1 /*
   2  * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "asm/macroAssembler.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "os_share_linux.hpp"
  38 #include "prims/jniFastGetField.hpp"
  39 #include "prims/jvm_misc.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/extendedPC.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/interfaceSupport.inline.hpp"
  44 #include "runtime/java.hpp"
  45 #include "runtime/javaCalls.hpp"
  46 #include "runtime/mutexLocker.hpp"
  47 #include "runtime/osThread.hpp"
  48 #include "runtime/safepointMechanism.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "runtime/stubRoutines.hpp"
  51 #include "runtime/thread.inline.hpp"
  52 #include "runtime/timer.hpp"
  53 #include "services/memTracker.hpp"
  54 #include "utilities/align.hpp"
  55 #include "utilities/debug.hpp"
  56 #include "utilities/events.hpp"
  57 #include "utilities/vmError.hpp"
  58 
  59 // put OS-includes here
  60 # include <sys/types.h>
  61 # include <sys/mman.h>
  62 # include <pthread.h>
  63 # include <signal.h>
  64 # include <errno.h>
  65 # include <dlfcn.h>
  66 # include <stdlib.h>
  67 # include <stdio.h>
  68 # include <unistd.h>
  69 # include <sys/resource.h>
  70 # include <pthread.h>
  71 # include <sys/stat.h>
  72 # include <sys/time.h>
  73 # include <sys/utsname.h>
  74 # include <sys/socket.h>
  75 # include <sys/wait.h>
  76 # include <pwd.h>
  77 # include <poll.h>
  78 # include <ucontext.h>
  79 #ifndef AMD64
  80 # include <fpu_control.h>
  81 #endif
  82 
  83 #ifdef AMD64
  84 #define REG_SP REG_RSP
  85 #define REG_PC REG_RIP
  86 #define REG_FP REG_RBP
  87 #define SPELL_REG_SP "rsp"
  88 #define SPELL_REG_FP "rbp"
  89 #else
  90 #define REG_SP REG_UESP
  91 #define REG_PC REG_EIP
  92 #define REG_FP REG_EBP
  93 #define SPELL_REG_SP "esp"
  94 #define SPELL_REG_FP "ebp"
  95 #endif // AMD64
  96 
  97 address os::current_stack_pointer() {
  98 #ifdef SPARC_WORKS
  99   void *esp;
 100   __asm__("mov %%" SPELL_REG_SP ", %0":"=r"(esp));
 101   return (address) ((char*)esp + sizeof(long)*2);
 102 #else
 103   return (address)__builtin_frame_address(0);
 104 #endif
 105 }
 106 
 107 char* os::non_memory_address_word() {
 108   // Must never look like an address returned by reserve_memory,
 109   // even in its subfields (as defined by the CPU immediate fields,
 110   // if the CPU splits constants across multiple instructions).
 111 
 112   return (char*) -1;
 113 }
 114 
 115 address os::Linux::ucontext_get_pc(const ucontext_t * uc) {
 116   return (address)uc->uc_mcontext.gregs[REG_PC];
 117 }
 118 
 119 void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
 120   uc->uc_mcontext.gregs[REG_PC] = (intptr_t)pc;
 121 }
 122 
 123 intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) {
 124   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
 125 }
 126 
 127 intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) {
 128   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
 129 }
 130 
 131 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 132 // is currently interrupted by SIGPROF.
 133 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
 134 // frames. Currently we don't do that on Linux, so it's the same as
 135 // os::fetch_frame_from_context().
 136 // This method is also used for stack overflow signal handling.
