegP);
3572 
3573   format %{ %}
3574   interface(REG_INTER);
3575 %}
3576 
3577 operand sp_ptr_RegP() %{
3578   constraint(ALLOC_IN_RC(sp_ptr_reg));
3579   match(RegP);
3580   match(iRegP);
3581 
3582   format %{ %}
3583   interface(REG_INTER);
3584 %}
3585 
3586 operand lock_ptr_RegP() %{
3587   constraint(ALLOC_IN_RC(lock_ptr_reg));
3588   match(RegP);
3589   match(i0RegP);
3590   match(o0RegP);
3591   match(o1RegP);
3592   match(l7RegP);
3593 
3594   format %{ %}
3595   interface(REG_INTER);
3596 %}
3597 
3598 operand g1RegP() %{
3599   constraint(ALLOC_IN_RC(g1_regP));
3600   match(iRegP);
3601 
3602   format %{ %}
3603   interface(REG_INTER);
3604 %}
3605 
3606 operand g2RegP() %{
3607   constraint(ALLOC_IN_RC(g2_regP));
3608   match(iRegP);
3609 
3610   format %{ %}
3611   interface(REG_INTER);
3612 %}
3613 
3614 operand g3RegP() %{
3615   constraint(ALLOC_IN_RC(g3_regP));
3616   match(iRegP);
3617 
3618   format %{ %}
3619   interface(REG_INTER);
3620 %}
3621 
3622 operand g1RegI() %{
3623   constraint(ALLOC_IN_RC(g1_regI));
3624   match(iRegI);
3625 
3626   format %{ %}
3627   interface(REG_INTER);
3628 %}
3629 
3630 operand g3RegI() %{
3631   constraint(ALLOC_IN_RC(g3_regI));
3632   match(iRegI);
3633 
3634   format %{ %}
3635   interface(REG_INTER);
3636 %}
3637 
3638 operand g4RegI() %{
3639   constraint(ALLOC_IN_RC(g4_regI));
3640   match(iRegI);
3641 
3642   format %{ %}
3643   interface(REG_INTER);
3644 %}
3645 
3646 operand g4RegP() %{
3647   constraint(ALLOC_IN_RC(g4_regP));
3648   match(iRegP);
3649 
3650   format %{ %}
3651   interface(REG_INTER);
3652 %}
3653 
3654 operand i0RegP() %{
3655   constraint(ALLOC_IN_RC(i0_regP));
3656   match(iRegP);
3657 
3658   format %{ %}
3659   interface(REG_INTER);
3660 %}
3661 
3662 operand o0RegP() %{
3663   constraint(ALLOC_IN_RC(o0_regP));
3664   match(iRegP);
3665 
3666   format %{ %}
3667   interface(REG_INTER);
3668 %}
3669 
3670 operand o1RegP() %{
3671   constraint(ALLOC_IN_RC(o1_regP));
3672   match(iRegP);
3673 
3674   format %{ %}
3675   interface(REG_INTER);
3676 %}
3677 
3678 operand o2RegP() %{
3679   constraint(ALLOC_IN_RC(o2_regP));
3680   match(iRegP);
3681 
3682   format %{ %}
3683   interface(REG_INTER);
3684 %}
3685 
3686 operand o7RegP() %{
3687   constraint(ALLOC_IN_RC(o7_regP));
3688   match(iRegP);
3689 
3690   format %{ %}
3691   interface(REG_INTER);
3692 %}
3693 
3694 operand l7RegP() %{
3695   constraint(ALLOC_IN_RC(l7_regP));
3696   match(iRegP);
3697 
3698   format %{ %}
3699   interface(REG_INTER);
3700 %}
3701 
3702 operand o7RegI() %{
3703   constraint(ALLOC_IN_RC(o7_regI));
3704   match(iRegI);
3705 
3706   format %{ %}
3707   interface(REG_INTER);
3708 %}
3709 
3710 operand iRegN() %{
3711   constraint(ALLOC_IN_RC(int_reg));
3712   match(RegN);
3713 
3714   format %{ %}
3715   interface(REG_INTER);
3716 %}
3717 
3718 // Long Register
3719 operand iRegL() %{
3720   constraint(ALLOC_IN_RC(long_reg));
3721   match(RegL);
3722 
3723   format %{ %}
3724   interface(REG_INTER);
3725 %}
3726 
3727 operand o2RegL() %{
3728   constraint(ALLOC_IN_RC(o2_regL));
3729   match(iRegL);
3730 
3731   format %{ %}
3732   interface(REG_INTER);
3733 %}
3734 
3735 operand o7RegL() %{
3736   constraint(ALLOC_IN_RC(o7_regL));
3737   match(iRegL);
3738 
3739   format %{ %}
3740   interface(REG_INTER);
3741 %}
3742 
3743 operand g1RegL() %{
3744   constraint(ALLOC_IN_RC(g1_regL));
3745   match(iRegL);
3746 
3747   format %{ %}
3748   interface(REG_INTER);
3749 %}
3750 
3751 operand g3RegL() %{
3752   constraint(ALLOC_IN_RC(g3_regL));
3753   match(iRegL);
3754 
3755   format %{ %}
3756   interface(REG_INTER);
3757 %}
3758 
3759 // Int Register safe
3760 // This is 64bit safe
3761 operand iRegIsafe() %{
3762   constraint(ALLOC_IN_RC(long_reg));
3763 
3764   match(iRegI);
3765 
3766   format %{ %}
3767   interface(REG_INTER);
3768 %}
3769 
3770 // Condition Code Flag Register
3771 operand flagsReg() %{
3772   constraint(ALLOC_IN_RC(int_flags));
3773   match(RegFlags);
3774 
3775   format %{ "ccr" %} // both ICC and XCC
3776   interface(REG_INTER);
3777 %}
3778 
3779 // Condition Code Register, unsigned comparisons.
3780 operand flagsRegU() %{
3781   constraint(ALLOC_IN_RC(int_flags));
3782   match(RegFlags);
3783 
3784   format %{ "icc_U" %}
3785   interface(REG_INTER);
3786 %}
3787 
3788 // Condition Code Register, pointer comparisons.
3789 operand flagsRegP() %{
3790   constraint(ALLOC_IN_RC(int_flags));
3791   match(RegFlags);
3792 
3793   format %{ "xcc_P" %}
3794   interface(REG_INTER);
3795 %}
3796 
3797 // Condition Code Register, long comparisons.
3798 operand flagsRegL() %{
3799   constraint(ALLOC_IN_RC(int_flags));
3800   match(RegFlags);
3801 
3802   format %{ "xcc_L" %}
3803   interface(REG_INTER);
3804 %}
3805 
3806 // Condition Code Register, unsigned long comparisons.
3807 operand flagsRegUL() %{
3808   constraint(ALLOC_IN_RC(int_flags));
3809   match(RegFlags);
3810 
3811   format %{ "xcc_UL" %}
3812   interface(REG_INTER);
3813 %}
3814 
3815 // Condition Code Register, floating comparisons, unordered same as "less".
3816 operand flagsRegF() %{
3817   constraint(ALLOC_IN_RC(float_flags));
3818   match(RegFlags);
3819   match(flagsRegF0);
3820 
3821   format %{ %}
3822   interface(REG_INTER);
3823 %}
3824 
3825 operand flagsRegF0() %{
3826   constraint(ALLOC_IN_RC(float_flag0));
3827   match(RegFlags);
3828 
3829   format %{ %}
3830   interface(REG_INTER);
3831 %}
3832 
3833 
3834 // Condition Code Flag Register used by long compare
3835 operand flagsReg_long_LTGE() %{
3836   constraint(ALLOC_IN_RC(int_flags));
3837   match(RegFlags);
3838   format %{ "icc_LTGE" %}
3839   interface(REG_INTER);
3840 %}
3841 operand flagsReg_long_EQNE() %{
3842   constraint(ALLOC_IN_RC(int_flags));
3843   match(RegFlags);
3844   format %{ "icc_EQNE" %}
3845   interface(REG_INTER);
3846 %}
3847 operand flagsReg_long_LEGT() %{
3848   constraint(ALLOC_IN_RC(int_flags));
3849   match(RegFlags);
3850   format %{ "icc_LEGT" %}
3851   interface(REG_INTER);
3852 %}
3853 
3854 
3855 operand regD() %{
3856   constraint(ALLOC_IN_RC(dflt_reg));
3857   match(RegD);
3858 
3859   match(regD_low);
3860 
3861   format %{ %}
3862   interface(REG_INTER);
3863 %}
3864 
3865 operand regF() %{
3866   constraint(ALLOC_IN_RC(sflt_reg));
3867   match(RegF);
3868 
3869   format %{ %}
3870   interface(REG_INTER);
3871 %}
3872 
3873 operand regD_low() %{
3874   constraint(ALLOC_IN_RC(dflt_low_reg));
3875   match(regD);
3876 
3877   format %{ %}
3878   interface(REG_INTER);
3879 %}
3880 
3881 // Special Registers
3882 
3883 // Method Register
3884 operand inline_cache_regP(iRegP reg) %{
3885   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
3886   match(reg);
3887   format %{ %}
3888   interface(REG_INTER);
3889 %}
3890 
3891 operand interpreter_method_oop_regP(iRegP reg) %{
3892   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
3893   match(reg);
3894   format %{ %}
3895   interface(REG_INTER);
3896 %}
3897 
3898 
3899 //----------Complex Operands---------------------------------------------------
3900 // Indirect Memory Reference
3901 operand indirect(sp_ptr_RegP reg) %{
3902   constraint(ALLOC_IN_RC(sp_ptr_reg));
3903   match(reg);
3904 
3905   op_cost(100);
3906   format %{ "[$reg]" %}
3907   interface(MEMORY_INTER) %{
3908     base($reg);
3909     index(0x0);
3910     scale(0x0);
3911     disp(0x0);
3912   %}
3913 %}
3914 
3915 // Indirect with simm13 Offset
3916 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
3917   constraint(ALLOC_IN_RC(sp_ptr_reg));
3918   match(AddP reg offset);
3919 
3920   op_cost(100);
3921   format %{ "[$reg + $offset]" %}
3922   interface(MEMORY_INTER) %{
3923     base($reg);
3924     index(0x0);
3925     scale(0x0);
3926     disp($offset);
3927   %}
3928 %}
3929 
3930 // Indirect with simm13 Offset minus 7
3931 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
3932   constraint(ALLOC_IN_RC(sp_ptr_reg));
3933   match(AddP reg offset);
3934 
3935   op_cost(100);
3936   format %{ "[$reg + $offset]" %}
3937   interface(MEMORY_INTER) %{
3938     base($reg);
3939     index(0x0);
3940     scale(0x0);
3941     disp($offset);
3942   %}
3943 %}
3944 
3945 // Note:  Intel has a swapped version also, like this:
3946 //operand indOffsetX(iRegI reg, immP offset) %{
3947 //  constraint(ALLOC_IN_RC(int_reg));
3948 //  match(AddP offset reg);
3949 //
3950 //  op_cost(100);
3951 //  format %{ "[$reg + $offset]" %}
3952 //  interface(MEMORY_INTER) %{
3953 //    base($reg);
3954 //    index(0x0);
3955 //    scale(0x0);
3956 //    disp($offset);
3957 //  %}
3958 //%}
3959 //// However, it doesn't make sense for SPARC, since
3960 // we have no particularly good way to embed oops in
3961 // single instructions.
3962 
3963 // Indirect with Register Index
3964 operand indIndex(iRegP addr, iRegX index) %{
3965   constraint(ALLOC_IN_RC(ptr_reg));
3966   match(AddP addr index);
3967 
3968   op_cost(100);
3969   format %{ "[$addr + $index]" %}
3970   interface(MEMORY_INTER) %{
3971     base($addr);
3972     index($index);
3973     scale(0x0);
3974     disp(0x0);
3975   %}
3976 %}
3977 
3978 //----------Special Memory Operands--------------------------------------------
3979 // Stack Slot Operand - This operand is used for loading and storing temporary
3980 //                      values on the stack where a match requires a value to
3981 //                      flow through memory.
3982 operand stackSlotI(sRegI reg) %{
3983   constraint(ALLOC_IN_RC(stack_slots));
3984   op_cost(100);
3985   //match(RegI);
3986   format %{ "[$reg]" %}
3987   interface(MEMORY_INTER) %{
3988     base(0xE);   // R_SP
3989     index(0x0);
3990     scale(0x0);
3991     disp($reg);  // Stack Offset
3992   %}
3993 %}
3994 
3995 operand stackSlotP(sRegP reg) %{
3996   constraint(ALLOC_IN_RC(stack_slots));
3997   op_cost(100);
3998   //match(RegP);
3999   format %{ "[$reg]" %}
4000   interface(MEMORY_INTER) %{
4001     base(0xE);   // R_SP
4002     index(0x0);
4003     scale(0x0);
4004     disp($reg);  // Stack Offset
4005   %}
4006 %}
4007 
4008 operand stackSlotF(sRegF reg) %{
4009   constraint(ALLOC_IN_RC(stack_slots));
4010   op_cost(100);
4011   //match(RegF);
4012   format %{ "[$reg]" %}
4013   interface(MEMORY_INTER) %{
4014     base(0xE);   // R_SP
4015     index(0x0);
4016     scale(0x0);
4017     disp($reg);  // Stack Offset
4018   %}
4019 %}
4020 operand stackSlotD(sRegD reg) %{
4021   constraint(ALLOC_IN_RC(stack_slots));
4022   op_cost(100);
4023   //match(RegD);
4024   format %{ "[$reg]" %}
4025   interface(MEMORY_INTER) %{
4026     base(0xE);   // R_SP
4027     index(0x0);
4028     scale(0x0);
4029     disp($reg);  // Stack Offset
4030   %}
4031 %}
4032 operand stackSlotL(sRegL reg) %{
4033   constraint(ALLOC_IN_RC(stack_slots));
4034   op_cost(100);
4035   //match(RegL);
4036   format %{ "[$reg]" %}
4037   interface(MEMORY_INTER) %{
4038     base(0xE);   // R_SP
4039     index(0x0);
4040     scale(0x0);
4041     disp($reg);  // Stack Offset
4042   %}
4043 %}
4044 
4045 // Operands for expressing Control Flow
4046 // NOTE:  Label is a predefined operand which should not be redefined in
4047 //        the AD file.  It is generically handled within the ADLC.
4048 
4049 //----------Conditional Branch Operands----------------------------------------
4050 // Comparison Op  - This is the operation of the comparison, and is limited to
4051 //                  the following set of codes:
4052 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4053 //
4054 // Other attributes of the comparison, such as unsignedness, are specified
4055 // by the comparison instruction that sets a condition code flags register.
4056 // That result is represented by a flags operand whose subtype is appropriate
4057 // to the unsignedness (etc.) of the comparison.
4058 //
4059 // Later, the instruction which matches both the Comparison Op (a Bool) and
4060 // the flags (produced by the Cmp) specifies the coding of the comparison op
4061 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4062 
4063 operand cmpOp() %{
4064   match(Bool);
4065 
4066   format %{ "" %}
4067   interface(COND_INTER) %{
4068     equal(0x1);
4069     not_equal(0x9);
4070     less(0x3);
4071     greater_equal(0xB);
4072     less_equal(0x2);
4073     greater(0xA);
4074     overflow(0x7);
4075     no_overflow(0xF);
4076   %}
4077 %}
4078 
4079 // Comparison Op, unsigned
4080 operand cmpOpU() %{
4081   match(Bool);
4082   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4083             n->as_Bool()->_test._test != BoolTest::no_overflow);
4084 
4085   format %{ "u" %}
4086   interface(COND_INTER) %{
4087     equal(0x1);
4088     not_equal(0x9);
4089     less(0x5);
4090     greater_equal(0xD);
4091     less_equal(0x4);
4092     greater(0xC);
4093     overflow(0x7);
4094     no_overflow(0xF);
4095   %}
4096 %}
4097 
4098 // Comparison Op, pointer (same as unsigned)
4099 operand cmpOpP() %{
4100   match(Bool);
4101   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4102             n->as_Bool()->_test._test != BoolTest::no_overflow);
4103 
4104   format %{ "p" %}
4105   interface(COND_INTER) %{
4106     equal(0x1);
4107     not_equal(0x9);
4108     less(0x5);
4109     greater_equal(0xD);
4110     less_equal(0x4);
4111     greater(0xC);
4112     overflow(0x7);
4113     no_overflow(0xF);
4114   %}
4115 %}
4116 
4117 // Comparison Op, branch-register encoding
4118 operand cmpOp_reg() %{
4119   match(Bool);
4120   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4121             n->as_Bool()->_test._test != BoolTest::no_overflow);
4122 
4123   format %{ "" %}
4124   interface(COND_INTER) %{
4125     equal        (0x1);
4126     not_equal    (0x5);
4127     less         (0x3);
4128     greater_equal(0x7);
4129     less_equal   (0x2);
4130     greater      (0x6);
4131     overflow(0x7); // not supported
4132     no_overflow(0xF); // not supported
4133   %}
4134 %}
4135 
4136 // Comparison Code, floating, unordered same as less
4137 operand cmpOpF() %{
4138   match(Bool);
4139   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4140             n->as_Bool()->_test._test != BoolTest::no_overflow);
4141 
4142   format %{ "fl" %}
4143   interface(COND_INTER) %{
4144     equal(0x9);
4145     not_equal(0x1);
4146     less(0x3);
4147     greater_equal(0xB);
4148     less_equal(0xE);
4149     greater(0x6);
4150 
4151     overflow(0x7); // not supported
4152     no_overflow(0xF); // not supported
4153   %}
4154 %}
4155 
4156 // Used by long compare
4157 operand cmpOp_commute() %{
4158   match(Bool);
4159   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4160             n->as_Bool()->_test._test != BoolTest::no_overflow);
4161 
4162   format %{ "" %}
4163   interface(COND_INTER) %{
4164     equal(0x1);
4165     not_equal(0x9);
4166     less(0xA);
4167     greater_equal(0x2);
4168     less_equal(0xB);
4169     greater(0x3);
4170     overflow(0x7);
4171     no_overflow(0xF);
4172   %}
4173 %}
4174 
4175 //----------OPERAND CLASSES----------------------------------------------------
4176 // Operand Classes are groups of operands that are used to simplify
4177 // instruction definitions by not requiring the AD writer to specify separate
4178 // instructions for every form of operand when the instruction accepts
4179 // multiple operand types with the same basic encoding and format.  The classic
4180 // case of this is memory operands.
4181 opclass memory( indirect, indOffset13, indIndex );
4182 opclass indIndexMemory( indIndex );
4183 
4184 //----------PIPELINE-----------------------------------------------------------
4185 pipeline %{
4186 
4187 //----------ATTRIBUTES---------------------------------------------------------
4188 attributes %{
4189   fixed_size_instructions;           // Fixed size instructions
4190   branch_has_delay_slot;             // Branch has delay slot following
4191   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4192   instruction_unit_size = 4;         // An instruction is 4 bytes long
4193   instruction_fetch_unit_size = 16;  // The processor fetches one line
4194   instruction_fetch_units = 1;       // of 16 bytes
4195 
4196   // List of nop instructions
4197   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4198 %}
4199 
4200 //----------RESOURCES----------------------------------------------------------
4201 // Resources are the functional units available to the machine
4202 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4203 
4204 //----------PIPELINE DESCRIPTION-----------------------------------------------
4205 // Pipeline Description specifies the stages in the machine's pipeline
4206 
4207 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4208 
4209 //----------PIPELINE CLASSES---------------------------------------------------
4210 // Pipeline Classes describe the stages in which input and output are
4211 // referenced by the hardware pipeline.
4212 
4213 // Integer ALU reg-reg operation
4214 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4215     single_instruction;
4216     dst   : E(write);
4217     src1  : R(read);
4218     src2  : R(read);
4219     IALU  : R;
4220 %}
4221 
4222 // Integer ALU reg-reg long operation
4223 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4224     instruction_count(2);
4225     dst   : E(write);
4226     src1  : R(read);
4227     src2  : R(read);
4228     IALU  : R;
4229     IALU  : R;
4230 %}
4231 
4232 // Integer ALU reg-reg long dependent operation
4233 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4234     instruction_count(1); multiple_bundles;
4235     dst   : E(write);
4236     src1  : R(read);
4237     src2  : R(read);
4238     cr    : E(write);
4239     IALU  : R(2);
4240 %}
4241 
4242 // Integer ALU reg-imm operaion
4243 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4244     single_instruction;
4245     dst   : E(write);
4246     src1  : R(read);
4247     IALU  : R;
4248 %}
4249 
4250 // Integer ALU reg-reg operation with condition code
4251 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4252     single_instruction;
4253     dst   : E(write);
4254     cr    : E(write);
4255     src1  : R(read);
4256     src2  : R(read);
4257     IALU  : R;
4258 %}
4259 
4260 // Integer ALU reg-imm operation with condition code
4261 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4262     single_instruction;
4263     dst   : E(write);
4264     cr    : E(write);
4265     src1  : R(read);
4266     IALU  : R;
4267 %}
4268 
4269 // Integer ALU zero-reg operation
4270 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4271     single_instruction;
4272     dst   : E(write);
4273     src2  : R(read);
4274     IALU  : R;
4275 %}
4276 
4277 // Integer ALU zero-reg operation with condition code only
4278 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4279     single_instruction;
4280     cr    : E(write);
4281     src   : R(read);
4282     IALU  : R;
4283 %}
4284 
4285 // Integer ALU reg-reg operation with condition code only
4286 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4287     single_instruction;
4288     cr    : E(write);
4289     src1  : R(read);
4290     src2  : R(read);
4291     IALU  : R;
4292 %}
4293 
4294 // Integer ALU reg-imm operation with condition code only
4295 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4296     single_instruction;
4297     cr    : E(write);
4298     src1  : R(read);
4299     IALU  : R;
4300 %}
4301 
4302 // Integer ALU reg-reg-zero operation with condition code only
4303 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4304     single_instruction;
4305     cr    : E(write);
4306     src1  : R(read);
4307     src2  : R(read);
4308     IALU  : R;
4309 %}
4310 
4311 // Integer ALU reg-imm-zero operation with condition code only
4312 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4313     single_instruction;
4314     cr    : E(write);
4315     src1  : R(read);
4316     IALU  : R;
4317 %}
4318 
4319 // Integer ALU reg-reg operation with condition code, src1 modified
4320 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4321     single_instruction;
4322     cr    : E(write);
4323     src1  : E(write);
4324     src1  : R(read);
4325     src2  : R(read);
4326     IALU  : R;
4327 %}
4328 
4329 // Integer ALU reg-imm operation with condition code, src1 modified
4330 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4331     single_instruction;
4332     cr    : E(write);
4333     src1  : E(write);
4334     src1  : R(read);
4335     IALU  : R;
4336 %}
4337 
4338 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4339     multiple_bundles;
4340     dst   : E(write)+4;
4341     cr    : E(write);
4342     src1  : R(read);
4343     src2  : R(read);
4344     IALU  : R(3);
4345     BR    : R(2);
4346 %}
4347 
4348 // Integer ALU operation
4349 pipe_class ialu_none(iRegI dst) %{
4350     single_instruction;
4351     dst   : E(write);
4352     IALU  : R;
4353 %}
4354 
4355 // Integer ALU reg operation
4356 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4357     single_instruction; may_have_no_code;
4358     dst   : E(write);
4359     src   : R(read);
4360     IALU  : R;
4361 %}
4362 
4363 // Integer ALU reg conditional operation
4364 // This instruction has a 1 cycle stall, and cannot execute
4365 // in the same cycle as the instruction setting the condition
4366 // code. We kludge this by pretending to read the condition code
4367 // 1 cycle earlier, and by marking the functional units as busy
4368 // for 2 cycles with the result available 1 cycle later than
4369 // is really the case.
4370 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4371     single_instruction;
4372     op2_out : C(write);
4373     op1     : R(read);
4374     cr      : R(read);       // This is really E, with a 1 cycle stall
4375     BR      : R(2);
4376     MS      : R(2);
4377 %}
4378 
4379 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4380     instruction_count(1); multiple_bundles;
4381     dst     : C(write)+1;
4382     src     : R(read)+1;
4383     IALU    : R(1);
4384     BR      : E(2);
4385     MS      : E(2);
4386 %}
4387 
4388 // Integer ALU reg operation
4389 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4390     single_instruction; may_have_no_code;
4391     dst   : E(write);
4392     src   : R(read);
4393     IALU  : R;
4394 %}
4395 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4396     single_instruction; may_have_no_code;
4397     dst   : E(write);
4398     src   : R(read);
4399     IALU  : R;
4400 %}
4401 
4402 // Two integer ALU reg operations
4403 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4404     instruction_count(2);
4405     dst   : E(write);
4406     src   : R(read);
4407     A0    : R;
4408     A1    : R;
4409 %}
4410 
4411 // Two integer ALU reg operations
4412 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4413     instruction_count(2); may_have_no_code;
4414     dst   : E(write);
4415     src   : R(read);
4416     A0    : R;
4417     A1    : R;
4418 %}
4419 
4420 // Integer ALU imm operation
4421 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4422     single_instruction;
4423     dst   : E(write);
4424     IALU  : R;
4425 %}
4426 
4427 // Integer ALU reg-reg with carry operation
4428 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4429     single_instruction;
4430     dst   : E(write);
4431     src1  : R(read);
4432     src2  : R(read);
4433     IALU  : R;
4434 %}
4435 
4436 // Integer ALU cc operation
4437 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4438     single_instruction;
4439     dst   : E(write);
4440     cc    : R(read);
4441     IALU  : R;
4442 %}
4443 
4444 // Integer ALU cc / second IALU operation
4445 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4446     instruction_count(1); multiple_bundles;
4447     dst   : E(write)+1;
4448     src   : R(read);
4449     IALU  : R;
4450 %}
4451 
4452 // Integer ALU cc / second IALU operation
4453 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4454     instruction_count(1); multiple_bundles;
4455     dst   : E(write)+1;
4456     p     : R(read);
4457     q     : R(read);
4458     IALU  : R;
4459 %}
4460 
4461 // Integer ALU hi-lo-reg operation
4462 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4463     instruction_count(1); multiple_bundles;
4464     dst   : E(write)+1;
4465     IALU  : R(2);
4466 %}
4467 
4468 // Float ALU hi-lo-reg operation (with temp)
4469 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4470     instruction_count(1); multiple_bundles;
4471     dst   : E(write)+1;
4472     IALU  : R(2);
4473 %}
4474 
4475 // Long Constant
4476 pipe_class loadConL( iRegL dst, immL src ) %{
4477     instruction_count(2); multiple_bundles;
4478     dst   : E(write)+1;
4479     IALU  : R(2);
4480     IALU  : R(2);
4481 %}
4482 
4483 // Pointer Constant
4484 pipe_class loadConP( iRegP dst, immP src ) %{
4485     instruction_count(0); multiple_bundles;
4486     fixed_latency(6);
4487 %}
4488 
4489 // Long Constant small
4490 pipe_class loadConLlo( iRegL dst, immL src ) %{
4491     instruction_count(2);
4492     dst   : E(write);
4493     IALU  : R;
4494     IALU  : R;
4495 %}
4496 
4497 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4498 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4499     instruction_count(1); multiple_bundles;
4500     src   : R(read);
4501     dst   : M(write)+1;
4502     IALU  : R;
4503     MS    : E;
4504 %}
4505 
4506 // Integer ALU nop operation
4507 pipe_class ialu_nop() %{
4508     single_instruction;
4509     IALU  : R;
4510 %}
4511 
4512 // Integer ALU nop operation
4513 pipe_class ialu_nop_A0() %{
4514     single_instruction;
4515     A0    : R;
4516 %}
4517 
4518 // Integer ALU nop operation
4519 pipe_class ialu_nop_A1() %{
4520     single_instruction;
4521     A1    : R;
4522 %}
4523 
4524 // Integer Multiply reg-reg operation
4525 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4526     single_instruction;
4527     dst   : E(write);
4528     src1  : R(read);
4529     src2  : R(read);
4530     MS    : R(5);
4531 %}
4532 
4533 // Integer Multiply reg-imm operation
4534 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4535     single_instruction;
4536     dst   : E(write);
4537     src1  : R(read);
4538     MS    : R(5);
4539 %}
4540 
4541 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4542     single_instruction;
4543     dst   : E(write)+4;
4544     src1  : R(read);
4545     src2  : R(read);
4546     MS    : R(6);
4547 %}
4548 
4549 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4550     single_instruction;
4551     dst   : E(write)+4;
4552     src1  : R(read);
4553     MS    : R(6);
4554 %}
4555 
4556 // Integer Divide reg-reg
4557 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4558     instruction_count(1); multiple_bundles;
4559     dst   : E(write);
4560     temp  : E(write);
4561     src1  : R(read);
4562     src2  : R(read);
4563     temp  : R(read);
4564     MS    : R(38);
4565 %}
4566 
4567 // Integer Divide reg-imm
4568 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4569     instruction_count(1); multiple_bundles;
4570     dst   : E(write);
4571     temp  : E(write);
4572     src1  : R(read);
4573     temp  : R(read);
4574     MS    : R(38);
4575 %}
4576 
4577 // Long Divide
4578 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4579     dst  : E(write)+71;
4580     src1 : R(read);
4581     src2 : R(read)+1;
4582     MS   : R(70);
4583 %}
4584 
4585 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4586     dst  : E(write)+71;
4587     src1 : R(read);
4588     MS   : R(70);
4589 %}
4590 
4591 // Floating Point Add Float
4592 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4593     single_instruction;
4594     dst   : X(write);
4595     src1  : E(read);
4596     src2  : E(read);
4597     FA    : R;
4598 %}
4599 
4600 // Floating Point Add Double
4601 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4602     single_instruction;
4603     dst   : X(write);
4604     src1  : E(read);
4605     src2  : E(read);
4606     FA    : R;
4607 %}
4608 
4609 // Floating Point Conditional Move based on integer flags
4610 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4611     single_instruction;
4612     dst   : X(write);
4613     src   : E(read);
4614     cr    : R(read);
4615     FA    : R(2);
4616     BR    : R(2);
4617 %}
4618 
4619 // Floating Point Conditional Move based on integer flags
4620 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4621     single_instruction;
4622     dst   : X(write);
4623     src   : E(read);
4624     cr    : R(read);
4625     FA    : R(2);
4626     BR    : R(2);
4627 %}
4628 
4629 // Floating Point Multiply Float
4630 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4631     single_instruction;
4632     dst   : X(write);
4633     src1  : E(read);
4634     src2  : E(read);
4635     FM    : R;
4636 %}
4637 
4638 // Floating Point Multiply Double
4639 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4640     single_instruction;
4641     dst   : X(write);
4642     src1  : E(read);
4643     src2  : E(read);
4644     FM    : R;
4645 %}
4646 
4647 // Floating Point Divide Float
4648 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4649     single_instruction;
4650     dst   : X(write);
4651     src1  : E(read);
4652     src2  : E(read);
4653     FM    : R;
4654     FDIV  : C(14);
4655 %}
4656 
4657 // Floating Point Divide Double
4658 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4659     single_instruction;
4660     dst   : X(write);
4661     src1  : E(read);
4662     src2  : E(read);
4663     FM    : R;
4664     FDIV  : C(17);
4665 %}
4666 
4667 // Fused floating-point multiply-add float.
