1 /*
   2  * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "logging/logStream.hpp"
  37 #include "memory/allocation.inline.hpp"
  38 #include "memory/filemap.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_linux.inline.hpp"
  41 #include "os_posix.inline.hpp"
  42 #include "os_share_linux.hpp"
  43 #include "osContainer_linux.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/atomic.hpp"
  48 #include "runtime/extendedPC.hpp"
  49 #include "runtime/globals.hpp"
  50 #include "runtime/interfaceSupport.inline.hpp"
  51 #include "runtime/init.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/osThread.hpp"
  57 #include "runtime/perfMemory.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/statSampler.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "runtime/thread.inline.hpp"
  62 #include "runtime/threadCritical.hpp"
  63 #include "runtime/threadSMR.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_posix.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/align.hpp"
  71 #include "utilities/decoder.hpp"
  72 #include "utilities/defaultStream.hpp"
  73 #include "utilities/events.hpp"
  74 #include "utilities/elfFile.hpp"
  75 #include "utilities/growableArray.hpp"
  76 #include "utilities/macros.hpp"
  77 #include "utilities/powerOfTwo.hpp"
  78 #include "utilities/vmError.hpp"
  79 
  80 // put OS-includes here
  81 # include <sys/types.h>
  82 # include <sys/mman.h>
  83 # include <sys/stat.h>
  84 # include <sys/select.h>
  85 # include <pthread.h>
  86 # include <signal.h>
  87 # include <endian.h>
  88 # include <errno.h>
  89 # include <dlfcn.h>
  90 # include <stdio.h>
  91 # include <unistd.h>
  92 # include <sys/resource.h>
  93 # include <pthread.h>
  94 # include <sys/stat.h>
  95 # include <sys/time.h>
  96 # include <sys/times.h>
  97 # include <sys/utsname.h>
  98 # include <sys/socket.h>
  99 # include <sys/wait.h>
 100 # include <pwd.h>
 101 # include <poll.h>
 102 # include <fcntl.h>
 103 # include <string.h>
 104 # include <syscall.h>
 105 # include <sys/sysinfo.h>
 106 # include <gnu/libc-version.h>
 107 # include <sys/ipc.h>
 108 # include <sys/shm.h>
 109 # include <link.h>
 110 # include <stdint.h>
 111 # include <inttypes.h>
 112 # include <sys/ioctl.h>
 113 # include <linux/elf-em.h>
 114 
 115 #ifndef _GNU_SOURCE
 116   #define _GNU_SOURCE
 117   #include <sched.h>
 118   #undef _GNU_SOURCE
 119 #else
 120   #include <sched.h>
 121 #endif
 122 
 123 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 124 // getrusage() is prepared to handle the associated failure.
 125 #ifndef RUSAGE_THREAD
 126   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 127 #endif
 128 
 129 #define MAX_PATH    (2 * K)
 130 
 131 #define MAX_SECS 100000000
 132 
 133 // for timer info max values which include all bits
 134 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 135 
 136 enum CoredumpFilterBit {
 137   FILE_BACKED_PVT_BIT = 1 << 2,
 138   FILE_BACKED_SHARED_BIT = 1 << 3,
 139   LARGEPAGES_BIT = 1 << 6,
 140   DAX_SHARED_BIT = 1 << 8
 141 };
 142 
 143 ////////////////////////////////////////////////////////////////////////////////
 144 // global variables
 145 julong os::Linux::_physical_memory = 0;
 146 
 147 address   os::Linux::_initial_thread_stack_bottom = NULL;
 148 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 149 
 150 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 151 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 152 pthread_t os::Linux::_main_thread;
 153 int os::Linux::_page_size = -1;
 154 bool os::Linux::_supports_fast_thread_cpu_time = false;
 155 const char * os::Linux::_glibc_version = NULL;
 156 const char * os::Linux::_libpthread_version = NULL;
 157 
 158 static jlong initial_time_count=0;
 159 
 160 static int clock_tics_per_sec = 100;
 161 
 162 // If the VM might have been created on the primordial thread, we need to resolve the
 163 // primordial thread stack bounds and check if the current thread might be the
 164 // primordial thread in places. If we know that the primordial thread is never used,
 165 // such as when the VM was created by one of the standard java launchers, we can
 166 // avoid this
 167 static bool suppress_primordial_thread_resolution = false;
 168 
 169 // For diagnostics to print a message once. see run_periodic_checks
 170 static sigset_t check_signal_done;
 171 static bool check_signals = true;
 172 
 173 // Signal number used to suspend/resume a thread
 174 
 175 // do not use any signal number less than SIGSEGV, see 4355769
 176 static int SR_signum = SIGUSR2;
 177 sigset_t SR_sigset;
 178 
 179 // utility functions
 180 
 181 static int SR_initialize();
 182 
 183 julong os::available_memory() {
 184   return Linux::available_memory();
 185 }
 186 
 187 julong os::Linux::available_memory() {
 188   // values in struct sysinfo are "unsigned long"
 189   struct sysinfo si;
 190   julong avail_mem;
 191 
 192   if (OSContainer::is_containerized()) {
 193     jlong mem_limit, mem_usage;
 194     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 195       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 196                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 197     }
 198     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 199       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 200     }
 201     if (mem_limit > 0 && mem_usage > 0 ) {
 202       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 203       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 204       return avail_mem;
 205     }
 206   }
 207 
 208   sysinfo(&si);
 209   avail_mem = (julong)si.freeram * si.mem_unit;
 210   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 211   return avail_mem;
 212 }
 213 
 214 julong os::physical_memory() {
 215   jlong phys_mem = 0;
 216   if (OSContainer::is_containerized()) {
 217     jlong mem_limit;
 218     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 219       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 220       return mem_limit;
 221     }
 222     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 223                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 224   }
 225 
 226   phys_mem = Linux::physical_memory();
 227   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 228   return phys_mem;
 229 }
 230 
 231 static uint64_t initial_total_ticks = 0;
 232 static uint64_t initial_steal_ticks = 0;
 233 static bool     has_initial_tick_info = false;
 234 
 235 static void next_line(FILE *f) {
 236   int c;
 237   do {
 238     c = fgetc(f);
 239   } while (c != '\n' && c != EOF);
 240 }
 241 
 242 bool os::Linux::get_tick_information(CPUPerfTicks* pticks, int which_logical_cpu) {
 243   FILE*         fh;
 244   uint64_t      userTicks, niceTicks, systemTicks, idleTicks;
 245   // since at least kernel 2.6 : iowait: time waiting for I/O to complete
 246   // irq: time  servicing interrupts; softirq: time servicing softirqs
 247   uint64_t      iowTicks = 0, irqTicks = 0, sirqTicks= 0;
 248   // steal (since kernel 2.6.11): time spent in other OS when running in a virtualized environment
 249   uint64_t      stealTicks = 0;
 250   // guest (since kernel 2.6.24): time spent running a virtual CPU for guest OS under the
 251   // control of the Linux kernel
 252   uint64_t      guestNiceTicks = 0;
 253   int           logical_cpu = -1;
 254   const int     required_tickinfo_count = (which_logical_cpu == -1) ? 4 : 5;
 255   int           n;
 256 
 257   memset(pticks, 0, sizeof(CPUPerfTicks));
 258 
 259   if ((fh = fopen("/proc/stat", "r")) == NULL) {
 260     return false;
 261   }
 262 
 263   if (which_logical_cpu == -1) {
 264     n = fscanf(fh, "cpu " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 265             UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 266             UINT64_FORMAT " " UINT64_FORMAT " ",
 267             &userTicks, &niceTicks, &systemTicks, &idleTicks,
 268             &iowTicks, &irqTicks, &sirqTicks,
 269             &stealTicks, &guestNiceTicks);
 270   } else {
 271     // Move to next line
 272     next_line(fh);
 273 
 274     // find the line for requested cpu faster to just iterate linefeeds?
 275     for (int i = 0; i < which_logical_cpu; i++) {
 276       next_line(fh);
 277     }
 278 
 279     n = fscanf(fh, "cpu%u " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 280                UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 281                UINT64_FORMAT " " UINT64_FORMAT " ",
 282                &logical_cpu, &userTicks, &niceTicks,
 283                &systemTicks, &idleTicks, &iowTicks, &irqTicks, &sirqTicks,
 284                &stealTicks, &guestNiceTicks);
 285   }
 286 
 287   fclose(fh);
 288   if (n < required_tickinfo_count || logical_cpu != which_logical_cpu) {
 289     return false;
 290   }
 291   pticks->used       = userTicks + niceTicks;
 292   pticks->usedKernel = systemTicks + irqTicks + sirqTicks;
 293   pticks->total      = userTicks + niceTicks + systemTicks + idleTicks +
 294                        iowTicks + irqTicks + sirqTicks + stealTicks + guestNiceTicks;
 295 
 296   if (n > required_tickinfo_count + 3) {
 297     pticks->steal = stealTicks;
 298     pticks->has_steal_ticks = true;
 299   } else {
 300     pticks->steal = 0;
 301     pticks->has_steal_ticks = false;
 302   }
 303 
 304   return true;
 305 }
 306 
 307 // Return true if user is running as root.
 308 
 309 bool os::have_special_privileges() {
 310   static bool init = false;
 311   static bool privileges = false;
 312   if (!init) {
 313     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 314     init = true;
 315   }
 316   return privileges;
 317 }
 318 
 319 
 320 #ifndef SYS_gettid
 321 // i386: 224, ia64: 1105, amd64: 186
 322   #ifdef __ia64__
 323     #define SYS_gettid 1105
 324   #else
 325     #ifdef __i386__
 326       #define SYS_gettid 224
 327     #else
 328       #ifdef __amd64__
 329         #define SYS_gettid 186
 330       #else
 331         #error define gettid for the arch
 332       #endif
 333     #endif
 334   #endif
 335 #endif
 336 
 337 
 338 // pid_t gettid()
 339 //
 340 // Returns the kernel thread id of the currently running thread. Kernel
 341 // thread id is used to access /proc.
 342 pid_t os::Linux::gettid() {
 343   int rslt = syscall(SYS_gettid);
 344   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 345   return (pid_t)rslt;
 346 }
 347 
 348 // Most versions of linux have a bug where the number of processors are
 349 // determined by looking at the /proc file system.  In a chroot environment,
 350 // the system call returns 1.
 351 static bool unsafe_chroot_detected = false;
 352 static const char *unstable_chroot_error = "/proc file system not found.\n"
 353                      "Java may be unstable running multithreaded in a chroot "
 354                      "environment on Linux when /proc filesystem is not mounted.";
 355 
 356 void os::Linux::initialize_system_info() {
 357   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 358   if (processor_count() == 1) {
 359     pid_t pid = os::Linux::gettid();
 360     char fname[32];
 361     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 362     FILE *fp = fopen(fname, "r");
 363     if (fp == NULL) {
 364       unsafe_chroot_detected = true;
 365     } else {
 366       fclose(fp);
 367     }
 368   }
 369   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 370   assert(processor_count() > 0, "linux error");
 371 }
 372 
 373 void os::init_system_properties_values() {
 374   // The next steps are taken in the product version:
 375   //
 376   // Obtain the JAVA_HOME value from the location of libjvm.so.
 377   // This library should be located at:
 378   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 379   //
 380   // If "/jre/lib/" appears at the right place in the path, then we
 381   // assume libjvm.so is installed in a JDK and we use this path.
 382   //
 383   // Otherwise exit with message: "Could not create the Java virtual machine."
 384   //
 385   // The following extra steps are taken in the debugging version:
 386   //
 387   // If "/jre/lib/" does NOT appear at the right place in the path
 388   // instead of exit check for $JAVA_HOME environment variable.
 389   //
 390   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 391   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 392   // it looks like libjvm.so is installed there
 393   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 394   //
 395   // Otherwise exit.
 396   //
 397   // Important note: if the location of libjvm.so changes this
 398   // code needs to be changed accordingly.
 399 
 400   // See ld(1):
 401   //      The linker uses the following search paths to locate required
 402   //      shared libraries:
 403   //        1: ...
 404   //        ...
 405   //        7: The default directories, normally /lib and /usr/lib.
 406 #ifndef OVERRIDE_LIBPATH
 407   #if defined(AMD64) || defined(PPC64) || defined(S390)
 408     #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 409   #else
 410     #define DEFAULT_LIBPATH "/lib:/usr/lib"
 411   #endif
 412 #else
 413   #define DEFAULT_LIBPATH OVERRIDE_LIBPATH
 414 #endif
 415 
 416 // Base path of extensions installed on the system.
 417 #define SYS_EXT_DIR     "/usr/java/packages"
 418 #define EXTENSIONS_DIR  "/lib/ext"
 419 
 420   // Buffer that fits several sprintfs.
 421   // Note that the space for the colon and the trailing null are provided
 422   // by the nulls included by the sizeof operator.
 423   const size_t bufsize =
 424     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 425          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 426   char *buf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 427 
 428   // sysclasspath, java_home, dll_dir
 429   {
 430     char *pslash;
 431     os::jvm_path(buf, bufsize);
 432 
 433     // Found the full path to libjvm.so.
 434     // Now cut the path to <java_home>/jre if we can.
 435     pslash = strrchr(buf, '/');
 436     if (pslash != NULL) {
 437       *pslash = '\0';            // Get rid of /libjvm.so.
 438     }
 439     pslash = strrchr(buf, '/');
 440     if (pslash != NULL) {
 441       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 442     }
 443     Arguments::set_dll_dir(buf);
 444 
 445     if (pslash != NULL) {
 446       pslash = strrchr(buf, '/');
 447       if (pslash != NULL) {
 448         *pslash = '\0';        // Get rid of /lib.
 449       }
 450     }
 451     Arguments::set_java_home(buf);
 452     if (!set_boot_path('/', ':')) {
 453       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 454     }
 455   }
 456 
 457   // Where to look for native libraries.
 458   //
 459   // Note: Due to a legacy implementation, most of the library path
 460   // is set in the launcher. This was to accomodate linking restrictions
 461   // on legacy Linux implementations (which are no longer supported).
 462   // Eventually, all the library path setting will be done here.
 463   //
 464   // However, to prevent the proliferation of improperly built native
 465   // libraries, the new path component /usr/java/packages is added here.
 466   // Eventually, all the library path setting will be done here.
 467   {
 468     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 469     // should always exist (until the legacy problem cited above is
 470     // addressed).
 471     const char *v = ::getenv("LD_LIBRARY_PATH");
 472     const char *v_colon = ":";
 473     if (v == NULL) { v = ""; v_colon = ""; }
 474     // That's +1 for the colon and +1 for the trailing '\0'.
 475     char *ld_library_path = NEW_C_HEAP_ARRAY(char,
 476                                              strlen(v) + 1 +
 477                                              sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 478                                              mtInternal);
 479     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 480     Arguments::set_library_path(ld_library_path);
 481     FREE_C_HEAP_ARRAY(char, ld_library_path);
 482   }
 483 
 484   // Extensions directories.
 485   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 486   Arguments::set_ext_dirs(buf);
 487 
 488   FREE_C_HEAP_ARRAY(char, buf);
 489 
 490 #undef DEFAULT_LIBPATH
 491 #undef SYS_EXT_DIR
 492 #undef EXTENSIONS_DIR
 493 }
 494 
 495 ////////////////////////////////////////////////////////////////////////////////
 496 // breakpoint support
 497 
 498 void os::breakpoint() {
 499   BREAKPOINT;
 500 }
 501 
 502 extern "C" void breakpoint() {
 503   // use debugger to set breakpoint here
 504 }
 505 
 506 ////////////////////////////////////////////////////////////////////////////////
 507 // signal support
 508 
 509 debug_only(static bool signal_sets_initialized = false);
 510 static sigset_t unblocked_sigs, vm_sigs;
 511 
 512 void os::Linux::signal_sets_init() {
 513   // Should also have an assertion stating we are still single-threaded.
 514   assert(!signal_sets_initialized, "Already initialized");
 515   // Fill in signals that are necessarily unblocked for all threads in
 516   // the VM. Currently, we unblock the following signals:
 517   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 518   //                         by -Xrs (=ReduceSignalUsage));
 519   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 520   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 521   // the dispositions or masks wrt these signals.
 522   // Programs embedding the VM that want to use the above signals for their
 523   // own purposes must, at this time, use the "-Xrs" option to prevent
 524   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 525   // (See bug 4345157, and other related bugs).
 526   // In reality, though, unblocking these signals is really a nop, since
 527   // these signals are not blocked by default.
 528   sigemptyset(&unblocked_sigs);
 529   sigaddset(&unblocked_sigs, SIGILL);
 530   sigaddset(&unblocked_sigs, SIGSEGV);
 531   sigaddset(&unblocked_sigs, SIGBUS);
 532   sigaddset(&unblocked_sigs, SIGFPE);
 533 #if defined(PPC64)
 534   sigaddset(&unblocked_sigs, SIGTRAP);
 535 #endif
 536   sigaddset(&unblocked_sigs, SR_signum);
 537 
 538   if (!ReduceSignalUsage) {
 539     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 540       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 541     }
 542     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 543       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 544     }
 545     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 546       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 547     }
 548   }
 549   // Fill in signals that are blocked by all but the VM thread.
 550   sigemptyset(&vm_sigs);
 551   if (!ReduceSignalUsage) {
 552     sigaddset(&vm_sigs, BREAK_SIGNAL);
 553   }
 554   debug_only(signal_sets_initialized = true);
 555 
 556 }
 557 
 558 // These are signals that are unblocked while a thread is running Java.
 559 // (For some reason, they get blocked by default.)
 560 sigset_t* os::Linux::unblocked_signals() {
 561   assert(signal_sets_initialized, "Not initialized");
 562   return &unblocked_sigs;
 563 }
 564 
 565 // These are the signals that are blocked while a (non-VM) thread is
 566 // running Java. Only the VM thread handles these signals.
 567 sigset_t* os::Linux::vm_signals() {
 568   assert(signal_sets_initialized, "Not initialized");
 569   return &vm_sigs;
 570 }
 571 
 572 void os::Linux::hotspot_sigmask(Thread* thread) {
 573 
 574   //Save caller's signal mask before setting VM signal mask
 575   sigset_t caller_sigmask;
 576   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 577 
 578   OSThread* osthread = thread->osthread();
 579   osthread->set_caller_sigmask(caller_sigmask);
 580 
 581   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 582 
 583   if (!ReduceSignalUsage) {
 584     if (thread->is_VM_thread()) {
 585       // Only the VM thread handles BREAK_SIGNAL ...
 586       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 587     } else {
 588       // ... all other threads block BREAK_SIGNAL
 589       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 590     }
 591   }
 592 }
 593 
 594 //////////////////////////////////////////////////////////////////////////////
 595 // detecting pthread library
 596 
 597 void os::Linux::libpthread_init() {
 598   // Save glibc and pthread version strings.
 599 #if !defined(_CS_GNU_LIBC_VERSION) || \
 600     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 601   #error "glibc too old (< 2.3.2)"
 602 #endif
 603 
 604   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 605   assert(n > 0, "cannot retrieve glibc version");
 606   char *str = (char *)malloc(n, mtInternal);
 607   confstr(_CS_GNU_LIBC_VERSION, str, n);
 608   os::Linux::set_glibc_version(str);
 609 
 610   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 611   assert(n > 0, "cannot retrieve pthread version");
 612   str = (char *)malloc(n, mtInternal);
 613   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 614   os::Linux::set_libpthread_version(str);
 615 }
 616 
 617 /////////////////////////////////////////////////////////////////////////////
 618 // thread stack expansion
 619 
 620 // os::Linux::manually_expand_stack() takes care of expanding the thread
 621 // stack. Note that this is normally not needed: pthread stacks allocate
 622 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 623 // committed. Therefore it is not necessary to expand the stack manually.
 624 //
 625 // Manually expanding the stack was historically needed on LinuxThreads
 626 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 627 // it is kept to deal with very rare corner cases:
 628 //
 629 // For one, user may run the VM on an own implementation of threads
 630 // whose stacks are - like the old LinuxThreads - implemented using
 631 // mmap(MAP_GROWSDOWN).
 632 //
 633 // Also, this coding may be needed if the VM is running on the primordial
 634 // thread. Normally we avoid running on the primordial thread; however,
 635 // user may still invoke the VM on the primordial thread.
 636 //
 637 // The following historical comment describes the details about running
 638 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 639 
 640 
 641 // Force Linux kernel to expand current thread stack. If "bottom" is close
 642 // to the stack guard, caller should block all signals.
 643 //
 644 // MAP_GROWSDOWN:
 645 //   A special mmap() flag that is used to implement thread stacks. It tells
 646 //   kernel that the memory region should extend downwards when needed. This
 647 //   allows early versions of LinuxThreads to only mmap the first few pages
 648 //   when creating a new thread. Linux kernel will automatically expand thread
 649 //   stack as needed (on page faults).
 650 //
 651 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 652 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 653 //   region, it's hard to tell if the fault is due to a legitimate stack
 654 //   access or because of reading/writing non-exist memory (e.g. buffer
 655 //   overrun). As a rule, if the fault happens below current stack pointer,
 656 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 657 //   application (see Linux kernel fault.c).
 658 //
 659 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 660 //   stack overflow detection.
 661 //
 662 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 663 //   not use MAP_GROWSDOWN.
 664 //
 665 // To get around the problem and allow stack banging on Linux, we need to
 666 // manually expand thread stack after receiving the SIGSEGV.
 667 //
 668 // There are two ways to expand thread stack to address "bottom", we used
 669 // both of them in JVM before 1.5:
 670 //   1. adjust stack pointer first so that it is below "bottom", and then
 671 //      touch "bottom"
 672 //   2. mmap() the page in question
 673 //
 674 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 675 // if current sp is already near the lower end of page 101, and we need to
 676 // call mmap() to map page 100, it is possible that part of the mmap() frame
 677 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 678 // That will destroy the mmap() frame and cause VM to crash.
 679 //
 680 // The following code works by adjusting sp first, then accessing the "bottom"
 681 // page to force a page fault. Linux kernel will then automatically expand the
 682 // stack mapping.
 683 //
 684 // _expand_stack_to() assumes its frame size is less than page size, which
 685 // should always be true if the function is not inlined.
 686 
 687 static void NOINLINE _expand_stack_to(address bottom) {
 688   address sp;
 689   size_t size;
 690   volatile char *p;
 691 
 692   // Adjust bottom to point to the largest address within the same page, it
 693   // gives us a one-page buffer if alloca() allocates slightly more memory.
 694   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 695   bottom += os::Linux::page_size() - 1;
 696 
 697   // sp might be slightly above current stack pointer; if that's the case, we
 698   // will alloca() a little more space than necessary, which is OK. Don't use
 699   // os::current_stack_pointer(), as its result can be slightly below current
 700   // stack pointer, causing us to not alloca enough to reach "bottom".
 701   sp = (address)&sp;
 702 
 703   if (sp > bottom) {
 704     size = sp - bottom;
 705     p = (volatile char *)alloca(size);
 706     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 707     p[0] = '\0';
 708   }
 709 }
 710 
 711 void os::Linux::expand_stack_to(address bottom) {
 712   _expand_stack_to(bottom);
 713 }
 714 
 715 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 716   assert(t!=NULL, "just checking");
 717   assert(t->osthread()->expanding_stack(), "expand should be set");
 718 
 719   if (t->is_in_usable_stack(addr)) {
 720     sigset_t mask_all, old_sigset;
 721     sigfillset(&mask_all);
 722     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 723     _expand_stack_to(addr);
 724     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 725     return true;
 726   }
 727   return false;
 728 }
 729 
 730 //////////////////////////////////////////////////////////////////////////////
 731 // create new thread
 732 
 733 // Thread start routine for all newly created threads
 734 static void *thread_native_entry(Thread *thread) {
 735 
 736   thread->record_stack_base_and_size();
 737 
 738   // Try to randomize the cache line index of hot stack frames.
 739   // This helps when threads of the same stack traces evict each other's
 740   // cache lines. The threads can be either from the same JVM instance, or
 741   // from different JVM instances. The benefit is especially true for
 742   // processors with hyperthreading technology.
 743   static int counter = 0;
 744   int pid = os::current_process_id();
 745   alloca(((pid ^ counter++) & 7) * 128);
 746 
 747   thread->initialize_thread_current();
 748 
 749   OSThread* osthread = thread->osthread();
 750   Monitor* sync = osthread->startThread_lock();
 751 
 752   osthread->set_thread_id(os::current_thread_id());
 753 
 754   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 755     os::current_thread_id(), (uintx) pthread_self());
 756 
 757   if (UseNUMA) {
 758     int lgrp_id = os::numa_get_group_id();
 759     if (lgrp_id != -1) {
 760       thread->set_lgrp_id(lgrp_id);
 761     }
 762   }
 763   // initialize signal mask for this thread
 764   os::Linux::hotspot_sigmask(thread);
 765 
 766   // initialize floating point control register
 767   os::Linux::init_thread_fpu_state();
 768 
 769   // handshaking with parent thread
 770   {
 771     MutexLocker ml(sync, Mutex::_no_safepoint_check_flag);
 772 
 773     // notify parent thread
 774     osthread->set_state(INITIALIZED);
 775     sync->notify_all();
 776 
 777     // wait until os::start_thread()
 778     while (osthread->get_state() == INITIALIZED) {
 779       sync->wait_without_safepoint_check();
 780     }
 781   }
 782 
 783   assert(osthread->pthread_id() != 0, "pthread_id was not set as expected");
 784 
 785   // call one more level start routine
 786   thread->call_run();
 787 
 788   // Note: at this point the thread object may already have deleted itself.