 137 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
 138   const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 139 
 140   assert(thread != NULL, "just checking");
 141   assert(ret_sp != NULL, "just checking");
 142   assert(ret_fp != NULL, "just checking");
 143 
 144   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
 145 }
 146 
 147 ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
 148                     intptr_t** ret_sp, intptr_t** ret_fp) {
 149 
 150   ExtendedPC  epc;
 151   const ucontext_t* uc = (const ucontext_t*)ucVoid;
 152 
 153   if (uc != NULL) {
 154     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
 155     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
 156     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
 157   } else {
 158     // construct empty ExtendedPC for return value checking
 159     epc = ExtendedPC(NULL);
 160     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 161     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 162   }
 163 
 164   return epc;
 165 }
 166 
 167 frame os::fetch_frame_from_context(const void* ucVoid) {
 168   intptr_t* sp;
 169   intptr_t* fp;
 170   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 171   return frame(sp, fp, epc.pc());
 172 }
 173 
 174 frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
 175   intptr_t* sp;
 176   intptr_t* fp;
 177   ExtendedPC epc = os::Linux::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp);
 178   return frame(sp, fp, epc.pc());
 179 }
 180 
 181 bool os::Linux::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
 182   address pc = (address) os::Linux::ucontext_get_pc(uc);
 183   if (Interpreter::contains(pc)) {
 184     // interpreter performs stack banging after the fixed frame header has
 185     // been generated while the compilers perform it before. To maintain
 186     // semantic consistency between interpreted and compiled frames, the
 187     // method returns the Java sender of the current frame.
 188     *fr = os::fetch_frame_from_ucontext(thread, uc);
 189     if (!fr->is_first_java_frame()) {
 190       // get_frame_at_stack_banging_point() is only called when we
 191       // have well defined stacks so java_sender() calls do not need
 192       // to assert safe_for_sender() first.
 193       *fr = fr->java_sender();
 194     }
 195   } else {
 196     // more complex code with compiled code
 197     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
 198     CodeBlob* cb = CodeCache::find_blob(pc);
 199     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
 200       // Not sure where the pc points to, fallback to default
 201       // stack overflow handling
 202       return false;
 203     } else {
 204       // in compiled code, the stack banging is performed just after the return pc
 205       // has been pushed on the stack
 206       intptr_t* fp = os::Linux::ucontext_get_fp(uc);
 207       intptr_t* sp = os::Linux::ucontext_get_sp(uc);
 208       *fr = frame(sp + 1, fp, (address)*sp);
 209       if (!fr->is_java_frame()) {
 210         assert(!fr->is_first_frame(), "Safety check");
 211         // See java_sender() comment above.
 212         *fr = fr->java_sender();
 213       }
 214     }
 215   }
 216   assert(fr->is_java_frame(), "Safety check");
 217   return true;
 218 }
 219 
 220 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
 221 // turned off by -fomit-frame-pointer,
 222 frame os::get_sender_for_C_frame(frame* fr) {
 223   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 224 }
 225 
 226 intptr_t* _get_previous_fp() {
 227 #ifdef SPARC_WORKS
 228   intptr_t **ebp;
 229   __asm__("mov %%" SPELL_REG_FP ", %0":"=r"(ebp));
 230 #elif defined(__clang__)
 231   intptr_t **ebp;
 232   __asm__ __volatile__ ("mov %%" SPELL_REG_FP ", %0":"=r"(ebp):);
 233 #else
 234   register intptr_t **ebp __asm__ (SPELL_REG_FP);
 235 #endif
 236   // ebp is for this frame (_get_previous_fp). We want the ebp for the
 237   // caller of os::current_frame*(), so go up two frames. However, for
 238   // optimized builds, _get_previous_fp() will be inlined, so only go
 239   // up 1 frame in that case.
