1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/oopFactory.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/instanceKlass.hpp"
  35 #include "oops/instanceMirrorKlass.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "oops/typeArrayKlass.hpp"
  38 #include "opto/matcher.hpp"
  39 #include "opto/node.hpp"
  40 #include "opto/opcodes.hpp"
  41 #include "opto/type.hpp"
  42 #include "utilities/powerOfTwo.hpp"
  43 
  44 // Portions of code courtesy of Clifford Click
  45 
  46 // Optimization - Graph Style
  47 
  48 // Dictionary of types shared among compilations.
  49 Dict* Type::_shared_type_dict = NULL;
  50 
  51 // Array which maps compiler types to Basic Types
  52 const Type::TypeInfo Type::_type_info[Type::lastype] = {
  53   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  54   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  55   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  56   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  57   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  58   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  59   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  60   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  61   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  62   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  63 
  64 #if defined(PPC64)
  65   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  66   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  67   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  68   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  69   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  70 #elif defined(S390)
  71   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  72   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  73   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  74   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  75   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  76 #else // all other
  77   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  78   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  79   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  80   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  81   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
  82 #endif
  83   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  84   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  85   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  86   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  87   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  88   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  89   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  90   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  91   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  92   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  93   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  94   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
  95   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
  96   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
  97   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
  98   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
  99   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 100   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 101 };
 102 
 103 // Map ideal registers (machine types) to ideal types
 104 const Type *Type::mreg2type[_last_machine_leaf];
 105 
 106 // Map basic types to canonical Type* pointers.
 107 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 108 
 109 // Map basic types to constant-zero Types.
 110 const Type* Type::            _zero_type[T_CONFLICT+1];
 111 
 112 // Map basic types to array-body alias types.
 113 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 114 
 115 //=============================================================================
 116 // Convenience common pre-built types.
 117 const Type *Type::ABIO;         // State-of-machine only
 118 const Type *Type::BOTTOM;       // All values
 119 const Type *Type::CONTROL;      // Control only
 120 const Type *Type::DOUBLE;       // All doubles
 121 const Type *Type::FLOAT;        // All floats
 122 const Type *Type::HALF;         // Placeholder half of doublewide type
 123 const Type *Type::MEMORY;       // Abstract store only
 124 const Type *Type::RETURN_ADDRESS;
 125 const Type *Type::TOP;          // No values in set
 126 
 127 //------------------------------get_const_type---------------------------
 128 const Type* Type::get_const_type(ciType* type) {
 129   if (type == NULL) {
 130     return NULL;
 131   } else if (type->is_primitive_type()) {
 132     return get_const_basic_type(type->basic_type());
 133   } else {
 134     return TypeOopPtr::make_from_klass(type->as_klass());
 135   }
 136 }
 137 
 138 //---------------------------array_element_basic_type---------------------------------
 139 // Mapping to the array element's basic type.
 140 BasicType Type::array_element_basic_type() const {
 141   BasicType bt = basic_type();
 142   if (bt == T_INT) {
 143     if (this == TypeInt::INT)   return T_INT;
 144     if (this == TypeInt::CHAR)  return T_CHAR;
 145     if (this == TypeInt::BYTE)  return T_BYTE;
 146     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 147     if (this == TypeInt::SHORT) return T_SHORT;
 148     return T_VOID;
 149   }
 150   return bt;
 151 }
 152 
 153 // For two instance arrays of same dimension, return the base element types.
 154 // Otherwise or if the arrays have different dimensions, return NULL.
 155 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 156                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 157 
 158   if (e1) *e1 = NULL;
 159   if (e2) *e2 = NULL;
 160   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 161   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 162 
 163   if (a1tap != NULL && a2tap != NULL) {
 164     // Handle multidimensional arrays
 165     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 166     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 167     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 168       a1tap = a1tp->is_aryptr();
 169       a2tap = a2tp->is_aryptr();
 170       a1tp = a1tap->elem()->make_ptr();
 171       a2tp = a2tap->elem()->make_ptr();
 172     }
 173     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 174       if (e1) *e1 = a1tp->is_instptr();
 175       if (e2) *e2 = a2tp->is_instptr();
 176     }
 177   }
 178 }
 179 
 180 //---------------------------get_typeflow_type---------------------------------
 181 // Import a type produced by ciTypeFlow.
 182 const Type* Type::get_typeflow_type(ciType* type) {
 183   switch (type->basic_type()) {
 184 
 185   case ciTypeFlow::StateVector::T_BOTTOM:
 186     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 187     return Type::BOTTOM;
 188 
 189   case ciTypeFlow::StateVector::T_TOP:
 190     assert(type == ciTypeFlow::StateVector::top_type(), "");
 191     return Type::TOP;
 192 
 193   case ciTypeFlow::StateVector::T_NULL:
 194     assert(type == ciTypeFlow::StateVector::null_type(), "");
 195     return TypePtr::NULL_PTR;
 196 
 197   case ciTypeFlow::StateVector::T_LONG2:
 198     // The ciTypeFlow pass pushes a long, then the half.
 199     // We do the same.
 200     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 201     return TypeInt::TOP;
 202 
 203   case ciTypeFlow::StateVector::T_DOUBLE2:
 204     // The ciTypeFlow pass pushes double, then the half.
 205     // Our convention is the same.
 206     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 207     return Type::TOP;
 208 
 209   case T_ADDRESS:
 210     assert(type->is_return_address(), "");
 211     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 212 
 213   default:
 214     // make sure we did not mix up the cases:
 215     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 216     assert(type != ciTypeFlow::StateVector::top_type(), "");
 217     assert(type != ciTypeFlow::StateVector::null_type(), "");
 218     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 219     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 220     assert(!type->is_return_address(), "");
 221 
 222     return Type::get_const_type(type);
 223   }
 224 }
 225 
 226 
 227 //-----------------------make_from_constant------------------------------------
 228 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 229                                      int stable_dimension, bool is_narrow_oop,
 230                                      bool is_autobox_cache) {
 231   switch (constant.basic_type()) {
 232     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 233     case T_CHAR:     return TypeInt::make(constant.as_char());
 234     case T_BYTE:     return TypeInt::make(constant.as_byte());
 235     case T_SHORT:    return TypeInt::make(constant.as_short());
 236     case T_INT:      return TypeInt::make(constant.as_int());
 237     case T_LONG:     return TypeLong::make(constant.as_long());
 238     case T_FLOAT:    return TypeF::make(constant.as_float());
 239     case T_DOUBLE:   return TypeD::make(constant.as_double());
 240     case T_ARRAY:
 241     case T_OBJECT: {
 242         const Type* con_type = NULL;
 243         ciObject* oop_constant = constant.as_object();
 244         if (oop_constant->is_null_object()) {
 245           con_type = Type::get_zero_type(T_OBJECT);
 246         } else {
 247           guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
 248           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 249           if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 250             con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 251           }
 252           if (stable_dimension > 0) {
 253             assert(FoldStableValues, "sanity");
 254             assert(!con_type->is_zero_type(), "default value for stable field");
 255             con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 256           }
 257         }
 258         if (is_narrow_oop) {
 259           con_type = con_type->make_narrowoop();
 260         }
 261         return con_type;
 262       }
 263     case T_ILLEGAL:
 264       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 265       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 266       return NULL;
 267     default:
 268       // Fall through to failure
 269       return NULL;
 270   }
 271 }
 272 
 273 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 274   BasicType conbt = con.basic_type();
 275   switch (conbt) {
 276     case T_BOOLEAN: conbt = T_BYTE;   break;
 277     case T_ARRAY:   conbt = T_OBJECT; break;
 278     default:                          break;
 279   }
 280   switch (loadbt) {
 281     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 282     case T_NARROWOOP: loadbt = T_OBJECT; break;
 283     case T_ARRAY:     loadbt = T_OBJECT; break;
 284     case T_ADDRESS:   loadbt = T_OBJECT; break;
 285     default:                             break;
 286   }
 287   if (conbt == loadbt) {
 288     if (is_unsigned && conbt == T_BYTE) {
 289       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 290       return ciConstant(T_INT, con.as_int() & 0xFF);
 291     } else {
 292       return con;
 293     }
 294   }
 295   if (conbt == T_SHORT && loadbt == T_CHAR) {
 296     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 297     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 298   }
 299   return ciConstant(); // T_ILLEGAL
 300 }
 301 
 302 // Try to constant-fold a stable array element.
 303 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 304                                                    BasicType loadbt, bool is_unsigned_load) {
 305   // Decode the results of GraphKit::array_element_address.
 306   ciConstant element_value = array->element_value_by_offset(off);
 307   if (element_value.basic_type() == T_ILLEGAL) {
 308     return NULL; // wrong offset
 309   }
 310   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 311 
 312   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 313          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 314 
 315   if (con.is_valid() &&          // not a mismatched access
 316       !con.is_null_or_zero()) {  // not a default value
 317     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 318     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 319   }
 320   return NULL;
 321 }
 322 
 323 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 324   ciField* field;
 325   ciType* type = holder->java_mirror_type();
 326   if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 327     // Static field
 328     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 329   } else {
 330     // Instance field
 331     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 332   }
 333   if (field == NULL) {
 334     return NULL; // Wrong offset
 335   }
 336   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 337 }
 338 
 339 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 340                                            BasicType loadbt, bool is_unsigned_load) {
 341   if (!field->is_constant()) {
 342     return NULL; // Non-constant field
 343   }
 344   ciConstant field_value;
 345   if (field->is_static()) {
 346     // final static field
 347     field_value = field->constant_value();
 348   } else if (holder != NULL) {
 349     // final or stable non-static field
 350     // Treat final non-static fields of trusted classes (classes in
 351     // java.lang.invoke and sun.invoke packages and subpackages) as
 352     // compile time constants.
 353     field_value = field->constant_value_of(holder);
 354   }
 355   if (!field_value.is_valid()) {
 356     return NULL; // Not a constant
 357   }
 358 
 359   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 360 
 361   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 362          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 363 
 364   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 365   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 366   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 367 
 368   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 369                                             stable_dimension, is_narrow_oop,
 370                                             field->is_autobox_cache());
 371   if (con_type != NULL && field->is_call_site_target()) {
 372     ciCallSite* call_site = holder->as_call_site();
 373     if (!call_site->is_fully_initialized_constant_call_site()) {
 374       ciMethodHandle* target = con.as_object()->as_method_handle();
 375       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 376     }
 377   }
 378   return con_type;
 379 }
 380 
 381 //------------------------------make-------------------------------------------
 382 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 383 // and look for an existing copy in the type dictionary.
 384 const Type *Type::make( enum TYPES t ) {
 385   return (new Type(t))->hashcons();
 386 }
 387 
 388 //------------------------------cmp--------------------------------------------
 389 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 390   if( t1->_base != t2->_base )
 391     return 1;                   // Missed badly
 392   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 393   return !t1->eq(t2);           // Return ZERO if equal
 394 }
 395 
 396 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 397   if (!include_speculative) {
 398     return remove_speculative();
 399   }
 400   return this;
 401 }
 402 
 403 //------------------------------hash-------------------------------------------
 404 int Type::uhash( const Type *const t ) {
 405   return t->hash();
 406 }
 407 
 408 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 409 #define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite
 410 #define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite
 411 
 412 //--------------------------Initialize_shared----------------------------------
 413 void Type::Initialize_shared(Compile* current) {
 414   // This method does not need to be locked because the first system
 415   // compilations (stub compilations) occur serially.  If they are
 416   // changed to proceed in parallel, then this section will need
 417   // locking.
 418 
 419   Arena* save = current->type_arena();
 420   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 421 
 422   current->set_type_arena(shared_type_arena);
 423   _shared_type_dict =
 424     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 425                                   shared_type_arena, 128 );
 426   current->set_type_dict(_shared_type_dict);
 427 
 428   // Make shared pre-built types.
 429   CONTROL = make(Control);      // Control only
 430   TOP     = make(Top);          // No values in set
 431   MEMORY  = make(Memory);       // Abstract store only
 432   ABIO    = make(Abio);         // State-of-machine only
 433   RETURN_ADDRESS=make(Return_Address);
 434   FLOAT   = make(FloatBot);     // All floats
 435   DOUBLE  = make(DoubleBot);    // All doubles
 436   BOTTOM  = make(Bottom);       // Everything
 437   HALF    = make(Half);         // Placeholder half of doublewide type
 438 
 439   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 440   TypeF::ONE  = TypeF::make(1.0); // Float 1
 441   TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F));
 442   TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F));
 443 
 444   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 445   TypeD::ONE  = TypeD::make(1.0); // Double 1
 446   TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D));
 447   TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D));
 448 
 449   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 450   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 451   TypeInt::ONE     = TypeInt::make( 1);  //  1
 452   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 453   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 454   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 455   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 456   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 457   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 458   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 459   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 460   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 461   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 462   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 463   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 464   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 465   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 466   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 467   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 468   // CmpL is overloaded both as the bytecode computation returning
 469   // a trinary (-1,0,+1) integer result AND as an efficient long
 470   // compare returning optimizer ideal-type flags.
 471   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 472   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 473   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 474   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 475   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 476 
 477   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 478   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 479   TypeLong::ONE     = TypeLong::make( 1);        //  1
 480   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 481   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 482   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 483   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 484   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 485 
 486   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 487   fboth[0] = Type::CONTROL;
 488   fboth[1] = Type::CONTROL;
 489   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 490 
 491   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 492   ffalse[0] = Type::CONTROL;
 493   ffalse[1] = Type::TOP;
 494   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 495 
 496   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 497   fneither[0] = Type::TOP;
 498   fneither[1] = Type::TOP;
 499   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 500 
 501   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 502   ftrue[0] = Type::TOP;
 503   ftrue[1] = Type::CONTROL;
 504   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 505 
 506   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 507   floop[0] = Type::CONTROL;
 508   floop[1] = TypeInt::INT;
 509   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 510 
 511   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 512   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 513   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 514 
 515   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 516   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 517 
 518   const Type **fmembar = TypeTuple::fields(0);
 519   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 520 
 521   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 522   fsc[0] = TypeInt::CC;
 523   fsc[1] = Type::MEMORY;
 524   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 525 
 526   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 527   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 528   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 529   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 530                                            false, 0, oopDesc::mark_offset_in_bytes());
 531   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 532                                            false, 0, oopDesc::klass_offset_in_bytes());
 533   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 534 
 535   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 536 
 537   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 538   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 539 
 540   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 541 
 542   mreg2type[Op_Node] = Type::BOTTOM;
 543   mreg2type[Op_Set ] = 0;
 544   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 545   mreg2type[Op_RegI] = TypeInt::INT;
 546   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 547   mreg2type[Op_RegF] = Type::FLOAT;
 548   mreg2type[Op_RegD] = Type::DOUBLE;
 549   mreg2type[Op_RegL] = TypeLong::LONG;
 550   mreg2type[Op_RegFlags] = TypeInt::CC;
 551 
 552   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 553 
 554   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 555 
 556 #ifdef _LP64
 557   if (UseCompressedOops) {
 558     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 559     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 560   } else
 561 #endif
 562   {
 563     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 564     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 565   }
 566   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 567   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 568   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 569   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 570   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 571   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 572   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 573 
 574   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 575   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 576   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 577   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 578   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 579   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 580   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 581   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 582   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 583   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 584   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 585   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 586 
 587   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 588   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 589 
 590   const Type **fi2c = TypeTuple::fields(2);
 591   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 592   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 593   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 594 
 595   const Type **intpair = TypeTuple::fields(2);
 596   intpair[0] = TypeInt::INT;
 597   intpair[1] = TypeInt::INT;
 598   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 599 
 600   const Type **longpair = TypeTuple::fields(2);
 601   longpair[0] = TypeLong::LONG;
 602   longpair[1] = TypeLong::LONG;
 603   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 604 
 605   const Type **intccpair = TypeTuple::fields(2);
 606   intccpair[0] = TypeInt::INT;
 607   intccpair[1] = TypeInt::CC;
 608   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 609 
 610   const Type **longccpair = TypeTuple::fields(2);
 611   longccpair[0] = TypeLong::LONG;
 612   longccpair[1] = TypeInt::CC;
 613   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 614 
 615   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 616   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 617   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 618   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 619   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 620   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 621   _const_basic_type[T_INT]         = TypeInt::INT;
 622   _const_basic_type[T_LONG]        = TypeLong::LONG;
 623   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 624   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 625   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 626   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 627   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 628   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 629   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 630 
 631   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 632   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 633   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 634   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 635   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 636   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 637   _zero_type[T_INT]         = TypeInt::ZERO;
 638   _zero_type[T_LONG]        = TypeLong::ZERO;
 639   _zero_type[T_FLOAT]       = TypeF::ZERO;
 640   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 641   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 642   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 643   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 644   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 645 
 646   // get_zero_type() should not happen for T_CONFLICT
 647   _zero_type[T_CONFLICT]= NULL;
 648 
 649   // Vector predefined types, it needs initialized _const_basic_type[].
 650   if (Matcher::vector_size_supported(T_BYTE,4)) {
 651     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 652   }
 653   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 654     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 655   }
 656   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 657     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 658   }
 659   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 660     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 661   }
 662   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 663     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 664   }
 665   mreg2type[Op_VecS] = TypeVect::VECTS;
 666   mreg2type[Op_VecD] = TypeVect::VECTD;
 667   mreg2type[Op_VecX] = TypeVect::VECTX;
 668   mreg2type[Op_VecY] = TypeVect::VECTY;
 669   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 670 
 671   // Restore working type arena.
 672   current->set_type_arena(save);
 673   current->set_type_dict(NULL);
 674 }
 675 
 676 //------------------------------Initialize-------------------------------------
 677 void Type::Initialize(Compile* current) {
 678   assert(current->type_arena() != NULL, "must have created type arena");
 679 
 680   if (_shared_type_dict == NULL) {
 681     Initialize_shared(current);
 682   }
 683 
 684   Arena* type_arena = current->type_arena();
 685 
 686   // Create the hash-cons'ing dictionary with top-level storage allocation
 687   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 688   current->set_type_dict(tdic);
 689 
 690   // Transfer the shared types.
 691   DictI i(_shared_type_dict);
 692   for( ; i.test(); ++i ) {
 693     Type* t = (Type*)i._value;
 694     tdic->Insert(t,t);  // New Type, insert into Type table
 695   }
 696 }
 697 
 698 //------------------------------hashcons---------------------------------------
 699 // Do the hash-cons trick.  If the Type already exists in the type table,
 700 // delete the current Type and return the existing Type.  Otherwise stick the
 701 // current Type in the Type table.
 702 const Type *Type::hashcons(void) {
 703   debug_only(base());           // Check the assertion in Type::base().
 704   // Look up the Type in the Type dictionary
 705   Dict *tdic = type_dict();
 706   Type* old = (Type*)(tdic->Insert(this, this, false));
 707   if( old ) {                   // Pre-existing Type?
 708     if( old != this )           // Yes, this guy is not the pre-existing?
 709       delete this;              // Yes, Nuke this guy
 710     assert( old->_dual, "" );
 711     return old;                 // Return pre-existing
 712   }
 713 
 714   // Every type has a dual (to make my lattice symmetric).
 715   // Since we just discovered a new Type, compute its dual right now.
 716   assert( !_dual, "" );         // No dual yet
 717   _dual = xdual();              // Compute the dual
 718   if (cmp(this, _dual) == 0) {  // Handle self-symmetric
 719     if (_dual != this) {
 720       delete _dual;
 721       _dual = this;
 722     }
 723     return this;
 724   }
 725   assert( !_dual->_dual, "" );  // No reverse dual yet
 726   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 727   // New Type, insert into Type table
 728   tdic->Insert((void*)_dual,(void*)_dual);
 729   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 730 #ifdef ASSERT
 731   Type *dual_dual = (Type*)_dual->xdual();
 732   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 733   delete dual_dual;
 734 #endif
 735   return this;                  // Return new Type
 736 }
 737 
 738 //------------------------------eq---------------------------------------------
 739 // Structural equality check for Type representations
 740 bool Type::eq( const Type * ) const {
 741   return true;                  // Nothing else can go wrong
 742 }
 743 
 744 //------------------------------hash-------------------------------------------
 745 // Type-specific hashing function.
 746 int Type::hash(void) const {
 747   return _base;
 748 }
 749 
 750 //------------------------------is_finite--------------------------------------
 751 // Has a finite value
 752 bool Type::is_finite() const {
 753   return false;
 754 }
 755 
 756 //------------------------------is_nan-----------------------------------------
 757 // Is not a number (NaN)
 758 bool Type::is_nan()    const {
 759   return false;
 760 }
 761 
 762 //----------------------interface_vs_oop---------------------------------------
 763 #ifdef ASSERT
 764 bool Type::interface_vs_oop_helper(const Type *t) const {
 765   bool result = false;
 766 
 767   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 768   const TypePtr*    t_ptr =    t->make_ptr();
 769   if( this_ptr == NULL || t_ptr == NULL )
 770     return result;
 771 
 772   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 773   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 774   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 775     bool this_interface = this_inst->klass()->is_interface();
 776     bool    t_interface =    t_inst->klass()->is_interface();
 777     result = this_interface ^ t_interface;
 778   }
 779 
 780   return result;
 781 }
 782 
 783 bool Type::interface_vs_oop(const Type *t) const {
 784   if (interface_vs_oop_helper(t)) {
 785     return true;
 786   }
 787   // Now check the speculative parts as well
 788   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 789   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 790   if (this_spec != NULL && t_spec != NULL) {
 791     if (this_spec->interface_vs_oop_helper(t_spec)) {
 792       return true;
 793     }
 794     return false;
 795   }
 796   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 797     return true;
 798   }
 799   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 800     return true;
 801   }
 802   return false;
 803 }
 804 
 805 #endif
 806 
 807 void Type::check_symmetrical(const Type *t, const Type *mt) const {
 808 #ifdef ASSERT
 809   assert(mt == t->xmeet(this), "meet not commutative");
 810   const Type* dual_join = mt->_dual;
 811   const Type *t2t    = dual_join->xmeet(t->_dual);
 812   const Type *t2this = dual_join->xmeet(this->_dual);
 813 
 814   // Interface meet Oop is Not Symmetric:
 815   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 816   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 817 
 818   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this->_dual) ) {
 819     tty->print_cr("=== Meet Not Symmetric ===");
 820     tty->print("t   =                   ");              t->dump(); tty->cr();
 821     tty->print("this=                   ");                 dump(); tty->cr();
 822     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 823 
 824     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 825     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
 826     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 827 
 828     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 829     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 830 
 831     fatal("meet not symmetric" );
 832   }
 833 #endif
 834 }
 835 
 836 //------------------------------meet-------------------------------------------
 837 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 838 // commutative and the lattice is symmetric.