 789   // Prevent dereferencing it from here on out.
 790   thread = NULL;
 791 
 792   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 793     os::current_thread_id(), (uintx) pthread_self());
 794 
 795   return 0;
 796 }
 797 
 798 // On Linux, glibc places static TLS blocks (for __thread variables) on
 799 // the thread stack. This decreases the stack size actually available
 800 // to threads.
 801 //
 802 // For large static TLS sizes, this may cause threads to malfunction due
 803 // to insufficient stack space. This is a well-known issue in glibc:
 804 // http://sourceware.org/bugzilla/show_bug.cgi?id=11787.
 805 //
 806 // As a workaround, we call a private but assumed-stable glibc function,
 807 // __pthread_get_minstack() to obtain the minstack size and derive the
 808 // static TLS size from it. We then increase the user requested stack
 809 // size by this TLS size.
 810 //
 811 // Due to compatibility concerns, this size adjustment is opt-in and
 812 // controlled via AdjustStackSizeForTLS.
 813 typedef size_t (*GetMinStack)(const pthread_attr_t *attr);
 814 
 815 GetMinStack _get_minstack_func = NULL;
 816 
 817 static void get_minstack_init() {
 818   _get_minstack_func =
 819         (GetMinStack)dlsym(RTLD_DEFAULT, "__pthread_get_minstack");
 820   log_info(os, thread)("Lookup of __pthread_get_minstack %s",
 821                        _get_minstack_func == NULL ? "failed" : "succeeded");
 822 }
 823 
 824 // Returns the size of the static TLS area glibc puts on thread stacks.
 825 // The value is cached on first use, which occurs when the first thread
 826 // is created during VM initialization.
 827 static size_t get_static_tls_area_size(const pthread_attr_t *attr) {
 828   size_t tls_size = 0;
 829   if (_get_minstack_func != NULL) {
 830     // Obtain the pthread minstack size by calling __pthread_get_minstack.
 831     size_t minstack_size = _get_minstack_func(attr);
 832 
 833     // Remove non-TLS area size included in minstack size returned
 834     // by __pthread_get_minstack() to get the static TLS size.
 835     // In glibc before 2.27, minstack size includes guard_size.
 836     // In glibc 2.27 and later, guard_size is automatically added
 837     // to the stack size by pthread_create and is no longer included
 838     // in minstack size. In both cases, the guard_size is taken into
 839     // account, so there is no need to adjust the result for that.
 840     //
 841     // Although __pthread_get_minstack() is a private glibc function,
 842     // it is expected to have a stable behavior across future glibc
 843     // versions while glibc still allocates the static TLS blocks off
 844     // the stack. Following is glibc 2.28 __pthread_get_minstack():
 845     //
 846     // size_t
 847     // __pthread_get_minstack (const pthread_attr_t *attr)
 848     // {
 849     //   return GLRO(dl_pagesize) + __static_tls_size + PTHREAD_STACK_MIN;
 850     // }
 851     //
 852     //
 853     // The following 'minstack_size > os::vm_page_size() + PTHREAD_STACK_MIN'
 854     // if check is done for precaution.
 855     if (minstack_size > (size_t)os::vm_page_size() + PTHREAD_STACK_MIN) {
 856       tls_size = minstack_size - os::vm_page_size() - PTHREAD_STACK_MIN;
 857     }
 858   }
 859 
 860   log_info(os, thread)("Stack size adjustment for TLS is " SIZE_FORMAT,
 861                        tls_size);
 862   return tls_size;
 863 }
 864 
 865 bool os::create_thread(Thread* thread, ThreadType thr_type,
 866                        size_t req_stack_size) {
 867   assert(thread->osthread() == NULL, "caller responsible");
 868 
 869   // Allocate the OSThread object
 870   OSThread* osthread = new OSThread(NULL, NULL);
 871   if (osthread == NULL) {
 872     return false;
 873   }
 874 
 875   // set the correct thread state
 876   osthread->set_thread_type(thr_type);
 877 
 878   // Initial state is ALLOCATED but not INITIALIZED
 879   osthread->set_state(ALLOCATED);
 880 
 881   thread->set_osthread(osthread);
 882 
 883   // init thread attributes
 884   pthread_attr_t attr;
 885   pthread_attr_init(&attr);
 886   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 887 
 888   // Calculate stack size if it's not specified by caller.
 889   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 890   // In glibc versions prior to 2.7 the guard size mechanism
 891   // is not implemented properly. The posix standard requires adding
 892   // the size of the guard pages to the stack size, instead Linux
 893   // takes the space out of 'stacksize'. Thus we adapt the requested
 894   // stack_size by the size of the guard pages to mimick proper
 895   // behaviour. However, be careful not to end up with a size
 896   // of zero due to overflow. Don't add the guard page in that case.
 897   size_t guard_size = os::Linux::default_guard_size(thr_type);
 898   // Configure glibc guard page. Must happen before calling
 899   // get_static_tls_area_size(), which uses the guard_size.
 900   pthread_attr_setguardsize(&attr, guard_size);
 901 
 902   size_t stack_adjust_size = 0;
 903   if (AdjustStackSizeForTLS) {
 904     // Adjust the stack_size for on-stack TLS - see get_static_tls_area_size().
 905     stack_adjust_size += get_static_tls_area_size(&attr);
 906   } else {
 907     stack_adjust_size += guard_size;
 908   }
 909 
 910   stack_adjust_size = align_up(stack_adjust_size, os::vm_page_size());
 911   if (stack_size <= SIZE_MAX - stack_adjust_size) {
 912     stack_size += stack_adjust_size;
 913   }
 914   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 915 
 916   int status = pthread_attr_setstacksize(&attr, stack_size);
 917   assert_status(status == 0, status, "pthread_attr_setstacksize");
 918 
 919   ThreadState state;
 920 
 921   {
 922     pthread_t tid;
 923     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 924 
 925     char buf[64];
 926     if (ret == 0) {
 927       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 928         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 929     } else {
 930       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 931         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 932       // Log some OS information which might explain why creating the thread failed.
 933       log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 934       LogStream st(Log(os, thread)::info());
 935       os::Posix::print_rlimit_info(&st);
 936       os::print_memory_info(&st);
 937       os::Linux::print_proc_sys_info(&st);
 938       os::Linux::print_container_info(&st);
 939     }
 940 
 941     pthread_attr_destroy(&attr);
 942 
 943     if (ret != 0) {
 944       // Need to clean up stuff we've allocated so far
 945       thread->set_osthread(NULL);
 946       delete osthread;
 947       return false;
 948     }
 949 
 950     // Store pthread info into the OSThread
 951     osthread->set_pthread_id(tid);
 952 
 953     // Wait until child thread is either initialized or aborted
 954     {
 955       Monitor* sync_with_child = osthread->startThread_lock();
 956       MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 957       while ((state = osthread->get_state()) == ALLOCATED) {
 958         sync_with_child->wait_without_safepoint_check();
 959       }
 960     }
 961   }
 962 
 963   // Aborted due to thread limit being reached
 964   if (state == ZOMBIE) {
 965     thread->set_osthread(NULL);
 966     delete osthread;
 967     return false;
 968   }
 969 
 970   // The thread is returned suspended (in state INITIALIZED),
 971   // and is started higher up in the call chain
 972   assert(state == INITIALIZED, "race condition");
 973   return true;
 974 }
 975 
 976 /////////////////////////////////////////////////////////////////////////////
 977 // attach existing thread
 978 
 979 // bootstrap the main thread
 980 bool os::create_main_thread(JavaThread* thread) {
 981   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 982   return create_attached_thread(thread);
 983 }
 984 
 985 bool os::create_attached_thread(JavaThread* thread) {
 986 #ifdef ASSERT
 987   thread->verify_not_published();
 988 #endif
 989 
 990   // Allocate the OSThread object
 991   OSThread* osthread = new OSThread(NULL, NULL);
 992 
 993   if (osthread == NULL) {
 994     return false;
 995   }
 996 
 997   // Store pthread info into the OSThread
 998   osthread->set_thread_id(os::Linux::gettid());
 999   osthread->set_pthread_id(::pthread_self());
1000 
1001   // initialize floating point control register
1002   os::Linux::init_thread_fpu_state();
1003 
1004   // Initial thread state is RUNNABLE
1005   osthread->set_state(RUNNABLE);
1006 
1007   thread->set_osthread(osthread);
1008 
1009   if (UseNUMA) {
1010     int lgrp_id = os::numa_get_group_id();
1011     if (lgrp_id != -1) {
1012       thread->set_lgrp_id(lgrp_id);
1013     }
1014   }
1015 
1016   if (os::is_primordial_thread()) {
1017     // If current thread is primordial thread, its stack is mapped on demand,
1018     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1019     // the entire stack region to avoid SEGV in stack banging.
1020     // It is also useful to get around the heap-stack-gap problem on SuSE
1021     // kernel (see 4821821 for details). We first expand stack to the top
1022     // of yellow zone, then enable stack yellow zone (order is significant,
1023     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1024     // is no gap between the last two virtual memory regions.
1025 
1026     JavaThread *jt = (JavaThread *)thread;
1027     address addr = jt->stack_reserved_zone_base();
1028     assert(addr != NULL, "initialization problem?");
1029     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1030 
1031     osthread->set_expanding_stack();
1032     os::Linux::manually_expand_stack(jt, addr);
1033     osthread->clear_expanding_stack();
1034   }
1035 
1036   // initialize signal mask for this thread
1037   // and save the caller's signal mask
1038   os::Linux::hotspot_sigmask(thread);
1039 
1040   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
1041     os::current_thread_id(), (uintx) pthread_self());
1042 
1043   return true;
1044 }
1045 
1046 void os::pd_start_thread(Thread* thread) {
1047   OSThread * osthread = thread->osthread();
1048   assert(osthread->get_state() != INITIALIZED, "just checking");
1049   Monitor* sync_with_child = osthread->startThread_lock();
1050   MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1051   sync_with_child->notify();
1052 }
1053 
1054 // Free Linux resources related to the OSThread
1055 void os::free_thread(OSThread* osthread) {
1056   assert(osthread != NULL, "osthread not set");
1057 
1058   // We are told to free resources of the argument thread,
1059   // but we can only really operate on the current thread.
1060   assert(Thread::current()->osthread() == osthread,
1061          "os::free_thread but not current thread");
1062 
1063 #ifdef ASSERT
1064   sigset_t current;
1065   sigemptyset(&current);
1066   pthread_sigmask(SIG_SETMASK, NULL, &current);
1067   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
1068 #endif
1069 
1070   // Restore caller's signal mask
1071   sigset_t sigmask = osthread->caller_sigmask();
1072   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1073 
1074   delete osthread;
1075 }
1076 
1077 //////////////////////////////////////////////////////////////////////////////
1078 // primordial thread
1079 
1080 // Check if current thread is the primordial thread, similar to Solaris thr_main.
1081 bool os::is_primordial_thread(void) {
1082   if (suppress_primordial_thread_resolution) {
1083     return false;
1084   }
1085   char dummy;
1086   // If called before init complete, thread stack bottom will be null.
1087   // Can be called if fatal error occurs before initialization.
1088   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
1089   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
1090          os::Linux::initial_thread_stack_size()   != 0,
1091          "os::init did not locate primordial thread's stack region");
1092   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
1093       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
1094                         os::Linux::initial_thread_stack_size()) {
1095     return true;
1096   } else {
1097     return false;
1098   }
1099 }
1100 
1101 // Find the virtual memory area that contains addr
1102 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1103   FILE *fp = fopen("/proc/self/maps", "r");
1104   if (fp) {
1105     address low, high;
1106     while (!feof(fp)) {
1107       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1108         if (low <= addr && addr < high) {
1109           if (vma_low)  *vma_low  = low;
1110           if (vma_high) *vma_high = high;
1111           fclose(fp);
1112           return true;
1113         }
1114       }
1115       for (;;) {
1116         int ch = fgetc(fp);
1117         if (ch == EOF || ch == (int)'\n') break;
1118       }
1119     }
1120     fclose(fp);
1121   }
1122   return false;
1123 }
1124 
1125 // Locate primordial thread stack. This special handling of primordial thread stack
1126 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1127 // bogus value for the primordial process thread. While the launcher has created
1128 // the VM in a new thread since JDK 6, we still have to allow for the use of the
1129 // JNI invocation API from a primordial thread.
1130 void os::Linux::capture_initial_stack(size_t max_size) {
1131 
1132   // max_size is either 0 (which means accept OS default for thread stacks) or
1133   // a user-specified value known to be at least the minimum needed. If we
1134   // are actually on the primordial thread we can make it appear that we have a
1135   // smaller max_size stack by inserting the guard pages at that location. But we
1136   // cannot do anything to emulate a larger stack than what has been provided by
1137   // the OS or threading library. In fact if we try to use a stack greater than
1138   // what is set by rlimit then we will crash the hosting process.
1139 
1140   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
1141   // If this is "unlimited" then it will be a huge value.
1142   struct rlimit rlim;
1143   getrlimit(RLIMIT_STACK, &rlim);
1144   size_t stack_size = rlim.rlim_cur;
1145 
1146   // 6308388: a bug in ld.so will relocate its own .data section to the
1147   //   lower end of primordial stack; reduce ulimit -s value a little bit
1148   //   so we won't install guard page on ld.so's data section.
1149   //   But ensure we don't underflow the stack size - allow 1 page spare
1150   if (stack_size >= (size_t)(3 * page_size())) {
1151     stack_size -= 2 * page_size();
1152   }
1153 
1154   // Try to figure out where the stack base (top) is. This is harder.
1155   //
1156   // When an application is started, glibc saves the initial stack pointer in
1157   // a global variable "__libc_stack_end", which is then used by system
1158   // libraries. __libc_stack_end should be pretty close to stack top. The
1159   // variable is available since the very early days. However, because it is
1160   // a private interface, it could disappear in the future.
1161   //
1162   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1163   // to __libc_stack_end, it is very close to stack top, but isn't the real
1164   // stack top. Note that /proc may not exist if VM is running as a chroot
1165   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1166   // /proc/<pid>/stat could change in the future (though unlikely).
1167   //
1168   // We try __libc_stack_end first. If that doesn't work, look for
1169   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1170   // as a hint, which should work well in most cases.
1171 
1172   uintptr_t stack_start;
1173 
1174   // try __libc_stack_end first
1175   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1176   if (p && *p) {
1177     stack_start = *p;
1178   } else {
1179     // see if we can get the start_stack field from /proc/self/stat
1180     FILE *fp;
1181     int pid;
1182     char state;
1183     int ppid;
1184     int pgrp;
1185     int session;
1186     int nr;
1187     int tpgrp;
1188     unsigned long flags;
1189     unsigned long minflt;
1190     unsigned long cminflt;
1191     unsigned long majflt;
1192     unsigned long cmajflt;
1193     unsigned long utime;
1194     unsigned long stime;
1195     long cutime;
1196     long cstime;
1197     long prio;
1198     long nice;
1199     long junk;
1200     long it_real;
1201     uintptr_t start;
1202     uintptr_t vsize;
1203     intptr_t rss;
1204     uintptr_t rsslim;
1205     uintptr_t scodes;
1206     uintptr_t ecode;
1207     int i;
1208 
1209     // Figure what the primordial thread stack base is. Code is inspired
1210     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1211     // followed by command name surrounded by parentheses, state, etc.
1212     char stat[2048];
1213     int statlen;
1214 
1215     fp = fopen("/proc/self/stat", "r");
1216     if (fp) {
1217       statlen = fread(stat, 1, 2047, fp);
1218       stat[statlen] = '\0';
1219       fclose(fp);
1220 
1221       // Skip pid and the command string. Note that we could be dealing with
1222       // weird command names, e.g. user could decide to rename java launcher
1223       // to "java 1.4.2 :)", then the stat file would look like
1224       //                1234 (java 1.4.2 :)) R ... ...
1225       // We don't really need to know the command string, just find the last
1226       // occurrence of ")" and then start parsing from there. See bug 4726580.
1227       char * s = strrchr(stat, ')');
1228 
1229       i = 0;
1230       if (s) {
1231         // Skip blank chars
1232         do { s++; } while (s && isspace(*s));
1233 
1234 #define _UFM UINTX_FORMAT
1235 #define _DFM INTX_FORMAT
1236 
1237         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1238         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1239         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1240                    &state,          // 3  %c
1241                    &ppid,           // 4  %d
1242                    &pgrp,           // 5  %d
1243                    &session,        // 6  %d
1244                    &nr,             // 7  %d
1245                    &tpgrp,          // 8  %d
1246                    &flags,          // 9  %lu
1247                    &minflt,         // 10 %lu
1248                    &cminflt,        // 11 %lu
1249                    &majflt,         // 12 %lu
1250                    &cmajflt,        // 13 %lu
1251                    &utime,          // 14 %lu
1252                    &stime,          // 15 %lu
1253                    &cutime,         // 16 %ld
1254                    &cstime,         // 17 %ld
1255                    &prio,           // 18 %ld
1256                    &nice,           // 19 %ld
1257                    &junk,           // 20 %ld
1258                    &it_real,        // 21 %ld
1259                    &start,          // 22 UINTX_FORMAT
1260                    &vsize,          // 23 UINTX_FORMAT
1261                    &rss,            // 24 INTX_FORMAT
1262                    &rsslim,         // 25 UINTX_FORMAT
1263                    &scodes,         // 26 UINTX_FORMAT
1264                    &ecode,          // 27 UINTX_FORMAT
1265                    &stack_start);   // 28 UINTX_FORMAT
1266       }
1267 
1268 #undef _UFM
1269 #undef _DFM
1270 
1271       if (i != 28 - 2) {
1272         assert(false, "Bad conversion from /proc/self/stat");
1273         // product mode - assume we are the primordial thread, good luck in the
1274         // embedded case.
1275         warning("Can't detect primordial thread stack location - bad conversion");
1276         stack_start = (uintptr_t) &rlim;
1277       }
1278     } else {
1279       // For some reason we can't open /proc/self/stat (for example, running on
1280       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1281       // most cases, so don't abort:
1282       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1283       stack_start = (uintptr_t) &rlim;
1284     }
1285   }
1286 
1287   // Now we have a pointer (stack_start) very close to the stack top, the
1288   // next thing to do is to figure out the exact location of stack top. We
1289   // can find out the virtual memory area that contains stack_start by
1290   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1291   // and its upper limit is the real stack top. (again, this would fail if
1292   // running inside chroot, because /proc may not exist.)
1293 
1294   uintptr_t stack_top;
1295   address low, high;
1296   if (find_vma((address)stack_start, &low, &high)) {
1297     // success, "high" is the true stack top. (ignore "low", because initial
1298     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1299     stack_top = (uintptr_t)high;
1300   } else {
1301     // failed, likely because /proc/self/maps does not exist
1302     warning("Can't detect primordial thread stack location - find_vma failed");
1303     // best effort: stack_start is normally within a few pages below the real
1304     // stack top, use it as stack top, and reduce stack size so we won't put
1305     // guard page outside stack.
1306     stack_top = stack_start;
1307     stack_size -= 16 * page_size();
1308   }
1309 
1310   // stack_top could be partially down the page so align it
1311   stack_top = align_up(stack_top, page_size());
1312 
1313   // Allowed stack value is minimum of max_size and what we derived from rlimit
1314   if (max_size > 0) {
1315     _initial_thread_stack_size = MIN2(max_size, stack_size);
1316   } else {
1317     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1318     // clamp it at 8MB as we do on Solaris
1319     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1320   }
1321   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1322   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1323 
1324   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1325 
1326   if (log_is_enabled(Info, os, thread)) {
1327     // See if we seem to be on primordial process thread
1328     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1329                       uintptr_t(&rlim) < stack_top;
1330 
1331     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1332                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1333                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1334                          stack_top, intptr_t(_initial_thread_stack_bottom));
1335   }
1336 }
1337 
1338 ////////////////////////////////////////////////////////////////////////////////
1339 // time support
1340 
1341 #ifndef SUPPORTS_CLOCK_MONOTONIC
1342 #error "Build platform doesn't support clock_gettime and related functionality"
1343 #endif
1344 
1345 // Time since start-up in seconds to a fine granularity.
1346 // Used by VMSelfDestructTimer and the MemProfiler.
1347 double os::elapsedTime() {
1348 
1349   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1350 }
1351 
1352 jlong os::elapsed_counter() {
1353   return javaTimeNanos() - initial_time_count;
1354 }
1355 
1356 jlong os::elapsed_frequency() {
1357   return NANOSECS_PER_SEC; // nanosecond resolution
1358 }
1359 
1360 bool os::supports_vtime() { return true; }
1361 
1362 double os::elapsedVTime() {
1363   struct rusage usage;
1364   int retval = getrusage(RUSAGE_THREAD, &usage);
1365   if (retval == 0) {
1366     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1367   } else {
1368     // better than nothing, but not much
1369     return elapsedTime();
1370   }
1371 }
1372 
1373 jlong os::javaTimeMillis() {
1374   timeval time;
1375   int status = gettimeofday(&time, NULL);
1376   assert(status != -1, "linux error");
1377   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1378 }
1379 
1380 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1381   timeval time;
1382   int status = gettimeofday(&time, NULL);
1383   assert(status != -1, "linux error");
1384   seconds = jlong(time.tv_sec);
1385   nanos = jlong(time.tv_usec) * 1000;
1386 }
1387 
1388 void os::Linux::fast_thread_clock_init() {
1389   if (!UseLinuxPosixThreadCPUClocks) {
1390     return;
1391   }
1392   clockid_t clockid;
1393   struct timespec tp;
1394   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1395       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1396 
1397   // Switch to using fast clocks for thread cpu time if
1398   // the clock_getres() returns 0 error code.
1399   // Note, that some kernels may support the current thread
1400   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1401   // returned by the pthread_getcpuclockid().
1402   // If the fast Posix clocks are supported then the clock_getres()
1403   // must return at least tp.tv_sec == 0 which means a resolution
1404   // better than 1 sec. This is extra check for reliability.
1405 
1406   if (pthread_getcpuclockid_func &&
1407       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1408       os::Posix::clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1409     _supports_fast_thread_cpu_time = true;
1410     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1411   }
1412 }
1413 
1414 jlong os::javaTimeNanos() {
1415   if (os::supports_monotonic_clock()) {
1416     struct timespec tp;
1417     int status = os::Posix::clock_gettime(CLOCK_MONOTONIC, &tp);
1418     assert(status == 0, "gettime error");
1419     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1420     return result;
1421   } else {
1422     timeval time;
1423     int status = gettimeofday(&time, NULL);
1424     assert(status != -1, "linux error");
1425     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1426     return 1000 * usecs;
1427   }
1428 }
1429 
1430 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1431   if (os::supports_monotonic_clock()) {
1432     info_ptr->max_value = ALL_64_BITS;
1433 
1434     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1435     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1436     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1437   } else {
1438     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1439     info_ptr->max_value = ALL_64_BITS;
1440 
1441     // gettimeofday is a real time clock so it skips
1442     info_ptr->may_skip_backward = true;
1443     info_ptr->may_skip_forward = true;
1444   }
1445 
1446   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1447 }
1448 
1449 // Return the real, user, and system times in seconds from an
1450 // arbitrary fixed point in the past.
1451 bool os::getTimesSecs(double* process_real_time,
1452                       double* process_user_time,
1453                       double* process_system_time) {
1454   struct tms ticks;
1455   clock_t real_ticks = times(&ticks);
1456 
1457   if (real_ticks == (clock_t) (-1)) {
1458     return false;
1459   } else {
1460     double ticks_per_second = (double) clock_tics_per_sec;
1461     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1462     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1463     *process_real_time = ((double) real_ticks) / ticks_per_second;
1464 
1465     return true;
1466   }
1467 }
1468 
1469 
1470 char * os::local_time_string(char *buf, size_t buflen) {
1471   struct tm t;
1472   time_t long_time;
1473   time(&long_time);
1474   localtime_r(&long_time, &t);
1475   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1476                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1477                t.tm_hour, t.tm_min, t.tm_sec);
1478   return buf;
1479 }
1480 
1481 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1482   return localtime_r(clock, res);
1483 }
1484 
1485 ////////////////////////////////////////////////////////////////////////////////
1486 // runtime exit support
1487 
1488 // Note: os::shutdown() might be called very early during initialization, or
1489 // called from signal handler. Before adding something to os::shutdown(), make
1490 // sure it is async-safe and can handle partially initialized VM.
1491 void os::shutdown() {
1492 
1493   // allow PerfMemory to attempt cleanup of any persistent resources
1494   perfMemory_exit();
1495 
1496   // needs to remove object in file system
1497   AttachListener::abort();
1498 
1499   // flush buffered output, finish log files
1500   ostream_abort();
1501 
1502   // Check for abort hook
1503   abort_hook_t abort_hook = Arguments::abort_hook();
1504   if (abort_hook != NULL) {
1505     abort_hook();
1506   }
1507 
1508 }
1509 
1510 // Note: os::abort() might be called very early during initialization, or
1511 // called from signal handler. Before adding something to os::abort(), make
1512 // sure it is async-safe and can handle partially initialized VM.
1513 void os::abort(bool dump_core, void* siginfo, const void* context) {
1514   os::shutdown();
1515   if (dump_core) {
1516     if (DumpPrivateMappingsInCore) {
1517       ClassLoader::close_jrt_image();
1518     }
1519     ::abort(); // dump core
1520   }
1521 
1522   ::exit(1);
1523 }
1524 
1525 // Die immediately, no exit hook, no abort hook, no cleanup.
1526 // Dump a core file, if possible, for debugging.