 240 #ifdef _NMT_NOINLINE_
 241   return **(intptr_t***)ebp;
 242 #else
 243   return *ebp;
 244 #endif
 245 }
 246 
 247 
 248 frame os::current_frame() {
 249   intptr_t* fp = _get_previous_fp();
 250   frame myframe((intptr_t*)os::current_stack_pointer(),
 251                 (intptr_t*)fp,
 252                 CAST_FROM_FN_PTR(address, os::current_frame));
 253   if (os::is_first_C_frame(&myframe)) {
 254     // stack is not walkable
 255     return frame();
 256   } else {
 257     return os::get_sender_for_C_frame(&myframe);
 258   }
 259 }
 260 
 261 // Utility functions
 262 
 263 // From IA32 System Programming Guide
 264 enum {
 265   trap_page_fault = 0xE
 266 };
 267 
 268 extern "C" JNIEXPORT int
 269 JVM_handle_linux_signal(int sig,
 270                         siginfo_t* info,
 271                         void* ucVoid,
 272                         int abort_if_unrecognized) {
 273   ucontext_t* uc = (ucontext_t*) ucVoid;
 274 
 275   Thread* t = Thread::current_or_null_safe();
 276 
 277   // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
 278   // (no destructors can be run)
 279   os::ThreadCrashProtection::check_crash_protection(sig, t);
 280 
 281   SignalHandlerMark shm(t);
 282 
 283   // Note: it's not uncommon that JNI code uses signal/sigset to install
 284   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
 285   // or have a SIGILL handler when detecting CPU type). When that happens,
 286   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
 287   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
 288   // that do not require siginfo/ucontext first.
 289 
 290   if (sig == SIGPIPE || sig == SIGXFSZ) {
 291     // allow chained handler to go first
 292     if (os::Linux::chained_handler(sig, info, ucVoid)) {
 293       return true;
 294     } else {
 295       // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
 296       return true;
 297     }
 298   }
 299 
 300 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
 301   if ((sig == SIGSEGV || sig == SIGBUS) && info != NULL && info->si_addr == g_assert_poison) {
 302     if (handle_assert_poison_fault(ucVoid, info->si_addr)) {
 303       return 1;
 304     }
 305   }
 306 #endif
 307 
 308   JavaThread* thread = NULL;
 309   VMThread* vmthread = NULL;
 310   if (os::Linux::signal_handlers_are_installed) {
 311     if (t != NULL ){
 312       if(t->is_Java_thread()) {
 313         thread = (JavaThread*)t;
 314       }
 315       else if(t->is_VM_thread()){
 316         vmthread = (VMThread *)t;
 317       }
 318     }
 319   }
 320 /*
 321   NOTE: does not seem to work on linux.
 322   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 323     // can't decode this kind of signal
 324     info = NULL;
 325   } else {
 326     assert(sig == info->si_signo, "bad siginfo");
 327   }
 328 */
 329   // decide if this trap can be handled by a stub
 330   address stub = NULL;
 331 
 332   address pc          = NULL;
 333 
 334   //%note os_trap_1
 335   if (info != NULL && uc != NULL && thread != NULL) {
 336     pc = (address) os::Linux::ucontext_get_pc(uc);
 337 
 338     if (StubRoutines::is_safefetch_fault(pc)) {
 339       os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
 340       return 1;
 341     }
 342 
 343 #ifndef AMD64
 344     // Halt if SI_KERNEL before more crashes get misdiagnosed as Java bugs
 345     // This can happen in any running code (currently more frequently in
 346     // interpreter code but has been seen in compiled code)
 347     if (sig == SIGSEGV && info->si_addr == 0 && info->si_code == SI_KERNEL) {
 348       fatal("An irrecoverable SI_KERNEL SIGSEGV has occurred due "
 349             "to unstable signal handling in this distribution.");
 350     }
 351 #endif // AMD64
 352 
 353     // Handle ALL stack overflow variations here
 354     if (sig == SIGSEGV) {
 355       address addr = (address) info->si_addr;
 356 
 357       // check if fault address is within thread stack
 358       if (thread->is_in_full_stack(addr)) {
 359         // stack overflow
 360         if (thread->in_stack_yellow_reserved_zone(addr)) {
 361           if (thread->thread_state() == _thread_in_Java) {
 362             if (thread->in_stack_reserved_zone(addr)) {
 363               frame fr;
 364               if (os::Linux::get_frame_at_stack_banging_point(thread, uc, &fr)) {
 365                 assert(fr.is_java_frame(), "Must be a Java frame");
 366                 frame activation =
 367                   SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
 368                 if (activation.sp() != NULL) {
 369                   thread->disable_stack_reserved_zone();
 370                   if (activation.is_interpreted_frame()) {
 371                     thread->set_reserved_stack_activation((address)(
 372                       activation.fp() + frame::interpreter_frame_initial_sp_offset));
 373                   } else {
 374                     thread->set_reserved_stack_activation((address)activation.unextended_sp());
 375                   }
 376                   return 1;
 377                 }
 378               }
 379             }
 380             // Throw a stack overflow exception.  Guard pages will be reenabled
 381             // while unwinding the stack.