4668 pipe_class fmaF_regx4(regF dst, regF src1, regF src2, regF src3) %{
4669     single_instruction;
4670     dst   : X(write);
4671     src1  : E(read);
4672     src2  : E(read);
4673     src3  : E(read);
4674     FM    : R;
4675 %}
4676 
4677 // Fused gloating-point multiply-add double.
4678 pipe_class fmaD_regx4(regD dst, regD src1, regD src2, regD src3) %{
4679     single_instruction;
4680     dst   : X(write);
4681     src1  : E(read);
4682     src2  : E(read);
4683     src3  : E(read);
4684     FM    : R;
4685 %}
4686 
4687 // Floating Point Move/Negate/Abs Float
4688 pipe_class faddF_reg(regF dst, regF src) %{
4689     single_instruction;
4690     dst   : W(write);
4691     src   : E(read);
4692     FA    : R(1);
4693 %}
4694 
4695 // Floating Point Move/Negate/Abs Double
4696 pipe_class faddD_reg(regD dst, regD src) %{
4697     single_instruction;
4698     dst   : W(write);
4699     src   : E(read);
4700     FA    : R;
4701 %}
4702 
4703 // Floating Point Convert F->D
4704 pipe_class fcvtF2D(regD dst, regF src) %{
4705     single_instruction;
4706     dst   : X(write);
4707     src   : E(read);
4708     FA    : R;
4709 %}
4710 
4711 // Floating Point Convert I->D
4712 pipe_class fcvtI2D(regD dst, regF src) %{
4713     single_instruction;
4714     dst   : X(write);
4715     src   : E(read);
4716     FA    : R;
4717 %}
4718 
4719 // Floating Point Convert LHi->D
4720 pipe_class fcvtLHi2D(regD dst, regD src) %{
4721     single_instruction;
4722     dst   : X(write);
4723     src   : E(read);
4724     FA    : R;
4725 %}
4726 
4727 // Floating Point Convert L->D
4728 pipe_class fcvtL2D(regD dst, regF src) %{
4729     single_instruction;
4730     dst   : X(write);
4731     src   : E(read);
4732     FA    : R;
4733 %}
4734 
4735 // Floating Point Convert L->F
4736 pipe_class fcvtL2F(regD dst, regF src) %{
4737     single_instruction;
4738     dst   : X(write);
4739     src   : E(read);
4740     FA    : R;
4741 %}
4742 
4743 // Floating Point Convert D->F
4744 pipe_class fcvtD2F(regD dst, regF src) %{
4745     single_instruction;
4746     dst   : X(write);
4747     src   : E(read);
4748     FA    : R;
4749 %}
4750 
4751 // Floating Point Convert I->L
4752 pipe_class fcvtI2L(regD dst, regF src) %{
4753     single_instruction;
4754     dst   : X(write);
4755     src   : E(read);
4756     FA    : R;
4757 %}
4758 
4759 // Floating Point Convert D->F
4760 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4761     instruction_count(1); multiple_bundles;
4762     dst   : X(write)+6;
4763     src   : E(read);
4764     FA    : R;
4765 %}
4766 
4767 // Floating Point Convert D->L
4768 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4769     instruction_count(1); multiple_bundles;
4770     dst   : X(write)+6;
4771     src   : E(read);
4772     FA    : R;
4773 %}
4774 
4775 // Floating Point Convert F->I
4776 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4777     instruction_count(1); multiple_bundles;
4778     dst   : X(write)+6;
4779     src   : E(read);
4780     FA    : R;
4781 %}
4782 
4783 // Floating Point Convert F->L
4784 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4785     instruction_count(1); multiple_bundles;
4786     dst   : X(write)+6;
4787     src   : E(read);
4788     FA    : R;
4789 %}
4790 
4791 // Floating Point Convert I->F
4792 pipe_class fcvtI2F(regF dst, regF src) %{
4793     single_instruction;
4794     dst   : X(write);
4795     src   : E(read);
4796     FA    : R;
4797 %}
4798 
4799 // Floating Point Compare
4800 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4801     single_instruction;
4802     cr    : X(write);
4803     src1  : E(read);
4804     src2  : E(read);
4805     FA    : R;
4806 %}
4807 
4808 // Floating Point Compare
4809 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
4810     single_instruction;
4811     cr    : X(write);
4812     src1  : E(read);
4813     src2  : E(read);
4814     FA    : R;
4815 %}
4816 
4817 // Floating Add Nop
4818 pipe_class fadd_nop() %{
4819     single_instruction;
4820     FA  : R;
4821 %}
4822 
4823 // Integer Store to Memory
4824 pipe_class istore_mem_reg(memory mem, iRegI src) %{
4825     single_instruction;
4826     mem   : R(read);
4827     src   : C(read);
4828     MS    : R;
4829 %}
4830 
4831 // Integer Store to Memory
4832 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
4833     single_instruction;
4834     mem   : R(read);
4835     src   : C(read);
4836     MS    : R;
4837 %}
4838 
4839 // Integer Store Zero to Memory
4840 pipe_class istore_mem_zero(memory mem, immI0 src) %{
4841     single_instruction;
4842     mem   : R(read);
4843     MS    : R;
4844 %}
4845 
4846 // Special Stack Slot Store
4847 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
4848     single_instruction;
4849     stkSlot : R(read);
4850     src     : C(read);
4851     MS      : R;
4852 %}
4853 
4854 // Special Stack Slot Store
4855 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
4856     instruction_count(2); multiple_bundles;
4857     stkSlot : R(read);
4858     src     : C(read);
4859     MS      : R(2);
4860 %}
4861 
4862 // Float Store
4863 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
4864     single_instruction;
4865     mem : R(read);
4866     src : C(read);
4867     MS  : R;
4868 %}
4869 
4870 // Float Store
4871 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
4872     single_instruction;
4873     mem : R(read);
4874     MS  : R;
4875 %}
4876 
4877 // Double Store
4878 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
4879     instruction_count(1);
4880     mem : R(read);
4881     src : C(read);
4882     MS  : R;
4883 %}
4884 
4885 // Double Store
4886 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
4887     single_instruction;
4888     mem : R(read);
4889     MS  : R;
4890 %}
4891 
4892 // Special Stack Slot Float Store
4893 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
4894     single_instruction;
4895     stkSlot : R(read);
4896     src     : C(read);
4897     MS      : R;
4898 %}
4899 
4900 // Special Stack Slot Double Store
4901 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
4902     single_instruction;
4903     stkSlot : R(read);
4904     src     : C(read);
4905     MS      : R;
4906 %}
4907 
4908 // Integer Load (when sign bit propagation not needed)
4909 pipe_class iload_mem(iRegI dst, memory mem) %{
4910     single_instruction;
4911     mem : R(read);
4912     dst : C(write);
4913     MS  : R;
4914 %}
4915 
4916 // Integer Load from stack operand
4917 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
4918     single_instruction;
4919     mem : R(read);
4920     dst : C(write);
4921     MS  : R;
4922 %}
4923 
4924 // Integer Load (when sign bit propagation or masking is needed)
4925 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
4926     single_instruction;
4927     mem : R(read);
4928     dst : M(write);
4929     MS  : R;
4930 %}
4931 
4932 // Float Load
4933 pipe_class floadF_mem(regF dst, memory mem) %{
4934     single_instruction;
4935     mem : R(read);
4936     dst : M(write);
4937     MS  : R;
4938 %}
4939 
4940 // Float Load
4941 pipe_class floadD_mem(regD dst, memory mem) %{
4942     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
4943     mem : R(read);
4944     dst : M(write);
4945     MS  : R;
4946 %}
4947 
4948 // Float Load
4949 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
4950     single_instruction;
4951     stkSlot : R(read);
4952     dst : M(write);
4953     MS  : R;
4954 %}
4955 
4956 // Float Load
4957 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
4958     single_instruction;
4959     stkSlot : R(read);
4960     dst : M(write);
4961     MS  : R;
4962 %}
4963 
4964 // Memory Nop
4965 pipe_class mem_nop() %{
4966     single_instruction;
4967     MS  : R;
4968 %}
4969 
4970 pipe_class sethi(iRegP dst, immI src) %{
4971     single_instruction;
4972     dst  : E(write);
4973     IALU : R;
4974 %}
4975 
4976 pipe_class loadPollP(iRegP poll) %{
4977     single_instruction;
4978     poll : R(read);
4979     MS   : R;
4980 %}
4981 
4982 pipe_class br(Universe br, label labl) %{
4983     single_instruction_with_delay_slot;
4984     BR  : R;
4985 %}
4986 
4987 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
4988     single_instruction_with_delay_slot;
4989     cr    : E(read);
4990     BR    : R;
4991 %}
4992 
4993 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
4994     single_instruction_with_delay_slot;
4995     op1 : E(read);
4996     BR  : R;
4997     MS  : R;
4998 %}
4999 
5000 // Compare and branch
5001 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
5002     instruction_count(2); has_delay_slot;
5003     cr    : E(write);
5004     src1  : R(read);
5005     src2  : R(read);
5006     IALU  : R;
5007     BR    : R;
5008 %}
5009 
5010 // Compare and branch
5011 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
5012     instruction_count(2); has_delay_slot;
5013     cr    : E(write);
5014     src1  : R(read);
5015     IALU  : R;
5016     BR    : R;
5017 %}
5018 
5019 // Compare and branch using cbcond
5020 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
5021     single_instruction;
5022     src1  : E(read);
5023     src2  : E(read);
5024     IALU  : R;
5025     BR    : R;
5026 %}
5027 
5028 // Compare and branch using cbcond
5029 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
5030     single_instruction;
5031     src1  : E(read);
5032     IALU  : R;
5033     BR    : R;
5034 %}
5035 
5036 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5037     single_instruction_with_delay_slot;
5038     cr    : E(read);
5039     BR    : R;
5040 %}
5041 
5042 pipe_class br_nop() %{
5043     single_instruction;
5044     BR  : R;
5045 %}
5046 
5047 pipe_class simple_call(method meth) %{
5048     instruction_count(2); multiple_bundles; force_serialization;
5049     fixed_latency(100);
5050     BR  : R(1);
5051     MS  : R(1);
5052     A0  : R(1);
5053 %}
5054 
5055 pipe_class compiled_call(method meth) %{
5056     instruction_count(1); multiple_bundles; force_serialization;
5057     fixed_latency(100);
5058     MS  : R(1);
5059 %}
5060 
5061 pipe_class call(method meth) %{
5062     instruction_count(0); multiple_bundles; force_serialization;
5063     fixed_latency(100);
5064 %}
5065 
5066 pipe_class tail_call(Universe ignore, label labl) %{
5067     single_instruction; has_delay_slot;
5068     fixed_latency(100);
5069     BR  : R(1);
5070     MS  : R(1);
5071 %}
5072 
5073 pipe_class ret(Universe ignore) %{
5074     single_instruction; has_delay_slot;
5075     BR  : R(1);
5076     MS  : R(1);
5077 %}
5078 
5079 pipe_class ret_poll(g3RegP poll) %{
5080     instruction_count(3); has_delay_slot;
5081     poll : E(read);
5082     MS   : R;
5083 %}
5084 
5085 // The real do-nothing guy
5086 pipe_class empty( ) %{
5087     instruction_count(0);
5088 %}
5089 
5090 pipe_class long_memory_op() %{
5091     instruction_count(0); multiple_bundles; force_serialization;
5092     fixed_latency(25);
5093     MS  : R(1);
5094 %}
5095 
5096 // Check-cast
5097 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5098     array : R(read);
5099     match  : R(read);
5100     IALU   : R(2);
5101     BR     : R(2);
5102     MS     : R;
5103 %}
5104 
5105 // Convert FPU flags into +1,0,-1
5106 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5107     src1  : E(read);
5108     src2  : E(read);
5109     dst   : E(write);
5110     FA    : R;
5111     MS    : R(2);
5112     BR    : R(2);
5113 %}
5114 
5115 // Compare for p < q, and conditionally add y
5116 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5117     p     : E(read);
5118     q     : E(read);
5119     y     : E(read);
5120     IALU  : R(3)
5121 %}
5122 
5123 // Perform a compare, then move conditionally in a branch delay slot.
5124 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5125     src2   : E(read);
5126     srcdst : E(read);
5127     IALU   : R;
5128     BR     : R;
5129 %}
5130 
5131 // Define the class for the Nop node
5132 define %{
5133    MachNop = ialu_nop;
5134 %}
5135 
5136 %}
5137 
5138 //----------INSTRUCTIONS-------------------------------------------------------
5139 
5140 //------------Special Stack Slot instructions - no match rules-----------------
5141 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5142   // No match rule to avoid chain rule match.
5143   effect(DEF dst, USE src);
5144   ins_cost(MEMORY_REF_COST);
5145   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5146   opcode(Assembler::ldf_op3);
5147   ins_encode(simple_form3_mem_reg(src, dst));
5148   ins_pipe(floadF_stk);
5149 %}
5150 
5151 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5152   // No match rule to avoid chain rule match.
5153   effect(DEF dst, USE src);
5154   ins_cost(MEMORY_REF_COST);
5155   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5156   opcode(Assembler::lddf_op3);
5157   ins_encode(simple_form3_mem_reg(src, dst));
5158   ins_pipe(floadD_stk);
5159 %}
5160 
5161 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5162   // No match rule to avoid chain rule match.
5163   effect(DEF dst, USE src);
5164   ins_cost(MEMORY_REF_COST);
5165   format %{ "STF    $src,$dst\t! regF to stkI" %}
5166   opcode(Assembler::stf_op3);
5167   ins_encode(simple_form3_mem_reg(dst, src));
5168   ins_pipe(fstoreF_stk_reg);
5169 %}
5170 
5171 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5172   // No match rule to avoid chain rule match.
5173   effect(DEF dst, USE src);
5174   ins_cost(MEMORY_REF_COST);
5175   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5176   opcode(Assembler::stdf_op3);
5177   ins_encode(simple_form3_mem_reg(dst, src));
5178   ins_pipe(fstoreD_stk_reg);
5179 %}
5180 
5181 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5182   effect(DEF dst, USE src);
5183   ins_cost(MEMORY_REF_COST*2);
5184   format %{ "STW    $src,$dst.hi\t! long\n\t"
5185             "STW    R_G0,$dst.lo" %}
5186   opcode(Assembler::stw_op3);
5187   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5188   ins_pipe(lstoreI_stk_reg);
5189 %}
5190 
5191 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5192   // No match rule to avoid chain rule match.
5193   effect(DEF dst, USE src);
5194   ins_cost(MEMORY_REF_COST);
5195   format %{ "STX    $src,$dst\t! regL to stkD" %}
5196   opcode(Assembler::stx_op3);
5197   ins_encode(simple_form3_mem_reg( dst, src ) );
5198   ins_pipe(istore_stk_reg);
5199 %}
5200 
5201 //---------- Chain stack slots between similar types --------
5202 
5203 // Load integer from stack slot
5204 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5205   match(Set dst src);
5206   ins_cost(MEMORY_REF_COST);
5207 
5208   format %{ "LDUW   $src,$dst\t!stk" %}
5209   opcode(Assembler::lduw_op3);
5210   ins_encode(simple_form3_mem_reg( src, dst ) );
5211   ins_pipe(iload_mem);
5212 %}
5213 
5214 // Store integer to stack slot
5215 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5216   match(Set dst src);
5217   ins_cost(MEMORY_REF_COST);
5218 
5219   format %{ "STW    $src,$dst\t!stk" %}
5220   opcode(Assembler::stw_op3);
5221   ins_encode(simple_form3_mem_reg( dst, src ) );
5222   ins_pipe(istore_mem_reg);
5223 %}
5224 
5225 // Load long from stack slot
5226 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5227   match(Set dst src);
5228 
5229   ins_cost(MEMORY_REF_COST);
5230   format %{ "LDX    $src,$dst\t! long" %}
5231   opcode(Assembler::ldx_op3);
5232   ins_encode(simple_form3_mem_reg( src, dst ) );
5233   ins_pipe(iload_mem);
5234 %}
5235 
5236 // Store long to stack slot
5237 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5238   match(Set dst src);
5239 
5240   ins_cost(MEMORY_REF_COST);
5241   format %{ "STX    $src,$dst\t! long" %}
5242   opcode(Assembler::stx_op3);
5243   ins_encode(simple_form3_mem_reg( dst, src ) );
5244   ins_pipe(istore_mem_reg);
5245 %}
5246 
5247 // Load pointer from stack slot, 64-bit encoding
5248 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5249   match(Set dst src);
5250   ins_cost(MEMORY_REF_COST);
5251   format %{ "LDX    $src,$dst\t!ptr" %}
5252   opcode(Assembler::ldx_op3);
5253   ins_encode(simple_form3_mem_reg( src, dst ) );
5254   ins_pipe(iload_mem);
5255 %}
5256 
5257 // Store pointer to stack slot
5258 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5259   match(Set dst src);
5260   ins_cost(MEMORY_REF_COST);
5261   format %{ "STX    $src,$dst\t!ptr" %}
5262   opcode(Assembler::stx_op3);
5263   ins_encode(simple_form3_mem_reg( dst, src ) );
5264   ins_pipe(istore_mem_reg);
5265 %}
5266 
5267 //------------Special Nop instructions for bundling - no match rules-----------
5268 // Nop using the A0 functional unit
5269 instruct Nop_A0() %{
5270   ins_cost(0);
5271 
5272   format %{ "NOP    ! Alu Pipeline" %}
5273   opcode(Assembler::or_op3, Assembler::arith_op);
5274   ins_encode( form2_nop() );
5275   ins_pipe(ialu_nop_A0);
5276 %}
5277 
5278 // Nop using the A1 functional unit
5279 instruct Nop_A1( ) %{
5280   ins_cost(0);
5281 
5282   format %{ "NOP    ! Alu Pipeline" %}
5283   opcode(Assembler::or_op3, Assembler::arith_op);
5284   ins_encode( form2_nop() );
5285   ins_pipe(ialu_nop_A1);
5286 %}
5287 
5288 // Nop using the memory functional unit
5289 instruct Nop_MS( ) %{
5290   ins_cost(0);
5291 
5292   format %{ "NOP    ! Memory Pipeline" %}
5293   ins_encode( emit_mem_nop );
5294   ins_pipe(mem_nop);
5295 %}
5296 
5297 // Nop using the floating add functional unit
5298 instruct Nop_FA( ) %{
5299   ins_cost(0);
5300 
5301   format %{ "NOP    ! Floating Add Pipeline" %}
5302   ins_encode( emit_fadd_nop );
5303   ins_pipe(fadd_nop);
5304 %}
5305 
5306 // Nop using the branch functional unit
5307 instruct Nop_BR( ) %{
5308   ins_cost(0);
5309 
5310   format %{ "NOP    ! Branch Pipeline" %}
5311   ins_encode( emit_br_nop );
5312   ins_pipe(br_nop);
5313 %}
5314 
5315 //----------Load/Store/Move Instructions---------------------------------------
5316 //----------Load Instructions--------------------------------------------------
5317 // Load Byte (8bit signed)
5318 instruct loadB(iRegI dst, memory mem) %{
5319   match(Set dst (LoadB mem));
5320   ins_cost(MEMORY_REF_COST);
5321 
5322   size(4);
5323   format %{ "LDSB   $mem,$dst\t! byte" %}
5324   ins_encode %{
5325     __ ldsb($mem$$Address, $dst$$Register);
5326   %}
5327   ins_pipe(iload_mask_mem);
5328 %}
5329 
5330 // Load Byte (8bit signed) into a Long Register
5331 instruct loadB2L(iRegL dst, memory mem) %{
5332   match(Set dst (ConvI2L (LoadB mem)));
5333   ins_cost(MEMORY_REF_COST);
5334 
5335   size(4);
5336   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5337   ins_encode %{
5338     __ ldsb($mem$$Address, $dst$$Register);
5339   %}
5340   ins_pipe(iload_mask_mem);
5341 %}
5342 
5343 // Load Unsigned Byte (8bit UNsigned) into an int reg
5344 instruct loadUB(iRegI dst, memory mem) %{
5345   match(Set dst (LoadUB mem));
5346   ins_cost(MEMORY_REF_COST);
5347 
5348   size(4);
5349   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5350   ins_encode %{
5351     __ ldub($mem$$Address, $dst$$Register);
5352   %}
5353   ins_pipe(iload_mem);
5354 %}
5355 
5356 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5357 instruct loadUB2L(iRegL dst, memory mem) %{
5358   match(Set dst (ConvI2L (LoadUB mem)));
5359   ins_cost(MEMORY_REF_COST);
5360 
5361   size(4);
5362   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5363   ins_encode %{
5364     __ ldub($mem$$Address, $dst$$Register);
5365   %}
5366   ins_pipe(iload_mem);
5367 %}
5368 
5369 // Load Unsigned Byte (8 bit UNsigned) with 32-bit mask into Long Register
5370 instruct loadUB2L_immI(iRegL dst, memory mem, immI mask) %{
5371   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5372   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5373 
5374   size(2*4);
5375   format %{ "LDUB   $mem,$dst\t# ubyte & 32-bit mask -> long\n\t"
5376             "AND    $dst,right_n_bits($mask, 8),$dst" %}
5377   ins_encode %{
5378     __ ldub($mem$$Address, $dst$$Register);
5379     __ and3($dst$$Register, $mask$$constant & right_n_bits(8), $dst$$Register);
5380   %}
5381   ins_pipe(iload_mem);
5382 %}
5383 
5384 // Load Short (16bit signed)
5385 instruct loadS(iRegI dst, memory mem) %{
5386   match(Set dst (LoadS mem));
5387   ins_cost(MEMORY_REF_COST);
5388 
5389   size(4);
5390   format %{ "LDSH   $mem,$dst\t! short" %}
5391   ins_encode %{
5392     __ ldsh($mem$$Address, $dst$$Register);
5393   %}
5394   ins_pipe(iload_mask_mem);
5395 %}
5396 
5397 // Load Short (16 bit signed) to Byte (8 bit signed)
5398 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5399   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5400   ins_cost(MEMORY_REF_COST);
5401 
5402   size(4);
5403 
5404   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5405   ins_encode %{
5406     __ ldsb($mem$$Address, $dst$$Register, 1);
5407   %}
5408   ins_pipe(iload_mask_mem);
5409 %}
5410 
5411 // Load Short (16bit signed) into a Long Register
5412 instruct loadS2L(iRegL dst, memory mem) %{
5413   match(Set dst (ConvI2L (LoadS mem)));
5414   ins_cost(MEMORY_REF_COST);
5415 
5416   size(4);
5417   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5418   ins_encode %{
5419     __ ldsh($mem$$Address, $dst$$Register);
5420   %}
5421   ins_pipe(iload_mask_mem);
5422 %}
5423 
5424 // Load Unsigned Short/Char (16bit UNsigned)
5425 instruct loadUS(iRegI dst, memory mem) %{
5426   match(Set dst (LoadUS mem));
5427   ins_cost(MEMORY_REF_COST);
5428 
5429   size(4);
5430   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5431   ins_encode %{
5432     __ lduh($mem$$Address, $dst$$Register);
5433   %}
5434   ins_pipe(iload_mem);
5435 %}
5436 
5437 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5438 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5439   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5440   ins_cost(MEMORY_REF_COST);
5441 
5442   size(4);
5443   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5444   ins_encode %{
5445     __ ldsb($mem$$Address, $dst$$Register, 1);
5446   %}
5447   ins_pipe(iload_mask_mem);
5448 %}
5449 
5450 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5451 instruct loadUS2L(iRegL dst, memory mem) %{
5452   match(Set dst (ConvI2L (LoadUS mem)));
5453   ins_cost(MEMORY_REF_COST);
5454 
5455   size(4);
5456   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5457   ins_encode %{
5458     __ lduh($mem$$Address, $dst$$Register);
5459   %}
5460   ins_pipe(iload_mem);
5461 %}
5462 
5463 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5464 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5465   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5466   ins_cost(MEMORY_REF_COST);
5467 
5468   size(4);
5469   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5470   ins_encode %{
5471     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5472   %}
5473   ins_pipe(iload_mem);
5474 %}
5475 
5476 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5477 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5478   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5479   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5480 
5481   size(2*4);
5482   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5483             "AND    $dst,$mask,$dst" %}
5484   ins_encode %{
5485     Register Rdst = $dst$$Register;
5486     __ lduh($mem$$Address, Rdst);
5487     __ and3(Rdst, $mask$$constant, Rdst);
5488   %}
5489   ins_pipe(iload_mem);
5490 %}
5491 
5492 // Load Unsigned Short/Char (16bit UNsigned) with a 32-bit mask into a Long Register
5493 instruct loadUS2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
5494   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5495   effect(TEMP dst, TEMP tmp);
5496   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5497 
5498   format %{ "LDUH   $mem,$dst\t! ushort/char & 32-bit mask -> long\n\t"
5499             "SET    right_n_bits($mask, 16),$tmp\n\t"
5500             "AND    $dst,$tmp,$dst" %}
5501   ins_encode %{
5502     Register Rdst = $dst$$Register;
5503     Register Rtmp = $tmp$$Register;
5504     __ lduh($mem$$Address, Rdst);
5505     __ set($mask$$constant & right_n_bits(16), Rtmp);
5506     __ and3(Rdst, Rtmp, Rdst);
5507   %}
5508   ins_pipe(iload_mem);
5509 %}
5510 
5511 // Load Integer
5512 instruct loadI(iRegI dst, memory mem) %{
5513   match(Set dst (LoadI mem));
5514   ins_cost(MEMORY_REF_COST);
5515 
5516   size(4);
5517   format %{ "LDUW   $mem,$dst\t! int" %}
5518   ins_encode %{
5519     __ lduw($mem$$Address, $dst$$Register);
5520   %}
5521   ins_pipe(iload_mem);
5522 %}
5523 
5524 // Load Integer to Byte (8 bit signed)
5525 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5526   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5527   ins_cost(MEMORY_REF_COST);
5528 
5529   size(4);
5530 
5531   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5532   ins_encode %{
5533     __ ldsb($mem$$Address, $dst$$Register, 3);
5534   %}
5535   ins_pipe(iload_mask_mem);
5536 %}
5537 
5538 // Load Integer to Unsigned Byte (8 bit UNsigned)
5539 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5540   match(Set dst (AndI (LoadI mem) mask));
5541   ins_cost(MEMORY_REF_COST);
5542 
5543   size(4);
5544 
5545   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5546   ins_encode %{
5547     __ ldub($mem$$Address, $dst$$Register, 3);
5548   %}
5549   ins_pipe(iload_mask_mem);
5550 %}
5551 
5552 // Load Integer to Short (16 bit signed)
5553 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5554   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5555   ins_cost(MEMORY_REF_COST);
5556 
5557   size(4);
5558 
5559   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5560   ins_encode %{
5561     __ ldsh($mem$$Address, $dst$$Register, 2);
5562   %}
5563   ins_pipe(iload_mask_mem);
5564 %}
5565 
5566 // Load Integer to Unsigned Short (16 bit UNsigned)
5567 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5568   match(Set dst (AndI (LoadI mem) mask));
5569   ins_cost(MEMORY_REF_COST);
5570 
5571   size(4);
5572 
5573   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5574   ins_encode %{
5575     __ lduh($mem$$Address, $dst$$Register, 2);
5576   %}
5577   ins_pipe(iload_mask_mem);
5578 %}
5579 
5580 // Load Integer into a Long Register
5581 instruct loadI2L(iRegL dst, memory mem) %{
5582   match(Set dst (ConvI2L (LoadI mem)));
5583   ins_cost(MEMORY_REF_COST);
5584 
5585   size(4);
5586   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5587   ins_encode %{
5588     __ ldsw($mem$$Address, $dst$$Register);
5589   %}
5590   ins_pipe(iload_mask_mem);
5591 %}
5592 
5593 // Load Integer with mask 0xFF into a Long Register
5594 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5595   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5596   ins_cost(MEMORY_REF_COST);
5597 
5598   size(4);
5599   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5600   ins_encode %{
5601     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5602   %}
5603   ins_pipe(iload_mem);
5604 %}
5605 
5606 // Load Integer with mask 0xFFFF into a Long Register
5607 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5608   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5609   ins_cost(MEMORY_REF_COST);
5610 
5611   size(4);
5612   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5613   ins_encode %{
5614     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5615   %}
5616   ins_pipe(iload_mem);
5617 %}
5618 
5619 // Load Integer with a 12-bit mask into a Long Register
5620 instruct loadI2L_immU12(iRegL dst, memory mem, immU12 mask) %{
5621   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5622   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5623 
5624   size(2*4);
5625   format %{ "LDUW   $mem,$dst\t! int & 12-bit mask -> long\n\t"
5626             "AND    $dst,$mask,$dst" %}
5627   ins_encode %{
5628     Register Rdst = $dst$$Register;
5629     __ lduw($mem$$Address, Rdst);
5630     __ and3(Rdst, $mask$$constant, Rdst);
5631   %}
5632   ins_pipe(iload_mem);
5633 %}
5634 
5635 // Load Integer with a 31-bit mask into a Long Register