1527 void os::die() {
1528   if (TestUnresponsiveErrorHandler && !CreateCoredumpOnCrash) {
1529     // For TimeoutInErrorHandlingTest.java, we just kill the VM
1530     // and don't take the time to generate a core file.
1531     os::signal_raise(SIGKILL);
1532   } else {
1533     ::abort();
1534   }
1535 }
1536 
1537 // thread_id is kernel thread id (similar to Solaris LWP id)
1538 intx os::current_thread_id() { return os::Linux::gettid(); }
1539 int os::current_process_id() {
1540   return ::getpid();
1541 }
1542 
1543 // DLL functions
1544 
1545 const char* os::dll_file_extension() { return ".so"; }
1546 
1547 // This must be hard coded because it's the system's temporary
1548 // directory not the java application's temp directory, ala java.io.tmpdir.
1549 const char* os::get_temp_directory() { return "/tmp"; }
1550 
1551 static bool file_exists(const char* filename) {
1552   struct stat statbuf;
1553   if (filename == NULL || strlen(filename) == 0) {
1554     return false;
1555   }
1556   return os::stat(filename, &statbuf) == 0;
1557 }
1558 
1559 // check if addr is inside libjvm.so
1560 bool os::address_is_in_vm(address addr) {
1561   static address libjvm_base_addr;
1562   Dl_info dlinfo;
1563 
1564   if (libjvm_base_addr == NULL) {
1565     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1566       libjvm_base_addr = (address)dlinfo.dli_fbase;
1567     }
1568     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1569   }
1570 
1571   if (dladdr((void *)addr, &dlinfo) != 0) {
1572     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1573   }
1574 
1575   return false;
1576 }
1577 
1578 bool os::dll_address_to_function_name(address addr, char *buf,
1579                                       int buflen, int *offset,
1580                                       bool demangle) {
1581   // buf is not optional, but offset is optional
1582   assert(buf != NULL, "sanity check");
1583 
1584   Dl_info dlinfo;
1585 
1586   if (dladdr((void*)addr, &dlinfo) != 0) {
1587     // see if we have a matching symbol
1588     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1589       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1590         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1591       }
1592       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1593       return true;
1594     }
1595     // no matching symbol so try for just file info
1596     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1597       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1598                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1599         return true;
1600       }
1601     }
1602   }
1603 
1604   buf[0] = '\0';
1605   if (offset != NULL) *offset = -1;
1606   return false;
1607 }
1608 
1609 struct _address_to_library_name {
1610   address addr;          // input : memory address
1611   size_t  buflen;        //         size of fname
1612   char*   fname;         // output: library name
1613   address base;          //         library base addr
1614 };
1615 
1616 static int address_to_library_name_callback(struct dl_phdr_info *info,
1617                                             size_t size, void *data) {
1618   int i;
1619   bool found = false;
1620   address libbase = NULL;
1621   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1622 
1623   // iterate through all loadable segments
1624   for (i = 0; i < info->dlpi_phnum; i++) {
1625     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1626     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1627       // base address of a library is the lowest address of its loaded
1628       // segments.
1629       if (libbase == NULL || libbase > segbase) {
1630         libbase = segbase;
1631       }
1632       // see if 'addr' is within current segment
1633       if (segbase <= d->addr &&
1634           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1635         found = true;
1636       }
1637     }
1638   }
1639 
1640   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1641   // so dll_address_to_library_name() can fall through to use dladdr() which
1642   // can figure out executable name from argv[0].
1643   if (found && info->dlpi_name && info->dlpi_name[0]) {
1644     d->base = libbase;
1645     if (d->fname) {
1646       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1647     }
1648     return 1;
1649   }
1650   return 0;
1651 }
1652 
1653 bool os::dll_address_to_library_name(address addr, char* buf,
1654                                      int buflen, int* offset) {
1655   // buf is not optional, but offset is optional
1656   assert(buf != NULL, "sanity check");
1657 
1658   Dl_info dlinfo;
1659   struct _address_to_library_name data;
1660 
1661   // There is a bug in old glibc dladdr() implementation that it could resolve
1662   // to wrong library name if the .so file has a base address != NULL. Here
1663   // we iterate through the program headers of all loaded libraries to find
1664   // out which library 'addr' really belongs to. This workaround can be
1665   // removed once the minimum requirement for glibc is moved to 2.3.x.
1666   data.addr = addr;
1667   data.fname = buf;
1668   data.buflen = buflen;
1669   data.base = NULL;
1670   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1671 
1672   if (rslt) {
1673     // buf already contains library name
1674     if (offset) *offset = addr - data.base;
1675     return true;
1676   }
1677   if (dladdr((void*)addr, &dlinfo) != 0) {
1678     if (dlinfo.dli_fname != NULL) {
1679       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1680     }
1681     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1682       *offset = addr - (address)dlinfo.dli_fbase;
1683     }
1684     return true;
1685   }
1686 
1687   buf[0] = '\0';
1688   if (offset) *offset = -1;
1689   return false;
1690 }
1691 
1692 // Loads .dll/.so and
1693 // in case of error it checks if .dll/.so was built for the
1694 // same architecture as Hotspot is running on
1695 
1696 
1697 // Remember the stack's state. The Linux dynamic linker will change
1698 // the stack to 'executable' at most once, so we must safepoint only once.
1699 bool os::Linux::_stack_is_executable = false;
1700 
1701 // VM operation that loads a library.  This is necessary if stack protection
1702 // of the Java stacks can be lost during loading the library.  If we
1703 // do not stop the Java threads, they can stack overflow before the stacks
1704 // are protected again.
1705 class VM_LinuxDllLoad: public VM_Operation {
1706  private:
1707   const char *_filename;
1708   char *_ebuf;
1709   int _ebuflen;
1710   void *_lib;
1711  public:
1712   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1713     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1714   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1715   void doit() {
1716     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1717     os::Linux::_stack_is_executable = true;
1718   }
1719   void* loaded_library() { return _lib; }
1720 };
1721 
1722 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1723   void * result = NULL;
1724   bool load_attempted = false;
1725 
1726   log_info(os)("attempting shared library load of %s", filename);
1727 
1728   // Check whether the library to load might change execution rights
1729   // of the stack. If they are changed, the protection of the stack
1730   // guard pages will be lost. We need a safepoint to fix this.
1731   //
1732   // See Linux man page execstack(8) for more info.
1733   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1734     if (!ElfFile::specifies_noexecstack(filename)) {
1735       if (!is_init_completed()) {
1736         os::Linux::_stack_is_executable = true;
1737         // This is OK - No Java threads have been created yet, and hence no
1738         // stack guard pages to fix.
1739         //
1740         // Dynamic loader will make all stacks executable after
1741         // this function returns, and will not do that again.
1742         assert(Threads::number_of_threads() == 0, "no Java threads should exist yet.");
1743       } else {
1744         warning("You have loaded library %s which might have disabled stack guard. "
1745                 "The VM will try to fix the stack guard now.\n"
1746                 "It's highly recommended that you fix the library with "
1747                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1748                 filename);
1749 
1750         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1751         JavaThread *jt = JavaThread::current();
1752         if (jt->thread_state() != _thread_in_native) {
1753           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1754           // that requires ExecStack. Cannot enter safe point. Let's give up.
1755           warning("Unable to fix stack guard. Giving up.");
1756         } else {
1757           if (!LoadExecStackDllInVMThread) {
1758             // This is for the case where the DLL has an static
1759             // constructor function that executes JNI code. We cannot
1760             // load such DLLs in the VMThread.
1761             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1762           }
1763 
1764           ThreadInVMfromNative tiv(jt);
1765           debug_only(VMNativeEntryWrapper vew;)
1766 
1767           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1768           VMThread::execute(&op);
1769           if (LoadExecStackDllInVMThread) {
1770             result = op.loaded_library();
1771           }
1772           load_attempted = true;
1773         }
1774       }
1775     }
1776   }
1777 
1778   if (!load_attempted) {
1779     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1780   }
1781 
1782   if (result != NULL) {
1783     // Successful loading
1784     return result;
1785   }
1786 
1787   Elf32_Ehdr elf_head;
1788   int diag_msg_max_length=ebuflen-strlen(ebuf);
1789   char* diag_msg_buf=ebuf+strlen(ebuf);
1790 
1791   if (diag_msg_max_length==0) {
1792     // No more space in ebuf for additional diagnostics message
1793     return NULL;
1794   }
1795 
1796 
1797   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1798 
1799   if (file_descriptor < 0) {
1800     // Can't open library, report dlerror() message
1801     return NULL;
1802   }
1803 
1804   bool failed_to_read_elf_head=
1805     (sizeof(elf_head)!=
1806      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1807 
1808   ::close(file_descriptor);
1809   if (failed_to_read_elf_head) {
1810     // file i/o error - report dlerror() msg
1811     return NULL;
1812   }
1813 
1814   if (elf_head.e_ident[EI_DATA] != LITTLE_ENDIAN_ONLY(ELFDATA2LSB) BIG_ENDIAN_ONLY(ELFDATA2MSB)) {
1815     // handle invalid/out of range endianness values
1816     if (elf_head.e_ident[EI_DATA] == 0 || elf_head.e_ident[EI_DATA] > 2) {
1817       return NULL;
1818     }
1819 
1820 #if defined(VM_LITTLE_ENDIAN)
1821     // VM is LE, shared object BE
1822     elf_head.e_machine = be16toh(elf_head.e_machine);
1823 #else
1824     // VM is BE, shared object LE
1825     elf_head.e_machine = le16toh(elf_head.e_machine);
1826 #endif
1827   }
1828 
1829   typedef struct {
1830     Elf32_Half    code;         // Actual value as defined in elf.h
1831     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1832     unsigned char elf_class;    // 32 or 64 bit
1833     unsigned char endianness;   // MSB or LSB
1834     char*         name;         // String representation
1835   } arch_t;
1836 
1837 #ifndef EM_AARCH64
1838   #define EM_AARCH64    183               /* ARM AARCH64 */
1839 #endif
1840 #ifndef EM_RISCV
1841   #define EM_RISCV      243               /* RISC-V */
1842 #endif
1843 
1844   static const arch_t arch_array[]={
1845     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1846     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1847     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1848     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1849     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1850 #if defined(VM_LITTLE_ENDIAN)
1851     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1852     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1853 #else
1854     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1855     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1856 #endif
1857     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
1858     // we only support 64 bit z architecture
1859     {EM_S390,        EM_S390,    ELFCLASS64, ELFDATA2MSB, (char*)"IBM System/390"},
1860     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1861     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1862     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1863     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1864     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1865     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1866     {EM_RISCV,       EM_RISCV,   ELFCLASS64, ELFDATA2LSB, (char*)"RISC-V"},
1867   };
1868 
1869 #if  (defined IA32)
1870   static  Elf32_Half running_arch_code=EM_386;
1871 #elif   (defined AMD64) || (defined X32)
1872   static  Elf32_Half running_arch_code=EM_X86_64;
1873 #elif  (defined IA64)
1874   static  Elf32_Half running_arch_code=EM_IA_64;
1875 #elif  (defined __powerpc64__)
1876   static  Elf32_Half running_arch_code=EM_PPC64;
1877 #elif  (defined __powerpc__)
1878   static  Elf32_Half running_arch_code=EM_PPC;
1879 #elif  (defined AARCH64)
1880   static  Elf32_Half running_arch_code=EM_AARCH64;
1881 #elif  (defined ARM)
1882   static  Elf32_Half running_arch_code=EM_ARM;
1883 #elif  (defined S390)
1884   static  Elf32_Half running_arch_code=EM_S390;
1885 #elif  (defined ALPHA)
1886   static  Elf32_Half running_arch_code=EM_ALPHA;
1887 #elif  (defined MIPSEL)
1888   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1889 #elif  (defined PARISC)
1890   static  Elf32_Half running_arch_code=EM_PARISC;
1891 #elif  (defined MIPS)
1892   static  Elf32_Half running_arch_code=EM_MIPS;
1893 #elif  (defined M68K)
1894   static  Elf32_Half running_arch_code=EM_68K;
1895 #elif  (defined SH)
1896   static  Elf32_Half running_arch_code=EM_SH;
1897 #elif  (defined RISCV)
1898   static  Elf32_Half running_arch_code=EM_RISCV;
1899 #else
1900     #error Method os::dll_load requires that one of following is defined:\
1901         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, RISCV, S390, SH
1902 #endif
1903 
1904   // Identify compatibility class for VM's architecture and library's architecture
1905   // Obtain string descriptions for architectures
1906 
1907   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1908   int running_arch_index=-1;
1909 
1910   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1911     if (running_arch_code == arch_array[i].code) {
1912       running_arch_index    = i;
1913     }
1914     if (lib_arch.code == arch_array[i].code) {
1915       lib_arch.compat_class = arch_array[i].compat_class;
1916       lib_arch.name         = arch_array[i].name;
1917     }
1918   }
1919 
1920   assert(running_arch_index != -1,
1921          "Didn't find running architecture code (running_arch_code) in arch_array");
1922   if (running_arch_index == -1) {
1923     // Even though running architecture detection failed
1924     // we may still continue with reporting dlerror() message
1925     return NULL;
1926   }
1927 
1928   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1929     if (lib_arch.name != NULL) {
1930       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1931                  " (Possible cause: can't load %s .so on a %s platform)",
1932                  lib_arch.name, arch_array[running_arch_index].name);
1933     } else {
1934       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1935                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s platform)",
1936                  lib_arch.code, arch_array[running_arch_index].name);
1937     }
1938     return NULL;
1939   }
1940 
1941   if (lib_arch.endianness != arch_array[running_arch_index].endianness) {
1942     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: endianness mismatch)");
1943     return NULL;
1944   }
1945 
1946   // ELF file class/capacity : 0 - invalid, 1 - 32bit, 2 - 64bit
1947   if (lib_arch.elf_class > 2 || lib_arch.elf_class < 1) {
1948     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: invalid ELF file class)");
1949     return NULL;
1950   }
1951 
1952   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1953     ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1954                " (Possible cause: architecture word width mismatch, can't load %d-bit .so on a %d-bit platform)",
1955                (int) lib_arch.elf_class * 32, arch_array[running_arch_index].elf_class * 32);
1956     return NULL;
1957   }
1958 
1959   return NULL;
1960 }
1961 
1962 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1963                                 int ebuflen) {
1964   void * result = ::dlopen(filename, RTLD_LAZY);
1965   if (result == NULL) {
1966     const char* error_report = ::dlerror();
1967     if (error_report == NULL) {
1968       error_report = "dlerror returned no error description";
1969     }
1970     if (ebuf != NULL && ebuflen > 0) {
1971       ::strncpy(ebuf, error_report, ebuflen-1);
1972       ebuf[ebuflen-1]='\0';
1973     }
1974     Events::log(NULL, "Loading shared library %s failed, %s", filename, error_report);
1975     log_info(os)("shared library load of %s failed, %s", filename, error_report);
1976   } else {
1977     Events::log(NULL, "Loaded shared library %s", filename);
1978     log_info(os)("shared library load of %s was successful", filename);
1979   }
1980   return result;
1981 }
1982 
1983 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1984                                        int ebuflen) {
1985   void * result = NULL;
1986   if (LoadExecStackDllInVMThread) {
1987     result = dlopen_helper(filename, ebuf, ebuflen);
1988   }
1989 
1990   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1991   // library that requires an executable stack, or which does not have this
1992   // stack attribute set, dlopen changes the stack attribute to executable. The
1993   // read protection of the guard pages gets lost.
1994   //
1995   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1996   // may have been queued at the same time.
1997 
1998   if (!_stack_is_executable) {
1999     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2000       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
2001           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
2002         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
2003           warning("Attempt to reguard stack yellow zone failed.");
2004         }
2005       }
2006     }
2007   }
2008 
2009   return result;
2010 }
2011 
2012 void* os::dll_lookup(void* handle, const char* name) {
2013   void* res = dlsym(handle, name);
2014   return res;
2015 }
2016 
2017 void* os::get_default_process_handle() {
2018   return (void*)::dlopen(NULL, RTLD_LAZY);
2019 }
2020 
2021 static bool _print_ascii_file(const char* filename, outputStream* st, const char* hdr = NULL) {
2022   int fd = ::open(filename, O_RDONLY);
2023   if (fd == -1) {
2024     return false;
2025   }
2026 
2027   if (hdr != NULL) {
2028     st->print_cr("%s", hdr);
2029   }
2030 
2031   char buf[33];
2032   int bytes;
2033   buf[32] = '\0';
2034   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
2035     st->print_raw(buf, bytes);
2036   }
2037 
2038   ::close(fd);
2039 
2040   return true;
2041 }
2042 
2043 static void _print_ascii_file_h(const char* header, const char* filename, outputStream* st) {
2044   st->print_cr("%s:", header);
2045   if (!_print_ascii_file(filename, st)) {
2046     st->print_cr("<Not Available>");
2047   }
2048 }
2049 
2050 void os::print_dll_info(outputStream *st) {
2051   st->print_cr("Dynamic libraries:");
2052 
2053   char fname[32];
2054   pid_t pid = os::Linux::gettid();
2055 
2056   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2057 
2058   if (!_print_ascii_file(fname, st)) {
2059     st->print("Can not get library information for pid = %d\n", pid);
2060   }
2061 }
2062 
2063 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2064   FILE *procmapsFile = NULL;
2065 
2066   // Open the procfs maps file for the current process
2067   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2068     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2069     char line[PATH_MAX + 100];
2070 
2071     // Read line by line from 'file'
2072     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2073       u8 base, top, inode;
2074       char name[sizeof(line)];
2075 
2076       // Parse fields from line, discard perms, offset and device
2077       int matches = sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %*s %*s %*s " INT64_FORMAT " %s",
2078              &base, &top, &inode, name);
2079       // the last entry 'name' is empty for some entries, so we might have 3 matches instead of 4 for some lines
2080       if (matches < 3) continue;
2081       if (matches == 3) name[0] = '\0';
2082 
2083       // Filter by inode 0 so that we only get file system mapped files.
2084       if (inode != 0) {
2085 
2086         // Call callback with the fields of interest
2087         if(callback(name, (address)base, (address)top, param)) {
2088           // Oops abort, callback aborted
2089           fclose(procmapsFile);
2090           return 1;
2091         }
2092       }
2093     }
2094     fclose(procmapsFile);
2095   }
2096   return 0;
2097 }
2098 
2099 void os::print_os_info_brief(outputStream* st) {
2100   os::Linux::print_distro_info(st);
2101 
2102   os::Posix::print_uname_info(st);
2103 
2104   os::Linux::print_libversion_info(st);
2105 
2106 }
2107 
2108 void os::print_os_info(outputStream* st) {
2109   st->print("OS:");
2110 
2111   os::Linux::print_distro_info(st);
2112 
2113   os::Posix::print_uname_info(st);
2114 
2115   os::Linux::print_uptime_info(st);
2116 
2117   // Print warning if unsafe chroot environment detected
2118   if (unsafe_chroot_detected) {
2119     st->print("WARNING!! ");
2120     st->print_cr("%s", unstable_chroot_error);
2121   }
2122 
2123   os::Linux::print_libversion_info(st);
2124 
2125   os::Posix::print_rlimit_info(st);
2126 
2127   os::Posix::print_load_average(st);
2128 
2129   os::Linux::print_full_memory_info(st);
2130 
2131   os::Linux::print_proc_sys_info(st);
2132 
2133   os::Linux::print_ld_preload_file(st);
2134 
2135   os::Linux::print_container_info(st);
2136 
2137   VM_Version::print_platform_virtualization_info(st);
2138 
2139   os::Linux::print_steal_info(st);
2140 }
2141 
2142 // Try to identify popular distros.
2143 // Most Linux distributions have a /etc/XXX-release file, which contains
2144 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2145 // file that also contains the OS version string. Some have more than one
2146 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2147 // /etc/redhat-release.), so the order is important.
2148 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2149 // their own specific XXX-release file as well as a redhat-release file.
2150 // Because of this the XXX-release file needs to be searched for before the
2151 // redhat-release file.
2152 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2153 // search for redhat-release / SuSE-release needs to be before lsb-release.
2154 // Since the lsb-release file is the new standard it needs to be searched
2155 // before the older style release files.
2156 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2157 // next to last resort.  The os-release file is a new standard that contains
2158 // distribution information and the system-release file seems to be an old
2159 // standard that has been replaced by the lsb-release and os-release files.
2160 // Searching for the debian_version file is the last resort.  It contains
2161 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2162 // "Debian " is printed before the contents of the debian_version file.
2163 
2164 const char* distro_files[] = {
2165   "/etc/oracle-release",
2166   "/etc/mandriva-release",
2167   "/etc/mandrake-release",
2168   "/etc/sun-release",
2169   "/etc/redhat-release",
2170   "/etc/SuSE-release",
2171   "/etc/lsb-release",
2172   "/etc/turbolinux-release",
2173   "/etc/gentoo-release",
2174   "/etc/ltib-release",
2175   "/etc/angstrom-version",
2176   "/etc/system-release",
2177   "/etc/os-release",
2178   NULL };
2179 
2180 void os::Linux::print_distro_info(outputStream* st) {
2181   for (int i = 0;; i++) {
2182     const char* file = distro_files[i];
2183     if (file == NULL) {
2184       break;  // done
2185     }
2186     // If file prints, we found it.