 839 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 840   if (isa_narrowoop() && t->isa_narrowoop()) {
 841     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 842     return result->make_narrowoop();
 843   }
 844   if (isa_narrowklass() && t->isa_narrowklass()) {
 845     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 846     return result->make_narrowklass();
 847   }
 848 
 849   const Type *this_t = maybe_remove_speculative(include_speculative);
 850   t = t->maybe_remove_speculative(include_speculative);
 851 
 852   const Type *mt = this_t->xmeet(t);
 853 #ifdef ASSERT
 854   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 855   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 856   Compile* C = Compile::current();
 857   if (!C->_type_verify_symmetry) {
 858     return mt;
 859   }
 860   this_t->check_symmetrical(t, mt);
 861   // In the case of an array, computing the meet above, caused the
 862   // computation of the meet of the elements which at verification
 863   // time caused the computation of the meet of the dual of the
 864   // elements. Computing the meet of the dual of the arrays here
 865   // causes the meet of the dual of the elements to be computed which
 866   // would cause the meet of the dual of the dual of the elements,
 867   // that is the meet of the elements already computed above to be
 868   // computed. Avoid redundant computations by requesting no
 869   // verification.
 870   C->_type_verify_symmetry = false;
 871   const Type *mt_dual = this_t->_dual->xmeet(t->_dual);
 872   this_t->_dual->check_symmetrical(t->_dual, mt_dual);
 873   assert(!C->_type_verify_symmetry, "shouldn't have changed");
 874   C->_type_verify_symmetry = true;
 875 #endif
 876   return mt;
 877 }
 878 
 879 //------------------------------xmeet------------------------------------------
 880 // Compute the MEET of two types.  It returns a new Type object.
 881 const Type *Type::xmeet( const Type *t ) const {
 882   // Perform a fast test for common case; meeting the same types together.
 883   if( this == t ) return this;  // Meeting same type-rep?
 884 
 885   // Meeting TOP with anything?
 886   if( _base == Top ) return t;
 887 
 888   // Meeting BOTTOM with anything?
 889   if( _base == Bottom ) return BOTTOM;
 890 
 891   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 892   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 893   switch (t->base()) {  // Switch on original type
 894 
 895   // Cut in half the number of cases I must handle.  Only need cases for when
 896   // the given enum "t->type" is less than or equal to the local enum "type".
 897   case FloatCon:
 898   case DoubleCon:
 899   case Int:
 900   case Long:
 901     return t->xmeet(this);
 902 
 903   case OopPtr:
 904     return t->xmeet(this);
 905 
 906   case InstPtr:
 907     return t->xmeet(this);
 908 
 909   case MetadataPtr:
 910   case KlassPtr:
 911     return t->xmeet(this);
 912 
 913   case AryPtr:
 914     return t->xmeet(this);
 915 
 916   case NarrowOop:
 917     return t->xmeet(this);
 918 
 919   case NarrowKlass:
 920     return t->xmeet(this);
 921 
 922   case Bad:                     // Type check
 923   default:                      // Bogus type not in lattice
 924     typerr(t);
 925     return Type::BOTTOM;
 926 
 927   case Bottom:                  // Ye Olde Default
 928     return t;
 929 
 930   case FloatTop:
 931     if( _base == FloatTop ) return this;
 932   case FloatBot:                // Float
 933     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 934     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 935     typerr(t);
 936     return Type::BOTTOM;
 937 
 938   case DoubleTop:
 939     if( _base == DoubleTop ) return this;
 940   case DoubleBot:               // Double
 941     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 942     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 943     typerr(t);
 944     return Type::BOTTOM;
 945 
 946   // These next few cases must match exactly or it is a compile-time error.
 947   case Control:                 // Control of code
 948   case Abio:                    // State of world outside of program
 949   case Memory:
 950     if( _base == t->_base )  return this;
 951     typerr(t);
 952     return Type::BOTTOM;
 953 
 954   case Top:                     // Top of the lattice
 955     return this;
 956   }
 957 
 958   // The type is unchanged
 959   return this;
 960 }
 961 
 962 //-----------------------------filter------------------------------------------
 963 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 964   const Type* ft = join_helper(kills, include_speculative);
 965   if (ft->empty())
 966     return Type::TOP;           // Canonical empty value
 967   return ft;
 968 }
 969 
 970 //------------------------------xdual------------------------------------------
 971 // Compute dual right now.
 972 const Type::TYPES Type::dual_type[Type::lastype] = {
 973   Bad,          // Bad
 974   Control,      // Control
 975   Bottom,       // Top
 976   Bad,          // Int - handled in v-call
 977   Bad,          // Long - handled in v-call
 978   Half,         // Half
 979   Bad,          // NarrowOop - handled in v-call
 980   Bad,          // NarrowKlass - handled in v-call
 981 
 982   Bad,          // Tuple - handled in v-call
 983   Bad,          // Array - handled in v-call
 984   Bad,          // VectorS - handled in v-call
 985   Bad,          // VectorD - handled in v-call
 986   Bad,          // VectorX - handled in v-call
 987   Bad,          // VectorY - handled in v-call
 988   Bad,          // VectorZ - handled in v-call
 989 
 990   Bad,          // AnyPtr - handled in v-call
 991   Bad,          // RawPtr - handled in v-call
 992   Bad,          // OopPtr - handled in v-call
 993   Bad,          // InstPtr - handled in v-call
 994   Bad,          // AryPtr - handled in v-call
 995 
 996   Bad,          //  MetadataPtr - handled in v-call
 997   Bad,          // KlassPtr - handled in v-call
 998 
 999   Bad,          // Function - handled in v-call
1000   Abio,         // Abio
1001   Return_Address,// Return_Address
1002   Memory,       // Memory
1003   FloatBot,     // FloatTop
1004   FloatCon,     // FloatCon
1005   FloatTop,     // FloatBot
1006   DoubleBot,    // DoubleTop
1007   DoubleCon,    // DoubleCon
1008   DoubleTop,    // DoubleBot
1009   Top           // Bottom
1010 };
1011 
1012 const Type *Type::xdual() const {
1013   // Note: the base() accessor asserts the sanity of _base.
1014   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1015   return new Type(_type_info[_base].dual_type);
1016 }
1017 
1018 //------------------------------has_memory-------------------------------------
1019 bool Type::has_memory() const {
1020   Type::TYPES tx = base();
1021   if (tx == Memory) return true;
1022   if (tx == Tuple) {
1023     const TypeTuple *t = is_tuple();
1024     for (uint i=0; i < t->cnt(); i++) {
1025       tx = t->field_at(i)->base();
1026       if (tx == Memory)  return true;
1027     }
1028   }
1029   return false;
1030 }
1031 
1032 #ifndef PRODUCT
1033 //------------------------------dump2------------------------------------------
1034 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1035   st->print("%s", _type_info[_base].msg);
1036 }
1037 
1038 //------------------------------dump-------------------------------------------
1039 void Type::dump_on(outputStream *st) const {
1040   ResourceMark rm;
1041   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1042   dump2(d,1, st);
1043   if (is_ptr_to_narrowoop()) {
1044     st->print(" [narrow]");
1045   } else if (is_ptr_to_narrowklass()) {
1046     st->print(" [narrowklass]");
1047   }
1048 }
1049 
1050 //-----------------------------------------------------------------------------
1051 const char* Type::str(const Type* t) {
1052   stringStream ss;
1053   t->dump_on(&ss);
1054   return ss.as_string();
1055 }
1056 #endif
1057 
1058 //------------------------------singleton--------------------------------------
1059 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1060 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1061 bool Type::singleton(void) const {
1062   return _base == Top || _base == Half;
1063 }
1064 
1065 //------------------------------empty------------------------------------------
1066 // TRUE if Type is a type with no values, FALSE otherwise.
1067 bool Type::empty(void) const {
1068   switch (_base) {
1069   case DoubleTop:
1070   case FloatTop:
1071   case Top:
1072     return true;
1073 
1074   case Half:
1075   case Abio:
1076   case Return_Address:
1077   case Memory:
1078   case Bottom:
1079   case FloatBot:
1080   case DoubleBot:
1081     return false;  // never a singleton, therefore never empty
1082 
1083   default:
1084     ShouldNotReachHere();
1085     return false;
1086   }
1087 }
1088 
1089 //------------------------------dump_stats-------------------------------------
1090 // Dump collected statistics to stderr
1091 #ifndef PRODUCT
1092 void Type::dump_stats() {
1093   tty->print("Types made: %d\n", type_dict()->Size());
1094 }
1095 #endif
1096 
1097 //------------------------------typerr-----------------------------------------
1098 void Type::typerr( const Type *t ) const {
1099 #ifndef PRODUCT
1100   tty->print("\nError mixing types: ");
1101   dump();
1102   tty->print(" and ");
1103   t->dump();
1104   tty->print("\n");
1105 #endif
1106   ShouldNotReachHere();
1107 }
1108 
1109 
1110 //=============================================================================
1111 // Convenience common pre-built types.
1112 const TypeF *TypeF::ZERO;       // Floating point zero
1113 const TypeF *TypeF::ONE;        // Floating point one
1114 const TypeF *TypeF::POS_INF;    // Floating point positive infinity
1115 const TypeF *TypeF::NEG_INF;    // Floating point negative infinity
1116 
1117 //------------------------------make-------------------------------------------
1118 // Create a float constant
1119 const TypeF *TypeF::make(float f) {
1120   return (TypeF*)(new TypeF(f))->hashcons();
1121 }
1122 
1123 //------------------------------meet-------------------------------------------
1124 // Compute the MEET of two types.  It returns a new Type object.
1125 const Type *TypeF::xmeet( const Type *t ) const {
1126   // Perform a fast test for common case; meeting the same types together.
1127   if( this == t ) return this;  // Meeting same type-rep?
1128 
1129   // Current "this->_base" is FloatCon
1130   switch (t->base()) {          // Switch on original type
1131   case AnyPtr:                  // Mixing with oops happens when javac
1132   case RawPtr:                  // reuses local variables
1133   case OopPtr:
1134   case InstPtr:
1135   case AryPtr:
1136   case MetadataPtr:
1137   case KlassPtr:
1138   case NarrowOop:
1139   case NarrowKlass:
1140   case Int:
1141   case Long:
1142   case DoubleTop:
1143   case DoubleCon:
1144   case DoubleBot:
1145   case Bottom:                  // Ye Olde Default
1146     return Type::BOTTOM;
1147 
1148   case FloatBot:
1149     return t;
1150 
1151   default:                      // All else is a mistake
1152     typerr(t);
1153 
1154   case FloatCon:                // Float-constant vs Float-constant?
1155     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1156                                 // must compare bitwise as positive zero, negative zero and NaN have
1157                                 // all the same representation in C++
1158       return FLOAT;             // Return generic float
1159                                 // Equal constants
1160   case Top:
1161   case FloatTop:
1162     break;                      // Return the float constant
1163   }
1164   return this;                  // Return the float constant
1165 }
1166 
1167 //------------------------------xdual------------------------------------------
1168 // Dual: symmetric
1169 const Type *TypeF::xdual() const {
1170   return this;
1171 }
1172 
1173 //------------------------------eq---------------------------------------------
1174 // Structural equality check for Type representations
1175 bool TypeF::eq(const Type *t) const {
1176   // Bitwise comparison to distinguish between +/-0. These values must be treated
1177   // as different to be consistent with C1 and the interpreter.
1178   return (jint_cast(_f) == jint_cast(t->getf()));
1179 }
1180 
1181 //------------------------------hash-------------------------------------------
1182 // Type-specific hashing function.
1183 int TypeF::hash(void) const {
1184   return *(int*)(&_f);
1185 }
1186 
1187 //------------------------------is_finite--------------------------------------
1188 // Has a finite value
1189 bool TypeF::is_finite() const {
1190   return g_isfinite(getf()) != 0;
1191 }
1192 
1193 //------------------------------is_nan-----------------------------------------
1194 // Is not a number (NaN)
1195 bool TypeF::is_nan()    const {
1196   return g_isnan(getf()) != 0;
1197 }
1198 
1199 //------------------------------dump2------------------------------------------
1200 // Dump float constant Type
1201 #ifndef PRODUCT
1202 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1203   Type::dump2(d,depth, st);
1204   st->print("%f", _f);
1205 }
1206 #endif
1207 
1208 //------------------------------singleton--------------------------------------
1209 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1210 // constants (Ldi nodes).  Singletons are integer, float or double constants
1211 // or a single symbol.
1212 bool TypeF::singleton(void) const {
1213   return true;                  // Always a singleton
1214 }
1215 
1216 bool TypeF::empty(void) const {
1217   return false;                 // always exactly a singleton
1218 }
1219 
1220 //=============================================================================
1221 // Convenience common pre-built types.
1222 const TypeD *TypeD::ZERO;       // Floating point zero
1223 const TypeD *TypeD::ONE;        // Floating point one
1224 const TypeD *TypeD::POS_INF;    // Floating point positive infinity
1225 const TypeD *TypeD::NEG_INF;    // Floating point negative infinity
1226 
1227 //------------------------------make-------------------------------------------
1228 const TypeD *TypeD::make(double d) {
1229   return (TypeD*)(new TypeD(d))->hashcons();
1230 }
1231 
1232 //------------------------------meet-------------------------------------------
1233 // Compute the MEET of two types.  It returns a new Type object.
1234 const Type *TypeD::xmeet( const Type *t ) const {
1235   // Perform a fast test for common case; meeting the same types together.
1236   if( this == t ) return this;  // Meeting same type-rep?
1237 
1238   // Current "this->_base" is DoubleCon
1239   switch (t->base()) {          // Switch on original type
1240   case AnyPtr:                  // Mixing with oops happens when javac
1241   case RawPtr:                  // reuses local variables
1242   case OopPtr:
1243   case InstPtr:
1244   case AryPtr:
1245   case MetadataPtr:
1246   case KlassPtr:
1247   case NarrowOop:
1248   case NarrowKlass:
1249   case Int:
1250   case Long:
1251   case FloatTop:
1252   case FloatCon:
1253   case FloatBot:
1254   case Bottom:                  // Ye Olde Default
1255     return Type::BOTTOM;
1256 
1257   case DoubleBot:
1258     return t;
1259 
1260   default:                      // All else is a mistake
1261     typerr(t);
1262 
1263   case DoubleCon:               // Double-constant vs Double-constant?
1264     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1265       return DOUBLE;            // Return generic double
1266   case Top:
1267   case DoubleTop:
1268     break;
1269   }
1270   return this;                  // Return the double constant
1271 }
1272 
1273 //------------------------------xdual------------------------------------------
1274 // Dual: symmetric
1275 const Type *TypeD::xdual() const {
1276   return this;
1277 }
1278 
1279 //------------------------------eq---------------------------------------------
1280 // Structural equality check for Type representations
1281 bool TypeD::eq(const Type *t) const {
1282   // Bitwise comparison to distinguish between +/-0. These values must be treated
1283   // as different to be consistent with C1 and the interpreter.
1284   return (jlong_cast(_d) == jlong_cast(t->getd()));
1285 }
1286 
1287 //------------------------------hash-------------------------------------------
1288 // Type-specific hashing function.
1289 int TypeD::hash(void) const {
1290   return *(int*)(&_d);
1291 }
1292 
1293 //------------------------------is_finite--------------------------------------
1294 // Has a finite value
1295 bool TypeD::is_finite() const {
1296   return g_isfinite(getd()) != 0;
1297 }
1298 
1299 //------------------------------is_nan-----------------------------------------
1300 // Is not a number (NaN)
1301 bool TypeD::is_nan()    const {
1302   return g_isnan(getd()) != 0;
1303 }
1304 
1305 //------------------------------dump2------------------------------------------
1306 // Dump double constant Type
1307 #ifndef PRODUCT
1308 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1309   Type::dump2(d,depth,st);
1310   st->print("%f", _d);
1311 }
1312 #endif
1313 
1314 //------------------------------singleton--------------------------------------
1315 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1316 // constants (Ldi nodes).  Singletons are integer, float or double constants
1317 // or a single symbol.
1318 bool TypeD::singleton(void) const {
1319   return true;                  // Always a singleton
1320 }
1321 
1322 bool TypeD::empty(void) const {
1323   return false;                 // always exactly a singleton
1324 }
1325 
1326 //=============================================================================
1327 // Convience common pre-built types.
1328 const TypeInt *TypeInt::MINUS_1;// -1
1329 const TypeInt *TypeInt::ZERO;   // 0
1330 const TypeInt *TypeInt::ONE;    // 1
1331 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1332 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1333 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1334 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1335 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1336 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1337 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1338 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1339 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1340 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1341 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1342 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1343 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1344 const TypeInt *TypeInt::INT;    // 32-bit integers
1345 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1346 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1347 
1348 //------------------------------TypeInt----------------------------------------
1349 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1350 }
1351 
1352 //------------------------------make-------------------------------------------
1353 const TypeInt *TypeInt::make( jint lo ) {
1354   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1355 }
1356 
1357 static int normalize_int_widen( jint lo, jint hi, int w ) {
1358   // Certain normalizations keep us sane when comparing types.
1359   // The 'SMALLINT' covers constants and also CC and its relatives.
1360   if (lo <= hi) {
1361     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1362     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1363   } else {
1364     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1365     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1366   }
1367   return w;
1368 }
1369 
1370 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1371   w = normalize_int_widen(lo, hi, w);
1372   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1373 }
1374 
1375 //------------------------------meet-------------------------------------------
1376 // Compute the MEET of two types.  It returns a new Type representation object
1377 // with reference count equal to the number of Types pointing at it.
1378 // Caller should wrap a Types around it.
1379 const Type *TypeInt::xmeet( const Type *t ) const {
1380   // Perform a fast test for common case; meeting the same types together.
1381   if( this == t ) return this;  // Meeting same type?
1382 
1383   // Currently "this->_base" is a TypeInt
1384   switch (t->base()) {          // Switch on original type
1385   case AnyPtr:                  // Mixing with oops happens when javac
1386   case RawPtr:                  // reuses local variables
1387   case OopPtr:
1388   case InstPtr:
1389   case AryPtr:
1390   case MetadataPtr:
1391   case KlassPtr:
1392   case NarrowOop:
1393   case NarrowKlass:
1394   case Long:
1395   case FloatTop:
1396   case FloatCon:
1397   case FloatBot:
1398   case DoubleTop:
1399   case DoubleCon:
1400   case DoubleBot:
1401   case Bottom:                  // Ye Olde Default
1402     return Type::BOTTOM;
1403   default:                      // All else is a mistake
1404     typerr(t);
1405   case Top:                     // No change
1406     return this;
1407   case Int:                     // Int vs Int?
1408     break;
1409   }
1410 
1411   // Expand covered set
1412   const TypeInt *r = t->is_int();
1413   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1414 }
1415 
1416 //------------------------------xdual------------------------------------------
1417 // Dual: reverse hi & lo; flip widen
1418 const Type *TypeInt::xdual() const {
1419   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1420   return new TypeInt(_hi,_lo,w);
1421 }
1422 
1423 //------------------------------widen------------------------------------------
1424 // Only happens for optimistic top-down optimizations.
1425 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1426   // Coming from TOP or such; no widening
1427   if( old->base() != Int ) return this;
1428   const TypeInt *ot = old->is_int();
1429 
1430   // If new guy is equal to old guy, no widening
1431   if( _lo == ot->_lo && _hi == ot->_hi )
1432     return old;
1433 
1434   // If new guy contains old, then we widened
1435   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1436     // New contains old
1437     // If new guy is already wider than old, no widening
1438     if( _widen > ot->_widen ) return this;
1439     // If old guy was a constant, do not bother
1440     if (ot->_lo == ot->_hi)  return this;
1441     // Now widen new guy.
1442     // Check for widening too far
1443     if (_widen == WidenMax) {
1444       int max = max_jint;
1445       int min = min_jint;
1446       if (limit->isa_int()) {
1447         max = limit->is_int()->_hi;
1448         min = limit->is_int()->_lo;
1449       }
1450       if (min < _lo && _hi < max) {
1451         // If neither endpoint is extremal yet, push out the endpoint
1452         // which is closer to its respective limit.