 382             thread->disable_stack_yellow_reserved_zone();
 383             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 384           } else {
 385             // Thread was in the vm or native code.  Return and try to finish.
 386             thread->disable_stack_yellow_reserved_zone();
 387             return 1;
 388           }
 389         } else if (thread->in_stack_red_zone(addr)) {
 390           // Fatal red zone violation.  Disable the guard pages and fall through
 391           // to handle_unexpected_exception way down below.
 392           thread->disable_stack_red_zone();
 393           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 394 
 395           // This is a likely cause, but hard to verify. Let's just print
 396           // it as a hint.
 397           tty->print_raw_cr("Please check if any of your loaded .so files has "
 398                             "enabled executable stack (see man page execstack(8))");
 399         } else {
 400           // Accessing stack address below sp may cause SEGV if current
 401           // thread has MAP_GROWSDOWN stack. This should only happen when
 402           // current thread was created by user code with MAP_GROWSDOWN flag
 403           // and then attached to VM. See notes in os_linux.cpp.
 404           if (thread->osthread()->expanding_stack() == 0) {
 405              thread->osthread()->set_expanding_stack();
 406              if (os::Linux::manually_expand_stack(thread, addr)) {
 407                thread->osthread()->clear_expanding_stack();
 408                return 1;
 409              }
 410              thread->osthread()->clear_expanding_stack();
 411           } else {
 412              fatal("recursive segv. expanding stack.");
 413           }
 414         }
 415       }
 416     }
 417 
 418     if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
 419       // Verify that OS save/restore AVX registers.
 420       stub = VM_Version::cpuinfo_cont_addr();
 421     }
 422 
 423     if (thread->thread_state() == _thread_in_Java) {
 424       // Java thread running in Java code => find exception handler if any
 425       // a fault inside compiled code, the interpreter, or a stub
 426 
 427       if (sig == SIGSEGV && SafepointMechanism::is_poll_address((address)info->si_addr)) {
 428         stub = SharedRuntime::get_poll_stub(pc);
 429       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
 430         // BugId 4454115: A read from a MappedByteBuffer can fault
 431         // here if the underlying file has been truncated.
 432         // Do not crash the VM in such a case.
 433         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 434         CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
 435         bool is_unsafe_arraycopy = thread->doing_unsafe_access() && UnsafeCopyMemory::contains_pc(pc);
 436         if ((nm != NULL && nm->has_unsafe_access()) || is_unsafe_arraycopy) {
 437           address next_pc = Assembler::locate_next_instruction(pc);
 438           if (is_unsafe_arraycopy) {
 439             next_pc = UnsafeCopyMemory::page_error_continue_pc(pc);
 440           }
 441           stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
 442         }
 443       }
 444       else
 445 
 446 #ifdef AMD64
 447       if (sig == SIGFPE  &&
 448           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
 449         stub =
 450           SharedRuntime::
 451           continuation_for_implicit_exception(thread,
 452                                               pc,
 453                                               SharedRuntime::
 454                                               IMPLICIT_DIVIDE_BY_ZERO);
 455 #else
 456       if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
 457         // HACK: si_code does not work on linux 2.2.12-20!!!