2187     if (_print_ascii_file(file, st)) {
2188       return;
2189     }
2190   }
2191 
2192   if (file_exists("/etc/debian_version")) {
2193     st->print("Debian ");
2194     _print_ascii_file("/etc/debian_version", st);
2195   } else {
2196     st->print("Linux");
2197   }
2198   st->cr();
2199 }
2200 
2201 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2202   char buf[256];
2203   while (fgets(buf, sizeof(buf), fp)) {
2204     // Edit out extra stuff in expected format
2205     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2206       char* ptr = strstr(buf, "\"");  // the name is in quotes
2207       if (ptr != NULL) {
2208         ptr++; // go beyond first quote
2209         char* nl = strchr(ptr, '\"');
2210         if (nl != NULL) *nl = '\0';
2211         strncpy(distro, ptr, length);
2212       } else {
2213         ptr = strstr(buf, "=");
2214         ptr++; // go beyond equals then
2215         char* nl = strchr(ptr, '\n');
2216         if (nl != NULL) *nl = '\0';
2217         strncpy(distro, ptr, length);
2218       }
2219       return;
2220     } else if (get_first_line) {
2221       char* nl = strchr(buf, '\n');
2222       if (nl != NULL) *nl = '\0';
2223       strncpy(distro, buf, length);
2224       return;
2225     }
2226   }
2227   // print last line and close
2228   char* nl = strchr(buf, '\n');
2229   if (nl != NULL) *nl = '\0';
2230   strncpy(distro, buf, length);
2231 }
2232 
2233 static void parse_os_info(char* distro, size_t length, const char* file) {
2234   FILE* fp = fopen(file, "r");
2235   if (fp != NULL) {
2236     // if suse format, print out first line
2237     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2238     parse_os_info_helper(fp, distro, length, get_first_line);
2239     fclose(fp);
2240   }
2241 }
2242 
2243 void os::get_summary_os_info(char* buf, size_t buflen) {
2244   for (int i = 0;; i++) {
2245     const char* file = distro_files[i];
2246     if (file == NULL) {
2247       break; // ran out of distro_files
2248     }
2249     if (file_exists(file)) {
2250       parse_os_info(buf, buflen, file);
2251       return;
2252     }
2253   }
2254   // special case for debian
2255   if (file_exists("/etc/debian_version")) {
2256     strncpy(buf, "Debian ", buflen);
2257     if (buflen > 7) {
2258       parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2259     }
2260   } else {
2261     strncpy(buf, "Linux", buflen);
2262   }
2263 }
2264 
2265 void os::Linux::print_libversion_info(outputStream* st) {
2266   // libc, pthread
2267   st->print("libc:");
2268   st->print("%s ", os::Linux::glibc_version());
2269   st->print("%s ", os::Linux::libpthread_version());
2270   st->cr();
2271 }
2272 
2273 void os::Linux::print_proc_sys_info(outputStream* st) {
2274   st->cr();
2275   _print_ascii_file_h("/proc/sys/kernel/threads-max (system-wide limit on the number of threads)",
2276                       "/proc/sys/kernel/threads-max", st);
2277   _print_ascii_file_h("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have)",
2278                       "/proc/sys/vm/max_map_count", st);
2279   _print_ascii_file_h("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers)",
2280                       "/proc/sys/kernel/pid_max", st);
2281 }
2282 
2283 void os::Linux::print_full_memory_info(outputStream* st) {
2284   _print_ascii_file_h("\n/proc/meminfo", "/proc/meminfo", st);
2285   st->cr();
2286 
2287   // some information regarding THPs; for details see
2288   // https://www.kernel.org/doc/Documentation/vm/transhuge.txt
2289   _print_ascii_file_h("/sys/kernel/mm/transparent_hugepage/enabled",
2290                       "/sys/kernel/mm/transparent_hugepage/enabled", st);
2291   _print_ascii_file_h("/sys/kernel/mm/transparent_hugepage/defrag (defrag/compaction efforts parameter)",
2292                       "/sys/kernel/mm/transparent_hugepage/defrag", st);
2293 }
2294 
2295 void os::Linux::print_ld_preload_file(outputStream* st) {
2296   _print_ascii_file("/etc/ld.so.preload", st, "\n/etc/ld.so.preload:");
2297   st->cr();
2298 }
2299 
2300 void os::Linux::print_uptime_info(outputStream* st) {
2301   struct sysinfo sinfo;
2302   int ret = sysinfo(&sinfo);
2303   if (ret == 0) {
2304     os::print_dhm(st, "OS uptime:", (long) sinfo.uptime);
2305   }
2306 }
2307 
2308 
2309 void os::Linux::print_container_info(outputStream* st) {
2310   if (!OSContainer::is_containerized()) {
2311     return;
2312   }
2313 
2314   st->print("container (cgroup) information:\n");
2315 
2316   const char *p_ct = OSContainer::container_type();
2317   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "not supported");
2318 
2319   char *p = OSContainer::cpu_cpuset_cpus();
2320   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "not supported");
2321   free(p);
2322 
2323   p = OSContainer::cpu_cpuset_memory_nodes();
2324   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "not supported");
2325   free(p);
2326 
2327   int i = OSContainer::active_processor_count();
2328   st->print("active_processor_count: ");
2329   if (i > 0) {
2330     st->print("%d\n", i);
2331   } else {
2332     st->print("not supported\n");
2333   }
2334 
2335   i = OSContainer::cpu_quota();
2336   st->print("cpu_quota: ");
2337   if (i > 0) {
2338     st->print("%d\n", i);
2339   } else {
2340     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no quota");
2341   }
2342 
2343   i = OSContainer::cpu_period();
2344   st->print("cpu_period: ");
2345   if (i > 0) {
2346     st->print("%d\n", i);
2347   } else {
2348     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no period");
2349   }
2350 
2351   i = OSContainer::cpu_shares();
2352   st->print("cpu_shares: ");
2353   if (i > 0) {
2354     st->print("%d\n", i);
2355   } else {
2356     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no shares");
2357   }
2358 
2359   jlong j = OSContainer::memory_limit_in_bytes();
2360   st->print("memory_limit_in_bytes: ");
2361   if (j > 0) {
2362     st->print(JLONG_FORMAT "\n", j);
2363   } else {
2364     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2365   }
2366 
2367   j = OSContainer::memory_and_swap_limit_in_bytes();
2368   st->print("memory_and_swap_limit_in_bytes: ");
2369   if (j > 0) {
2370     st->print(JLONG_FORMAT "\n", j);
2371   } else {
2372     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2373   }
2374 
2375   j = OSContainer::memory_soft_limit_in_bytes();
2376   st->print("memory_soft_limit_in_bytes: ");
2377   if (j > 0) {
2378     st->print(JLONG_FORMAT "\n", j);
2379   } else {
2380     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2381   }
2382 
2383   j = OSContainer::OSContainer::memory_usage_in_bytes();
2384   st->print("memory_usage_in_bytes: ");
2385   if (j > 0) {
2386     st->print(JLONG_FORMAT "\n", j);
2387   } else {
2388     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2389   }
2390 
2391   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2392   st->print("memory_max_usage_in_bytes: ");
2393   if (j > 0) {
2394     st->print(JLONG_FORMAT "\n", j);
2395   } else {
2396     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2397   }
2398   st->cr();
2399 }
2400 
2401 void os::Linux::print_steal_info(outputStream* st) {
2402   if (has_initial_tick_info) {
2403     CPUPerfTicks pticks;
2404     bool res = os::Linux::get_tick_information(&pticks, -1);
2405 
2406     if (res && pticks.has_steal_ticks) {
2407       uint64_t steal_ticks_difference = pticks.steal - initial_steal_ticks;
2408       uint64_t total_ticks_difference = pticks.total - initial_total_ticks;
2409       double steal_ticks_perc = 0.0;
2410       if (total_ticks_difference != 0) {
2411         steal_ticks_perc = (double) steal_ticks_difference / total_ticks_difference;
2412       }
2413       st->print_cr("Steal ticks since vm start: " UINT64_FORMAT, steal_ticks_difference);
2414       st->print_cr("Steal ticks percentage since vm start:%7.3f", steal_ticks_perc);
2415     }
2416   }
2417 }
2418 
2419 void os::print_memory_info(outputStream* st) {
2420 
2421   st->print("Memory:");
2422   st->print(" %dk page", os::vm_page_size()>>10);
2423 
2424   // values in struct sysinfo are "unsigned long"
2425   struct sysinfo si;
2426   sysinfo(&si);
2427 
2428   st->print(", physical " UINT64_FORMAT "k",
2429             os::physical_memory() >> 10);
2430   st->print("(" UINT64_FORMAT "k free)",
2431             os::available_memory() >> 10);
2432   st->print(", swap " UINT64_FORMAT "k",
2433             ((jlong)si.totalswap * si.mem_unit) >> 10);
2434   st->print("(" UINT64_FORMAT "k free)",
2435             ((jlong)si.freeswap * si.mem_unit) >> 10);
2436   st->cr();
2437 }
2438 
2439 // Print the first "model name" line and the first "flags" line
2440 // that we find and nothing more. We assume "model name" comes
2441 // before "flags" so if we find a second "model name", then the
2442 // "flags" field is considered missing.
2443 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2444 #if defined(IA32) || defined(AMD64)
2445   // Other platforms have less repetitive cpuinfo files
2446   FILE *fp = fopen("/proc/cpuinfo", "r");
2447   if (fp) {
2448     while (!feof(fp)) {
2449       if (fgets(buf, buflen, fp)) {
2450         // Assume model name comes before flags
2451         bool model_name_printed = false;
2452         if (strstr(buf, "model name") != NULL) {
2453           if (!model_name_printed) {
2454             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2455             st->print_raw(buf);
2456             model_name_printed = true;
2457           } else {
2458             // model name printed but not flags?  Odd, just return
2459             fclose(fp);
2460             return true;
2461           }
2462         }
2463         // print the flags line too
2464         if (strstr(buf, "flags") != NULL) {
2465           st->print_raw(buf);
2466           fclose(fp);
2467           return true;
2468         }
2469       }
2470     }
2471     fclose(fp);
2472   }
2473 #endif // x86 platforms
2474   return false;
2475 }
2476 
2477 // additional information about CPU e.g. available frequency ranges
2478 static void print_sys_devices_cpu_info(outputStream* st, char* buf, size_t buflen) {
2479   _print_ascii_file_h("Online cpus", "/sys/devices/system/cpu/online", st);
2480   _print_ascii_file_h("Offline cpus", "/sys/devices/system/cpu/offline", st);
2481 
2482   if (ExtensiveErrorReports) {
2483     // cache related info (cpu 0, should be similar for other CPUs)
2484     for (unsigned int i=0; i < 10; i++) { // handle max. 10 cache entries
2485       char hbuf_level[60];
2486       char hbuf_type[60];
2487       char hbuf_size[60];
2488       char hbuf_coherency_line_size[80];
2489       snprintf(hbuf_level, 60, "/sys/devices/system/cpu/cpu0/cache/index%u/level", i);
2490       snprintf(hbuf_type, 60, "/sys/devices/system/cpu/cpu0/cache/index%u/type", i);
2491       snprintf(hbuf_size, 60, "/sys/devices/system/cpu/cpu0/cache/index%u/size", i);
2492       snprintf(hbuf_coherency_line_size, 80, "/sys/devices/system/cpu/cpu0/cache/index%u/coherency_line_size", i);
2493       if (file_exists(hbuf_level)) {
2494         _print_ascii_file_h("cache level", hbuf_level, st);
2495         _print_ascii_file_h("cache type", hbuf_type, st);
2496         _print_ascii_file_h("cache size", hbuf_size, st);
2497         _print_ascii_file_h("cache coherency line size", hbuf_coherency_line_size, st);
2498       }
2499     }
2500   }
2501 
2502   // we miss the cpufreq entries on Power and s390x
2503 #if defined(IA32) || defined(AMD64)
2504   _print_ascii_file_h("BIOS frequency limitation", "/sys/devices/system/cpu/cpu0/cpufreq/bios_limit", st);
2505   _print_ascii_file_h("Frequency switch latency (ns)", "/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_transition_latency", st);
2506   _print_ascii_file_h("Available cpu frequencies", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies", st);
2507   // min and max should be in the Available range but still print them (not all info might be available for all kernels)
2508   if (ExtensiveErrorReports) {
2509     _print_ascii_file_h("Maximum cpu frequency", "/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq", st);
2510     _print_ascii_file_h("Minimum cpu frequency", "/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_min_freq", st);
2511     _print_ascii_file_h("Current cpu frequency", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq", st);
2512   }
2513   // governors are power schemes, see https://wiki.archlinux.org/index.php/CPU_frequency_scaling
2514   if (ExtensiveErrorReports) {
2515     _print_ascii_file_h("Available governors", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors", st);
2516   }
2517   _print_ascii_file_h("Current governor", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor", st);
2518   // Core performance boost, see https://www.kernel.org/doc/Documentation/cpu-freq/boost.txt
2519   // Raise operating frequency of some cores in a multi-core package if certain conditions apply, e.g.
2520   // whole chip is not fully utilized
2521   _print_ascii_file_h("Core performance/turbo boost", "/sys/devices/system/cpu/cpufreq/boost", st);
2522 #endif
2523 }
2524 
2525 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2526   // Only print the model name if the platform provides this as a summary
2527   if (!print_model_name_and_flags(st, buf, buflen)) {
2528     _print_ascii_file_h("\n/proc/cpuinfo", "/proc/cpuinfo", st);
2529   }
2530   print_sys_devices_cpu_info(st, buf, buflen);
2531 }
2532 
2533 #if defined(AMD64) || defined(IA32) || defined(X32)
2534 const char* search_string = "model name";
2535 #elif defined(M68K)
2536 const char* search_string = "CPU";
2537 #elif defined(PPC64)
2538 const char* search_string = "cpu";
2539 #elif defined(S390)
2540 const char* search_string = "machine =";
2541 #else
2542 const char* search_string = "Processor";
2543 #endif
2544 
2545 // Parses the cpuinfo file for string representing the model name.
2546 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2547   FILE* fp = fopen("/proc/cpuinfo", "r");
2548   if (fp != NULL) {
2549     while (!feof(fp)) {
2550       char buf[256];
2551       if (fgets(buf, sizeof(buf), fp)) {
2552         char* start = strstr(buf, search_string);
2553         if (start != NULL) {
2554           char *ptr = start + strlen(search_string);
2555           char *end = buf + strlen(buf);
2556           while (ptr != end) {
2557              // skip whitespace and colon for the rest of the name.
2558              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2559                break;
2560              }
2561              ptr++;
2562           }
2563           if (ptr != end) {
2564             // reasonable string, get rid of newline and keep the rest
2565             char* nl = strchr(buf, '\n');
2566             if (nl != NULL) *nl = '\0';
2567             strncpy(cpuinfo, ptr, length);
2568             fclose(fp);
2569             return;
2570           }
2571         }
2572       }
2573     }
2574     fclose(fp);
2575   }
2576   // cpuinfo not found or parsing failed, just print generic string.  The entire
2577   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2578 #if   defined(AARCH64)
2579   strncpy(cpuinfo, "AArch64", length);
2580 #elif defined(AMD64)
2581   strncpy(cpuinfo, "x86_64", length);
2582 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2583   strncpy(cpuinfo, "ARM", length);
2584 #elif defined(IA32)
2585   strncpy(cpuinfo, "x86_32", length);
2586 #elif defined(IA64)
2587   strncpy(cpuinfo, "IA64", length);
2588 #elif defined(PPC)
2589   strncpy(cpuinfo, "PPC64", length);
2590 #elif defined(S390)
2591   strncpy(cpuinfo, "S390", length);
2592 #elif defined(ZERO_LIBARCH)
2593   strncpy(cpuinfo, ZERO_LIBARCH, length);
2594 #else
2595   strncpy(cpuinfo, "unknown", length);
2596 #endif
2597 }
2598 
2599 static void print_signal_handler(outputStream* st, int sig,
2600                                  char* buf, size_t buflen);
2601 
2602 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2603   st->print_cr("Signal Handlers:");
2604   print_signal_handler(st, SIGSEGV, buf, buflen);
2605   print_signal_handler(st, SIGBUS , buf, buflen);
2606   print_signal_handler(st, SIGFPE , buf, buflen);
2607   print_signal_handler(st, SIGPIPE, buf, buflen);
2608   print_signal_handler(st, SIGXFSZ, buf, buflen);
2609   print_signal_handler(st, SIGILL , buf, buflen);
2610   print_signal_handler(st, SR_signum, buf, buflen);
2611   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2612   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2613   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2614   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2615 #if defined(PPC64)
2616   print_signal_handler(st, SIGTRAP, buf, buflen);
2617 #endif
2618 }
2619 
2620 static char saved_jvm_path[MAXPATHLEN] = {0};
2621 
2622 // Find the full path to the current module, libjvm.so
2623 void os::jvm_path(char *buf, jint buflen) {
2624   // Error checking.
2625   if (buflen < MAXPATHLEN) {
2626     assert(false, "must use a large-enough buffer");
2627     buf[0] = '\0';
2628     return;
2629   }
2630   // Lazy resolve the path to current module.
2631   if (saved_jvm_path[0] != 0) {
2632     strcpy(buf, saved_jvm_path);
2633     return;
2634   }
2635 
2636   char dli_fname[MAXPATHLEN];
2637   bool ret = dll_address_to_library_name(
2638                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2639                                          dli_fname, sizeof(dli_fname), NULL);
2640   assert(ret, "cannot locate libjvm");
2641   char *rp = NULL;
2642   if (ret && dli_fname[0] != '\0') {
2643     rp = os::Posix::realpath(dli_fname, buf, buflen);
2644   }
2645   if (rp == NULL) {
2646     return;
2647   }
2648 
2649   if (Arguments::sun_java_launcher_is_altjvm()) {
2650     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2651     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2652     // If "/jre/lib/" appears at the right place in the string, then
2653     // assume we are installed in a JDK and we're done. Otherwise, check
2654     // for a JAVA_HOME environment variable and fix up the path so it
2655     // looks like libjvm.so is installed there (append a fake suffix
2656     // hotspot/libjvm.so).
2657     const char *p = buf + strlen(buf) - 1;
2658     for (int count = 0; p > buf && count < 5; ++count) {
2659       for (--p; p > buf && *p != '/'; --p)
2660         /* empty */ ;
2661     }
2662 
2663     if (strncmp(p, "/jre/lib/", 9) != 0) {
2664       // Look for JAVA_HOME in the environment.
2665       char* java_home_var = ::getenv("JAVA_HOME");
2666       if (java_home_var != NULL && java_home_var[0] != 0) {
2667         char* jrelib_p;
2668         int len;
2669 
2670         // Check the current module name "libjvm.so".
2671         p = strrchr(buf, '/');
2672         if (p == NULL) {
2673           return;
2674         }
2675         assert(strstr(p, "/libjvm") == p, "invalid library name");
2676 
2677         rp = os::Posix::realpath(java_home_var, buf, buflen);
2678         if (rp == NULL) {
2679           return;
2680         }
2681 
2682         // determine if this is a legacy image or modules image
2683         // modules image doesn't have "jre" subdirectory
2684         len = strlen(buf);
2685         assert(len < buflen, "Ran out of buffer room");
2686         jrelib_p = buf + len;
2687         snprintf(jrelib_p, buflen-len, "/jre/lib");
2688         if (0 != access(buf, F_OK)) {
2689           snprintf(jrelib_p, buflen-len, "/lib");
2690         }
2691 
2692         if (0 == access(buf, F_OK)) {
2693           // Use current module name "libjvm.so"
2694           len = strlen(buf);
2695           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2696         } else {
2697           // Go back to path of .so
2698           rp = os::Posix::realpath(dli_fname, buf, buflen);
2699           if (rp == NULL) {
2700             return;
2701           }
2702         }
2703       }
2704     }
2705   }
2706 
2707   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2708   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2709 }
2710 
2711 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2712   // no prefix required, not even "_"
2713 }
2714 
2715 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2716   // no suffix required
2717 }
2718 
2719 ////////////////////////////////////////////////////////////////////////////////
2720 // sun.misc.Signal support
2721 
2722 static void UserHandler(int sig, void *siginfo, void *context) {
2723   // Ctrl-C is pressed during error reporting, likely because the error
2724   // handler fails to abort. Let VM die immediately.
2725   if (sig == SIGINT && VMError::is_error_reported()) {
2726     os::die();
2727   }
2728 
2729   os::signal_notify(sig);
2730 }
2731 
2732 void* os::user_handler() {
2733   return CAST_FROM_FN_PTR(void*, UserHandler);
2734 }
2735 
2736 extern "C" {
2737   typedef void (*sa_handler_t)(int);
2738   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2739 }
2740 
2741 void* os::signal(int signal_number, void* handler) {
2742   struct sigaction sigAct, oldSigAct;
2743 
2744   sigfillset(&(sigAct.sa_mask));
2745   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2746   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2747 
2748   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2749     // -1 means registration failed
2750     return (void *)-1;
2751   }
2752 
2753   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2754 }
2755 
2756 void os::signal_raise(int signal_number) {
2757   ::raise(signal_number);
2758 }
2759 
2760 // The following code is moved from os.cpp for making this
2761 // code platform specific, which it is by its very nature.
2762 
2763 // Will be modified when max signal is changed to be dynamic
2764 int os::sigexitnum_pd() {
2765   return NSIG;
2766 }
2767 
2768 // a counter for each possible signal value
2769 static volatile jint pending_signals[NSIG+1] = { 0 };
2770 
2771 // Linux(POSIX) specific hand shaking semaphore.
2772 static Semaphore* sig_sem = NULL;
2773 static PosixSemaphore sr_semaphore;
2774 
2775 static void jdk_misc_signal_init() {
2776   // Initialize signal structures
2777   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2778 
2779   // Initialize signal semaphore
2780   sig_sem = new Semaphore();
2781 }
2782 
2783 void os::signal_notify(int sig) {
2784   if (sig_sem != NULL) {
2785     Atomic::inc(&pending_signals[sig]);
2786     sig_sem->signal();
2787   } else {
2788     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2789     // initialization isn't called.
2790     assert(ReduceSignalUsage, "signal semaphore should be created");
2791   }
2792 }
2793 
2794 static int check_pending_signals() {
2795   for (;;) {
2796     for (int i = 0; i < NSIG + 1; i++) {
2797       jint n = pending_signals[i];
2798       if (n > 0 && n == Atomic::cmpxchg(&pending_signals[i], n, n - 1)) {
2799         return i;
2800       }
2801     }
2802     JavaThread *thread = JavaThread::current();
2803     ThreadBlockInVM tbivm(thread);
2804 
2805     bool threadIsSuspended;
2806     do {
2807       thread->set_suspend_equivalent();
2808       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2809       sig_sem->wait();
2810 
2811       // were we externally suspended while we were waiting?
2812       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2813       if (threadIsSuspended) {
2814         // The semaphore has been incremented, but while we were waiting
2815         // another thread suspended us. We don't want to continue running
2816         // while suspended because that would surprise the thread that
2817         // suspended us.
2818         sig_sem->signal();
2819 
2820         thread->java_suspend_self();
2821       }
2822     } while (threadIsSuspended);
2823   }
2824 }
2825 
2826 int os::signal_wait() {
2827   return check_pending_signals();
2828 }
2829 
2830 ////////////////////////////////////////////////////////////////////////////////
2831 // Virtual Memory
2832 
2833 int os::vm_page_size() {
2834   // Seems redundant as all get out
2835   assert(os::Linux::page_size() != -1, "must call os::init");
2836   return os::Linux::page_size();
2837 }
2838 
2839 // Solaris allocates memory by pages.
2840 int os::vm_allocation_granularity() {
2841   assert(os::Linux::page_size() != -1, "must call os::init");
2842   return os::Linux::page_size();
2843 }
2844 
2845 // Rationale behind this function:
2846 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2847 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2848 //  samples for JITted code. Here we create private executable mapping over the code cache
2849 //  and then we can use standard (well, almost, as mapping can change) way to provide
2850 //  info for the reporting script by storing timestamp and location of symbol
2851 void linux_wrap_code(char* base, size_t size) {
2852   static volatile jint cnt = 0;
2853 
2854   if (!UseOprofile) {
2855     return;
2856   }
2857 
2858   char buf[PATH_MAX+1];
2859   int num = Atomic::add(&cnt, 1);
2860 
2861   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2862            os::get_temp_directory(), os::current_process_id(), num);
2863   unlink(buf);
2864 
2865   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2866 
2867   if (fd != -1) {
2868     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2869     if (rv != (off_t)-1) {
2870       if (::write(fd, "", 1) == 1) {
2871         mmap(base, size,
2872              PROT_READ|PROT_WRITE|PROT_EXEC,
2873              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2874       }
2875     }
2876     ::close(fd);
2877     unlink(buf);
2878   }
2879 }
2880 
2881 static bool recoverable_mmap_error(int err) {
2882   // See if the error is one we can let the caller handle. This
2883   // list of errno values comes from JBS-6843484. I can't find a
2884   // Linux man page that documents this specific set of errno
2885   // values so while this list currently matches Solaris, it may
2886   // change as we gain experience with this failure mode.
2887   switch (err) {
2888   case EBADF:
2889   case EINVAL:
2890   case ENOTSUP:
2891     // let the caller deal with these errors
2892     return true;
2893 
2894   default:
2895     // Any remaining errors on this OS can cause our reserved mapping
2896     // to be lost. That can cause confusion where different data
2897     // structures think they have the same memory mapped. The worst
2898     // scenario is if both the VM and a library think they have the
2899     // same memory mapped.
2900     return false;
2901   }
2902 }
2903 
2904 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2905                                     int err) {
2906   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2907           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2908           os::strerror(err), err);
2909 }
2910 
2911 static void warn_fail_commit_memory(char* addr, size_t size,
2912                                     size_t alignment_hint, bool exec,
2913                                     int err) {
2914   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2915           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2916           alignment_hint, exec, os::strerror(err), err);
2917 }
2918 
2919 // NOTE: Linux kernel does not really reserve the pages for us.
2920 //       All it does is to check if there are enough free pages
2921 //       left at the time of mmap(). This could be a potential
2922 //       problem.
2923 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2924   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2925   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2926                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2927   if (res != (uintptr_t) MAP_FAILED) {
2928     if (UseNUMAInterleaving) {
2929       numa_make_global(addr, size);
2930     }
2931     return 0;
2932   }
2933 
2934   int err = errno;  // save errno from mmap() call above
2935 
2936   if (!recoverable_mmap_error(err)) {
2937     warn_fail_commit_memory(addr, size, exec, err);
2938     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2939   }
2940 
2941   return err;
2942 }
2943 
2944 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2945   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2946 }
2947 
2948 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2949                                   const char* mesg) {
2950   assert(mesg != NULL, "mesg must be specified");
2951   int err = os::Linux::commit_memory_impl(addr, size, exec);
2952   if (err != 0) {
2953     // the caller wants all commit errors to exit with the specified mesg:
2954     warn_fail_commit_memory(addr, size, exec, err);
2955     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2956   }
2957 }
2958 
2959 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2960 #ifndef MAP_HUGETLB
2961   #define MAP_HUGETLB 0x40000
2962 #endif
2963 
2964 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2965 #ifndef MADV_HUGEPAGE
2966   #define MADV_HUGEPAGE 14
2967 #endif
2968 
2969 int os::Linux::commit_memory_impl(char* addr, size_t size,
2970                                   size_t alignment_hint, bool exec) {
2971   int err = os::Linux::commit_memory_impl(addr, size, exec);
2972   if (err == 0) {
2973     realign_memory(addr, size, alignment_hint);
2974   }
2975   return err;
2976 }
2977 
2978 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2979                           bool exec) {
2980   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2981 }
2982 
2983 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2984                                   size_t alignment_hint, bool exec,
2985                                   const char* mesg) {
2986   assert(mesg != NULL, "mesg must be specified");
2987   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2988   if (err != 0) {
2989     // the caller wants all commit errors to exit with the specified mesg:
2990     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2991     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2992   }
2993 }
2994 
2995 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2996   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2997     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2998     // be supported or the memory may already be backed by huge pages.
2999     ::madvise(addr, bytes, MADV_HUGEPAGE);
3000   }
3001 }
3002 
3003 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
3004   // This method works by doing an mmap over an existing mmaping and effectively discarding
3005   // the existing pages. However it won't work for SHM-based large pages that cannot be
3006   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
3007   // small pages on top of the SHM segment. This method always works for small pages, so we
3008   // allow that in any case.
3009   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
3010     commit_memory(addr, bytes, alignment_hint, !ExecMem);
3011   }
3012 }
3013 
3014 void os::numa_make_global(char *addr, size_t bytes) {
3015   Linux::numa_interleave_memory(addr, bytes);
3016 }
3017 
3018 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
3019 // bind policy to MPOL_PREFERRED for the current thread.
3020 #define USE_MPOL_PREFERRED 0
3021 
3022 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
3023   // To make NUMA and large pages more robust when both enabled, we need to ease
3024   // the requirements on where the memory should be allocated. MPOL_BIND is the
3025   // default policy and it will force memory to be allocated on the specified
3026   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
3027   // the specified node, but will not force it. Using this policy will prevent
3028   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
3029   // free large pages.
3030   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
3031   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
3032 }
3033 
3034 bool os::numa_topology_changed() { return false; }
3035 
3036 size_t os::numa_get_groups_num() {
3037   // Return just the number of nodes in which it's possible to allocate memory
3038   // (in numa terminology, configured nodes).