1453         if (_lo >= 0 ||                 // easy common case
1454             (juint)(_lo - min) >= (juint)(max - _hi)) {
1455           // Try to widen to an unsigned range type of 31 bits:
1456           return make(_lo, max, WidenMax);
1457         } else {
1458           return make(min, _hi, WidenMax);
1459         }
1460       }
1461       return TypeInt::INT;
1462     }
1463     // Returned widened new guy
1464     return make(_lo,_hi,_widen+1);
1465   }
1466 
1467   // If old guy contains new, then we probably widened too far & dropped to
1468   // bottom.  Return the wider fellow.
1469   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1470     return old;
1471 
1472   //fatal("Integer value range is not subset");
1473   //return this;
1474   return TypeInt::INT;
1475 }
1476 
1477 //------------------------------narrow---------------------------------------
1478 // Only happens for pessimistic optimizations.
1479 const Type *TypeInt::narrow( const Type *old ) const {
1480   if (_lo >= _hi)  return this;   // already narrow enough
1481   if (old == NULL)  return this;
1482   const TypeInt* ot = old->isa_int();
1483   if (ot == NULL)  return this;
1484   jint olo = ot->_lo;
1485   jint ohi = ot->_hi;
1486 
1487   // If new guy is equal to old guy, no narrowing
1488   if (_lo == olo && _hi == ohi)  return old;
1489 
1490   // If old guy was maximum range, allow the narrowing
1491   if (olo == min_jint && ohi == max_jint)  return this;
1492 
1493   if (_lo < olo || _hi > ohi)
1494     return this;                // doesn't narrow; pretty wierd
1495 
1496   // The new type narrows the old type, so look for a "death march".
1497   // See comments on PhaseTransform::saturate.
1498   juint nrange = (juint)_hi - _lo;
1499   juint orange = (juint)ohi - olo;
1500   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1501     // Use the new type only if the range shrinks a lot.
1502     // We do not want the optimizer computing 2^31 point by point.
1503     return old;
1504   }
1505 
1506   return this;
1507 }
1508 
1509 //-----------------------------filter------------------------------------------
1510 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1511   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1512   if (ft == NULL || ft->empty())
1513     return Type::TOP;           // Canonical empty value
1514   if (ft->_widen < this->_widen) {
1515     // Do not allow the value of kill->_widen to affect the outcome.
1516     // The widen bits must be allowed to run freely through the graph.
1517     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1518   }
1519   return ft;
1520 }
1521 
1522 //------------------------------eq---------------------------------------------
1523 // Structural equality check for Type representations
1524 bool TypeInt::eq( const Type *t ) const {
1525   const TypeInt *r = t->is_int(); // Handy access
1526   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1527 }
1528 
1529 //------------------------------hash-------------------------------------------
1530 // Type-specific hashing function.
1531 int TypeInt::hash(void) const {
1532   return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int));
1533 }
1534 
1535 //------------------------------is_finite--------------------------------------
1536 // Has a finite value
1537 bool TypeInt::is_finite() const {
1538   return true;
1539 }
1540 
1541 //------------------------------dump2------------------------------------------
1542 // Dump TypeInt
1543 #ifndef PRODUCT
1544 static const char* intname(char* buf, jint n) {
1545   if (n == min_jint)
1546     return "min";
1547   else if (n < min_jint + 10000)
1548     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1549   else if (n == max_jint)
1550     return "max";
1551   else if (n > max_jint - 10000)
1552     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1553   else
1554     sprintf(buf, INT32_FORMAT, n);
1555   return buf;
1556 }
1557 
1558 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1559   char buf[40], buf2[40];
1560   if (_lo == min_jint && _hi == max_jint)
1561     st->print("int");
1562   else if (is_con())
1563     st->print("int:%s", intname(buf, get_con()));
1564   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1565     st->print("bool");
1566   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1567     st->print("byte");
1568   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1569     st->print("char");
1570   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1571     st->print("short");
1572   else if (_hi == max_jint)
1573     st->print("int:>=%s", intname(buf, _lo));
1574   else if (_lo == min_jint)
1575     st->print("int:<=%s", intname(buf, _hi));
1576   else
1577     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1578 
1579   if (_widen != 0 && this != TypeInt::INT)
1580     st->print(":%.*s", _widen, "wwww");
1581 }
1582 #endif
1583 
1584 //------------------------------singleton--------------------------------------
1585 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1586 // constants.
1587 bool TypeInt::singleton(void) const {
1588   return _lo >= _hi;
1589 }
1590 
1591 bool TypeInt::empty(void) const {
1592   return _lo > _hi;
1593 }
1594 
1595 //=============================================================================
1596 // Convenience common pre-built types.
1597 const TypeLong *TypeLong::MINUS_1;// -1
1598 const TypeLong *TypeLong::ZERO; // 0
1599 const TypeLong *TypeLong::ONE;  // 1
1600 const TypeLong *TypeLong::POS;  // >=0
1601 const TypeLong *TypeLong::LONG; // 64-bit integers
1602 const TypeLong *TypeLong::INT;  // 32-bit subrange
1603 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1604 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1605 
1606 //------------------------------TypeLong---------------------------------------
1607 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1608 }
1609 
1610 //------------------------------make-------------------------------------------
1611 const TypeLong *TypeLong::make( jlong lo ) {
1612   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1613 }
1614 
1615 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1616   // Certain normalizations keep us sane when comparing types.
1617   // The 'SMALLINT' covers constants.
1618   if (lo <= hi) {
1619     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1620     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1621   } else {
1622     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1623     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1624   }
1625   return w;
1626 }
1627 
1628 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1629   w = normalize_long_widen(lo, hi, w);
1630   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1631 }
1632 
1633 
1634 //------------------------------meet-------------------------------------------
1635 // Compute the MEET of two types.  It returns a new Type representation object
1636 // with reference count equal to the number of Types pointing at it.
1637 // Caller should wrap a Types around it.
1638 const Type *TypeLong::xmeet( const Type *t ) const {
1639   // Perform a fast test for common case; meeting the same types together.
1640   if( this == t ) return this;  // Meeting same type?
1641 
1642   // Currently "this->_base" is a TypeLong
1643   switch (t->base()) {          // Switch on original type
1644   case AnyPtr:                  // Mixing with oops happens when javac
1645   case RawPtr:                  // reuses local variables
1646   case OopPtr:
1647   case InstPtr:
1648   case AryPtr:
1649   case MetadataPtr:
1650   case KlassPtr:
1651   case NarrowOop:
1652   case NarrowKlass:
1653   case Int:
1654   case FloatTop:
1655   case FloatCon:
1656   case FloatBot:
1657   case DoubleTop:
1658   case DoubleCon:
1659   case DoubleBot:
1660   case Bottom:                  // Ye Olde Default
1661     return Type::BOTTOM;
1662   default:                      // All else is a mistake
1663     typerr(t);
1664   case Top:                     // No change
1665     return this;
1666   case Long:                    // Long vs Long?
1667     break;
1668   }
1669 
1670   // Expand covered set
1671   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1672   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1673 }
1674 
1675 //------------------------------xdual------------------------------------------
1676 // Dual: reverse hi & lo; flip widen
1677 const Type *TypeLong::xdual() const {
1678   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1679   return new TypeLong(_hi,_lo,w);
1680 }
1681 
1682 //------------------------------widen------------------------------------------
1683 // Only happens for optimistic top-down optimizations.
1684 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1685   // Coming from TOP or such; no widening
1686   if( old->base() != Long ) return this;
1687   const TypeLong *ot = old->is_long();
1688 
1689   // If new guy is equal to old guy, no widening
1690   if( _lo == ot->_lo && _hi == ot->_hi )
1691     return old;
1692 
1693   // If new guy contains old, then we widened
1694   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1695     // New contains old
1696     // If new guy is already wider than old, no widening
1697     if( _widen > ot->_widen ) return this;
1698     // If old guy was a constant, do not bother
1699     if (ot->_lo == ot->_hi)  return this;
1700     // Now widen new guy.
1701     // Check for widening too far
1702     if (_widen == WidenMax) {
1703       jlong max = max_jlong;
1704       jlong min = min_jlong;
1705       if (limit->isa_long()) {
1706         max = limit->is_long()->_hi;
1707         min = limit->is_long()->_lo;
1708       }
1709       if (min < _lo && _hi < max) {
1710         // If neither endpoint is extremal yet, push out the endpoint
1711         // which is closer to its respective limit.
1712         if (_lo >= 0 ||                 // easy common case
1713             ((julong)_lo - min) >= ((julong)max - _hi)) {
1714           // Try to widen to an unsigned range type of 32/63 bits:
1715           if (max >= max_juint && _hi < max_juint)
1716             return make(_lo, max_juint, WidenMax);
1717           else
1718             return make(_lo, max, WidenMax);
1719         } else {
1720           return make(min, _hi, WidenMax);
1721         }
1722       }
1723       return TypeLong::LONG;
1724     }
1725     // Returned widened new guy
1726     return make(_lo,_hi,_widen+1);
1727   }
1728 
1729   // If old guy contains new, then we probably widened too far & dropped to
1730   // bottom.  Return the wider fellow.
1731   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1732     return old;
1733 
1734   //  fatal("Long value range is not subset");
1735   // return this;
1736   return TypeLong::LONG;
1737 }
1738 
1739 //------------------------------narrow----------------------------------------
1740 // Only happens for pessimistic optimizations.
1741 const Type *TypeLong::narrow( const Type *old ) const {
1742   if (_lo >= _hi)  return this;   // already narrow enough
1743   if (old == NULL)  return this;
1744   const TypeLong* ot = old->isa_long();
1745   if (ot == NULL)  return this;
1746   jlong olo = ot->_lo;
1747   jlong ohi = ot->_hi;
1748 
1749   // If new guy is equal to old guy, no narrowing
1750   if (_lo == olo && _hi == ohi)  return old;
1751 
1752   // If old guy was maximum range, allow the narrowing
1753   if (olo == min_jlong && ohi == max_jlong)  return this;
1754 
1755   if (_lo < olo || _hi > ohi)
1756     return this;                // doesn't narrow; pretty wierd
1757 
1758   // The new type narrows the old type, so look for a "death march".
1759   // See comments on PhaseTransform::saturate.
1760   julong nrange = _hi - _lo;
1761   julong orange = ohi - olo;
1762   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1763     // Use the new type only if the range shrinks a lot.
1764     // We do not want the optimizer computing 2^31 point by point.
1765     return old;
1766   }
1767 
1768   return this;
1769 }
1770 
1771 //-----------------------------filter------------------------------------------
1772 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1773   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1774   if (ft == NULL || ft->empty())
1775     return Type::TOP;           // Canonical empty value
1776   if (ft->_widen < this->_widen) {
1777     // Do not allow the value of kill->_widen to affect the outcome.
1778     // The widen bits must be allowed to run freely through the graph.
1779     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1780   }
1781   return ft;
1782 }
1783 
1784 //------------------------------eq---------------------------------------------
1785 // Structural equality check for Type representations
1786 bool TypeLong::eq( const Type *t ) const {
1787   const TypeLong *r = t->is_long(); // Handy access
1788   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1789 }
1790 
1791 //------------------------------hash-------------------------------------------
1792 // Type-specific hashing function.
1793 int TypeLong::hash(void) const {
1794   return (int)(_lo+_hi+_widen+(int)Type::Long);
1795 }
1796 
1797 //------------------------------is_finite--------------------------------------
1798 // Has a finite value
1799 bool TypeLong::is_finite() const {
1800   return true;
1801 }
1802 
1803 //------------------------------dump2------------------------------------------
1804 // Dump TypeLong
1805 #ifndef PRODUCT
1806 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1807   if (n > x) {
1808     if (n >= x + 10000)  return NULL;
1809     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1810   } else if (n < x) {
1811     if (n <= x - 10000)  return NULL;
1812     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1813   } else {
1814     return xname;
1815   }
1816   return buf;
1817 }
1818 
1819 static const char* longname(char* buf, jlong n) {
1820   const char* str;
1821   if (n == min_jlong)
1822     return "min";
1823   else if (n < min_jlong + 10000)
1824     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1825   else if (n == max_jlong)
1826     return "max";
1827   else if (n > max_jlong - 10000)
1828     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1829   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1830     return str;
1831   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1832     return str;
1833   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1834     return str;
1835   else
1836     sprintf(buf, JLONG_FORMAT, n);
1837   return buf;
1838 }
1839 
1840 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1841   char buf[80], buf2[80];
1842   if (_lo == min_jlong && _hi == max_jlong)
1843     st->print("long");
1844   else if (is_con())
1845     st->print("long:%s", longname(buf, get_con()));
1846   else if (_hi == max_jlong)
1847     st->print("long:>=%s", longname(buf, _lo));
1848   else if (_lo == min_jlong)
1849     st->print("long:<=%s", longname(buf, _hi));
1850   else
1851     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1852 
1853   if (_widen != 0 && this != TypeLong::LONG)
1854     st->print(":%.*s", _widen, "wwww");
1855 }
1856 #endif
1857 
1858 //------------------------------singleton--------------------------------------
1859 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1860 // constants
1861 bool TypeLong::singleton(void) const {
1862   return _lo >= _hi;
1863 }
1864 
1865 bool TypeLong::empty(void) const {
1866   return _lo > _hi;
1867 }
1868 
1869 //=============================================================================
1870 // Convenience common pre-built types.
1871 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1872 const TypeTuple *TypeTuple::IFFALSE;
1873 const TypeTuple *TypeTuple::IFTRUE;
1874 const TypeTuple *TypeTuple::IFNEITHER;
1875 const TypeTuple *TypeTuple::LOOPBODY;
1876 const TypeTuple *TypeTuple::MEMBAR;
1877 const TypeTuple *TypeTuple::STORECONDITIONAL;
1878 const TypeTuple *TypeTuple::START_I2C;
1879 const TypeTuple *TypeTuple::INT_PAIR;
1880 const TypeTuple *TypeTuple::LONG_PAIR;
1881 const TypeTuple *TypeTuple::INT_CC_PAIR;
1882 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1883 
1884 
1885 //------------------------------make-------------------------------------------
1886 // Make a TypeTuple from the range of a method signature
1887 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1888   ciType* return_type = sig->return_type();
1889   uint arg_cnt = return_type->size();
1890   const Type **field_array = fields(arg_cnt);
1891   switch (return_type->basic_type()) {
1892   case T_LONG:
1893     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1894     field_array[TypeFunc::Parms+1] = Type::HALF;
1895     break;
1896   case T_DOUBLE:
1897     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1898     field_array[TypeFunc::Parms+1] = Type::HALF;
1899     break;
1900   case T_OBJECT:
1901   case T_ARRAY:
1902   case T_BOOLEAN:
1903   case T_CHAR:
1904   case T_FLOAT:
1905   case T_BYTE:
1906   case T_SHORT:
1907   case T_INT:
1908     field_array[TypeFunc::Parms] = get_const_type(return_type);
1909     break;
1910   case T_VOID:
1911     break;
1912   default:
1913     ShouldNotReachHere();
1914   }
1915   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1916 }
1917 
1918 // Make a TypeTuple from the domain of a method signature
1919 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1920   uint arg_cnt = sig->size();
1921 
1922   uint pos = TypeFunc::Parms;
1923   const Type **field_array;
1924   if (recv != NULL) {
1925     arg_cnt++;
1926     field_array = fields(arg_cnt);
1927     // Use get_const_type here because it respects UseUniqueSubclasses:
1928     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1929   } else {
1930     field_array = fields(arg_cnt);
1931   }
1932 
1933   int i = 0;
1934   while (pos < TypeFunc::Parms + arg_cnt) {
1935     ciType* type = sig->type_at(i);
1936 
1937     switch (type->basic_type()) {
1938     case T_LONG:
1939       field_array[pos++] = TypeLong::LONG;
1940       field_array[pos++] = Type::HALF;
1941       break;
1942     case T_DOUBLE:
1943       field_array[pos++] = Type::DOUBLE;
1944       field_array[pos++] = Type::HALF;
1945       break;
1946     case T_OBJECT:
1947     case T_ARRAY:
1948     case T_FLOAT:
1949     case T_INT:
1950       field_array[pos++] = get_const_type(type);
1951       break;
1952     case T_BOOLEAN:
1953     case T_CHAR:
1954     case T_BYTE:
1955     case T_SHORT:
1956       field_array[pos++] = TypeInt::INT;
1957       break;
1958     default:
1959       ShouldNotReachHere();
1960     }
1961     i++;
1962   }
1963 
1964   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1965 }
1966 
1967 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1968   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1969 }
1970 
1971 //------------------------------fields-----------------------------------------
1972 // Subroutine call type with space allocated for argument types
1973 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
1974 const Type **TypeTuple::fields( uint arg_cnt ) {
1975   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1976   flds[TypeFunc::Control  ] = Type::CONTROL;
1977   flds[TypeFunc::I_O      ] = Type::ABIO;
1978   flds[TypeFunc::Memory   ] = Type::MEMORY;
1979   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1980   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1981 
1982   return flds;
1983 }
1984 
1985 //------------------------------meet-------------------------------------------
1986 // Compute the MEET of two types.  It returns a new Type object.
1987 const Type *TypeTuple::xmeet( const Type *t ) const {
1988   // Perform a fast test for common case; meeting the same types together.
1989   if( this == t ) return this;  // Meeting same type-rep?
1990 
1991   // Current "this->_base" is Tuple
1992   switch (t->base()) {          // switch on original type
1993 
1994   case Bottom:                  // Ye Olde Default
1995     return t;
1996 
1997   default:                      // All else is a mistake
1998     typerr(t);
1999 
2000   case Tuple: {                 // Meeting 2 signatures?
2001     const TypeTuple *x = t->is_tuple();
2002     assert( _cnt == x->_cnt, "" );
2003     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2004     for( uint i=0; i<_cnt; i++ )
2005       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2006     return TypeTuple::make(_cnt,fields);
2007   }
2008   case Top:
2009     break;
2010   }
2011   return this;                  // Return the double constant
2012 }
2013 
2014 //------------------------------xdual------------------------------------------
2015 // Dual: compute field-by-field dual
2016 const Type *TypeTuple::xdual() const {
2017   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2018   for( uint i=0; i<_cnt; i++ )
2019     fields[i] = _fields[i]->dual();
2020   return new TypeTuple(_cnt,fields);
2021 }
2022 
2023 //------------------------------eq---------------------------------------------
2024 // Structural equality check for Type representations
2025 bool TypeTuple::eq( const Type *t ) const {
2026   const TypeTuple *s = (const TypeTuple *)t;
2027   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2028   for (uint i = 0; i < _cnt; i++)
2029     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2030       return false;             // Missed
2031   return true;
2032 }
2033 
2034 //------------------------------hash-------------------------------------------
2035 // Type-specific hashing function.
2036 int TypeTuple::hash(void) const {
2037   intptr_t sum = _cnt;
2038   for( uint i=0; i<_cnt; i++ )
2039     sum += (intptr_t)_fields[i];     // Hash on pointers directly
2040   return sum;
2041 }
2042 
2043 //------------------------------dump2------------------------------------------
2044 // Dump signature Type
2045 #ifndef PRODUCT
2046 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2047   st->print("{");
2048   if( !depth || d[this] ) {     // Check for recursive print
2049     st->print("...}");
2050     return;
2051   }
2052   d.Insert((void*)this, (void*)this);   // Stop recursion
2053   if( _cnt ) {
2054     uint i;
2055     for( i=0; i<_cnt-1; i++ ) {
2056       st->print("%d:", i);
2057       _fields[i]->dump2(d, depth-1, st);
2058       st->print(", ");
2059     }
2060     st->print("%d:", i);
2061     _fields[i]->dump2(d, depth-1, st);
2062   }
2063   st->print("}");
2064 }
2065 #endif
2066 
2067 //------------------------------singleton--------------------------------------
2068 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2069 // constants (Ldi nodes).  Singletons are integer, float or double constants
2070 // or a single symbol.
2071 bool TypeTuple::singleton(void) const {
2072   return false;                 // Never a singleton
2073 }
2074 
2075 bool TypeTuple::empty(void) const {
2076   for( uint i=0; i<_cnt; i++ ) {
2077     if (_fields[i]->empty())  return true;
2078   }
2079   return false;
2080 }
2081 
2082 //=============================================================================
2083 // Convenience common pre-built types.
2084 
2085 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2086   // Certain normalizations keep us sane when comparing types.
2087   // We do not want arrayOop variables to differ only by the wideness
2088   // of their index types.  Pick minimum wideness, since that is the
2089   // forced wideness of small ranges anyway.
2090   if (size->_widen != Type::WidenMin)
2091     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2092   else
2093     return size;
2094 }
2095 
2096 //------------------------------make-------------------------------------------
2097 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2098   if (UseCompressedOops && elem->isa_oopptr()) {
2099     elem = elem->make_narrowoop();
2100   }
2101   size = normalize_array_size(size);
2102   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2103 }
2104 
2105 //------------------------------meet-------------------------------------------
2106 // Compute the MEET of two types.  It returns a new Type object.
2107 const Type *TypeAry::xmeet( const Type *t ) const {
2108   // Perform a fast test for common case; meeting the same types together.
2109   if( this == t ) return this;  // Meeting same type-rep?
2110 
2111   // Current "this->_base" is Ary
2112   switch (t->base()) {          // switch on original type
2113 
2114   case Bottom:                  // Ye Olde Default
2115     return t;
2116 
2117   default:                      // All else is a mistake
2118     typerr(t);
2119 
2120   case Array: {                 // Meeting 2 arrays?