5636 instruct loadI2L_immU31(iRegL dst, memory mem, immU31 mask, iRegL tmp) %{
5637   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5638   effect(TEMP dst, TEMP tmp);
5639   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5640 
5641   format %{ "LDUW   $mem,$dst\t! int & 31-bit mask -> long\n\t"
5642             "SET    $mask,$tmp\n\t"
5643             "AND    $dst,$tmp,$dst" %}
5644   ins_encode %{
5645     Register Rdst = $dst$$Register;
5646     Register Rtmp = $tmp$$Register;
5647     __ lduw($mem$$Address, Rdst);
5648     __ set($mask$$constant, Rtmp);
5649     __ and3(Rdst, Rtmp, Rdst);
5650   %}
5651   ins_pipe(iload_mem);
5652 %}
5653 
5654 // Load Unsigned Integer into a Long Register
5655 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
5656   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5657   ins_cost(MEMORY_REF_COST);
5658 
5659   size(4);
5660   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5661   ins_encode %{
5662     __ lduw($mem$$Address, $dst$$Register);
5663   %}
5664   ins_pipe(iload_mem);
5665 %}
5666 
5667 // Load Long - aligned
5668 instruct loadL(iRegL dst, memory mem ) %{
5669   match(Set dst (LoadL mem));
5670   ins_cost(MEMORY_REF_COST);
5671 
5672   size(4);
5673   format %{ "LDX    $mem,$dst\t! long" %}
5674   ins_encode %{
5675     __ ldx($mem$$Address, $dst$$Register);
5676   %}
5677   ins_pipe(iload_mem);
5678 %}
5679 
5680 // Load Long - UNaligned
5681 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5682   match(Set dst (LoadL_unaligned mem));
5683   effect(KILL tmp);
5684   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5685   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5686           "\tLDUW   $mem  ,$dst\n"
5687           "\tSLLX   #32, $dst, $dst\n"
5688           "\tOR     $dst, R_O7, $dst" %}
5689   opcode(Assembler::lduw_op3);
5690   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5691   ins_pipe(iload_mem);
5692 %}
5693 
5694 // Load Range
5695 instruct loadRange(iRegI dst, memory mem) %{
5696   match(Set dst (LoadRange mem));
5697   ins_cost(MEMORY_REF_COST);
5698 
5699   format %{ "LDUW   $mem,$dst\t! range" %}
5700   opcode(Assembler::lduw_op3);
5701   ins_encode(simple_form3_mem_reg( mem, dst ) );
5702   ins_pipe(iload_mem);
5703 %}
5704 
5705 // Load Integer into %f register (for fitos/fitod)
5706 instruct loadI_freg(regF dst, memory mem) %{
5707   match(Set dst (LoadI mem));
5708   ins_cost(MEMORY_REF_COST);
5709 
5710   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5711   opcode(Assembler::ldf_op3);
5712   ins_encode(simple_form3_mem_reg( mem, dst ) );
5713   ins_pipe(floadF_mem);
5714 %}
5715 
5716 // Load Pointer
5717 instruct loadP(iRegP dst, memory mem) %{
5718   match(Set dst (LoadP mem));
5719   ins_cost(MEMORY_REF_COST);
5720   size(4);
5721 
5722   format %{ "LDX    $mem,$dst\t! ptr" %}
5723   ins_encode %{
5724     __ ldx($mem$$Address, $dst$$Register);
5725   %}
5726   ins_pipe(iload_mem);
5727 %}
5728 
5729 // Load Compressed Pointer
5730 instruct loadN(iRegN dst, memory mem) %{
5731   match(Set dst (LoadN mem));
5732   ins_cost(MEMORY_REF_COST);
5733   size(4);
5734 
5735   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5736   ins_encode %{
5737     __ lduw($mem$$Address, $dst$$Register);
5738   %}
5739   ins_pipe(iload_mem);
5740 %}
5741 
5742 // Load Klass Pointer
5743 instruct loadKlass(iRegP dst, memory mem) %{
5744   match(Set dst (LoadKlass mem));
5745   ins_cost(MEMORY_REF_COST);
5746   size(4);
5747 
5748   format %{ "LDX    $mem,$dst\t! klass ptr" %}
5749   ins_encode %{
5750     __ ldx($mem$$Address, $dst$$Register);
5751   %}
5752   ins_pipe(iload_mem);
5753 %}
5754 
5755 // Load narrow Klass Pointer
5756 instruct loadNKlass(iRegN dst, memory mem) %{
5757   match(Set dst (LoadNKlass mem));
5758   ins_cost(MEMORY_REF_COST);
5759   size(4);
5760 
5761   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
5762   ins_encode %{
5763     __ lduw($mem$$Address, $dst$$Register);
5764   %}
5765   ins_pipe(iload_mem);
5766 %}
5767 
5768 // Load Double
5769 instruct loadD(regD dst, memory mem) %{
5770   match(Set dst (LoadD mem));
5771   ins_cost(MEMORY_REF_COST);
5772 
5773   format %{ "LDDF   $mem,$dst" %}
5774   opcode(Assembler::lddf_op3);
5775   ins_encode(simple_form3_mem_reg( mem, dst ) );
5776   ins_pipe(floadD_mem);
5777 %}
5778 
5779 // Load Double - UNaligned
5780 instruct loadD_unaligned(regD_low dst, memory mem ) %{
5781   match(Set dst (LoadD_unaligned mem));
5782   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5783   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
5784           "\tLDF    $mem+4,$dst.lo\t!" %}
5785   opcode(Assembler::ldf_op3);
5786   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
5787   ins_pipe(iload_mem);
5788 %}
5789 
5790 // Load Float
5791 instruct loadF(regF dst, memory mem) %{
5792   match(Set dst (LoadF mem));
5793   ins_cost(MEMORY_REF_COST);
5794 
5795   format %{ "LDF    $mem,$dst" %}
5796   opcode(Assembler::ldf_op3);
5797   ins_encode(simple_form3_mem_reg( mem, dst ) );
5798   ins_pipe(floadF_mem);
5799 %}
5800 
5801 // Load Constant
5802 instruct loadConI( iRegI dst, immI src ) %{
5803   match(Set dst src);
5804   ins_cost(DEFAULT_COST * 3/2);
5805   format %{ "SET    $src,$dst" %}
5806   ins_encode( Set32(src, dst) );
5807   ins_pipe(ialu_hi_lo_reg);
5808 %}
5809 
5810 instruct loadConI13( iRegI dst, immI13 src ) %{
5811   match(Set dst src);
5812 
5813   size(4);
5814   format %{ "MOV    $src,$dst" %}
5815   ins_encode( Set13( src, dst ) );
5816   ins_pipe(ialu_imm);
5817 %}
5818 
5819 instruct loadConP_set(iRegP dst, immP_set con) %{
5820   match(Set dst con);
5821   ins_cost(DEFAULT_COST * 3/2);
5822   format %{ "SET    $con,$dst\t! ptr" %}
5823   ins_encode %{
5824     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
5825       intptr_t val = $con$$constant;
5826     if (constant_reloc == relocInfo::oop_type) {
5827       __ set_oop_constant((jobject) val, $dst$$Register);
5828     } else if (constant_reloc == relocInfo::metadata_type) {
5829       __ set_metadata_constant((Metadata*)val, $dst$$Register);
5830     } else {          // non-oop pointers, e.g. card mark base, heap top
5831       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
5832       __ set(val, $dst$$Register);
5833     }
5834   %}
5835   ins_pipe(loadConP);
5836 %}
5837 
5838 instruct loadConP_load(iRegP dst, immP_load con) %{
5839   match(Set dst con);
5840   ins_cost(MEMORY_REF_COST);
5841   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
5842   ins_encode %{
5843     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
5844     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
5845   %}
5846   ins_pipe(loadConP);
5847 %}
5848 
5849 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
5850   match(Set dst con);
5851   ins_cost(DEFAULT_COST * 3/2);
5852   format %{ "SET    $con,$dst\t! non-oop ptr" %}
5853   ins_encode %{
5854     if (_opnds[1]->constant_reloc() == relocInfo::metadata_type) {
5855       __ set_metadata_constant((Metadata*)$con$$constant, $dst$$Register);
5856     } else {
5857       __ set($con$$constant, $dst$$Register);
5858     }
5859   %}
5860   ins_pipe(loadConP);
5861 %}
5862 
5863 instruct loadConP0(iRegP dst, immP0 src) %{
5864   match(Set dst src);
5865 
5866   size(4);
5867   format %{ "CLR    $dst\t!ptr" %}
5868   ins_encode %{
5869     __ clr($dst$$Register);
5870   %}
5871   ins_pipe(ialu_imm);
5872 %}
5873 
5874 instruct loadConN0(iRegN dst, immN0 src) %{
5875   match(Set dst src);
5876 
5877   size(4);
5878   format %{ "CLR    $dst\t! compressed NULL ptr" %}
5879   ins_encode %{
5880     __ clr($dst$$Register);
5881   %}
5882   ins_pipe(ialu_imm);
5883 %}
5884 
5885 instruct loadConN(iRegN dst, immN src) %{
5886   match(Set dst src);
5887   ins_cost(DEFAULT_COST * 3/2);
5888   format %{ "SET    $src,$dst\t! compressed ptr" %}
5889   ins_encode %{
5890     Register dst = $dst$$Register;
5891     __ set_narrow_oop((jobject)$src$$constant, dst);
5892   %}
5893   ins_pipe(ialu_hi_lo_reg);
5894 %}
5895 
5896 instruct loadConNKlass(iRegN dst, immNKlass src) %{
5897   match(Set dst src);
5898   ins_cost(DEFAULT_COST * 3/2);
5899   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
5900   ins_encode %{
5901     Register dst = $dst$$Register;
5902     __ set_narrow_klass((Klass*)$src$$constant, dst);
5903   %}
5904   ins_pipe(ialu_hi_lo_reg);
5905 %}
5906 
5907 // Materialize long value (predicated by immL_cheap).
5908 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
5909   match(Set dst con);
5910   effect(KILL tmp);
5911   ins_cost(DEFAULT_COST * 3);
5912   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
5913   ins_encode %{
5914     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
5915   %}
5916   ins_pipe(loadConL);
5917 %}
5918 
5919 // Load long value from constant table (predicated by immL_expensive).
5920 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
5921   match(Set dst con);
5922   ins_cost(MEMORY_REF_COST);
5923   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
5924   ins_encode %{
5925       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
5926     __ ldx($constanttablebase, con_offset, $dst$$Register);
5927   %}
5928   ins_pipe(loadConL);
5929 %}
5930 
5931 instruct loadConL0( iRegL dst, immL0 src ) %{
5932   match(Set dst src);
5933   ins_cost(DEFAULT_COST);
5934   size(4);
5935   format %{ "CLR    $dst\t! long" %}
5936   ins_encode( Set13( src, dst ) );
5937   ins_pipe(ialu_imm);
5938 %}
5939 
5940 instruct loadConL13( iRegL dst, immL13 src ) %{
5941   match(Set dst src);
5942   ins_cost(DEFAULT_COST * 2);
5943 
5944   size(4);
5945   format %{ "MOV    $src,$dst\t! long" %}
5946   ins_encode( Set13( src, dst ) );
5947   ins_pipe(ialu_imm);
5948 %}
5949 
5950 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
5951   match(Set dst con);
5952   effect(KILL tmp);
5953   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
5954   ins_encode %{
5955       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
5956     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
5957   %}
5958   ins_pipe(loadConFD);
5959 %}
5960 
5961 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
5962   match(Set dst con);
5963   effect(KILL tmp);
5964   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
5965   ins_encode %{
5966     // XXX This is a quick fix for 6833573.
5967     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
5968     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
5969     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
5970   %}
5971   ins_pipe(loadConFD);
5972 %}
5973 
5974 // Prefetch instructions for allocation.
5975 // Must be safe to execute with invalid address (cannot fault).
5976 
5977 instruct prefetchAlloc( memory mem ) %{
5978   predicate(AllocatePrefetchInstr == 0);
5979   match( PrefetchAllocation mem );
5980   ins_cost(MEMORY_REF_COST);
5981 
5982   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
5983   opcode(Assembler::prefetch_op3);
5984   ins_encode( form3_mem_prefetch_write( mem ) );
5985   ins_pipe(iload_mem);
5986 %}
5987 
5988 // Use BIS instruction to prefetch for allocation.
5989 // Could fault, need space at the end of TLAB.
5990 instruct prefetchAlloc_bis( iRegP dst ) %{
5991   predicate(AllocatePrefetchInstr == 1);
5992   match( PrefetchAllocation dst );
5993   ins_cost(MEMORY_REF_COST);
5994   size(4);
5995 
5996   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
5997   ins_encode %{
5998     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
5999   %}
6000   ins_pipe(istore_mem_reg);
6001 %}
6002 
6003 // Next code is used for finding next cache line address to prefetch.
6004 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
6005   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
6006   ins_cost(DEFAULT_COST);
6007   size(4);
6008 
6009   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6010   ins_encode %{
6011     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6012   %}
6013   ins_pipe(ialu_reg_imm);
6014 %}
6015 
6016 //----------Store Instructions-------------------------------------------------
6017 // Store Byte
6018 instruct storeB(memory mem, iRegI src) %{
6019   match(Set mem (StoreB mem src));
6020   ins_cost(MEMORY_REF_COST);
6021 
6022   format %{ "STB    $src,$mem\t! byte" %}
6023   opcode(Assembler::stb_op3);
6024   ins_encode(simple_form3_mem_reg( mem, src ) );
6025   ins_pipe(istore_mem_reg);
6026 %}
6027 
6028 instruct storeB0(memory mem, immI0 src) %{
6029   match(Set mem (StoreB mem src));
6030   ins_cost(MEMORY_REF_COST);
6031 
6032   format %{ "STB    $src,$mem\t! byte" %}
6033   opcode(Assembler::stb_op3);
6034   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6035   ins_pipe(istore_mem_zero);
6036 %}
6037 
6038 instruct storeCM0(memory mem, immI0 src) %{
6039   match(Set mem (StoreCM mem src));
6040   ins_cost(MEMORY_REF_COST);
6041 
6042   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6043   opcode(Assembler::stb_op3);
6044   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6045   ins_pipe(istore_mem_zero);
6046 %}
6047 
6048 // Store Char/Short
6049 instruct storeC(memory mem, iRegI src) %{
6050   match(Set mem (StoreC mem src));
6051   ins_cost(MEMORY_REF_COST);
6052 
6053   format %{ "STH    $src,$mem\t! short" %}
6054   opcode(Assembler::sth_op3);
6055   ins_encode(simple_form3_mem_reg( mem, src ) );
6056   ins_pipe(istore_mem_reg);
6057 %}
6058 
6059 instruct storeC0(memory mem, immI0 src) %{
6060   match(Set mem (StoreC mem src));
6061   ins_cost(MEMORY_REF_COST);
6062 
6063   format %{ "STH    $src,$mem\t! short" %}
6064   opcode(Assembler::sth_op3);
6065   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6066   ins_pipe(istore_mem_zero);
6067 %}
6068 
6069 // Store Integer
6070 instruct storeI(memory mem, iRegI src) %{
6071   match(Set mem (StoreI mem src));
6072   ins_cost(MEMORY_REF_COST);
6073 
6074   format %{ "STW    $src,$mem" %}
6075   opcode(Assembler::stw_op3);
6076   ins_encode(simple_form3_mem_reg( mem, src ) );
6077   ins_pipe(istore_mem_reg);
6078 %}
6079 
6080 // Store Long
6081 instruct storeL(memory mem, iRegL src) %{
6082   match(Set mem (StoreL mem src));
6083   ins_cost(MEMORY_REF_COST);
6084   format %{ "STX    $src,$mem\t! long" %}
6085   opcode(Assembler::stx_op3);
6086   ins_encode(simple_form3_mem_reg( mem, src ) );
6087   ins_pipe(istore_mem_reg);
6088 %}
6089 
6090 instruct storeI0(memory mem, immI0 src) %{
6091   match(Set mem (StoreI mem src));
6092   ins_cost(MEMORY_REF_COST);
6093 
6094   format %{ "STW    $src,$mem" %}
6095   opcode(Assembler::stw_op3);
6096   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6097   ins_pipe(istore_mem_zero);
6098 %}
6099 
6100 instruct storeL0(memory mem, immL0 src) %{
6101   match(Set mem (StoreL mem src));
6102   ins_cost(MEMORY_REF_COST);
6103 
6104   format %{ "STX    $src,$mem" %}
6105   opcode(Assembler::stx_op3);
6106   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6107   ins_pipe(istore_mem_zero);
6108 %}
6109 
6110 // Store Integer from float register (used after fstoi)
6111 instruct storeI_Freg(memory mem, regF src) %{
6112   match(Set mem (StoreI mem src));
6113   ins_cost(MEMORY_REF_COST);
6114 
6115   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6116   opcode(Assembler::stf_op3);
6117   ins_encode(simple_form3_mem_reg( mem, src ) );
6118   ins_pipe(fstoreF_mem_reg);
6119 %}
6120 
6121 // Store Pointer
6122 instruct storeP(memory dst, sp_ptr_RegP src) %{
6123   match(Set dst (StoreP dst src));
6124   ins_cost(MEMORY_REF_COST);
6125 
6126   format %{ "STX    $src,$dst\t! ptr" %}
6127   opcode(Assembler::stx_op3, 0, REGP_OP);
6128   ins_encode( form3_mem_reg( dst, src ) );
6129   ins_pipe(istore_mem_spORreg);
6130 %}
6131 
6132 instruct storeP0(memory dst, immP0 src) %{
6133   match(Set dst (StoreP dst src));
6134   ins_cost(MEMORY_REF_COST);
6135 
6136   format %{ "STX    $src,$dst\t! ptr" %}
6137   opcode(Assembler::stx_op3, 0, REGP_OP);
6138   ins_encode( form3_mem_reg( dst, R_G0 ) );
6139   ins_pipe(istore_mem_zero);
6140 %}
6141 
6142 // Store Compressed Pointer
6143 instruct storeN(memory dst, iRegN src) %{
6144    match(Set dst (StoreN dst src));
6145    ins_cost(MEMORY_REF_COST);
6146    size(4);
6147 
6148    format %{ "STW    $src,$dst\t! compressed ptr" %}
6149    ins_encode %{
6150      Register base = as_Register($dst$$base);
6151      Register index = as_Register($dst$$index);
6152      Register src = $src$$Register;
6153      if (index != G0) {
6154        __ stw(src, base, index);
6155      } else {
6156        __ stw(src, base, $dst$$disp);
6157      }
6158    %}
6159    ins_pipe(istore_mem_spORreg);
6160 %}
6161 
6162 instruct storeNKlass(memory dst, iRegN src) %{
6163    match(Set dst (StoreNKlass dst src));
6164    ins_cost(MEMORY_REF_COST);
6165    size(4);
6166 
6167    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
6168    ins_encode %{
6169      Register base = as_Register($dst$$base);
6170      Register index = as_Register($dst$$index);
6171      Register src = $src$$Register;
6172      if (index != G0) {
6173        __ stw(src, base, index);
6174      } else {
6175        __ stw(src, base, $dst$$disp);
6176      }
6177    %}
6178    ins_pipe(istore_mem_spORreg);
6179 %}
6180 
6181 instruct storeN0(memory dst, immN0 src) %{
6182    match(Set dst (StoreN dst src));
6183    ins_cost(MEMORY_REF_COST);
6184    size(4);
6185 
6186    format %{ "STW    $src,$dst\t! compressed ptr" %}
6187    ins_encode %{
6188      Register base = as_Register($dst$$base);
6189      Register index = as_Register($dst$$index);
6190      if (index != G0) {
6191        __ stw(0, base, index);
6192      } else {
6193        __ stw(0, base, $dst$$disp);
6194      }
6195    %}
6196    ins_pipe(istore_mem_zero);
6197 %}
6198 
6199 // Store Double
6200 instruct storeD( memory mem, regD src) %{
6201   match(Set mem (StoreD mem src));
6202   ins_cost(MEMORY_REF_COST);
6203 
6204   format %{ "STDF   $src,$mem" %}
6205   opcode(Assembler::stdf_op3);
6206   ins_encode(simple_form3_mem_reg( mem, src ) );
6207   ins_pipe(fstoreD_mem_reg);
6208 %}
6209 
6210 instruct storeD0( memory mem, immD0 src) %{
6211   match(Set mem (StoreD mem src));
6212   ins_cost(MEMORY_REF_COST);
6213 
6214   format %{ "STX    $src,$mem" %}
6215   opcode(Assembler::stx_op3);
6216   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6217   ins_pipe(fstoreD_mem_zero);
6218 %}
6219 
6220 // Store Float
6221 instruct storeF( memory mem, regF src) %{
6222   match(Set mem (StoreF mem src));
6223   ins_cost(MEMORY_REF_COST);
6224 
6225   format %{ "STF    $src,$mem" %}
6226   opcode(Assembler::stf_op3);
6227   ins_encode(simple_form3_mem_reg( mem, src ) );
6228   ins_pipe(fstoreF_mem_reg);
6229 %}
6230 
6231 instruct storeF0( memory mem, immF0 src) %{
6232   match(Set mem (StoreF mem src));
6233   ins_cost(MEMORY_REF_COST);
6234 
6235   format %{ "STW    $src,$mem\t! storeF0" %}
6236   opcode(Assembler::stw_op3);
6237   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6238   ins_pipe(fstoreF_mem_zero);
6239 %}
6240 
6241 // Convert oop pointer into compressed form
6242 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6243   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6244   match(Set dst (EncodeP src));
6245   format %{ "encode_heap_oop $src, $dst" %}
6246   ins_encode %{
6247     __ encode_heap_oop($src$$Register, $dst$$Register);
6248   %}
6249   ins_avoid_back_to_back(CompressedOops::base() == NULL ? AVOID_NONE : AVOID_BEFORE);
6250   ins_pipe(ialu_reg);
6251 %}
6252 
6253 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6254   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6255   match(Set dst (EncodeP src));
6256   format %{ "encode_heap_oop_not_null $src, $dst" %}
6257   ins_encode %{
6258     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6259   %}
6260   ins_pipe(ialu_reg);
6261 %}
6262 
6263 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6264   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6265             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6266   match(Set dst (DecodeN src));
6267   format %{ "decode_heap_oop $src, $dst" %}
6268   ins_encode %{
6269     __ decode_heap_oop($src$$Register, $dst$$Register);
6270   %}
6271   ins_pipe(ialu_reg);
6272 %}
6273 
6274 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6275   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6276             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6277   match(Set dst (DecodeN src));
6278   format %{ "decode_heap_oop_not_null $src, $dst" %}
6279   ins_encode %{
6280     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6281   %}
6282   ins_pipe(ialu_reg);
6283 %}
6284 
6285 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
6286   match(Set dst (EncodePKlass src));
6287   format %{ "encode_klass_not_null $src, $dst" %}
6288   ins_encode %{
6289     __ encode_klass_not_null($src$$Register, $dst$$Register);
6290   %}
6291   ins_pipe(ialu_reg);
6292 %}
6293 
6294 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
6295   match(Set dst (DecodeNKlass src));
6296   format %{ "decode_klass_not_null $src, $dst" %}
6297   ins_encode %{
6298     __ decode_klass_not_null($src$$Register, $dst$$Register);
6299   %}
6300   ins_pipe(ialu_reg);
6301 %}
6302 
6303 //----------MemBar Instructions-----------------------------------------------
6304 // Memory barrier flavors
6305 
6306 instruct membar_acquire() %{
6307   match(MemBarAcquire);
6308   match(LoadFence);
6309   ins_cost(4*MEMORY_REF_COST);
6310 
6311   size(0);
6312   format %{ "MEMBAR-acquire" %}
6313   ins_encode( enc_membar_acquire );
6314   ins_pipe(long_memory_op);
6315 %}
6316 
6317 instruct membar_acquire_lock() %{
6318   match(MemBarAcquireLock);
6319   ins_cost(0);
6320 
6321   size(0);
6322   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6323   ins_encode( );
6324   ins_pipe(empty);
6325 %}
6326 
6327 instruct membar_release() %{
6328   match(MemBarRelease);
6329   match(StoreFence);
6330   ins_cost(4*MEMORY_REF_COST);
6331 
6332   size(0);
6333   format %{ "MEMBAR-release" %}
6334   ins_encode( enc_membar_release );
6335   ins_pipe(long_memory_op);
6336 %}
6337 
6338 instruct membar_release_lock() %{
6339   match(MemBarReleaseLock);
6340   ins_cost(0);
6341 
6342   size(0);
6343   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6344   ins_encode( );
6345   ins_pipe(empty);
6346 %}
6347 
6348 instruct membar_volatile() %{
6349   match(MemBarVolatile);
6350   ins_cost(4*MEMORY_REF_COST);
6351 
6352   size(4);
6353   format %{ "MEMBAR-volatile" %}
6354   ins_encode( enc_membar_volatile );
6355   ins_pipe(long_memory_op);
6356 %}
6357 
6358 instruct unnecessary_membar_volatile() %{
6359   match(MemBarVolatile);
6360   predicate(Matcher::post_store_load_barrier(n));
6361   ins_cost(0);
6362 
6363   size(0);
6364   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6365   ins_encode( );
6366   ins_pipe(empty);
6367 %}
6368 
6369 instruct membar_storestore() %{
6370   match(MemBarStoreStore);
6371   ins_cost(0);
6372 
6373   size(0);
6374   format %{ "!MEMBAR-storestore (empty encoding)" %}
6375   ins_encode( );
6376   ins_pipe(empty);
6377 %}
6378 
6379 //----------Register Move Instructions-----------------------------------------
6380 instruct roundDouble_nop(regD dst) %{
6381   match(Set dst (RoundDouble dst));
6382   ins_cost(0);
6383   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6384   ins_encode( );
6385   ins_pipe(empty);
6386 %}
6387 
6388 
6389 instruct roundFloat_nop(regF dst) %{
6390   match(Set dst (RoundFloat dst));
6391   ins_cost(0);
6392   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6393   ins_encode( );
6394   ins_pipe(empty);
6395 %}
6396 
6397 
6398 // Cast Index to Pointer for unsafe natives
6399 instruct castX2P(iRegX src, iRegP dst) %{
6400   match(Set dst (CastX2P src));
6401 
6402   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6403   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6404   ins_pipe(ialu_reg);
6405 %}
6406 
6407 // Cast Pointer to Index for unsafe natives
6408 instruct castP2X(iRegP src, iRegX dst) %{
6409   match(Set dst (CastP2X src));
6410 
6411   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6412   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6413   ins_pipe(ialu_reg);
6414 %}
6415 
6416 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6417   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6418   match(Set stkSlot src);   // chain rule
6419   ins_cost(MEMORY_REF_COST);
6420   format %{ "STDF   $src,$stkSlot\t!stk" %}
6421   opcode(Assembler::stdf_op3);
6422   ins_encode(simple_form3_mem_reg(stkSlot, src));
6423   ins_pipe(fstoreD_stk_reg);
6424 %}
6425 
6426 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6427   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6428   match(Set dst stkSlot);   // chain rule
6429   ins_cost(MEMORY_REF_COST);
6430   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6431   opcode(Assembler::lddf_op3);
6432   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6433   ins_pipe(floadD_stk);
6434 %}
6435 
6436 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6437   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6438   match(Set stkSlot src);   // chain rule
6439   ins_cost(MEMORY_REF_COST);
6440   format %{ "STF   $src,$stkSlot\t!stk" %}
6441   opcode(Assembler::stf_op3);
6442   ins_encode(simple_form3_mem_reg(stkSlot, src));
6443   ins_pipe(fstoreF_stk_reg);
6444 %}
6445 
6446 //----------Conditional Move---------------------------------------------------
6447 // Conditional move
6448 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6449   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6450   ins_cost(150);
6451   format %{ "MOV$cmp $pcc,$src,$dst" %}
6452   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6453   ins_pipe(ialu_reg);
6454 %}
6455 
6456 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6457   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6458   ins_cost(140);
6459   format %{ "MOV$cmp $pcc,$src,$dst" %}
6460   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6461   ins_pipe(ialu_imm);
6462 %}
6463 
6464 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6465   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6466   ins_cost(150);
6467   size(4);
6468   format %{ "MOV$cmp  $icc,$src,$dst" %}
6469   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6470   ins_pipe(ialu_reg);
6471 %}
6472 
6473 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6474   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6475   ins_cost(140);
6476   size(4);
6477   format %{ "MOV$cmp  $icc,$src,$dst" %}
6478   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6479   ins_pipe(ialu_imm);
6480 %}
6481 
6482 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6483   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6484   ins_cost(150);
6485   size(4);
6486   format %{ "MOV$cmp  $icc,$src,$dst" %}
6487   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6488   ins_pipe(ialu_reg);
6489 %}
6490 
6491 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6492   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6493   ins_cost(140);
6494   size(4);
6495   format %{ "MOV$cmp  $icc,$src,$dst" %}
6496   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6497   ins_pipe(ialu_imm);
6498 %}
6499 
6500 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6501   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6502   ins_cost(150);
6503   size(4);
6504   format %{ "MOV$cmp $fcc,$src,$dst" %}
6505   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6506   ins_pipe(ialu_reg);
6507 %}
6508 
6509 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6510   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6511   ins_cost(140);
6512   size(4);
6513   format %{ "MOV$cmp $fcc,$src,$dst" %}
6514   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6515   ins_pipe(ialu_imm);
6516 %}
6517 
6518 // Conditional move for RegN. Only cmov(reg,reg).