3039   return Linux::numa_num_configured_nodes();
3040 }
3041 
3042 int os::numa_get_group_id() {
3043   int cpu_id = Linux::sched_getcpu();
3044   if (cpu_id != -1) {
3045     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
3046     if (lgrp_id != -1) {
3047       return lgrp_id;
3048     }
3049   }
3050   return 0;
3051 }
3052 
3053 int os::numa_get_group_id_for_address(const void* address) {
3054   void** pages = const_cast<void**>(&address);
3055   int id = -1;
3056 
3057   if (os::Linux::numa_move_pages(0, 1, pages, NULL, &id, 0) == -1) {
3058     return -1;
3059   }
3060   if (id < 0) {
3061     return -1;
3062   }
3063   return id;
3064 }
3065 
3066 int os::Linux::get_existing_num_nodes() {
3067   int node;
3068   int highest_node_number = Linux::numa_max_node();
3069   int num_nodes = 0;
3070 
3071   // Get the total number of nodes in the system including nodes without memory.
3072   for (node = 0; node <= highest_node_number; node++) {
3073     if (is_node_in_existing_nodes(node)) {
3074       num_nodes++;
3075     }
3076   }
3077   return num_nodes;
3078 }
3079 
3080 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3081   int highest_node_number = Linux::numa_max_node();
3082   size_t i = 0;
3083 
3084   // Map all node ids in which it is possible to allocate memory. Also nodes are
3085   // not always consecutively available, i.e. available from 0 to the highest
3086   // node number. If the nodes have been bound explicitly using numactl membind,
3087   // then allocate memory from those nodes only.
3088   for (int node = 0; node <= highest_node_number; node++) {
3089     if (Linux::is_node_in_bound_nodes((unsigned int)node)) {
3090       ids[i++] = node;
3091     }
3092   }
3093   return i;
3094 }
3095 
3096 bool os::get_page_info(char *start, page_info* info) {
3097   return false;
3098 }
3099 
3100 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3101                      page_info* page_found) {
3102   return end;
3103 }
3104 
3105 
3106 int os::Linux::sched_getcpu_syscall(void) {
3107   unsigned int cpu = 0;
3108   int retval = -1;
3109 
3110 #if defined(IA32)
3111   #ifndef SYS_getcpu
3112     #define SYS_getcpu 318
3113   #endif
3114   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
3115 #elif defined(AMD64)
3116 // Unfortunately we have to bring all these macros here from vsyscall.h
3117 // to be able to compile on old linuxes.
3118   #define __NR_vgetcpu 2
3119   #define VSYSCALL_START (-10UL << 20)
3120   #define VSYSCALL_SIZE 1024
3121   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
3122   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
3123   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
3124   retval = vgetcpu(&cpu, NULL, NULL);
3125 #endif
3126 
3127   return (retval == -1) ? retval : cpu;
3128 }
3129 
3130 void os::Linux::sched_getcpu_init() {
3131   // sched_getcpu() should be in libc.
3132   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3133                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
3134 
3135   // If it's not, try a direct syscall.
3136   if (sched_getcpu() == -1) {
3137     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3138                                     (void*)&sched_getcpu_syscall));
3139   }
3140 
3141   if (sched_getcpu() == -1) {
3142     vm_exit_during_initialization("getcpu(2) system call not supported by kernel");
3143   }
3144 }
3145 
3146 // Something to do with the numa-aware allocator needs these symbols
3147 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
3148 extern "C" JNIEXPORT void numa_error(char *where) { }
3149 
3150 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
3151 // load symbol from base version instead.
3152 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
3153   void *f = dlvsym(handle, name, "libnuma_1.1");
3154   if (f == NULL) {
3155     f = dlsym(handle, name);
3156   }
3157   return f;
3158 }
3159 
3160 // Handle request to load libnuma symbol version 1.2 (API v2) only.
3161 // Return NULL if the symbol is not defined in this particular version.
3162 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
3163   return dlvsym(handle, name, "libnuma_1.2");
3164 }
3165 
3166 bool os::Linux::libnuma_init() {
3167   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
3168     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
3169     if (handle != NULL) {
3170       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
3171                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
3172       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
3173                                        libnuma_dlsym(handle, "numa_max_node")));
3174       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
3175                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
3176       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
3177                                         libnuma_dlsym(handle, "numa_available")));
3178       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
3179                                             libnuma_dlsym(handle, "numa_tonode_memory")));
3180       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
3181                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
3182       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
3183                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
3184       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
3185                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
3186       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
3187                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
3188       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
3189                                        libnuma_dlsym(handle, "numa_distance")));
3190       set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t,
3191                                           libnuma_v2_dlsym(handle, "numa_get_membind")));
3192       set_numa_get_interleave_mask(CAST_TO_FN_PTR(numa_get_interleave_mask_func_t,
3193                                                   libnuma_v2_dlsym(handle, "numa_get_interleave_mask")));
3194       set_numa_move_pages(CAST_TO_FN_PTR(numa_move_pages_func_t,
3195                                          libnuma_dlsym(handle, "numa_move_pages")));
3196       set_numa_set_preferred(CAST_TO_FN_PTR(numa_set_preferred_func_t,
3197                                             libnuma_dlsym(handle, "numa_set_preferred")));
3198 
3199       if (numa_available() != -1) {
3200         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
3201         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
3202         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
3203         set_numa_interleave_bitmask(_numa_get_interleave_mask());
3204         set_numa_membind_bitmask(_numa_get_membind());
3205         // Create an index -> node mapping, since nodes are not always consecutive
3206         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3207         rebuild_nindex_to_node_map();
3208         // Create a cpu -> node mapping
3209         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3210         rebuild_cpu_to_node_map();
3211         return true;
3212       }
3213     }
3214   }
3215   return false;
3216 }
3217 
3218 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
3219   // Creating guard page is very expensive. Java thread has HotSpot
3220   // guard pages, only enable glibc guard page for non-Java threads.
3221   // (Remember: compiler thread is a Java thread, too!)
3222   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
3223 }
3224 
3225 void os::Linux::rebuild_nindex_to_node_map() {
3226   int highest_node_number = Linux::numa_max_node();
3227 
3228   nindex_to_node()->clear();
3229   for (int node = 0; node <= highest_node_number; node++) {
3230     if (Linux::is_node_in_existing_nodes(node)) {
3231       nindex_to_node()->append(node);
3232     }
3233   }
3234 }
3235 
3236 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
3237 // The table is later used in get_node_by_cpu().
3238 void os::Linux::rebuild_cpu_to_node_map() {
3239   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
3240                               // in libnuma (possible values are starting from 16,
3241                               // and continuing up with every other power of 2, but less
3242                               // than the maximum number of CPUs supported by kernel), and
3243                               // is a subject to change (in libnuma version 2 the requirements
3244                               // are more reasonable) we'll just hardcode the number they use
3245                               // in the library.
3246   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
3247 
3248   size_t cpu_num = processor_count();
3249   size_t cpu_map_size = NCPUS / BitsPerCLong;
3250   size_t cpu_map_valid_size =
3251     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
3252 
3253   cpu_to_node()->clear();
3254   cpu_to_node()->at_grow(cpu_num - 1);
3255 
3256   size_t node_num = get_existing_num_nodes();
3257 
3258   int distance = 0;
3259   int closest_distance = INT_MAX;
3260   int closest_node = 0;
3261   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
3262   for (size_t i = 0; i < node_num; i++) {
3263     // Check if node is configured (not a memory-less node). If it is not, find
3264     // the closest configured node. Check also if node is bound, i.e. it's allowed
3265     // to allocate memory from the node. If it's not allowed, map cpus in that node
3266     // to the closest node from which memory allocation is allowed.
3267     if (!is_node_in_configured_nodes(nindex_to_node()->at(i)) ||
3268         !is_node_in_bound_nodes(nindex_to_node()->at(i))) {
3269       closest_distance = INT_MAX;
3270       // Check distance from all remaining nodes in the system. Ignore distance
3271       // from itself, from another non-configured node, and from another non-bound
3272       // node.
3273       for (size_t m = 0; m < node_num; m++) {
3274         if (m != i &&
3275             is_node_in_configured_nodes(nindex_to_node()->at(m)) &&
3276             is_node_in_bound_nodes(nindex_to_node()->at(m))) {
3277           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
3278           // If a closest node is found, update. There is always at least one
3279           // configured and bound node in the system so there is always at least
3280           // one node close.
3281           if (distance != 0 && distance < closest_distance) {
3282             closest_distance = distance;
3283             closest_node = nindex_to_node()->at(m);
3284           }
3285         }
3286       }
3287      } else {
3288        // Current node is already a configured node.
3289        closest_node = nindex_to_node()->at(i);
3290      }
3291 
3292     // Get cpus from the original node and map them to the closest node. If node
3293     // is a configured node (not a memory-less node), then original node and
3294     // closest node are the same.
3295     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3296       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3297         if (cpu_map[j] != 0) {
3298           for (size_t k = 0; k < BitsPerCLong; k++) {
3299             if (cpu_map[j] & (1UL << k)) {
3300               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3301             }
3302           }
3303         }
3304       }
3305     }
3306   }
3307   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3308 }
3309 
3310 int os::Linux::get_node_by_cpu(int cpu_id) {
3311   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3312     return cpu_to_node()->at(cpu_id);
3313   }
3314   return -1;
3315 }
3316 
3317 GrowableArray<int>* os::Linux::_cpu_to_node;
3318 GrowableArray<int>* os::Linux::_nindex_to_node;
3319 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3320 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3321 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3322 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3323 os::Linux::numa_available_func_t os::Linux::_numa_available;
3324 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3325 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3326 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3327 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3328 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3329 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3330 os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind;
3331 os::Linux::numa_get_interleave_mask_func_t os::Linux::_numa_get_interleave_mask;
3332 os::Linux::numa_move_pages_func_t os::Linux::_numa_move_pages;
3333 os::Linux::numa_set_preferred_func_t os::Linux::_numa_set_preferred;
3334 os::Linux::NumaAllocationPolicy os::Linux::_current_numa_policy;
3335 unsigned long* os::Linux::_numa_all_nodes;
3336 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3337 struct bitmask* os::Linux::_numa_nodes_ptr;
3338 struct bitmask* os::Linux::_numa_interleave_bitmask;
3339 struct bitmask* os::Linux::_numa_membind_bitmask;
3340 
3341 bool os::pd_uncommit_memory(char* addr, size_t size) {
3342   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3343                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3344   return res  != (uintptr_t) MAP_FAILED;
3345 }
3346 
3347 static address get_stack_commited_bottom(address bottom, size_t size) {
3348   address nbot = bottom;
3349   address ntop = bottom + size;
3350 
3351   size_t page_sz = os::vm_page_size();
3352   unsigned pages = size / page_sz;
3353 
3354   unsigned char vec[1];
3355   unsigned imin = 1, imax = pages + 1, imid;
3356   int mincore_return_value = 0;
3357 
3358   assert(imin <= imax, "Unexpected page size");
3359 
3360   while (imin < imax) {
3361     imid = (imax + imin) / 2;
3362     nbot = ntop - (imid * page_sz);
3363 
3364     // Use a trick with mincore to check whether the page is mapped or not.
3365     // mincore sets vec to 1 if page resides in memory and to 0 if page
3366     // is swapped output but if page we are asking for is unmapped
3367     // it returns -1,ENOMEM
3368     mincore_return_value = mincore(nbot, page_sz, vec);
3369 
3370     if (mincore_return_value == -1) {
3371       // Page is not mapped go up
3372       // to find first mapped page
3373       if (errno != EAGAIN) {
3374         assert(errno == ENOMEM, "Unexpected mincore errno");
3375         imax = imid;
3376       }
3377     } else {
3378       // Page is mapped go down
3379       // to find first not mapped page
3380       imin = imid + 1;
3381     }
3382   }
3383 
3384   nbot = nbot + page_sz;
3385 
3386   // Adjust stack bottom one page up if last checked page is not mapped
3387   if (mincore_return_value == -1) {
3388     nbot = nbot + page_sz;
3389   }
3390 
3391   return nbot;
3392 }
3393 
3394 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
3395   int mincore_return_value;
3396   const size_t stripe = 1024;  // query this many pages each time
3397   unsigned char vec[stripe + 1];
3398   // set a guard
3399   vec[stripe] = 'X';
3400 
3401   const size_t page_sz = os::vm_page_size();
3402   size_t pages = size / page_sz;
3403 
3404   assert(is_aligned(start, page_sz), "Start address must be page aligned");
3405   assert(is_aligned(size, page_sz), "Size must be page aligned");
3406 
3407   committed_start = NULL;
3408 
3409   int loops = (pages + stripe - 1) / stripe;
3410   int committed_pages = 0;
3411   address loop_base = start;
3412   bool found_range = false;
3413 
3414   for (int index = 0; index < loops && !found_range; index ++) {
3415     assert(pages > 0, "Nothing to do");
3416     int pages_to_query = (pages >= stripe) ? stripe : pages;
3417     pages -= pages_to_query;
3418 
3419     // Get stable read
3420     while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN);
3421 
3422     // During shutdown, some memory goes away without properly notifying NMT,
3423     // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object.
3424     // Bailout and return as not committed for now.
3425     if (mincore_return_value == -1 && errno == ENOMEM) {
3426       return false;
3427     }
3428 
3429     assert(vec[stripe] == 'X', "overflow guard");
3430     assert(mincore_return_value == 0, "Range must be valid");
3431     // Process this stripe
3432     for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) {
3433       if ((vec[vecIdx] & 0x01) == 0) { // not committed
3434         // End of current contiguous region
3435         if (committed_start != NULL) {
3436           found_range = true;
3437           break;
3438         }
3439       } else { // committed
3440         // Start of region
3441         if (committed_start == NULL) {
3442           committed_start = loop_base + page_sz * vecIdx;
3443         }
3444         committed_pages ++;
3445       }
3446     }
3447 
3448     loop_base += pages_to_query * page_sz;
3449   }
3450 
3451   if (committed_start != NULL) {
3452     assert(committed_pages > 0, "Must have committed region");
3453     assert(committed_pages <= int(size / page_sz), "Can not commit more than it has");
3454     assert(committed_start >= start && committed_start < start + size, "Out of range");
3455     committed_size = page_sz * committed_pages;
3456     return true;
3457   } else {
3458     assert(committed_pages == 0, "Should not have committed region");
3459     return false;
3460   }
3461 }
3462 
3463 
3464 // Linux uses a growable mapping for the stack, and if the mapping for
3465 // the stack guard pages is not removed when we detach a thread the
3466 // stack cannot grow beyond the pages where the stack guard was
3467 // mapped.  If at some point later in the process the stack expands to
3468 // that point, the Linux kernel cannot expand the stack any further
3469 // because the guard pages are in the way, and a segfault occurs.
3470 //
3471 // However, it's essential not to split the stack region by unmapping
3472 // a region (leaving a hole) that's already part of the stack mapping,
3473 // so if the stack mapping has already grown beyond the guard pages at
3474 // the time we create them, we have to truncate the stack mapping.
3475 // So, we need to know the extent of the stack mapping when
3476 // create_stack_guard_pages() is called.
3477 
3478 // We only need this for stacks that are growable: at the time of
3479 // writing thread stacks don't use growable mappings (i.e. those
3480 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3481 // only applies to the main thread.
3482 
3483 // If the (growable) stack mapping already extends beyond the point
3484 // where we're going to put our guard pages, truncate the mapping at
3485 // that point by munmap()ping it.  This ensures that when we later
3486 // munmap() the guard pages we don't leave a hole in the stack
3487 // mapping. This only affects the main/primordial thread
3488 
3489 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3490   if (os::is_primordial_thread()) {
3491     // As we manually grow stack up to bottom inside create_attached_thread(),
3492     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3493     // we don't need to do anything special.
3494     // Check it first, before calling heavy function.
3495     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3496     unsigned char vec[1];
3497 
3498     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3499       // Fallback to slow path on all errors, including EAGAIN
3500       stack_extent = (uintptr_t) get_stack_commited_bottom(
3501                                                            os::Linux::initial_thread_stack_bottom(),
3502                                                            (size_t)addr - stack_extent);
3503     }
3504 
3505     if (stack_extent < (uintptr_t)addr) {
3506       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3507     }
3508   }
3509 
3510   return os::commit_memory(addr, size, !ExecMem);
3511 }
3512 
3513 // If this is a growable mapping, remove the guard pages entirely by
3514 // munmap()ping them.  If not, just call uncommit_memory(). This only
3515 // affects the main/primordial thread, but guard against future OS changes.
3516 // It's safe to always unmap guard pages for primordial thread because we
3517 // always place it right after end of the mapped region.
3518 
3519 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3520   uintptr_t stack_extent, stack_base;
3521 
3522   if (os::is_primordial_thread()) {
3523     return ::munmap(addr, size) == 0;
3524   }
3525 
3526   return os::uncommit_memory(addr, size);
3527 }
3528 
3529 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3530 // at 'requested_addr'. If there are existing memory mappings at the same
3531 // location, however, they will be overwritten. If 'fixed' is false,
3532 // 'requested_addr' is only treated as a hint, the return value may or
3533 // may not start from the requested address. Unlike Linux mmap(), this
3534 // function returns NULL to indicate failure.
3535 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3536   char * addr;
3537   int flags;
3538 
3539   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3540   if (fixed) {
3541     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3542     flags |= MAP_FIXED;
3543   }
3544 
3545   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3546   // touch an uncommitted page. Otherwise, the read/write might
3547   // succeed if we have enough swap space to back the physical page.
3548   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3549                        flags, -1, 0);
3550 
3551   return addr == MAP_FAILED ? NULL : addr;
3552 }
3553 
3554 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3555 //   (req_addr != NULL) or with a given alignment.
3556 //  - bytes shall be a multiple of alignment.
3557 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3558 //  - alignment sets the alignment at which memory shall be allocated.
3559 //     It must be a multiple of allocation granularity.
3560 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3561 //  req_addr or NULL.
3562 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3563 
3564   size_t extra_size = bytes;
3565   if (req_addr == NULL && alignment > 0) {
3566     extra_size += alignment;
3567   }
3568 
3569   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3570     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3571     -1, 0);
3572   if (start == MAP_FAILED) {
3573     start = NULL;
3574   } else {
3575     if (req_addr != NULL) {
3576       if (start != req_addr) {
3577         ::munmap(start, extra_size);
3578         start = NULL;
3579       }
3580     } else {
3581       char* const start_aligned = align_up(start, alignment);
3582       char* const end_aligned = start_aligned + bytes;
3583       char* const end = start + extra_size;
3584       if (start_aligned > start) {
3585         ::munmap(start, start_aligned - start);
3586       }
3587       if (end_aligned < end) {
3588         ::munmap(end_aligned, end - end_aligned);
3589       }
3590       start = start_aligned;
3591     }
3592   }
3593   return start;
3594 }
3595 
3596 static int anon_munmap(char * addr, size_t size) {
3597   return ::munmap(addr, size) == 0;
3598 }
3599 
3600 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3601                             size_t alignment_hint) {
3602   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3603 }
3604 
3605 bool os::pd_release_memory(char* addr, size_t size) {
3606   return anon_munmap(addr, size);
3607 }
3608 
3609 static bool linux_mprotect(char* addr, size_t size, int prot) {
3610   // Linux wants the mprotect address argument to be page aligned.
3611   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3612 
3613   // According to SUSv3, mprotect() should only be used with mappings
3614   // established by mmap(), and mmap() always maps whole pages. Unaligned
3615   // 'addr' likely indicates problem in the VM (e.g. trying to change
3616   // protection of malloc'ed or statically allocated memory). Check the
3617   // caller if you hit this assert.
3618   assert(addr == bottom, "sanity check");
3619 
3620   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3621   Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(bottom), p2i(bottom+size), prot);
3622   return ::mprotect(bottom, size, prot) == 0;
3623 }
3624 
3625 // Set protections specified
3626 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3627                         bool is_committed) {
3628   unsigned int p = 0;
3629   switch (prot) {
3630   case MEM_PROT_NONE: p = PROT_NONE; break;
3631   case MEM_PROT_READ: p = PROT_READ; break;
3632   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3633   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3634   default:
3635     ShouldNotReachHere();
3636   }
3637   // is_committed is unused.
3638   return linux_mprotect(addr, bytes, p);
3639 }
3640 
3641 bool os::guard_memory(char* addr, size_t size) {
3642   return linux_mprotect(addr, size, PROT_NONE);
3643 }
3644 
3645 bool os::unguard_memory(char* addr, size_t size) {
3646   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3647 }
3648 
3649 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3650                                                     size_t page_size) {
3651   bool result = false;
3652   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3653                  MAP_ANONYMOUS|MAP_PRIVATE,
3654                  -1, 0);
3655   if (p != MAP_FAILED) {
3656     void *aligned_p = align_up(p, page_size);
3657 
3658     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3659 
3660     munmap(p, page_size * 2);
3661   }
3662 
3663   if (warn && !result) {
3664     warning("TransparentHugePages is not supported by the operating system.");
3665   }
3666 
3667   return result;
3668 }
3669 
3670 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3671   bool result = false;
3672   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3673                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3674                  -1, 0);
3675 
3676   if (p != MAP_FAILED) {
3677     // We don't know if this really is a huge page or not.
3678     FILE *fp = fopen("/proc/self/maps", "r");
3679     if (fp) {
3680       while (!feof(fp)) {
3681         char chars[257];
3682         long x = 0;
3683         if (fgets(chars, sizeof(chars), fp)) {
3684           if (sscanf(chars, "%lx-%*x", &x) == 1
3685               && x == (long)p) {
3686             if (strstr (chars, "hugepage")) {
3687               result = true;
3688               break;
3689             }
3690           }
3691         }
3692       }
3693       fclose(fp);
3694     }
3695     munmap(p, page_size);
3696   }
3697 
3698   if (warn && !result) {
3699     warning("HugeTLBFS is not supported by the operating system.");
3700   }
3701 
3702   return result;
3703 }
3704 
3705 // From the coredump_filter documentation:
3706 //
3707 // - (bit 0) anonymous private memory
3708 // - (bit 1) anonymous shared memory
3709 // - (bit 2) file-backed private memory
3710 // - (bit 3) file-backed shared memory
3711 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3712 //           effective only if the bit 2 is cleared)
3713 // - (bit 5) hugetlb private memory
3714 // - (bit 6) hugetlb shared memory
3715 // - (bit 7) dax private memory
3716 // - (bit 8) dax shared memory
3717 //
3718 static void set_coredump_filter(CoredumpFilterBit bit) {
3719   FILE *f;
3720   long cdm;
3721 
3722   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3723     return;
3724   }
3725 
3726   if (fscanf(f, "%lx", &cdm) != 1) {
3727     fclose(f);
3728     return;
3729   }
3730 
3731   long saved_cdm = cdm;
3732   rewind(f);
3733   cdm |= bit;
3734 
3735   if (cdm != saved_cdm) {
3736     fprintf(f, "%#lx", cdm);
3737   }
3738 
3739   fclose(f);
3740 }
3741 
3742 // Large page support
3743 
3744 static size_t _large_page_size = 0;
3745 
3746 size_t os::Linux::find_large_page_size() {
3747   size_t large_page_size = 0;
3748 
3749   // large_page_size on Linux is used to round up heap size. x86 uses either
3750   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3751   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3752   // page as large as 256M.
3753   //
3754   // Here we try to figure out page size by parsing /proc/meminfo and looking
3755   // for a line with the following format:
3756   //    Hugepagesize:     2048 kB
3757   //
3758   // If we can't determine the value (e.g. /proc is not mounted, or the text
3759   // format has been changed), we'll use the largest page size supported by
3760   // the processor.
3761 
3762 #ifndef ZERO
3763   large_page_size =
3764     AARCH64_ONLY(2 * M)
3765     AMD64_ONLY(2 * M)
3766     ARM32_ONLY(2 * M)
3767     IA32_ONLY(4 * M)
3768     IA64_ONLY(256 * M)
3769     PPC_ONLY(4 * M)
3770     S390_ONLY(1 * M);
3771 #endif // ZERO
3772 
3773   FILE *fp = fopen("/proc/meminfo", "r");
3774   if (fp) {
3775     while (!feof(fp)) {
3776       int x = 0;
3777       char buf[16];
3778       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3779         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3780           large_page_size = x * K;
3781           break;
3782         }
3783       } else {
3784         // skip to next line
3785         for (;;) {
3786           int ch = fgetc(fp);
3787           if (ch == EOF || ch == (int)'\n') break;
3788         }
3789       }
3790     }
3791     fclose(fp);
3792   }
3793 
3794   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3795     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3796             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3797             proper_unit_for_byte_size(large_page_size));
3798   }
3799 
3800   return large_page_size;
3801 }
3802 
3803 size_t os::Linux::setup_large_page_size() {
3804   _large_page_size = Linux::find_large_page_size();
3805   const size_t default_page_size = (size_t)Linux::page_size();
3806   if (_large_page_size > default_page_size) {
3807     _page_sizes[0] = _large_page_size;
3808     _page_sizes[1] = default_page_size;
3809     _page_sizes[2] = 0;
3810   }
3811 
3812   return _large_page_size;
3813 }
3814 
3815 bool os::Linux::setup_large_page_type(size_t page_size) {
3816   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3817       FLAG_IS_DEFAULT(UseSHM) &&
3818       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3819 
3820     // The type of large pages has not been specified by the user.
3821 
3822     // Try UseHugeTLBFS and then UseSHM.
3823     UseHugeTLBFS = UseSHM = true;
3824 
3825     // Don't try UseTransparentHugePages since there are known
3826     // performance issues with it turned on. This might change in the future.