2121     const TypeAry *a = t->is_ary();
2122     return TypeAry::make(_elem->meet_speculative(a->_elem),
2123                          _size->xmeet(a->_size)->is_int(),
2124                          _stable && a->_stable);
2125   }
2126   case Top:
2127     break;
2128   }
2129   return this;                  // Return the double constant
2130 }
2131 
2132 //------------------------------xdual------------------------------------------
2133 // Dual: compute field-by-field dual
2134 const Type *TypeAry::xdual() const {
2135   const TypeInt* size_dual = _size->dual()->is_int();
2136   size_dual = normalize_array_size(size_dual);
2137   return new TypeAry(_elem->dual(), size_dual, !_stable);
2138 }
2139 
2140 //------------------------------eq---------------------------------------------
2141 // Structural equality check for Type representations
2142 bool TypeAry::eq( const Type *t ) const {
2143   const TypeAry *a = (const TypeAry*)t;
2144   return _elem == a->_elem &&
2145     _stable == a->_stable &&
2146     _size == a->_size;
2147 }
2148 
2149 //------------------------------hash-------------------------------------------
2150 // Type-specific hashing function.
2151 int TypeAry::hash(void) const {
2152   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2153 }
2154 
2155 /**
2156  * Return same type without a speculative part in the element
2157  */
2158 const Type* TypeAry::remove_speculative() const {
2159   return make(_elem->remove_speculative(), _size, _stable);
2160 }
2161 
2162 /**
2163  * Return same type with cleaned up speculative part of element
2164  */
2165 const Type* TypeAry::cleanup_speculative() const {
2166   return make(_elem->cleanup_speculative(), _size, _stable);
2167 }
2168 
2169 /**
2170  * Return same type but with a different inline depth (used for speculation)
2171  *
2172  * @param depth  depth to meet with
2173  */
2174 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2175   if (!UseInlineDepthForSpeculativeTypes) {
2176     return this;
2177   }
2178   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2179 }
2180 
2181 //----------------------interface_vs_oop---------------------------------------
2182 #ifdef ASSERT
2183 bool TypeAry::interface_vs_oop(const Type *t) const {
2184   const TypeAry* t_ary = t->is_ary();
2185   if (t_ary) {
2186     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2187     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2188     if(this_ptr != NULL && t_ptr != NULL) {
2189       return this_ptr->interface_vs_oop(t_ptr);
2190     }
2191   }
2192   return false;
2193 }
2194 #endif
2195 
2196 //------------------------------dump2------------------------------------------
2197 #ifndef PRODUCT
2198 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2199   if (_stable)  st->print("stable:");
2200   _elem->dump2(d, depth, st);
2201   st->print("[");
2202   _size->dump2(d, depth, st);
2203   st->print("]");
2204 }
2205 #endif
2206 
2207 //------------------------------singleton--------------------------------------
2208 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2209 // constants (Ldi nodes).  Singletons are integer, float or double constants
2210 // or a single symbol.
2211 bool TypeAry::singleton(void) const {
2212   return false;                 // Never a singleton
2213 }
2214 
2215 bool TypeAry::empty(void) const {
2216   return _elem->empty() || _size->empty();
2217 }
2218 
2219 //--------------------------ary_must_be_exact----------------------------------
2220 bool TypeAry::ary_must_be_exact() const {
2221   if (!UseExactTypes)       return false;
2222   // This logic looks at the element type of an array, and returns true
2223   // if the element type is either a primitive or a final instance class.
2224   // In such cases, an array built on this ary must have no subclasses.
2225   if (_elem == BOTTOM)      return false;  // general array not exact
2226   if (_elem == TOP   )      return false;  // inverted general array not exact
2227   const TypeOopPtr*  toop = NULL;
2228   if (UseCompressedOops && _elem->isa_narrowoop()) {
2229     toop = _elem->make_ptr()->isa_oopptr();
2230   } else {
2231     toop = _elem->isa_oopptr();
2232   }
2233   if (!toop)                return true;   // a primitive type, like int
2234   ciKlass* tklass = toop->klass();
2235   if (tklass == NULL)       return false;  // unloaded class
2236   if (!tklass->is_loaded()) return false;  // unloaded class
2237   const TypeInstPtr* tinst;
2238   if (_elem->isa_narrowoop())
2239     tinst = _elem->make_ptr()->isa_instptr();
2240   else
2241     tinst = _elem->isa_instptr();
2242   if (tinst)
2243     return tklass->as_instance_klass()->is_final();
2244   const TypeAryPtr*  tap;
2245   if (_elem->isa_narrowoop())
2246     tap = _elem->make_ptr()->isa_aryptr();
2247   else
2248     tap = _elem->isa_aryptr();
2249   if (tap)
2250     return tap->ary()->ary_must_be_exact();
2251   return false;
2252 }
2253 
2254 //==============================TypeVect=======================================
2255 // Convenience common pre-built types.
2256 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2257 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2258 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2259 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2260 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2261 
2262 //------------------------------make-------------------------------------------
2263 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2264   BasicType elem_bt = elem->array_element_basic_type();
2265   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2266   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2267   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2268   int size = length * type2aelembytes(elem_bt);
2269   switch (Matcher::vector_ideal_reg(size)) {
2270   case Op_VecS:
2271     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2272   case Op_RegL:
2273   case Op_VecD:
2274   case Op_RegD:
2275     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2276   case Op_VecX:
2277     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2278   case Op_VecY:
2279     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2280   case Op_VecZ:
2281     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2282   }
2283  ShouldNotReachHere();
2284   return NULL;
2285 }
2286 
2287 //------------------------------meet-------------------------------------------
2288 // Compute the MEET of two types.  It returns a new Type object.
2289 const Type *TypeVect::xmeet( const Type *t ) const {
2290   // Perform a fast test for common case; meeting the same types together.
2291   if( this == t ) return this;  // Meeting same type-rep?
2292 
2293   // Current "this->_base" is Vector
2294   switch (t->base()) {          // switch on original type
2295 
2296   case Bottom:                  // Ye Olde Default
2297     return t;
2298 
2299   default:                      // All else is a mistake
2300     typerr(t);
2301 
2302   case VectorS:
2303   case VectorD:
2304   case VectorX:
2305   case VectorY:
2306   case VectorZ: {                // Meeting 2 vectors?
2307     const TypeVect* v = t->is_vect();
2308     assert(  base() == v->base(), "");
2309     assert(length() == v->length(), "");
2310     assert(element_basic_type() == v->element_basic_type(), "");
2311     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2312   }
2313   case Top:
2314     break;
2315   }
2316   return this;
2317 }
2318 
2319 //------------------------------xdual------------------------------------------
2320 // Dual: compute field-by-field dual
2321 const Type *TypeVect::xdual() const {
2322   return new TypeVect(base(), _elem->dual(), _length);
2323 }
2324 
2325 //------------------------------eq---------------------------------------------
2326 // Structural equality check for Type representations
2327 bool TypeVect::eq(const Type *t) const {
2328   const TypeVect *v = t->is_vect();
2329   return (_elem == v->_elem) && (_length == v->_length);
2330 }
2331 
2332 //------------------------------hash-------------------------------------------
2333 // Type-specific hashing function.
2334 int TypeVect::hash(void) const {
2335   return (intptr_t)_elem + (intptr_t)_length;
2336 }
2337 
2338 //------------------------------singleton--------------------------------------
2339 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2340 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2341 // constant value (when vector is created with Replicate code).
2342 bool TypeVect::singleton(void) const {
2343 // There is no Con node for vectors yet.
2344 //  return _elem->singleton();
2345   return false;
2346 }
2347 
2348 bool TypeVect::empty(void) const {
2349   return _elem->empty();
2350 }
2351 
2352 //------------------------------dump2------------------------------------------
2353 #ifndef PRODUCT
2354 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2355   switch (base()) {
2356   case VectorS:
2357     st->print("vectors["); break;
2358   case VectorD:
2359     st->print("vectord["); break;
2360   case VectorX:
2361     st->print("vectorx["); break;
2362   case VectorY:
2363     st->print("vectory["); break;
2364   case VectorZ:
2365     st->print("vectorz["); break;
2366   default:
2367     ShouldNotReachHere();
2368   }
2369   st->print("%d]:{", _length);
2370   _elem->dump2(d, depth, st);
2371   st->print("}");
2372 }
2373 #endif
2374 
2375 
2376 //=============================================================================
2377 // Convenience common pre-built types.
2378 const TypePtr *TypePtr::NULL_PTR;
2379 const TypePtr *TypePtr::NOTNULL;
2380 const TypePtr *TypePtr::BOTTOM;
2381 
2382 //------------------------------meet-------------------------------------------
2383 // Meet over the PTR enum
2384 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2385   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2386   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2387   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2388   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2389   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2390   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2391   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2392 };
2393 
2394 //------------------------------make-------------------------------------------
2395 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2396   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2397 }
2398 
2399 //------------------------------cast_to_ptr_type-------------------------------
2400 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2401   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2402   if( ptr == _ptr ) return this;
2403   return make(_base, ptr, _offset, _speculative, _inline_depth);
2404 }
2405 
2406 //------------------------------get_con----------------------------------------
2407 intptr_t TypePtr::get_con() const {
2408   assert( _ptr == Null, "" );
2409   return _offset;
2410 }
2411 
2412 //------------------------------meet-------------------------------------------
2413 // Compute the MEET of two types.  It returns a new Type object.
2414 const Type *TypePtr::xmeet(const Type *t) const {
2415   const Type* res = xmeet_helper(t);
2416   if (res->isa_ptr() == NULL) {
2417     return res;
2418   }
2419 
2420   const TypePtr* res_ptr = res->is_ptr();
2421   if (res_ptr->speculative() != NULL) {
2422     // type->speculative() == NULL means that speculation is no better
2423     // than type, i.e. type->speculative() == type. So there are 2
2424     // ways to represent the fact that we have no useful speculative
2425     // data and we should use a single one to be able to test for
2426     // equality between types. Check whether type->speculative() ==
2427     // type and set speculative to NULL if it is the case.
2428     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2429       return res_ptr->remove_speculative();
2430     }
2431   }
2432 
2433   return res;
2434 }
2435 
2436 const Type *TypePtr::xmeet_helper(const Type *t) const {
2437   // Perform a fast test for common case; meeting the same types together.
2438   if( this == t ) return this;  // Meeting same type-rep?
2439 
2440   // Current "this->_base" is AnyPtr
2441   switch (t->base()) {          // switch on original type
2442   case Int:                     // Mixing ints & oops happens when javac
2443   case Long:                    // reuses local variables
2444   case FloatTop:
2445   case FloatCon:
2446   case FloatBot:
2447   case DoubleTop:
2448   case DoubleCon:
2449   case DoubleBot:
2450   case NarrowOop:
2451   case NarrowKlass:
2452   case Bottom:                  // Ye Olde Default
2453     return Type::BOTTOM;
2454   case Top:
2455     return this;
2456 
2457   case AnyPtr: {                // Meeting to AnyPtrs
2458     const TypePtr *tp = t->is_ptr();
2459     const TypePtr* speculative = xmeet_speculative(tp);
2460     int depth = meet_inline_depth(tp->inline_depth());
2461     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2462   }
2463   case RawPtr:                  // For these, flip the call around to cut down
2464   case OopPtr:
2465   case InstPtr:                 // on the cases I have to handle.
2466   case AryPtr:
2467   case MetadataPtr:
2468   case KlassPtr:
2469     return t->xmeet(this);      // Call in reverse direction
2470   default:                      // All else is a mistake
2471     typerr(t);
2472 
2473   }
2474   return this;
2475 }
2476 
2477 //------------------------------meet_offset------------------------------------
2478 int TypePtr::meet_offset( int offset ) const {
2479   // Either is 'TOP' offset?  Return the other offset!
2480   if( _offset == OffsetTop ) return offset;
2481   if( offset == OffsetTop ) return _offset;
2482   // If either is different, return 'BOTTOM' offset
2483   if( _offset != offset ) return OffsetBot;
2484   return _offset;
2485 }
2486 
2487 //------------------------------dual_offset------------------------------------
2488 int TypePtr::dual_offset( ) const {
2489   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2490   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2491   return _offset;               // Map everything else into self
2492 }
2493 
2494 //------------------------------xdual------------------------------------------
2495 // Dual: compute field-by-field dual
2496 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2497   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2498 };
2499 const Type *TypePtr::xdual() const {
2500   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2501 }
2502 
2503 //------------------------------xadd_offset------------------------------------
2504 int TypePtr::xadd_offset( intptr_t offset ) const {
2505   // Adding to 'TOP' offset?  Return 'TOP'!
2506   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2507   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2508   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2509   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2510   offset += (intptr_t)_offset;
2511   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2512 
2513   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2514   // It is possible to construct a negative offset during PhaseCCP
2515 
2516   return (int)offset;        // Sum valid offsets
2517 }
2518 
2519 //------------------------------add_offset-------------------------------------
2520 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2521   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2522 }
2523 
2524 //------------------------------eq---------------------------------------------
2525 // Structural equality check for Type representations
2526 bool TypePtr::eq( const Type *t ) const {
2527   const TypePtr *a = (const TypePtr*)t;
2528   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2529 }
2530 
2531 //------------------------------hash-------------------------------------------
2532 // Type-specific hashing function.
2533 int TypePtr::hash(void) const {
2534   return java_add(java_add((jint)_ptr, (jint)_offset), java_add((jint)hash_speculative(), (jint)_inline_depth));
2535 ;
2536 }
2537 
2538 /**
2539  * Return same type without a speculative part
2540  */
2541 const Type* TypePtr::remove_speculative() const {
2542   if (_speculative == NULL) {
2543     return this;
2544   }
2545   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2546   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2547 }
2548 
2549 /**
2550  * Return same type but drop speculative part if we know we won't use
2551  * it
2552  */
2553 const Type* TypePtr::cleanup_speculative() const {
2554   if (speculative() == NULL) {
2555     return this;
2556   }
2557   const Type* no_spec = remove_speculative();
2558   // If this is NULL_PTR then we don't need the speculative type
2559   // (with_inline_depth in case the current type inline depth is
2560   // InlineDepthTop)
2561   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2562     return no_spec;
2563   }
2564   if (above_centerline(speculative()->ptr())) {
2565     return no_spec;
2566   }
2567   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2568   // If the speculative may be null and is an inexact klass then it
2569   // doesn't help
2570   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2571       (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2572     return no_spec;
2573   }
2574   return this;
2575 }
2576 
2577 /**
2578  * dual of the speculative part of the type
2579  */
2580 const TypePtr* TypePtr::dual_speculative() const {
2581   if (_speculative == NULL) {
2582     return NULL;
2583   }
2584   return _speculative->dual()->is_ptr();
2585 }
2586 
2587 /**
2588  * meet of the speculative parts of 2 types
2589  *
2590  * @param other  type to meet with
2591  */
2592 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2593   bool this_has_spec = (_speculative != NULL);
2594   bool other_has_spec = (other->speculative() != NULL);
2595 
2596   if (!this_has_spec && !other_has_spec) {
2597     return NULL;
2598   }
2599 
2600   // If we are at a point where control flow meets and one branch has
2601   // a speculative type and the other has not, we meet the speculative
2602   // type of one branch with the actual type of the other. If the
2603   // actual type is exact and the speculative is as well, then the
2604   // result is a speculative type which is exact and we can continue
2605   // speculation further.
2606   const TypePtr* this_spec = _speculative;
2607   const TypePtr* other_spec = other->speculative();
2608 
2609   if (!this_has_spec) {
2610     this_spec = this;
2611   }
2612 
2613   if (!other_has_spec) {
2614     other_spec = other;
2615   }
2616 
2617   return this_spec->meet(other_spec)->is_ptr();
2618 }
2619 
2620 /**
2621  * dual of the inline depth for this type (used for speculation)
2622  */
2623 int TypePtr::dual_inline_depth() const {
2624   return -inline_depth();
2625 }
2626 
2627 /**
2628  * meet of 2 inline depths (used for speculation)
2629  *
2630  * @param depth  depth to meet with
2631  */
2632 int TypePtr::meet_inline_depth(int depth) const {
2633   return MAX2(inline_depth(), depth);
2634 }
2635 
2636 /**
2637  * Are the speculative parts of 2 types equal?
2638  *
2639  * @param other  type to compare this one to
2640  */
2641 bool TypePtr::eq_speculative(const TypePtr* other) const {
2642   if (_speculative == NULL || other->speculative() == NULL) {
2643     return _speculative == other->speculative();
2644   }
2645 
2646   if (_speculative->base() != other->speculative()->base()) {
2647     return false;
2648   }
2649 
2650   return _speculative->eq(other->speculative());
2651 }
2652 
2653 /**
2654  * Hash of the speculative part of the type
2655  */
2656 int TypePtr::hash_speculative() const {
2657   if (_speculative == NULL) {
2658     return 0;
2659   }
2660 
2661   return _speculative->hash();
2662 }
2663 
2664 /**
2665  * add offset to the speculative part of the type
2666  *
2667  * @param offset  offset to add
2668  */
2669 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2670   if (_speculative == NULL) {
2671     return NULL;
2672   }
2673   return _speculative->add_offset(offset)->is_ptr();
2674 }
2675 
2676 /**
2677  * return exact klass from the speculative type if there's one
2678  */
2679 ciKlass* TypePtr::speculative_type() const {
2680   if (_speculative != NULL && _speculative->isa_oopptr()) {
2681     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2682     if (speculative->klass_is_exact()) {
2683       return speculative->klass();
2684     }
2685   }
2686   return NULL;
2687 }
2688 
2689 /**
2690  * return true if speculative type may be null
2691  */
2692 bool TypePtr::speculative_maybe_null() const {
2693   if (_speculative != NULL) {
2694     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2695     return speculative->maybe_null();
2696   }
2697   return true;
2698 }
2699 
2700 bool TypePtr::speculative_always_null() const {
2701   if (_speculative != NULL) {
2702     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2703     return speculative == TypePtr::NULL_PTR;
2704   }
2705   return false;
2706 }
2707 
2708 /**
2709  * Same as TypePtr::speculative_type() but return the klass only if
2710  * the speculative tells us is not null
2711  */
2712 ciKlass* TypePtr::speculative_type_not_null() const {
2713   if (speculative_maybe_null()) {
2714     return NULL;
2715   }
2716   return speculative_type();
2717 }
2718 
2719 /**
2720  * Check whether new profiling would improve speculative type
2721  *
2722  * @param   exact_kls    class from profiling
2723  * @param   inline_depth inlining depth of profile point
2724  *
2725  * @return  true if type profile is valuable
2726  */
2727 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2728   // no profiling?
2729   if (exact_kls == NULL) {
2730     return false;
2731   }
2732   if (speculative() == TypePtr::NULL_PTR) {
2733     return false;
2734   }
2735   // no speculative type or non exact speculative type?
2736   if (speculative_type() == NULL) {
2737     return true;
2738   }
2739   // If the node already has an exact speculative type keep it,
2740   // unless it was provided by profiling that is at a deeper
2741   // inlining level. Profiling at a higher inlining depth is
2742   // expected to be less accurate.
2743   if (_speculative->inline_depth() == InlineDepthBottom) {
2744     return false;
2745   }
2746   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2747   return inline_depth < _speculative->inline_depth();
2748 }
2749 
2750 /**
2751  * Check whether new profiling would improve ptr (= tells us it is non
2752  * null)
2753  *
2754  * @param   ptr_kind always null or not null?
2755  *
2756  * @return  true if ptr profile is valuable
2757  */
2758 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
2759   // profiling doesn't tell us anything useful
2760   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
2761     return false;
2762   }
2763   // We already know this is not null
2764   if (!this->maybe_null()) {
2765     return false;
2766   }
2767   // We already know the speculative type cannot be null
2768   if (!speculative_maybe_null()) {
2769     return false;
2770   }
2771   // We already know this is always null
2772   if (this == TypePtr::NULL_PTR) {
2773     return false;
2774   }
2775   // We already know the speculative type is always null
2776   if (speculative_always_null()) {
2777     return false;
2778   }
2779   if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) {
2780     return false;
2781   }
2782   return true;
2783 }
2784 
2785 //------------------------------dump2------------------------------------------
2786 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2787   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2788 };
2789 
2790 #ifndef PRODUCT
2791 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2792   if( _ptr == Null ) st->print("NULL");
2793   else st->print("%s *", ptr_msg[_ptr]);
2794   if( _offset == OffsetTop ) st->print("+top");
2795   else if( _offset == OffsetBot ) st->print("+bot");
2796   else if( _offset ) st->print("+%d", _offset);
2797   dump_inline_depth(st);
2798   dump_speculative(st);
2799 }
2800 
2801 /**
2802  *dump the speculative part of the type
2803  */
2804 void TypePtr::dump_speculative(outputStream *st) const {
2805   if (_speculative != NULL) {
2806     st->print(" (speculative=");
2807     _speculative->dump_on(st);
2808     st->print(")");
2809   }
2810 }
2811 
2812 /**
2813  *dump the inline depth of the type
2814  */
2815 void TypePtr::dump_inline_depth(outputStream *st) const {
2816   if (_inline_depth != InlineDepthBottom) {
2817     if (_inline_depth == InlineDepthTop) {
2818       st->print(" (inline_depth=InlineDepthTop)");
2819     } else {
2820       st->print(" (inline_depth=%d)", _inline_depth);
2821     }
2822   }
2823 }
2824 #endif
2825 
2826 //------------------------------singleton--------------------------------------
2827 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2828 // constants
2829 bool TypePtr::singleton(void) const {
2830   // TopPTR, Null, AnyNull, Constant are all singletons
2831   return (_offset != OffsetBot) && !below_centerline(_ptr);
2832 }
2833 
2834 bool TypePtr::empty(void) const {
2835   return (_offset == OffsetTop) || above_centerline(_ptr);
2836 }
2837 
2838 //=============================================================================
2839 // Convenience common pre-built types.
