1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_linux.hpp"
  40 #include "prims/jniFastGetField.hpp"
  41 #include "prims/jvm.h"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/extendedPC.hpp"
  45 #include "runtime/globals.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "runtime/objectMonitor.hpp"
  52 #include "runtime/osThread.hpp"
  53 #include "runtime/perfMemory.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/statSampler.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "runtime/thread.inline.hpp"
  58 #include "runtime/threadCritical.hpp"
  59 #include "runtime/timer.hpp"
  60 #include "services/attachListener.hpp"
  61 #include "services/memTracker.hpp"
  62 #include "services/runtimeService.hpp"
  63 #include "utilities/decoder.hpp"
  64 #include "utilities/defaultStream.hpp"
  65 #include "utilities/events.hpp"
  66 #include "utilities/elfFile.hpp"
  67 #include "utilities/growableArray.hpp"
  68 #include "utilities/vmError.hpp"
  69 
  70 // put OS-includes here
  71 # include <sys/types.h>
  72 # include <sys/mman.h>
  73 # include <sys/stat.h>
  74 # include <sys/select.h>
  75 # include <pthread.h>
  76 # include <signal.h>
  77 # include <errno.h>
  78 # include <dlfcn.h>
  79 # include <stdio.h>
  80 # include <unistd.h>
  81 # include <sys/resource.h>
  82 # include <pthread.h>
  83 # include <sys/stat.h>
  84 # include <sys/time.h>
  85 # include <sys/times.h>
  86 # include <sys/utsname.h>
  87 # include <sys/socket.h>
  88 # include <sys/wait.h>
  89 # include <pwd.h>
  90 # include <poll.h>
  91 # include <semaphore.h>
  92 # include <fcntl.h>
  93 # include <string.h>
  94 # include <syscall.h>
  95 # include <sys/sysinfo.h>
  96 # include <gnu/libc-version.h>
  97 # include <sys/ipc.h>
  98 # include <sys/shm.h>
  99 # include <link.h>
 100 # include <stdint.h>
 101 # include <inttypes.h>
 102 # include <sys/ioctl.h>
 103 
 104 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 105 // getrusage() is prepared to handle the associated failure.
 106 #ifndef RUSAGE_THREAD
 107 #define RUSAGE_THREAD   (1)               /* only the calling thread */
 108 #endif
 109 
 110 #define MAX_PATH    (2 * K)
 111 
 112 // for timer info max values which include all bits
 113 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 114 
 115 #define LARGEPAGES_BIT (1 << 6)
 116 ////////////////////////////////////////////////////////////////////////////////
 117 // global variables
 118 julong os::Linux::_physical_memory = 0;
 119 
 120 address   os::Linux::_initial_thread_stack_bottom = NULL;
 121 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 122 
 123 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 124 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 125 Mutex* os::Linux::_createThread_lock = NULL;
 126 pthread_t os::Linux::_main_thread;
 127 int os::Linux::_page_size = -1;
 128 const int os::Linux::_vm_default_page_size = (8 * K);
 129 bool os::Linux::_is_floating_stack = false;
 130 bool os::Linux::_is_NPTL = false;
 131 bool os::Linux::_supports_fast_thread_cpu_time = false;
 132 const char * os::Linux::_glibc_version = NULL;
 133 const char * os::Linux::_libpthread_version = NULL;
 134 pthread_condattr_t os::Linux::_condattr[1];
 135 
 136 static jlong initial_time_count=0;
 137 
 138 static int clock_tics_per_sec = 100;
 139 
 140 // For diagnostics to print a message once. see run_periodic_checks
 141 static sigset_t check_signal_done;
 142 static bool check_signals = true;
 143 
 144 static pid_t _initial_pid = 0;
 145 
 146 /* Signal number used to suspend/resume a thread */
 147 
 148 /* do not use any signal number less than SIGSEGV, see 4355769 */
 149 static int SR_signum = SIGUSR2;
 150 sigset_t SR_sigset;
 151 
 152 /* Used to protect dlsym() calls */
 153 static pthread_mutex_t dl_mutex;
 154 
 155 // Declarations
 156 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 157 
 158 #ifdef JAVASE_EMBEDDED
 159 class MemNotifyThread: public Thread {
 160   friend class VMStructs;
 161  public:
 162   virtual void run();
 163 
 164  private:
 165   static MemNotifyThread* _memnotify_thread;
 166   int _fd;
 167 
 168  public:
 169 
 170   // Constructor
 171   MemNotifyThread(int fd);
 172 
 173   // Tester
 174   bool is_memnotify_thread() const { return true; }
 175 
 176   // Printing
 177   char* name() const { return (char*)"Linux MemNotify Thread"; }
 178 
 179   // Returns the single instance of the MemNotifyThread
 180   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
 181 
 182   // Create and start the single instance of MemNotifyThread
 183   static void start();
 184 };
 185 #endif // JAVASE_EMBEDDED
 186 
 187 // utility functions
 188 
 189 static int SR_initialize();
 190 
 191 julong os::available_memory() {
 192   return Linux::available_memory();
 193 }
 194 
 195 julong os::Linux::available_memory() {
 196   // values in struct sysinfo are "unsigned long"
 197   struct sysinfo si;
 198   sysinfo(&si);
 199 
 200   return (julong)si.freeram * si.mem_unit;
 201 }
 202 
 203 julong os::physical_memory() {
 204   return Linux::physical_memory();
 205 }
 206 
 207 ////////////////////////////////////////////////////////////////////////////////
 208 // environment support
 209 
 210 bool os::getenv(const char* name, char* buf, int len) {
 211   const char* val = ::getenv(name);
 212   if (val != NULL && strlen(val) < (size_t)len) {
 213     strcpy(buf, val);
 214     return true;
 215   }
 216   if (len > 0) buf[0] = 0;  // return a null string
 217   return false;
 218 }
 219 
 220 
 221 // Return true if user is running as root.
 222 
 223 bool os::have_special_privileges() {
 224   static bool init = false;
 225   static bool privileges = false;
 226   if (!init) {
 227     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 228     init = true;
 229   }
 230   return privileges;
 231 }
 232 
 233 
 234 #ifndef SYS_gettid
 235 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 236 #ifdef __ia64__
 237 #define SYS_gettid 1105
 238 #elif __i386__
 239 #define SYS_gettid 224
 240 #elif __amd64__
 241 #define SYS_gettid 186
 242 #elif __sparc__
 243 #define SYS_gettid 143
 244 #else
 245 #error define gettid for the arch
 246 #endif
 247 #endif
 248 
 249 // Cpu architecture string
 250 #if   defined(ZERO)
 251 static char cpu_arch[] = ZERO_LIBARCH;
 252 #elif defined(IA64)
 253 static char cpu_arch[] = "ia64";
 254 #elif defined(IA32)
 255 static char cpu_arch[] = "i386";
 256 #elif defined(AMD64)
 257 static char cpu_arch[] = "amd64";
 258 #elif defined(ARM)
 259 static char cpu_arch[] = "arm";
 260 #elif defined(PPC32)
 261 static char cpu_arch[] = "ppc";
 262 #elif defined(PPC64)
 263 static char cpu_arch[] = "ppc64";
 264 #elif defined(SPARC)
 265 #  ifdef _LP64
 266 static char cpu_arch[] = "sparcv9";
 267 #  else
 268 static char cpu_arch[] = "sparc";
 269 #  endif
 270 #else
 271 #error Add appropriate cpu_arch setting
 272 #endif
 273 
 274 
 275 // pid_t gettid()
 276 //
 277 // Returns the kernel thread id of the currently running thread. Kernel
 278 // thread id is used to access /proc.
 279 //
 280 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 281 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 282 //
 283 pid_t os::Linux::gettid() {
 284   int rslt = syscall(SYS_gettid);
 285   if (rslt == -1) {
 286      // old kernel, no NPTL support
 287      return getpid();
 288   } else {
 289      return (pid_t)rslt;
 290   }
 291 }
 292 
 293 // Most versions of linux have a bug where the number of processors are
 294 // determined by looking at the /proc file system.  In a chroot environment,
 295 // the system call returns 1.  This causes the VM to act as if it is
 296 // a single processor and elide locking (see is_MP() call).
 297 static bool unsafe_chroot_detected = false;
 298 static const char *unstable_chroot_error = "/proc file system not found.\n"
 299                      "Java may be unstable running multithreaded in a chroot "
 300                      "environment on Linux when /proc filesystem is not mounted.";
 301 
 302 void os::Linux::initialize_system_info() {
 303   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 304   if (processor_count() == 1) {
 305     pid_t pid = os::Linux::gettid();
 306     char fname[32];
 307     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 308     FILE *fp = fopen(fname, "r");
 309     if (fp == NULL) {
 310       unsafe_chroot_detected = true;
 311     } else {
 312       fclose(fp);
 313     }
 314   }
 315   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 316   assert(processor_count() > 0, "linux error");
 317 }
 318 
 319 void os::init_system_properties_values() {
 320 //  char arch[12];
 321 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
 322 
 323   // The next steps are taken in the product version:
 324   //
 325   // Obtain the JAVA_HOME value from the location of libjvm.so.
 326   // This library should be located at:
 327   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 328   //
 329   // If "/jre/lib/" appears at the right place in the path, then we
 330   // assume libjvm.so is installed in a JDK and we use this path.
 331   //
 332   // Otherwise exit with message: "Could not create the Java virtual machine."
 333   //
 334   // The following extra steps are taken in the debugging version:
 335   //
 336   // If "/jre/lib/" does NOT appear at the right place in the path
 337   // instead of exit check for $JAVA_HOME environment variable.
 338   //
 339   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 340   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 341   // it looks like libjvm.so is installed there
 342   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 343   //
 344   // Otherwise exit.
 345   //
 346   // Important note: if the location of libjvm.so changes this
 347   // code needs to be changed accordingly.
 348 
 349   // The next few definitions allow the code to be verbatim:
 350 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
 351 #define getenv(n) ::getenv(n)
 352 
 353 /*
 354  * See ld(1):
 355  *      The linker uses the following search paths to locate required
 356  *      shared libraries:
 357  *        1: ...
 358  *        ...
 359  *        7: The default directories, normally /lib and /usr/lib.
 360  */
 361 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 362 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 363 #else
 364 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 365 #endif
 366 
 367 #define EXTENSIONS_DIR  "/lib/ext"
 368 #define ENDORSED_DIR    "/lib/endorsed"
 369 #define REG_DIR         "/usr/java/packages"
 370 
 371   {
 372     /* sysclasspath, java_home, dll_dir */
 373     {
 374         char *home_path;
 375         char *dll_path;
 376         char *pslash;
 377         char buf[MAXPATHLEN];
 378         os::jvm_path(buf, sizeof(buf));
 379 
 380         // Found the full path to libjvm.so.
 381         // Now cut the path to <java_home>/jre if we can.
 382         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
 383         pslash = strrchr(buf, '/');
 384         if (pslash != NULL)
 385             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
 386         dll_path = malloc(strlen(buf) + 1);
 387         if (dll_path == NULL)
 388             return;
 389         strcpy(dll_path, buf);
 390         Arguments::set_dll_dir(dll_path);
 391 
 392         if (pslash != NULL) {
 393             pslash = strrchr(buf, '/');
 394             if (pslash != NULL) {
 395                 *pslash = '\0';       /* get rid of /<arch> */
 396                 pslash = strrchr(buf, '/');
 397                 if (pslash != NULL)
 398                     *pslash = '\0';   /* get rid of /lib */
 399             }
 400         }
 401 
 402         home_path = malloc(strlen(buf) + 1);
 403         if (home_path == NULL)
 404             return;
 405         strcpy(home_path, buf);
 406         Arguments::set_java_home(home_path);
 407 
 408         if (!set_boot_path('/', ':'))
 409             return;
 410     }
 411 
 412     /*
 413      * Where to look for native libraries
 414      *
 415      * Note: Due to a legacy implementation, most of the library path
 416      * is set in the launcher.  This was to accomodate linking restrictions
 417      * on legacy Linux implementations (which are no longer supported).