6519 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6520   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6521   ins_cost(150);
6522   format %{ "MOV$cmp $pcc,$src,$dst" %}
6523   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6524   ins_pipe(ialu_reg);
6525 %}
6526 
6527 // This instruction also works with CmpN so we don't need cmovNN_reg.
6528 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6529   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6530   ins_cost(150);
6531   size(4);
6532   format %{ "MOV$cmp  $icc,$src,$dst" %}
6533   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6534   ins_pipe(ialu_reg);
6535 %}
6536 
6537 // This instruction also works with CmpN so we don't need cmovNN_reg.
6538 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6539   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6540   ins_cost(150);
6541   size(4);
6542   format %{ "MOV$cmp  $icc,$src,$dst" %}
6543   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6544   ins_pipe(ialu_reg);
6545 %}
6546 
6547 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6548   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6549   ins_cost(150);
6550   size(4);
6551   format %{ "MOV$cmp $fcc,$src,$dst" %}
6552   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6553   ins_pipe(ialu_reg);
6554 %}
6555 
6556 // Conditional move
6557 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6558   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6559   ins_cost(150);
6560   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6561   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6562   ins_pipe(ialu_reg);
6563 %}
6564 
6565 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6566   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6567   ins_cost(140);
6568   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6569   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6570   ins_pipe(ialu_imm);
6571 %}
6572 
6573 // This instruction also works with CmpN so we don't need cmovPN_reg.
6574 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6575   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6576   ins_cost(150);
6577 
6578   size(4);
6579   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6580   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6581   ins_pipe(ialu_reg);
6582 %}
6583 
6584 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6585   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6586   ins_cost(150);
6587 
6588   size(4);
6589   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6590   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6591   ins_pipe(ialu_reg);
6592 %}
6593 
6594 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6595   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6596   ins_cost(140);
6597 
6598   size(4);
6599   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6600   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6601   ins_pipe(ialu_imm);
6602 %}
6603 
6604 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6605   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6606   ins_cost(140);
6607 
6608   size(4);
6609   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6610   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6611   ins_pipe(ialu_imm);
6612 %}
6613 
6614 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6615   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6616   ins_cost(150);
6617   size(4);
6618   format %{ "MOV$cmp $fcc,$src,$dst" %}
6619   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6620   ins_pipe(ialu_imm);
6621 %}
6622 
6623 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6624   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6625   ins_cost(140);
6626   size(4);
6627   format %{ "MOV$cmp $fcc,$src,$dst" %}
6628   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6629   ins_pipe(ialu_imm);
6630 %}
6631 
6632 // Conditional move
6633 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6634   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6635   ins_cost(150);
6636   opcode(0x101);
6637   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6638   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6639   ins_pipe(int_conditional_float_move);
6640 %}
6641 
6642 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6643   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6644   ins_cost(150);
6645 
6646   size(4);
6647   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6648   opcode(0x101);
6649   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6650   ins_pipe(int_conditional_float_move);
6651 %}
6652 
6653 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
6654   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6655   ins_cost(150);
6656 
6657   size(4);
6658   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6659   opcode(0x101);
6660   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6661   ins_pipe(int_conditional_float_move);
6662 %}
6663 
6664 // Conditional move,
6665 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
6666   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
6667   ins_cost(150);
6668   size(4);
6669   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
6670   opcode(0x1);
6671   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6672   ins_pipe(int_conditional_double_move);
6673 %}
6674 
6675 // Conditional move
6676 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
6677   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
6678   ins_cost(150);
6679   size(4);
6680   opcode(0x102);
6681   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6682   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6683   ins_pipe(int_conditional_double_move);
6684 %}
6685 
6686 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
6687   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6688   ins_cost(150);
6689 
6690   size(4);
6691   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6692   opcode(0x102);
6693   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6694   ins_pipe(int_conditional_double_move);
6695 %}
6696 
6697 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
6698   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6699   ins_cost(150);
6700 
6701   size(4);
6702   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6703   opcode(0x102);
6704   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6705   ins_pipe(int_conditional_double_move);
6706 %}
6707 
6708 // Conditional move,
6709 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
6710   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
6711   ins_cost(150);
6712   size(4);
6713   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
6714   opcode(0x2);
6715   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6716   ins_pipe(int_conditional_double_move);
6717 %}
6718 
6719 // Conditional move
6720 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
6721   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6722   ins_cost(150);
6723   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6724   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6725   ins_pipe(ialu_reg);
6726 %}
6727 
6728 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
6729   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6730   ins_cost(140);
6731   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6732   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6733   ins_pipe(ialu_imm);
6734 %}
6735 
6736 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
6737   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6738   ins_cost(150);
6739 
6740   size(4);
6741   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6742   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6743   ins_pipe(ialu_reg);
6744 %}
6745 
6746 
6747 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
6748   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6749   ins_cost(150);
6750 
6751   size(4);
6752   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6753   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6754   ins_pipe(ialu_reg);
6755 %}
6756 
6757 
6758 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
6759   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
6760   ins_cost(150);
6761 
6762   size(4);
6763   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
6764   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6765   ins_pipe(ialu_reg);
6766 %}
6767 
6768 
6769 
6770 //----------OS and Locking Instructions----------------------------------------
6771 
6772 // This name is KNOWN by the ADLC and cannot be changed.
6773 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
6774 // for this guy.
6775 instruct tlsLoadP(g2RegP dst) %{
6776   match(Set dst (ThreadLocal));
6777 
6778   size(0);
6779   ins_cost(0);
6780   format %{ "# TLS is in G2" %}
6781   ins_encode( /*empty encoding*/ );
6782   ins_pipe(ialu_none);
6783 %}
6784 
6785 instruct checkCastPP( iRegP dst ) %{
6786   match(Set dst (CheckCastPP dst));
6787 
6788   size(0);
6789   format %{ "# checkcastPP of $dst" %}
6790   ins_encode( /*empty encoding*/ );
6791   ins_pipe(empty);
6792 %}
6793 
6794 
6795 instruct castPP( iRegP dst ) %{
6796   match(Set dst (CastPP dst));
6797   format %{ "# castPP of $dst" %}
6798   ins_encode( /*empty encoding*/ );
6799   ins_pipe(empty);
6800 %}
6801 
6802 instruct castII( iRegI dst ) %{
6803   match(Set dst (CastII dst));
6804   format %{ "# castII of $dst" %}
6805   ins_encode( /*empty encoding*/ );
6806   ins_cost(0);
6807   ins_pipe(empty);
6808 %}
6809 
6810 //----------Arithmetic Instructions--------------------------------------------
6811 // Addition Instructions
6812 // Register Addition
6813 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6814   match(Set dst (AddI src1 src2));
6815 
6816   size(4);
6817   format %{ "ADD    $src1,$src2,$dst" %}
6818   ins_encode %{
6819     __ add($src1$$Register, $src2$$Register, $dst$$Register);
6820   %}
6821   ins_pipe(ialu_reg_reg);
6822 %}
6823 
6824 // Immediate Addition
6825 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
6826   match(Set dst (AddI src1 src2));
6827 
6828   size(4);
6829   format %{ "ADD    $src1,$src2,$dst" %}
6830   opcode(Assembler::add_op3, Assembler::arith_op);
6831   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6832   ins_pipe(ialu_reg_imm);
6833 %}
6834 
6835 // Pointer Register Addition
6836 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
6837   match(Set dst (AddP src1 src2));
6838 
6839   size(4);
6840   format %{ "ADD    $src1,$src2,$dst" %}
6841   opcode(Assembler::add_op3, Assembler::arith_op);
6842   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6843   ins_pipe(ialu_reg_reg);
6844 %}
6845 
6846 // Pointer Immediate Addition
6847 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
6848   match(Set dst (AddP src1 src2));
6849 
6850   size(4);
6851   format %{ "ADD    $src1,$src2,$dst" %}
6852   opcode(Assembler::add_op3, Assembler::arith_op);
6853   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6854   ins_pipe(ialu_reg_imm);
6855 %}
6856 
6857 // Long Addition
6858 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
6859   match(Set dst (AddL src1 src2));
6860 
6861   size(4);
6862   format %{ "ADD    $src1,$src2,$dst\t! long" %}
6863   opcode(Assembler::add_op3, Assembler::arith_op);
6864   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6865   ins_pipe(ialu_reg_reg);
6866 %}
6867 
6868 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
6869   match(Set dst (AddL src1 con));
6870 
6871   size(4);
6872   format %{ "ADD    $src1,$con,$dst" %}
6873   opcode(Assembler::add_op3, Assembler::arith_op);
6874   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
6875   ins_pipe(ialu_reg_imm);
6876 %}
6877 
6878 //----------Conditional_store--------------------------------------------------
6879 // Conditional-store of the updated heap-top.
6880 // Used during allocation of the shared heap.
6881 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
6882 
6883 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
6884 instruct loadPLocked(iRegP dst, memory mem) %{
6885   match(Set dst (LoadPLocked mem));
6886   ins_cost(MEMORY_REF_COST);
6887 
6888   format %{ "LDX    $mem,$dst\t! ptr" %}
6889   opcode(Assembler::ldx_op3, 0, REGP_OP);
6890   ins_encode( form3_mem_reg( mem, dst ) );
6891   ins_pipe(iload_mem);
6892 %}
6893 
6894 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
6895   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
6896   effect( KILL newval );
6897   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
6898             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
6899   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
6900   ins_pipe( long_memory_op );
6901 %}
6902 
6903 // Conditional-store of an int value.
6904 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
6905   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
6906   effect( KILL newval );
6907   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
6908             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
6909   ins_encode( enc_cas(mem_ptr,oldval,newval) );
6910   ins_pipe( long_memory_op );
6911 %}
6912 
6913 // Conditional-store of a long value.
6914 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
6915   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
6916   effect( KILL newval );
6917   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
6918             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
6919   ins_encode( enc_cas(mem_ptr,oldval,newval) );
6920   ins_pipe( long_memory_op );
6921 %}
6922 
6923 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
6924 
6925 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6926   predicate(VM_Version::supports_cx8());
6927   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
6928   match(Set res (WeakCompareAndSwapL mem_ptr (Binary oldval newval)));
6929   effect( USE mem_ptr, KILL ccr, KILL tmp1);
6930   format %{
6931             "MOV    $newval,O7\n\t"
6932             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6933             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6934             "MOV    1,$res\n\t"
6935             "MOVne  xcc,R_G0,$res"
6936   %}
6937   ins_encode( enc_casx(mem_ptr, oldval, newval),
6938               enc_lflags_ne_to_boolean(res) );
6939   ins_pipe( long_memory_op );
6940 %}
6941 
6942 
6943 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6944   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
6945   match(Set res (WeakCompareAndSwapI mem_ptr (Binary oldval newval)));
6946   effect( USE mem_ptr, KILL ccr, KILL tmp1);
6947   format %{
6948             "MOV    $newval,O7\n\t"
6949             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6950             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6951             "MOV    1,$res\n\t"
6952             "MOVne  icc,R_G0,$res"
6953   %}
6954   ins_encode( enc_casi(mem_ptr, oldval, newval),
6955               enc_iflags_ne_to_boolean(res) );
6956   ins_pipe( long_memory_op );
6957 %}
6958 
6959 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6960   predicate(VM_Version::supports_cx8());
6961   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
6962   match(Set res (WeakCompareAndSwapP mem_ptr (Binary oldval newval)));
6963   effect( USE mem_ptr, KILL ccr, KILL tmp1);
6964   format %{
6965             "MOV    $newval,O7\n\t"
6966             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6967             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6968             "MOV    1,$res\n\t"
6969             "MOVne  xcc,R_G0,$res"
6970   %}
6971   ins_encode( enc_casx(mem_ptr, oldval, newval),
6972               enc_lflags_ne_to_boolean(res) );
6973   ins_pipe( long_memory_op );
6974 %}
6975 
6976 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6977   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
6978   match(Set res (WeakCompareAndSwapN mem_ptr (Binary oldval newval)));
6979   effect( USE mem_ptr, KILL ccr, KILL tmp1);
6980   format %{
6981             "MOV    $newval,O7\n\t"
6982             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6983             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6984             "MOV    1,$res\n\t"
6985             "MOVne  icc,R_G0,$res"
6986   %}
6987   ins_encode( enc_casi(mem_ptr, oldval, newval),
6988               enc_iflags_ne_to_boolean(res) );
6989   ins_pipe( long_memory_op );
6990 %}
6991 
6992 instruct compareAndExchangeI(iRegP mem_ptr, iRegI oldval, iRegI newval)
6993 %{
6994   match(Set newval (CompareAndExchangeI mem_ptr (Binary oldval newval)));
6995   effect( USE mem_ptr );
6996 
6997   format %{
6998             "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr] and set $newval=[$mem_ptr]\n\t"
6999   %}
7000   ins_encode( enc_casi_exch(mem_ptr, oldval, newval) );
7001   ins_pipe( long_memory_op );
7002 %}
7003 
7004 instruct compareAndExchangeL(iRegP mem_ptr, iRegL oldval, iRegL newval)
7005 %{
7006   match(Set newval (CompareAndExchangeL mem_ptr (Binary oldval newval)));
7007   effect( USE mem_ptr );
7008 
7009   format %{
7010             "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr] and set $newval=[$mem_ptr]\n\t"
7011   %}
7012   ins_encode( enc_casx_exch(mem_ptr, oldval, newval) );
7013   ins_pipe( long_memory_op );
7014 %}
7015 
7016 instruct compareAndExchangeP(iRegP mem_ptr, iRegP oldval, iRegP newval)
7017 %{
7018   match(Set newval (CompareAndExchangeP mem_ptr (Binary oldval newval)));
7019   effect( USE mem_ptr );
7020 
7021   format %{
7022             "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr] and set $newval=[$mem_ptr]\n\t"
7023   %}
7024   ins_encode( enc_casx_exch(mem_ptr, oldval, newval) );
7025   ins_pipe( long_memory_op );
7026 %}
7027 
7028 instruct compareAndExchangeN(iRegP mem_ptr, iRegN oldval, iRegN newval)
7029 %{
7030   match(Set newval (CompareAndExchangeN mem_ptr (Binary oldval newval)));
7031   effect( USE mem_ptr );
7032 
7033   format %{
7034             "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr] and set $newval=[$mem_ptr]\n\t"
7035   %}
7036   ins_encode( enc_casi_exch(mem_ptr, oldval, newval) );
7037   ins_pipe( long_memory_op );
7038 %}
7039 
7040 instruct xchgI( memory mem, iRegI newval) %{
7041   match(Set newval (GetAndSetI mem newval));
7042   format %{ "SWAP  [$mem],$newval" %}
7043   size(4);
7044   ins_encode %{
7045     __ swap($mem$$Address, $newval$$Register);
7046   %}
7047   ins_pipe( long_memory_op );
7048 %}
7049 
7050 
7051 instruct xchgN( memory mem, iRegN newval) %{
7052   match(Set newval (GetAndSetN mem newval));
7053   format %{ "SWAP  [$mem],$newval" %}
7054   size(4);
7055   ins_encode %{
7056     __ swap($mem$$Address, $newval$$Register);
7057   %}
7058   ins_pipe( long_memory_op );
7059 %}
7060 
7061 //---------------------
7062 // Subtraction Instructions
7063 // Register Subtraction
7064 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7065   match(Set dst (SubI src1 src2));
7066 
7067   size(4);
7068   format %{ "SUB    $src1,$src2,$dst" %}
7069   opcode(Assembler::sub_op3, Assembler::arith_op);
7070   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7071   ins_pipe(ialu_reg_reg);
7072 %}
7073 
7074 // Immediate Subtraction
7075 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7076   match(Set dst (SubI src1 src2));
7077 
7078   size(4);
7079   format %{ "SUB    $src1,$src2,$dst" %}
7080   opcode(Assembler::sub_op3, Assembler::arith_op);
7081   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7082   ins_pipe(ialu_reg_imm);
7083 %}
7084 
7085 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7086   match(Set dst (SubI zero src2));
7087 
7088   size(4);
7089   format %{ "NEG    $src2,$dst" %}
7090   opcode(Assembler::sub_op3, Assembler::arith_op);
7091   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7092   ins_pipe(ialu_zero_reg);
7093 %}
7094 
7095 // Long subtraction
7096 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7097   match(Set dst (SubL src1 src2));
7098 
7099   size(4);
7100   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7101   opcode(Assembler::sub_op3, Assembler::arith_op);
7102   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7103   ins_pipe(ialu_reg_reg);
7104 %}
7105 
7106 // Immediate Subtraction
7107 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7108   match(Set dst (SubL src1 con));
7109 
7110   size(4);
7111   format %{ "SUB    $src1,$con,$dst\t! long" %}
7112   opcode(Assembler::sub_op3, Assembler::arith_op);
7113   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7114   ins_pipe(ialu_reg_imm);
7115 %}
7116 
7117 // Long negation
7118 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7119   match(Set dst (SubL zero src2));
7120 
7121   size(4);
7122   format %{ "NEG    $src2,$dst\t! long" %}
7123   opcode(Assembler::sub_op3, Assembler::arith_op);
7124   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7125   ins_pipe(ialu_zero_reg);
7126 %}
7127 
7128 // Multiplication Instructions
7129 // Integer Multiplication
7130 // Register Multiplication
7131 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7132   match(Set dst (MulI src1 src2));
7133 
7134   size(4);
7135   format %{ "MULX   $src1,$src2,$dst" %}
7136   opcode(Assembler::mulx_op3, Assembler::arith_op);
7137   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7138   ins_pipe(imul_reg_reg);
7139 %}
7140 
7141 // Immediate Multiplication
7142 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7143   match(Set dst (MulI src1 src2));
7144 
7145   size(4);
7146   format %{ "MULX   $src1,$src2,$dst" %}
7147   opcode(Assembler::mulx_op3, Assembler::arith_op);
7148   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7149   ins_pipe(imul_reg_imm);
7150 %}
7151 
7152 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7153   match(Set dst (MulL src1 src2));
7154   ins_cost(DEFAULT_COST * 5);
7155   size(4);
7156   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7157   opcode(Assembler::mulx_op3, Assembler::arith_op);
7158   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7159   ins_pipe(mulL_reg_reg);
7160 %}
7161 
7162 // Immediate Multiplication
7163 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7164   match(Set dst (MulL src1 src2));
7165   ins_cost(DEFAULT_COST * 5);
7166   size(4);
7167   format %{ "MULX   $src1,$src2,$dst" %}
7168   opcode(Assembler::mulx_op3, Assembler::arith_op);
7169   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7170   ins_pipe(mulL_reg_imm);
7171 %}
7172 
7173 // Integer Division
7174 // Register Division
7175 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7176   match(Set dst (DivI src1 src2));
7177   ins_cost((2+71)*DEFAULT_COST);
7178 
7179   format %{ "SRA     $src2,0,$src2\n\t"
7180             "SRA     $src1,0,$src1\n\t"
7181             "SDIVX   $src1,$src2,$dst" %}
7182   ins_encode( idiv_reg( src1, src2, dst ) );
7183   ins_pipe(sdiv_reg_reg);
7184 %}
7185 
7186 // Immediate Division
7187 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7188   match(Set dst (DivI src1 src2));
7189   ins_cost((2+71)*DEFAULT_COST);
7190 
7191   format %{ "SRA     $src1,0,$src1\n\t"
7192             "SDIVX   $src1,$src2,$dst" %}
7193   ins_encode( idiv_imm( src1, src2, dst ) );
7194   ins_pipe(sdiv_reg_imm);
7195 %}
7196 
7197 //----------Div-By-10-Expansion------------------------------------------------
7198 // Extract hi bits of a 32x32->64 bit multiply.
7199 // Expand rule only, not matched
7200 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7201   effect( DEF dst, USE src1, USE src2 );
7202   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7203             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7204   ins_encode( enc_mul_hi(dst,src1,src2));
7205   ins_pipe(sdiv_reg_reg);
7206 %}
7207 
7208 // Magic constant, reciprocal of 10
7209 instruct loadConI_x66666667(iRegIsafe dst) %{
7210   effect( DEF dst );
7211 
7212   size(8);
7213   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7214   ins_encode( Set32(0x66666667, dst) );
7215   ins_pipe(ialu_hi_lo_reg);
7216 %}
7217 
7218 // Register Shift Right Arithmetic Long by 32-63
7219 instruct sra_31( iRegI dst, iRegI src ) %{
7220   effect( DEF dst, USE src );
7221   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7222   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7223   ins_pipe(ialu_reg_reg);
7224 %}
7225 
7226 // Arithmetic Shift Right by 8-bit immediate
7227 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7228   effect( DEF dst, USE src );
7229   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7230   opcode(Assembler::sra_op3, Assembler::arith_op);
7231   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7232   ins_pipe(ialu_reg_imm);
7233 %}
7234 
7235 // Integer DIV with 10
7236 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7237   match(Set dst (DivI src div));
7238   ins_cost((6+6)*DEFAULT_COST);
7239   expand %{
7240     iRegIsafe tmp1;               // Killed temps;
7241     iRegIsafe tmp2;               // Killed temps;
7242     iRegI tmp3;                   // Killed temps;
7243     iRegI tmp4;                   // Killed temps;
7244     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7245     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7246     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7247     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7248     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7249   %}
7250 %}
7251 
7252 // Register Long Division
7253 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7254   match(Set dst (DivL src1 src2));
7255   ins_cost(DEFAULT_COST*71);
7256   size(4);
7257   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7258   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7259   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7260   ins_pipe(divL_reg_reg);
7261 %}
7262 
7263 // Register Long Division
7264 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7265   match(Set dst (DivL src1 src2));
7266   ins_cost(DEFAULT_COST*71);
7267   size(4);
7268   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7269   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7270   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7271   ins_pipe(divL_reg_imm);
7272 %}
7273 
7274 // Integer Remainder
7275 // Register Remainder
7276 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7277   match(Set dst (ModI src1 src2));
7278   effect( KILL ccr, KILL temp);
7279 
7280   format %{ "SREM   $src1,$src2,$dst" %}
7281   ins_encode( irem_reg(src1, src2, dst, temp) );
7282   ins_pipe(sdiv_reg_reg);
7283 %}
7284 
7285 // Immediate Remainder
7286 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7287   match(Set dst (ModI src1 src2));
7288   effect( KILL ccr, KILL temp);
7289 
7290   format %{ "SREM   $src1,$src2,$dst" %}
7291   ins_encode( irem_imm(src1, src2, dst, temp) );
7292   ins_pipe(sdiv_reg_imm);
7293 %}
7294 
7295 // Register Long Remainder
7296 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7297   effect(DEF dst, USE src1, USE src2);
7298   size(4);
7299   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7300   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7301   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7302   ins_pipe(divL_reg_reg);
7303 %}
7304 
7305 // Register Long Division
7306 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7307   effect(DEF dst, USE src1, USE src2);
7308   size(4);
7309   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7310   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7311   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7312   ins_pipe(divL_reg_imm);
7313 %}
7314 
7315 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7316   effect(DEF dst, USE src1, USE src2);
7317   size(4);
7318   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7319   opcode(Assembler::mulx_op3, Assembler::arith_op);
7320   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7321   ins_pipe(mulL_reg_reg);
7322 %}
7323 
7324 // Immediate Multiplication
7325 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7326   effect(DEF dst, USE src1, USE src2);
7327   size(4);
7328   format %{ "MULX   $src1,$src2,$dst" %}
7329   opcode(Assembler::mulx_op3, Assembler::arith_op);
7330   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7331   ins_pipe(mulL_reg_imm);
7332 %}
7333 
7334 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7335   effect(DEF dst, USE src1, USE src2);
7336   size(4);
7337   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7338   opcode(Assembler::sub_op3, Assembler::arith_op);
7339   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7340   ins_pipe(ialu_reg_reg);
7341 %}
7342 
7343 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7344   effect(DEF dst, USE src1, USE src2);
7345   size(4);
7346   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7347   opcode(Assembler::sub_op3, Assembler::arith_op);
7348   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7349   ins_pipe(ialu_reg_reg);
7350 %}
7351 
7352 // Register Long Remainder
7353 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7354   match(Set dst (ModL src1 src2));
7355   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7356   expand %{
7357     iRegL tmp1;
7358     iRegL tmp2;
7359     divL_reg_reg_1(tmp1, src1, src2);
7360     mulL_reg_reg_1(tmp2, tmp1, src2);
7361     subL_reg_reg_1(dst,  src1, tmp2);
7362   %}
7363 %}
7364 
7365 // Register Long Remainder
7366 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7367   match(Set dst (ModL src1 src2));
7368   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7369   expand %{
7370     iRegL tmp1;
7371     iRegL tmp2;
7372     divL_reg_imm13_1(tmp1, src1, src2);
7373     mulL_reg_imm13_1(tmp2, tmp1, src2);
7374     subL_reg_reg_2  (dst,  src1, tmp2);
7375   %}
7376 %}
7377 
7378 // Integer Shift Instructions
7379 // Register Shift Left
7380 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7381   match(Set dst (LShiftI src1 src2));
7382 
7383   size(4);
7384   format %{ "SLL    $src1,$src2,$dst" %}
7385   opcode(Assembler::sll_op3, Assembler::arith_op);
7386   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7387   ins_pipe(ialu_reg_reg);
7388 %}
7389 
7390 // Register Shift Left Immediate
7391 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7392   match(Set dst (LShiftI src1 src2));
7393 
7394   size(4);
7395   format %{ "SLL    $src1,$src2,$dst" %}
7396   opcode(Assembler::sll_op3, Assembler::arith_op);
7397   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7398   ins_pipe(ialu_reg_imm);
7399 %}
7400 
7401 // Register Shift Left
7402 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7403   match(Set dst (LShiftL src1 src2));
7404 
7405   size(4);
7406   format %{ "SLLX   $src1,$src2,$dst" %}
7407   opcode(Assembler::sllx_op3, Assembler::arith_op);
7408   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7409   ins_pipe(ialu_reg_reg);
7410 %}
7411 
7412 // Register Shift Left Immediate
7413 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7414   match(Set dst (LShiftL src1 src2));
7415 
7416   size(4);
7417   format %{ "SLLX   $src1,$src2,$dst" %}
7418   opcode(Assembler::sllx_op3, Assembler::arith_op);
7419   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7420   ins_pipe(ialu_reg_imm);
7421 %}
7422 
7423 // Register Arithmetic Shift Right
7424 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7425   match(Set dst (RShiftI src1 src2));
7426   size(4);
7427   format %{ "SRA    $src1,$src2,$dst" %}
7428   opcode(Assembler::sra_op3, Assembler::arith_op);
7429   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7430   ins_pipe(ialu_reg_reg);
7431 %}
7432 
7433 // Register Arithmetic Shift Right Immediate
7434 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7435   match(Set dst (RShiftI src1 src2));
7436 
7437   size(4);
7438   format %{ "SRA    $src1,$src2,$dst" %}
7439   opcode(Assembler::sra_op3, Assembler::arith_op);
7440   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7441   ins_pipe(ialu_reg_imm);
7442 %}
7443 
7444 // Register Shift Right Arithmatic Long
7445 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7446   match(Set dst (RShiftL src1 src2));
7447 
7448   size(4);
7449   format %{ "SRAX   $src1,$src2,$dst" %}
7450   opcode(Assembler::srax_op3, Assembler::arith_op);
7451   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7452   ins_pipe(ialu_reg_reg);
7453 %}
7454 
7455 // Register Shift Left Immediate
7456 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7457   match(Set dst (RShiftL src1 src2));
7458 
7459   size(4);
7460   format %{ "SRAX   $src1,$src2,$dst" %}
7461   opcode(Assembler::srax_op3, Assembler::arith_op);
7462   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7463   ins_pipe(ialu_reg_imm);
7464 %}
7465 
7466 // Register Shift Right
7467 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7468   match(Set dst (URShiftI src1 src2));
7469 
7470   size(4);
7471   format %{ "SRL    $src1,$src2,$dst" %}
7472   opcode(Assembler::srl_op3, Assembler::arith_op);
7473   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7474   ins_pipe(ialu_reg_reg);
7475 %}
7476 
7477 // Register Shift Right Immediate
7478 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7479   match(Set dst (URShiftI src1 src2));
7480 
7481   size(4);
7482   format %{ "SRL    $src1,$src2,$dst" %}
7483   opcode(Assembler::srl_op3, Assembler::arith_op);
7484   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7485   ins_pipe(ialu_reg_imm);
7486 %}
7487 
7488 // Register Shift Right
7489 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7490   match(Set dst (URShiftL src1 src2));
7491 
7492   size(4);
7493   format %{ "SRLX   $src1,$src2,$dst" %}
7494   opcode(Assembler::srlx_op3, Assembler::arith_op);
7495   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7496   ins_pipe(ialu_reg_reg);
7497 %}
7498 
7499 // Register Shift Right Immediate
7500 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7501   match(Set dst (URShiftL src1 src2));
7502 
7503   size(4);
7504   format %{ "SRLX   $src1,$src2,$dst" %}
7505   opcode(Assembler::srlx_op3, Assembler::arith_op);
7506   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7507   ins_pipe(ialu_reg_imm);
7508 %}
7509 
7510 // Register Shift Right Immediate with a CastP2X
7511 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7512   match(Set dst (URShiftL (CastP2X src1) src2));
7513   size(4);
7514   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7515   opcode(Assembler::srlx_op3, Assembler::arith_op);
7516   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7517   ins_pipe(ialu_reg_imm);
7518 %}
7519 
7520 
7521 //----------Floating Point Arithmetic Instructions-----------------------------
7522 
7523 //  Add float single precision
7524 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7525   match(Set dst (AddF src1 src2));
7526 
7527   size(4);
7528   format %{ "FADDS  $src1,$src2,$dst" %}
7529   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7530   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7531   ins_pipe(faddF_reg_reg);
7532 %}
7533 
7534 //  Add float double precision
7535 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7536   match(Set dst (AddD src1 src2));
7537 
7538   size(4);
7539   format %{ "FADDD  $src1,$src2,$dst" %}
7540   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7541   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7542   ins_pipe(faddD_reg_reg);
7543 %}
7544 
7545 //  Sub float single precision
7546 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7547   match(Set dst (SubF src1 src2));
7548 
7549   size(4);
7550   format %{ "FSUBS  $src1,$src2,$dst" %}
7551   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7552   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7553   ins_pipe(faddF_reg_reg);
7554 %}
7555 
7556 //  Sub float double precision
7557 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7558   match(Set dst (SubD src1 src2));
7559 
7560   size(4);
7561   format %{ "FSUBD  $src1,$src2,$dst" %}
7562   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7563   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7564   ins_pipe(faddD_reg_reg);
7565 %}
7566 
7567 //  Mul float single precision
7568 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7569   match(Set dst (MulF src1 src2));
7570 
7571   size(4);
7572   format %{ "FMULS  $src1,$src2,$dst" %}
7573   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7574   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7575   ins_pipe(fmulF_reg_reg);
7576 %}
7577 
7578 //  Mul float double precision
7579 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7580   match(Set dst (MulD src1 src2));
7581 
7582   size(4);
7583   format %{ "FMULD  $src1,$src2,$dst" %}
7584   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7585   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7586   ins_pipe(fmulD_reg_reg);
7587 %}
7588 
7589 //  Div float single precision
7590 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7591   match(Set dst (DivF src1 src2));
7592 
7593   size(4);
7594   format %{ "FDIVS  $src1,$src2,$dst" %}
7595   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7596   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7597   ins_pipe(fdivF_reg_reg);
7598 %}
7599 
7600 //  Div float double precision
7601 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7602   match(Set dst (DivD src1 src2));
7603 
7604   size(4);
7605   format %{ "FDIVD  $src1,$src2,$dst" %}
7606   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7607   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7608   ins_pipe(fdivD_reg_reg);
7609 %}
7610 
7611 //  Absolute float double precision
7612 instruct absD_reg(regD dst, regD src) %{
7613   match(Set dst (AbsD src));
7614 
7615   format %{ "FABSd  $src,$dst" %}
7616   ins_encode(fabsd(dst, src));
7617   ins_pipe(faddD_reg);
7618 %}
7619 
7620 //  Absolute float single precision
7621 instruct absF_reg(regF dst, regF src) %{
7622   match(Set dst (AbsF src));
7623 
7624   format %{ "FABSs  $src,$dst" %}
7625   ins_encode(fabss(dst, src));
7626   ins_pipe(faddF_reg);
7627 %}
7628 
7629 instruct negF_reg(regF dst, regF src) %{
7630   match(Set dst (NegF src));
7631 
7632   size(4);
7633   format %{ "FNEGs  $src,$dst" %}
7634   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7635   ins_encode(form3_opf_rs2F_rdF(src, dst));
7636   ins_pipe(faddF_reg);
7637 %}
7638 
7639 instruct negD_reg(regD dst, regD src) %{
7640   match(Set dst (NegD src));
7641 
7642   format %{ "FNEGd  $src,$dst" %}
7643   ins_encode(fnegd(dst, src));
7644   ins_pipe(faddD_reg);
7645 %}
7646 
7647 //  Sqrt float double precision
7648 instruct sqrtF_reg_reg(regF dst, regF src) %{
7649   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7650 
7651   size(4);
7652   format %{ "FSQRTS $src,$dst" %}
7653   ins_encode(fsqrts(dst, src));
7654   ins_pipe(fdivF_reg_reg);
7655 %}
7656 
7657 //  Sqrt float double precision
7658 instruct sqrtD_reg_reg(regD dst, regD src) %{
7659   match(Set dst (SqrtD src));
7660 
7661   size(4);
7662   format %{ "FSQRTD $src,$dst" %}
7663   ins_encode(fsqrtd(dst, src));
7664   ins_pipe(fdivD_reg_reg);
7665 %}
7666 
7667 // Single/Double precision fused floating-point multiply-add (d = a * b + c).