 458         int op = pc[0];
 459         if (op == 0xDB) {
 460           // FIST
 461           // TODO: The encoding of D2I in i486.ad can cause an exception
 462           // prior to the fist instruction if there was an invalid operation
 463           // pending. We want to dismiss that exception. From the win_32
 464           // side it also seems that if it really was the fist causing
 465           // the exception that we do the d2i by hand with different
 466           // rounding. Seems kind of weird.
 467           // NOTE: that we take the exception at the NEXT floating point instruction.
 468           assert(pc[0] == 0xDB, "not a FIST opcode");
 469           assert(pc[1] == 0x14, "not a FIST opcode");
 470           assert(pc[2] == 0x24, "not a FIST opcode");
 471           return true;
 472         } else if (op == 0xF7) {
 473           // IDIV
 474           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 475         } else {
 476           // TODO: handle more cases if we are using other x86 instructions
 477           //   that can generate SIGFPE signal on linux.
 478           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
 479           fatal("please update this code.");
 480         }
 481 #endif // AMD64
 482       } else if (sig == SIGSEGV &&
 483                  MacroAssembler::uses_implicit_null_check(info->si_addr)) {
 484           // Determination of interpreter/vtable stub/compiled code null exception
 485           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 486       }
 487     } else if ((thread->thread_state() == _thread_in_vm ||
 488                 thread->thread_state() == _thread_in_native) &&
 489                (sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
 490                thread->doing_unsafe_access())) {
 491         address next_pc = Assembler::locate_next_instruction(pc);
 492         if (UnsafeCopyMemory::contains_pc(pc)) {
 493           next_pc = UnsafeCopyMemory::page_error_continue_pc(pc);
 494         }
 495         stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
 496     }
 497 
 498     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 499     // and the heap gets shrunk before the field access.
 500     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 501       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 502       if (addr != (address)-1) {
 503         stub = addr;
 504       }
 505     }
 506   }
 507 
 508 #ifndef AMD64
 509   // Execution protection violation
 510   //
 511   // This should be kept as the last step in the triage.  We don't
 512   // have a dedicated trap number for a no-execute fault, so be
 513   // conservative and allow other handlers the first shot.
 514   //
 515   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 516   // this si_code is so generic that it is almost meaningless; and
 517   // the si_code for this condition may change in the future.
 518   // Furthermore, a false-positive should be harmless.
 519   if (UnguardOnExecutionViolation > 0 &&
 520       (sig == SIGSEGV || sig == SIGBUS) &&
 521       uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
 522     int page_size = os::vm_page_size();
 523     address addr = (address) info->si_addr;
 524     address pc = os::Linux::ucontext_get_pc(uc);
 525     // Make sure the pc and the faulting address are sane.
 526     //
 527     // If an instruction spans a page boundary, and the page containing
 528     // the beginning of the instruction is executable but the following
 529     // page is not, the pc and the faulting address might be slightly
 530     // different - we still want to unguard the 2nd page in this case.
 531     //
 532     // 15 bytes seems to be a (very) safe value for max instruction size.
 533     bool pc_is_near_addr =
 534       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 535     bool instr_spans_page_boundary =
 536       (align_down((intptr_t) pc ^ (intptr_t) addr,
 537                        (intptr_t) page_size) > 0);
 538 
 539     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 540       static volatile address last_addr =
 541         (address) os::non_memory_address_word();
 542 
 543       // In conservative mode, don't unguard unless the address is in the VM
 544       if (addr != last_addr &&
 545           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 546 
 547         // Set memory to RWX and retry
 548         address page_start = align_down(addr, page_size);
 549         bool res = os::protect_memory((char*) page_start, page_size,
 550                                       os::MEM_PROT_RWX);
 551 
 552         log_debug(os)("Execution protection violation "
 553                       "at " INTPTR_FORMAT
 554                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", p2i(addr),
 555                       p2i(page_start), (res ? "success" : "failed"), errno);
 556         stub = pc;
 557 
 558         // Set last_addr so if we fault again at the same address, we don't end
 559         // up in an endless loop.