 418      * Eventually, all the library path setting will be done here.
 419      *
 420      * However, to prevent the proliferation of improperly built native
 421      * libraries, the new path component /usr/java/packages is added here.
 422      * Eventually, all the library path setting will be done here.
 423      */
 424     {
 425         char *ld_library_path;
 426 
 427         /*
 428          * Construct the invariant part of ld_library_path. Note that the
 429          * space for the colon and the trailing null are provided by the
 430          * nulls included by the sizeof operator (so actually we allocate
 431          * a byte more than necessary).
 432          */
 433         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
 434             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
 435         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
 436 
 437         /*
 438          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
 439          * should always exist (until the legacy problem cited above is
 440          * addressed).
 441          */
 442         char *v = getenv("LD_LIBRARY_PATH");
 443         if (v != NULL) {
 444             char *t = ld_library_path;
 445             /* That's +1 for the colon and +1 for the trailing '\0' */
 446             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
 447             sprintf(ld_library_path, "%s:%s", v, t);
 448         }
 449         Arguments::set_library_path(ld_library_path);
 450     }
 451 
 452     /*
 453      * Extensions directories.
 454      *
 455      * Note that the space for the colon and the trailing null are provided
 456      * by the nulls included by the sizeof operator (so actually one byte more
 457      * than necessary is allocated).
 458      */
 459     {
 460         char *buf = malloc(strlen(Arguments::get_java_home()) +
 461             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
 462         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
 463             Arguments::get_java_home());
 464         Arguments::set_ext_dirs(buf);
 465     }
 466 
 467     /* Endorsed standards default directory. */
 468     {
 469         char * buf;
 470         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
 471         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 472         Arguments::set_endorsed_dirs(buf);
 473     }
 474   }
 475 
 476 #undef malloc
 477 #undef getenv
 478 #undef EXTENSIONS_DIR
 479 #undef ENDORSED_DIR
 480 
 481   // Done
 482   return;
 483 }
 484 
 485 ////////////////////////////////////////////////////////////////////////////////
 486 // breakpoint support
 487 
 488 void os::breakpoint() {
 489   BREAKPOINT;
 490 }
 491 
 492 extern "C" void breakpoint() {
 493   // use debugger to set breakpoint here
 494 }
 495 
 496 ////////////////////////////////////////////////////////////////////////////////
 497 // signal support
 498 
 499 debug_only(static bool signal_sets_initialized = false);
 500 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 501 
 502 bool os::Linux::is_sig_ignored(int sig) {
 503       struct sigaction oact;
 504       sigaction(sig, (struct sigaction*)NULL, &oact);
 505       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 506                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 507       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 508            return true;
 509       else
 510            return false;
 511 }
 512 
 513 void os::Linux::signal_sets_init() {
 514   // Should also have an assertion stating we are still single-threaded.
 515   assert(!signal_sets_initialized, "Already initialized");
 516   // Fill in signals that are necessarily unblocked for all threads in
 517   // the VM. Currently, we unblock the following signals:
 518   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 519   //                         by -Xrs (=ReduceSignalUsage));
 520   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 521   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 522   // the dispositions or masks wrt these signals.
 523   // Programs embedding the VM that want to use the above signals for their
 524   // own purposes must, at this time, use the "-Xrs" option to prevent
 525   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 526   // (See bug 4345157, and other related bugs).
 527   // In reality, though, unblocking these signals is really a nop, since
 528   // these signals are not blocked by default.
 529   sigemptyset(&unblocked_sigs);
 530   sigemptyset(&allowdebug_blocked_sigs);
 531   sigaddset(&unblocked_sigs, SIGILL);
 532   sigaddset(&unblocked_sigs, SIGSEGV);
 533   sigaddset(&unblocked_sigs, SIGBUS);
 534   sigaddset(&unblocked_sigs, SIGFPE);
 535 #if defined(PPC64)
 536   sigaddset(&unblocked_sigs, SIGTRAP);
 537 #endif
 538   sigaddset(&unblocked_sigs, SR_signum);
 539 
 540   if (!ReduceSignalUsage) {
 541    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 542       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 543       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 544    }
 545    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 546       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 547       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 548    }
 549    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 550       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 551       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 552    }
 553   }
 554   // Fill in signals that are blocked by all but the VM thread.
 555   sigemptyset(&vm_sigs);
 556   if (!ReduceSignalUsage)
 557     sigaddset(&vm_sigs, BREAK_SIGNAL);
 558   debug_only(signal_sets_initialized = true);
 559 
 560 }
 561 
 562 // These are signals that are unblocked while a thread is running Java.
 563 // (For some reason, they get blocked by default.)
 564 sigset_t* os::Linux::unblocked_signals() {
 565   assert(signal_sets_initialized, "Not initialized");
 566   return &unblocked_sigs;
 567 }
 568 
 569 // These are the signals that are blocked while a (non-VM) thread is
 570 // running Java. Only the VM thread handles these signals.
 571 sigset_t* os::Linux::vm_signals() {
 572   assert(signal_sets_initialized, "Not initialized");
 573   return &vm_sigs;
 574 }
 575 
 576 // These are signals that are blocked during cond_wait to allow debugger in
 577 sigset_t* os::Linux::allowdebug_blocked_signals() {
 578   assert(signal_sets_initialized, "Not initialized");
 579   return &allowdebug_blocked_sigs;
 580 }
 581 
 582 void os::Linux::hotspot_sigmask(Thread* thread) {
 583 
 584   //Save caller's signal mask before setting VM signal mask
 585   sigset_t caller_sigmask;
 586   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 587 
 588   OSThread* osthread = thread->osthread();
 589   osthread->set_caller_sigmask(caller_sigmask);
 590 
 591   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 592 
 593   if (!ReduceSignalUsage) {
 594     if (thread->is_VM_thread()) {
 595       // Only the VM thread handles BREAK_SIGNAL ...
 596       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 597     } else {
 598       // ... all other threads block BREAK_SIGNAL
 599       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 600     }
 601   }
 602 }
 603 
 604 //////////////////////////////////////////////////////////////////////////////
 605 // detecting pthread library
 606 
 607 void os::Linux::libpthread_init() {
 608   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 609   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 610   // generic name for earlier versions.
 611   // Define macros here so we can build HotSpot on old systems.
 612 # ifndef _CS_GNU_LIBC_VERSION
 613 # define _CS_GNU_LIBC_VERSION 2
 614 # endif
 615 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 616 # define _CS_GNU_LIBPTHREAD_VERSION 3
 617 # endif
 618 
 619   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 620   if (n > 0) {
 621      char *str = (char *)malloc(n, mtInternal);
 622      confstr(_CS_GNU_LIBC_VERSION, str, n);
 623      os::Linux::set_glibc_version(str);
 624   } else {
 625      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 626      static char _gnu_libc_version[32];
 627      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 628               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 629      os::Linux::set_glibc_version(_gnu_libc_version);
 630   }
 631 
 632   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 633   if (n > 0) {
 634      char *str = (char *)malloc(n, mtInternal);
 635      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 636      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 637      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 638      // is the case. LinuxThreads has a hard limit on max number of threads.
 639      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 640      // On the other hand, NPTL does not have such a limit, sysconf()
 641      // will return -1 and errno is not changed. Check if it is really NPTL.
 642      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 643          strstr(str, "NPTL") &&
 644          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 645        free(str);
 646        os::Linux::set_libpthread_version("linuxthreads");
 647      } else {
 648        os::Linux::set_libpthread_version(str);
 649      }
 650   } else {
 651     // glibc before 2.3.2 only has LinuxThreads.
 652     os::Linux::set_libpthread_version("linuxthreads");
 653   }
 654 
 655   if (strstr(libpthread_version(), "NPTL")) {
 656      os::Linux::set_is_NPTL();
 657   } else {
 658      os::Linux::set_is_LinuxThreads();
 659   }
 660 
 661   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 662   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 663   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 664      os::Linux::set_is_floating_stack();
 665   }
 666 }
 667 
 668 /////////////////////////////////////////////////////////////////////////////
 669 // thread stack
 670 
 671 // Force Linux kernel to expand current thread stack. If "bottom" is close
 672 // to the stack guard, caller should block all signals.
 673 //
 674 // MAP_GROWSDOWN:
 675 //   A special mmap() flag that is used to implement thread stacks. It tells
 676 //   kernel that the memory region should extend downwards when needed. This
 677 //   allows early versions of LinuxThreads to only mmap the first few pages
 678 //   when creating a new thread. Linux kernel will automatically expand thread
 679 //   stack as needed (on page faults).
 680 //
 681 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 682 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 683 //   region, it's hard to tell if the fault is due to a legitimate stack
 684 //   access or because of reading/writing non-exist memory (e.g. buffer
 685 //   overrun). As a rule, if the fault happens below current stack pointer,
 686 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 687 //   application (see Linux kernel fault.c).
 688 //
 689 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 690 //   stack overflow detection.
 691 //
 692 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 693 //   not use this flag. However, the stack of initial thread is not created
 694 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 695 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 696 //   and then attach the thread to JVM.
 697 //
 698 // To get around the problem and allow stack banging on Linux, we need to
 699 // manually expand thread stack after receiving the SIGSEGV.
 700 //
 701 // There are two ways to expand thread stack to address "bottom", we used
 702 // both of them in JVM before 1.5:
 703 //   1. adjust stack pointer first so that it is below "bottom", and then
 704 //      touch "bottom"
 705 //   2. mmap() the page in question
 706 //
 707 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 708 // if current sp is already near the lower end of page 101, and we need to
 709 // call mmap() to map page 100, it is possible that part of the mmap() frame
 710 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 711 // That will destroy the mmap() frame and cause VM to crash.
 712 //
 713 // The following code works by adjusting sp first, then accessing the "bottom"
 714 // page to force a page fault. Linux kernel will then automatically expand the
 715 // stack mapping.
 716 //
 717 // _expand_stack_to() assumes its frame size is less than page size, which
 718 // should always be true if the function is not inlined.
 719 
 720 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 721 #define NOINLINE
 722 #else
 723 #define NOINLINE __attribute__ ((noinline))
 724 #endif
 725 
 726 static void _expand_stack_to(address bottom) NOINLINE;
 727 
 728 static void _expand_stack_to(address bottom) {
 729   address sp;
 730   size_t size;
 731   volatile char *p;
 732 
 733   // Adjust bottom to point to the largest address within the same page, it
 734   // gives us a one-page buffer if alloca() allocates slightly more memory.
 735   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 736   bottom += os::Linux::page_size() - 1;
 737 
 738   // sp might be slightly above current stack pointer; if that's the case, we
 739   // will alloca() a little more space than necessary, which is OK. Don't use
 740   // os::current_stack_pointer(), as its result can be slightly below current
 741   // stack pointer, causing us to not alloca enough to reach "bottom".
 742   sp = (address)&sp;
 743 
 744   if (sp > bottom) {
 745     size = sp - bottom;
 746     p = (volatile char *)alloca(size);
 747     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 748     p[0] = '\0';
 749   }
 750 }
 751 
 752 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 753   assert(t!=NULL, "just checking");
 754   assert(t->osthread()->expanding_stack(), "expand should be set");
 755   assert(t->stack_base() != NULL, "stack_base was not initialized");
 756 
 757   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 758     sigset_t mask_all, old_sigset;
 759     sigfillset(&mask_all);
 760     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 761     _expand_stack_to(addr);
 762     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 763     return true;
 764   }
 765   return false;
 766 }
 767 
 768 //////////////////////////////////////////////////////////////////////////////
 769 // create new thread
 770 
 771 static address highest_vm_reserved_address();
 772 
 773 // check if it's safe to start a new thread
 774 static bool _thread_safety_check(Thread* thread) {
 775   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 776     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 777     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 778     //   allocated (MAP_FIXED) from high address space. Every thread stack
 779     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 780     //   it to other values if they rebuild LinuxThreads).