7668 instruct fmaF_regx4(regF dst, regF a, regF b, regF c) %{
7669   predicate(UseFMA);
7670   match(Set dst (FmaF c (Binary a b)));
7671   format %{ "fmadds $a,$b,$c,$dst\t# $dst = $a * $b + $c" %}
7672   ins_encode(fmadds(dst, a, b, c));
7673   ins_pipe(fmaF_regx4);
7674 %}
7675 
7676 instruct fmaD_regx4(regD dst, regD a, regD b, regD c) %{
7677   predicate(UseFMA);
7678   match(Set dst (FmaD c (Binary a b)));
7679   format %{ "fmaddd $a,$b,$c,$dst\t# $dst = $a * $b + $c" %}
7680   ins_encode(fmaddd(dst, a, b, c));
7681   ins_pipe(fmaD_regx4);
7682 %}
7683 
7684 // Additional patterns matching complement versions that we can map directly to
7685 // variants of the fused multiply-add instructions.
7686 
7687 // Single/Double precision fused floating-point multiply-sub (d = a * b - c)
7688 instruct fmsubF_regx4(regF dst, regF a, regF b, regF c) %{
7689   predicate(UseFMA);
7690   match(Set dst (FmaF (NegF c) (Binary a b)));
7691   format %{ "fmsubs $a,$b,$c,$dst\t# $dst = $a * $b - $c" %}
7692   ins_encode(fmsubs(dst, a, b, c));
7693   ins_pipe(fmaF_regx4);
7694 %}
7695 
7696 instruct fmsubD_regx4(regD dst, regD a, regD b, regD c) %{
7697   predicate(UseFMA);
7698   match(Set dst (FmaD (NegD c) (Binary a b)));
7699   format %{ "fmsubd $a,$b,$c,$dst\t# $dst = $a * $b - $c" %}
7700   ins_encode(fmsubd(dst, a, b, c));
7701   ins_pipe(fmaD_regx4);
7702 %}
7703 
7704 // Single/Double precision fused floating-point neg. multiply-add,
7705 //      d = -1 * a * b - c = -(a * b + c)
7706 instruct fnmaddF_regx4(regF dst, regF a, regF b, regF c) %{
7707   predicate(UseFMA);
7708   match(Set dst (FmaF (NegF c) (Binary (NegF a) b)));
7709   match(Set dst (FmaF (NegF c) (Binary a (NegF b))));
7710   format %{ "fnmadds $a,$b,$c,$dst\t# $dst = -($a * $b + $c)" %}
7711   ins_encode(fnmadds(dst, a, b, c));
7712   ins_pipe(fmaF_regx4);
7713 %}
7714 
7715 instruct fnmaddD_regx4(regD dst, regD a, regD b, regD c) %{
7716   predicate(UseFMA);
7717   match(Set dst (FmaD (NegD c) (Binary (NegD a) b)));
7718   match(Set dst (FmaD (NegD c) (Binary a (NegD b))));
7719   format %{ "fnmaddd $a,$b,$c,$dst\t# $dst = -($a * $b + $c)" %}
7720   ins_encode(fnmaddd(dst, a, b, c));
7721   ins_pipe(fmaD_regx4);
7722 %}
7723 
7724 // Single/Double precision fused floating-point neg. multiply-sub,
7725 //      d = -1 * a * b + c = -(a * b - c)
7726 instruct fnmsubF_regx4(regF dst, regF a, regF b, regF c) %{
7727   predicate(UseFMA);
7728   match(Set dst (FmaF c (Binary (NegF a) b)));
7729   match(Set dst (FmaF c (Binary a (NegF b))));
7730   format %{ "fnmsubs $a,$b,$c,$dst\t# $dst = -($a * $b - $c)" %}
7731   ins_encode(fnmsubs(dst, a, b, c));
7732   ins_pipe(fmaF_regx4);
7733 %}
7734 
7735 instruct fnmsubD_regx4(regD dst, regD a, regD b, regD c) %{
7736   predicate(UseFMA);
7737   match(Set dst (FmaD c (Binary (NegD a) b)));
7738   match(Set dst (FmaD c (Binary a (NegD b))));
7739   format %{ "fnmsubd $a,$b,$c,$dst\t# $dst = -($a * $b - $c)" %}
7740   ins_encode(fnmsubd(dst, a, b, c));
7741   ins_pipe(fmaD_regx4);
7742 %}
7743 
7744 //----------Logical Instructions-----------------------------------------------
7745 // And Instructions
7746 // Register And
7747 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7748   match(Set dst (AndI src1 src2));
7749 
7750   size(4);
7751   format %{ "AND    $src1,$src2,$dst" %}
7752   opcode(Assembler::and_op3, Assembler::arith_op);
7753   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7754   ins_pipe(ialu_reg_reg);
7755 %}
7756 
7757 // Immediate And
7758 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7759   match(Set dst (AndI src1 src2));
7760 
7761   size(4);
7762   format %{ "AND    $src1,$src2,$dst" %}
7763   opcode(Assembler::and_op3, Assembler::arith_op);
7764   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7765   ins_pipe(ialu_reg_imm);
7766 %}
7767 
7768 // Register And Long
7769 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7770   match(Set dst (AndL src1 src2));
7771 
7772   ins_cost(DEFAULT_COST);
7773   size(4);
7774   format %{ "AND    $src1,$src2,$dst\t! long" %}
7775   opcode(Assembler::and_op3, Assembler::arith_op);
7776   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7777   ins_pipe(ialu_reg_reg);
7778 %}
7779 
7780 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7781   match(Set dst (AndL src1 con));
7782 
7783   ins_cost(DEFAULT_COST);
7784   size(4);
7785   format %{ "AND    $src1,$con,$dst\t! long" %}
7786   opcode(Assembler::and_op3, Assembler::arith_op);
7787   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7788   ins_pipe(ialu_reg_imm);
7789 %}
7790 
7791 // Or Instructions
7792 // Register Or
7793 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7794   match(Set dst (OrI src1 src2));
7795 
7796   size(4);
7797   format %{ "OR     $src1,$src2,$dst" %}
7798   opcode(Assembler::or_op3, Assembler::arith_op);
7799   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7800   ins_pipe(ialu_reg_reg);
7801 %}
7802 
7803 // Immediate Or
7804 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7805   match(Set dst (OrI src1 src2));
7806 
7807   size(4);
7808   format %{ "OR     $src1,$src2,$dst" %}
7809   opcode(Assembler::or_op3, Assembler::arith_op);
7810   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7811   ins_pipe(ialu_reg_imm);
7812 %}
7813 
7814 // Register Or Long
7815 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7816   match(Set dst (OrL src1 src2));
7817 
7818   ins_cost(DEFAULT_COST);
7819   size(4);
7820   format %{ "OR     $src1,$src2,$dst\t! long" %}
7821   opcode(Assembler::or_op3, Assembler::arith_op);
7822   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7823   ins_pipe(ialu_reg_reg);
7824 %}
7825 
7826 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7827   match(Set dst (OrL src1 con));
7828   ins_cost(DEFAULT_COST*2);
7829 
7830   ins_cost(DEFAULT_COST);
7831   size(4);
7832   format %{ "OR     $src1,$con,$dst\t! long" %}
7833   opcode(Assembler::or_op3, Assembler::arith_op);
7834   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7835   ins_pipe(ialu_reg_imm);
7836 %}
7837 
7838 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
7839   match(Set dst (OrL src1 (CastP2X src2)));
7840 
7841   ins_cost(DEFAULT_COST);
7842   size(4);
7843   format %{ "OR     $src1,$src2,$dst\t! long" %}
7844   opcode(Assembler::or_op3, Assembler::arith_op);
7845   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7846   ins_pipe(ialu_reg_reg);
7847 %}
7848 
7849 // Xor Instructions
7850 // Register Xor
7851 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7852   match(Set dst (XorI src1 src2));
7853 
7854   size(4);
7855   format %{ "XOR    $src1,$src2,$dst" %}
7856   opcode(Assembler::xor_op3, Assembler::arith_op);
7857   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7858   ins_pipe(ialu_reg_reg);
7859 %}
7860 
7861 // Immediate Xor
7862 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7863   match(Set dst (XorI src1 src2));
7864 
7865   size(4);
7866   format %{ "XOR    $src1,$src2,$dst" %}
7867   opcode(Assembler::xor_op3, Assembler::arith_op);
7868   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7869   ins_pipe(ialu_reg_imm);
7870 %}
7871 
7872 // Register Xor Long
7873 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7874   match(Set dst (XorL src1 src2));
7875 
7876   ins_cost(DEFAULT_COST);
7877   size(4);
7878   format %{ "XOR    $src1,$src2,$dst\t! long" %}
7879   opcode(Assembler::xor_op3, Assembler::arith_op);
7880   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7881   ins_pipe(ialu_reg_reg);
7882 %}
7883 
7884 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7885   match(Set dst (XorL src1 con));
7886 
7887   ins_cost(DEFAULT_COST);
7888   size(4);
7889   format %{ "XOR    $src1,$con,$dst\t! long" %}
7890   opcode(Assembler::xor_op3, Assembler::arith_op);
7891   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7892   ins_pipe(ialu_reg_imm);
7893 %}
7894 
7895 //----------Convert to Boolean-------------------------------------------------
7896 // Nice hack for 32-bit tests but doesn't work for
7897 // 64-bit pointers.
7898 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
7899   match(Set dst (Conv2B src));
7900   effect( KILL ccr );
7901   ins_cost(DEFAULT_COST*2);
7902   format %{ "CMP    R_G0,$src\n\t"
7903             "ADDX   R_G0,0,$dst" %}
7904   ins_encode( enc_to_bool( src, dst ) );
7905   ins_pipe(ialu_reg_ialu);
7906 %}
7907 
7908 instruct convP2B( iRegI dst, iRegP src ) %{
7909   match(Set dst (Conv2B src));
7910   ins_cost(DEFAULT_COST*2);
7911   format %{ "MOV    $src,$dst\n\t"
7912             "MOVRNZ $src,1,$dst" %}
7913   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
7914   ins_pipe(ialu_clr_and_mover);
7915 %}
7916 
7917 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
7918   match(Set dst (CmpLTMask src zero));
7919   effect(KILL ccr);
7920   size(4);
7921   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
7922   ins_encode %{
7923     __ sra($src$$Register, 31, $dst$$Register);
7924   %}
7925   ins_pipe(ialu_reg_imm);
7926 %}
7927 
7928 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
7929   match(Set dst (CmpLTMask p q));
7930   effect( KILL ccr );
7931   ins_cost(DEFAULT_COST*4);
7932   format %{ "CMP    $p,$q\n\t"
7933             "MOV    #0,$dst\n\t"
7934             "BLT,a  .+8\n\t"
7935             "MOV    #-1,$dst" %}
7936   ins_encode( enc_ltmask(p,q,dst) );
7937   ins_pipe(ialu_reg_reg_ialu);
7938 %}
7939 
7940 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
7941   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
7942   effect(KILL ccr, TEMP tmp);
7943   ins_cost(DEFAULT_COST*3);
7944 
7945   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
7946             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
7947             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
7948   ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
7949   ins_pipe(cadd_cmpltmask);
7950 %}
7951 
7952 instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
7953   match(Set p (AndI (CmpLTMask p q) y));
7954   effect(KILL ccr);
7955   ins_cost(DEFAULT_COST*3);
7956 
7957   format %{ "CMP  $p,$q\n\t"
7958             "MOV  $y,$p\n\t"
7959             "MOVge G0,$p" %}
7960   ins_encode %{
7961     __ cmp($p$$Register, $q$$Register);
7962     __ mov($y$$Register, $p$$Register);
7963     __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
7964   %}
7965   ins_pipe(ialu_reg_reg_ialu);
7966 %}
7967 
7968 //-----------------------------------------------------------------
7969 // Direct raw moves between float and general registers using VIS3.
7970 
7971 //  ins_pipe(faddF_reg);
7972 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
7973   predicate(UseVIS >= 3);
7974   match(Set dst (MoveF2I src));
7975 
7976   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
7977   ins_encode %{
7978     __ movstouw($src$$FloatRegister, $dst$$Register);
7979   %}
7980   ins_pipe(ialu_reg_reg);
7981 %}
7982 
7983 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
7984   predicate(UseVIS >= 3);
7985   match(Set dst (MoveI2F src));
7986 
7987   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
7988   ins_encode %{
7989     __ movwtos($src$$Register, $dst$$FloatRegister);
7990   %}
7991   ins_pipe(ialu_reg_reg);
7992 %}
7993 
7994 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
7995   predicate(UseVIS >= 3);
7996   match(Set dst (MoveD2L src));
7997 
7998   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
7999   ins_encode %{
8000     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
8001   %}
8002   ins_pipe(ialu_reg_reg);
8003 %}
8004 
8005 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
8006   predicate(UseVIS >= 3);
8007   match(Set dst (MoveL2D src));
8008 
8009   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
8010   ins_encode %{
8011     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
8012   %}
8013   ins_pipe(ialu_reg_reg);
8014 %}
8015 
8016 
8017 // Raw moves between float and general registers using stack.
8018 
8019 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8020   match(Set dst (MoveF2I src));
8021   effect(DEF dst, USE src);
8022   ins_cost(MEMORY_REF_COST);
8023 
8024   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8025   opcode(Assembler::lduw_op3);
8026   ins_encode(simple_form3_mem_reg( src, dst ) );
8027   ins_pipe(iload_mem);
8028 %}
8029 
8030 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8031   match(Set dst (MoveI2F src));
8032   effect(DEF dst, USE src);
8033   ins_cost(MEMORY_REF_COST);
8034 
8035   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8036   opcode(Assembler::ldf_op3);
8037   ins_encode(simple_form3_mem_reg(src, dst));
8038   ins_pipe(floadF_stk);
8039 %}
8040 
8041 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8042   match(Set dst (MoveD2L src));
8043   effect(DEF dst, USE src);
8044   ins_cost(MEMORY_REF_COST);
8045 
8046   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8047   opcode(Assembler::ldx_op3);
8048   ins_encode(simple_form3_mem_reg( src, dst ) );
8049   ins_pipe(iload_mem);
8050 %}
8051 
8052 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8053   match(Set dst (MoveL2D src));
8054   effect(DEF dst, USE src);
8055   ins_cost(MEMORY_REF_COST);
8056 
8057   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8058   opcode(Assembler::lddf_op3);
8059   ins_encode(simple_form3_mem_reg(src, dst));
8060   ins_pipe(floadD_stk);
8061 %}
8062 
8063 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8064   match(Set dst (MoveF2I src));
8065   effect(DEF dst, USE src);
8066   ins_cost(MEMORY_REF_COST);
8067 
8068   format %{ "STF   $src,$dst\t! MoveF2I" %}
8069   opcode(Assembler::stf_op3);
8070   ins_encode(simple_form3_mem_reg(dst, src));
8071   ins_pipe(fstoreF_stk_reg);
8072 %}
8073 
8074 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8075   match(Set dst (MoveI2F src));
8076   effect(DEF dst, USE src);
8077   ins_cost(MEMORY_REF_COST);
8078 
8079   format %{ "STW    $src,$dst\t! MoveI2F" %}
8080   opcode(Assembler::stw_op3);
8081   ins_encode(simple_form3_mem_reg( dst, src ) );
8082   ins_pipe(istore_mem_reg);
8083 %}
8084 
8085 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8086   match(Set dst (MoveD2L src));
8087   effect(DEF dst, USE src);
8088   ins_cost(MEMORY_REF_COST);
8089 
8090   format %{ "STDF   $src,$dst\t! MoveD2L" %}
8091   opcode(Assembler::stdf_op3);
8092   ins_encode(simple_form3_mem_reg(dst, src));
8093   ins_pipe(fstoreD_stk_reg);
8094 %}
8095 
8096 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8097   match(Set dst (MoveL2D src));
8098   effect(DEF dst, USE src);
8099   ins_cost(MEMORY_REF_COST);
8100 
8101   format %{ "STX    $src,$dst\t! MoveL2D" %}
8102   opcode(Assembler::stx_op3);
8103   ins_encode(simple_form3_mem_reg( dst, src ) );
8104   ins_pipe(istore_mem_reg);
8105 %}
8106 
8107 
8108 //----------Arithmetic Conversion Instructions---------------------------------
8109 // The conversions operations are all Alpha sorted.  Please keep it that way!
8110 
8111 instruct convD2F_reg(regF dst, regD src) %{
8112   match(Set dst (ConvD2F src));
8113   size(4);
8114   format %{ "FDTOS  $src,$dst" %}
8115   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8116   ins_encode(form3_opf_rs2D_rdF(src, dst));
8117   ins_pipe(fcvtD2F);
8118 %}
8119 
8120 
8121 // Convert a double to an int in a float register.
8122 // If the double is a NAN, stuff a zero in instead.
8123 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8124   effect(DEF dst, USE src, KILL fcc0);
8125   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8126             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8127             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8128             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8129             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8130       "skip:" %}
8131   ins_encode(form_d2i_helper(src,dst));
8132   ins_pipe(fcvtD2I);
8133 %}
8134 
8135 instruct convD2I_stk(stackSlotI dst, regD src) %{
8136   match(Set dst (ConvD2I src));
8137   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8138   expand %{
8139     regF tmp;
8140     convD2I_helper(tmp, src);
8141     regF_to_stkI(dst, tmp);
8142   %}
8143 %}
8144 
8145 instruct convD2I_reg(iRegI dst, regD src) %{
8146   predicate(UseVIS >= 3);
8147   match(Set dst (ConvD2I src));
8148   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8149   expand %{
8150     regF tmp;
8151     convD2I_helper(tmp, src);
8152     MoveF2I_reg_reg(dst, tmp);
8153   %}
8154 %}
8155 
8156 
8157 // Convert a double to a long in a double register.
8158 // If the double is a NAN, stuff a zero in instead.
8159 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8160   effect(DEF dst, USE src, KILL fcc0);
8161   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8162             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8163             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8164             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8165             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8166       "skip:" %}
8167   ins_encode(form_d2l_helper(src,dst));
8168   ins_pipe(fcvtD2L);
8169 %}
8170 
8171 instruct convD2L_stk(stackSlotL dst, regD src) %{
8172   match(Set dst (ConvD2L src));
8173   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8174   expand %{
8175     regD tmp;
8176     convD2L_helper(tmp, src);
8177     regD_to_stkL(dst, tmp);
8178   %}
8179 %}
8180 
8181 instruct convD2L_reg(iRegL dst, regD src) %{
8182   predicate(UseVIS >= 3);
8183   match(Set dst (ConvD2L src));
8184   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8185   expand %{
8186     regD tmp;
8187     convD2L_helper(tmp, src);
8188     MoveD2L_reg_reg(dst, tmp);
8189   %}
8190 %}
8191 
8192 
8193 instruct convF2D_reg(regD dst, regF src) %{
8194   match(Set dst (ConvF2D src));
8195   format %{ "FSTOD  $src,$dst" %}
8196   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8197   ins_encode(form3_opf_rs2F_rdD(src, dst));
8198   ins_pipe(fcvtF2D);
8199 %}
8200 
8201 
8202 // Convert a float to an int in a float register.
8203 // If the float is a NAN, stuff a zero in instead.
8204 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8205   effect(DEF dst, USE src, KILL fcc0);
8206   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8207             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8208             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8209             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8210             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8211       "skip:" %}
8212   ins_encode(form_f2i_helper(src,dst));
8213   ins_pipe(fcvtF2I);
8214 %}
8215 
8216 instruct convF2I_stk(stackSlotI dst, regF src) %{
8217   match(Set dst (ConvF2I src));
8218   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8219   expand %{
8220     regF tmp;
8221     convF2I_helper(tmp, src);
8222     regF_to_stkI(dst, tmp);
8223   %}
8224 %}
8225 
8226 instruct convF2I_reg(iRegI dst, regF src) %{
8227   predicate(UseVIS >= 3);
8228   match(Set dst (ConvF2I src));
8229   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8230   expand %{
8231     regF tmp;
8232     convF2I_helper(tmp, src);
8233     MoveF2I_reg_reg(dst, tmp);
8234   %}
8235 %}
8236 
8237 
8238 // Convert a float to a long in a float register.
8239 // If the float is a NAN, stuff a zero in instead.
8240 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8241   effect(DEF dst, USE src, KILL fcc0);
8242   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8243             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8244             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8245             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8246             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8247       "skip:" %}
8248   ins_encode(form_f2l_helper(src,dst));
8249   ins_pipe(fcvtF2L);
8250 %}
8251 
8252 instruct convF2L_stk(stackSlotL dst, regF src) %{
8253   match(Set dst (ConvF2L src));
8254   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8255   expand %{
8256     regD tmp;
8257     convF2L_helper(tmp, src);
8258     regD_to_stkL(dst, tmp);
8259   %}
8260 %}
8261 
8262 instruct convF2L_reg(iRegL dst, regF src) %{
8263   predicate(UseVIS >= 3);
8264   match(Set dst (ConvF2L src));
8265   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8266   expand %{
8267     regD tmp;
8268     convF2L_helper(tmp, src);
8269     MoveD2L_reg_reg(dst, tmp);
8270   %}
8271 %}
8272 
8273 
8274 instruct convI2D_helper(regD dst, regF tmp) %{
8275   effect(USE tmp, DEF dst);
8276   format %{ "FITOD  $tmp,$dst" %}
8277   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8278   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8279   ins_pipe(fcvtI2D);
8280 %}
8281 
8282 instruct convI2D_stk(stackSlotI src, regD dst) %{
8283   match(Set dst (ConvI2D src));
8284   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8285   expand %{
8286     regF tmp;
8287     stkI_to_regF(tmp, src);
8288     convI2D_helper(dst, tmp);
8289   %}
8290 %}
8291 
8292 instruct convI2D_reg(regD_low dst, iRegI src) %{
8293   predicate(UseVIS >= 3);
8294   match(Set dst (ConvI2D src));
8295   expand %{
8296     regF tmp;
8297     MoveI2F_reg_reg(tmp, src);
8298     convI2D_helper(dst, tmp);
8299   %}
8300 %}
8301 
8302 instruct convI2D_mem(regD_low dst, memory mem) %{
8303   match(Set dst (ConvI2D (LoadI mem)));
8304   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8305   format %{ "LDF    $mem,$dst\n\t"
8306             "FITOD  $dst,$dst" %}
8307   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8308   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8309   ins_pipe(floadF_mem);
8310 %}
8311 
8312 
8313 instruct convI2F_helper(regF dst, regF tmp) %{
8314   effect(DEF dst, USE tmp);
8315   format %{ "FITOS  $tmp,$dst" %}
8316   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8317   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8318   ins_pipe(fcvtI2F);
8319 %}
8320 
8321 instruct convI2F_stk(regF dst, stackSlotI src) %{
8322   match(Set dst (ConvI2F src));
8323   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8324   expand %{
8325     regF tmp;
8326     stkI_to_regF(tmp,src);
8327     convI2F_helper(dst, tmp);
8328   %}
8329 %}
8330 
8331 instruct convI2F_reg(regF dst, iRegI src) %{
8332   predicate(UseVIS >= 3);
8333   match(Set dst (ConvI2F src));
8334   ins_cost(DEFAULT_COST);
8335   expand %{
8336     regF tmp;
8337     MoveI2F_reg_reg(tmp, src);
8338     convI2F_helper(dst, tmp);
8339   %}
8340 %}
8341 
8342 instruct convI2F_mem( regF dst, memory mem ) %{
8343   match(Set dst (ConvI2F (LoadI mem)));
8344   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8345   format %{ "LDF    $mem,$dst\n\t"
8346             "FITOS  $dst,$dst" %}
8347   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8348   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8349   ins_pipe(floadF_mem);
8350 %}
8351 
8352 
8353 instruct convI2L_reg(iRegL dst, iRegI src) %{
8354   match(Set dst (ConvI2L src));
8355   size(4);
8356   format %{ "SRA    $src,0,$dst\t! int->long" %}
8357   opcode(Assembler::sra_op3, Assembler::arith_op);
8358   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8359   ins_pipe(ialu_reg_reg);
8360 %}
8361 
8362 // Zero-extend convert int to long
8363 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8364   match(Set dst (AndL (ConvI2L src) mask) );
8365   size(4);
8366   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8367   opcode(Assembler::srl_op3, Assembler::arith_op);
8368   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8369   ins_pipe(ialu_reg_reg);
8370 %}
8371 
8372 // Zero-extend long
8373 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8374   match(Set dst (AndL src mask) );
8375   size(4);
8376   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8377   opcode(Assembler::srl_op3, Assembler::arith_op);
8378   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8379   ins_pipe(ialu_reg_reg);
8380 %}
8381 
8382 
8383 //-----------
8384 // Long to Double conversion using V8 opcodes.