2840 const TypeRawPtr *TypeRawPtr::BOTTOM;
2841 const TypeRawPtr *TypeRawPtr::NOTNULL;
2842 
2843 //------------------------------make-------------------------------------------
2844 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2845   assert( ptr != Constant, "what is the constant?" );
2846   assert( ptr != Null, "Use TypePtr for NULL" );
2847   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2848 }
2849 
2850 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2851   assert( bits, "Use TypePtr for NULL" );
2852   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2853 }
2854 
2855 //------------------------------cast_to_ptr_type-------------------------------
2856 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2857   assert( ptr != Constant, "what is the constant?" );
2858   assert( ptr != Null, "Use TypePtr for NULL" );
2859   assert( _bits==0, "Why cast a constant address?");
2860   if( ptr == _ptr ) return this;
2861   return make(ptr);
2862 }
2863 
2864 //------------------------------get_con----------------------------------------
2865 intptr_t TypeRawPtr::get_con() const {
2866   assert( _ptr == Null || _ptr == Constant, "" );
2867   return (intptr_t)_bits;
2868 }
2869 
2870 //------------------------------meet-------------------------------------------
2871 // Compute the MEET of two types.  It returns a new Type object.
2872 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2873   // Perform a fast test for common case; meeting the same types together.
2874   if( this == t ) return this;  // Meeting same type-rep?
2875 
2876   // Current "this->_base" is RawPtr
2877   switch( t->base() ) {         // switch on original type
2878   case Bottom:                  // Ye Olde Default
2879     return t;
2880   case Top:
2881     return this;
2882   case AnyPtr:                  // Meeting to AnyPtrs
2883     break;
2884   case RawPtr: {                // might be top, bot, any/not or constant
2885     enum PTR tptr = t->is_ptr()->ptr();
2886     enum PTR ptr = meet_ptr( tptr );
2887     if( ptr == Constant ) {     // Cannot be equal constants, so...
2888       if( tptr == Constant && _ptr != Constant)  return t;
2889       if( _ptr == Constant && tptr != Constant)  return this;
2890       ptr = NotNull;            // Fall down in lattice
2891     }
2892     return make( ptr );
2893   }
2894 
2895   case OopPtr:
2896   case InstPtr:
2897   case AryPtr:
2898   case MetadataPtr:
2899   case KlassPtr:
2900     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2901   default:                      // All else is a mistake
2902     typerr(t);
2903   }
2904 
2905   // Found an AnyPtr type vs self-RawPtr type
2906   const TypePtr *tp = t->is_ptr();
2907   switch (tp->ptr()) {
2908   case TypePtr::TopPTR:  return this;
2909   case TypePtr::BotPTR:  return t;
2910   case TypePtr::Null:
2911     if( _ptr == TypePtr::TopPTR ) return t;
2912     return TypeRawPtr::BOTTOM;
2913   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
2914   case TypePtr::AnyNull:
2915     if( _ptr == TypePtr::Constant) return this;
2916     return make( meet_ptr(TypePtr::AnyNull) );
2917   default: ShouldNotReachHere();
2918   }
2919   return this;
2920 }
2921 
2922 //------------------------------xdual------------------------------------------
2923 // Dual: compute field-by-field dual
2924 const Type *TypeRawPtr::xdual() const {
2925   return new TypeRawPtr( dual_ptr(), _bits );
2926 }
2927 
2928 //------------------------------add_offset-------------------------------------
2929 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2930   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2931   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2932   if( offset == 0 ) return this; // No change
2933   switch (_ptr) {
2934   case TypePtr::TopPTR:
2935   case TypePtr::BotPTR:
2936   case TypePtr::NotNull:
2937     return this;
2938   case TypePtr::Null:
2939   case TypePtr::Constant: {
2940     address bits = _bits+offset;
2941     if ( bits == 0 ) return TypePtr::NULL_PTR;
2942     return make( bits );
2943   }
2944   default:  ShouldNotReachHere();
2945   }
2946   return NULL;                  // Lint noise
2947 }
2948 
2949 //------------------------------eq---------------------------------------------
2950 // Structural equality check for Type representations
2951 bool TypeRawPtr::eq( const Type *t ) const {
2952   const TypeRawPtr *a = (const TypeRawPtr*)t;
2953   return _bits == a->_bits && TypePtr::eq(t);
2954 }
2955 
2956 //------------------------------hash-------------------------------------------
2957 // Type-specific hashing function.
2958 int TypeRawPtr::hash(void) const {
2959   return (intptr_t)_bits + TypePtr::hash();
2960 }
2961 
2962 //------------------------------dump2------------------------------------------
2963 #ifndef PRODUCT
2964 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2965   if( _ptr == Constant )
2966     st->print(INTPTR_FORMAT, p2i(_bits));
2967   else
2968     st->print("rawptr:%s", ptr_msg[_ptr]);
2969 }
2970 #endif
2971 
2972 //=============================================================================
2973 // Convenience common pre-built type.
2974 const TypeOopPtr *TypeOopPtr::BOTTOM;
2975 
2976 //------------------------------TypeOopPtr-------------------------------------
2977 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
2978                        int instance_id, const TypePtr* speculative, int inline_depth)
2979   : TypePtr(t, ptr, offset, speculative, inline_depth),
2980     _const_oop(o), _klass(k),
2981     _klass_is_exact(xk),
2982     _is_ptr_to_narrowoop(false),
2983     _is_ptr_to_narrowklass(false),
2984     _is_ptr_to_boxed_value(false),
2985     _instance_id(instance_id) {
2986   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2987       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2988     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2989   }
2990 #ifdef _LP64
2991   if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) {
2992     if (_offset == oopDesc::klass_offset_in_bytes()) {
2993       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2994     } else if (klass() == NULL) {
2995       // Array with unknown body type
2996       assert(this->isa_aryptr(), "only arrays without klass");
2997       _is_ptr_to_narrowoop = UseCompressedOops;
2998     } else if (this->isa_aryptr()) {
2999       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
3000                              _offset != arrayOopDesc::length_offset_in_bytes());
3001     } else if (klass()->is_instance_klass()) {
3002       ciInstanceKlass* ik = klass()->as_instance_klass();
3003       ciField* field = NULL;
3004       if (this->isa_klassptr()) {
3005         // Perm objects don't use compressed references
3006       } else if (_offset == OffsetBot || _offset == OffsetTop) {
3007         // unsafe access
3008         _is_ptr_to_narrowoop = UseCompressedOops;
3009       } else { // exclude unsafe ops
3010         assert(this->isa_instptr(), "must be an instance ptr.");
3011 
3012         if (klass() == ciEnv::current()->Class_klass() &&
3013             (_offset == java_lang_Class::klass_offset_in_bytes() ||
3014              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
3015           // Special hidden fields from the Class.
3016           assert(this->isa_instptr(), "must be an instance ptr.");
3017           _is_ptr_to_narrowoop = false;
3018         } else if (klass() == ciEnv::current()->Class_klass() &&
3019                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3020           // Static fields
3021           assert(o != NULL, "must be constant");
3022           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
3023           ciField* field = k->get_field_by_offset(_offset, true);
3024           assert(field != NULL, "missing field");
3025           BasicType basic_elem_type = field->layout_type();
3026           _is_ptr_to_narrowoop = UseCompressedOops && is_reference_type(basic_elem_type);
3027         } else {
3028           // Instance fields which contains a compressed oop references.
3029           field = ik->get_field_by_offset(_offset, false);
3030           if (field != NULL) {
3031             BasicType basic_elem_type = field->layout_type();
3032             _is_ptr_to_narrowoop = UseCompressedOops && is_reference_type(basic_elem_type);
3033           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3034             // Compile::find_alias_type() cast exactness on all types to verify
3035             // that it does not affect alias type.
3036             _is_ptr_to_narrowoop = UseCompressedOops;
3037           } else {
3038             // Type for the copy start in LibraryCallKit::inline_native_clone().
3039             _is_ptr_to_narrowoop = UseCompressedOops;
3040           }
3041         }
3042       }
3043     }
3044   }
3045 #endif
3046 }
3047 
3048 //------------------------------make-------------------------------------------
3049 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3050                                      const TypePtr* speculative, int inline_depth) {
3051   assert(ptr != Constant, "no constant generic pointers");
3052   ciKlass*  k = Compile::current()->env()->Object_klass();
3053   bool      xk = false;
3054   ciObject* o = NULL;
3055   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3056 }
3057 
3058 
3059 //------------------------------cast_to_ptr_type-------------------------------
3060 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3061   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3062   if( ptr == _ptr ) return this;
3063   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3064 }
3065 
3066 //-----------------------------cast_to_instance_id----------------------------
3067 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3068   // There are no instances of a general oop.
3069   // Return self unchanged.
3070   return this;
3071 }
3072 
3073 //-----------------------------cast_to_exactness-------------------------------
3074 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3075   // There is no such thing as an exact general oop.
3076   // Return self unchanged.
3077   return this;
3078 }
3079 
3080 
3081 //------------------------------as_klass_type----------------------------------
3082 // Return the klass type corresponding to this instance or array type.
3083 // It is the type that is loaded from an object of this type.
3084 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3085   ciKlass* k = klass();
3086   bool    xk = klass_is_exact();
3087   if (k == NULL)
3088     return TypeKlassPtr::OBJECT;
3089   else
3090     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
3091 }
3092 
3093 //------------------------------meet-------------------------------------------
3094 // Compute the MEET of two types.  It returns a new Type object.
3095 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3096   // Perform a fast test for common case; meeting the same types together.
3097   if( this == t ) return this;  // Meeting same type-rep?
3098 
3099   // Current "this->_base" is OopPtr
3100   switch (t->base()) {          // switch on original type
3101 
3102   case Int:                     // Mixing ints & oops happens when javac
3103   case Long:                    // reuses local variables
3104   case FloatTop:
3105   case FloatCon:
3106   case FloatBot:
3107   case DoubleTop:
3108   case DoubleCon:
3109   case DoubleBot:
3110   case NarrowOop:
3111   case NarrowKlass:
3112   case Bottom:                  // Ye Olde Default
3113     return Type::BOTTOM;
3114   case Top:
3115     return this;
3116 
3117   default:                      // All else is a mistake
3118     typerr(t);
3119 
3120   case RawPtr:
3121   case MetadataPtr:
3122   case KlassPtr:
3123     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3124 
3125   case AnyPtr: {
3126     // Found an AnyPtr type vs self-OopPtr type
3127     const TypePtr *tp = t->is_ptr();
3128     int offset = meet_offset(tp->offset());
3129     PTR ptr = meet_ptr(tp->ptr());
3130     const TypePtr* speculative = xmeet_speculative(tp);
3131     int depth = meet_inline_depth(tp->inline_depth());
3132     switch (tp->ptr()) {
3133     case Null:
3134       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3135       // else fall through:
3136     case TopPTR:
3137     case AnyNull: {
3138       int instance_id = meet_instance_id(InstanceTop);
3139       return make(ptr, offset, instance_id, speculative, depth);
3140     }
3141     case BotPTR:
3142     case NotNull:
3143       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3144     default: typerr(t);
3145     }
3146   }
3147 
3148   case OopPtr: {                 // Meeting to other OopPtrs
3149     const TypeOopPtr *tp = t->is_oopptr();
3150     int instance_id = meet_instance_id(tp->instance_id());
3151     const TypePtr* speculative = xmeet_speculative(tp);
3152     int depth = meet_inline_depth(tp->inline_depth());
3153     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3154   }
3155 
3156   case InstPtr:                  // For these, flip the call around to cut down
3157   case AryPtr:
3158     return t->xmeet(this);      // Call in reverse direction
3159 
3160   } // End of switch
3161   return this;                  // Return the double constant
3162 }
3163 
3164 
3165 //------------------------------xdual------------------------------------------
3166 // Dual of a pure heap pointer.  No relevant klass or oop information.
3167 const Type *TypeOopPtr::xdual() const {
3168   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3169   assert(const_oop() == NULL,             "no constants here");
3170   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3171 }
3172 
3173 //--------------------------make_from_klass_common-----------------------------
3174 // Computes the element-type given a klass.
3175 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3176   if (klass->is_instance_klass()) {
3177     Compile* C = Compile::current();
3178     Dependencies* deps = C->dependencies();
3179     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3180     // Element is an instance
3181     bool klass_is_exact = false;
3182     if (klass->is_loaded()) {
3183       // Try to set klass_is_exact.
3184       ciInstanceKlass* ik = klass->as_instance_klass();
3185       klass_is_exact = ik->is_final();
3186       if (!klass_is_exact && klass_change
3187           && deps != NULL && UseUniqueSubclasses) {
3188         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3189         if (sub != NULL) {
3190           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3191           klass = ik = sub;
3192           klass_is_exact = sub->is_final();
3193         }
3194       }
3195       if (!klass_is_exact && try_for_exact
3196           && deps != NULL && UseExactTypes) {
3197         if (!ik->is_interface() && !ik->has_subklass()) {
3198           // Add a dependence; if concrete subclass added we need to recompile
3199           deps->assert_leaf_type(ik);
3200           klass_is_exact = true;
3201         }
3202       }
3203     }
3204     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
3205   } else if (klass->is_obj_array_klass()) {
3206     // Element is an object array. Recursively call ourself.
3207     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
3208     bool xk = etype->klass_is_exact();
3209     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3210     // We used to pass NotNull in here, asserting that the sub-arrays
3211     // are all not-null.  This is not true in generally, as code can
3212     // slam NULLs down in the subarrays.
3213     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
3214     return arr;
3215   } else if (klass->is_type_array_klass()) {
3216     // Element is an typeArray
3217     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3218     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3219     // We used to pass NotNull in here, asserting that the array pointer
3220     // is not-null. That was not true in general.
3221     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3222     return arr;
3223   } else {
3224     ShouldNotReachHere();
3225     return NULL;
3226   }
3227 }
3228 
3229 //------------------------------make_from_constant-----------------------------
3230 // Make a java pointer from an oop constant
3231 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3232   assert(!o->is_null_object(), "null object not yet handled here.");
3233 
3234   const bool make_constant = require_constant || o->should_be_constant();
3235 
3236   ciKlass* klass = o->klass();
3237   if (klass->is_instance_klass()) {
3238     // Element is an instance
3239     if (make_constant) {
3240       return TypeInstPtr::make(o);
3241     } else {
3242       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
3243     }
3244   } else if (klass->is_obj_array_klass()) {
3245     // Element is an object array. Recursively call ourself.
3246     const TypeOopPtr *etype =
3247       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
3248     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3249     // We used to pass NotNull in here, asserting that the sub-arrays
3250     // are all not-null.  This is not true in generally, as code can
3251     // slam NULLs down in the subarrays.
3252     if (make_constant) {
3253       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3254     } else {
3255       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3256     }
3257   } else if (klass->is_type_array_klass()) {
3258     // Element is an typeArray
3259     const Type* etype =
3260       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3261     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3262     // We used to pass NotNull in here, asserting that the array pointer
3263     // is not-null. That was not true in general.
3264     if (make_constant) {
3265       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3266     } else {
3267       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3268     }
3269   }
3270 
3271   fatal("unhandled object type");
3272   return NULL;
3273 }
3274 
3275 //------------------------------get_con----------------------------------------
3276 intptr_t TypeOopPtr::get_con() const {
3277   assert( _ptr == Null || _ptr == Constant, "" );
3278   assert( _offset >= 0, "" );
3279 
3280   if (_offset != 0) {
3281     // After being ported to the compiler interface, the compiler no longer
3282     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3283     // to a handle at compile time.  This handle is embedded in the generated
3284     // code and dereferenced at the time the nmethod is made.  Until that time,
3285     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3286     // have access to the addresses!).  This does not seem to currently happen,
3287     // but this assertion here is to help prevent its occurence.
3288     tty->print_cr("Found oop constant with non-zero offset");
3289     ShouldNotReachHere();
3290   }
3291 
3292   return (intptr_t)const_oop()->constant_encoding();
3293 }
3294 
3295 
3296 //-----------------------------filter------------------------------------------
3297 // Do not allow interface-vs.-noninterface joins to collapse to top.
3298 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3299 
3300   const Type* ft = join_helper(kills, include_speculative);
3301   const TypeInstPtr* ftip = ft->isa_instptr();
3302   const TypeInstPtr* ktip = kills->isa_instptr();
3303 
3304   if (ft->empty()) {
3305     // Check for evil case of 'this' being a class and 'kills' expecting an
3306     // interface.  This can happen because the bytecodes do not contain
3307     // enough type info to distinguish a Java-level interface variable
3308     // from a Java-level object variable.  If we meet 2 classes which
3309     // both implement interface I, but their meet is at 'j/l/O' which
3310     // doesn't implement I, we have no way to tell if the result should
3311     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3312     // into a Phi which "knows" it's an Interface type we'll have to
3313     // uplift the type.
3314     if (!empty()) {
3315       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3316         return kills;           // Uplift to interface
3317       }
3318       // Also check for evil cases of 'this' being a class array
3319       // and 'kills' expecting an array of interfaces.
3320       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3321       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3322         return kills;           // Uplift to array of interface
3323       }
3324     }
3325 
3326     return Type::TOP;           // Canonical empty value
3327   }
3328 
3329   // If we have an interface-typed Phi or cast and we narrow to a class type,
3330   // the join should report back the class.  However, if we have a J/L/Object
3331   // class-typed Phi and an interface flows in, it's possible that the meet &
3332   // join report an interface back out.  This isn't possible but happens
3333   // because the type system doesn't interact well with interfaces.
3334   if (ftip != NULL && ktip != NULL &&
3335       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3336       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3337     assert(!ftip->klass_is_exact(), "interface could not be exact");
3338     return ktip->cast_to_ptr_type(ftip->ptr());
3339   }
3340 
3341   return ft;
3342 }
3343 
3344 //------------------------------eq---------------------------------------------
3345 // Structural equality check for Type representations
3346 bool TypeOopPtr::eq( const Type *t ) const {
3347   const TypeOopPtr *a = (const TypeOopPtr*)t;
3348   if (_klass_is_exact != a->_klass_is_exact ||
3349       _instance_id != a->_instance_id)  return false;
3350   ciObject* one = const_oop();
3351   ciObject* two = a->const_oop();
3352   if (one == NULL || two == NULL) {
3353     return (one == two) && TypePtr::eq(t);
3354   } else {
3355     return one->equals(two) && TypePtr::eq(t);
3356   }
3357 }
3358 
3359 //------------------------------hash-------------------------------------------
3360 // Type-specific hashing function.
3361 int TypeOopPtr::hash(void) const {
3362   return
3363     java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact),
3364              java_add((jint)_instance_id, (jint)TypePtr::hash()));
3365 }
3366 
3367 //------------------------------dump2------------------------------------------
3368 #ifndef PRODUCT
3369 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3370   st->print("oopptr:%s", ptr_msg[_ptr]);
3371   if( _klass_is_exact ) st->print(":exact");
3372   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3373   switch( _offset ) {
3374   case OffsetTop: st->print("+top"); break;
3375   case OffsetBot: st->print("+any"); break;
3376   case         0: break;
3377   default:        st->print("+%d",_offset); break;
3378   }
3379   if (_instance_id == InstanceTop)
3380     st->print(",iid=top");
3381   else if (_instance_id != InstanceBot)
3382     st->print(",iid=%d",_instance_id);
3383 
3384   dump_inline_depth(st);
3385   dump_speculative(st);
3386 }
3387 #endif
3388 
3389 //------------------------------singleton--------------------------------------
3390 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3391 // constants
3392 bool TypeOopPtr::singleton(void) const {
3393   // detune optimizer to not generate constant oop + constant offset as a constant!
3394   // TopPTR, Null, AnyNull, Constant are all singletons
3395   return (_offset == 0) && !below_centerline(_ptr);
3396 }
3397 
3398 //------------------------------add_offset-------------------------------------
3399 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3400   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3401 }
3402 
3403 /**
3404  * Return same type without a speculative part
3405  */
3406 const Type* TypeOopPtr::remove_speculative() const {
3407   if (_speculative == NULL) {
3408     return this;
3409   }
3410   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3411   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3412 }
3413 
3414 /**
3415  * Return same type but drop speculative part if we know we won't use
3416  * it
3417  */
3418 const Type* TypeOopPtr::cleanup_speculative() const {
3419   // If the klass is exact and the ptr is not null then there's
3420   // nothing that the speculative type can help us with
3421   if (klass_is_exact() && !maybe_null()) {
3422     return remove_speculative();
3423   }
3424   return TypePtr::cleanup_speculative();
3425 }
3426 
3427 /**
3428  * Return same type but with a different inline depth (used for speculation)
3429  *
3430  * @param depth  depth to meet with
3431  */
3432 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3433   if (!UseInlineDepthForSpeculativeTypes) {
3434     return this;
3435   }
3436   return make(_ptr, _offset, _instance_id, _speculative, depth);
3437 }
3438 
3439 //------------------------------with_instance_id--------------------------------
3440 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const {
3441   assert(_instance_id != -1, "should be known");
3442   return make(_ptr, _offset, instance_id, _speculative, _inline_depth);
3443 }
3444 
3445 //------------------------------meet_instance_id--------------------------------
3446 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3447   // Either is 'TOP' instance?  Return the other instance!