 781     //
 782     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 783     // the memory region has already been mmap'ed. That means if we have too
 784     // many threads and/or very large heap, eventually thread stack will
 785     // collide with heap.
 786     //
 787     // Here we try to prevent heap/stack collision by comparing current
 788     // stack bottom with the highest address that has been mmap'ed by JVM
 789     // plus a safety margin for memory maps created by native code.
 790     //
 791     // This feature can be disabled by setting ThreadSafetyMargin to 0
 792     //
 793     if (ThreadSafetyMargin > 0) {
 794       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 795 
 796       // not safe if our stack extends below the safety margin
 797       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 798     } else {
 799       return true;
 800     }
 801   } else {
 802     // Floating stack LinuxThreads or NPTL:
 803     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 804     //   there's not enough space left, pthread_create() will fail. If we come
 805     //   here, that means enough space has been reserved for stack.
 806     return true;
 807   }
 808 }
 809 
 810 // Thread start routine for all newly created threads
 811 static void *java_start(Thread *thread) {
 812   // Try to randomize the cache line index of hot stack frames.
 813   // This helps when threads of the same stack traces evict each other's
 814   // cache lines. The threads can be either from the same JVM instance, or
 815   // from different JVM instances. The benefit is especially true for
 816   // processors with hyperthreading technology.
 817   static int counter = 0;
 818   int pid = os::current_process_id();
 819   alloca(((pid ^ counter++) & 7) * 128);
 820 
 821   ThreadLocalStorage::set_thread(thread);
 822 
 823   OSThread* osthread = thread->osthread();
 824   Monitor* sync = osthread->startThread_lock();
 825 
 826   // non floating stack LinuxThreads needs extra check, see above
 827   if (!_thread_safety_check(thread)) {
 828     // notify parent thread
 829     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 830     osthread->set_state(ZOMBIE);
 831     sync->notify_all();
 832     return NULL;
 833   }
 834 
 835   // thread_id is kernel thread id (similar to Solaris LWP id)
 836   osthread->set_thread_id(os::Linux::gettid());
 837 
 838   if (UseNUMA) {
 839     int lgrp_id = os::numa_get_group_id();
 840     if (lgrp_id != -1) {
 841       thread->set_lgrp_id(lgrp_id);
 842     }
 843   }
 844   // initialize signal mask for this thread
 845   os::Linux::hotspot_sigmask(thread);
 846 
 847   // initialize floating point control register
 848   os::Linux::init_thread_fpu_state();
 849 
 850   // handshaking with parent thread
 851   {
 852     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 853 
 854     // notify parent thread
 855     osthread->set_state(INITIALIZED);
 856     sync->notify_all();
 857 
 858     // wait until os::start_thread()
 859     while (osthread->get_state() == INITIALIZED) {
 860       sync->wait(Mutex::_no_safepoint_check_flag);
 861     }
 862   }
 863 
 864   // call one more level start routine
 865   thread->run();
 866 
 867   return 0;
 868 }
 869 
 870 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 871   assert(thread->osthread() == NULL, "caller responsible");
 872 
 873   // Allocate the OSThread object
 874   OSThread* osthread = new OSThread(NULL, NULL);
 875   if (osthread == NULL) {
 876     return false;
 877   }
 878 
 879   // set the correct thread state
 880   osthread->set_thread_type(thr_type);
 881 
 882   // Initial state is ALLOCATED but not INITIALIZED
 883   osthread->set_state(ALLOCATED);
 884 
 885   thread->set_osthread(osthread);
 886 
 887   // init thread attributes
 888   pthread_attr_t attr;
 889   pthread_attr_init(&attr);
 890   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 891 
 892   // stack size
 893   if (os::Linux::supports_variable_stack_size()) {
 894     // calculate stack size if it's not specified by caller
 895     if (stack_size == 0) {
 896       stack_size = os::Linux::default_stack_size(thr_type);
 897 
 898       switch (thr_type) {
 899       case os::java_thread:
 900         // Java threads use ThreadStackSize which default value can be
 901         // changed with the flag -Xss
 902         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 903         stack_size = JavaThread::stack_size_at_create();
 904         break;
 905       case os::compiler_thread:
 906         if (CompilerThreadStackSize > 0) {
 907           stack_size = (size_t)(CompilerThreadStackSize * K);
 908           break;
 909         } // else fall through:
 910           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 911       case os::vm_thread:
 912       case os::pgc_thread:
 913       case os::cgc_thread:
 914       case os::watcher_thread:
 915         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 916         break;
 917       }
 918     }
 919 
 920     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 921     pthread_attr_setstacksize(&attr, stack_size);
 922   } else {
 923     // let pthread_create() pick the default value.
 924   }
 925 
 926   // glibc guard page
 927   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 928 
 929   ThreadState state;
 930 
 931   {
 932     // Serialize thread creation if we are running with fixed stack LinuxThreads
 933     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 934     if (lock) {
 935       os::Linux::createThread_lock()->lock_without_safepoint_check();
 936     }
 937 
 938     pthread_t tid;
 939     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 940 
 941     pthread_attr_destroy(&attr);
 942 
 943     if (ret != 0) {
 944       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 945         perror("pthread_create()");
 946       }
 947       // Need to clean up stuff we've allocated so far
 948       thread->set_osthread(NULL);
 949       delete osthread;
 950       if (lock) os::Linux::createThread_lock()->unlock();
 951       return false;
 952     }
 953 
 954     // Store pthread info into the OSThread
 955     osthread->set_pthread_id(tid);
 956 
 957     // Wait until child thread is either initialized or aborted
 958     {
 959       Monitor* sync_with_child = osthread->startThread_lock();
 960       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 961       while ((state = osthread->get_state()) == ALLOCATED) {
 962         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 963       }
 964     }
 965 
 966     if (lock) {
 967       os::Linux::createThread_lock()->unlock();
 968     }
 969   }
 970 
 971   // Aborted due to thread limit being reached
 972   if (state == ZOMBIE) {
 973       thread->set_osthread(NULL);
 974       delete osthread;
 975       return false;
 976   }
 977 
 978   // The thread is returned suspended (in state INITIALIZED),
 979   // and is started higher up in the call chain
 980   assert(state == INITIALIZED, "race condition");
 981   return true;
 982 }
 983 
 984 /////////////////////////////////////////////////////////////////////////////
 985 // attach existing thread
 986 
 987 // bootstrap the main thread
 988 bool os::create_main_thread(JavaThread* thread) {
 989   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 990   return create_attached_thread(thread);
 991 }
 992 
 993 bool os::create_attached_thread(JavaThread* thread) {
 994 #ifdef ASSERT
 995     thread->verify_not_published();
 996 #endif
 997 
 998   // Allocate the OSThread object
 999   OSThread* osthread = new OSThread(NULL, NULL);
1000 
1001   if (osthread == NULL) {
1002     return false;
1003   }
1004 
1005   // Store pthread info into the OSThread
1006   osthread->set_thread_id(os::Linux::gettid());
1007   osthread->set_pthread_id(::pthread_self());
1008 
1009   // initialize floating point control register
1010   os::Linux::init_thread_fpu_state();
1011 
1012   // Initial thread state is RUNNABLE
1013   osthread->set_state(RUNNABLE);
1014 
1015   thread->set_osthread(osthread);
1016 
1017   if (UseNUMA) {
1018     int lgrp_id = os::numa_get_group_id();
1019     if (lgrp_id != -1) {
1020       thread->set_lgrp_id(lgrp_id);
1021     }
1022   }
1023 
1024   if (os::Linux::is_initial_thread()) {
1025     // If current thread is initial thread, its stack is mapped on demand,
1026     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1027     // the entire stack region to avoid SEGV in stack banging.
1028     // It is also useful to get around the heap-stack-gap problem on SuSE
1029     // kernel (see 4821821 for details). We first expand stack to the top
1030     // of yellow zone, then enable stack yellow zone (order is significant,
1031     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1032     // is no gap between the last two virtual memory regions.
1033 
1034     JavaThread *jt = (JavaThread *)thread;
1035     address addr = jt->stack_yellow_zone_base();
1036     assert(addr != NULL, "initialization problem?");
1037     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1038 
1039     osthread->set_expanding_stack();
1040     os::Linux::manually_expand_stack(jt, addr);
1041     osthread->clear_expanding_stack();
1042   }
1043 
1044   // initialize signal mask for this thread
1045   // and save the caller's signal mask
1046   os::Linux::hotspot_sigmask(thread);
1047 
1048   return true;
1049 }
1050 
1051 void os::pd_start_thread(Thread* thread) {
1052   OSThread * osthread = thread->osthread();
1053   assert(osthread->get_state() != INITIALIZED, "just checking");
1054   Monitor* sync_with_child = osthread->startThread_lock();
1055   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1056   sync_with_child->notify();
1057 }
1058 
1059 // Free Linux resources related to the OSThread
1060 void os::free_thread(OSThread* osthread) {
1061   assert(osthread != NULL, "osthread not set");
1062 
1063   if (Thread::current()->osthread() == osthread) {
1064     // Restore caller's signal mask
1065     sigset_t sigmask = osthread->caller_sigmask();
1066     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1067    }
1068 
1069   delete osthread;
1070 }
1071 
1072 //////////////////////////////////////////////////////////////////////////////
1073 // thread local storage
1074 
1075 int os::allocate_thread_local_storage() {
1076   pthread_key_t key;
1077   int rslt = pthread_key_create(&key, NULL);
1078   assert(rslt == 0, "cannot allocate thread local storage");
1079   return (int)key;
1080 }
1081 
1082 // Note: This is currently not used by VM, as we don't destroy TLS key
1083 // on VM exit.
1084 void os::free_thread_local_storage(int index) {
1085   int rslt = pthread_key_delete((pthread_key_t)index);
1086   assert(rslt == 0, "invalid index");
1087 }
1088 
1089 void os::thread_local_storage_at_put(int index, void* value) {
1090   int rslt = pthread_setspecific((pthread_key_t)index, value);
1091   assert(rslt == 0, "pthread_setspecific failed");
1092 }
1093 
1094 extern "C" Thread* get_thread() {
1095   return ThreadLocalStorage::thread();
1096 }
1097 
1098 //////////////////////////////////////////////////////////////////////////////
1099 // initial thread
1100 
1101 // Check if current thread is the initial thread, similar to Solaris thr_main.
1102 bool os::Linux::is_initial_thread(void) {
1103   char dummy;
1104   // If called before init complete, thread stack bottom will be null.
1105   // Can be called if fatal error occurs before initialization.
1106   if (initial_thread_stack_bottom() == NULL) return false;
1107   assert(initial_thread_stack_bottom() != NULL &&
1108          initial_thread_stack_size()   != 0,
1109          "os::init did not locate initial thread's stack region");
1110   if ((address)&dummy >= initial_thread_stack_bottom() &&
1111       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1112        return true;
1113   else return false;
1114 }
1115 
1116 // Find the virtual memory area that contains addr
1117 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1118   FILE *fp = fopen("/proc/self/maps", "r");
1119   if (fp) {
1120     address low, high;
1121     while (!feof(fp)) {
1122       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1123         if (low <= addr && addr < high) {
1124            if (vma_low)  *vma_low  = low;
1125            if (vma_high) *vma_high = high;
1126            fclose (fp);
1127            return true;
1128         }
1129       }
1130       for (;;) {
1131         int ch = fgetc(fp);
1132         if (ch == EOF || ch == (int)'\n') break;
1133       }
1134     }
1135     fclose(fp);
1136   }
1137   return false;
1138 }
1139 
1140 // Locate initial thread stack. This special handling of initial thread stack
1141 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1142 // bogus value for initial thread.