8385 // Still useful because cheetah traps and becomes
8386 // amazingly slow for some common numbers.
8387 
8388 // Magic constant, 0x43300000
8389 instruct loadConI_x43300000(iRegI dst) %{
8390   effect(DEF dst);
8391   size(4);
8392   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8393   ins_encode(SetHi22(0x43300000, dst));
8394   ins_pipe(ialu_none);
8395 %}
8396 
8397 // Magic constant, 0x41f00000
8398 instruct loadConI_x41f00000(iRegI dst) %{
8399   effect(DEF dst);
8400   size(4);
8401   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8402   ins_encode(SetHi22(0x41f00000, dst));
8403   ins_pipe(ialu_none);
8404 %}
8405 
8406 // Construct a double from two float halves
8407 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8408   effect(DEF dst, USE src1, USE src2);
8409   size(8);
8410   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8411             "FMOVS  $src2.lo,$dst.lo" %}
8412   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8413   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8414   ins_pipe(faddD_reg_reg);
8415 %}
8416 
8417 // Convert integer in high half of a double register (in the lower half of
8418 // the double register file) to double
8419 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8420   effect(DEF dst, USE src);
8421   size(4);
8422   format %{ "FITOD  $src,$dst" %}
8423   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8424   ins_encode(form3_opf_rs2D_rdD(src, dst));
8425   ins_pipe(fcvtLHi2D);
8426 %}
8427 
8428 // Add float double precision
8429 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8430   effect(DEF dst, USE src1, USE src2);
8431   size(4);
8432   format %{ "FADDD  $src1,$src2,$dst" %}
8433   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8434   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8435   ins_pipe(faddD_reg_reg);
8436 %}
8437 
8438 // Sub float double precision
8439 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8440   effect(DEF dst, USE src1, USE src2);
8441   size(4);
8442   format %{ "FSUBD  $src1,$src2,$dst" %}
8443   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8444   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8445   ins_pipe(faddD_reg_reg);
8446 %}
8447 
8448 // Mul float double precision
8449 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8450   effect(DEF dst, USE src1, USE src2);
8451   size(4);
8452   format %{ "FMULD  $src1,$src2,$dst" %}
8453   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8454   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8455   ins_pipe(fmulD_reg_reg);
8456 %}
8457 
8458 // Long to Double conversion using fast fxtof
8459 instruct convL2D_helper(regD dst, regD tmp) %{
8460   effect(DEF dst, USE tmp);
8461   size(4);
8462   format %{ "FXTOD  $tmp,$dst" %}
8463   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8464   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8465   ins_pipe(fcvtL2D);
8466 %}
8467 
8468 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8469   match(Set dst (ConvL2D src));
8470   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8471   expand %{
8472     regD tmp;
8473     stkL_to_regD(tmp, src);
8474     convL2D_helper(dst, tmp);
8475   %}
8476 %}
8477 
8478 instruct convL2D_reg(regD dst, iRegL src) %{
8479   predicate(UseVIS >= 3);
8480   match(Set dst (ConvL2D src));
8481   expand %{
8482     regD tmp;
8483     MoveL2D_reg_reg(tmp, src);
8484     convL2D_helper(dst, tmp);
8485   %}
8486 %}
8487 
8488 // Long to Float conversion using fast fxtof
8489 instruct convL2F_helper(regF dst, regD tmp) %{
8490   effect(DEF dst, USE tmp);
8491   size(4);
8492   format %{ "FXTOS  $tmp,$dst" %}
8493   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8494   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8495   ins_pipe(fcvtL2F);
8496 %}
8497 
8498 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8499   match(Set dst (ConvL2F src));
8500   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8501   expand %{
8502     regD tmp;
8503     stkL_to_regD(tmp, src);
8504     convL2F_helper(dst, tmp);
8505   %}
8506 %}
8507 
8508 instruct convL2F_reg(regF dst, iRegL src) %{
8509   predicate(UseVIS >= 3);
8510   match(Set dst (ConvL2F src));
8511   ins_cost(DEFAULT_COST);
8512   expand %{
8513     regD tmp;
8514     MoveL2D_reg_reg(tmp, src);
8515     convL2F_helper(dst, tmp);
8516   %}
8517 %}
8518 
8519 //-----------
8520 
8521 instruct convL2I_reg(iRegI dst, iRegL src) %{
8522   match(Set dst (ConvL2I src));
8523   size(4);
8524   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8525   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8526   ins_pipe(ialu_reg);
8527 %}
8528 
8529 // Register Shift Right Immediate
8530 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8531   match(Set dst (ConvL2I (RShiftL src cnt)));
8532 
8533   size(4);
8534   format %{ "SRAX   $src,$cnt,$dst" %}
8535   opcode(Assembler::srax_op3, Assembler::arith_op);
8536   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8537   ins_pipe(ialu_reg_imm);
8538 %}
8539 
8540 //----------Control Flow Instructions------------------------------------------
8541 // Compare Instructions
8542 // Compare Integers
8543 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8544   match(Set icc (CmpI op1 op2));
8545   effect( DEF icc, USE op1, USE op2 );
8546 
8547   size(4);
8548   format %{ "CMP    $op1,$op2" %}
8549   opcode(Assembler::subcc_op3, Assembler::arith_op);
8550   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8551   ins_pipe(ialu_cconly_reg_reg);
8552 %}
8553 
8554 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8555   match(Set icc (CmpU op1 op2));
8556 
8557   size(4);
8558   format %{ "CMP    $op1,$op2\t! unsigned" %}
8559   opcode(Assembler::subcc_op3, Assembler::arith_op);
8560   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8561   ins_pipe(ialu_cconly_reg_reg);
8562 %}
8563 
8564 instruct compUL_iReg(flagsRegUL xcc, iRegL op1, iRegL op2) %{
8565   match(Set xcc (CmpUL op1 op2));
8566   effect(DEF xcc, USE op1, USE op2);
8567 
8568   size(4);
8569   format %{ "CMP    $op1,$op2\t! unsigned long" %}
8570   opcode(Assembler::subcc_op3, Assembler::arith_op);
8571   ins_encode(form3_rs1_rs2_rd(op1, op2, R_G0));
8572   ins_pipe(ialu_cconly_reg_reg);
8573 %}
8574 
8575 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8576   match(Set icc (CmpI op1 op2));
8577   effect( DEF icc, USE op1 );
8578 
8579   size(4);
8580   format %{ "CMP    $op1,$op2" %}
8581   opcode(Assembler::subcc_op3, Assembler::arith_op);
8582   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8583   ins_pipe(ialu_cconly_reg_imm);
8584 %}
8585 
8586 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8587   match(Set icc (CmpI (AndI op1 op2) zero));
8588 
8589   size(4);
8590   format %{ "BTST   $op2,$op1" %}
8591   opcode(Assembler::andcc_op3, Assembler::arith_op);
8592   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8593   ins_pipe(ialu_cconly_reg_reg_zero);
8594 %}
8595 
8596 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8597   match(Set icc (CmpI (AndI op1 op2) zero));
8598 
8599   size(4);
8600   format %{ "BTST   $op2,$op1" %}
8601   opcode(Assembler::andcc_op3, Assembler::arith_op);
8602   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8603   ins_pipe(ialu_cconly_reg_imm_zero);
8604 %}
8605 
8606 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8607   match(Set xcc (CmpL op1 op2));
8608   effect( DEF xcc, USE op1, USE op2 );
8609 
8610   size(4);
8611   format %{ "CMP    $op1,$op2\t\t! long" %}
8612   opcode(Assembler::subcc_op3, Assembler::arith_op);
8613   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8614   ins_pipe(ialu_cconly_reg_reg);
8615 %}
8616 
8617 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8618   match(Set xcc (CmpL op1 con));
8619   effect( DEF xcc, USE op1, USE con );
8620 
8621   size(4);
8622   format %{ "CMP    $op1,$con\t\t! long" %}
8623   opcode(Assembler::subcc_op3, Assembler::arith_op);
8624   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8625   ins_pipe(ialu_cconly_reg_reg);
8626 %}
8627 
8628 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8629   match(Set xcc (CmpL (AndL op1 op2) zero));
8630   effect( DEF xcc, USE op1, USE op2 );
8631 
8632   size(4);
8633   format %{ "BTST   $op1,$op2\t\t! long" %}
8634   opcode(Assembler::andcc_op3, Assembler::arith_op);
8635   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8636   ins_pipe(ialu_cconly_reg_reg);
8637 %}
8638 
8639 // useful for checking the alignment of a pointer:
8640 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8641   match(Set xcc (CmpL (AndL op1 con) zero));
8642   effect( DEF xcc, USE op1, USE con );
8643 
8644   size(4);
8645   format %{ "BTST   $op1,$con\t\t! long" %}
8646   opcode(Assembler::andcc_op3, Assembler::arith_op);
8647   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8648   ins_pipe(ialu_cconly_reg_reg);
8649 %}
8650 
8651 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU12 op2 ) %{
8652   match(Set icc (CmpU op1 op2));
8653 
8654   size(4);
8655   format %{ "CMP    $op1,$op2\t! unsigned" %}
8656   opcode(Assembler::subcc_op3, Assembler::arith_op);
8657   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8658   ins_pipe(ialu_cconly_reg_imm);
8659 %}
8660 
8661 instruct compUL_iReg_imm13(flagsRegUL xcc, iRegL op1, immUL12 op2) %{
8662   match(Set xcc (CmpUL op1 op2));
8663   effect(DEF xcc, USE op1, USE op2);
8664 
8665   size(4);
8666   format %{ "CMP    $op1,$op2\t! unsigned long" %}
8667   opcode(Assembler::subcc_op3, Assembler::arith_op);
8668   ins_encode(form3_rs1_simm13_rd(op1, op2, R_G0));
8669   ins_pipe(ialu_cconly_reg_imm);
8670 %}
8671 
8672 // Compare Pointers
8673 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8674   match(Set pcc (CmpP op1 op2));
8675 
8676   size(4);
8677   format %{ "CMP    $op1,$op2\t! ptr" %}
8678   opcode(Assembler::subcc_op3, Assembler::arith_op);
8679   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8680   ins_pipe(ialu_cconly_reg_reg);
8681 %}
8682 
8683 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
8684   match(Set pcc (CmpP op1 op2));
8685 
8686   size(4);
8687   format %{ "CMP    $op1,$op2\t! ptr" %}
8688   opcode(Assembler::subcc_op3, Assembler::arith_op);
8689   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8690   ins_pipe(ialu_cconly_reg_imm);
8691 %}
8692 
8693 // Compare Narrow oops
8694 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
8695   match(Set icc (CmpN op1 op2));
8696 
8697   size(4);
8698   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8699   opcode(Assembler::subcc_op3, Assembler::arith_op);
8700   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8701   ins_pipe(ialu_cconly_reg_reg);
8702 %}
8703 
8704 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
8705   match(Set icc (CmpN op1 op2));
8706 
8707   size(4);
8708   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8709   opcode(Assembler::subcc_op3, Assembler::arith_op);
8710   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8711   ins_pipe(ialu_cconly_reg_imm);
8712 %}
8713 
8714 //----------Max and Min--------------------------------------------------------
8715 // Min Instructions
8716 // Conditional move for min
8717 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
8718   effect( USE_DEF op2, USE op1, USE icc );
8719 
8720   size(4);
8721   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
8722   opcode(Assembler::less);
8723   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8724   ins_pipe(ialu_reg_flags);
8725 %}
8726 
8727 // Min Register with Register.
8728 instruct minI_eReg(iRegI op1, iRegI op2) %{
8729   match(Set op2 (MinI op1 op2));
8730   ins_cost(DEFAULT_COST*2);
8731   expand %{
8732     flagsReg icc;
8733     compI_iReg(icc,op1,op2);
8734     cmovI_reg_lt(op2,op1,icc);
8735   %}
8736 %}
8737 
8738 // Max Instructions
8739 // Conditional move for max
8740 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
8741   effect( USE_DEF op2, USE op1, USE icc );
8742   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
8743   opcode(Assembler::greater);
8744   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8745   ins_pipe(ialu_reg_flags);
8746 %}
8747 
8748 // Max Register with Register
8749 instruct maxI_eReg(iRegI op1, iRegI op2) %{
8750   match(Set op2 (MaxI op1 op2));
8751   ins_cost(DEFAULT_COST*2);
8752   expand %{
8753     flagsReg icc;
8754     compI_iReg(icc,op1,op2);
8755     cmovI_reg_gt(op2,op1,icc);
8756   %}
8757 %}
8758 
8759 
8760 //----------Float Compares----------------------------------------------------
8761 // Compare floating, generate condition code
8762 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
8763   match(Set fcc (CmpF src1 src2));
8764 
8765   size(4);
8766   format %{ "FCMPs  $fcc,$src1,$src2" %}
8767   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
8768   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
8769   ins_pipe(faddF_fcc_reg_reg_zero);
8770 %}
8771 
8772 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
8773   match(Set fcc (CmpD src1 src2));
8774 
8775   size(4);
8776   format %{ "FCMPd  $fcc,$src1,$src2" %}
8777   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
8778   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
8779   ins_pipe(faddD_fcc_reg_reg_zero);
8780 %}
8781 
8782 
8783 // Compare floating, generate -1,0,1
8784 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
8785   match(Set dst (CmpF3 src1 src2));
8786   effect(KILL fcc0);
8787   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8788   format %{ "fcmpl  $dst,$src1,$src2" %}
8789   // Primary = float
8790   opcode( true );
8791   ins_encode( floating_cmp( dst, src1, src2 ) );
8792   ins_pipe( floating_cmp );
8793 %}
8794 
8795 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
8796   match(Set dst (CmpD3 src1 src2));
8797   effect(KILL fcc0);
8798   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8799   format %{ "dcmpl  $dst,$src1,$src2" %}
8800   // Primary = double (not float)
8801   opcode( false );
8802   ins_encode( floating_cmp( dst, src1, src2 ) );
8803   ins_pipe( floating_cmp );
8804 %}
8805 
8806 //----------Branches---------------------------------------------------------
8807 // Jump
8808 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
8809 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
8810   match(Jump switch_val);
8811   effect(TEMP table);
8812 
8813   ins_cost(350);
8814 
8815   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
8816              "LD     [O7 + $switch_val], O7\n\t"
8817              "JUMP   O7" %}
8818   ins_encode %{
8819     // Calculate table address into a register.
8820     Register table_reg;
8821     Register label_reg = O7;
8822     // If we are calculating the size of this instruction don't trust
8823     // zero offsets because they might change when
8824     // MachConstantBaseNode decides to optimize the constant table
8825     // base.
8826     if ((constant_offset() == 0) && !Compile::current()->output()->in_scratch_emit_size()) {
8827       table_reg = $constanttablebase;
8828     } else {
8829       table_reg = O7;
8830       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
8831       __ add($constanttablebase, con_offset, table_reg);
8832     }
8833 
8834     // Jump to base address + switch value
8835     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
8836     __ jmp(label_reg, G0);
8837     __ delayed()->nop();
8838   %}
8839   ins_pipe(ialu_reg_reg);
8840 %}
8841 
8842 // Direct Branch.  Use V8 version with longer range.
8843 instruct branch(label labl) %{
8844   match(Goto);
8845   effect(USE labl);
8846 
8847   size(8);
8848   ins_cost(BRANCH_COST);
8849   format %{ "BA     $labl" %}
8850   ins_encode %{
8851     Label* L = $labl$$label;
8852     __ ba(*L);
8853     __ delayed()->nop();
8854   %}
8855   ins_avoid_back_to_back(AVOID_BEFORE);
8856   ins_pipe(br);
8857 %}
8858 
8859 // Direct Branch, short with no delay slot
8860 instruct branch_short(label labl) %{
8861   match(Goto);
8862   predicate(UseCBCond);
8863   effect(USE labl);
8864 
8865   size(4); // Assuming no NOP inserted.
8866   ins_cost(BRANCH_COST);
8867   format %{ "BA     $labl\t! short branch" %}
8868   ins_encode %{
8869     Label* L = $labl$$label;
8870     assert(__ use_cbcond(*L), "back to back cbcond");
8871     __ ba_short(*L);
8872   %}
8873   ins_short_branch(1);
8874   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
8875   ins_pipe(cbcond_reg_imm);
8876 %}
8877 
8878 // Conditional Direct Branch
8879 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
8880   match(If cmp icc);
8881   effect(USE labl);
8882 
8883   size(8);
8884   ins_cost(BRANCH_COST);
8885   format %{ "BP$cmp   $icc,$labl" %}
8886   // Prim = bits 24-22, Secnd = bits 31-30
8887   ins_encode( enc_bp( labl, cmp, icc ) );
8888   ins_avoid_back_to_back(AVOID_BEFORE);
8889   ins_pipe(br_cc);
8890 %}
8891 
8892 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
8893   match(If cmp icc);
8894   effect(USE labl);
8895 
8896   ins_cost(BRANCH_COST);
8897   format %{ "BP$cmp  $icc,$labl" %}
8898   // Prim = bits 24-22, Secnd = bits 31-30
8899   ins_encode( enc_bp( labl, cmp, icc ) );
8900   ins_avoid_back_to_back(AVOID_BEFORE);
8901   ins_pipe(br_cc);
8902 %}
8903 
8904 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
8905   match(If cmp pcc);
8906   effect(USE labl);
8907 
8908   size(8);
8909   ins_cost(BRANCH_COST);
8910   format %{ "BP$cmp  $pcc,$labl" %}
8911   ins_encode %{
8912     Label* L = $labl$$label;
8913     Assembler::Predict predict_taken =
8914       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
8915 
8916     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
8917     __ delayed()->nop();
8918   %}
8919   ins_avoid_back_to_back(AVOID_BEFORE);
8920   ins_pipe(br_cc);
8921 %}
8922 
8923 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
8924   match(If cmp fcc);
8925   effect(USE labl);
8926 
8927   size(8);
8928   ins_cost(BRANCH_COST);
8929   format %{ "FBP$cmp $fcc,$labl" %}
8930   ins_encode %{
8931     Label* L = $labl$$label;
8932     Assembler::Predict predict_taken =
8933       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
8934 
8935     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
8936     __ delayed()->nop();
8937   %}
8938   ins_avoid_back_to_back(AVOID_BEFORE);
8939   ins_pipe(br_fcc);
8940 %}
8941 
8942 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
8943   match(CountedLoopEnd cmp icc);
8944   effect(USE labl);
8945 
8946   size(8);
8947   ins_cost(BRANCH_COST);
8948   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
8949   // Prim = bits 24-22, Secnd = bits 31-30
8950   ins_encode( enc_bp( labl, cmp, icc ) );
8951   ins_avoid_back_to_back(AVOID_BEFORE);
8952   ins_pipe(br_cc);
8953 %}
8954 
8955 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
8956   match(CountedLoopEnd cmp icc);
8957   effect(USE labl);
8958 
8959   size(8);
8960   ins_cost(BRANCH_COST);
8961   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
8962   // Prim = bits 24-22, Secnd = bits 31-30
8963   ins_encode( enc_bp( labl, cmp, icc ) );
8964   ins_avoid_back_to_back(AVOID_BEFORE);
8965   ins_pipe(br_cc);
8966 %}
8967 
8968 // Compare and branch instructions
8969 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
8970   match(If cmp (CmpI op1 op2));
8971   effect(USE labl, KILL icc);
8972 
8973   size(12);
8974   ins_cost(BRANCH_COST);
8975   format %{ "CMP    $op1,$op2\t! int\n\t"
8976             "BP$cmp   $labl" %}
8977   ins_encode %{
8978     Label* L = $labl$$label;
8979     Assembler::Predict predict_taken =
8980       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
8981     __ cmp($op1$$Register, $op2$$Register);
8982     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
8983     __ delayed()->nop();
8984   %}
8985   ins_pipe(cmp_br_reg_reg);
8986 %}
8987 
8988 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
8989   match(If cmp (CmpI op1 op2));
8990   effect(USE labl, KILL icc);
8991 
8992   size(12);
8993   ins_cost(BRANCH_COST);
8994   format %{ "CMP    $op1,$op2\t! int\n\t"
8995             "BP$cmp   $labl" %}
8996   ins_encode %{
8997     Label* L = $labl$$label;
8998     Assembler::Predict predict_taken =
8999       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9000     __ cmp($op1$$Register, $op2$$constant);
9001     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9002     __ delayed()->nop();
9003   %}
9004   ins_pipe(cmp_br_reg_imm);
9005 %}
9006 
9007 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9008   match(If cmp (CmpU op1 op2));
9009   effect(USE labl, KILL icc);
9010 
9011   size(12);
9012   ins_cost(BRANCH_COST);
9013   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9014             "BP$cmp  $labl" %}
9015   ins_encode %{
9016     Label* L = $labl$$label;
9017     Assembler::Predict predict_taken =
9018       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9019     __ cmp($op1$$Register, $op2$$Register);
9020     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9021     __ delayed()->nop();
9022   %}
9023   ins_pipe(cmp_br_reg_reg);
9024 %}
9025 
9026 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9027   match(If cmp (CmpU op1 op2));
9028   effect(USE labl, KILL icc);
9029 
9030   size(12);
9031   ins_cost(BRANCH_COST);
9032   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9033             "BP$cmp  $labl" %}
9034   ins_encode %{
9035     Label* L = $labl$$label;
9036     Assembler::Predict predict_taken =
9037       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9038     __ cmp($op1$$Register, $op2$$constant);
9039     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9040     __ delayed()->nop();
9041   %}
9042   ins_pipe(cmp_br_reg_imm);
9043 %}
9044 
9045 instruct cmpUL_reg_branch(cmpOpU cmp, iRegL op1, iRegL op2, label labl, flagsRegUL xcc) %{
9046   match(If cmp (CmpUL op1 op2));
9047   effect(USE labl, KILL xcc);
9048 
9049   size(12);
9050   ins_cost(BRANCH_COST);
9051   format %{ "CMP    $op1,$op2\t! unsigned long\n\t"
9052             "BP$cmp   $labl" %}
9053   ins_encode %{
9054     Label* L = $labl$$label;
9055     Assembler::Predict predict_taken =
9056       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9057     __ cmp($op1$$Register, $op2$$Register);
9058     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9059     __ delayed()->nop();
9060   %}
9061   ins_pipe(cmp_br_reg_reg);
9062 %}
9063 
9064 instruct cmpUL_imm_branch(cmpOpU cmp, iRegL op1, immL5 op2, label labl, flagsRegUL xcc) %{
9065   match(If cmp (CmpUL op1 op2));
9066   effect(USE labl, KILL xcc);
9067 
9068   size(12);
9069   ins_cost(BRANCH_COST);
9070   format %{ "CMP    $op1,$op2\t! unsigned long\n\t"
9071             "BP$cmp   $labl" %}
9072   ins_encode %{
9073     Label* L = $labl$$label;
9074     Assembler::Predict predict_taken =
9075       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9076     __ cmp($op1$$Register, $op2$$constant);
9077     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9078     __ delayed()->nop();
9079   %}
9080   ins_pipe(cmp_br_reg_imm);
9081 %}
9082 
9083 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9084   match(If cmp (CmpL op1 op2));
9085   effect(USE labl, KILL xcc);
9086 
9087   size(12);
9088   ins_cost(BRANCH_COST);
9089   format %{ "CMP    $op1,$op2\t! long\n\t"
9090             "BP$cmp   $labl" %}
9091   ins_encode %{
9092     Label* L = $labl$$label;
9093     Assembler::Predict predict_taken =
9094       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9095     __ cmp($op1$$Register, $op2$$Register);
9096     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9097     __ delayed()->nop();
9098   %}
9099   ins_pipe(cmp_br_reg_reg);
9100 %}
9101 
9102 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9103   match(If cmp (CmpL op1 op2));
9104   effect(USE labl, KILL xcc);
9105 
9106   size(12);
9107   ins_cost(BRANCH_COST);
9108   format %{ "CMP    $op1,$op2\t! long\n\t"
9109             "BP$cmp   $labl" %}
9110   ins_encode %{
9111     Label* L = $labl$$label;
9112     Assembler::Predict predict_taken =
9113       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9114     __ cmp($op1$$Register, $op2$$constant);
9115     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9116     __ delayed()->nop();
9117   %}
9118   ins_pipe(cmp_br_reg_imm);
9119 %}
9120 
9121 // Compare Pointers and branch
9122 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9123   match(If cmp (CmpP op1 op2));
9124   effect(USE labl, KILL pcc);
9125 
9126   size(12);
9127   ins_cost(BRANCH_COST);
9128   format %{ "CMP    $op1,$op2\t! ptr\n\t"
9129             "B$cmp   $labl" %}
9130   ins_encode %{
9131     Label* L = $labl$$label;
9132     Assembler::Predict predict_taken =
9133       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9134     __ cmp($op1$$Register, $op2$$Register);
9135     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9136     __ delayed()->nop();
9137   %}
9138   ins_pipe(cmp_br_reg_reg);
9139 %}
9140 
9141 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9142   match(If cmp (CmpP op1 null));
9143   effect(USE labl, KILL pcc);
9144 
9145   size(12);
9146   ins_cost(BRANCH_COST);
9147   format %{ "CMP    $op1,0\t! ptr\n\t"
9148             "B$cmp   $labl" %}
9149   ins_encode %{
9150     Label* L = $labl$$label;
9151     Assembler::Predict predict_taken =
9152       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9153     __ cmp($op1$$Register, G0);
9154     // bpr() is not used here since it has shorter distance.
9155     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9156     __ delayed()->nop();
9157   %}
9158   ins_pipe(cmp_br_reg_reg);
9159 %}
9160 
9161 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9162   match(If cmp (CmpN op1 op2));
9163   effect(USE labl, KILL icc);
9164 
9165   size(12);
9166   ins_cost(BRANCH_COST);
9167   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
9168             "BP$cmp   $labl" %}
9169   ins_encode %{
9170     Label* L = $labl$$label;
9171     Assembler::Predict predict_taken =
9172       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9173     __ cmp($op1$$Register, $op2$$Register);
9174     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9175     __ delayed()->nop();
9176   %}
9177   ins_pipe(cmp_br_reg_reg);
9178 %}
9179 
9180 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9181   match(If cmp (CmpN op1 null));
9182   effect(USE labl, KILL icc);
9183 
9184   size(12);
9185   ins_cost(BRANCH_COST);
9186   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
9187             "BP$cmp   $labl" %}
9188   ins_encode %{
9189     Label* L = $labl$$label;
9190     Assembler::Predict predict_taken =
9191       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9192     __ cmp($op1$$Register, G0);
9193     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9194     __ delayed()->nop();
9195   %}
9196   ins_pipe(cmp_br_reg_reg);
9197 %}
9198 
9199 // Loop back branch
9200 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9201   match(CountedLoopEnd cmp (CmpI op1 op2));
9202   effect(USE labl, KILL icc);
9203 
9204   size(12);
9205   ins_cost(BRANCH_COST);
9206   format %{ "CMP    $op1,$op2\t! int\n\t"
9207             "BP$cmp   $labl\t! Loop end" %}
9208   ins_encode %{
9209     Label* L = $labl$$label;
9210     Assembler::Predict predict_taken =
9211       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9212     __ cmp($op1$$Register, $op2$$Register);
9213     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9214     __ delayed()->nop();
9215   %}
9216   ins_pipe(cmp_br_reg_reg);
9217 %}
9218 
9219 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9220   match(CountedLoopEnd cmp (CmpI op1 op2));
9221   effect(USE labl, KILL icc);
9222 
9223   size(12);
9224   ins_cost(BRANCH_COST);
9225   format %{ "CMP    $op1,$op2\t! int\n\t"
9226             "BP$cmp   $labl\t! Loop end" %}
9227   ins_encode %{
9228     Label* L = $labl$$label;
9229     Assembler::Predict predict_taken =
9230       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9231     __ cmp($op1$$Register, $op2$$constant);
9232     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9233     __ delayed()->nop();
9234   %}
9235   ins_pipe(cmp_br_reg_imm);
9236 %}
9237 
9238 // Short compare and branch instructions
9239 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9240   match(If cmp (CmpI op1 op2));
9241   predicate(UseCBCond);
9242   effect(USE labl, KILL icc);
9243 
9244   size(4); // Assuming no NOP inserted.
9245   ins_cost(BRANCH_COST);
9246   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9247   ins_encode %{
9248     Label* L = $labl$$label;
9249     assert(__ use_cbcond(*L), "back to back cbcond");
9250     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9251   %}
9252   ins_short_branch(1);
9253   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9254   ins_pipe(cbcond_reg_reg);
9255 %}
9256 
9257 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9258   match(If cmp (CmpI op1 op2));
9259   predicate(UseCBCond);
9260   effect(USE labl, KILL icc);
9261 
9262   size(4); // Assuming no NOP inserted.