3827     UseTransparentHugePages = false;
3828   }
3829 
3830   if (UseTransparentHugePages) {
3831     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3832     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3833       UseHugeTLBFS = false;
3834       UseSHM = false;
3835       return true;
3836     }
3837     UseTransparentHugePages = false;
3838   }
3839 
3840   if (UseHugeTLBFS) {
3841     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3842     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3843       UseSHM = false;
3844       return true;
3845     }
3846     UseHugeTLBFS = false;
3847   }
3848 
3849   return UseSHM;
3850 }
3851 
3852 void os::large_page_init() {
3853   if (!UseLargePages &&
3854       !UseTransparentHugePages &&
3855       !UseHugeTLBFS &&
3856       !UseSHM) {
3857     // Not using large pages.
3858     return;
3859   }
3860 
3861   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3862     // The user explicitly turned off large pages.
3863     // Ignore the rest of the large pages flags.
3864     UseTransparentHugePages = false;
3865     UseHugeTLBFS = false;
3866     UseSHM = false;
3867     return;
3868   }
3869 
3870   size_t large_page_size = Linux::setup_large_page_size();
3871   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3872 
3873   set_coredump_filter(LARGEPAGES_BIT);
3874 }
3875 
3876 #ifndef SHM_HUGETLB
3877   #define SHM_HUGETLB 04000
3878 #endif
3879 
3880 #define shm_warning_format(format, ...)              \
3881   do {                                               \
3882     if (UseLargePages &&                             \
3883         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3884          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3885          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3886       warning(format, __VA_ARGS__);                  \
3887     }                                                \
3888   } while (0)
3889 
3890 #define shm_warning(str) shm_warning_format("%s", str)
3891 
3892 #define shm_warning_with_errno(str)                \
3893   do {                                             \
3894     int err = errno;                               \
3895     shm_warning_format(str " (error = %d)", err);  \
3896   } while (0)
3897 
3898 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3899   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3900 
3901   if (!is_aligned(alignment, SHMLBA)) {
3902     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3903     return NULL;
3904   }
3905 
3906   // To ensure that we get 'alignment' aligned memory from shmat,
3907   // we pre-reserve aligned virtual memory and then attach to that.
3908 
3909   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3910   if (pre_reserved_addr == NULL) {
3911     // Couldn't pre-reserve aligned memory.
3912     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3913     return NULL;
3914   }
3915 
3916   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3917   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3918 
3919   if ((intptr_t)addr == -1) {
3920     int err = errno;
3921     shm_warning_with_errno("Failed to attach shared memory.");
3922 
3923     assert(err != EACCES, "Unexpected error");
3924     assert(err != EIDRM,  "Unexpected error");
3925     assert(err != EINVAL, "Unexpected error");
3926 
3927     // Since we don't know if the kernel unmapped the pre-reserved memory area
3928     // we can't unmap it, since that would potentially unmap memory that was
3929     // mapped from other threads.
3930     return NULL;
3931   }
3932 
3933   return addr;
3934 }
3935 
3936 static char* shmat_at_address(int shmid, char* req_addr) {
3937   if (!is_aligned(req_addr, SHMLBA)) {
3938     assert(false, "Requested address needs to be SHMLBA aligned");
3939     return NULL;
3940   }
3941 
3942   char* addr = (char*)shmat(shmid, req_addr, 0);
3943 
3944   if ((intptr_t)addr == -1) {
3945     shm_warning_with_errno("Failed to attach shared memory.");
3946     return NULL;
3947   }
3948 
3949   return addr;
3950 }
3951 
3952 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3953   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3954   if (req_addr != NULL) {
3955     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3956     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3957     return shmat_at_address(shmid, req_addr);
3958   }
3959 
3960   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3961   // return large page size aligned memory addresses when req_addr == NULL.
3962   // However, if the alignment is larger than the large page size, we have
3963   // to manually ensure that the memory returned is 'alignment' aligned.
3964   if (alignment > os::large_page_size()) {
3965     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3966     return shmat_with_alignment(shmid, bytes, alignment);
3967   } else {
3968     return shmat_at_address(shmid, NULL);
3969   }
3970 }
3971 
3972 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3973                                             char* req_addr, bool exec) {
3974   // "exec" is passed in but not used.  Creating the shared image for
3975   // the code cache doesn't have an SHM_X executable permission to check.
3976   assert(UseLargePages && UseSHM, "only for SHM large pages");
3977   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3978   assert(is_aligned(req_addr, alignment), "Unaligned address");
3979 
3980   if (!is_aligned(bytes, os::large_page_size())) {
3981     return NULL; // Fallback to small pages.
3982   }
3983 
3984   // Create a large shared memory region to attach to based on size.
3985   // Currently, size is the total size of the heap.
3986   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3987   if (shmid == -1) {
3988     // Possible reasons for shmget failure:
3989     // 1. shmmax is too small for Java heap.
3990     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3991     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3992     // 2. not enough large page memory.
3993     //    > check available large pages: cat /proc/meminfo
3994     //    > increase amount of large pages:
3995     //          echo new_value > /proc/sys/vm/nr_hugepages
3996     //      Note 1: different Linux may use different name for this property,
3997     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3998     //      Note 2: it's possible there's enough physical memory available but
3999     //            they are so fragmented after a long run that they can't
4000     //            coalesce into large pages. Try to reserve large pages when
4001     //            the system is still "fresh".
4002     shm_warning_with_errno("Failed to reserve shared memory.");
4003     return NULL;
4004   }
4005 
4006   // Attach to the region.
4007   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
4008 
4009   // Remove shmid. If shmat() is successful, the actual shared memory segment
4010   // will be deleted when it's detached by shmdt() or when the process
4011   // terminates. If shmat() is not successful this will remove the shared
4012   // segment immediately.
4013   shmctl(shmid, IPC_RMID, NULL);
4014 
4015   return addr;
4016 }
4017 
4018 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
4019                                         int error) {
4020   assert(error == ENOMEM, "Only expect to fail if no memory is available");
4021 
4022   bool warn_on_failure = UseLargePages &&
4023       (!FLAG_IS_DEFAULT(UseLargePages) ||
4024        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
4025        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
4026 
4027   if (warn_on_failure) {
4028     char msg[128];
4029     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
4030                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
4031     warning("%s", msg);
4032   }
4033 }
4034 
4035 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
4036                                                         char* req_addr,
4037                                                         bool exec) {
4038   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4039   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
4040   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
4041 
4042   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
4043   char* addr = (char*)::mmap(req_addr, bytes, prot,
4044                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
4045                              -1, 0);
4046 
4047   if (addr == MAP_FAILED) {
4048     warn_on_large_pages_failure(req_addr, bytes, errno);
4049     return NULL;
4050   }
4051 
4052   assert(is_aligned(addr, os::large_page_size()), "Must be");
4053 
4054   return addr;
4055 }
4056 
4057 // Reserve memory using mmap(MAP_HUGETLB).
4058 //  - bytes shall be a multiple of alignment.
4059 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
4060 //  - alignment sets the alignment at which memory shall be allocated.
4061 //     It must be a multiple of allocation granularity.
4062 // Returns address of memory or NULL. If req_addr was not NULL, will only return
4063 //  req_addr or NULL.
4064 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
4065                                                          size_t alignment,
4066                                                          char* req_addr,
4067                                                          bool exec) {
4068   size_t large_page_size = os::large_page_size();
4069   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
4070 
4071   assert(is_aligned(req_addr, alignment), "Must be");
4072   assert(is_aligned(bytes, alignment), "Must be");
4073 
4074   // First reserve - but not commit - the address range in small pages.
4075   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
4076 
4077   if (start == NULL) {
4078     return NULL;
4079   }
4080 
4081   assert(is_aligned(start, alignment), "Must be");
4082 
4083   char* end = start + bytes;
4084 
4085   // Find the regions of the allocated chunk that can be promoted to large pages.
4086   char* lp_start = align_up(start, large_page_size);
4087   char* lp_end   = align_down(end, large_page_size);
4088 
4089   size_t lp_bytes = lp_end - lp_start;
4090 
4091   assert(is_aligned(lp_bytes, large_page_size), "Must be");
4092 
4093   if (lp_bytes == 0) {
4094     // The mapped region doesn't even span the start and the end of a large page.
4095     // Fall back to allocate a non-special area.
4096     ::munmap(start, end - start);
4097     return NULL;
4098   }
4099 
4100   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
4101 
4102   void* result;
4103 
4104   // Commit small-paged leading area.
4105   if (start != lp_start) {
4106     result = ::mmap(start, lp_start - start, prot,
4107                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
4108                     -1, 0);
4109     if (result == MAP_FAILED) {
4110       ::munmap(lp_start, end - lp_start);
4111       return NULL;
4112     }
4113   }
4114 
4115   // Commit large-paged area.
4116   result = ::mmap(lp_start, lp_bytes, prot,
4117                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
4118                   -1, 0);
4119   if (result == MAP_FAILED) {
4120     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
4121     // If the mmap above fails, the large pages region will be unmapped and we
4122     // have regions before and after with small pages. Release these regions.
4123     //
4124     // |  mapped  |  unmapped  |  mapped  |
4125     // ^          ^            ^          ^
4126     // start      lp_start     lp_end     end
4127     //
4128     ::munmap(start, lp_start - start);
4129     ::munmap(lp_end, end - lp_end);
4130     return NULL;
4131   }
4132 
4133   // Commit small-paged trailing area.
4134   if (lp_end != end) {
4135     result = ::mmap(lp_end, end - lp_end, prot,
4136                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
4137                     -1, 0);
4138     if (result == MAP_FAILED) {
4139       ::munmap(start, lp_end - start);
4140       return NULL;
4141     }
4142   }
4143 
4144   return start;
4145 }
4146 
4147 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
4148                                                    size_t alignment,
4149                                                    char* req_addr,
4150                                                    bool exec) {
4151   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4152   assert(is_aligned(req_addr, alignment), "Must be");
4153   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
4154   assert(is_power_of_2(os::large_page_size()), "Must be");
4155   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
4156 
4157   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
4158     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
4159   } else {
4160     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
4161   }
4162 }
4163 
4164 char* os::pd_reserve_memory_special(size_t bytes, size_t alignment,
4165                                     char* req_addr, bool exec) {
4166   assert(UseLargePages, "only for large pages");
4167 
4168   char* addr;
4169   if (UseSHM) {
4170     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
4171   } else {
4172     assert(UseHugeTLBFS, "must be");
4173     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
4174   }
4175 
4176   if (addr != NULL) {
4177     if (UseNUMAInterleaving) {
4178       numa_make_global(addr, bytes);
4179     }
4180   }
4181 
4182   return addr;
4183 }
4184 
4185 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
4186   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
4187   return shmdt(base) == 0;
4188 }
4189 
4190 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
4191   return pd_release_memory(base, bytes);
4192 }
4193 
4194 bool os::pd_release_memory_special(char* base, size_t bytes) {
4195   assert(UseLargePages, "only for large pages");
4196   bool res;
4197 
4198   if (UseSHM) {
4199     res = os::Linux::release_memory_special_shm(base, bytes);
4200   } else {
4201     assert(UseHugeTLBFS, "must be");
4202     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
4203   }
4204   return res;
4205 }
4206 
4207 size_t os::large_page_size() {
4208   return _large_page_size;
4209 }
4210 
4211 // With SysV SHM the entire memory region must be allocated as shared
4212 // memory.
4213 // HugeTLBFS allows application to commit large page memory on demand.
4214 // However, when committing memory with HugeTLBFS fails, the region
4215 // that was supposed to be committed will lose the old reservation
4216 // and allow other threads to steal that memory region. Because of this
4217 // behavior we can't commit HugeTLBFS memory.
4218 bool os::can_commit_large_page_memory() {
4219   return UseTransparentHugePages;
4220 }
4221 
4222 bool os::can_execute_large_page_memory() {
4223   return UseTransparentHugePages || UseHugeTLBFS;
4224 }
4225 
4226 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
4227   assert(file_desc >= 0, "file_desc is not valid");
4228   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
4229   if (result != NULL) {
4230     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
4231       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
4232     }
4233   }
4234   return result;
4235 }
4236 
4237 // Reserve memory at an arbitrary address, only if that area is
4238 // available (and not reserved for something else).
4239 
4240 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
4241   // Assert only that the size is a multiple of the page size, since
4242   // that's all that mmap requires, and since that's all we really know
4243   // about at this low abstraction level.  If we need higher alignment,
4244   // we can either pass an alignment to this method or verify alignment
4245   // in one of the methods further up the call chain.  See bug 5044738.
4246   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
4247 
4248   // Repeatedly allocate blocks until the block is allocated at the
4249   // right spot.
4250 
4251   // Linux mmap allows caller to pass an address as hint; give it a try first,
4252   // if kernel honors the hint then we can return immediately.
4253   char * addr = anon_mmap(requested_addr, bytes, false);
4254   if (addr == requested_addr) {
4255     return requested_addr;
4256   }
4257 
4258   if (addr != NULL) {
4259     // mmap() is successful but it fails to reserve at the requested address
4260     anon_munmap(addr, bytes);
4261   }
4262 
4263   return NULL;
4264 }
4265 
4266 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4267 void os::infinite_sleep() {
4268   while (true) {    // sleep forever ...
4269     ::sleep(100);   // ... 100 seconds at a time
4270   }
4271 }
4272 
4273 // Used to convert frequent JVM_Yield() to nops
4274 bool os::dont_yield() {
4275   return DontYieldALot;
4276 }
4277 
4278 // Linux CFS scheduler (since 2.6.23) does not guarantee sched_yield(2) will
4279 // actually give up the CPU. Since skip buddy (v2.6.28):
4280 //
4281 // * Sets the yielding task as skip buddy for current CPU's run queue.
4282 // * Picks next from run queue, if empty, picks a skip buddy (can be the yielding task).
4283 // * Clears skip buddies for this run queue (yielding task no longer a skip buddy).
4284 //
4285 // An alternative is calling os::naked_short_nanosleep with a small number to avoid
4286 // getting re-scheduled immediately.
4287 //
4288 void os::naked_yield() {
4289   sched_yield();
4290 }
4291 
4292 ////////////////////////////////////////////////////////////////////////////////
4293 // thread priority support
4294 
4295 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4296 // only supports dynamic priority, static priority must be zero. For real-time
4297 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4298 // However, for large multi-threaded applications, SCHED_RR is not only slower
4299 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4300 // of 5 runs - Sep 2005).
4301 //
4302 // The following code actually changes the niceness of kernel-thread/LWP. It
4303 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4304 // not the entire user process, and user level threads are 1:1 mapped to kernel
4305 // threads. It has always been the case, but could change in the future. For
4306 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4307 // It is only used when ThreadPriorityPolicy=1 and may require system level permission
4308 // (e.g., root privilege or CAP_SYS_NICE capability).
4309 
4310 int os::java_to_os_priority[CriticalPriority + 1] = {
4311   19,              // 0 Entry should never be used
4312 
4313    4,              // 1 MinPriority
4314    3,              // 2
4315    2,              // 3
4316 
4317    1,              // 4
4318    0,              // 5 NormPriority
4319   -1,              // 6
4320 
4321   -2,              // 7
4322   -3,              // 8
4323   -4,              // 9 NearMaxPriority
4324 
4325   -5,              // 10 MaxPriority
4326 
4327   -5               // 11 CriticalPriority
4328 };
4329 
4330 static int prio_init() {
4331   if (ThreadPriorityPolicy == 1) {
4332     if (geteuid() != 0) {
4333       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy) && !FLAG_IS_JIMAGE_RESOURCE(ThreadPriorityPolicy)) {
4334         warning("-XX:ThreadPriorityPolicy=1 may require system level permission, " \
4335                 "e.g., being the root user. If the necessary permission is not " \
4336                 "possessed, changes to priority will be silently ignored.");
4337       }
4338     }
4339   }
4340   if (UseCriticalJavaThreadPriority) {
4341     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4342   }
4343   return 0;
4344 }
4345 
4346 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4347   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4348 
4349   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4350   return (ret == 0) ? OS_OK : OS_ERR;
4351 }
4352 
4353 OSReturn os::get_native_priority(const Thread* const thread,
4354                                  int *priority_ptr) {
4355   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4356     *priority_ptr = java_to_os_priority[NormPriority];
4357     return OS_OK;
4358   }
4359 
4360   errno = 0;
4361   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4362   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4363 }
4364 
4365 ////////////////////////////////////////////////////////////////////////////////
4366 // suspend/resume support
4367 
4368 //  The low-level signal-based suspend/resume support is a remnant from the
4369 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4370 //  within hotspot. Currently used by JFR's OSThreadSampler
4371 //
4372 //  The remaining code is greatly simplified from the more general suspension
4373 //  code that used to be used.
4374 //
4375 //  The protocol is quite simple:
4376 //  - suspend:
4377 //      - sends a signal to the target thread
4378 //      - polls the suspend state of the osthread using a yield loop
4379 //      - target thread signal handler (SR_handler) sets suspend state
4380 //        and blocks in sigsuspend until continued
4381 //  - resume:
4382 //      - sets target osthread state to continue
4383 //      - sends signal to end the sigsuspend loop in the SR_handler
4384 //
4385 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4386 //  but is checked for NULL in SR_handler as a thread termination indicator.
4387 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4388 //
4389 //  Note that resume_clear_context() and suspend_save_context() are needed
4390 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4391 //  which in part is used by:
4392 //    - Forte Analyzer: AsyncGetCallTrace()
4393 //    - StackBanging: get_frame_at_stack_banging_point()
4394 
4395 static void resume_clear_context(OSThread *osthread) {
4396   osthread->set_ucontext(NULL);
4397   osthread->set_siginfo(NULL);
4398 }
4399 
4400 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4401                                  ucontext_t* context) {
4402   osthread->set_ucontext(context);
4403   osthread->set_siginfo(siginfo);
4404 }
4405 
4406 // Handler function invoked when a thread's execution is suspended or
4407 // resumed. We have to be careful that only async-safe functions are
4408 // called here (Note: most pthread functions are not async safe and
4409 // should be avoided.)
4410 //
4411 // Note: sigwait() is a more natural fit than sigsuspend() from an
4412 // interface point of view, but sigwait() prevents the signal hander
4413 // from being run. libpthread would get very confused by not having
4414 // its signal handlers run and prevents sigwait()'s use with the
4415 // mutex granting granting signal.
4416 //
4417 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4418 //
4419 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4420   // Save and restore errno to avoid confusing native code with EINTR
4421   // after sigsuspend.
4422   int old_errno = errno;
4423 
4424   Thread* thread = Thread::current_or_null_safe();
4425   assert(thread != NULL, "Missing current thread in SR_handler");
4426 
4427   // On some systems we have seen signal delivery get "stuck" until the signal
4428   // mask is changed as part of thread termination. Check that the current thread
4429   // has not already terminated (via SR_lock()) - else the following assertion
4430   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4431   // destructor has completed.
4432 
4433   if (thread->SR_lock() == NULL) {
4434     return;
4435   }
4436 
4437   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4438 
4439   OSThread* osthread = thread->osthread();
4440 
4441   os::SuspendResume::State current = osthread->sr.state();
4442   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4443     suspend_save_context(osthread, siginfo, context);
4444 
4445     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4446     os::SuspendResume::State state = osthread->sr.suspended();
4447     if (state == os::SuspendResume::SR_SUSPENDED) {
4448       sigset_t suspend_set;  // signals for sigsuspend()
4449       sigemptyset(&suspend_set);
4450       // get current set of blocked signals and unblock resume signal
4451       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4452       sigdelset(&suspend_set, SR_signum);
4453 
4454       sr_semaphore.signal();
4455       // wait here until we are resumed
4456       while (1) {
4457         sigsuspend(&suspend_set);
4458 
4459         os::SuspendResume::State result = osthread->sr.running();
4460         if (result == os::SuspendResume::SR_RUNNING) {
4461           sr_semaphore.signal();
4462           break;
4463         }
4464       }
4465 
4466     } else if (state == os::SuspendResume::SR_RUNNING) {
4467       // request was cancelled, continue
4468     } else {
4469       ShouldNotReachHere();
4470     }
4471 
4472     resume_clear_context(osthread);
4473   } else if (current == os::SuspendResume::SR_RUNNING) {
4474     // request was cancelled, continue
4475   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4476     // ignore
4477   } else {
4478     // ignore
4479   }
4480 
4481   errno = old_errno;
4482 }
4483 
4484 static int SR_initialize() {
4485   struct sigaction act;
4486   char *s;
4487 
4488   // Get signal number to use for suspend/resume
4489   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4490     int sig = ::strtol(s, 0, 10);
4491     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4492         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4493       SR_signum = sig;
4494     } else {
4495       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4496               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4497     }
4498   }
4499 
4500   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4501          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4502 
4503   sigemptyset(&SR_sigset);
4504   sigaddset(&SR_sigset, SR_signum);
4505 
4506   // Set up signal handler for suspend/resume
4507   act.sa_flags = SA_RESTART|SA_SIGINFO;
4508   act.sa_handler = (void (*)(int)) SR_handler;
4509 
4510   // SR_signum is blocked by default.
4511   // 4528190 - We also need to block pthread restart signal (32 on all
4512   // supported Linux platforms). Note that LinuxThreads need to block
4513   // this signal for all threads to work properly. So we don't have
4514   // to use hard-coded signal number when setting up the mask.
4515   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4516 
4517   if (sigaction(SR_signum, &act, 0) == -1) {
4518     return -1;
4519   }
4520 
4521   // Save signal flag
4522   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4523   return 0;
4524 }
4525 
4526 static int sr_notify(OSThread* osthread) {
4527   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4528   assert_status(status == 0, status, "pthread_kill");
4529   return status;
4530 }
4531 
4532 // "Randomly" selected value for how long we want to spin
4533 // before bailing out on suspending a thread, also how often
4534 // we send a signal to a thread we want to resume
4535 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4536 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4537 
4538 // returns true on success and false on error - really an error is fatal
4539 // but this seems the normal response to library errors
4540 static bool do_suspend(OSThread* osthread) {
4541   assert(osthread->sr.is_running(), "thread should be running");
4542   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4543 
4544   // mark as suspended and send signal
4545   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4546     // failed to switch, state wasn't running?
4547     ShouldNotReachHere();
4548     return false;
4549   }
4550 
4551   if (sr_notify(osthread) != 0) {
4552     ShouldNotReachHere();
4553   }
4554 
4555   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4556   while (true) {
4557     if (sr_semaphore.timedwait(2)) {
4558       break;
4559     } else {
4560       // timeout
4561       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4562       if (cancelled == os::SuspendResume::SR_RUNNING) {
4563         return false;
4564       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4565         // make sure that we consume the signal on the semaphore as well
4566         sr_semaphore.wait();
4567         break;
4568       } else {
4569         ShouldNotReachHere();
4570         return false;
4571       }
4572     }
4573   }
4574 
4575   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4576   return true;
4577 }
4578 
4579 static void do_resume(OSThread* osthread) {
4580   assert(osthread->sr.is_suspended(), "thread should be suspended");
4581   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4582 
4583   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4584     // failed to switch to WAKEUP_REQUEST
4585     ShouldNotReachHere();
4586     return;
4587   }
4588 
4589   while (true) {
4590     if (sr_notify(osthread) == 0) {
4591       if (sr_semaphore.timedwait(2)) {
4592         if (osthread->sr.is_running()) {
4593           return;
4594         }
4595       }
4596     } else {
4597       ShouldNotReachHere();
4598     }
4599   }
4600 
4601   guarantee(osthread->sr.is_running(), "Must be running!");
4602 }
4603 
4604 ///////////////////////////////////////////////////////////////////////////////////
4605 // signal handling (except suspend/resume)
4606 
4607 // This routine may be used by user applications as a "hook" to catch signals.
4608 // The user-defined signal handler must pass unrecognized signals to this
4609 // routine, and if it returns true (non-zero), then the signal handler must
4610 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4611 // routine will never retun false (zero), but instead will execute a VM panic
4612 // routine kill the process.
4613 //
4614 // If this routine returns false, it is OK to call it again.  This allows
4615 // the user-defined signal handler to perform checks either before or after
4616 // the VM performs its own checks.  Naturally, the user code would be making
4617 // a serious error if it tried to handle an exception (such as a null check
4618 // or breakpoint) that the VM was generating for its own correct operation.
4619 //
4620 // This routine may recognize any of the following kinds of signals:
4621 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4622 // It should be consulted by handlers for any of those signals.
4623 //
4624 // The caller of this routine must pass in the three arguments supplied
4625 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4626 // field of the structure passed to sigaction().  This routine assumes that
4627 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4628 //
4629 // Note that the VM will print warnings if it detects conflicting signal
4630 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4631 //
4632 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4633                                                  siginfo_t* siginfo,
4634                                                  void* ucontext,
4635                                                  int abort_if_unrecognized);
4636 
4637 static void signalHandler(int sig, siginfo_t* info, void* uc) {
4638   assert(info != NULL && uc != NULL, "it must be old kernel");
4639   int orig_errno = errno;  // Preserve errno value over signal handler.
4640   JVM_handle_linux_signal(sig, info, uc, true);
4641   errno = orig_errno;
4642 }
4643 
4644 
4645 // This boolean allows users to forward their own non-matching signals
4646 // to JVM_handle_linux_signal, harmlessly.
4647 bool os::Linux::signal_handlers_are_installed = false;
4648 
4649 // For signal-chaining
4650 bool os::Linux::libjsig_is_loaded = false;
4651 typedef struct sigaction *(*get_signal_t)(int);
4652 get_signal_t os::Linux::get_signal_action = NULL;
4653 
4654 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4655   struct sigaction *actp = NULL;
4656 
4657   if (libjsig_is_loaded) {
4658     // Retrieve the old signal handler from libjsig
4659     actp = (*get_signal_action)(sig);
4660   }
4661   if (actp == NULL) {
4662     // Retrieve the preinstalled signal handler from jvm
4663     actp = os::Posix::get_preinstalled_handler(sig);
4664   }
4665 
4666   return actp;
4667 }
4668 
4669 static bool call_chained_handler(struct sigaction *actp, int sig,
4670                                  siginfo_t *siginfo, void *context) {
4671   // Call the old signal handler
4672   if (actp->sa_handler == SIG_DFL) {
4673     // It's more reasonable to let jvm treat it as an unexpected exception
4674     // instead of taking the default action.