1143 void os::Linux::capture_initial_stack(size_t max_size) {
1144   // stack size is the easy part, get it from RLIMIT_STACK
1145   size_t stack_size;
1146   struct rlimit rlim;
1147   getrlimit(RLIMIT_STACK, &rlim);
1148   stack_size = rlim.rlim_cur;
1149 
1150   // 6308388: a bug in ld.so will relocate its own .data section to the
1151   //   lower end of primordial stack; reduce ulimit -s value a little bit
1152   //   so we won't install guard page on ld.so's data section.
1153   stack_size -= 2 * page_size();
1154 
1155   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1156   //   7.1, in both cases we will get 2G in return value.
1157   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1158   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1159   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1160   //   in case other parts in glibc still assumes 2M max stack size.
1161   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1162   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1163   if (stack_size > 2 * K * K IA64_ONLY(*2))
1164       stack_size = 2 * K * K IA64_ONLY(*2);
1165   // Try to figure out where the stack base (top) is. This is harder.
1166   //
1167   // When an application is started, glibc saves the initial stack pointer in
1168   // a global variable "__libc_stack_end", which is then used by system
1169   // libraries. __libc_stack_end should be pretty close to stack top. The
1170   // variable is available since the very early days. However, because it is
1171   // a private interface, it could disappear in the future.
1172   //
1173   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1174   // to __libc_stack_end, it is very close to stack top, but isn't the real
1175   // stack top. Note that /proc may not exist if VM is running as a chroot
1176   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1177   // /proc/<pid>/stat could change in the future (though unlikely).
1178   //
1179   // We try __libc_stack_end first. If that doesn't work, look for
1180   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1181   // as a hint, which should work well in most cases.
1182 
1183   uintptr_t stack_start;
1184 
1185   // try __libc_stack_end first
1186   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1187   if (p && *p) {
1188     stack_start = *p;
1189   } else {
1190     // see if we can get the start_stack field from /proc/self/stat
1191     FILE *fp;
1192     int pid;
1193     char state;
1194     int ppid;
1195     int pgrp;
1196     int session;
1197     int nr;
1198     int tpgrp;
1199     unsigned long flags;
1200     unsigned long minflt;
1201     unsigned long cminflt;
1202     unsigned long majflt;
1203     unsigned long cmajflt;
1204     unsigned long utime;
1205     unsigned long stime;
1206     long cutime;
1207     long cstime;
1208     long prio;
1209     long nice;
1210     long junk;
1211     long it_real;
1212     uintptr_t start;
1213     uintptr_t vsize;
1214     intptr_t rss;
1215     uintptr_t rsslim;
1216     uintptr_t scodes;
1217     uintptr_t ecode;
1218     int i;
1219 
1220     // Figure what the primordial thread stack base is. Code is inspired
1221     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1222     // followed by command name surrounded by parentheses, state, etc.
1223     char stat[2048];
1224     int statlen;
1225 
1226     fp = fopen("/proc/self/stat", "r");
1227     if (fp) {
1228       statlen = fread(stat, 1, 2047, fp);
1229       stat[statlen] = '\0';
1230       fclose(fp);
1231 
1232       // Skip pid and the command string. Note that we could be dealing with
1233       // weird command names, e.g. user could decide to rename java launcher
1234       // to "java 1.4.2 :)", then the stat file would look like
1235       //                1234 (java 1.4.2 :)) R ... ...
1236       // We don't really need to know the command string, just find the last
1237       // occurrence of ")" and then start parsing from there. See bug 4726580.
1238       char * s = strrchr(stat, ')');
1239 
1240       i = 0;
1241       if (s) {
1242         // Skip blank chars
1243         do s++; while (isspace(*s));
1244 
1245 #define _UFM UINTX_FORMAT
1246 #define _DFM INTX_FORMAT
1247 
1248         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1249         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1250         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1251              &state,          /* 3  %c  */
1252              &ppid,           /* 4  %d  */
1253              &pgrp,           /* 5  %d  */
1254              &session,        /* 6  %d  */
1255              &nr,             /* 7  %d  */
1256              &tpgrp,          /* 8  %d  */
1257              &flags,          /* 9  %lu  */
1258              &minflt,         /* 10 %lu  */
1259              &cminflt,        /* 11 %lu  */
1260              &majflt,         /* 12 %lu  */
1261              &cmajflt,        /* 13 %lu  */
1262              &utime,          /* 14 %lu  */
1263              &stime,          /* 15 %lu  */
1264              &cutime,         /* 16 %ld  */
1265              &cstime,         /* 17 %ld  */
1266              &prio,           /* 18 %ld  */
1267              &nice,           /* 19 %ld  */
1268              &junk,           /* 20 %ld  */
1269              &it_real,        /* 21 %ld  */
1270              &start,          /* 22 UINTX_FORMAT */
1271              &vsize,          /* 23 UINTX_FORMAT */
1272              &rss,            /* 24 INTX_FORMAT  */
1273              &rsslim,         /* 25 UINTX_FORMAT */
1274              &scodes,         /* 26 UINTX_FORMAT */
1275              &ecode,          /* 27 UINTX_FORMAT */
1276              &stack_start);   /* 28 UINTX_FORMAT */
1277       }
1278 
1279 #undef _UFM
1280 #undef _DFM
1281 
1282       if (i != 28 - 2) {
1283          assert(false, "Bad conversion from /proc/self/stat");
1284          // product mode - assume we are the initial thread, good luck in the
1285          // embedded case.
1286          warning("Can't detect initial thread stack location - bad conversion");
1287          stack_start = (uintptr_t) &rlim;
1288       }
1289     } else {
1290       // For some reason we can't open /proc/self/stat (for example, running on
1291       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1292       // most cases, so don't abort:
1293       warning("Can't detect initial thread stack location - no /proc/self/stat");
1294       stack_start = (uintptr_t) &rlim;
1295     }
1296   }
1297 
1298   // Now we have a pointer (stack_start) very close to the stack top, the
1299   // next thing to do is to figure out the exact location of stack top. We
1300   // can find out the virtual memory area that contains stack_start by
1301   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1302   // and its upper limit is the real stack top. (again, this would fail if
1303   // running inside chroot, because /proc may not exist.)
1304 
1305   uintptr_t stack_top;
1306   address low, high;
1307   if (find_vma((address)stack_start, &low, &high)) {
1308     // success, "high" is the true stack top. (ignore "low", because initial
1309     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1310     stack_top = (uintptr_t)high;
1311   } else {
1312     // failed, likely because /proc/self/maps does not exist
1313     warning("Can't detect initial thread stack location - find_vma failed");
1314     // best effort: stack_start is normally within a few pages below the real
1315     // stack top, use it as stack top, and reduce stack size so we won't put
1316     // guard page outside stack.
1317     stack_top = stack_start;
1318     stack_size -= 16 * page_size();
1319   }
1320 
1321   // stack_top could be partially down the page so align it
1322   stack_top = align_size_up(stack_top, page_size());
1323 
1324   if (max_size && stack_size > max_size) {
1325      _initial_thread_stack_size = max_size;
1326   } else {
1327      _initial_thread_stack_size = stack_size;
1328   }
1329 
1330   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1331   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1332 }
1333 
1334 ////////////////////////////////////////////////////////////////////////////////
1335 // time support
1336 
1337 // Time since start-up in seconds to a fine granularity.
1338 // Used by VMSelfDestructTimer and the MemProfiler.
1339 double os::elapsedTime() {
1340 
1341   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1342 }
1343 
1344 jlong os::elapsed_counter() {
1345   return javaTimeNanos() - initial_time_count;
1346 }
1347 
1348 jlong os::elapsed_frequency() {
1349   return NANOSECS_PER_SEC; // nanosecond resolution
1350 }
1351 
1352 bool os::supports_vtime() { return true; }
1353 bool os::enable_vtime()   { return false; }
1354 bool os::vtime_enabled()  { return false; }
1355 
1356 double os::elapsedVTime() {
1357   struct rusage usage;
1358   int retval = getrusage(RUSAGE_THREAD, &usage);
1359   if (retval == 0) {
1360     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1361   } else {
1362     // better than nothing, but not much
1363     return elapsedTime();
1364   }
1365 }
1366 
1367 jlong os::javaTimeMillis() {
1368   timeval time;
1369   int status = gettimeofday(&time, NULL);
1370   assert(status != -1, "linux error");
1371   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1372 }
1373 
1374 #ifndef CLOCK_MONOTONIC
1375 #define CLOCK_MONOTONIC (1)
1376 #endif
1377 
1378 void os::Linux::clock_init() {
1379   // we do dlopen's in this particular order due to bug in linux
1380   // dynamical loader (see 6348968) leading to crash on exit
1381   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1382   if (handle == NULL) {
1383     handle = dlopen("librt.so", RTLD_LAZY);
1384   }
1385 
1386   if (handle) {
1387     int (*clock_getres_func)(clockid_t, struct timespec*) =
1388            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1389     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1390            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1391     if (clock_getres_func && clock_gettime_func) {
1392       // See if monotonic clock is supported by the kernel. Note that some
1393       // early implementations simply return kernel jiffies (updated every
1394       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1395       // for nano time (though the monotonic property is still nice to have).
1396       // It's fixed in newer kernels, however clock_getres() still returns
1397       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1398       // resolution for now. Hopefully as people move to new kernels, this
1399       // won't be a problem.
1400       struct timespec res;
1401       struct timespec tp;
1402       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1403           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1404         // yes, monotonic clock is supported
1405         _clock_gettime = clock_gettime_func;
1406         return;
1407       } else {
1408         // close librt if there is no monotonic clock
1409         dlclose(handle);
1410       }
1411     }
1412   }
1413   warning("No monotonic clock was available - timed services may " \
1414           "be adversely affected if the time-of-day clock changes");
1415 }
1416 
1417 #ifndef SYS_clock_getres
1418 
1419 #if defined(IA32) || defined(AMD64)
1420 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1421 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1422 #else
1423 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1424 #define sys_clock_getres(x,y)  -1
1425 #endif
1426 
1427 #else
1428 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1429 #endif
1430 
1431 void os::Linux::fast_thread_clock_init() {
1432   if (!UseLinuxPosixThreadCPUClocks) {
1433     return;
1434   }
1435   clockid_t clockid;
1436   struct timespec tp;
1437   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1438       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1439 
1440   // Switch to using fast clocks for thread cpu time if
1441   // the sys_clock_getres() returns 0 error code.
1442   // Note, that some kernels may support the current thread
1443   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1444   // returned by the pthread_getcpuclockid().
1445   // If the fast Posix clocks are supported then the sys_clock_getres()
1446   // must return at least tp.tv_sec == 0 which means a resolution
1447   // better than 1 sec. This is extra check for reliability.
1448 
1449   if(pthread_getcpuclockid_func &&
1450      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1451      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1452 
1453     _supports_fast_thread_cpu_time = true;
1454     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1455   }
1456 }
1457 
1458 jlong os::javaTimeNanos() {
1459   if (os::supports_monotonic_clock()) {
1460     struct timespec tp;
1461     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1462     assert(status == 0, "gettime error");
1463     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1464     return result;
1465   } else {
1466     timeval time;
1467     int status = gettimeofday(&time, NULL);
1468     assert(status != -1, "linux error");
1469     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1470     return 1000 * usecs;
1471   }
1472 }
1473 
1474 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1475   if (os::supports_monotonic_clock()) {
1476     info_ptr->max_value = ALL_64_BITS;
1477 
1478     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1479     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1480     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1481   } else {
1482     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1483     info_ptr->max_value = ALL_64_BITS;
1484 
1485     // gettimeofday is a real time clock so it skips
1486     info_ptr->may_skip_backward = true;
1487     info_ptr->may_skip_forward = true;
1488   }
1489 
1490   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1491 }
1492 
1493 // Return the real, user, and system times in seconds from an
1494 // arbitrary fixed point in the past.