 560         //
 561         // There are two potential complications here.  Two threads trapping at
 562         // the same address at the same time could cause one of the threads to
 563         // think it already unguarded, and abort the VM.  Likely very rare.
 564         //
 565         // The other race involves two threads alternately trapping at
 566         // different addresses and failing to unguard the page, resulting in
 567         // an endless loop.  This condition is probably even more unlikely than
 568         // the first.
 569         //
 570         // Although both cases could be avoided by using locks or thread local
 571         // last_addr, these solutions are unnecessary complication: this
 572         // handler is a best-effort safety net, not a complete solution.  It is
 573         // disabled by default and should only be used as a workaround in case
 574         // we missed any no-execute-unsafe VM code.
 575 
 576         last_addr = addr;
 577       }
 578     }
 579   }
 580 #endif // !AMD64
 581 
 582   if (stub != NULL) {
 583     // save all thread context in case we need to restore it
 584     if (thread != NULL) thread->set_saved_exception_pc(pc);
 585 
 586     os::Linux::ucontext_set_pc(uc, stub);
 587     return true;
 588   }
 589 
 590   // signal-chaining
 591   if (os::Linux::chained_handler(sig, info, ucVoid)) {
 592      return true;
 593   }
 594 
 595   if (!abort_if_unrecognized) {
 596     // caller wants another chance, so give it to him
 597     return false;
 598   }
 599 
 600   if (pc == NULL && uc != NULL) {
 601     pc = os::Linux::ucontext_get_pc(uc);
 602   }
 603 
 604   // unmask current signal
 605   sigset_t newset;
 606   sigemptyset(&newset);
 607   sigaddset(&newset, sig);
 608   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 609 
 610   VMError::report_and_die(t, sig, pc, info, ucVoid);
 611 
 612   ShouldNotReachHere();
 613   return true; // Mute compiler
 614 }
 615 
 616 void os::Linux::init_thread_fpu_state(void) {
 617 #ifndef AMD64
 618   // set fpu to 53 bit precision
 619   set_fpu_control_word(0x27f);
 620 #endif // !AMD64
 621 }
 622 
 623 int os::Linux::get_fpu_control_word(void) {
 624 #ifdef AMD64
 625   return 0;
 626 #else
 627   int fpu_control;
 628   _FPU_GETCW(fpu_control);
 629   return fpu_control & 0xffff;
 630 #endif // AMD64
 631 }
 632 
 633 void os::Linux::set_fpu_control_word(int fpu_control) {
 634 #ifndef AMD64
 635   _FPU_SETCW(fpu_control);
 636 #endif // !AMD64
 637 }
 638 
 639 // Check that the linux kernel version is 2.4 or higher since earlier
 640 // versions do not support SSE without patches.
 641 bool os::supports_sse() {
 642 #ifdef AMD64
 643   return true;
 644 #else
 645   struct utsname uts;
 646   if( uname(&uts) != 0 ) return false; // uname fails?
 647   char *minor_string;
 648   int major = strtol(uts.release,&minor_string,10);
 649   int minor = strtol(minor_string+1,NULL,10);
 650   bool result = (major > 2 || (major==2 && minor >= 4));
 651   log_info(os)("OS version is %d.%d, which %s support SSE/SSE2",
 652                major,minor, result ? "DOES" : "does NOT");
 653   return result;
 654 #endif // AMD64
 655 }
 656 
 657 bool os::is_allocatable(size_t bytes) {
 658 #ifdef AMD64
 659   // unused on amd64?
 660   return true;
 661 #else
 662 
 663   if (bytes < 2 * G) {
 664     return true;
 665   }
 666 
 667   char* addr = reserve_memory(bytes, NULL);
 668 
 669   if (addr != NULL) {
 670     release_memory(addr, bytes);
 671   }
 672 
 673   return addr != NULL;
 674 #endif // AMD64
 675 }
 676 
 677 ////////////////////////////////////////////////////////////////////////////////
 678 // thread stack
 679 
 680 // Minimum usable stack sizes required to get to user code. Space for
 681 // HotSpot guard pages is added later.