4675     return false;
4676   } else if (actp->sa_handler != SIG_IGN) {
4677     if ((actp->sa_flags & SA_NODEFER) == 0) {
4678       // automaticlly block the signal
4679       sigaddset(&(actp->sa_mask), sig);
4680     }
4681 
4682     sa_handler_t hand = NULL;
4683     sa_sigaction_t sa = NULL;
4684     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4685     // retrieve the chained handler
4686     if (siginfo_flag_set) {
4687       sa = actp->sa_sigaction;
4688     } else {
4689       hand = actp->sa_handler;
4690     }
4691 
4692     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4693       actp->sa_handler = SIG_DFL;
4694     }
4695 
4696     // try to honor the signal mask
4697     sigset_t oset;
4698     sigemptyset(&oset);
4699     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4700 
4701     // call into the chained handler
4702     if (siginfo_flag_set) {
4703       (*sa)(sig, siginfo, context);
4704     } else {
4705       (*hand)(sig);
4706     }
4707 
4708     // restore the signal mask
4709     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4710   }
4711   // Tell jvm's signal handler the signal is taken care of.
4712   return true;
4713 }
4714 
4715 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4716   bool chained = false;
4717   // signal-chaining
4718   if (UseSignalChaining) {
4719     struct sigaction *actp = get_chained_signal_action(sig);
4720     if (actp != NULL) {
4721       chained = call_chained_handler(actp, sig, siginfo, context);
4722     }
4723   }
4724   return chained;
4725 }
4726 
4727 // for diagnostic
4728 int sigflags[NSIG];
4729 
4730 int os::Linux::get_our_sigflags(int sig) {
4731   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4732   return sigflags[sig];
4733 }
4734 
4735 void os::Linux::set_our_sigflags(int sig, int flags) {
4736   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4737   if (sig > 0 && sig < NSIG) {
4738     sigflags[sig] = flags;
4739   }
4740 }
4741 
4742 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4743   // Check for overwrite.
4744   struct sigaction oldAct;
4745   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4746 
4747   void* oldhand = oldAct.sa_sigaction
4748                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4749                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4750   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4751       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4752       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4753     if (AllowUserSignalHandlers || !set_installed) {
4754       // Do not overwrite; user takes responsibility to forward to us.
4755       return;
4756     } else if (UseSignalChaining) {
4757       // save the old handler in jvm
4758       os::Posix::save_preinstalled_handler(sig, oldAct);
4759       // libjsig also interposes the sigaction() call below and saves the
4760       // old sigaction on it own.
4761     } else {
4762       fatal("Encountered unexpected pre-existing sigaction handler "
4763             "%#lx for signal %d.", (long)oldhand, sig);
4764     }
4765   }
4766 
4767   struct sigaction sigAct;
4768   sigfillset(&(sigAct.sa_mask));
4769   sigAct.sa_handler = SIG_DFL;
4770   if (!set_installed) {
4771     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4772   } else {
4773     sigAct.sa_sigaction = signalHandler;
4774     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4775   }
4776   // Save flags, which are set by ours
4777   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4778   sigflags[sig] = sigAct.sa_flags;
4779 
4780   int ret = sigaction(sig, &sigAct, &oldAct);
4781   assert(ret == 0, "check");
4782 
4783   void* oldhand2  = oldAct.sa_sigaction
4784                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4785                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4786   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4787 }
4788 
4789 // install signal handlers for signals that HotSpot needs to
4790 // handle in order to support Java-level exception handling.
4791 
4792 void os::Linux::install_signal_handlers() {
4793   if (!signal_handlers_are_installed) {
4794     signal_handlers_are_installed = true;
4795 
4796     // signal-chaining
4797     typedef void (*signal_setting_t)();
4798     signal_setting_t begin_signal_setting = NULL;
4799     signal_setting_t end_signal_setting = NULL;
4800     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4801                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4802     if (begin_signal_setting != NULL) {
4803       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4804                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4805       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4806                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4807       libjsig_is_loaded = true;
4808       assert(UseSignalChaining, "should enable signal-chaining");
4809     }
4810     if (libjsig_is_loaded) {
4811       // Tell libjsig jvm is setting signal handlers
4812       (*begin_signal_setting)();
4813     }
4814 
4815     set_signal_handler(SIGSEGV, true);
4816     set_signal_handler(SIGPIPE, true);
4817     set_signal_handler(SIGBUS, true);
4818     set_signal_handler(SIGILL, true);
4819     set_signal_handler(SIGFPE, true);
4820 #if defined(PPC64)
4821     set_signal_handler(SIGTRAP, true);
4822 #endif
4823     set_signal_handler(SIGXFSZ, true);
4824 
4825     if (libjsig_is_loaded) {
4826       // Tell libjsig jvm finishes setting signal handlers
4827       (*end_signal_setting)();
4828     }
4829 
4830     // We don't activate signal checker if libjsig is in place, we trust ourselves
4831     // and if UserSignalHandler is installed all bets are off.
4832     // Log that signal checking is off only if -verbose:jni is specified.
4833     if (CheckJNICalls) {
4834       if (libjsig_is_loaded) {
4835         log_debug(jni, resolve)("Info: libjsig is activated, all active signal checking is disabled");
4836         check_signals = false;
4837       }
4838       if (AllowUserSignalHandlers) {
4839         log_debug(jni, resolve)("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4840         check_signals = false;
4841       }
4842     }
4843   }
4844 }
4845 
4846 // This is the fastest way to get thread cpu time on Linux.
4847 // Returns cpu time (user+sys) for any thread, not only for current.
4848 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4849 // It might work on 2.6.10+ with a special kernel/glibc patch.
4850 // For reference, please, see IEEE Std 1003.1-2004:
4851 //   http://www.unix.org/single_unix_specification
4852 
4853 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4854   struct timespec tp;
4855   int rc = os::Posix::clock_gettime(clockid, &tp);
4856   assert(rc == 0, "clock_gettime is expected to return 0 code");
4857 
4858   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4859 }
4860 
4861 /////
4862 // glibc on Linux platform uses non-documented flag
4863 // to indicate, that some special sort of signal
4864 // trampoline is used.
4865 // We will never set this flag, and we should
4866 // ignore this flag in our diagnostic
4867 #ifdef SIGNIFICANT_SIGNAL_MASK
4868   #undef SIGNIFICANT_SIGNAL_MASK
4869 #endif
4870 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4871 
4872 static const char* get_signal_handler_name(address handler,
4873                                            char* buf, int buflen) {
4874   int offset = 0;
4875   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4876   if (found) {
4877     // skip directory names
4878     const char *p1, *p2;
4879     p1 = buf;
4880     size_t len = strlen(os::file_separator());
4881     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4882     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4883   } else {
4884     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4885   }
4886   return buf;
4887 }
4888 
4889 static void print_signal_handler(outputStream* st, int sig,
4890                                  char* buf, size_t buflen) {
4891   struct sigaction sa;
4892 
4893   sigaction(sig, NULL, &sa);
4894 
4895   // See comment for SIGNIFICANT_SIGNAL_MASK define
4896   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4897 
4898   st->print("%s: ", os::exception_name(sig, buf, buflen));
4899 
4900   address handler = (sa.sa_flags & SA_SIGINFO)
4901     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4902     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4903 
4904   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4905     st->print("SIG_DFL");
4906   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4907     st->print("SIG_IGN");
4908   } else {
4909     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4910   }
4911 
4912   st->print(", sa_mask[0]=");
4913   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4914 
4915   address rh = VMError::get_resetted_sighandler(sig);
4916   // May be, handler was resetted by VMError?
4917   if (rh != NULL) {
4918     handler = rh;
4919     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4920   }
4921 
4922   st->print(", sa_flags=");
4923   os::Posix::print_sa_flags(st, sa.sa_flags);
4924 
4925   // Check: is it our handler?
4926   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4927       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4928     // It is our signal handler
4929     // check for flags, reset system-used one!
4930     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4931       st->print(
4932                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4933                 os::Linux::get_our_sigflags(sig));
4934     }
4935   }
4936   st->cr();
4937 }
4938 
4939 
4940 #define DO_SIGNAL_CHECK(sig)                      \
4941   do {                                            \
4942     if (!sigismember(&check_signal_done, sig)) {  \
4943       os::Linux::check_signal_handler(sig);       \
4944     }                                             \
4945   } while (0)
4946 
4947 // This method is a periodic task to check for misbehaving JNI applications
4948 // under CheckJNI, we can add any periodic checks here
4949 
4950 void os::run_periodic_checks() {
4951   if (check_signals == false) return;
4952 
4953   // SEGV and BUS if overridden could potentially prevent
4954   // generation of hs*.log in the event of a crash, debugging
4955   // such a case can be very challenging, so we absolutely
4956   // check the following for a good measure:
4957   DO_SIGNAL_CHECK(SIGSEGV);
4958   DO_SIGNAL_CHECK(SIGILL);
4959   DO_SIGNAL_CHECK(SIGFPE);
4960   DO_SIGNAL_CHECK(SIGBUS);
4961   DO_SIGNAL_CHECK(SIGPIPE);
4962   DO_SIGNAL_CHECK(SIGXFSZ);
4963 #if defined(PPC64)
4964   DO_SIGNAL_CHECK(SIGTRAP);
4965 #endif
4966 
4967   // ReduceSignalUsage allows the user to override these handlers
4968   // see comments at the very top and jvm_md.h
4969   if (!ReduceSignalUsage) {
4970     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4971     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4972     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4973     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4974   }
4975 
4976   DO_SIGNAL_CHECK(SR_signum);
4977 }
4978 
4979 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4980 
4981 static os_sigaction_t os_sigaction = NULL;
4982 
4983 void os::Linux::check_signal_handler(int sig) {
4984   char buf[O_BUFLEN];
4985   address jvmHandler = NULL;
4986 
4987 
4988   struct sigaction act;
4989   if (os_sigaction == NULL) {
4990     // only trust the default sigaction, in case it has been interposed
4991     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4992     if (os_sigaction == NULL) return;
4993   }
4994 
4995   os_sigaction(sig, (struct sigaction*)NULL, &act);
4996 
4997 
4998   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4999 
5000   address thisHandler = (act.sa_flags & SA_SIGINFO)
5001     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
5002     : CAST_FROM_FN_PTR(address, act.sa_handler);
5003 
5004 
5005   switch (sig) {
5006   case SIGSEGV:
5007   case SIGBUS:
5008   case SIGFPE:
5009   case SIGPIPE:
5010   case SIGILL:
5011   case SIGXFSZ:
5012     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
5013     break;
5014 
5015   case SHUTDOWN1_SIGNAL:
5016   case SHUTDOWN2_SIGNAL:
5017   case SHUTDOWN3_SIGNAL:
5018   case BREAK_SIGNAL:
5019     jvmHandler = (address)user_handler();
5020     break;
5021 
5022   default:
5023     if (sig == SR_signum) {
5024       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
5025     } else {
5026       return;
5027     }
5028     break;
5029   }
5030 
5031   if (thisHandler != jvmHandler) {
5032     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
5033     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
5034     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
5035     // No need to check this sig any longer
5036     sigaddset(&check_signal_done, sig);
5037     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
5038     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
5039       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
5040                     exception_name(sig, buf, O_BUFLEN));
5041     }
5042   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
5043     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
5044     tty->print("expected:");
5045     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
5046     tty->cr();
5047     tty->print("  found:");
5048     os::Posix::print_sa_flags(tty, act.sa_flags);
5049     tty->cr();
5050     // No need to check this sig any longer
5051     sigaddset(&check_signal_done, sig);
5052   }
5053 
5054   // Dump all the signal
5055   if (sigismember(&check_signal_done, sig)) {
5056     print_signal_handlers(tty, buf, O_BUFLEN);
5057   }
5058 }
5059 
5060 extern void report_error(char* file_name, int line_no, char* title,
5061                          char* format, ...);
5062 
5063 // this is called _before_ most of the global arguments have been parsed
5064 void os::init(void) {
5065   char dummy;   // used to get a guess on initial stack address
5066 
5067   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
5068 
5069   init_random(1234567);
5070 
5071   Linux::set_page_size(sysconf(_SC_PAGESIZE));
5072   if (Linux::page_size() == -1) {
5073     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
5074           os::strerror(errno));
5075   }
5076   init_page_sizes((size_t) Linux::page_size());
5077 
5078   Linux::initialize_system_info();
5079 
5080   os::Linux::CPUPerfTicks pticks;
5081   bool res = os::Linux::get_tick_information(&pticks, -1);
5082 
5083   if (res && pticks.has_steal_ticks) {
5084     has_initial_tick_info = true;
5085     initial_total_ticks = pticks.total;
5086     initial_steal_ticks = pticks.steal;
5087   }
5088 
5089   // _main_thread points to the thread that created/loaded the JVM.
5090   Linux::_main_thread = pthread_self();
5091 
5092   // retrieve entry point for pthread_setname_np
5093   Linux::_pthread_setname_np =
5094     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
5095 
5096   os::Posix::init();
5097 
5098   initial_time_count = javaTimeNanos();
5099 
5100   // Always warn if no monotonic clock available
5101   if (!os::Posix::supports_monotonic_clock()) {
5102     warning("No monotonic clock was available - timed services may "    \
5103             "be adversely affected if the time-of-day clock changes");
5104   }
5105 }
5106 
5107 // To install functions for atexit system call
5108 extern "C" {
5109   static void perfMemory_exit_helper() {
5110     perfMemory_exit();
5111   }
5112 }
5113 
5114 void os::pd_init_container_support() {
5115   OSContainer::init();
5116 }
5117 
5118 void os::Linux::numa_init() {
5119 
5120   // Java can be invoked as
5121   // 1. Without numactl and heap will be allocated/configured on all nodes as
5122   //    per the system policy.
5123   // 2. With numactl --interleave:
5124   //      Use numa_get_interleave_mask(v2) API to get nodes bitmask. The same
5125   //      API for membind case bitmask is reset.
5126   //      Interleave is only hint and Kernel can fallback to other nodes if
5127   //      no memory is available on the target nodes.
5128   // 3. With numactl --membind:
5129   //      Use numa_get_membind(v2) API to get nodes bitmask. The same API for
5130   //      interleave case returns bitmask of all nodes.
5131   // numa_all_nodes_ptr holds bitmask of all nodes.
5132   // numa_get_interleave_mask(v2) and numa_get_membind(v2) APIs returns correct
5133   // bitmask when externally configured to run on all or fewer nodes.
5134 
5135   if (!Linux::libnuma_init()) {
5136     FLAG_SET_ERGO(UseNUMA, false);
5137     FLAG_SET_ERGO(UseNUMAInterleaving, false); // Also depends on libnuma.
5138   } else {
5139     if ((Linux::numa_max_node() < 1) || Linux::is_bound_to_single_node()) {
5140       // If there's only one node (they start from 0) or if the process
5141       // is bound explicitly to a single node using membind, disable NUMA unless
5142       // user explicilty forces NUMA optimizations on single-node/UMA systems
5143       UseNUMA = ForceNUMA;
5144     } else {
5145 
5146       LogTarget(Info,os) log;
5147       LogStream ls(log);
5148 
5149       Linux::set_configured_numa_policy(Linux::identify_numa_policy());
5150 
5151       struct bitmask* bmp = Linux::_numa_membind_bitmask;
5152       const char* numa_mode = "membind";
5153 
5154       if (Linux::is_running_in_interleave_mode()) {
5155         bmp = Linux::_numa_interleave_bitmask;
5156         numa_mode = "interleave";
5157       }
5158 
5159       ls.print("UseNUMA is enabled and invoked in '%s' mode."
5160                " Heap will be configured using NUMA memory nodes:", numa_mode);
5161 
5162       for (int node = 0; node <= Linux::numa_max_node(); node++) {
5163         if (Linux::_numa_bitmask_isbitset(bmp, node)) {
5164           ls.print(" %d", node);
5165         }
5166       }
5167     }
5168   }
5169 
5170   // When NUMA requested, not-NUMA-aware allocations default to interleaving.
5171   if (UseNUMA && !UseNUMAInterleaving) {
5172     FLAG_SET_ERGO_IF_DEFAULT(UseNUMAInterleaving, true);
5173   }
5174 
5175   if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5176     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5177     // we can make the adaptive lgrp chunk resizing work. If the user specified both
5178     // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
5179     // and disable adaptive resizing.
5180     if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
5181       warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
5182               "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
5183       UseAdaptiveSizePolicy = false;
5184       UseAdaptiveNUMAChunkSizing = false;
5185     }
5186   }
5187 }
5188 
5189 // this is called _after_ the global arguments have been parsed
5190 jint os::init_2(void) {
5191 
5192   // This could be set after os::Posix::init() but all platforms
5193   // have to set it the same so we have to mirror Solaris.
5194   DEBUG_ONLY(os::set_mutex_init_done();)
5195 
5196   os::Posix::init_2();
5197 
5198   Linux::fast_thread_clock_init();
5199 
5200   // initialize suspend/resume support - must do this before signal_sets_init()
5201   if (SR_initialize() != 0) {
5202     perror("SR_initialize failed");
5203     return JNI_ERR;
5204   }
5205 
5206   Linux::signal_sets_init();
5207   Linux::install_signal_handlers();
5208   // Initialize data for jdk.internal.misc.Signal
5209   if (!ReduceSignalUsage) {
5210     jdk_misc_signal_init();
5211   }
5212 
5213   if (AdjustStackSizeForTLS) {
5214     get_minstack_init();
5215   }
5216 
5217   // Check and sets minimum stack sizes against command line options
5218   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
5219     return JNI_ERR;
5220   }
5221 
5222 #if defined(IA32)
5223   // Need to ensure we've determined the process's initial stack to
5224   // perform the workaround
5225   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5226   workaround_expand_exec_shield_cs_limit();
5227 #else
5228   suppress_primordial_thread_resolution = Arguments::created_by_java_launcher();
5229   if (!suppress_primordial_thread_resolution) {
5230     Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5231   }
5232 #endif
5233 
5234   Linux::libpthread_init();
5235   Linux::sched_getcpu_init();
5236   log_info(os)("HotSpot is running with %s, %s",
5237                Linux::glibc_version(), Linux::libpthread_version());
5238 
5239   if (UseNUMA || UseNUMAInterleaving) {
5240     Linux::numa_init();
5241   }
5242 
5243   if (MaxFDLimit) {
5244     // set the number of file descriptors to max. print out error
5245     // if getrlimit/setrlimit fails but continue regardless.
5246     struct rlimit nbr_files;
5247     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5248     if (status != 0) {
5249       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
5250     } else {
5251       nbr_files.rlim_cur = nbr_files.rlim_max;
5252       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5253       if (status != 0) {
5254         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
5255       }
5256     }
5257   }
5258 
5259   // at-exit methods are called in the reverse order of their registration.
5260   // atexit functions are called on return from main or as a result of a
5261   // call to exit(3C). There can be only 32 of these functions registered
5262   // and atexit() does not set errno.
5263 
5264   if (PerfAllowAtExitRegistration) {
5265     // only register atexit functions if PerfAllowAtExitRegistration is set.
5266     // atexit functions can be delayed until process exit time, which
5267     // can be problematic for embedded VM situations. Embedded VMs should
5268     // call DestroyJavaVM() to assure that VM resources are released.
5269 
5270     // note: perfMemory_exit_helper atexit function may be removed in
5271     // the future if the appropriate cleanup code can be added to the
5272     // VM_Exit VMOperation's doit method.
5273     if (atexit(perfMemory_exit_helper) != 0) {
5274       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5275     }
5276   }
5277 
5278   // initialize thread priority policy
5279   prio_init();
5280 
5281   if (!FLAG_IS_DEFAULT(AllocateHeapAt) || !FLAG_IS_DEFAULT(AllocateOldGenAt)) {
5282     set_coredump_filter(DAX_SHARED_BIT);
5283   }
5284 
5285   if (DumpPrivateMappingsInCore) {
5286     set_coredump_filter(FILE_BACKED_PVT_BIT);
5287   }
5288 
5289   if (DumpSharedMappingsInCore) {
5290     set_coredump_filter(FILE_BACKED_SHARED_BIT);
5291   }
5292 
5293   return JNI_OK;
5294 }
5295 
5296 // older glibc versions don't have this macro (which expands to
5297 // an optimized bit-counting function) so we have to roll our own
5298 #ifndef CPU_COUNT
5299 
5300 static int _cpu_count(const cpu_set_t* cpus) {
5301   int count = 0;
5302   // only look up to the number of configured processors
5303   for (int i = 0; i < os::processor_count(); i++) {
5304     if (CPU_ISSET(i, cpus)) {
5305       count++;
5306     }
5307   }
5308   return count;
5309 }
5310 
5311 #define CPU_COUNT(cpus) _cpu_count(cpus)
5312 
5313 #endif // CPU_COUNT
5314 
5315 // Get the current number of available processors for this process.
5316 // This value can change at any time during a process's lifetime.
5317 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5318 // If it appears there may be more than 1024 processors then we do a
5319 // dynamic check - see 6515172 for details.
5320 // If anything goes wrong we fallback to returning the number of online
5321 // processors - which can be greater than the number available to the process.
5322 int os::Linux::active_processor_count() {
5323   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5324   cpu_set_t* cpus_p = &cpus;
5325   int cpus_size = sizeof(cpu_set_t);
5326 
5327   int configured_cpus = os::processor_count();  // upper bound on available cpus
5328   int cpu_count = 0;
5329 
5330 // old build platforms may not support dynamic cpu sets
5331 #ifdef CPU_ALLOC
5332 
5333   // To enable easy testing of the dynamic path on different platforms we
5334   // introduce a diagnostic flag: UseCpuAllocPath
5335   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5336     // kernel may use a mask bigger than cpu_set_t
5337     log_trace(os)("active_processor_count: using dynamic path %s"
5338                   "- configured processors: %d",
5339                   UseCpuAllocPath ? "(forced) " : "",
5340                   configured_cpus);
5341     cpus_p = CPU_ALLOC(configured_cpus);
5342     if (cpus_p != NULL) {
5343       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5344       // zero it just to be safe
5345       CPU_ZERO_S(cpus_size, cpus_p);
5346     }
5347     else {
5348        // failed to allocate so fallback to online cpus
5349        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5350        log_trace(os)("active_processor_count: "
5351                      "CPU_ALLOC failed (%s) - using "
5352                      "online processor count: %d",
5353                      os::strerror(errno), online_cpus);
5354        return online_cpus;
5355     }
5356   }
5357   else {
5358     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5359                   configured_cpus);
5360   }
5361 #else // CPU_ALLOC
5362 // these stubs won't be executed
5363 #define CPU_COUNT_S(size, cpus) -1
5364 #define CPU_FREE(cpus)
5365 
5366   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5367                 configured_cpus);
5368 #endif // CPU_ALLOC
5369 
5370   // pid 0 means the current thread - which we have to assume represents the process
5371   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5372     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5373       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5374     }
5375     else {
5376       cpu_count = CPU_COUNT(cpus_p);
5377     }
5378     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5379   }
5380   else {
5381     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5382     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5383             "which may exceed available processors", os::strerror(errno), cpu_count);
5384   }
5385 
5386   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5387     CPU_FREE(cpus_p);
5388   }
5389 
5390   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5391   return cpu_count;
5392 }
5393 
5394 // Determine the active processor count from one of
5395 // three different sources:
5396 //
5397 // 1. User option -XX:ActiveProcessorCount
5398 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5399 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5400 //
5401 // Option 1, if specified, will always override.
5402 // If the cgroup subsystem is active and configured, we
5403 // will return the min of the cgroup and option 2 results.
5404 // This is required since tools, such as numactl, that
5405 // alter cpu affinity do not update cgroup subsystem
5406 // cpuset configuration files.
5407 int os::active_processor_count() {
5408   // User has overridden the number of active processors
5409   if (ActiveProcessorCount > 0) {
5410     log_trace(os)("active_processor_count: "
5411                   "active processor count set by user : %d",
5412                   ActiveProcessorCount);
5413     return ActiveProcessorCount;
5414   }
5415 
5416   int active_cpus;
5417   if (OSContainer::is_containerized()) {
5418     active_cpus = OSContainer::active_processor_count();
5419     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5420                    active_cpus);
5421   } else {
5422     active_cpus = os::Linux::active_processor_count();
5423   }
5424 
5425   return active_cpus;
5426 }
5427 
5428 uint os::processor_id() {
5429   const int id = Linux::sched_getcpu();
5430   assert(id >= 0 && id < _processor_count, "Invalid processor id");
5431   return (uint)id;
5432 }
5433 
5434 void os::set_native_thread_name(const char *name) {
5435   if (Linux::_pthread_setname_np) {
5436     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5437     snprintf(buf, sizeof(buf), "%s", name);
5438     buf[sizeof(buf) - 1] = '\0';
5439     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5440     // ERANGE should not happen; all other errors should just be ignored.
5441     assert(rc != ERANGE, "pthread_setname_np failed");
5442   }
5443 }
5444 
5445 bool os::bind_to_processor(uint processor_id) {
5446   // Not yet implemented.