1495 bool os::getTimesSecs(double* process_real_time,
1496                       double* process_user_time,
1497                       double* process_system_time) {
1498   struct tms ticks;
1499   clock_t real_ticks = times(&ticks);
1500 
1501   if (real_ticks == (clock_t) (-1)) {
1502     return false;
1503   } else {
1504     double ticks_per_second = (double) clock_tics_per_sec;
1505     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1506     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1507     *process_real_time = ((double) real_ticks) / ticks_per_second;
1508 
1509     return true;
1510   }
1511 }
1512 
1513 
1514 char * os::local_time_string(char *buf, size_t buflen) {
1515   struct tm t;
1516   time_t long_time;
1517   time(&long_time);
1518   localtime_r(&long_time, &t);
1519   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1520                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1521                t.tm_hour, t.tm_min, t.tm_sec);
1522   return buf;
1523 }
1524 
1525 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1526   return localtime_r(clock, res);
1527 }
1528 
1529 ////////////////////////////////////////////////////////////////////////////////
1530 // runtime exit support
1531 
1532 // Note: os::shutdown() might be called very early during initialization, or
1533 // called from signal handler. Before adding something to os::shutdown(), make
1534 // sure it is async-safe and can handle partially initialized VM.
1535 void os::shutdown() {
1536 
1537   // allow PerfMemory to attempt cleanup of any persistent resources
1538   perfMemory_exit();
1539 
1540   // needs to remove object in file system
1541   AttachListener::abort();
1542 
1543   // flush buffered output, finish log files
1544   ostream_abort();
1545 
1546   // Check for abort hook
1547   abort_hook_t abort_hook = Arguments::abort_hook();
1548   if (abort_hook != NULL) {
1549     abort_hook();
1550   }
1551 
1552 }
1553 
1554 // Note: os::abort() might be called very early during initialization, or
1555 // called from signal handler. Before adding something to os::abort(), make
1556 // sure it is async-safe and can handle partially initialized VM.
1557 void os::abort(bool dump_core) {
1558   os::shutdown();
1559   if (dump_core) {
1560 #ifndef PRODUCT
1561     fdStream out(defaultStream::output_fd());
1562     out.print_raw("Current thread is ");
1563     char buf[16];
1564     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1565     out.print_raw_cr(buf);
1566     out.print_raw_cr("Dumping core ...");
1567 #endif
1568     ::abort(); // dump core
1569   }
1570 
1571   ::exit(1);
1572 }
1573 
1574 // Die immediately, no exit hook, no abort hook, no cleanup.
1575 void os::die() {
1576   // _exit() on LinuxThreads only kills current thread
1577   ::abort();
1578 }
1579 
1580 // unused on linux for now.
1581 void os::set_error_file(const char *logfile) {}
1582 
1583 
1584 // This method is a copy of JDK's sysGetLastErrorString
1585 // from src/solaris/hpi/src/system_md.c
1586 
1587 size_t os::lasterror(char *buf, size_t len) {
1588 
1589   if (errno == 0)  return 0;
1590 
1591   const char *s = ::strerror(errno);
1592   size_t n = ::strlen(s);
1593   if (n >= len) {
1594     n = len - 1;
1595   }
1596   ::strncpy(buf, s, n);
1597   buf[n] = '\0';
1598   return n;
1599 }
1600 
1601 intx os::current_thread_id() { return (intx)pthread_self(); }
1602 int os::current_process_id() {
1603 
1604   // Under the old linux thread library, linux gives each thread
1605   // its own process id. Because of this each thread will return
1606   // a different pid if this method were to return the result
1607   // of getpid(2). Linux provides no api that returns the pid
1608   // of the launcher thread for the vm. This implementation
1609   // returns a unique pid, the pid of the launcher thread
1610   // that starts the vm 'process'.
1611 
1612   // Under the NPTL, getpid() returns the same pid as the
1613   // launcher thread rather than a unique pid per thread.
1614   // Use gettid() if you want the old pre NPTL behaviour.
1615 
1616   // if you are looking for the result of a call to getpid() that
1617   // returns a unique pid for the calling thread, then look at the
1618   // OSThread::thread_id() method in osThread_linux.hpp file
1619 
1620   return (int)(_initial_pid ? _initial_pid : getpid());
1621 }
1622 
1623 // DLL functions
1624 
1625 const char* os::dll_file_extension() { return ".so"; }
1626 
1627 // This must be hard coded because it's the system's temporary
1628 // directory not the java application's temp directory, ala java.io.tmpdir.
1629 const char* os::get_temp_directory() { return "/tmp"; }
1630 
1631 static bool file_exists(const char* filename) {
1632   struct stat statbuf;
1633   if (filename == NULL || strlen(filename) == 0) {
1634     return false;
1635   }
1636   return os::stat(filename, &statbuf) == 0;
1637 }
1638 
1639 bool os::dll_build_name(char* buffer, size_t buflen,
1640                         const char* pname, const char* fname) {
1641   bool retval = false;
1642   // Copied from libhpi
1643   const size_t pnamelen = pname ? strlen(pname) : 0;
1644 
1645   // Return error on buffer overflow.
1646   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1647     return retval;
1648   }
1649 
1650   if (pnamelen == 0) {
1651     snprintf(buffer, buflen, "lib%s.so", fname);
1652     retval = true;
1653   } else if (strchr(pname, *os::path_separator()) != NULL) {
1654     int n;
1655     char** pelements = split_path(pname, &n);
1656     if (pelements == NULL) {
1657       return false;
1658     }
1659     for (int i = 0 ; i < n ; i++) {
1660       // Really shouldn't be NULL, but check can't hurt
1661       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1662         continue; // skip the empty path values
1663       }
1664       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1665       if (file_exists(buffer)) {
1666         retval = true;
1667         break;
1668       }
1669     }
1670     // release the storage
1671     for (int i = 0 ; i < n ; i++) {
1672       if (pelements[i] != NULL) {
1673         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1674       }
1675     }
1676     if (pelements != NULL) {
1677       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1678     }
1679   } else {
1680     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1681     retval = true;
1682   }
1683   return retval;
1684 }
1685 
1686 // check if addr is inside libjvm.so
1687 bool os::address_is_in_vm(address addr) {
1688   static address libjvm_base_addr;
1689   Dl_info dlinfo;
1690 
1691   if (libjvm_base_addr == NULL) {
1692     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1693       libjvm_base_addr = (address)dlinfo.dli_fbase;
1694     }
1695     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1696   }
1697 
1698   if (dladdr((void *)addr, &dlinfo) != 0) {
1699     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1700   }
1701 
1702   return false;
1703 }
1704 
1705 bool os::dll_address_to_function_name(address addr, char *buf,
1706                                       int buflen, int *offset) {
1707   // buf is not optional, but offset is optional
1708   assert(buf != NULL, "sanity check");
1709 
1710   Dl_info dlinfo;
1711 
1712   if (dladdr((void*)addr, &dlinfo) != 0) {
1713     // see if we have a matching symbol
1714     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1715       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1716         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1717       }
1718       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1719       return true;
1720     }
1721     // no matching symbol so try for just file info
1722     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1723       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1724                           buf, buflen, offset, dlinfo.dli_fname)) {
1725         return true;
1726       }
1727     }
1728   }
1729 
1730   buf[0] = '\0';
1731   if (offset != NULL) *offset = -1;
1732   return false;
1733 }
1734 
1735 struct _address_to_library_name {
1736   address addr;          // input : memory address
1737   size_t  buflen;        //         size of fname
1738   char*   fname;         // output: library name
1739   address base;          //         library base addr
1740 };
1741 
1742 static int address_to_library_name_callback(struct dl_phdr_info *info,
1743                                             size_t size, void *data) {
1744   int i;
1745   bool found = false;
1746   address libbase = NULL;
1747   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1748 
1749   // iterate through all loadable segments
1750   for (i = 0; i < info->dlpi_phnum; i++) {
1751     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1752     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1753       // base address of a library is the lowest address of its loaded
1754       // segments.
1755       if (libbase == NULL || libbase > segbase) {
1756         libbase = segbase;
1757       }
1758       // see if 'addr' is within current segment
1759       if (segbase <= d->addr &&
1760           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1761         found = true;
1762       }
1763     }
1764   }
1765 
1766   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1767   // so dll_address_to_library_name() can fall through to use dladdr() which
1768   // can figure out executable name from argv[0].
1769   if (found && info->dlpi_name && info->dlpi_name[0]) {
1770     d->base = libbase;
1771     if (d->fname) {
1772       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1773     }
1774     return 1;
1775   }
1776   return 0;
1777 }
1778 
1779 bool os::dll_address_to_library_name(address addr, char* buf,
1780                                      int buflen, int* offset) {
1781   // buf is not optional, but offset is optional
1782   assert(buf != NULL, "sanity check");
1783 
1784   Dl_info dlinfo;
1785   struct _address_to_library_name data;
1786 
1787   // There is a bug in old glibc dladdr() implementation that it could resolve
1788   // to wrong library name if the .so file has a base address != NULL. Here
1789   // we iterate through the program headers of all loaded libraries to find
1790   // out which library 'addr' really belongs to. This workaround can be
1791   // removed once the minimum requirement for glibc is moved to 2.3.x.
1792   data.addr = addr;
1793   data.fname = buf;
1794   data.buflen = buflen;
1795   data.base = NULL;
1796   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1797 
1798   if (rslt) {
1799      // buf already contains library name
1800      if (offset) *offset = addr - data.base;
1801      return true;
1802   }
1803   if (dladdr((void*)addr, &dlinfo) != 0) {
1804     if (dlinfo.dli_fname != NULL) {
1805       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1806     }
1807     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1808       *offset = addr - (address)dlinfo.dli_fbase;
1809     }
1810     return true;
1811   }
1812 
1813   buf[0] = '\0';
1814   if (offset) *offset = -1;
1815   return false;
1816 }
1817 
1818   // Loads .dll/.so and
1819   // in case of error it checks if .dll/.so was built for the
1820   // same architecture as Hotspot is running on
1821 
1822 
1823 // Remember the stack's state. The Linux dynamic linker will change
1824 // the stack to 'executable' at most once, so we must safepoint only once.
1825 bool os::Linux::_stack_is_executable = false;
1826 
1827 // VM operation that loads a library.  This is necessary if stack protection
1828 // of the Java stacks can be lost during loading the library.  If we
1829 // do not stop the Java threads, they can stack overflow before the stacks
1830 // are protected again.
1831 class VM_LinuxDllLoad: public VM_Operation {
1832  private:
1833   const char *_filename;
1834   char *_ebuf;
1835   int _ebuflen;
1836   void *_lib;
1837  public:
1838   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1839     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1840   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1841   void doit() {
1842     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1843     os::Linux::_stack_is_executable = true;
1844   }
1845   void* loaded_library() { return _lib; }
1846 };
1847 
1848 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1849 {
1850   void * result = NULL;
1851   bool load_attempted = false;
1852 
1853   // Check whether the library to load might change execution rights
1854   // of the stack. If they are changed, the protection of the stack
1855   // guard pages will be lost. We need a safepoint to fix this.
1856   //
1857   // See Linux man page execstack(8) for more info.
1858   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1859     ElfFile ef(filename);
1860     if (!ef.specifies_noexecstack()) {
1861       if (!is_init_completed()) {
1862         os::Linux::_stack_is_executable = true;
1863         // This is OK - No Java threads have been created yet, and hence no
1864         // stack guard pages to fix.