3448   if( _instance_id == InstanceTop ) return  instance_id;
3449   if(  instance_id == InstanceTop ) return _instance_id;
3450   // If either is different, return 'BOTTOM' instance
3451   if( _instance_id != instance_id ) return InstanceBot;
3452   return _instance_id;
3453 }
3454 
3455 //------------------------------dual_instance_id--------------------------------
3456 int TypeOopPtr::dual_instance_id( ) const {
3457   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3458   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3459   return _instance_id;              // Map everything else into self
3460 }
3461 
3462 /**
3463  * Check whether new profiling would improve speculative type
3464  *
3465  * @param   exact_kls    class from profiling
3466  * @param   inline_depth inlining depth of profile point
3467  *
3468  * @return  true if type profile is valuable
3469  */
3470 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3471   // no way to improve an already exact type
3472   if (klass_is_exact()) {
3473     return false;
3474   }
3475   return TypePtr::would_improve_type(exact_kls, inline_depth);
3476 }
3477 
3478 //=============================================================================
3479 // Convenience common pre-built types.
3480 const TypeInstPtr *TypeInstPtr::NOTNULL;
3481 const TypeInstPtr *TypeInstPtr::BOTTOM;
3482 const TypeInstPtr *TypeInstPtr::MIRROR;
3483 const TypeInstPtr *TypeInstPtr::MARK;
3484 const TypeInstPtr *TypeInstPtr::KLASS;
3485 
3486 //------------------------------TypeInstPtr-------------------------------------
3487 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
3488                          int instance_id, const TypePtr* speculative, int inline_depth)
3489   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3490     _name(k->name()) {
3491    assert(k != NULL &&
3492           (k->is_loaded() || o == NULL),
3493           "cannot have constants with non-loaded klass");
3494 };
3495 
3496 //------------------------------make-------------------------------------------
3497 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3498                                      ciKlass* k,
3499                                      bool xk,
3500                                      ciObject* o,
3501                                      int offset,
3502                                      int instance_id,
3503                                      const TypePtr* speculative,
3504                                      int inline_depth) {
3505   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3506   // Either const_oop() is NULL or else ptr is Constant
3507   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3508           "constant pointers must have a value supplied" );
3509   // Ptr is never Null
3510   assert( ptr != Null, "NULL pointers are not typed" );
3511 
3512   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3513   if (!UseExactTypes)  xk = false;
3514   if (ptr == Constant) {
3515     // Note:  This case includes meta-object constants, such as methods.
3516     xk = true;
3517   } else if (k->is_loaded()) {
3518     ciInstanceKlass* ik = k->as_instance_klass();
3519     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3520     if (xk && ik->is_interface())  xk = false;  // no exact interface
3521   }
3522 
3523   // Now hash this baby
3524   TypeInstPtr *result =
3525     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3526 
3527   return result;
3528 }
3529 
3530 /**
3531  *  Create constant type for a constant boxed value
3532  */
3533 const Type* TypeInstPtr::get_const_boxed_value() const {
3534   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3535   assert((const_oop() != NULL), "should be called only for constant object");
3536   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3537   BasicType bt = constant.basic_type();
3538   switch (bt) {
3539     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3540     case T_INT:      return TypeInt::make(constant.as_int());
3541     case T_CHAR:     return TypeInt::make(constant.as_char());
3542     case T_BYTE:     return TypeInt::make(constant.as_byte());
3543     case T_SHORT:    return TypeInt::make(constant.as_short());
3544     case T_FLOAT:    return TypeF::make(constant.as_float());
3545     case T_DOUBLE:   return TypeD::make(constant.as_double());
3546     case T_LONG:     return TypeLong::make(constant.as_long());
3547     default:         break;
3548   }
3549   fatal("Invalid boxed value type '%s'", type2name(bt));
3550   return NULL;
3551 }
3552 
3553 //------------------------------cast_to_ptr_type-------------------------------
3554 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3555   if( ptr == _ptr ) return this;
3556   // Reconstruct _sig info here since not a problem with later lazy
3557   // construction, _sig will show up on demand.
3558   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3559 }
3560 
3561 
3562 //-----------------------------cast_to_exactness-------------------------------
3563 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3564   if( klass_is_exact == _klass_is_exact ) return this;
3565   if (!UseExactTypes)  return this;
3566   if (!_klass->is_loaded())  return this;
3567   ciInstanceKlass* ik = _klass->as_instance_klass();
3568   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3569   if( ik->is_interface() )              return this;  // cannot set xk
3570   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3571 }
3572 
3573 //-----------------------------cast_to_instance_id----------------------------
3574 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3575   if( instance_id == _instance_id ) return this;
3576   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3577 }
3578 
3579 //------------------------------xmeet_unloaded---------------------------------
3580 // Compute the MEET of two InstPtrs when at least one is unloaded.
3581 // Assume classes are different since called after check for same name/class-loader
3582 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3583     int off = meet_offset(tinst->offset());
3584     PTR ptr = meet_ptr(tinst->ptr());
3585     int instance_id = meet_instance_id(tinst->instance_id());
3586     const TypePtr* speculative = xmeet_speculative(tinst);
3587     int depth = meet_inline_depth(tinst->inline_depth());
3588 
3589     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3590     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3591     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3592       //
3593       // Meet unloaded class with java/lang/Object
3594       //
3595       // Meet
3596       //          |                     Unloaded Class
3597       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3598       //  ===================================================================
3599       //   TOP    | ..........................Unloaded......................|
3600       //  AnyNull |  U-AN    |................Unloaded......................|
3601       // Constant | ... O-NN .................................. |   O-BOT   |
3602       //  NotNull | ... O-NN .................................. |   O-BOT   |
3603       //  BOTTOM  | ........................Object-BOTTOM ..................|
3604       //
3605       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3606       //
3607       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3608       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3609       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3610       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3611         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3612         else                                      { return TypeInstPtr::NOTNULL; }
3613       }
3614       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3615 
3616       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3617     }
3618 
3619     // Both are unloaded, not the same class, not Object
3620     // Or meet unloaded with a different loaded class, not java/lang/Object
3621     if( ptr != TypePtr::BotPTR ) {
3622       return TypeInstPtr::NOTNULL;
3623     }
3624     return TypeInstPtr::BOTTOM;
3625 }
3626 
3627 
3628 //------------------------------meet-------------------------------------------
3629 // Compute the MEET of two types.  It returns a new Type object.
3630 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3631   // Perform a fast test for common case; meeting the same types together.
3632   if( this == t ) return this;  // Meeting same type-rep?
3633 
3634   // Current "this->_base" is Pointer
3635   switch (t->base()) {          // switch on original type
3636 
3637   case Int:                     // Mixing ints & oops happens when javac
3638   case Long:                    // reuses local variables
3639   case FloatTop:
3640   case FloatCon:
3641   case FloatBot:
3642   case DoubleTop:
3643   case DoubleCon:
3644   case DoubleBot:
3645   case NarrowOop:
3646   case NarrowKlass:
3647   case Bottom:                  // Ye Olde Default
3648     return Type::BOTTOM;
3649   case Top:
3650     return this;
3651 
3652   default:                      // All else is a mistake
3653     typerr(t);
3654 
3655   case MetadataPtr:
3656   case KlassPtr:
3657   case RawPtr: return TypePtr::BOTTOM;
3658 
3659   case AryPtr: {                // All arrays inherit from Object class
3660     const TypeAryPtr *tp = t->is_aryptr();
3661     int offset = meet_offset(tp->offset());
3662     PTR ptr = meet_ptr(tp->ptr());
3663     int instance_id = meet_instance_id(tp->instance_id());
3664     const TypePtr* speculative = xmeet_speculative(tp);
3665     int depth = meet_inline_depth(tp->inline_depth());
3666     switch (ptr) {
3667     case TopPTR:
3668     case AnyNull:                // Fall 'down' to dual of object klass
3669       // For instances when a subclass meets a superclass we fall
3670       // below the centerline when the superclass is exact. We need to
3671       // do the same here.
3672       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3673         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3674       } else {
3675         // cannot subclass, so the meet has to fall badly below the centerline
3676         ptr = NotNull;
3677         instance_id = InstanceBot;
3678         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3679       }
3680     case Constant:
3681     case NotNull:
3682     case BotPTR:                // Fall down to object klass
3683       // LCA is object_klass, but if we subclass from the top we can do better
3684       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3685         // If 'this' (InstPtr) is above the centerline and it is Object class
3686         // then we can subclass in the Java class hierarchy.
3687         // For instances when a subclass meets a superclass we fall
3688         // below the centerline when the superclass is exact. We need
3689         // to do the same here.
3690         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3691           // that is, tp's array type is a subtype of my klass
3692           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3693                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3694         }
3695       }
3696       // The other case cannot happen, since I cannot be a subtype of an array.
3697       // The meet falls down to Object class below centerline.
3698       if( ptr == Constant )
3699          ptr = NotNull;
3700       instance_id = InstanceBot;
3701       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3702     default: typerr(t);
3703     }
3704   }
3705 
3706   case OopPtr: {                // Meeting to OopPtrs
3707     // Found a OopPtr type vs self-InstPtr type
3708     const TypeOopPtr *tp = t->is_oopptr();
3709     int offset = meet_offset(tp->offset());
3710     PTR ptr = meet_ptr(tp->ptr());
3711     switch (tp->ptr()) {
3712     case TopPTR:
3713     case AnyNull: {
3714       int instance_id = meet_instance_id(InstanceTop);
3715       const TypePtr* speculative = xmeet_speculative(tp);
3716       int depth = meet_inline_depth(tp->inline_depth());
3717       return make(ptr, klass(), klass_is_exact(),
3718                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3719     }
3720     case NotNull:
3721     case BotPTR: {
3722       int instance_id = meet_instance_id(tp->instance_id());
3723       const TypePtr* speculative = xmeet_speculative(tp);
3724       int depth = meet_inline_depth(tp->inline_depth());
3725       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3726     }
3727     default: typerr(t);
3728     }
3729   }
3730 
3731   case AnyPtr: {                // Meeting to AnyPtrs
3732     // Found an AnyPtr type vs self-InstPtr type
3733     const TypePtr *tp = t->is_ptr();
3734     int offset = meet_offset(tp->offset());
3735     PTR ptr = meet_ptr(tp->ptr());
3736     int instance_id = meet_instance_id(InstanceTop);
3737     const TypePtr* speculative = xmeet_speculative(tp);
3738     int depth = meet_inline_depth(tp->inline_depth());
3739     switch (tp->ptr()) {
3740     case Null:
3741       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3742       // else fall through to AnyNull
3743     case TopPTR:
3744     case AnyNull: {
3745       return make(ptr, klass(), klass_is_exact(),
3746                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3747     }
3748     case NotNull:
3749     case BotPTR:
3750       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3751     default: typerr(t);
3752     }
3753   }
3754 
3755   /*
3756                  A-top         }
3757                /   |   \       }  Tops
3758            B-top A-any C-top   }
3759               | /  |  \ |      }  Any-nulls
3760            B-any   |   C-any   }
3761               |    |    |
3762            B-con A-con C-con   } constants; not comparable across classes
3763               |    |    |
3764            B-not   |   C-not   }
3765               | \  |  / |      }  not-nulls
3766            B-bot A-not C-bot   }
3767                \   |   /       }  Bottoms
3768                  A-bot         }
3769   */
3770 
3771   case InstPtr: {                // Meeting 2 Oops?
3772     // Found an InstPtr sub-type vs self-InstPtr type
3773     const TypeInstPtr *tinst = t->is_instptr();
3774     int off = meet_offset( tinst->offset() );
3775     PTR ptr = meet_ptr( tinst->ptr() );
3776     int instance_id = meet_instance_id(tinst->instance_id());
3777     const TypePtr* speculative = xmeet_speculative(tinst);
3778     int depth = meet_inline_depth(tinst->inline_depth());
3779 
3780     // Check for easy case; klasses are equal (and perhaps not loaded!)
3781     // If we have constants, then we created oops so classes are loaded
3782     // and we can handle the constants further down.  This case handles
3783     // both-not-loaded or both-loaded classes
3784     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3785       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3786     }
3787 
3788     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3789     ciKlass* tinst_klass = tinst->klass();
3790     ciKlass* this_klass  = this->klass();
3791     bool tinst_xk = tinst->klass_is_exact();
3792     bool this_xk  = this->klass_is_exact();
3793     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3794       // One of these classes has not been loaded
3795       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3796 #ifndef PRODUCT
3797       if( PrintOpto && Verbose ) {
3798         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3799         tty->print("  this == "); this->dump(); tty->cr();
3800         tty->print(" tinst == "); tinst->dump(); tty->cr();
3801       }
3802 #endif
3803       return unloaded_meet;
3804     }
3805 
3806     // Handle mixing oops and interfaces first.
3807     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3808                                         tinst_klass == ciEnv::current()->Object_klass())) {
3809       ciKlass *tmp = tinst_klass; // Swap interface around
3810       tinst_klass = this_klass;
3811       this_klass = tmp;
3812       bool tmp2 = tinst_xk;
3813       tinst_xk = this_xk;
3814       this_xk = tmp2;
3815     }
3816     if (tinst_klass->is_interface() &&
3817         !(this_klass->is_interface() ||
3818           // Treat java/lang/Object as an honorary interface,
3819           // because we need a bottom for the interface hierarchy.
3820           this_klass == ciEnv::current()->Object_klass())) {
3821       // Oop meets interface!
3822 
3823       // See if the oop subtypes (implements) interface.
3824       ciKlass *k;
3825       bool xk;
3826       if( this_klass->is_subtype_of( tinst_klass ) ) {
3827         // Oop indeed subtypes.  Now keep oop or interface depending
3828         // on whether we are both above the centerline or either is
3829         // below the centerline.  If we are on the centerline
3830         // (e.g., Constant vs. AnyNull interface), use the constant.
3831         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3832         // If we are keeping this_klass, keep its exactness too.
3833         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3834       } else {                  // Does not implement, fall to Object
3835         // Oop does not implement interface, so mixing falls to Object
3836         // just like the verifier does (if both are above the
3837         // centerline fall to interface)
3838         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3839         xk = above_centerline(ptr) ? tinst_xk : false;
3840         // Watch out for Constant vs. AnyNull interface.
3841         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3842         instance_id = InstanceBot;
3843       }
3844       ciObject* o = NULL;  // the Constant value, if any
3845       if (ptr == Constant) {
3846         // Find out which constant.
3847         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3848       }
3849       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3850     }
3851 
3852     // Either oop vs oop or interface vs interface or interface vs Object
3853 
3854     // !!! Here's how the symmetry requirement breaks down into invariants:
3855     // If we split one up & one down AND they subtype, take the down man.
3856     // If we split one up & one down AND they do NOT subtype, "fall hard".
3857     // If both are up and they subtype, take the subtype class.
3858     // If both are up and they do NOT subtype, "fall hard".
3859     // If both are down and they subtype, take the supertype class.
3860     // If both are down and they do NOT subtype, "fall hard".
3861     // Constants treated as down.
3862 
3863     // Now, reorder the above list; observe that both-down+subtype is also
3864     // "fall hard"; "fall hard" becomes the default case:
3865     // If we split one up & one down AND they subtype, take the down man.
3866     // If both are up and they subtype, take the subtype class.
3867 
3868     // If both are down and they subtype, "fall hard".
3869     // If both are down and they do NOT subtype, "fall hard".
3870     // If both are up and they do NOT subtype, "fall hard".
3871     // If we split one up & one down AND they do NOT subtype, "fall hard".
3872 
3873     // If a proper subtype is exact, and we return it, we return it exactly.
3874     // If a proper supertype is exact, there can be no subtyping relationship!
3875     // If both types are equal to the subtype, exactness is and-ed below the
3876     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3877 
3878     // Check for subtyping:
3879     ciKlass *subtype = NULL;
3880     bool subtype_exact = false;
3881     if( tinst_klass->equals(this_klass) ) {
3882       subtype = this_klass;
3883       subtype_exact = below_centerline(ptr) ? (this_xk && tinst_xk) : (this_xk || tinst_xk);
3884     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3885       subtype = this_klass;     // Pick subtyping class
3886       subtype_exact = this_xk;
3887     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3888       subtype = tinst_klass;    // Pick subtyping class
3889       subtype_exact = tinst_xk;
3890     }
3891 
3892     if( subtype ) {
3893       if( above_centerline(ptr) ) { // both are up?
3894         this_klass = tinst_klass = subtype;
3895         this_xk = tinst_xk = subtype_exact;
3896       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3897         this_klass = tinst_klass; // tinst is down; keep down man
3898         this_xk = tinst_xk;
3899       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3900         tinst_klass = this_klass; // this is down; keep down man
3901         tinst_xk = this_xk;
3902       } else {
3903         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3904       }
3905     }
3906 
3907     // Check for classes now being equal
3908     if (tinst_klass->equals(this_klass)) {
3909       // If the klasses are equal, the constants may still differ.  Fall to
3910       // NotNull if they do (neither constant is NULL; that is a special case
3911       // handled elsewhere).
3912       ciObject* o = NULL;             // Assume not constant when done
3913       ciObject* this_oop  = const_oop();
3914       ciObject* tinst_oop = tinst->const_oop();
3915       if( ptr == Constant ) {
3916         if (this_oop != NULL && tinst_oop != NULL &&
3917             this_oop->equals(tinst_oop) )
3918           o = this_oop;
3919         else if (above_centerline(this ->_ptr))
3920           o = tinst_oop;
3921         else if (above_centerline(tinst ->_ptr))
3922           o = this_oop;
3923         else
3924           ptr = NotNull;
3925       }
3926       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3927     } // Else classes are not equal
3928 
3929     // Since klasses are different, we require a LCA in the Java
3930     // class hierarchy - which means we have to fall to at least NotNull.
3931     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3932       ptr = NotNull;
3933 
3934     instance_id = InstanceBot;
3935 
3936     // Now we find the LCA of Java classes
3937     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3938     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3939   } // End of case InstPtr
3940 
3941   } // End of switch
3942   return this;                  // Return the double constant
3943 }
3944 
3945 
3946 //------------------------java_mirror_type--------------------------------------
3947 ciType* TypeInstPtr::java_mirror_type() const {
3948   // must be a singleton type
3949   if( const_oop() == NULL )  return NULL;
3950 
3951   // must be of type java.lang.Class
3952   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3953 
3954   return const_oop()->as_instance()->java_mirror_type();
3955 }
3956 
3957 
3958 //------------------------------xdual------------------------------------------
3959 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3960 // inheritance mechanism.
3961 const Type *TypeInstPtr::xdual() const {
3962   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3963 }
3964 
3965 //------------------------------eq---------------------------------------------
3966 // Structural equality check for Type representations
3967 bool TypeInstPtr::eq( const Type *t ) const {
3968   const TypeInstPtr *p = t->is_instptr();
3969   return
3970     klass()->equals(p->klass()) &&
3971     TypeOopPtr::eq(p);          // Check sub-type stuff
3972 }
3973 
3974 //------------------------------hash-------------------------------------------
3975 // Type-specific hashing function.
3976 int TypeInstPtr::hash(void) const {
3977   int hash = java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash());
3978   return hash;
3979 }
3980 
3981 //------------------------------dump2------------------------------------------
3982 // Dump oop Type
3983 #ifndef PRODUCT
3984 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3985   // Print the name of the klass.
3986   klass()->print_name_on(st);
3987 
3988   switch( _ptr ) {
3989   case Constant:
3990     // TO DO: Make CI print the hex address of the underlying oop.
3991     if (WizardMode || Verbose) {
3992       const_oop()->print_oop(st);
3993     }
3994   case BotPTR:
3995     if (!WizardMode && !Verbose) {
3996       if( _klass_is_exact ) st->print(":exact");
3997       break;
3998     }
3999   case TopPTR:
4000   case AnyNull:
4001   case NotNull:
4002     st->print(":%s", ptr_msg[_ptr]);
4003     if( _klass_is_exact ) st->print(":exact");
4004     break;
4005   default:
4006     break;
4007   }
4008 
4009   if( _offset ) {               // Dump offset, if any
4010     if( _offset == OffsetBot )      st->print("+any");
4011     else if( _offset == OffsetTop ) st->print("+unknown");
4012     else st->print("+%d", _offset);
4013   }
4014 
4015   st->print(" *");
4016   if (_instance_id == InstanceTop)
4017     st->print(",iid=top");
4018   else if (_instance_id != InstanceBot)
4019     st->print(",iid=%d",_instance_id);
4020 
4021   dump_inline_depth(st);
4022   dump_speculative(st);
4023 }
4024 #endif
4025 
4026 //------------------------------add_offset-------------------------------------
4027 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4028   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4029               _instance_id, add_offset_speculative(offset), _inline_depth);
4030 }
4031 
4032 const Type *TypeInstPtr::remove_speculative() const {
4033   if (_speculative == NULL) {
4034     return this;
4035   }
4036   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4037   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4038               _instance_id, NULL, _inline_depth);
4039 }
4040 
4041 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4042   if (!UseInlineDepthForSpeculativeTypes) {
4043     return this;
4044   }
4045   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4046 }
4047 
4048 const TypePtr *TypeInstPtr::with_instance_id(int instance_id) const {
4049   assert(is_known_instance(), "should be known");
4050   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);
4051 }
4052 
4053 //=============================================================================
4054 // Convenience common pre-built types.