5447   return false;
5448 }
5449 
5450 ///
5451 
5452 void os::SuspendedThreadTask::internal_do_task() {
5453   if (do_suspend(_thread->osthread())) {
5454     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5455     do_task(context);
5456     do_resume(_thread->osthread());
5457   }
5458 }
5459 
5460 ////////////////////////////////////////////////////////////////////////////////
5461 // debug support
5462 
5463 bool os::find(address addr, outputStream* st) {
5464   Dl_info dlinfo;
5465   memset(&dlinfo, 0, sizeof(dlinfo));
5466   if (dladdr(addr, &dlinfo) != 0) {
5467     st->print(PTR_FORMAT ": ", p2i(addr));
5468     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5469       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5470                 p2i(addr) - p2i(dlinfo.dli_saddr));
5471     } else if (dlinfo.dli_fbase != NULL) {
5472       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5473     } else {
5474       st->print("<absolute address>");
5475     }
5476     if (dlinfo.dli_fname != NULL) {
5477       st->print(" in %s", dlinfo.dli_fname);
5478     }
5479     if (dlinfo.dli_fbase != NULL) {
5480       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5481     }
5482     st->cr();
5483 
5484     if (Verbose) {
5485       // decode some bytes around the PC
5486       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5487       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5488       address       lowest = (address) dlinfo.dli_sname;
5489       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5490       if (begin < lowest)  begin = lowest;
5491       Dl_info dlinfo2;
5492       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5493           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5494         end = (address) dlinfo2.dli_saddr;
5495       }
5496       Disassembler::decode(begin, end, st);
5497     }
5498     return true;
5499   }
5500   return false;
5501 }
5502 
5503 ////////////////////////////////////////////////////////////////////////////////
5504 // misc
5505 
5506 // This does not do anything on Linux. This is basically a hook for being
5507 // able to use structured exception handling (thread-local exception filters)
5508 // on, e.g., Win32.
5509 void
5510 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5511                          JavaCallArguments* args, Thread* thread) {
5512   f(value, method, args, thread);
5513 }
5514 
5515 void os::print_statistics() {
5516 }
5517 
5518 bool os::message_box(const char* title, const char* message) {
5519   int i;
5520   fdStream err(defaultStream::error_fd());
5521   for (i = 0; i < 78; i++) err.print_raw("=");
5522   err.cr();
5523   err.print_raw_cr(title);
5524   for (i = 0; i < 78; i++) err.print_raw("-");
5525   err.cr();
5526   err.print_raw_cr(message);
5527   for (i = 0; i < 78; i++) err.print_raw("=");
5528   err.cr();
5529 
5530   char buf[16];
5531   // Prevent process from exiting upon "read error" without consuming all CPU
5532   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5533 
5534   return buf[0] == 'y' || buf[0] == 'Y';
5535 }
5536 
5537 // Is a (classpath) directory empty?
5538 bool os::dir_is_empty(const char* path) {
5539   DIR *dir = NULL;
5540   struct dirent *ptr;
5541 
5542   dir = opendir(path);
5543   if (dir == NULL) return true;
5544 
5545   // Scan the directory
5546   bool result = true;
5547   while (result && (ptr = readdir(dir)) != NULL) {
5548     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5549       result = false;
5550     }
5551   }
5552   closedir(dir);
5553   return result;
5554 }
5555 
5556 // This code originates from JDK's sysOpen and open64_w
5557 // from src/solaris/hpi/src/system_md.c
5558 
5559 int os::open(const char *path, int oflag, int mode) {
5560   if (strlen(path) > MAX_PATH - 1) {
5561     errno = ENAMETOOLONG;
5562     return -1;
5563   }
5564 
5565   // All file descriptors that are opened in the Java process and not
5566   // specifically destined for a subprocess should have the close-on-exec
5567   // flag set.  If we don't set it, then careless 3rd party native code
5568   // might fork and exec without closing all appropriate file descriptors
5569   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5570   // turn might:
5571   //
5572   // - cause end-of-file to fail to be detected on some file
5573   //   descriptors, resulting in mysterious hangs, or
5574   //
5575   // - might cause an fopen in the subprocess to fail on a system
5576   //   suffering from bug 1085341.
5577   //
5578   // (Yes, the default setting of the close-on-exec flag is a Unix
5579   // design flaw)
5580   //
5581   // See:
5582   // 1085341: 32-bit stdio routines should support file descriptors >255
5583   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5584   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5585   //
5586   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5587   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5588   // because it saves a system call and removes a small window where the flag
5589   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5590   // and we fall back to using FD_CLOEXEC (see below).
5591 #ifdef O_CLOEXEC
5592   oflag |= O_CLOEXEC;
5593 #endif
5594 
5595   int fd = ::open64(path, oflag, mode);
5596   if (fd == -1) return -1;
5597 
5598   //If the open succeeded, the file might still be a directory
5599   {
5600     struct stat64 buf64;
5601     int ret = ::fstat64(fd, &buf64);
5602     int st_mode = buf64.st_mode;
5603 
5604     if (ret != -1) {
5605       if ((st_mode & S_IFMT) == S_IFDIR) {
5606         errno = EISDIR;
5607         ::close(fd);
5608         return -1;
5609       }
5610     } else {
5611       ::close(fd);
5612       return -1;
5613     }
5614   }
5615 
5616 #ifdef FD_CLOEXEC
5617   // Validate that the use of the O_CLOEXEC flag on open above worked.
5618   // With recent kernels, we will perform this check exactly once.
5619   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5620   if (!O_CLOEXEC_is_known_to_work) {
5621     int flags = ::fcntl(fd, F_GETFD);
5622     if (flags != -1) {
5623       if ((flags & FD_CLOEXEC) != 0)
5624         O_CLOEXEC_is_known_to_work = 1;
5625       else
5626         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5627     }
5628   }
5629 #endif
5630 
5631   return fd;
5632 }
5633 
5634 
5635 // create binary file, rewriting existing file if required
5636 int os::create_binary_file(const char* path, bool rewrite_existing) {
5637   int oflags = O_WRONLY | O_CREAT;
5638   if (!rewrite_existing) {
5639     oflags |= O_EXCL;
5640   }
5641   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5642 }
5643 
5644 // return current position of file pointer
5645 jlong os::current_file_offset(int fd) {
5646   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5647 }
5648 
5649 // move file pointer to the specified offset
5650 jlong os::seek_to_file_offset(int fd, jlong offset) {
5651   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5652 }
5653 
5654 // This code originates from JDK's sysAvailable
5655 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5656 
5657 int os::available(int fd, jlong *bytes) {
5658   jlong cur, end;
5659   int mode;
5660   struct stat64 buf64;
5661 
5662   if (::fstat64(fd, &buf64) >= 0) {
5663     mode = buf64.st_mode;
5664     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5665       int n;
5666       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5667         *bytes = n;
5668         return 1;
5669       }
5670     }
5671   }
5672   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5673     return 0;
5674   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5675     return 0;
5676   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5677     return 0;
5678   }
5679   *bytes = end - cur;
5680   return 1;
5681 }
5682 
5683 // Map a block of memory.
5684 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5685                         char *addr, size_t bytes, bool read_only,
5686                         bool allow_exec) {
5687   int prot;
5688   int flags = MAP_PRIVATE;
5689 
5690   if (read_only) {
5691     prot = PROT_READ;
5692   } else {
5693     prot = PROT_READ | PROT_WRITE;
5694   }
5695 
5696   if (allow_exec) {
5697     prot |= PROT_EXEC;
5698   }
5699 
5700   if (addr != NULL) {
5701     flags |= MAP_FIXED;
5702   }
5703 
5704   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5705                                      fd, file_offset);
5706   if (mapped_address == MAP_FAILED) {
5707     return NULL;
5708   }
5709   return mapped_address;
5710 }
5711 
5712 
5713 // Remap a block of memory.
5714 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5715                           char *addr, size_t bytes, bool read_only,
5716                           bool allow_exec) {
5717   // same as map_memory() on this OS
5718   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5719                         allow_exec);
5720 }
5721 
5722 
5723 // Unmap a block of memory.
5724 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5725   return munmap(addr, bytes) == 0;
5726 }
5727 
5728 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5729 
5730 static jlong fast_cpu_time(Thread *thread) {
5731     clockid_t clockid;
5732     int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(),
5733                                               &clockid);
5734     if (rc == 0) {
5735       return os::Linux::fast_thread_cpu_time(clockid);
5736     } else {
5737       // It's possible to encounter a terminated native thread that failed
5738       // to detach itself from the VM - which should result in ESRCH.
5739       assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed");
5740       return -1;
5741     }
5742 }
5743 
5744 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5745 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5746 // of a thread.
5747 //
5748 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5749 // the fast estimate available on the platform.
5750 
5751 jlong os::current_thread_cpu_time() {
5752   if (os::Linux::supports_fast_thread_cpu_time()) {
5753     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5754   } else {
5755     // return user + sys since the cost is the same
5756     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5757   }
5758 }
5759 
5760 jlong os::thread_cpu_time(Thread* thread) {
5761   // consistent with what current_thread_cpu_time() returns
5762   if (os::Linux::supports_fast_thread_cpu_time()) {
5763     return fast_cpu_time(thread);
5764   } else {
5765     return slow_thread_cpu_time(thread, true /* user + sys */);
5766   }
5767 }
5768 
5769 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5770   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5771     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5772   } else {
5773     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5774   }
5775 }
5776 
5777 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5778   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5779     return fast_cpu_time(thread);
5780   } else {
5781     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5782   }
5783 }
5784 
5785 //  -1 on error.
5786 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5787   pid_t  tid = thread->osthread()->thread_id();
5788   char *s;
5789   char stat[2048];
5790   int statlen;
5791   char proc_name[64];
5792   int count;
5793   long sys_time, user_time;
5794   char cdummy;
5795   int idummy;
5796   long ldummy;
5797   FILE *fp;
5798 
5799   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5800   fp = fopen(proc_name, "r");
5801   if (fp == NULL) return -1;
5802   statlen = fread(stat, 1, 2047, fp);
5803   stat[statlen] = '\0';
5804   fclose(fp);
5805 
5806   // Skip pid and the command string. Note that we could be dealing with
5807   // weird command names, e.g. user could decide to rename java launcher
5808   // to "java 1.4.2 :)", then the stat file would look like
5809   //                1234 (java 1.4.2 :)) R ... ...
5810   // We don't really need to know the command string, just find the last
5811   // occurrence of ")" and then start parsing from there. See bug 4726580.
5812   s = strrchr(stat, ')');
5813   if (s == NULL) return -1;
5814 
5815   // Skip blank chars
5816   do { s++; } while (s && isspace(*s));
5817 
5818   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5819                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5820                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5821                  &user_time, &sys_time);
5822   if (count != 13) return -1;
5823   if (user_sys_cpu_time) {
5824     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5825   } else {
5826     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5827   }
5828 }
5829 
5830 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5831   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5832   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5833   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5834   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5835 }
5836 
5837 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5838   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5839   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5840   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5841   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5842 }
5843 
5844 bool os::is_thread_cpu_time_supported() {
5845   return true;
5846 }
5847 
5848 // System loadavg support.  Returns -1 if load average cannot be obtained.
5849 // Linux doesn't yet have a (official) notion of processor sets,
5850 // so just return the system wide load average.
5851 int os::loadavg(double loadavg[], int nelem) {
5852   return ::getloadavg(loadavg, nelem);
5853 }
5854 
5855 void os::pause() {
5856   char filename[MAX_PATH];
5857   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5858     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5859   } else {
5860     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5861   }
5862 
5863   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5864   if (fd != -1) {
5865     struct stat buf;
5866     ::close(fd);
5867     while (::stat(filename, &buf) == 0) {
5868       (void)::poll(NULL, 0, 100);
5869     }
5870   } else {
5871     jio_fprintf(stderr,
5872                 "Could not open pause file '%s', continuing immediately.\n", filename);
5873   }
5874 }
5875 
5876 extern char** environ;
5877 
5878 // Run the specified command in a separate process. Return its exit value,
5879 // or -1 on failure (e.g. can't fork a new process).
5880 // Unlike system(), this function can be called from signal handler. It
5881 // doesn't block SIGINT et al.
5882 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5883   const char * argv[4] = {"sh", "-c", cmd, NULL};
5884 
5885   pid_t pid ;
5886 
5887   if (use_vfork_if_available) {
5888     pid = vfork();
5889   } else {
5890     pid = fork();
5891   }
5892 
5893   if (pid < 0) {
5894     // fork failed
5895     return -1;
5896 
5897   } else if (pid == 0) {
5898     // child process
5899 
5900     execve("/bin/sh", (char* const*)argv, environ);
5901 
5902     // execve failed
5903     _exit(-1);
5904 
5905   } else  {
5906     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5907     // care about the actual exit code, for now.
5908 
5909     int status;
5910 
5911     // Wait for the child process to exit.  This returns immediately if
5912     // the child has already exited. */
5913     while (waitpid(pid, &status, 0) < 0) {
5914       switch (errno) {
5915       case ECHILD: return 0;
5916       case EINTR: break;
5917       default: return -1;
5918       }
5919     }
5920 
5921     if (WIFEXITED(status)) {
5922       // The child exited normally; get its exit code.
5923       return WEXITSTATUS(status);
5924     } else if (WIFSIGNALED(status)) {
5925       // The child exited because of a signal
5926       // The best value to return is 0x80 + signal number,
5927       // because that is what all Unix shells do, and because
5928       // it allows callers to distinguish between process exit and
5929       // process death by signal.
5930       return 0x80 + WTERMSIG(status);
5931     } else {
5932       // Unknown exit code; pass it through
5933       return status;
5934     }
5935   }
5936 }
5937 
5938 // Get the default path to the core file
5939 // Returns the length of the string
5940 int os::get_core_path(char* buffer, size_t bufferSize) {
5941   /*
5942    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5943    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5944    */
5945   const int core_pattern_len = 129;
5946   char core_pattern[core_pattern_len] = {0};
5947 
5948   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5949   if (core_pattern_file == -1) {
5950     return -1;
5951   }
5952 
5953   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5954   ::close(core_pattern_file);
5955   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5956     return -1;
5957   }
5958   if (core_pattern[ret-1] == '\n') {
5959     core_pattern[ret-1] = '\0';
5960   } else {
5961     core_pattern[ret] = '\0';
5962   }
5963 
5964   // Replace the %p in the core pattern with the process id. NOTE: we do this
5965   // only if the pattern doesn't start with "|", and we support only one %p in
5966   // the pattern.
5967   char *pid_pos = strstr(core_pattern, "%p");
5968   const char* tail = (pid_pos != NULL) ? (pid_pos + 2) : "";  // skip over the "%p"
5969   int written;
5970 
5971   if (core_pattern[0] == '/') {
5972     if (pid_pos != NULL) {
5973       *pid_pos = '\0';
5974       written = jio_snprintf(buffer, bufferSize, "%s%d%s", core_pattern,
5975                              current_process_id(), tail);
5976     } else {
5977       written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5978     }
5979   } else {
5980     char cwd[PATH_MAX];
5981 
5982     const char* p = get_current_directory(cwd, PATH_MAX);
5983     if (p == NULL) {
5984       return -1;
5985     }
5986 
5987     if (core_pattern[0] == '|') {
5988       written = jio_snprintf(buffer, bufferSize,
5989                              "\"%s\" (or dumping to %s/core.%d)",
5990                              &core_pattern[1], p, current_process_id());
5991     } else if (pid_pos != NULL) {
5992       *pid_pos = '\0';
5993       written = jio_snprintf(buffer, bufferSize, "%s/%s%d%s", p, core_pattern,
5994                              current_process_id(), tail);
5995     } else {
5996       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5997     }
5998   }
5999 
6000   if (written < 0) {
6001     return -1;
6002   }
6003 
6004   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6005     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6006 
6007     if (core_uses_pid_file != -1) {
6008       char core_uses_pid = 0;
6009       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6010       ::close(core_uses_pid_file);
6011 
6012       if (core_uses_pid == '1') {
6013         jio_snprintf(buffer + written, bufferSize - written,
6014                                           ".%d", current_process_id());
6015       }
6016     }
6017   }
6018 
6019   return strlen(buffer);
6020 }
6021 
6022 bool os::start_debugging(char *buf, int buflen) {
6023   int len = (int)strlen(buf);
6024   char *p = &buf[len];
6025 
6026   jio_snprintf(p, buflen-len,
6027                "\n\n"
6028                "Do you want to debug the problem?\n\n"
6029                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
6030                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
6031                "Otherwise, press RETURN to abort...",
6032                os::current_process_id(), os::current_process_id(),
6033                os::current_thread_id(), os::current_thread_id());
6034 
6035   bool yes = os::message_box("Unexpected Error", buf);
6036 
6037   if (yes) {
6038     // yes, user asked VM to launch debugger
6039     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
6040                  os::current_process_id(), os::current_process_id());
6041 
6042     os::fork_and_exec(buf);
6043     yes = false;
6044   }
6045   return yes;
6046 }
6047 
6048 
6049 // Java/Compiler thread:
6050 //
6051 //   Low memory addresses
6052 // P0 +------------------------+
6053 //    |                        |\  Java thread created by VM does not have glibc
6054 //    |    glibc guard page    | - guard page, attached Java thread usually has
6055 //    |                        |/  1 glibc guard page.
6056 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6057 //    |                        |\
6058 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
6059 //    |                        |/
6060 //    +------------------------+ JavaThread::stack_reserved_zone_base()
6061 //    |                        |\
6062 //    |      Normal Stack      | -
6063 //    |                        |/
6064 // P2 +------------------------+ Thread::stack_base()
6065 //
6066 // Non-Java thread:
6067 //
6068 //   Low memory addresses
6069 // P0 +------------------------+
6070 //    |                        |\
6071 //    |  glibc guard page      | - usually 1 page
6072 //    |                        |/
6073 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6074 //    |                        |\
6075 //    |      Normal Stack      | -
6076 //    |                        |/
6077 // P2 +------------------------+ Thread::stack_base()
6078 //
6079 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
6080 //    returned from pthread_attr_getstack().
6081 // ** Due to NPTL implementation error, linux takes the glibc guard page out
6082 //    of the stack size given in pthread_attr. We work around this for
6083 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
6084 //
6085 #ifndef ZERO
6086 static void current_stack_region(address * bottom, size_t * size) {
6087   if (os::is_primordial_thread()) {
6088     // primordial thread needs special handling because pthread_getattr_np()
6089     // may return bogus value.
6090     *bottom = os::Linux::initial_thread_stack_bottom();
6091     *size   = os::Linux::initial_thread_stack_size();
6092   } else {
6093     pthread_attr_t attr;
6094 
6095     int rslt = pthread_getattr_np(pthread_self(), &attr);
6096 
6097     // JVM needs to know exact stack location, abort if it fails
6098     if (rslt != 0) {
6099       if (rslt == ENOMEM) {
6100         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
6101       } else {
6102         fatal("pthread_getattr_np failed with error = %d", rslt);
6103       }
6104     }
6105 
6106     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
6107       fatal("Cannot locate current stack attributes!");
6108     }
6109 
6110     // Work around NPTL stack guard error.
6111     size_t guard_size = 0;
6112     rslt = pthread_attr_getguardsize(&attr, &guard_size);
6113     if (rslt != 0) {
6114       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
6115     }
6116     *bottom += guard_size;
6117     *size   -= guard_size;
6118 
6119     pthread_attr_destroy(&attr);
6120 
6121   }
6122   assert(os::current_stack_pointer() >= *bottom &&
6123          os::current_stack_pointer() < *bottom + *size, "just checking");
6124 }
6125 
6126 address os::current_stack_base() {
6127   address bottom;
6128   size_t size;
6129   current_stack_region(&bottom, &size);
6130   return (bottom + size);
6131 }
6132 
6133 size_t os::current_stack_size() {
6134   // This stack size includes the usable stack and HotSpot guard pages
6135   // (for the threads that have Hotspot guard pages).
6136   address bottom;
6137   size_t size;
6138   current_stack_region(&bottom, &size);
6139   return size;
6140 }
6141 #endif
6142 
6143 static inline struct timespec get_mtime(const char* filename) {
6144   struct stat st;
6145   int ret = os::stat(filename, &st);
6146   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
6147   return st.st_mtim;
6148 }
6149 
6150 int os::compare_file_modified_times(const char* file1, const char* file2) {
6151   struct timespec filetime1 = get_mtime(file1);
6152   struct timespec filetime2 = get_mtime(file2);
6153   int diff = filetime1.tv_sec - filetime2.tv_sec;
6154   if (diff == 0) {
6155     return filetime1.tv_nsec - filetime2.tv_nsec;
6156   }
6157   return diff;
6158 }
6159 
6160 bool os::supports_map_sync() {
6161   return true;
6162 }
6163 
6164 /////////////// Unit tests ///////////////
6165 
6166 #ifndef PRODUCT
6167 
6168 class TestReserveMemorySpecial : AllStatic {
6169  public:
6170   static void small_page_write(void* addr, size_t size) {
6171     size_t page_size = os::vm_page_size();
6172 
6173     char* end = (char*)addr + size;
6174     for (char* p = (char*)addr; p < end; p += page_size) {
6175       *p = 1;
6176     }
6177   }
6178 
6179   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6180     if (!UseHugeTLBFS) {
6181       return;
6182     }
6183 
6184     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6185 
6186     if (addr != NULL) {
6187       small_page_write(addr, size);
6188 
6189       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6190     }
6191   }
6192 
6193   static void test_reserve_memory_special_huge_tlbfs_only() {
6194     if (!UseHugeTLBFS) {
6195       return;
6196     }
6197 
6198     size_t lp = os::large_page_size();
6199 
6200     for (size_t size = lp; size <= lp * 10; size += lp) {
6201       test_reserve_memory_special_huge_tlbfs_only(size);
6202     }
6203   }
6204 
6205   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6206     size_t lp = os::large_page_size();
6207     size_t ag = os::vm_allocation_granularity();
6208 
6209     // sizes to test
6210     const size_t sizes[] = {
6211       lp, lp + ag, lp + lp / 2, lp * 2,
6212       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6213       lp * 10, lp * 10 + lp / 2
6214     };
6215     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6216 
6217     // For each size/alignment combination, we test three scenarios:
6218     // 1) with req_addr == NULL
6219     // 2) with a non-null req_addr at which we expect to successfully allocate
6220     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6221     //    expect the allocation to either fail or to ignore req_addr
6222 
6223     // Pre-allocate two areas; they shall be as large as the largest allocation
6224     //  and aligned to the largest alignment we will be testing.
6225     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6226     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6227       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6228       -1, 0);
6229     assert(mapping1 != MAP_FAILED, "should work");
6230 
6231     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6232       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6233       -1, 0);
6234     assert(mapping2 != MAP_FAILED, "should work");
6235 
6236     // Unmap the first mapping, but leave the second mapping intact: the first
6237     // mapping will serve as a value for a "good" req_addr (case 2). The second
6238     // mapping, still intact, as "bad" req_addr (case 3).
6239     ::munmap(mapping1, mapping_size);
6240 
6241     // Case 1
6242     for (int i = 0; i < num_sizes; i++) {
6243       const size_t size = sizes[i];
6244       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6245         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6246         if (p != NULL) {
6247           assert(is_aligned(p, alignment), "must be");
6248           small_page_write(p, size);
6249           os::Linux::release_memory_special_huge_tlbfs(p, size);
6250         }
6251       }
6252     }
6253 
6254     // Case 2
6255     for (int i = 0; i < num_sizes; i++) {
6256       const size_t size = sizes[i];
6257       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6258         char* const req_addr = align_up(mapping1, alignment);
6259         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6260         if (p != NULL) {
6261           assert(p == req_addr, "must be");
6262           small_page_write(p, size);
6263           os::Linux::release_memory_special_huge_tlbfs(p, size);
6264         }
6265       }
6266     }
6267 
6268     // Case 3
6269     for (int i = 0; i < num_sizes; i++) {
6270       const size_t size = sizes[i];
6271       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6272         char* const req_addr = align_up(mapping2, alignment);
6273         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6274         // as the area around req_addr contains already existing mappings, the API should always
6275         // return NULL (as per contract, it cannot return another address)
6276         assert(p == NULL, "must be");
6277       }
6278     }
6279 
6280     ::munmap(mapping2, mapping_size);
6281 
6282   }
6283 
6284   static void test_reserve_memory_special_huge_tlbfs() {
6285     if (!UseHugeTLBFS) {
6286       return;
6287     }
6288 
6289     test_reserve_memory_special_huge_tlbfs_only();
6290     test_reserve_memory_special_huge_tlbfs_mixed();
6291   }
6292 
6293   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6294     if (!UseSHM) {
6295       return;
6296     }
6297 
6298     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6299 
6300     if (addr != NULL) {
6301       assert(is_aligned(addr, alignment), "Check");
6302       assert(is_aligned(addr, os::large_page_size()), "Check");
6303 
6304       small_page_write(addr, size);
6305 
6306       os::Linux::release_memory_special_shm(addr, size);
6307     }
6308   }
6309 
6310   static void test_reserve_memory_special_shm() {
6311     size_t lp = os::large_page_size();
6312     size_t ag = os::vm_allocation_granularity();
6313 
6314     for (size_t size = ag; size < lp * 3; size += ag) {
6315       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6316         test_reserve_memory_special_shm(size, alignment);
6317       }
6318     }
6319   }
6320 
6321   static void test() {
6322     test_reserve_memory_special_huge_tlbfs();
6323     test_reserve_memory_special_shm();
6324   }
6325 };
6326 
6327 void TestReserveMemorySpecial_test() {
6328   TestReserveMemorySpecial::test();
6329 }
6330 
6331 #endif