1865         //
1866         // This should happen only when you are building JDK7 using a very
1867         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1868         //
1869         // Dynamic loader will make all stacks executable after
1870         // this function returns, and will not do that again.
1871         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1872       } else {
1873         warning("You have loaded library %s which might have disabled stack guard. "
1874                 "The VM will try to fix the stack guard now.\n"
1875                 "It's highly recommended that you fix the library with "
1876                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1877                 filename);
1878 
1879         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1880         JavaThread *jt = JavaThread::current();
1881         if (jt->thread_state() != _thread_in_native) {
1882           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1883           // that requires ExecStack. Cannot enter safe point. Let's give up.
1884           warning("Unable to fix stack guard. Giving up.");
1885         } else {
1886           if (!LoadExecStackDllInVMThread) {
1887             // This is for the case where the DLL has an static
1888             // constructor function that executes JNI code. We cannot
1889             // load such DLLs in the VMThread.
1890             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1891           }
1892 
1893           ThreadInVMfromNative tiv(jt);
1894           debug_only(VMNativeEntryWrapper vew;)
1895 
1896           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1897           VMThread::execute(&op);
1898           if (LoadExecStackDllInVMThread) {
1899             result = op.loaded_library();
1900           }
1901           load_attempted = true;
1902         }
1903       }
1904     }
1905   }
1906 
1907   if (!load_attempted) {
1908     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1909   }
1910 
1911   if (result != NULL) {
1912     // Successful loading
1913     return result;
1914   }
1915 
1916   Elf32_Ehdr elf_head;
1917   int diag_msg_max_length=ebuflen-strlen(ebuf);
1918   char* diag_msg_buf=ebuf+strlen(ebuf);
1919 
1920   if (diag_msg_max_length==0) {
1921     // No more space in ebuf for additional diagnostics message
1922     return NULL;
1923   }
1924 
1925 
1926   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1927 
1928   if (file_descriptor < 0) {
1929     // Can't open library, report dlerror() message
1930     return NULL;
1931   }
1932 
1933   bool failed_to_read_elf_head=
1934     (sizeof(elf_head)!=
1935         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1936 
1937   ::close(file_descriptor);
1938   if (failed_to_read_elf_head) {
1939     // file i/o error - report dlerror() msg
1940     return NULL;
1941   }
1942 
1943   typedef struct {
1944     Elf32_Half  code;         // Actual value as defined in elf.h
1945     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1946     char        elf_class;    // 32 or 64 bit
1947     char        endianess;    // MSB or LSB
1948     char*       name;         // String representation
1949   } arch_t;
1950 
1951   #ifndef EM_486
1952   #define EM_486          6               /* Intel 80486 */
1953   #endif
1954 
1955   static const arch_t arch_array[]={
1956     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1957     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1958     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1959     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1960     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1961     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1962     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1963     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1964     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1965     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1966     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1967     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1968     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1969     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1970     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1971     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1972   };
1973 
1974   #if  (defined IA32)
1975     static  Elf32_Half running_arch_code=EM_386;
1976   #elif   (defined AMD64)
1977     static  Elf32_Half running_arch_code=EM_X86_64;
1978   #elif  (defined IA64)
1979     static  Elf32_Half running_arch_code=EM_IA_64;
1980   #elif  (defined __sparc) && (defined _LP64)
1981     static  Elf32_Half running_arch_code=EM_SPARCV9;
1982   #elif  (defined __sparc) && (!defined _LP64)
1983     static  Elf32_Half running_arch_code=EM_SPARC;
1984   #elif  (defined __powerpc64__)
1985     static  Elf32_Half running_arch_code=EM_PPC64;
1986   #elif  (defined __powerpc__)
1987     static  Elf32_Half running_arch_code=EM_PPC;
1988   #elif  (defined ARM)
1989     static  Elf32_Half running_arch_code=EM_ARM;
1990   #elif  (defined S390)
1991     static  Elf32_Half running_arch_code=EM_S390;
1992   #elif  (defined ALPHA)
1993     static  Elf32_Half running_arch_code=EM_ALPHA;
1994   #elif  (defined MIPSEL)
1995     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1996   #elif  (defined PARISC)
1997     static  Elf32_Half running_arch_code=EM_PARISC;
1998   #elif  (defined MIPS)
1999     static  Elf32_Half running_arch_code=EM_MIPS;
2000   #elif  (defined M68K)
2001     static  Elf32_Half running_arch_code=EM_68K;
2002   #else
2003     #error Method os::dll_load requires that one of following is defined:\
2004          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
2005   #endif
2006 
2007   // Identify compatability class for VM's architecture and library's architecture
2008   // Obtain string descriptions for architectures
2009 
2010   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
2011   int running_arch_index=-1;
2012 
2013   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
2014     if (running_arch_code == arch_array[i].code) {
2015       running_arch_index    = i;
2016     }
2017     if (lib_arch.code == arch_array[i].code) {
2018       lib_arch.compat_class = arch_array[i].compat_class;
2019       lib_arch.name         = arch_array[i].name;
2020     }
2021   }
2022 
2023   assert(running_arch_index != -1,
2024     "Didn't find running architecture code (running_arch_code) in arch_array");
2025   if (running_arch_index == -1) {
2026     // Even though running architecture detection failed
2027     // we may still continue with reporting dlerror() message
2028     return NULL;
2029   }
2030 
2031   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2032     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2033     return NULL;
2034   }
2035 
2036 #ifndef S390
2037   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2038     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2039     return NULL;
2040   }
2041 #endif // !S390
2042 
2043   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2044     if ( lib_arch.name!=NULL ) {
2045       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2046         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2047         lib_arch.name, arch_array[running_arch_index].name);
2048     } else {
2049       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2050       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2051         lib_arch.code,
2052         arch_array[running_arch_index].name);
2053     }
2054   }
2055 
2056   return NULL;
2057 }
2058 
2059 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2060   void * result = ::dlopen(filename, RTLD_LAZY);
2061   if (result == NULL) {
2062     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2063     ebuf[ebuflen-1] = '\0';
2064   }
2065   return result;
2066 }
2067 
2068 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2069   void * result = NULL;
2070   if (LoadExecStackDllInVMThread) {
2071     result = dlopen_helper(filename, ebuf, ebuflen);
2072   }
2073 
2074   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2075   // library that requires an executable stack, or which does not have this
2076   // stack attribute set, dlopen changes the stack attribute to executable. The
2077   // read protection of the guard pages gets lost.
2078   //
2079   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2080   // may have been queued at the same time.
2081 
2082   if (!_stack_is_executable) {
2083     JavaThread *jt = Threads::first();
2084 
2085     while (jt) {
2086       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2087           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2088         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2089                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2090           warning("Attempt to reguard stack yellow zone failed.");
2091         }
2092       }
2093       jt = jt->next();
2094     }
2095   }
2096 
2097   return result;
2098 }
2099 
2100 /*
2101  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2102  * chances are you might want to run the generated bits against glibc-2.0
2103  * libdl.so, so always use locking for any version of glibc.
2104  */
2105 void* os::dll_lookup(void* handle, const char* name) {
2106   pthread_mutex_lock(&dl_mutex);
2107   void* res = dlsym(handle, name);
2108   pthread_mutex_unlock(&dl_mutex);
2109   return res;
2110 }
2111 
2112 void* os::get_default_process_handle() {
2113   return (void*)::dlopen(NULL, RTLD_LAZY);
2114 }
2115 
2116 static bool _print_ascii_file(const char* filename, outputStream* st) {
2117   int fd = ::open(filename, O_RDONLY);
2118   if (fd == -1) {
2119      return false;
2120   }
2121 
2122   char buf[32];
2123   int bytes;
2124   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2125     st->print_raw(buf, bytes);
2126   }
2127 
2128   ::close(fd);
2129 
2130   return true;
2131 }
2132 
2133 void os::print_dll_info(outputStream *st) {
2134    st->print_cr("Dynamic libraries:");
2135 
2136    char fname[32];
2137    pid_t pid = os::Linux::gettid();
2138 
2139    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2140 
2141    if (!_print_ascii_file(fname, st)) {
2142      st->print("Can not get library information for pid = %d\n", pid);
2143    }
2144 }
2145 
2146 void os::print_os_info_brief(outputStream* st) {
2147   os::Linux::print_distro_info(st);
2148 
2149   os::Posix::print_uname_info(st);
2150 
2151   os::Linux::print_libversion_info(st);
2152 
2153 }
2154 
2155 void os::print_os_info(outputStream* st) {
2156   st->print("OS:");
2157 
2158   os::Linux::print_distro_info(st);
2159 
2160   os::Posix::print_uname_info(st);
2161 
2162   // Print warning if unsafe chroot environment detected
2163   if (unsafe_chroot_detected) {
2164     st->print("WARNING!! ");
2165     st->print_cr(unstable_chroot_error);
2166   }
2167 
2168   os::Linux::print_libversion_info(st);
2169 
2170   os::Posix::print_rlimit_info(st);
2171 
2172   os::Posix::print_load_average(st);
2173 
2174   os::Linux::print_full_memory_info(st);
2175 }
2176 
2177 // Try to identify popular distros.
2178 // Most Linux distributions have a /etc/XXX-release file, which contains
2179 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2180 // file that also contains the OS version string. Some have more than one
2181 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2182 // /etc/redhat-release.), so the order is important.
2183 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2184 // their own specific XXX-release file as well as a redhat-release file.
2185 // Because of this the XXX-release file needs to be searched for before the
2186 // redhat-release file.
2187 // Since Red Hat has a lsb-release file that is not very descriptive the
2188 // search for redhat-release needs to be before lsb-release.
2189 // Since the lsb-release file is the new standard it needs to be searched
2190 // before the older style release files.
2191 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2192 // next to last resort.  The os-release file is a new standard that contains
2193 // distribution information and the system-release file seems to be an old
2194 // standard that has been replaced by the lsb-release and os-release files.
2195 // Searching for the debian_version file is the last resort.  It contains
2196 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2197 // "Debian " is printed before the contents of the debian_version file.