4055 const TypeAryPtr *TypeAryPtr::RANGE;
4056 const TypeAryPtr *TypeAryPtr::OOPS;
4057 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4058 const TypeAryPtr *TypeAryPtr::BYTES;
4059 const TypeAryPtr *TypeAryPtr::SHORTS;
4060 const TypeAryPtr *TypeAryPtr::CHARS;
4061 const TypeAryPtr *TypeAryPtr::INTS;
4062 const TypeAryPtr *TypeAryPtr::LONGS;
4063 const TypeAryPtr *TypeAryPtr::FLOATS;
4064 const TypeAryPtr *TypeAryPtr::DOUBLES;
4065 
4066 //------------------------------make-------------------------------------------
4067 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4068                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4069   assert(!(k == NULL && ary->_elem->isa_int()),
4070          "integral arrays must be pre-equipped with a class");
4071   if (!xk)  xk = ary->ary_must_be_exact();
4072   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4073   if (!UseExactTypes)  xk = (ptr == Constant);
4074   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
4075 }
4076 
4077 //------------------------------make-------------------------------------------
4078 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4079                                    int instance_id, const TypePtr* speculative, int inline_depth,
4080                                    bool is_autobox_cache) {
4081   assert(!(k == NULL && ary->_elem->isa_int()),
4082          "integral arrays must be pre-equipped with a class");
4083   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4084   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4085   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4086   if (!UseExactTypes)  xk = (ptr == Constant);
4087   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4088 }
4089 
4090 //------------------------------cast_to_ptr_type-------------------------------
4091 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4092   if( ptr == _ptr ) return this;
4093   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4094 }
4095 
4096 
4097 //-----------------------------cast_to_exactness-------------------------------
4098 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4099   if( klass_is_exact == _klass_is_exact ) return this;
4100   if (!UseExactTypes)  return this;
4101   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4102   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4103 }
4104 
4105 //-----------------------------cast_to_instance_id----------------------------
4106 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4107   if( instance_id == _instance_id ) return this;
4108   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4109 }
4110 
4111 
4112 //-----------------------------max_array_length-------------------------------
4113 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4114 jint TypeAryPtr::max_array_length(BasicType etype) {
4115   if (!is_java_primitive(etype) && !is_reference_type(etype)) {
4116     if (etype == T_NARROWOOP) {
4117       etype = T_OBJECT;
4118     } else if (etype == T_ILLEGAL) { // bottom[]
4119       etype = T_BYTE; // will produce conservatively high value
4120     } else {
4121       fatal("not an element type: %s", type2name(etype));
4122     }
4123   }
4124   return arrayOopDesc::max_array_length(etype);
4125 }
4126 
4127 //-----------------------------narrow_size_type-------------------------------
4128 // Narrow the given size type to the index range for the given array base type.
4129 // Return NULL if the resulting int type becomes empty.
4130 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4131   jint hi = size->_hi;
4132   jint lo = size->_lo;
4133   jint min_lo = 0;
4134   jint max_hi = max_array_length(elem()->basic_type());
4135   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4136   bool chg = false;
4137   if (lo < min_lo) {
4138     lo = min_lo;
4139     if (size->is_con()) {
4140       hi = lo;
4141     }
4142     chg = true;
4143   }
4144   if (hi > max_hi) {
4145     hi = max_hi;
4146     if (size->is_con()) {
4147       lo = hi;
4148     }
4149     chg = true;
4150   }
4151   // Negative length arrays will produce weird intermediate dead fast-path code
4152   if (lo > hi)
4153     return TypeInt::ZERO;
4154   if (!chg)
4155     return size;
4156   return TypeInt::make(lo, hi, Type::WidenMin);
4157 }
4158 
4159 //-------------------------------cast_to_size----------------------------------
4160 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4161   assert(new_size != NULL, "");
4162   new_size = narrow_size_type(new_size);
4163   if (new_size == size())  return this;
4164   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4165   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4166 }
4167 
4168 //------------------------------cast_to_stable---------------------------------
4169 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4170   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4171     return this;
4172 
4173   const Type* elem = this->elem();
4174   const TypePtr* elem_ptr = elem->make_ptr();
4175 
4176   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4177     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4178     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4179   }
4180 
4181   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4182 
4183   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4184 }
4185 
4186 //-----------------------------stable_dimension--------------------------------
4187 int TypeAryPtr::stable_dimension() const {
4188   if (!is_stable())  return 0;
4189   int dim = 1;
4190   const TypePtr* elem_ptr = elem()->make_ptr();
4191   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4192     dim += elem_ptr->is_aryptr()->stable_dimension();
4193   return dim;
4194 }
4195 
4196 //----------------------cast_to_autobox_cache-----------------------------------
4197 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4198   if (is_autobox_cache() == cache)  return this;
4199   const TypeOopPtr* etype = elem()->make_oopptr();
4200   if (etype == NULL)  return this;
4201   // The pointers in the autobox arrays are always non-null.
4202   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4203   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4204   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4205   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, cache);
4206 }
4207 
4208 //------------------------------eq---------------------------------------------
4209 // Structural equality check for Type representations
4210 bool TypeAryPtr::eq( const Type *t ) const {
4211   const TypeAryPtr *p = t->is_aryptr();
4212   return
4213     _ary == p->_ary &&  // Check array
4214     TypeOopPtr::eq(p);  // Check sub-parts
4215 }
4216 
4217 //------------------------------hash-------------------------------------------
4218 // Type-specific hashing function.
4219 int TypeAryPtr::hash(void) const {
4220   return (intptr_t)_ary + TypeOopPtr::hash();
4221 }
4222 
4223 //------------------------------meet-------------------------------------------
4224 // Compute the MEET of two types.  It returns a new Type object.
4225 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4226   // Perform a fast test for common case; meeting the same types together.
4227   if( this == t ) return this;  // Meeting same type-rep?
4228   // Current "this->_base" is Pointer
4229   switch (t->base()) {          // switch on original type
4230 
4231   // Mixing ints & oops happens when javac reuses local variables
4232   case Int:
4233   case Long:
4234   case FloatTop:
4235   case FloatCon:
4236   case FloatBot:
4237   case DoubleTop:
4238   case DoubleCon:
4239   case DoubleBot:
4240   case NarrowOop:
4241   case NarrowKlass:
4242   case Bottom:                  // Ye Olde Default
4243     return Type::BOTTOM;
4244   case Top:
4245     return this;
4246 
4247   default:                      // All else is a mistake
4248     typerr(t);
4249 
4250   case OopPtr: {                // Meeting to OopPtrs
4251     // Found a OopPtr type vs self-AryPtr type
4252     const TypeOopPtr *tp = t->is_oopptr();
4253     int offset = meet_offset(tp->offset());
4254     PTR ptr = meet_ptr(tp->ptr());
4255     int depth = meet_inline_depth(tp->inline_depth());
4256     const TypePtr* speculative = xmeet_speculative(tp);
4257     switch (tp->ptr()) {
4258     case TopPTR:
4259     case AnyNull: {
4260       int instance_id = meet_instance_id(InstanceTop);
4261       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4262                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4263     }
4264     case BotPTR:
4265     case NotNull: {
4266       int instance_id = meet_instance_id(tp->instance_id());
4267       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4268     }
4269     default: ShouldNotReachHere();
4270     }
4271   }
4272 
4273   case AnyPtr: {                // Meeting two AnyPtrs
4274     // Found an AnyPtr type vs self-AryPtr type
4275     const TypePtr *tp = t->is_ptr();
4276     int offset = meet_offset(tp->offset());
4277     PTR ptr = meet_ptr(tp->ptr());
4278     const TypePtr* speculative = xmeet_speculative(tp);
4279     int depth = meet_inline_depth(tp->inline_depth());
4280     switch (tp->ptr()) {
4281     case TopPTR:
4282       return this;
4283     case BotPTR:
4284     case NotNull:
4285       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4286     case Null:
4287       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4288       // else fall through to AnyNull
4289     case AnyNull: {
4290       int instance_id = meet_instance_id(InstanceTop);
4291       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4292                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4293     }
4294     default: ShouldNotReachHere();
4295     }
4296   }
4297 
4298   case MetadataPtr:
4299   case KlassPtr:
4300   case RawPtr: return TypePtr::BOTTOM;
4301 
4302   case AryPtr: {                // Meeting 2 references?
4303     const TypeAryPtr *tap = t->is_aryptr();
4304     int off = meet_offset(tap->offset());
4305     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4306     PTR ptr = meet_ptr(tap->ptr());
4307     int instance_id = meet_instance_id(tap->instance_id());
4308     const TypePtr* speculative = xmeet_speculative(tap);
4309     int depth = meet_inline_depth(tap->inline_depth());
4310     ciKlass* lazy_klass = NULL;
4311     if (tary->_elem->isa_int()) {
4312       // Integral array element types have irrelevant lattice relations.
4313       // It is the klass that determines array layout, not the element type.
4314       if (_klass == NULL)
4315         lazy_klass = tap->_klass;
4316       else if (tap->_klass == NULL || tap->_klass == _klass) {
4317         lazy_klass = _klass;
4318       } else {
4319         // Something like byte[int+] meets char[int+].
4320         // This must fall to bottom, not (int[-128..65535])[int+].
4321         instance_id = InstanceBot;
4322         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4323       }
4324     } else // Non integral arrays.
4325       // Must fall to bottom if exact klasses in upper lattice
4326       // are not equal or super klass is exact.
4327       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4328           // meet with top[] and bottom[] are processed further down:
4329           tap->_klass != NULL  && this->_klass != NULL   &&
4330           // both are exact and not equal:
4331           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4332            // 'tap'  is exact and super or unrelated:
4333            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4334            // 'this' is exact and super or unrelated:
4335            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4336       if (above_centerline(ptr) || (tary->_elem->make_ptr() && above_centerline(tary->_elem->make_ptr()->_ptr))) {
4337         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4338       }
4339       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
4340     }
4341 
4342     bool xk = false;
4343     switch (tap->ptr()) {
4344     case AnyNull:
4345     case TopPTR:
4346       // Compute new klass on demand, do not use tap->_klass
4347       if (below_centerline(this->_ptr)) {
4348         xk = this->_klass_is_exact;
4349       } else {
4350         xk = (tap->_klass_is_exact || this->_klass_is_exact);
4351       }
4352       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
4353     case Constant: {
4354       ciObject* o = const_oop();
4355       if( _ptr == Constant ) {
4356         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4357           xk = (klass() == tap->klass());
4358           ptr = NotNull;
4359           o = NULL;
4360           instance_id = InstanceBot;
4361         } else {
4362           xk = true;
4363         }
4364       } else if(above_centerline(_ptr)) {
4365         o = tap->const_oop();
4366         xk = true;
4367       } else {
4368         // Only precise for identical arrays
4369         xk = this->_klass_is_exact && (klass() == tap->klass());
4370       }
4371       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4372     }
4373     case NotNull:
4374     case BotPTR:
4375       // Compute new klass on demand, do not use tap->_klass
4376       if (above_centerline(this->_ptr))
4377             xk = tap->_klass_is_exact;
4378       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4379               (klass() == tap->klass()); // Only precise for identical arrays
4380       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4381     default: ShouldNotReachHere();
4382     }
4383   }
4384 
4385   // All arrays inherit from Object class
4386   case InstPtr: {
4387     const TypeInstPtr *tp = t->is_instptr();
4388     int offset = meet_offset(tp->offset());
4389     PTR ptr = meet_ptr(tp->ptr());
4390     int instance_id = meet_instance_id(tp->instance_id());
4391     const TypePtr* speculative = xmeet_speculative(tp);
4392     int depth = meet_inline_depth(tp->inline_depth());
4393     switch (ptr) {
4394     case TopPTR:
4395     case AnyNull:                // Fall 'down' to dual of object klass
4396       // For instances when a subclass meets a superclass we fall
4397       // below the centerline when the superclass is exact. We need to
4398       // do the same here.
4399       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4400         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4401       } else {
4402         // cannot subclass, so the meet has to fall badly below the centerline
4403         ptr = NotNull;
4404         instance_id = InstanceBot;
4405         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4406       }
4407     case Constant:
4408     case NotNull:
4409     case BotPTR:                // Fall down to object klass
4410       // LCA is object_klass, but if we subclass from the top we can do better
4411       if (above_centerline(tp->ptr())) {
4412         // If 'tp'  is above the centerline and it is Object class
4413         // then we can subclass in the Java class hierarchy.
4414         // For instances when a subclass meets a superclass we fall
4415         // below the centerline when the superclass is exact. We need
4416         // to do the same here.
4417         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4418           // that is, my array type is a subtype of 'tp' klass
4419           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4420                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4421         }
4422       }
4423       // The other case cannot happen, since t cannot be a subtype of an array.
4424       // The meet falls down to Object class below centerline.
4425       if( ptr == Constant )
4426          ptr = NotNull;
4427       instance_id = InstanceBot;
4428       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4429     default: typerr(t);
4430     }
4431   }
4432   }
4433   return this;                  // Lint noise
4434 }
4435 
4436 //------------------------------xdual------------------------------------------
4437 // Dual: compute field-by-field dual
4438 const Type *TypeAryPtr::xdual() const {
4439   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4440 }
4441 
4442 //----------------------interface_vs_oop---------------------------------------
4443 #ifdef ASSERT
4444 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4445   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4446   if (t_aryptr) {
4447     return _ary->interface_vs_oop(t_aryptr->_ary);
4448   }
4449   return false;
4450 }
4451 #endif
4452 
4453 //------------------------------dump2------------------------------------------
4454 #ifndef PRODUCT
4455 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4456   _ary->dump2(d,depth,st);
4457   switch( _ptr ) {
4458   case Constant:
4459     const_oop()->print(st);
4460     break;
4461   case BotPTR:
4462     if (!WizardMode && !Verbose) {
4463       if( _klass_is_exact ) st->print(":exact");
4464       break;
4465     }
4466   case TopPTR:
4467   case AnyNull:
4468   case NotNull:
4469     st->print(":%s", ptr_msg[_ptr]);
4470     if( _klass_is_exact ) st->print(":exact");
4471     break;
4472   default:
4473     break;
4474   }
4475 
4476   if( _offset != 0 ) {
4477     int header_size = objArrayOopDesc::header_size() * wordSize;
4478     if( _offset == OffsetTop )       st->print("+undefined");
4479     else if( _offset == OffsetBot )  st->print("+any");
4480     else if( _offset < header_size ) st->print("+%d", _offset);
4481     else {
4482       BasicType basic_elem_type = elem()->basic_type();
4483       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4484       int elem_size = type2aelembytes(basic_elem_type);
4485       st->print("[%d]", (_offset - array_base)/elem_size);
4486     }
4487   }
4488   st->print(" *");
4489   if (_instance_id == InstanceTop)
4490     st->print(",iid=top");
4491   else if (_instance_id != InstanceBot)
4492     st->print(",iid=%d",_instance_id);
4493 
4494   dump_inline_depth(st);
4495   dump_speculative(st);
4496 }
4497 #endif
4498 
4499 bool TypeAryPtr::empty(void) const {
4500   if (_ary->empty())       return true;
4501   return TypeOopPtr::empty();
4502 }
4503 
4504 //------------------------------add_offset-------------------------------------
4505 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4506   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4507 }
4508 
4509 const Type *TypeAryPtr::remove_speculative() const {
4510   if (_speculative == NULL) {
4511     return this;
4512   }
4513   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4514   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4515 }
4516 
4517 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4518   if (!UseInlineDepthForSpeculativeTypes) {
4519     return this;
4520   }
4521   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4522 }
4523 
4524 const TypePtr *TypeAryPtr::with_instance_id(int instance_id) const {
4525   assert(is_known_instance(), "should be known");
4526   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4527 }
4528 
4529 //=============================================================================
4530 
4531 //------------------------------hash-------------------------------------------
4532 // Type-specific hashing function.
4533 int TypeNarrowPtr::hash(void) const {
4534   return _ptrtype->hash() + 7;
4535 }
4536 
4537 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4538   return _ptrtype->singleton();
4539 }
4540 
4541 bool TypeNarrowPtr::empty(void) const {
4542   return _ptrtype->empty();
4543 }
4544 
4545 intptr_t TypeNarrowPtr::get_con() const {
4546   return _ptrtype->get_con();
4547 }
4548 
4549 bool TypeNarrowPtr::eq( const Type *t ) const {
4550   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4551   if (tc != NULL) {
4552     if (_ptrtype->base() != tc->_ptrtype->base()) {
4553       return false;
4554     }
4555     return tc->_ptrtype->eq(_ptrtype);
4556   }
4557   return false;
4558 }
4559 
4560 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4561   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4562   return make_same_narrowptr(odual);
4563 }
4564 
4565 
4566 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4567   if (isa_same_narrowptr(kills)) {
4568     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4569     if (ft->empty())
4570       return Type::TOP;           // Canonical empty value
4571     if (ft->isa_ptr()) {
4572       return make_hash_same_narrowptr(ft->isa_ptr());
4573     }
4574     return ft;
4575   } else if (kills->isa_ptr()) {
4576     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4577     if (ft->empty())
4578       return Type::TOP;           // Canonical empty value
4579     return ft;
4580   } else {
4581     return Type::TOP;
4582   }
4583 }
4584 
4585 //------------------------------xmeet------------------------------------------
4586 // Compute the MEET of two types.  It returns a new Type object.
4587 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4588   // Perform a fast test for common case; meeting the same types together.
4589   if( this == t ) return this;  // Meeting same type-rep?
4590 
4591   if (t->base() == base()) {
4592     const Type* result = _ptrtype->xmeet(t->make_ptr());
4593     if (result->isa_ptr()) {
4594       return make_hash_same_narrowptr(result->is_ptr());
4595     }
4596     return result;
4597   }
4598 
4599   // Current "this->_base" is NarrowKlass or NarrowOop
4600   switch (t->base()) {          // switch on original type
4601 
4602   case Int:                     // Mixing ints & oops happens when javac
4603   case Long:                    // reuses local variables
4604   case FloatTop:
4605   case FloatCon:
4606   case FloatBot:
4607   case DoubleTop:
4608   case DoubleCon:
4609   case DoubleBot:
4610   case AnyPtr:
4611   case RawPtr:
4612   case OopPtr:
4613   case InstPtr:
4614   case AryPtr:
4615   case MetadataPtr:
4616   case KlassPtr:
4617   case NarrowOop:
4618   case NarrowKlass:
4619 
4620   case Bottom:                  // Ye Olde Default
4621     return Type::BOTTOM;
4622   case Top:
4623     return this;
4624 
4625   default:                      // All else is a mistake
4626     typerr(t);
4627 
4628   } // End of switch
4629 
4630   return this;
4631 }
4632 
4633 #ifndef PRODUCT
4634 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4635   _ptrtype->dump2(d, depth, st);
4636 }
4637 #endif
4638 
4639 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4640 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4641 
4642 
4643 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4644   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4645 }
4646 
4647 const Type* TypeNarrowOop::remove_speculative() const {
4648   return make(_ptrtype->remove_speculative()->is_ptr());
4649 }
4650 
4651 const Type* TypeNarrowOop::cleanup_speculative() const {
4652   return make(_ptrtype->cleanup_speculative()->is_ptr());
4653 }
4654 
4655 #ifndef PRODUCT
4656 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4657   st->print("narrowoop: ");
4658   TypeNarrowPtr::dump2(d, depth, st);
4659 }
4660 #endif
4661 
4662 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4663 
4664 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4665   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4666 }
4667 
4668 #ifndef PRODUCT
4669 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4670   st->print("narrowklass: ");
4671   TypeNarrowPtr::dump2(d, depth, st);
4672 }
4673 #endif
4674 
4675 
4676 //------------------------------eq---------------------------------------------
4677 // Structural equality check for Type representations
4678 bool TypeMetadataPtr::eq( const Type *t ) const {
4679   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4680   ciMetadata* one = metadata();
4681   ciMetadata* two = a->metadata();
4682   if (one == NULL || two == NULL) {
4683     return (one == two) && TypePtr::eq(t);
4684   } else {
4685     return one->equals(two) && TypePtr::eq(t);
4686   }
4687 }
4688 
4689 //------------------------------hash-------------------------------------------
4690 // Type-specific hashing function.
4691 int TypeMetadataPtr::hash(void) const {
4692   return
4693     (metadata() ? metadata()->hash() : 0) +
4694     TypePtr::hash();
4695 }
4696 
4697 //------------------------------singleton--------------------------------------
4698 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4699 // constants
4700 bool TypeMetadataPtr::singleton(void) const {
4701   // detune optimizer to not generate constant metadata + constant offset as a constant!
4702   // TopPTR, Null, AnyNull, Constant are all singletons
4703   return (_offset == 0) && !below_centerline(_ptr);
4704 }
4705 
4706 //------------------------------add_offset-------------------------------------
4707 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4708   return make( _ptr, _metadata, xadd_offset(offset));
4709 }
4710 
4711 //-----------------------------filter------------------------------------------
4712 // Do not allow interface-vs.-noninterface joins to collapse to top.
4713 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4714   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4715   if (ft == NULL || ft->empty())
4716     return Type::TOP;           // Canonical empty value
4717   return ft;
4718 }
4719 
4720  //------------------------------get_con----------------------------------------
4721 intptr_t TypeMetadataPtr::get_con() const {
4722   assert( _ptr == Null || _ptr == Constant, "" );
4723   assert( _offset >= 0, "" );
4724 
4725   if (_offset != 0) {
4726     // After being ported to the compiler interface, the compiler no longer
4727     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4728     // to a handle at compile time.  This handle is embedded in the generated
4729     // code and dereferenced at the time the nmethod is made.  Until that time,
4730     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4731     // have access to the addresses!).  This does not seem to currently happen,
4732     // but this assertion here is to help prevent its occurence.