 682 size_t os::Posix::_compiler_thread_min_stack_allowed = 48 * K;
 683 size_t os::Posix::_java_thread_min_stack_allowed = 40 * K;
 684 #ifdef _LP64
 685 size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
 686 #else
 687 size_t os::Posix::_vm_internal_thread_min_stack_allowed = (48 DEBUG_ONLY(+ 4)) * K;
 688 #endif // _LP64
 689 
 690 // return default stack size for thr_type
 691 size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
 692   // default stack size (compiler thread needs larger stack)
 693 #ifdef AMD64
 694   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
 695 #else
 696   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
 697 #endif // AMD64
 698   return s;
 699 }
 700 
 701 /////////////////////////////////////////////////////////////////////////////
 702 // helper functions for fatal error handler
 703 
 704 void os::print_context(outputStream *st, const void *context) {
 705   if (context == NULL) return;
 706 
 707   const ucontext_t *uc = (const ucontext_t*)context;
 708   st->print_cr("Registers:");
 709 #ifdef AMD64
 710   st->print(  "RAX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RAX]);
 711   st->print(", RBX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBX]);
 712   st->print(", RCX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RCX]);
 713   st->print(", RDX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDX]);
 714   st->cr();
 715   st->print(  "RSP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSP]);
 716   st->print(", RBP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBP]);
 717   st->print(", RSI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSI]);
 718   st->print(", RDI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDI]);
 719   st->cr();
 720   st->print(  "R8 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R8]);
 721   st->print(", R9 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R9]);
 722   st->print(", R10=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R10]);
 723   st->print(", R11=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R11]);
 724   st->cr();
 725   st->print(  "R12=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R12]);
 726   st->print(", R13=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R13]);
 727   st->print(", R14=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R14]);
 728   st->print(", R15=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R15]);
 729   st->cr();
 730   st->print(  "RIP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RIP]);
 731   st->print(", EFLAGS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_EFL]);
 732   st->print(", CSGSFS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_CSGSFS]);
 733   st->print(", ERR=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_ERR]);
 734   st->cr();
 735   st->print("  TRAPNO=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_TRAPNO]);
 736 #else
 737   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
 738   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
 739   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
 740   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
 741   st->cr();
 742   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
 743   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
 744   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
 745   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
 746   st->cr();
 747   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
 748   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
 749   st->print(", CR2=" PTR64_FORMAT, (uint64_t)uc->uc_mcontext.cr2);
 750 #endif // AMD64
 751   st->cr();
 752   st->cr();
 753 
 754   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
 755   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp));
 756   print_hex_dump(st, (address)sp, (address)(sp + 8), sizeof(intptr_t));
 757   st->cr();
 758 
 759   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 760   // point to garbage if entry point in an nmethod is corrupted. Leave
 761   // this at the end, and hope for the best.
 762   address pc = os::Linux::ucontext_get_pc(uc);
 763   print_instructions(st, pc, sizeof(char));
 764   st->cr();
 765 }
 766 
 767 void os::print_register_info(outputStream *st, const void *context) {
 768   if (context == NULL) return;
 769 
 770   const ucontext_t *uc = (const ucontext_t*)context;
 771 
 772   st->print_cr("Register to memory mapping:");
 773   st->cr();
 774 
 775   // this is horrendously verbose but the layout of the registers in the
 776   // context does not match how we defined our abstract Register set, so
 777   // we can't just iterate through the gregs area
 778 
 779   // this is only for the "general purpose" registers
 780 
 781 #ifdef AMD64
 782   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
 783   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
 784   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
 785   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
 786   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
 787   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
 788   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
 789   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
 790   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
 791   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
 792   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
 793   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
 794   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
 795   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
 796   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
 797   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
 798 #else
 799   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
 800   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
 801   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
 802   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
 803   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
 804   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
 805   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
 806   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
 807 #endif // AMD64
 808 
 809   st->cr();
 810 }
 811 
 812 void os::setup_fpu() {
 813 #ifndef AMD64
 814   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
 815   __asm__ volatile (  "fldcw (%0)" :
 816                       : "r" (fpu_cntrl) : "memory");
 817 #endif // !AMD64
 818 }
 819 
 820 #ifndef PRODUCT
 821 void os::verify_stack_alignment() {
 822 #ifdef AMD64
 823   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
 824 #endif
 825 }
 826 #endif
 827 
 828 
 829 /*
 830  * IA32 only: execute code at a high address in case buggy NX emulation is present. I.e. avoid CS limit
 831  * updates (JDK-8023956).