9263   ins_cost(BRANCH_COST);
9264   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9265   ins_encode %{
9266     Label* L = $labl$$label;
9267     assert(__ use_cbcond(*L), "back to back cbcond");
9268     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9269   %}
9270   ins_short_branch(1);
9271   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9272   ins_pipe(cbcond_reg_imm);
9273 %}
9274 
9275 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9276   match(If cmp (CmpU op1 op2));
9277   predicate(UseCBCond);
9278   effect(USE labl, KILL icc);
9279 
9280   size(4); // Assuming no NOP inserted.
9281   ins_cost(BRANCH_COST);
9282   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9283   ins_encode %{
9284     Label* L = $labl$$label;
9285     assert(__ use_cbcond(*L), "back to back cbcond");
9286     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9287   %}
9288   ins_short_branch(1);
9289   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9290   ins_pipe(cbcond_reg_reg);
9291 %}
9292 
9293 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9294   match(If cmp (CmpU op1 op2));
9295   predicate(UseCBCond);
9296   effect(USE labl, KILL icc);
9297 
9298   size(4); // Assuming no NOP inserted.
9299   ins_cost(BRANCH_COST);
9300   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9301   ins_encode %{
9302     Label* L = $labl$$label;
9303     assert(__ use_cbcond(*L), "back to back cbcond");
9304     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9305   %}
9306   ins_short_branch(1);
9307   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9308   ins_pipe(cbcond_reg_imm);
9309 %}
9310 
9311 instruct cmpUL_reg_branch_short(cmpOpU cmp, iRegL op1, iRegL op2, label labl, flagsRegUL xcc) %{
9312   match(If cmp (CmpUL op1 op2));
9313   predicate(UseCBCond);
9314   effect(USE labl, KILL xcc);
9315 
9316   size(4);
9317   ins_cost(BRANCH_COST);
9318   format %{ "CXB$cmp  $op1,$op2,$labl\t! unsigned long" %}
9319   ins_encode %{
9320     Label* L = $labl$$label;
9321     assert(__ use_cbcond(*L), "back to back cbcond");
9322     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9323   %}
9324   ins_short_branch(1);
9325   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9326   ins_pipe(cbcond_reg_reg);
9327 %}
9328 
9329 instruct cmpUL_imm_branch_short(cmpOpU cmp, iRegL op1, immL5 op2, label labl, flagsRegUL xcc) %{
9330   match(If cmp (CmpUL op1 op2));
9331   predicate(UseCBCond);
9332   effect(USE labl, KILL xcc);
9333 
9334   size(4);
9335   ins_cost(BRANCH_COST);
9336   format %{ "CXB$cmp  $op1,$op2,$labl\t! unsigned long" %}
9337   ins_encode %{
9338     Label* L = $labl$$label;
9339     assert(__ use_cbcond(*L), "back to back cbcond");
9340     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9341   %}
9342   ins_short_branch(1);
9343   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9344   ins_pipe(cbcond_reg_imm);
9345 %}
9346 
9347 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9348   match(If cmp (CmpL op1 op2));
9349   predicate(UseCBCond);
9350   effect(USE labl, KILL xcc);
9351 
9352   size(4); // Assuming no NOP inserted.
9353   ins_cost(BRANCH_COST);
9354   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9355   ins_encode %{
9356     Label* L = $labl$$label;
9357     assert(__ use_cbcond(*L), "back to back cbcond");
9358     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9359   %}
9360   ins_short_branch(1);
9361   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9362   ins_pipe(cbcond_reg_reg);
9363 %}
9364 
9365 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9366   match(If cmp (CmpL op1 op2));
9367   predicate(UseCBCond);
9368   effect(USE labl, KILL xcc);
9369 
9370   size(4); // Assuming no NOP inserted.
9371   ins_cost(BRANCH_COST);
9372   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9373   ins_encode %{
9374     Label* L = $labl$$label;
9375     assert(__ use_cbcond(*L), "back to back cbcond");
9376     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9377   %}
9378   ins_short_branch(1);
9379   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9380   ins_pipe(cbcond_reg_imm);
9381 %}
9382 
9383 // Compare Pointers and branch
9384 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9385   match(If cmp (CmpP op1 op2));
9386   predicate(UseCBCond);
9387   effect(USE labl, KILL pcc);
9388 
9389   size(4); // Assuming no NOP inserted.
9390   ins_cost(BRANCH_COST);
9391   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
9392   ins_encode %{
9393     Label* L = $labl$$label;
9394     assert(__ use_cbcond(*L), "back to back cbcond");
9395     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
9396   %}
9397   ins_short_branch(1);
9398   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9399   ins_pipe(cbcond_reg_reg);
9400 %}
9401 
9402 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9403   match(If cmp (CmpP op1 null));
9404   predicate(UseCBCond);
9405   effect(USE labl, KILL pcc);
9406 
9407   size(4); // Assuming no NOP inserted.
9408   ins_cost(BRANCH_COST);
9409   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
9410   ins_encode %{
9411     Label* L = $labl$$label;
9412     assert(__ use_cbcond(*L), "back to back cbcond");
9413     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
9414   %}
9415   ins_short_branch(1);
9416   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9417   ins_pipe(cbcond_reg_reg);
9418 %}
9419 
9420 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9421   match(If cmp (CmpN op1 op2));
9422   predicate(UseCBCond);
9423   effect(USE labl, KILL icc);
9424 
9425   size(4); // Assuming no NOP inserted.
9426   ins_cost(BRANCH_COST);
9427   format %{ "CWB$cmp  $op1,$op2,$labl\t! compressed ptr" %}
9428   ins_encode %{
9429     Label* L = $labl$$label;
9430     assert(__ use_cbcond(*L), "back to back cbcond");
9431     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9432   %}
9433   ins_short_branch(1);
9434   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9435   ins_pipe(cbcond_reg_reg);
9436 %}
9437 
9438 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9439   match(If cmp (CmpN op1 null));
9440   predicate(UseCBCond);
9441   effect(USE labl, KILL icc);
9442 
9443   size(4); // Assuming no NOP inserted.
9444   ins_cost(BRANCH_COST);
9445   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
9446   ins_encode %{
9447     Label* L = $labl$$label;
9448     assert(__ use_cbcond(*L), "back to back cbcond");
9449     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
9450   %}
9451   ins_short_branch(1);
9452   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9453   ins_pipe(cbcond_reg_reg);
9454 %}
9455 
9456 // Loop back branch
9457 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9458   match(CountedLoopEnd cmp (CmpI op1 op2));
9459   predicate(UseCBCond);
9460   effect(USE labl, KILL icc);
9461 
9462   size(4); // Assuming no NOP inserted.
9463   ins_cost(BRANCH_COST);
9464   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9465   ins_encode %{
9466     Label* L = $labl$$label;
9467     assert(__ use_cbcond(*L), "back to back cbcond");
9468     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9469   %}
9470   ins_short_branch(1);
9471   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9472   ins_pipe(cbcond_reg_reg);
9473 %}
9474 
9475 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9476   match(CountedLoopEnd cmp (CmpI op1 op2));
9477   predicate(UseCBCond);
9478   effect(USE labl, KILL icc);
9479 
9480   size(4); // Assuming no NOP inserted.
9481   ins_cost(BRANCH_COST);
9482   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9483   ins_encode %{
9484     Label* L = $labl$$label;
9485     assert(__ use_cbcond(*L), "back to back cbcond");
9486     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9487   %}
9488   ins_short_branch(1);
9489   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9490   ins_pipe(cbcond_reg_imm);
9491 %}
9492 
9493 // Branch-on-register tests all 64 bits.  We assume that values
9494 // in 64-bit registers always remains zero or sign extended
9495 // unless our code munges the high bits.  Interrupts can chop
9496 // the high order bits to zero or sign at any time.
9497 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9498   match(If cmp (CmpI op1 zero));
9499   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9500   effect(USE labl);
9501 
9502   size(8);
9503   ins_cost(BRANCH_COST);
9504   format %{ "BR$cmp   $op1,$labl" %}
9505   ins_encode( enc_bpr( labl, cmp, op1 ) );
9506   ins_avoid_back_to_back(AVOID_BEFORE);
9507   ins_pipe(br_reg);
9508 %}
9509 
9510 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9511   match(If cmp (CmpP op1 null));
9512   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9513   effect(USE labl);
9514 
9515   size(8);
9516   ins_cost(BRANCH_COST);
9517   format %{ "BR$cmp   $op1,$labl" %}
9518   ins_encode( enc_bpr( labl, cmp, op1 ) );
9519   ins_avoid_back_to_back(AVOID_BEFORE);
9520   ins_pipe(br_reg);
9521 %}
9522 
9523 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9524   match(If cmp (CmpL op1 zero));
9525   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9526   effect(USE labl);
9527 
9528   size(8);
9529   ins_cost(BRANCH_COST);
9530   format %{ "BR$cmp   $op1,$labl" %}
9531   ins_encode( enc_bpr( labl, cmp, op1 ) );
9532   ins_avoid_back_to_back(AVOID_BEFORE);
9533   ins_pipe(br_reg);
9534 %}
9535 
9536 
9537 // ============================================================================
9538 // Long Compare
9539 //
9540 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9541 // is tricky.  The flavor of compare used depends on whether we are testing
9542 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9543 // The GE test is the negated LT test.  The LE test can be had by commuting
9544 // the operands (yielding a GE test) and then negating; negate again for the
9545 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9546 // NE test is negated from that.
9547 
9548 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9549 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9550 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9551 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9552 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9553 // foo match ends up with the wrong leaf.  One fix is to not match both
9554 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9555 // both forms beat the trinary form of long-compare and both are very useful
9556 // on Intel which has so few registers.
9557 
9558 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9559   match(If cmp xcc);
9560   effect(USE labl);
9561 
9562   size(8);
9563   ins_cost(BRANCH_COST);
9564   format %{ "BP$cmp   $xcc,$labl" %}
9565   ins_encode %{
9566     Label* L = $labl$$label;
9567     Assembler::Predict predict_taken =
9568       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9569 
9570     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9571     __ delayed()->nop();
9572   %}
9573   ins_avoid_back_to_back(AVOID_BEFORE);
9574   ins_pipe(br_cc);
9575 %}
9576 
9577 instruct branchConU_long(cmpOpU cmp, flagsRegUL xcc, label labl) %{
9578   match(If cmp xcc);
9579   effect(USE labl);
9580 
9581   size(8);
9582   ins_cost(BRANCH_COST);
9583   format %{ "BP$cmp   $xcc,$labl" %}
9584   ins_encode %{
9585     Label* L = $labl$$label;
9586     Assembler::Predict predict_taken =
9587       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9588 
9589     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9590     __ delayed()->nop();
9591   %}
9592   ins_avoid_back_to_back(AVOID_BEFORE);
9593   ins_pipe(br_cc);
9594 %}
9595 
9596 // Manifest a CmpL3 result in an integer register.  Very painful.
9597 // This is the test to avoid.
9598 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9599   match(Set dst (CmpL3 src1 src2) );
9600   effect( KILL ccr );
9601   ins_cost(6*DEFAULT_COST);
9602   size(24);
9603   format %{ "CMP    $src1,$src2\t\t! long\n"
9604           "\tBLT,a,pn done\n"
9605           "\tMOV    -1,$dst\t! delay slot\n"
9606           "\tBGT,a,pn done\n"
9607           "\tMOV    1,$dst\t! delay slot\n"
9608           "\tCLR    $dst\n"
9609     "done:"     %}
9610   ins_encode( cmpl_flag(src1,src2,dst) );
9611   ins_pipe(cmpL_reg);
9612 %}
9613 
9614 // Conditional move
9615 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9616   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9617   ins_cost(150);
9618   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9619   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9620   ins_pipe(ialu_reg);
9621 %}
9622 
9623 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9624   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9625   ins_cost(140);
9626   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9627   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9628   ins_pipe(ialu_imm);
9629 %}
9630 
9631 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9632   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9633   ins_cost(150);
9634   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9635   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9636   ins_pipe(ialu_reg);
9637 %}
9638 
9639 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9640   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9641   ins_cost(140);
9642   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9643   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9644   ins_pipe(ialu_imm);
9645 %}
9646 
9647 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9648   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9649   ins_cost(150);
9650   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9651   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9652   ins_pipe(ialu_reg);
9653 %}
9654 
9655 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9656   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9657   ins_cost(150);
9658   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9659   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9660   ins_pipe(ialu_reg);
9661 %}
9662 
9663 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9664   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9665   ins_cost(140);
9666   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9667   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9668   ins_pipe(ialu_imm);
9669 %}
9670 
9671 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9672   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9673   ins_cost(150);
9674   opcode(0x101);
9675   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9676   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9677   ins_pipe(int_conditional_float_move);
9678 %}
9679 
9680 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9681   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9682   ins_cost(150);
9683   opcode(0x102);
9684   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9685   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9686   ins_pipe(int_conditional_float_move);
9687 %}
9688 
9689 // ============================================================================
9690 // Safepoint Instruction
9691 instruct safePoint_poll(iRegP poll) %{
9692   match(SafePoint poll);
9693   effect(USE poll);
9694 
9695   size(4);
9696   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9697   ins_encode %{
9698     __ relocate(relocInfo::poll_type);
9699     __ ld_ptr($poll$$Register, 0, G0);
9700   %}
9701   ins_pipe(loadPollP);
9702 %}
9703 
9704 // ============================================================================
9705 // Call Instructions
9706 // Call Java Static Instruction
9707 instruct CallStaticJavaDirect( method meth ) %{
9708   match(CallStaticJava);
9709   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
9710   effect(USE meth);
9711 
9712   size(8);
9713   ins_cost(CALL_COST);
9714   format %{ "CALL,static  ; NOP ==> " %}
9715   ins_encode( Java_Static_Call( meth ), call_epilog );
9716   ins_avoid_back_to_back(AVOID_BEFORE);
9717   ins_pipe(simple_call);
9718 %}
9719 
9720 // Call Java Static Instruction (method handle version)
9721 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
9722   match(CallStaticJava);
9723   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
9724   effect(USE meth, KILL l7_mh_SP_save);
9725 
9726   size(16);
9727   ins_cost(CALL_COST);
9728   format %{ "CALL,static/MethodHandle" %}
9729   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
9730   ins_pipe(simple_call);
9731 %}
9732 
9733 // Call Java Dynamic Instruction
9734 instruct CallDynamicJavaDirect( method meth ) %{
9735   match(CallDynamicJava);
9736   effect(USE meth);
9737 
9738   ins_cost(CALL_COST);
9739   format %{ "SET    (empty),R_G5\n\t"
9740             "CALL,dynamic  ; NOP ==> " %}
9741   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
9742   ins_pipe(call);
9743 %}
9744 
9745 // Call Runtime Instruction
9746 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
9747   match(CallRuntime);
9748   effect(USE meth, KILL l7);
9749   ins_cost(CALL_COST);
9750   format %{ "CALL,runtime" %}
9751   ins_encode( Java_To_Runtime( meth ),
9752               call_epilog, adjust_long_from_native_call );
9753   ins_avoid_back_to_back(AVOID_BEFORE);
9754   ins_pipe(simple_call);
9755 %}
9756 
9757 // Call runtime without safepoint - same as CallRuntime
9758 instruct CallLeafDirect(method meth, l7RegP l7) %{
9759   match(CallLeaf);
9760   effect(USE meth, KILL l7);
9761   ins_cost(CALL_COST);
9762   format %{ "CALL,runtime leaf" %}
9763   ins_encode( Java_To_Runtime( meth ),
9764               call_epilog,
9765               adjust_long_from_native_call );
9766   ins_avoid_back_to_back(AVOID_BEFORE);
9767   ins_pipe(simple_call);
9768 %}
9769 
9770 // Call runtime without safepoint - same as CallLeaf
9771 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9772   match(CallLeafNoFP);
9773   effect(USE meth, KILL l7);
9774   ins_cost(CALL_COST);
9775   format %{ "CALL,runtime leaf nofp" %}
9776   ins_encode( Java_To_Runtime( meth ),
9777               call_epilog,
9778               adjust_long_from_native_call );
9779   ins_avoid_back_to_back(AVOID_BEFORE);
9780   ins_pipe(simple_call);
9781 %}
9782 
9783 // Tail Call; Jump from runtime stub to Java code.
9784 // Also known as an 'interprocedural jump'.
9785 // Target of jump will eventually return to caller.
9786 // TailJump below removes the return address.
9787 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
9788   match(TailCall jump_target method_oop );
9789 
9790   ins_cost(CALL_COST);
9791   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
9792   ins_encode(form_jmpl(jump_target));
9793   ins_avoid_back_to_back(AVOID_BEFORE);
9794   ins_pipe(tail_call);
9795 %}
9796 
9797 
9798 // Return Instruction
9799 instruct Ret() %{
9800   match(Return);
9801 
9802   // The epilogue node did the ret already.
9803   size(0);
9804   format %{ "! return" %}
9805   ins_encode();
9806   ins_pipe(empty);
9807 %}
9808 
9809 
9810 // Tail Jump; remove the return address; jump to target.
9811 // TailCall above leaves the return address around.
9812 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
9813 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
9814 // "restore" before this instruction (in Epilogue), we need to materialize it
9815 // in %i0.
9816 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
9817   match( TailJump jump_target ex_oop );
9818   ins_cost(CALL_COST);
9819   format %{ "! discard R_O7\n\t"
9820             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
9821   ins_encode(form_jmpl_set_exception_pc(jump_target));
9822   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
9823   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
9824   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
9825   ins_avoid_back_to_back(AVOID_BEFORE);
9826   ins_pipe(tail_call);
9827 %}
9828 
9829 // Create exception oop: created by stack-crawling runtime code.
9830 // Created exception is now available to this handler, and is setup
9831 // just prior to jumping to this handler.  No code emitted.
9832 instruct CreateException( o0RegP ex_oop )
9833 %{
9834   match(Set ex_oop (CreateEx));
9835   ins_cost(0);
9836 
9837   size(0);
9838   // use the following format syntax
9839   format %{ "! exception oop is in R_O0; no code emitted" %}
9840   ins_encode();
9841   ins_pipe(empty);
9842 %}
9843 
9844 
9845 // Rethrow exception:
9846 // The exception oop will come in the first argument position.
9847 // Then JUMP (not call) to the rethrow stub code.
9848 instruct RethrowException()
9849 %{
9850   match(Rethrow);
9851   ins_cost(CALL_COST);
9852 
9853   // use the following format syntax
9854   format %{ "Jmp    rethrow_stub" %}
9855   ins_encode(enc_rethrow);
9856   ins_avoid_back_to_back(AVOID_BEFORE);
9857   ins_pipe(tail_call);
9858 %}
9859 
9860 
9861 // Die now
9862 instruct ShouldNotReachHere( )
9863 %{
9864   match(Halt);
9865   ins_cost(CALL_COST);
9866 
9867   size(4);
9868   // Use the following format syntax
9869   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
9870   ins_encode( form2_illtrap() );
9871   ins_pipe(tail_call);
9872 %}
9873 
9874 // ============================================================================
9875 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
9876 // array for an instance of the superklass.  Set a hidden internal cache on a
9877 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
9878 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
9879 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
9880   match(Set index (PartialSubtypeCheck sub super));
9881   effect( KILL pcc, KILL o7 );
9882   ins_cost(DEFAULT_COST*10);
9883   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
9884   ins_encode( enc_PartialSubtypeCheck() );
9885   ins_avoid_back_to_back(AVOID_BEFORE);
9886   ins_pipe(partial_subtype_check_pipe);
9887 %}
9888 
9889 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
9890   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
9891   effect( KILL idx, KILL o7 );
9892   ins_cost(DEFAULT_COST*10);
9893   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
9894   ins_encode( enc_PartialSubtypeCheck() );
9895   ins_avoid_back_to_back(AVOID_BEFORE);
9896   ins_pipe(partial_subtype_check_pipe);
9897 %}
9898 
9899 
9900 // ============================================================================
9901 // inlined locking and unlocking
9902 
9903 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
9904   match(Set pcc (FastLock object box));
9905 
9906   effect(TEMP scratch2, USE_KILL box, KILL scratch);
9907   ins_cost(100);
9908 
9909   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
9910   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
9911   ins_pipe(long_memory_op);
9912 %}
9913 
9914 
9915 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
9916   match(Set pcc (FastUnlock object box));
9917   effect(TEMP scratch2, USE_KILL box, KILL scratch);
9918   ins_cost(100);
9919 
9920   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
9921   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
9922   ins_pipe(long_memory_op);
9923 %}
9924 
9925 // The encodings are generic.
9926 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
9927   predicate(!use_block_zeroing(n->in(2)) );
9928   match(Set dummy (ClearArray cnt base));
9929   effect(TEMP temp, KILL ccr);
9930   ins_cost(300);
9931   format %{ "MOV    $cnt,$temp\n"
9932     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
9933     "        BRge   loop\t\t! Clearing loop\n"
9934     "        STX    G0,[$base+$temp]\t! delay slot" %}
9935 
9936   ins_encode %{
9937     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
9938     Register nof_bytes_arg    = $cnt$$Register;
9939     Register nof_bytes_tmp    = $temp$$Register;
9940     Register base_pointer_arg = $base$$Register;
9941 
9942     Label loop;
9943     __ mov(nof_bytes_arg, nof_bytes_tmp);
9944 
9945     // Loop and clear, walking backwards through the array.
9946     // nof_bytes_tmp (if >0) is always the number of bytes to zero
9947     __ bind(loop);
9948     __ deccc(nof_bytes_tmp, 8);
9949     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
9950     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
9951     // %%%% this mini-loop must not cross a cache boundary!
9952   %}
9953   ins_pipe(long_memory_op);
9954 %}
9955 
9956 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
9957   predicate(use_block_zeroing(n->in(2)));
9958   match(Set dummy (ClearArray cnt base));
9959   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
9960   ins_cost(300);
9961   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
9962 
9963   ins_encode %{
9964 
9965     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
9966     Register to    = $base$$Register;
9967     Register count = $cnt$$Register;
9968 
9969     Label Ldone;
9970     __ nop(); // Separate short branches
9971     // Use BIS for zeroing (temp is not used).