4733     tty->print_cr("Found oop constant with non-zero offset");
4734     ShouldNotReachHere();
4735   }
4736 
4737   return (intptr_t)metadata()->constant_encoding();
4738 }
4739 
4740 //------------------------------cast_to_ptr_type-------------------------------
4741 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4742   if( ptr == _ptr ) return this;
4743   return make(ptr, metadata(), _offset);
4744 }
4745 
4746 //------------------------------meet-------------------------------------------
4747 // Compute the MEET of two types.  It returns a new Type object.
4748 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4749   // Perform a fast test for common case; meeting the same types together.
4750   if( this == t ) return this;  // Meeting same type-rep?
4751 
4752   // Current "this->_base" is OopPtr
4753   switch (t->base()) {          // switch on original type
4754 
4755   case Int:                     // Mixing ints & oops happens when javac
4756   case Long:                    // reuses local variables
4757   case FloatTop:
4758   case FloatCon:
4759   case FloatBot:
4760   case DoubleTop:
4761   case DoubleCon:
4762   case DoubleBot:
4763   case NarrowOop:
4764   case NarrowKlass:
4765   case Bottom:                  // Ye Olde Default
4766     return Type::BOTTOM;
4767   case Top:
4768     return this;
4769 
4770   default:                      // All else is a mistake
4771     typerr(t);
4772 
4773   case AnyPtr: {
4774     // Found an AnyPtr type vs self-OopPtr type
4775     const TypePtr *tp = t->is_ptr();
4776     int offset = meet_offset(tp->offset());
4777     PTR ptr = meet_ptr(tp->ptr());
4778     switch (tp->ptr()) {
4779     case Null:
4780       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4781       // else fall through:
4782     case TopPTR:
4783     case AnyNull: {
4784       return make(ptr, _metadata, offset);
4785     }
4786     case BotPTR:
4787     case NotNull:
4788       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4789     default: typerr(t);
4790     }
4791   }
4792 
4793   case RawPtr:
4794   case KlassPtr:
4795   case OopPtr:
4796   case InstPtr:
4797   case AryPtr:
4798     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4799 
4800   case MetadataPtr: {
4801     const TypeMetadataPtr *tp = t->is_metadataptr();
4802     int offset = meet_offset(tp->offset());
4803     PTR tptr = tp->ptr();
4804     PTR ptr = meet_ptr(tptr);
4805     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4806     if (tptr == TopPTR || _ptr == TopPTR ||
4807         metadata()->equals(tp->metadata())) {
4808       return make(ptr, md, offset);
4809     }
4810     // metadata is different
4811     if( ptr == Constant ) {  // Cannot be equal constants, so...
4812       if( tptr == Constant && _ptr != Constant)  return t;
4813       if( _ptr == Constant && tptr != Constant)  return this;
4814       ptr = NotNull;            // Fall down in lattice
4815     }
4816     return make(ptr, NULL, offset);
4817     break;
4818   }
4819   } // End of switch
4820   return this;                  // Return the double constant
4821 }
4822 
4823 
4824 //------------------------------xdual------------------------------------------
4825 // Dual of a pure metadata pointer.
4826 const Type *TypeMetadataPtr::xdual() const {
4827   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4828 }
4829 
4830 //------------------------------dump2------------------------------------------
4831 #ifndef PRODUCT
4832 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4833   st->print("metadataptr:%s", ptr_msg[_ptr]);
4834   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
4835   switch( _offset ) {
4836   case OffsetTop: st->print("+top"); break;
4837   case OffsetBot: st->print("+any"); break;
4838   case         0: break;
4839   default:        st->print("+%d",_offset); break;
4840   }
4841 }
4842 #endif
4843 
4844 
4845 //=============================================================================
4846 // Convenience common pre-built type.
4847 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4848 
4849 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4850   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4851 }
4852 
4853 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4854   return make(Constant, m, 0);
4855 }
4856 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4857   return make(Constant, m, 0);
4858 }
4859 
4860 //------------------------------make-------------------------------------------
4861 // Create a meta data constant
4862 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4863   assert(m == NULL || !m->is_klass(), "wrong type");
4864   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4865 }
4866 
4867 
4868 //=============================================================================
4869 // Convenience common pre-built types.
4870 
4871 // Not-null object klass or below
4872 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4873 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4874 
4875 //------------------------------TypeKlassPtr-----------------------------------
4876 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4877   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4878 }
4879 
4880 //------------------------------make-------------------------------------------
4881 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4882 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4883   assert( k != NULL, "Expect a non-NULL klass");
4884   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4885   TypeKlassPtr *r =
4886     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4887 
4888   return r;
4889 }
4890 
4891 //------------------------------eq---------------------------------------------
4892 // Structural equality check for Type representations
4893 bool TypeKlassPtr::eq( const Type *t ) const {
4894   const TypeKlassPtr *p = t->is_klassptr();
4895   return
4896     klass()->equals(p->klass()) &&
4897     TypePtr::eq(p);
4898 }
4899 
4900 //------------------------------hash-------------------------------------------
4901 // Type-specific hashing function.
4902 int TypeKlassPtr::hash(void) const {
4903   return java_add((jint)klass()->hash(), (jint)TypePtr::hash());
4904 }
4905 
4906 //------------------------------singleton--------------------------------------
4907 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4908 // constants
4909 bool TypeKlassPtr::singleton(void) const {
4910   // detune optimizer to not generate constant klass + constant offset as a constant!
4911   // TopPTR, Null, AnyNull, Constant are all singletons
4912   return (_offset == 0) && !below_centerline(_ptr);
4913 }
4914 
4915 // Do not allow interface-vs.-noninterface joins to collapse to top.
4916 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4917   // logic here mirrors the one from TypeOopPtr::filter. See comments
4918   // there.
4919   const Type* ft = join_helper(kills, include_speculative);
4920   const TypeKlassPtr* ftkp = ft->isa_klassptr();
4921   const TypeKlassPtr* ktkp = kills->isa_klassptr();
4922 
4923   if (ft->empty()) {
4924     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4925       return kills;             // Uplift to interface
4926 
4927     return Type::TOP;           // Canonical empty value
4928   }
4929 
4930   // Interface klass type could be exact in opposite to interface type,
4931   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4932   if (ftkp != NULL && ktkp != NULL &&
4933       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4934       !ftkp->klass_is_exact() && // Keep exact interface klass
4935       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4936     return ktkp->cast_to_ptr_type(ftkp->ptr());
4937   }
4938 
4939   return ft;
4940 }
4941 
4942 //----------------------compute_klass------------------------------------------
4943 // Compute the defining klass for this class
4944 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4945   // Compute _klass based on element type.
4946   ciKlass* k_ary = NULL;
4947   const TypeInstPtr *tinst;
4948   const TypeAryPtr *tary;
4949   const Type* el = elem();
4950   if (el->isa_narrowoop()) {
4951     el = el->make_ptr();
4952   }
4953 
4954   // Get element klass
4955   if ((tinst = el->isa_instptr()) != NULL) {
4956     // Compute array klass from element klass
4957     k_ary = ciObjArrayKlass::make(tinst->klass());
4958   } else if ((tary = el->isa_aryptr()) != NULL) {
4959     // Compute array klass from element klass
4960     ciKlass* k_elem = tary->klass();
4961     // If element type is something like bottom[], k_elem will be null.
4962     if (k_elem != NULL)
4963       k_ary = ciObjArrayKlass::make(k_elem);
4964   } else if ((el->base() == Type::Top) ||
4965              (el->base() == Type::Bottom)) {
4966     // element type of Bottom occurs from meet of basic type
4967     // and object; Top occurs when doing join on Bottom.
4968     // Leave k_ary at NULL.
4969   } else {
4970     // Cannot compute array klass directly from basic type,
4971     // since subtypes of TypeInt all have basic type T_INT.
4972 #ifdef ASSERT
4973     if (verify && el->isa_int()) {
4974       // Check simple cases when verifying klass.
4975       BasicType bt = T_ILLEGAL;
4976       if (el == TypeInt::BYTE) {
4977         bt = T_BYTE;
4978       } else if (el == TypeInt::SHORT) {
4979         bt = T_SHORT;
4980       } else if (el == TypeInt::CHAR) {
4981         bt = T_CHAR;
4982       } else if (el == TypeInt::INT) {
4983         bt = T_INT;
4984       } else {
4985         return _klass; // just return specified klass
4986       }
4987       return ciTypeArrayKlass::make(bt);
4988     }
4989 #endif
4990     assert(!el->isa_int(),
4991            "integral arrays must be pre-equipped with a class");
4992     // Compute array klass directly from basic type
4993     k_ary = ciTypeArrayKlass::make(el->basic_type());
4994   }
4995   return k_ary;
4996 }
4997 
4998 //------------------------------klass------------------------------------------
4999 // Return the defining klass for this class
5000 ciKlass* TypeAryPtr::klass() const {
5001   if( _klass ) return _klass;   // Return cached value, if possible
5002 
5003   // Oops, need to compute _klass and cache it
5004   ciKlass* k_ary = compute_klass();
5005 
5006   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
5007     // The _klass field acts as a cache of the underlying
5008     // ciKlass for this array type.  In order to set the field,
5009     // we need to cast away const-ness.
5010     //
5011     // IMPORTANT NOTE: we *never* set the _klass field for the
5012     // type TypeAryPtr::OOPS.  This Type is shared between all
5013     // active compilations.  However, the ciKlass which represents
5014     // this Type is *not* shared between compilations, so caching
5015     // this value would result in fetching a dangling pointer.
5016     //
5017     // Recomputing the underlying ciKlass for each request is
5018     // a bit less efficient than caching, but calls to
5019     // TypeAryPtr::OOPS->klass() are not common enough to matter.
5020     ((TypeAryPtr*)this)->_klass = k_ary;
5021     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
5022         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
5023       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5024     }
5025   }
5026   return k_ary;
5027 }
5028 
5029 
5030 //------------------------------add_offset-------------------------------------
5031 // Access internals of klass object
5032 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
5033   return make( _ptr, klass(), xadd_offset(offset) );
5034 }
5035 
5036 //------------------------------cast_to_ptr_type-------------------------------
5037 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5038   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5039   if( ptr == _ptr ) return this;
5040   return make(ptr, _klass, _offset);
5041 }
5042 
5043 
5044 //-----------------------------cast_to_exactness-------------------------------
5045 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5046   if( klass_is_exact == _klass_is_exact ) return this;
5047   if (!UseExactTypes)  return this;
5048   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5049 }
5050 
5051 
5052 //-----------------------------as_instance_type--------------------------------
5053 // Corresponding type for an instance of the given class.
5054 // It will be NotNull, and exact if and only if the klass type is exact.
5055 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5056   ciKlass* k = klass();
5057   bool    xk = klass_is_exact();
5058   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
5059   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5060   guarantee(toop != NULL, "need type for given klass");
5061   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5062   return toop->cast_to_exactness(xk)->is_oopptr();
5063 }
5064 
5065 
5066 //------------------------------xmeet------------------------------------------
5067 // Compute the MEET of two types, return a new Type object.
5068 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
5069   // Perform a fast test for common case; meeting the same types together.
5070   if( this == t ) return this;  // Meeting same type-rep?
5071 
5072   // Current "this->_base" is Pointer
5073   switch (t->base()) {          // switch on original type
5074 
5075   case Int:                     // Mixing ints & oops happens when javac
5076   case Long:                    // reuses local variables
5077   case FloatTop:
5078   case FloatCon:
5079   case FloatBot:
5080   case DoubleTop:
5081   case DoubleCon:
5082   case DoubleBot:
5083   case NarrowOop:
5084   case NarrowKlass:
5085   case Bottom:                  // Ye Olde Default
5086     return Type::BOTTOM;
5087   case Top:
5088     return this;
5089 
5090   default:                      // All else is a mistake
5091     typerr(t);
5092 
5093   case AnyPtr: {                // Meeting to AnyPtrs
5094     // Found an AnyPtr type vs self-KlassPtr type
5095     const TypePtr *tp = t->is_ptr();
5096     int offset = meet_offset(tp->offset());
5097     PTR ptr = meet_ptr(tp->ptr());
5098     switch (tp->ptr()) {
5099     case TopPTR:
5100       return this;
5101     case Null:
5102       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5103     case AnyNull:
5104       return make( ptr, klass(), offset );
5105     case BotPTR:
5106     case NotNull:
5107       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5108     default: typerr(t);
5109     }
5110   }
5111 
5112   case RawPtr:
5113   case MetadataPtr:
5114   case OopPtr:
5115   case AryPtr:                  // Meet with AryPtr
5116   case InstPtr:                 // Meet with InstPtr
5117     return TypePtr::BOTTOM;
5118 
5119   //
5120   //             A-top         }
5121   //           /   |   \       }  Tops
5122   //       B-top A-any C-top   }
5123   //          | /  |  \ |      }  Any-nulls
5124   //       B-any   |   C-any   }
5125   //          |    |    |
5126   //       B-con A-con C-con   } constants; not comparable across classes
5127   //          |    |    |
5128   //       B-not   |   C-not   }
5129   //          | \  |  / |      }  not-nulls
5130   //       B-bot A-not C-bot   }
5131   //           \   |   /       }  Bottoms
5132   //             A-bot         }
5133   //
5134 
5135   case KlassPtr: {  // Meet two KlassPtr types
5136     const TypeKlassPtr *tkls = t->is_klassptr();
5137     int  off     = meet_offset(tkls->offset());
5138     PTR  ptr     = meet_ptr(tkls->ptr());
5139 
5140     // Check for easy case; klasses are equal (and perhaps not loaded!)
5141     // If we have constants, then we created oops so classes are loaded
5142     // and we can handle the constants further down.  This case handles
5143     // not-loaded classes
5144     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5145       return make( ptr, klass(), off );
5146     }
5147 
5148     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5149     ciKlass* tkls_klass = tkls->klass();
5150     ciKlass* this_klass = this->klass();
5151     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5152     assert( this_klass->is_loaded(), "This class should have been loaded.");
5153 
5154     // If 'this' type is above the centerline and is a superclass of the
5155     // other, we can treat 'this' as having the same type as the other.
5156     if ((above_centerline(this->ptr())) &&
5157         tkls_klass->is_subtype_of(this_klass)) {
5158       this_klass = tkls_klass;
5159     }
5160     // If 'tinst' type is above the centerline and is a superclass of the
5161     // other, we can treat 'tinst' as having the same type as the other.
5162     if ((above_centerline(tkls->ptr())) &&
5163         this_klass->is_subtype_of(tkls_klass)) {
5164       tkls_klass = this_klass;
5165     }
5166 
5167     // Check for classes now being equal
5168     if (tkls_klass->equals(this_klass)) {
5169       // If the klasses are equal, the constants may still differ.  Fall to
5170       // NotNull if they do (neither constant is NULL; that is a special case
5171       // handled elsewhere).
5172       if( ptr == Constant ) {
5173         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5174             this->klass()->equals(tkls->klass()));
5175         else if (above_centerline(this->ptr()));
5176         else if (above_centerline(tkls->ptr()));
5177         else
5178           ptr = NotNull;
5179       }
5180       return make( ptr, this_klass, off );
5181     } // Else classes are not equal
5182 
5183     // Since klasses are different, we require the LCA in the Java
5184     // class hierarchy - which means we have to fall to at least NotNull.
5185     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5186       ptr = NotNull;
5187     // Now we find the LCA of Java classes
5188     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5189     return   make( ptr, k, off );
5190   } // End of case KlassPtr
5191 
5192   } // End of switch
5193   return this;                  // Return the double constant
5194 }
5195 
5196 //------------------------------xdual------------------------------------------
5197 // Dual: compute field-by-field dual
5198 const Type    *TypeKlassPtr::xdual() const {
5199   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5200 }
5201 
5202 //------------------------------get_con----------------------------------------
5203 intptr_t TypeKlassPtr::get_con() const {
5204   assert( _ptr == Null || _ptr == Constant, "" );
5205   assert( _offset >= 0, "" );
5206 
5207   if (_offset != 0) {
5208     // After being ported to the compiler interface, the compiler no longer
5209     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5210     // to a handle at compile time.  This handle is embedded in the generated
5211     // code and dereferenced at the time the nmethod is made.  Until that time,
5212     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5213     // have access to the addresses!).  This does not seem to currently happen,
5214     // but this assertion here is to help prevent its occurence.
5215     tty->print_cr("Found oop constant with non-zero offset");
5216     ShouldNotReachHere();
5217   }
5218 
5219   return (intptr_t)klass()->constant_encoding();
5220 }
5221 //------------------------------dump2------------------------------------------
5222 // Dump Klass Type
5223 #ifndef PRODUCT
5224 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5225   switch( _ptr ) {
5226   case Constant:
5227     st->print("precise ");
5228   case NotNull:
5229     {
5230       const char *name = klass()->name()->as_utf8();
5231       if( name ) {
5232         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5233       } else {
5234         ShouldNotReachHere();
5235       }
5236     }
5237   case BotPTR:
5238     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5239   case TopPTR:
5240   case AnyNull:
5241     st->print(":%s", ptr_msg[_ptr]);
5242     if( _klass_is_exact ) st->print(":exact");
5243     break;
5244   default:
5245     break;
5246   }
5247 
5248   if( _offset ) {               // Dump offset, if any
5249     if( _offset == OffsetBot )      { st->print("+any"); }
5250     else if( _offset == OffsetTop ) { st->print("+unknown"); }
5251     else                            { st->print("+%d", _offset); }
5252   }
5253 
5254   st->print(" *");
5255 }
5256 #endif
5257 
5258 
5259 
5260 //=============================================================================
5261 // Convenience common pre-built types.
5262 
5263 //------------------------------make-------------------------------------------
5264 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
5265   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
5266 }
5267 
5268 //------------------------------make-------------------------------------------
5269 const TypeFunc *TypeFunc::make(ciMethod* method) {
5270   Compile* C = Compile::current();
5271   const TypeFunc* tf = C->last_tf(method); // check cache
5272   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5273   const TypeTuple *domain;
5274   if (method->is_static()) {
5275     domain = TypeTuple::make_domain(NULL, method->signature());
5276   } else {
5277     domain = TypeTuple::make_domain(method->holder(), method->signature());
5278   }
5279   const TypeTuple *range  = TypeTuple::make_range(method->signature());
5280   tf = TypeFunc::make(domain, range);
5281   C->set_last_tf(method, tf);  // fill cache
5282   return tf;
5283 }
5284 
5285 //------------------------------meet-------------------------------------------
5286 // Compute the MEET of two types.  It returns a new Type object.
5287 const Type *TypeFunc::xmeet( const Type *t ) const {
5288   // Perform a fast test for common case; meeting the same types together.
5289   if( this == t ) return this;  // Meeting same type-rep?
5290 
5291   // Current "this->_base" is Func
5292   switch (t->base()) {          // switch on original type
5293 
5294   case Bottom:                  // Ye Olde Default
5295     return t;
5296 
5297   default:                      // All else is a mistake
5298     typerr(t);
5299 
5300   case Top:
5301     break;
5302   }
5303   return this;                  // Return the double constant
5304 }
5305 
5306 //------------------------------xdual------------------------------------------
5307 // Dual: compute field-by-field dual
5308 const Type *TypeFunc::xdual() const {
5309   return this;
5310 }
5311 
5312 //------------------------------eq---------------------------------------------
5313 // Structural equality check for Type representations
5314 bool TypeFunc::eq( const Type *t ) const {
5315   const TypeFunc *a = (const TypeFunc*)t;
5316   return _domain == a->_domain &&
5317     _range == a->_range;
5318 }
5319 
5320 //------------------------------hash-------------------------------------------
5321 // Type-specific hashing function.
5322 int TypeFunc::hash(void) const {
5323   return (intptr_t)_domain + (intptr_t)_range;
5324 }
5325 
5326 //------------------------------dump2------------------------------------------
5327 // Dump Function Type
5328 #ifndef PRODUCT
5329 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5330   if( _range->cnt() <= Parms )
5331     st->print("void");
5332   else {
5333     uint i;
5334     for (i = Parms; i < _range->cnt()-1; i++) {
5335       _range->field_at(i)->dump2(d,depth,st);
5336       st->print("/");
5337     }
5338     _range->field_at(i)->dump2(d,depth,st);
5339   }
5340   st->print(" ");
5341   st->print("( ");
5342   if( !depth || d[this] ) {     // Check for recursive dump
5343     st->print("...)");
5344     return;
5345   }
5346   d.Insert((void*)this,(void*)this);    // Stop recursion
5347   if (Parms < _domain->cnt())
5348     _domain->field_at(Parms)->dump2(d,depth-1,st);
5349   for (uint i = Parms+1; i < _domain->cnt(); i++) {
5350     st->print(", ");
5351     _domain->field_at(i)->dump2(d,depth-1,st);
5352   }
5353   st->print(" )");
5354 }
5355 #endif
5356 
5357 //------------------------------singleton--------------------------------------
5358 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5359 // constants (Ldi nodes).  Singletons are integer, float or double constants
5360 // or a single symbol.
5361 bool TypeFunc::singleton(void) const {
5362   return false;                 // Never a singleton
5363 }
5364 
5365 bool TypeFunc::empty(void) const {
5366   return false;                 // Never empty
5367 }
5368 
5369 
5370 BasicType TypeFunc::return_type() const{
5371   if (range()->cnt() == TypeFunc::Parms) {
5372     return T_VOID;
5373   }
5374   return range()->field_at(TypeFunc::Parms)->basic_type();
5375 }