 832  */
 833 void os::workaround_expand_exec_shield_cs_limit() {
 834 #if defined(IA32)
 835   assert(Linux::initial_thread_stack_bottom() != NULL, "sanity");
 836   size_t page_size = os::vm_page_size();
 837 
 838   /*
 839    * JDK-8197429
 840    *
 841    * Expand the stack mapping to the end of the initial stack before
 842    * attempting to install the codebuf.  This is needed because newer
 843    * Linux kernels impose a distance of a megabyte between stack
 844    * memory and other memory regions.  If we try to install the
 845    * codebuf before expanding the stack the installation will appear
 846    * to succeed but we'll get a segfault later if we expand the stack
 847    * in Java code.
 848    *
 849    */
 850   if (os::is_primordial_thread()) {
 851     address limit = Linux::initial_thread_stack_bottom();
 852     if (! DisablePrimordialThreadGuardPages) {
 853       limit += JavaThread::stack_red_zone_size() +
 854         JavaThread::stack_yellow_zone_size();
 855     }
 856     os::Linux::expand_stack_to(limit);
 857   }
 858 
 859   /*
 860    * Take the highest VA the OS will give us and exec
 861    *
 862    * Although using -(pagesz) as mmap hint works on newer kernel as you would
 863    * think, older variants affected by this work-around don't (search forward only).
 864    *
 865    * On the affected distributions, we understand the memory layout to be:
 866    *
 867    *   TASK_LIMIT= 3G, main stack base close to TASK_LIMT.
 868    *
 869    * A few pages south main stack will do it.
 870    *
 871    * If we are embedded in an app other than launcher (initial != main stack),
 872    * we don't have much control or understanding of the address space, just let it slide.
 873    */
 874   char* hint = (char*)(Linux::initial_thread_stack_bottom() -
 875                        (JavaThread::stack_guard_zone_size() + page_size));
 876   char* codebuf = os::attempt_reserve_memory_at(page_size, hint);
 877 
 878   if (codebuf == NULL) {
 879     // JDK-8197429: There may be a stack gap of one megabyte between
 880     // the limit of the stack and the nearest memory region: this is a
 881     // Linux kernel workaround for CVE-2017-1000364.  If we failed to
 882     // map our codebuf, try again at an address one megabyte lower.
 883     hint -= 1 * M;
 884     codebuf = os::attempt_reserve_memory_at(page_size, hint);
 885   }
 886 
 887   if ((codebuf == NULL) || (!os::commit_memory(codebuf, page_size, true))) {
 888     return; // No matter, we tried, best effort.
 889   }
 890 
 891   MemTracker::record_virtual_memory_type((address)codebuf, mtInternal);
 892 
 893   log_info(os)("[CS limit NX emulation work-around, exec code at: %p]", codebuf);
 894 
 895   // Some code to exec: the 'ret' instruction
 896   codebuf[0] = 0xC3;
 897 
 898   // Call the code in the codebuf
 899   __asm__ volatile("call *%0" : : "r"(codebuf));
 900 
 901   // keep the page mapped so CS limit isn't reduced.
 902 #endif
 903 }
 904 
 905 int os::extra_bang_size_in_bytes() {
 906   // JDK-8050147 requires the full cache line bang for x86.
 907   return VM_Version::L1_line_size();
 908 }