9972     __ bis_zeroing(to, count, G0, Ldone);
9973     __ bind(Ldone);
9974 
9975   %}
9976   ins_pipe(long_memory_op);
9977 %}
9978 
9979 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
9980   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
9981   match(Set dummy (ClearArray cnt base));
9982   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
9983   ins_cost(300);
9984   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
9985 
9986   ins_encode %{
9987 
9988     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
9989     Register to    = $base$$Register;
9990     Register count = $cnt$$Register;
9991     Register temp  = $tmp$$Register;
9992 
9993     Label Ldone;
9994     __ nop(); // Separate short branches
9995     // Use BIS for zeroing
9996     __ bis_zeroing(to, count, temp, Ldone);
9997     __ bind(Ldone);
9998 
9999   %}
10000   ins_pipe(long_memory_op);
10001 %}
10002 
10003 instruct string_compareL(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10004                          o7RegI tmp, flagsReg ccr) %{
10005   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LL);
10006   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10007   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10008   ins_cost(300);
10009   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10010   ins_encode %{
10011     __ string_compare($str1$$Register, $str2$$Register,
10012                       $cnt1$$Register, $cnt2$$Register,
10013                       $tmp$$Register, $tmp$$Register,
10014                       $result$$Register, StrIntrinsicNode::LL);
10015   %}
10016   ins_pipe(long_memory_op);
10017 %}
10018 
10019 instruct string_compareU(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10020                          o7RegI tmp, flagsReg ccr) %{
10021   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UU);
10022   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10023   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10024   ins_cost(300);
10025   format %{ "String Compare char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10026   ins_encode %{
10027     __ string_compare($str1$$Register, $str2$$Register,
10028                       $cnt1$$Register, $cnt2$$Register,
10029                       $tmp$$Register, $tmp$$Register,
10030                       $result$$Register, StrIntrinsicNode::UU);
10031   %}
10032   ins_pipe(long_memory_op);
10033 %}
10034 
10035 instruct string_compareLU(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10036                           o7RegI tmp1, g1RegI tmp2, flagsReg ccr) %{
10037   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LU);
10038   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10039   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp1, KILL tmp2);
10040   ins_cost(300);
10041   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1,$tmp2" %}
10042   ins_encode %{
10043     __ string_compare($str1$$Register, $str2$$Register,
10044                       $cnt1$$Register, $cnt2$$Register,
10045                       $tmp1$$Register, $tmp2$$Register,
10046                       $result$$Register, StrIntrinsicNode::LU);
10047   %}
10048   ins_pipe(long_memory_op);
10049 %}
10050 
10051 instruct string_compareUL(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10052                           o7RegI tmp1, g1RegI tmp2, flagsReg ccr) %{
10053   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UL);
10054   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10055   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp1, KILL tmp2);
10056   ins_cost(300);
10057   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1,$tmp2" %}
10058   ins_encode %{
10059     __ string_compare($str2$$Register, $str1$$Register,
10060                       $cnt2$$Register, $cnt1$$Register,
10061                       $tmp1$$Register, $tmp2$$Register,
10062                       $result$$Register, StrIntrinsicNode::UL);
10063   %}
10064   ins_pipe(long_memory_op);
10065 %}
10066 
10067 instruct string_equalsL(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10068                         o7RegI tmp, flagsReg ccr) %{
10069   predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::LL);
10070   match(Set result (StrEquals (Binary str1 str2) cnt));
10071   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10072   ins_cost(300);
10073   format %{ "String Equals byte[] $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10074   ins_encode %{
10075     __ array_equals(false, $str1$$Register, $str2$$Register,
10076                     $cnt$$Register, $tmp$$Register,
10077                     $result$$Register, true /* byte */);
10078   %}
10079   ins_pipe(long_memory_op);
10080 %}
10081 
10082 instruct string_equalsU(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10083                         o7RegI tmp, flagsReg ccr) %{
10084   predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::UU);
10085   match(Set result (StrEquals (Binary str1 str2) cnt));
10086   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10087   ins_cost(300);
10088   format %{ "String Equals char[]  $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10089   ins_encode %{
10090     __ array_equals(false, $str1$$Register, $str2$$Register,
10091                     $cnt$$Register, $tmp$$Register,
10092                     $result$$Register, false /* byte */);
10093   %}
10094   ins_pipe(long_memory_op);
10095 %}
10096 
10097 instruct array_equalsB(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10098                        o7RegI tmp2, flagsReg ccr) %{
10099   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL);
10100   match(Set result (AryEq ary1 ary2));
10101   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10102   ins_cost(300);
10103   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10104   ins_encode %{
10105     __ array_equals(true, $ary1$$Register, $ary2$$Register,
10106                     $tmp1$$Register, $tmp2$$Register,
10107                     $result$$Register, true /* byte */);
10108   %}
10109   ins_pipe(long_memory_op);
10110 %}
10111 
10112 instruct array_equalsC(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10113                        o7RegI tmp2, flagsReg ccr) %{
10114   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU);
10115   match(Set result (AryEq ary1 ary2));
10116   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10117   ins_cost(300);
10118   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10119   ins_encode %{
10120     __ array_equals(true, $ary1$$Register, $ary2$$Register,
10121                     $tmp1$$Register, $tmp2$$Register,
10122                     $result$$Register, false /* byte */);
10123   %}
10124   ins_pipe(long_memory_op);
10125 %}
10126 
10127 instruct has_negatives(o0RegP pAryR, g3RegI iSizeR, notemp_iRegI resultR,
10128                        iRegL tmp1L, iRegL tmp2L, iRegL tmp3L, iRegL tmp4L,
10129                        flagsReg ccr)
10130 %{
10131   match(Set resultR (HasNegatives pAryR iSizeR));
10132   effect(TEMP resultR, TEMP tmp1L, TEMP tmp2L, TEMP tmp3L, TEMP tmp4L, USE pAryR, USE iSizeR, KILL ccr);
10133   format %{ "has negatives byte[] $pAryR,$iSizeR -> $resultR // KILL $tmp1L,$tmp2L,$tmp3L,$tmp4L" %}
10134   ins_encode %{
10135     __ has_negatives($pAryR$$Register, $iSizeR$$Register,
10136                      $resultR$$Register,
10137                      $tmp1L$$Register, $tmp2L$$Register,
10138                      $tmp3L$$Register, $tmp4L$$Register);
10139   %}
10140   ins_pipe(long_memory_op);
10141 %}
10142 
10143 // char[] to byte[] compression
10144 instruct string_compress(o0RegP src, o1RegP dst, g3RegI len, notemp_iRegI result, iRegL tmp, flagsReg ccr) %{
10145   predicate(UseVIS < 3);
10146   match(Set result (StrCompressedCopy src (Binary dst len)));
10147   effect(TEMP result, TEMP tmp, USE_KILL src, USE_KILL dst, USE_KILL len, KILL ccr);
10148   ins_cost(300);
10149   format %{ "String Compress $src,$dst,$len -> $result    // KILL $tmp" %}
10150   ins_encode %{
10151     Label Ldone;
10152     __ signx($len$$Register);
10153     __ cmp_zero_and_br(Assembler::zero, $len$$Register, Ldone, false, Assembler::pn);
10154     __ delayed()->mov($len$$Register, $result$$Register); // copy count
10155     __ string_compress($src$$Register, $dst$$Register, $len$$Register, $result$$Register, $tmp$$Register, Ldone);
10156     __ bind(Ldone);
10157   %}
10158   ins_pipe(long_memory_op);
10159 %}
10160 
10161 // fast char[] to byte[] compression using VIS instructions
10162 instruct string_compress_fast(o0RegP src, o1RegP dst, g3RegI len, notemp_iRegI result,
10163                               iRegL tmp1, iRegL tmp2, iRegL tmp3, iRegL tmp4,
10164                               regD ftmp1, regD ftmp2, regD ftmp3, flagsReg ccr) %{
10165   predicate(UseVIS >= 3);
10166   match(Set result (StrCompressedCopy src (Binary dst len)));
10167   effect(TEMP result, TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP ftmp1, TEMP ftmp2, TEMP ftmp3, USE_KILL src, USE_KILL dst, USE_KILL len, KILL ccr);
10168   ins_cost(300);
10169   format %{ "String Compress Fast $src,$dst,$len -> $result    // KILL $tmp1,$tmp2,$tmp3,$tmp4,$ftmp1,$ftmp2,$ftmp3" %}
10170   ins_encode %{
10171     Label Ldone;
10172     __ signx($len$$Register);
10173     __ string_compress_16($src$$Register, $dst$$Register, $len$$Register, $result$$Register,
10174                           $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register,
10175                           $ftmp1$$FloatRegister, $ftmp2$$FloatRegister, $ftmp3$$FloatRegister, Ldone);
10176     __ cmp_and_brx_short($len$$Register, 0, Assembler::equal, Assembler::pn, Ldone);
10177     __ string_compress($src$$Register, $dst$$Register, $len$$Register, $result$$Register, $tmp1$$Register, Ldone);
10178     __ bind(Ldone);
10179   %}
10180   ins_pipe(long_memory_op);
10181 %}
10182 
10183 // byte[] to char[] inflation
10184 instruct string_inflate(Universe dummy, o0RegP src, o1RegP dst, g3RegI len,
10185                         iRegL tmp, flagsReg ccr) %{
10186   match(Set dummy (StrInflatedCopy src (Binary dst len)));
10187   effect(TEMP tmp, USE_KILL src, USE_KILL dst, USE_KILL len, KILL ccr);
10188   ins_cost(300);
10189   format %{ "String Inflate $src,$dst,$len    // KILL $tmp" %}
10190   ins_encode %{
10191     Label Ldone;
10192     __ signx($len$$Register);
10193     __ cmp_and_brx_short($len$$Register, 0, Assembler::equal, Assembler::pn, Ldone);
10194     __ string_inflate($src$$Register, $dst$$Register, $len$$Register, $tmp$$Register, Ldone);
10195     __ bind(Ldone);
10196   %}
10197   ins_pipe(long_memory_op);
10198 %}
10199 
10200 // fast byte[] to char[] inflation using VIS instructions
10201 instruct string_inflate_fast(Universe dummy, o0RegP src, o1RegP dst, g3RegI len,
10202                              iRegL tmp, regD ftmp1, regD ftmp2, regD ftmp3, regD ftmp4, flagsReg ccr) %{
10203   predicate(UseVIS >= 3);
10204   match(Set dummy (StrInflatedCopy src (Binary dst len)));
10205   effect(TEMP tmp, TEMP ftmp1, TEMP ftmp2, TEMP ftmp3, TEMP ftmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL ccr);
10206   ins_cost(300);
10207   format %{ "String Inflate Fast $src,$dst,$len    // KILL $tmp,$ftmp1,$ftmp2,$ftmp3,$ftmp4" %}
10208   ins_encode %{
10209     Label Ldone;
10210     __ signx($len$$Register);
10211     __ string_inflate_16($src$$Register, $dst$$Register, $len$$Register, $tmp$$Register,
10212                          $ftmp1$$FloatRegister, $ftmp2$$FloatRegister, $ftmp3$$FloatRegister, $ftmp4$$FloatRegister, Ldone);
10213     __ cmp_and_brx_short($len$$Register, 0, Assembler::equal, Assembler::pn, Ldone);
10214     __ string_inflate($src$$Register, $dst$$Register, $len$$Register, $tmp$$Register, Ldone);
10215     __ bind(Ldone);
10216   %}
10217   ins_pipe(long_memory_op);
10218 %}
10219 
10220 
10221 //---------- Zeros Count Instructions ------------------------------------------
10222 
10223 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
10224   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10225   match(Set dst (CountLeadingZerosI src));
10226   effect(TEMP dst, TEMP tmp, KILL cr);
10227 
10228   // x |= (x >> 1);
10229   // x |= (x >> 2);
10230   // x |= (x >> 4);
10231   // x |= (x >> 8);
10232   // x |= (x >> 16);
10233   // return (WORDBITS - popc(x));
10234   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
10235             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
10236             "OR      $dst,$tmp,$dst\n\t"
10237             "SRL     $dst,2,$tmp\n\t"
10238             "OR      $dst,$tmp,$dst\n\t"
10239             "SRL     $dst,4,$tmp\n\t"
10240             "OR      $dst,$tmp,$dst\n\t"
10241             "SRL     $dst,8,$tmp\n\t"
10242             "OR      $dst,$tmp,$dst\n\t"
10243             "SRL     $dst,16,$tmp\n\t"
10244             "OR      $dst,$tmp,$dst\n\t"
10245             "POPC    $dst,$dst\n\t"
10246             "MOV     32,$tmp\n\t"
10247             "SUB     $tmp,$dst,$dst" %}
10248   ins_encode %{
10249     Register Rdst = $dst$$Register;
10250     Register Rsrc = $src$$Register;
10251     Register Rtmp = $tmp$$Register;
10252     __ srl(Rsrc, 1,    Rtmp);
10253     __ srl(Rsrc, 0,    Rdst);
10254     __ or3(Rdst, Rtmp, Rdst);
10255     __ srl(Rdst, 2,    Rtmp);
10256     __ or3(Rdst, Rtmp, Rdst);
10257     __ srl(Rdst, 4,    Rtmp);
10258     __ or3(Rdst, Rtmp, Rdst);
10259     __ srl(Rdst, 8,    Rtmp);
10260     __ or3(Rdst, Rtmp, Rdst);
10261     __ srl(Rdst, 16,   Rtmp);
10262     __ or3(Rdst, Rtmp, Rdst);
10263     __ popc(Rdst, Rdst);
10264     __ mov(BitsPerInt, Rtmp);
10265     __ sub(Rtmp, Rdst, Rdst);
10266   %}
10267   ins_pipe(ialu_reg);
10268 %}
10269 
10270 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
10271   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10272   match(Set dst (CountLeadingZerosL src));
10273   effect(TEMP dst, TEMP tmp, KILL cr);
10274 
10275   // x |= (x >> 1);
10276   // x |= (x >> 2);
10277   // x |= (x >> 4);
10278   // x |= (x >> 8);
10279   // x |= (x >> 16);
10280   // x |= (x >> 32);
10281   // return (WORDBITS - popc(x));
10282   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
10283             "OR      $src,$tmp,$dst\n\t"
10284             "SRLX    $dst,2,$tmp\n\t"
10285             "OR      $dst,$tmp,$dst\n\t"
10286             "SRLX    $dst,4,$tmp\n\t"
10287             "OR      $dst,$tmp,$dst\n\t"
10288             "SRLX    $dst,8,$tmp\n\t"
10289             "OR      $dst,$tmp,$dst\n\t"
10290             "SRLX    $dst,16,$tmp\n\t"
10291             "OR      $dst,$tmp,$dst\n\t"
10292             "SRLX    $dst,32,$tmp\n\t"
10293             "OR      $dst,$tmp,$dst\n\t"
10294             "POPC    $dst,$dst\n\t"
10295             "MOV     64,$tmp\n\t"
10296             "SUB     $tmp,$dst,$dst" %}
10297   ins_encode %{
10298     Register Rdst = $dst$$Register;
10299     Register Rsrc = $src$$Register;
10300     Register Rtmp = $tmp$$Register;
10301     __ srlx(Rsrc, 1,    Rtmp);
10302     __ or3( Rsrc, Rtmp, Rdst);
10303     __ srlx(Rdst, 2,    Rtmp);
10304     __ or3( Rdst, Rtmp, Rdst);
10305     __ srlx(Rdst, 4,    Rtmp);
10306     __ or3( Rdst, Rtmp, Rdst);
10307     __ srlx(Rdst, 8,    Rtmp);
10308     __ or3( Rdst, Rtmp, Rdst);
10309     __ srlx(Rdst, 16,   Rtmp);
10310     __ or3( Rdst, Rtmp, Rdst);
10311     __ srlx(Rdst, 32,   Rtmp);
10312     __ or3( Rdst, Rtmp, Rdst);
10313     __ popc(Rdst, Rdst);
10314     __ mov(BitsPerLong, Rtmp);
10315     __ sub(Rtmp, Rdst, Rdst);
10316   %}
10317   ins_pipe(ialu_reg);
10318 %}
10319 
10320 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
10321   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10322   match(Set dst (CountTrailingZerosI src));
10323   effect(TEMP dst, KILL cr);
10324 
10325   // return popc(~x & (x - 1));
10326   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
10327             "ANDN    $dst,$src,$dst\n\t"
10328             "SRL     $dst,R_G0,$dst\n\t"
10329             "POPC    $dst,$dst" %}
10330   ins_encode %{
10331     Register Rdst = $dst$$Register;
10332     Register Rsrc = $src$$Register;
10333     __ sub(Rsrc, 1, Rdst);
10334     __ andn(Rdst, Rsrc, Rdst);
10335     __ srl(Rdst, G0, Rdst);
10336     __ popc(Rdst, Rdst);
10337   %}
10338   ins_pipe(ialu_reg);
10339 %}
10340 
10341 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
10342   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10343   match(Set dst (CountTrailingZerosL src));
10344   effect(TEMP dst, KILL cr);
10345 
10346   // return popc(~x & (x - 1));
10347   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
10348             "ANDN    $dst,$src,$dst\n\t"
10349             "POPC    $dst,$dst" %}
10350   ins_encode %{
10351     Register Rdst = $dst$$Register;
10352     Register Rsrc = $src$$Register;
10353     __ sub(Rsrc, 1, Rdst);
10354     __ andn(Rdst, Rsrc, Rdst);
10355     __ popc(Rdst, Rdst);
10356   %}
10357   ins_pipe(ialu_reg);
10358 %}
10359 
10360 
10361 //---------- Population Count Instructions -------------------------------------
10362 
10363 instruct popCountI(iRegIsafe dst, iRegI src) %{
10364   predicate(UsePopCountInstruction);
10365   match(Set dst (PopCountI src));
10366 
10367   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
10368             "POPC   $dst, $dst" %}
10369   ins_encode %{
10370     __ srl($src$$Register, G0, $dst$$Register);
10371     __ popc($dst$$Register, $dst$$Register);
10372   %}
10373   ins_pipe(ialu_reg);
10374 %}
10375 
10376 // Note: Long.bitCount(long) returns an int.
10377 instruct popCountL(iRegIsafe dst, iRegL src) %{
10378   predicate(UsePopCountInstruction);
10379   match(Set dst (PopCountL src));
10380 
10381   format %{ "POPC   $src, $dst" %}
10382   ins_encode %{
10383     __ popc($src$$Register, $dst$$Register);
10384   %}
10385   ins_pipe(ialu_reg);
10386 %}
10387 
10388 
10389 // ============================================================================
10390 //------------Bytes reverse--------------------------------------------------
10391 
10392 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
10393   match(Set dst (ReverseBytesI src));
10394 
10395   // Op cost is artificially doubled to make sure that load or store
10396   // instructions are preferred over this one which requires a spill
10397   // onto a stack slot.
10398   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10399   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10400 
10401   ins_encode %{
10402     __ set($src$$disp + STACK_BIAS, O7);
10403     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10404   %}
10405   ins_pipe( iload_mem );
10406 %}
10407 
10408 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
10409   match(Set dst (ReverseBytesL src));
10410 
10411   // Op cost is artificially doubled to make sure that load or store
10412   // instructions are preferred over this one which requires a spill
10413   // onto a stack slot.
10414   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10415   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10416 
10417   ins_encode %{
10418     __ set($src$$disp + STACK_BIAS, O7);
10419     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10420   %}
10421   ins_pipe( iload_mem );
10422 %}
10423 
10424 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
10425   match(Set dst (ReverseBytesUS src));
10426 
10427   // Op cost is artificially doubled to make sure that load or store
10428   // instructions are preferred over this one which requires a spill
10429   // onto a stack slot.
10430   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10431   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
10432 
10433   ins_encode %{
10434     // the value was spilled as an int so bias the load
10435     __ set($src$$disp + STACK_BIAS + 2, O7);
10436     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10437   %}
10438   ins_pipe( iload_mem );
10439 %}
10440 
10441 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
10442   match(Set dst (ReverseBytesS src));
10443 
10444   // Op cost is artificially doubled to make sure that load or store
10445   // instructions are preferred over this one which requires a spill
10446   // onto a stack slot.
10447   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10448   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
10449 
10450   ins_encode %{
10451     // the value was spilled as an int so bias the load
10452     __ set($src$$disp + STACK_BIAS + 2, O7);
10453     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10454   %}
10455   ins_pipe( iload_mem );
10456 %}
10457 
10458 // Load Integer reversed byte order
10459 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
10460   match(Set dst (ReverseBytesI (LoadI src)));
10461 
10462   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10463   size(4);
10464   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10465 
10466   ins_encode %{
10467     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10468   %}
10469   ins_pipe(iload_mem);
10470 %}
10471 
10472 // Load Long - aligned and reversed
10473 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
10474   match(Set dst (ReverseBytesL (LoadL src)));
10475 
10476   ins_cost(MEMORY_REF_COST);
10477   size(4);
10478   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10479 
10480   ins_encode %{
10481     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10482   %}
10483   ins_pipe(iload_mem);
10484 %}
10485 
10486 // Load unsigned short / char reversed byte order
10487 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
10488   match(Set dst (ReverseBytesUS (LoadUS src)));
10489 
10490   ins_cost(MEMORY_REF_COST);
10491   size(4);
10492   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10493 
10494   ins_encode %{
10495     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10496   %}
10497   ins_pipe(iload_mem);
10498 %}
10499 
10500 // Load short reversed byte order
10501 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10502   match(Set dst (ReverseBytesS (LoadS src)));
10503 
10504   ins_cost(MEMORY_REF_COST);
10505   size(4);
10506   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10507 
10508   ins_encode %{
10509     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10510   %}
10511   ins_pipe(iload_mem);
10512 %}
10513 
10514 // Store Integer reversed byte order
10515 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10516   match(Set dst (StoreI dst (ReverseBytesI src)));
10517 
10518   ins_cost(MEMORY_REF_COST);
10519   size(4);
10520   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10521 
10522   ins_encode %{
10523     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10524   %}
10525   ins_pipe(istore_mem_reg);
10526 %}
10527 
10528 // Store Long reversed byte order
10529 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10530   match(Set dst (StoreL dst (ReverseBytesL src)));
10531 
10532   ins_cost(MEMORY_REF_COST);
10533   size(4);
10534   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10535 
10536   ins_encode %{
10537     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10538   %}
10539   ins_pipe(istore_mem_reg);
10540 %}
10541 
10542 // Store unsighed short/char reversed byte order
10543 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10544   match(Set dst (StoreC dst (ReverseBytesUS src)));
10545 
10546   ins_cost(MEMORY_REF_COST);
10547   size(4);
10548   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10549 
10550   ins_encode %{
10551     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10552   %}
10553   ins_pipe(istore_mem_reg);
10554 %}
10555 
10556 // Store short reversed byte order
10557 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10558   match(Set dst (StoreC dst (ReverseBytesS src)));
10559 
10560   ins_cost(MEMORY_REF_COST);
10561   size(4);
10562   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10563 
10564   ins_encode %{
10565     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10566   %}
10567   ins_pipe(istore_mem_reg);
10568 %}
10569 
10570 // ====================VECTOR INSTRUCTIONS=====================================
10571 
10572 // Load Aligned Packed values into a Double Register
10573 instruct loadV8(regD dst, memory mem) %{
10574   predicate(n->as_LoadVector()->memory_size() == 8);
10575   match(Set dst (LoadVector mem));
10576   ins_cost(MEMORY_REF_COST);
10577   size(4);
10578   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
10579   ins_encode %{
10580     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
10581   %}
10582   ins_pipe(floadD_mem);
10583 %}
10584 
10585 // Store Vector in Double register to memory
10586 instruct storeV8(memory mem, regD src) %{
10587   predicate(n->as_StoreVector()->memory_size() == 8);
10588   match(Set mem (StoreVector mem src));
10589   ins_cost(MEMORY_REF_COST);
10590   size(4);
10591   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
10592   ins_encode %{
10593     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
10594   %}
10595   ins_pipe(fstoreD_mem_reg);
10596 %}
10597 
10598 // Store Zero into vector in memory
10599 instruct storeV8B_zero(memory mem, immI0 zero) %{
10600   predicate(n->as_StoreVector()->memory_size() == 8);
10601   match(Set mem (StoreVector mem (ReplicateB zero)));
10602   ins_cost(MEMORY_REF_COST);
10603   size(4);
10604   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
10605   ins_encode %{
10606     __ stx(G0, $mem$$Address);
10607   %}
10608   ins_pipe(fstoreD_mem_zero);
10609 %}
10610 
10611 instruct storeV4S_zero(memory mem, immI0 zero) %{
10612   predicate(n->as_StoreVector()->memory_size() == 8);
10613   match(Set mem (StoreVector mem (ReplicateS zero)));
10614   ins_cost(MEMORY_REF_COST);
10615   size(4);
10616   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
10617   ins_encode %{
10618     __ stx(G0, $mem$$Address);
10619   %}
10620   ins_pipe(fstoreD_mem_zero);
10621 %}
10622 
10623 instruct storeV2I_zero(memory mem, immI0 zero) %{
10624   predicate(n->as_StoreVector()->memory_size() == 8);
10625   match(Set mem (StoreVector mem (ReplicateI zero)));
10626   ins_cost(MEMORY_REF_COST);
10627   size(4);
10628   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
10629   ins_encode %{
10630     __ stx(G0, $mem$$Address);
10631   %}
10632   ins_pipe(fstoreD_mem_zero);
10633 %}
10634 
10635 instruct storeV2F_zero(memory mem, immF0 zero) %{
10636   predicate(n->as_StoreVector()->memory_size() == 8);
10637   match(Set mem (StoreVector mem (ReplicateF zero)));
10638   ins_cost(MEMORY_REF_COST);
10639   size(4);
10640   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
10641   ins_encode %{
10642     __ stx(G0, $mem$$Address);
10643   %}
10644   ins_pipe(fstoreD_mem_zero);
10645 %}
10646 
10647 // Replicate scalar to packed byte values into Double register
10648 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10649   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
10650   match(Set dst (ReplicateB src));
10651   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10652   format %{ "SLLX  $src,56,$tmp\n\t"
10653             "SRLX  $tmp, 8,$tmp2\n\t"
10654             "OR    $tmp,$tmp2,$tmp\n\t"
10655             "SRLX  $tmp,16,$tmp2\n\t"
10656             "OR    $tmp,$tmp2,$tmp\n\t"
10657             "SRLX  $tmp,32,$tmp2\n\t"
10658             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10659             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10660   ins_encode %{
10661     Register Rsrc = $src$$Register;
10662     Register Rtmp = $tmp$$Register;
10663     Register Rtmp2 = $tmp2$$Register;
10664     __ sllx(Rsrc,    56, Rtmp);
10665     __ srlx(Rtmp,     8, Rtmp2);
10666     __ or3 (Rtmp, Rtmp2, Rtmp);
10667     __ srlx(Rtmp,    16, Rtmp2);
10668     __ or3 (Rtmp, Rtmp2, Rtmp);
10669     __ srlx(Rtmp,    32, Rtmp2);
10670     __ or3 (Rtmp, Rtmp2, Rtmp);
10671     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10672   %}
10673   ins_pipe(ialu_reg);
10674 %}
10675 
10676 // Replicate scalar to packed byte values into Double stack
10677 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10678   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
10679   match(Set dst (ReplicateB src));
10680   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10681   format %{ "SLLX  $src,56,$tmp\n\t"
10682             "SRLX  $tmp, 8,$tmp2\n\t"
10683             "OR    $tmp,$tmp2,$tmp\n\t"
10684             "SRLX  $tmp,16,$tmp2\n\t"
10685             "OR    $tmp,$tmp2,$tmp\n\t"
10686             "SRLX  $tmp,32,$tmp2\n\t"
10687             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10688             "STX   $tmp,$dst\t! regL to stkD" %}
10689   ins_encode %{
10690     Register Rsrc = $src$$Register;
10691     Register Rtmp = $tmp$$Register;
10692     Register Rtmp2 = $tmp2$$Register;
10693     __ sllx(Rsrc,    56, Rtmp);
10694     __ srlx(Rtmp,     8, Rtmp2);
10695     __ or3 (Rtmp, Rtmp2, Rtmp);
10696     __ srlx(Rtmp,    16, Rtmp2);
10697     __ or3 (Rtmp, Rtmp2, Rtmp);
10698     __ srlx(Rtmp,    32, Rtmp2);
10699     __ or3 (Rtmp, Rtmp2, Rtmp);
10700     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10701     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10702   %}
10703   ins_pipe(ialu_reg);
10704 %}
10705 
10706 // Replicate scalar constant to packed byte values in Double register
10707 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
10708   predicate(n->as_Vector()->length() == 8);
10709   match(Set dst (ReplicateB con));
10710   effect(KILL tmp);
10711   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
10712   ins_encode %{
10713     // XXX This is a quick fix for 6833573.
10714     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
10715     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
10716     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10717   %}
10718   ins_pipe(loadConFD);
10719 %}
10720 
10721 // Replicate scalar to packed char/short values into Double register
10722 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10723   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
10724   match(Set dst (ReplicateS src));
10725   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10726   format %{ "SLLX  $src,48,$tmp\n\t"
10727             "SRLX  $tmp,16,$tmp2\n\t"
10728             "OR    $tmp,$tmp2,$tmp\n\t"
10729             "SRLX  $tmp,32,$tmp2\n\t"
10730             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10731             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10732   ins_encode %{
10733     Register Rsrc = $src$$Register;
10734     Register Rtmp = $tmp$$Register;
10735     Register Rtmp2 = $tmp2$$Register;
10736     __ sllx(Rsrc,    48, Rtmp);
10737     __ srlx(Rtmp,    16, Rtmp2);
10738     __ or3 (Rtmp, Rtmp2, Rtmp);
10739     __ srlx(Rtmp,    32, Rtmp2);
10740     __ or3 (Rtmp, Rtmp2, Rtmp);
10741     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10742   %}
10743   ins_pipe(ialu_reg);
10744 %}
10745 
10746 // Replicate scalar to packed char/short values into Double stack
10747 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10748   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
10749   match(Set dst (ReplicateS src));
10750   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10751   format %{ "SLLX  $src,48,$tmp\n\t"
10752             "SRLX  $tmp,16,$tmp2\n\t"
10753             "OR    $tmp,$tmp2,$tmp\n\t"
10754             "SRLX  $tmp,32,$tmp2\n\t"
10755             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10756             "STX   $tmp,$dst\t! regL to stkD" %}
10757   ins_encode %{
10758     Register Rsrc = $src$$Register;
10759     Register Rtmp = $tmp$$Register;
10760     Register Rtmp2 = $tmp2$$Register;
10761     __ sllx(Rsrc,    48, Rtmp);
10762     __ srlx(Rtmp,    16, Rtmp2);
10763     __ or3 (Rtmp, Rtmp2, Rtmp);
10764     __ srlx(Rtmp,    32, Rtmp2);
10765     __ or3 (Rtmp, Rtmp2, Rtmp);
10766     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10767     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10768   %}
10769   ins_pipe(ialu_reg);
10770 %}
10771 
10772 // Replicate scalar constant to packed char/short values in Double register
10773 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
10774   predicate(n->as_Vector()->length() == 4);
10775   match(Set dst (ReplicateS con));
10776   effect(KILL tmp);
10777   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
10778   ins_encode %{
10779     // XXX This is a quick fix for 6833573.
10780     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
10781     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
10782     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10783   %}
10784   ins_pipe(loadConFD);
10785 %}
10786 
10787 // Replicate scalar to packed int values into Double register
10788 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10789   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
10790   match(Set dst (ReplicateI src));
10791   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10792   format %{ "SLLX  $src,32,$tmp\n\t"
10793             "SRLX  $tmp,32,$tmp2\n\t"
10794             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10795             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10796   ins_encode %{
10797     Register Rsrc = $src$$Register;
10798     Register Rtmp = $tmp$$Register;
10799     Register Rtmp2 = $tmp2$$Register;
10800     __ sllx(Rsrc,    32, Rtmp);
10801     __ srlx(Rtmp,    32, Rtmp2);
10802     __ or3 (Rtmp, Rtmp2, Rtmp);
10803     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10804   %}
10805   ins_pipe(ialu_reg);
10806 %}
10807 
10808 // Replicate scalar to packed int values into Double stack
10809 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10810   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
10811   match(Set dst (ReplicateI src));
10812   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10813   format %{ "SLLX  $src,32,$tmp\n\t"
10814             "SRLX  $tmp,32,$tmp2\n\t"
10815             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10816             "STX   $tmp,$dst\t! regL to stkD" %}
10817   ins_encode %{
10818     Register Rsrc = $src$$Register;
10819     Register Rtmp = $tmp$$Register;
10820     Register Rtmp2 = $tmp2$$Register;
10821     __ sllx(Rsrc,    32, Rtmp);
10822     __ srlx(Rtmp,    32, Rtmp2);
10823     __ or3 (Rtmp, Rtmp2, Rtmp);
10824     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10825     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10826   %}
10827   ins_pipe(ialu_reg);
10828 %}
10829 
10830 // Replicate scalar zero constant to packed int values in Double register
10831 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
10832   predicate(n->as_Vector()->length() == 2);
10833   match(Set dst (ReplicateI con));
10834   effect(KILL tmp);
10835   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
10836   ins_encode %{
10837     // XXX This is a quick fix for 6833573.
10838     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
10839     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
10840     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10841   %}
10842   ins_pipe(loadConFD);
10843 %}
10844 
10845 // Replicate scalar to packed float values into Double stack
10846 instruct Repl2F_stk(stackSlotD dst, regF src) %{
10847   predicate(n->as_Vector()->length() == 2);
10848   match(Set dst (ReplicateF src));
10849   ins_cost(MEMORY_REF_COST*2);
10850   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
10851             "STF    $src,$dst.lo" %}
10852   opcode(Assembler::stf_op3);
10853   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
10854   ins_pipe(fstoreF_stk_reg);
10855 %}
10856 
10857 // Replicate scalar zero constant to packed float values in Double register
10858 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
10859   predicate(n->as_Vector()->length() == 2);
10860   match(Set dst (ReplicateF con));
10861   effect(KILL tmp);
10862   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
10863   ins_encode %{
10864     // XXX This is a quick fix for 6833573.
10865     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
10866     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
10867     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10868   %}
10869   ins_pipe(loadConFD);
10870 %}
10871 
10872 //----------PEEPHOLE RULES-----------------------------------------------------
10873 // These must follow all instruction definitions as they use the names
10874 // defined in the instructions definitions.
10875 //
10876 // peepmatch ( root_instr_name [preceding_instruction]* );
10877 //
10878 // peepconstraint %{
10879 // (instruction_number.operand_name relational_op instruction_number.operand_name
10880 //  [, ...] );
10881 // // instruction numbers are zero-based using left to right order in peepmatch
10882 //
10883 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10884 // // provide an instruction_number.operand_name for each operand that appears
10885 // // in the replacement instruction's match rule
10886 //
10887 // ---------VM FLAGS---------------------------------------------------------
10888 //
10889 // All peephole optimizations can be turned off using -XX:-OptoPeephole
10890 //
10891 // Each peephole rule is given an identifying number starting with zero and
10892 // increasing by one in the order seen by the parser.  An individual peephole
10893 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10894 // on the command-line.
10895 //
10896 // ---------CURRENT LIMITATIONS----------------------------------------------
10897 //
10898 // Only match adjacent instructions in same basic block
10899 // Only equality constraints
10900 // Only constraints between operands, not (0.dest_reg == EAX_enc)
10901 // Only one replacement instruction
10902 //
10903 // ---------EXAMPLE----------------------------------------------------------
10904 //
10905 // // pertinent parts of existing instructions in architecture description
10906 // instruct movI(eRegI dst, eRegI src) %{
10907 //   match(Set dst (CopyI src));
10908 // %}
10909 //
10910 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
10911 //   match(Set dst (AddI dst src));
10912 //   effect(KILL cr);
10913 // %}
10914 //
10915 // // Change (inc mov) to lea
10916 // peephole %{
10917 //   // increment preceeded by register-register move
10918 //   peepmatch ( incI_eReg movI );
10919 //   // require that the destination register of the increment
10920 //   // match the destination register of the move
10921 //   peepconstraint ( 0.dst == 1.dst );
10922 //   // construct a replacement instruction that sets
10923 //   // the destination to ( move's source register + one )
10924 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
10925 // %}
10926 //
10927 
10928 // // Change load of spilled value to only a spill
10929 // instruct storeI(memory mem, eRegI src) %{
10930 //   match(Set mem (StoreI mem src));
10931 // %}
10932 //
10933 // instruct loadI(eRegI dst, memory mem) %{
10934 //   match(Set dst (LoadI mem));
10935 // %}
10936 //
10937 // peephole %{
10938 //   peepmatch ( loadI storeI );
10939 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
10940 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
10941 // %}
10942 
10943 //----------SMARTSPILL RULES---------------------------------------------------
10944 // These must follow all instruction definitions as they use the names
10945 // defined in the instructions definitions.
10946 //
10947 // SPARC will probably not have any of these rules due to RISC instruction set.
10948 
10949 //----------PIPELINE-----------------------------------------------------------
10950 // Rules which define the behavior of the target architectures pipeline.