2198 void os::Linux::print_distro_info(outputStream* st) {
2199    if (!_print_ascii_file("/etc/oracle-release", st) &&
2200        !_print_ascii_file("/etc/mandriva-release", st) &&
2201        !_print_ascii_file("/etc/mandrake-release", st) &&
2202        !_print_ascii_file("/etc/sun-release", st) &&
2203        !_print_ascii_file("/etc/redhat-release", st) &&
2204        !_print_ascii_file("/etc/lsb-release", st) &&
2205        !_print_ascii_file("/etc/SuSE-release", st) &&
2206        !_print_ascii_file("/etc/turbolinux-release", st) &&
2207        !_print_ascii_file("/etc/gentoo-release", st) &&
2208        !_print_ascii_file("/etc/ltib-release", st) &&
2209        !_print_ascii_file("/etc/angstrom-version", st) &&
2210        !_print_ascii_file("/etc/system-release", st) &&
2211        !_print_ascii_file("/etc/os-release", st)) {
2212 
2213        if (file_exists("/etc/debian_version")) {
2214          st->print("Debian ");
2215          _print_ascii_file("/etc/debian_version", st);
2216        } else {
2217          st->print("Linux");
2218        }
2219    }
2220    st->cr();
2221 }
2222 
2223 void os::Linux::print_libversion_info(outputStream* st) {
2224   // libc, pthread
2225   st->print("libc:");
2226   st->print(os::Linux::glibc_version()); st->print(" ");
2227   st->print(os::Linux::libpthread_version()); st->print(" ");
2228   if (os::Linux::is_LinuxThreads()) {
2229      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2230   }
2231   st->cr();
2232 }
2233 
2234 void os::Linux::print_full_memory_info(outputStream* st) {
2235    st->print("\n/proc/meminfo:\n");
2236    _print_ascii_file("/proc/meminfo", st);
2237    st->cr();
2238 }
2239 
2240 void os::print_memory_info(outputStream* st) {
2241 
2242   st->print("Memory:");
2243   st->print(" %dk page", os::vm_page_size()>>10);
2244 
2245   // values in struct sysinfo are "unsigned long"
2246   struct sysinfo si;
2247   sysinfo(&si);
2248 
2249   st->print(", physical " UINT64_FORMAT "k",
2250             os::physical_memory() >> 10);
2251   st->print("(" UINT64_FORMAT "k free)",
2252             os::available_memory() >> 10);
2253   st->print(", swap " UINT64_FORMAT "k",
2254             ((jlong)si.totalswap * si.mem_unit) >> 10);
2255   st->print("(" UINT64_FORMAT "k free)",
2256             ((jlong)si.freeswap * si.mem_unit) >> 10);
2257   st->cr();
2258 }
2259 
2260 void os::pd_print_cpu_info(outputStream* st) {
2261   st->print("\n/proc/cpuinfo:\n");
2262   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2263     st->print("  <Not Available>");
2264   }
2265   st->cr();
2266 }
2267 
2268 void os::print_siginfo(outputStream* st, void* siginfo) {
2269   const siginfo_t* si = (const siginfo_t*)siginfo;
2270 
2271   os::Posix::print_siginfo_brief(st, si);
2272 
2273   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2274       UseSharedSpaces) {
2275     FileMapInfo* mapinfo = FileMapInfo::current_info();
2276     if (mapinfo->is_in_shared_space(si->si_addr)) {
2277       st->print("\n\nError accessing class data sharing archive."   \
2278                 " Mapped file inaccessible during execution, "      \
2279                 " possible disk/network problem.");
2280     }
2281   }
2282   st->cr();
2283 }
2284 
2285 
2286 static void print_signal_handler(outputStream* st, int sig,
2287                                  char* buf, size_t buflen);
2288 
2289 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2290   st->print_cr("Signal Handlers:");
2291   print_signal_handler(st, SIGSEGV, buf, buflen);
2292   print_signal_handler(st, SIGBUS , buf, buflen);
2293   print_signal_handler(st, SIGFPE , buf, buflen);
2294   print_signal_handler(st, SIGPIPE, buf, buflen);
2295   print_signal_handler(st, SIGXFSZ, buf, buflen);
2296   print_signal_handler(st, SIGILL , buf, buflen);
2297   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2298   print_signal_handler(st, SR_signum, buf, buflen);
2299   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2300   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2301   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2302   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2303 #if defined(PPC64)
2304   print_signal_handler(st, SIGTRAP, buf, buflen);
2305 #endif
2306 }
2307 
2308 static char saved_jvm_path[MAXPATHLEN] = {0};
2309 
2310 // Find the full path to the current module, libjvm.so
2311 void os::jvm_path(char *buf, jint buflen) {
2312   // Error checking.
2313   if (buflen < MAXPATHLEN) {
2314     assert(false, "must use a large-enough buffer");
2315     buf[0] = '\0';
2316     return;
2317   }
2318   // Lazy resolve the path to current module.
2319   if (saved_jvm_path[0] != 0) {
2320     strcpy(buf, saved_jvm_path);
2321     return;
2322   }
2323 
2324   char dli_fname[MAXPATHLEN];
2325   bool ret = dll_address_to_library_name(
2326                 CAST_FROM_FN_PTR(address, os::jvm_path),
2327                 dli_fname, sizeof(dli_fname), NULL);
2328   assert(ret, "cannot locate libjvm");
2329   char *rp = NULL;
2330   if (ret && dli_fname[0] != '\0') {
2331     rp = realpath(dli_fname, buf);
2332   }
2333   if (rp == NULL)
2334     return;
2335 
2336   if (Arguments::sun_java_launcher_is_altjvm()) {
2337     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2338     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2339     // If "/jre/lib/" appears at the right place in the string, then
2340     // assume we are installed in a JDK and we're done. Otherwise, check
2341     // for a JAVA_HOME environment variable and fix up the path so it
2342     // looks like libjvm.so is installed there (append a fake suffix
2343     // hotspot/libjvm.so).
2344     const char *p = buf + strlen(buf) - 1;
2345     for (int count = 0; p > buf && count < 5; ++count) {
2346       for (--p; p > buf && *p != '/'; --p)
2347         /* empty */ ;
2348     }
2349 
2350     if (strncmp(p, "/jre/lib/", 9) != 0) {
2351       // Look for JAVA_HOME in the environment.
2352       char* java_home_var = ::getenv("JAVA_HOME");
2353       if (java_home_var != NULL && java_home_var[0] != 0) {
2354         char* jrelib_p;
2355         int len;
2356 
2357         // Check the current module name "libjvm.so".
2358         p = strrchr(buf, '/');
2359         assert(strstr(p, "/libjvm") == p, "invalid library name");
2360 
2361         rp = realpath(java_home_var, buf);
2362         if (rp == NULL)
2363           return;
2364 
2365         // determine if this is a legacy image or modules image
2366         // modules image doesn't have "jre" subdirectory
2367         len = strlen(buf);
2368         jrelib_p = buf + len;
2369         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2370         if (0 != access(buf, F_OK)) {
2371           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2372         }
2373 
2374         if (0 == access(buf, F_OK)) {
2375           // Use current module name "libjvm.so"
2376           len = strlen(buf);
2377           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2378         } else {
2379           // Go back to path of .so
2380           rp = realpath(dli_fname, buf);
2381           if (rp == NULL)
2382             return;
2383         }
2384       }
2385     }
2386   }
2387 
2388   strcpy(saved_jvm_path, buf);
2389 }
2390 
2391 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2392   // no prefix required, not even "_"
2393 }
2394 
2395 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2396   // no suffix required
2397 }
2398 
2399 ////////////////////////////////////////////////////////////////////////////////
2400 // sun.misc.Signal support
2401 
2402 static volatile jint sigint_count = 0;
2403 
2404 static void
2405 UserHandler(int sig, void *siginfo, void *context) {
2406   // 4511530 - sem_post is serialized and handled by the manager thread. When
2407   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2408   // don't want to flood the manager thread with sem_post requests.
2409   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2410       return;
2411 
2412   // Ctrl-C is pressed during error reporting, likely because the error
2413   // handler fails to abort. Let VM die immediately.
2414   if (sig == SIGINT && is_error_reported()) {
2415      os::die();
2416   }
2417 
2418   os::signal_notify(sig);
2419 }
2420 
2421 void* os::user_handler() {
2422   return CAST_FROM_FN_PTR(void*, UserHandler);
2423 }
2424 
2425 class Semaphore : public StackObj {
2426   public:
2427     Semaphore();
2428     ~Semaphore();
2429     void signal();
2430     void wait();
2431     bool trywait();
2432     bool timedwait(unsigned int sec, int nsec);
2433   private:
2434     sem_t _semaphore;
2435 };
2436 
2437 
2438 Semaphore::Semaphore() {
2439   sem_init(&_semaphore, 0, 0);
2440 }
2441 
2442 Semaphore::~Semaphore() {
2443   sem_destroy(&_semaphore);
2444 }
2445 
2446 void Semaphore::signal() {
2447   sem_post(&_semaphore);
2448 }
2449 
2450 void Semaphore::wait() {
2451   sem_wait(&_semaphore);
2452 }
2453 
2454 bool Semaphore::trywait() {
2455   return sem_trywait(&_semaphore) == 0;
2456 }
2457 
2458 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2459   struct timespec ts;
2460   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2461 
2462   while (1) {
2463     int result = sem_timedwait(&_semaphore, &ts);
2464     if (result == 0) {
2465       return true;
2466     } else if (errno == EINTR) {
2467       continue;
2468     } else if (errno == ETIMEDOUT) {
2469       return false;
2470     } else {
2471       return false;
2472     }
2473   }
2474 }
2475 
2476 extern "C" {
2477   typedef void (*sa_handler_t)(int);
2478   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2479 }
2480 
2481 void* os::signal(int signal_number, void* handler) {
2482   struct sigaction sigAct, oldSigAct;
2483 
2484   sigfillset(&(sigAct.sa_mask));
2485   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2486   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2487 
2488   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2489     // -1 means registration failed
2490     return (void *)-1;
2491   }
2492 
2493   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2494 }
2495 
2496 void os::signal_raise(int signal_number) {
2497   ::raise(signal_number);
2498 }
2499 
2500 /*
2501  * The following code is moved from os.cpp for making this
2502  * code platform specific, which it is by its very nature.
2503  */
2504 
2505 // Will be modified when max signal is changed to be dynamic
2506 int os::sigexitnum_pd() {
2507   return NSIG;
2508 }
2509 
2510 // a counter for each possible signal value
2511 static volatile jint pending_signals[NSIG+1] = { 0 };
2512 
2513 // Linux(POSIX) specific hand shaking semaphore.
2514 static sem_t sig_sem;
2515 static Semaphore sr_semaphore;
2516 
2517 void os::signal_init_pd() {
2518   // Initialize signal structures
2519   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2520 
2521   // Initialize signal semaphore
2522   ::sem_init(&sig_sem, 0, 0);
2523 }
2524 
2525 void os::signal_notify(int sig) {
2526   Atomic::inc(&pending_signals[sig]);
2527   ::sem_post(&sig_sem);
2528 }
2529 
2530 static int check_pending_signals(bool wait) {
2531   Atomic::store(0, &sigint_count);
2532   for (;;) {
2533     for (int i = 0; i < NSIG + 1; i++) {
2534       jint n = pending_signals[i];
2535       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2536         return i;
2537       }
2538     }
2539     if (!wait) {
2540       return -1;
2541     }
2542     JavaThread *thread = JavaThread::current();
2543     ThreadBlockInVM tbivm(thread);
2544 
2545     bool threadIsSuspended;
2546     do {
2547       thread->set_suspend_equivalent();
2548       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2549       ::sem_wait(&sig_sem);
2550 
2551       // were we externally suspended while we were waiting?
2552       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2553       if (threadIsSuspended) {
2554         //
2555         // The semaphore has been incremented, but while we were waiting
2556         // another thread suspended us. We don't want to continue running
2557         // while suspended because that would surprise the thread that
2558         // suspended us.
2559         //
2560         ::sem_post(&sig_sem);
2561 
2562         thread->java_suspend_self();
2563       }
2564     } while (threadIsSuspended);
2565   }
2566 }
2567 
2568 int os::signal_lookup() {
2569   return check_pending_signals(false);
2570 }
2571 
2572 int os::signal_wait() {
2573   return check_pending_signals(true);
2574 }
2575 
2576 ////////////////////////////////////////////////////////////////////////////////
2577 // Virtual Memory
2578 
2579 int os::vm_page_size() {
2580   // Seems redundant as all get out
2581   assert(os::Linux::page_size() != -1, "must call os::init");
2582   return os::Linux::page_size();
2583 }
2584 
2585 // Solaris allocates memory by pages.
2586 int os::vm_allocation_granularity() {
2587   assert(os::Linux::page_size() != -1, "must call os::init");
2588   return os::Linux::page_size();
2589 }
2590 
2591 // Rationale behind this function:
2592 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2593 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2594 //  samples for JITted code. Here we create private executable mapping over the code cache
2595 //  and then we can use standard (well, almost, as mapping can change) way to provide
2596 //  info for the reporting script by storing timestamp and location of symbol
2597 void linux_wrap_code(char* base, size_t size) {
2598   static volatile jint cnt = 0;
2599 
2600   if (!UseOprofile) {
2601     return;
2602   }
2603 
2604   char buf[PATH_MAX+1];
2605   int num = Atomic::add(1, &cnt);
2606 
2607   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2608            os::get_temp_directory(), os::current_process_id(), num);
2609   unlink(buf);
2610 
2611   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2612 
2613   if (fd != -1) {
2614     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2615     if (rv != (off_t)-1) {
2616       if (::write(fd, "", 1) == 1) {
2617         mmap(base, size,
2618              PROT_READ|PROT_WRITE|PROT_EXEC,
2619              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2620       }
2621     }
2622     ::close(fd);
2623     unlink(buf);
2624   }
2625 }
2626 
2627 static bool recoverable_mmap_error(int err) {
2628   // See if the error is one we can let the caller handle. This
2629   // list of errno values comes from JBS-6843484. I can't find a
2630   // Linux man page that documents this specific set of errno
2631   // values so while this list currently matches Solaris, it may
2632   // change as we gain experience with this failure mode.
2633   switch (err) {
2634   case EBADF:
2635   case EINVAL:
2636   case ENOTSUP:
2637     // let the caller deal with these errors
2638     return true;
2639 
2640   default:
2641     // Any remaining errors on this OS can cause our reserved mapping
2642     // to be lost. That can cause confusion where different data
2643     // structures think they have the same memory mapped. The worst
2644     // scenario is if both the VM and a library think they have the
2645     // same memory mapped.
2646     return false;
2647   }
2648 }
2649 
2650 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2651                                     int err) {
2652   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2653           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2654           strerror(err), err);
2655 }
2656 
2657 static void warn_fail_commit_memory(char* addr, size_t size,
2658                                     size_t alignment_hint, bool exec,
2659                                     int err) {
2660   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2661           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2662           alignment_hint, exec, strerror(err), err);
2663 }
2664 
2665 // NOTE: Linux kernel does not really reserve the pages for us.
2666 //       All it does is to check if there are enough free pages
2667 //       left at the time of mmap(). This could be a potential
2668 //       problem.
2669 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2670   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2671   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2672                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2673   if (res != (uintptr_t) MAP_FAILED) {
2674     if (UseNUMAInterleaving) {
2675       numa_make_global(addr, size);
2676     }
2677     return 0;
2678   }
2679 
2680   int err = errno;  // save errno from mmap() call above
2681 
2682   if (!recoverable_mmap_error(err)) {
2683     warn_fail_commit_memory(addr, size, exec, err);
2684     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2685   }
2686 
2687   return err;
2688 }
2689 
2690 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2691   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2692 }
2693 
2694 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2695                                   const char* mesg) {
2696   assert(mesg != NULL, "mesg must be specified");
2697   int err = os::Linux::commit_memory_impl(addr, size, exec);
2698   if (err != 0) {
2699     // the caller wants all commit errors to exit with the specified mesg:
2700     warn_fail_commit_memory(addr, size, exec, err);
2701     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2702   }
2703 }
2704 
2705 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2706 #ifndef MAP_HUGETLB
2707 #define MAP_HUGETLB 0x40000
2708 #endif
2709 
2710 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2711 #ifndef MADV_HUGEPAGE
2712 #define MADV_HUGEPAGE 14
2713 #endif
2714 
2715 int os::Linux::commit_memory_impl(char* addr, size_t size,
2716                                   size_t alignment_hint, bool exec) {
2717   int err = os::Linux::commit_memory_impl(addr, size, exec);
2718   if (err == 0) {
2719     realign_memory(addr, size, alignment_hint);
2720   }
2721   return err;
2722 }
2723 
2724 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2725                           bool exec) {
2726   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2727 }
2728 
2729 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2730                                   size_t alignment_hint, bool exec,
2731                                   const char* mesg) {
2732   assert(mesg != NULL, "mesg must be specified");
2733   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2734   if (err != 0) {
2735     // the caller wants all commit errors to exit with the specified mesg:
2736     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2737     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2738   }
2739 }
2740 
2741 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2742   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2743     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2744     // be supported or the memory may already be backed by huge pages.
2745     ::madvise(addr, bytes, MADV_HUGEPAGE);
2746   }
2747 }
2748 
2749 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2750   // This method works by doing an mmap over an existing mmaping and effectively discarding
2751   // the existing pages. However it won't work for SHM-based large pages that cannot be
2752   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2753   // small pages on top of the SHM segment. This method always works for small pages, so we
2754   // allow that in any case.
2755   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2756     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2757   }
2758 }
2759 
2760 void os::numa_make_global(char *addr, size_t bytes) {
2761   Linux::numa_interleave_memory(addr, bytes);
2762 }
2763 
2764 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2765 // bind policy to MPOL_PREFERRED for the current thread.
2766 #define USE_MPOL_PREFERRED 0
2767 
2768 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2769   // To make NUMA and large pages more robust when both enabled, we need to ease
2770   // the requirements on where the memory should be allocated. MPOL_BIND is the
2771   // default policy and it will force memory to be allocated on the specified
2772   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2773   // the specified node, but will not force it. Using this policy will prevent
2774   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2775   // free large pages.
2776   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2777   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2778 }
2779 
2780 bool os::numa_topology_changed()   { return false; }
2781 
2782 size_t os::numa_get_groups_num() {
2783   int max_node = Linux::numa_max_node();
2784   return max_node > 0 ? max_node + 1 : 1;
2785 }
2786 
2787 int os::numa_get_group_id() {
2788   int cpu_id = Linux::sched_getcpu();
2789   if (cpu_id != -1) {
2790     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2791     if (lgrp_id != -1) {
2792       return lgrp_id;
2793     }
2794   }
2795   return 0;
2796 }
2797 
2798 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2799   for (size_t i = 0; i < size; i++) {
2800     ids[i] = i;
2801   }
2802   return size;
2803 }
2804 
2805 bool os::get_page_info(char *start, page_info* info) {
2806   return false;
2807 }
2808 
2809 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2810   return end;
2811 }
2812 
2813 
2814 int os::Linux::sched_getcpu_syscall(void) {
2815   unsigned int cpu;
2816   int retval = -1;
2817 
2818 #if defined(IA32)
2819 # ifndef SYS_getcpu
2820 # define SYS_getcpu 318
2821 # endif
2822   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2823 #elif defined(AMD64)
2824 // Unfortunately we have to bring all these macros here from vsyscall.h
2825 // to be able to compile on old linuxes.
2826 # define __NR_vgetcpu 2
2827 # define VSYSCALL_START (-10UL << 20)
2828 # define VSYSCALL_SIZE 1024
2829 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2830   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2831   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2832   retval = vgetcpu(&cpu, NULL, NULL);
2833 #endif
2834 
2835   return (retval == -1) ? retval : cpu;
2836 }
2837 
2838 // Something to do with the numa-aware allocator needs these symbols
2839 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2840 extern "C" JNIEXPORT void numa_error(char *where) { }
2841 extern "C" JNIEXPORT int fork1() { return fork(); }
2842 
2843 
2844 // If we are running with libnuma version > 2, then we should
2845 // be trying to use symbols with versions 1.1
2846 // If we are running with earlier version, which did not have symbol versions,
2847 // we should use the base version.
2848 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2849   void *f = dlvsym(handle, name, "libnuma_1.1");
2850   if (f == NULL) {
2851     f = dlsym(handle, name);
2852   }
2853   return f;
2854 }
2855 
2856 bool os::Linux::libnuma_init() {
2857   // sched_getcpu() should be in libc.
2858   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2859                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2860 
2861   // If it's not, try a direct syscall.
2862   if (sched_getcpu() == -1)
2863     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2864 
2865   if (sched_getcpu() != -1) { // Does it work?
2866     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2867     if (handle != NULL) {
2868       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2869                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2870       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2871                                        libnuma_dlsym(handle, "numa_max_node")));
2872       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2873                                         libnuma_dlsym(handle, "numa_available")));
2874       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2875                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2876       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2877                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2878       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2879                                             libnuma_dlsym(handle, "numa_set_bind_policy")));
2880 
2881 
2882       if (numa_available() != -1) {
2883         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2884         // Create a cpu -> node mapping
2885         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2886         rebuild_cpu_to_node_map();
2887         return true;
2888       }
2889     }
2890   }
2891   return false;
2892 }
2893 
2894 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2895 // The table is later used in get_node_by_cpu().
2896 void os::Linux::rebuild_cpu_to_node_map() {
2897   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2898                               // in libnuma (possible values are starting from 16,
2899                               // and continuing up with every other power of 2, but less
2900                               // than the maximum number of CPUs supported by kernel), and
2901                               // is a subject to change (in libnuma version 2 the requirements
2902                               // are more reasonable) we'll just hardcode the number they use
2903                               // in the library.
2904   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2905 
2906   size_t cpu_num = os::active_processor_count();
2907   size_t cpu_map_size = NCPUS / BitsPerCLong;
2908   size_t cpu_map_valid_size =
2909     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2910 
2911   cpu_to_node()->clear();
2912   cpu_to_node()->at_grow(cpu_num - 1);
2913   size_t node_num = numa_get_groups_num();
2914 
2915   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2916   for (size_t i = 0; i < node_num; i++) {
2917     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2918       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2919         if (cpu_map[j] != 0) {
2920           for (size_t k = 0; k < BitsPerCLong; k++) {
2921             if (cpu_map[j] & (1UL << k)) {
2922               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2923             }
2924           }
2925         }
2926       }
2927     }
2928   }
2929   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2930 }
2931 
2932 int os::Linux::get_node_by_cpu(int cpu_id) {
2933   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2934     return cpu_to_node()->at(cpu_id);
2935   }
2936   return -1;
2937 }
2938 
2939 GrowableArray<int>* os::Linux::_cpu_to_node;
2940 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2941 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2942 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2943 os::Linux::numa_available_func_t os::Linux::_numa_available;
2944 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2945 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2946 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2947 unsigned long* os::Linux::_numa_all_nodes;
2948 
2949 bool os::pd_uncommit_memory(char* addr, size_t size) {
2950   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2951                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2952   return res  != (uintptr_t) MAP_FAILED;
2953 }
2954 
2955 static
2956 address get_stack_commited_bottom(address bottom, size_t size) {
2957   address nbot = bottom;
2958   address ntop = bottom + size;
2959 
2960   size_t page_sz = os::vm_page_size();
2961   unsigned pages = size / page_sz;
2962 
2963   unsigned char vec[1];
2964   unsigned imin = 1, imax = pages + 1, imid;
2965   int mincore_return_value = 0;
2966 
2967   assert(imin <= imax, "Unexpected page size");
2968 
2969   while (imin < imax) {
2970     imid = (imax + imin) / 2;
2971     nbot = ntop - (imid * page_sz);
2972 
2973     // Use a trick with mincore to check whether the page is mapped or not.
2974     // mincore sets vec to 1 if page resides in memory and to 0 if page
2975     // is swapped output but if page we are asking for is unmapped
2976     // it returns -1,ENOMEM
2977     mincore_return_value = mincore(nbot, page_sz, vec);
2978 
2979     if (mincore_return_value == -1) {
2980       // Page is not mapped go up
2981       // to find first mapped page
2982       if (errno != EAGAIN) {
2983         assert(errno == ENOMEM, "Unexpected mincore errno");
2984         imax = imid;
2985       }
2986     } else {
2987       // Page is mapped go down
2988       // to find first not mapped page
2989       imin = imid + 1;
2990     }
2991   }
2992 
2993   nbot = nbot + page_sz;
2994 
2995   // Adjust stack bottom one page up if last checked page is not mapped
2996   if (mincore_return_value == -1) {
2997     nbot = nbot + page_sz;
2998   }
2999 
3000   return nbot;
3001 }
3002 
3003 
3004 // Linux uses a growable mapping for the stack, and if the mapping for
3005 // the stack guard pages is not removed when we detach a thread the
3006 // stack cannot grow beyond the pages where the stack guard was
3007 // mapped.  If at some point later in the process the stack expands to
3008 // that point, the Linux kernel cannot expand the stack any further
3009 // because the guard pages are in the way, and a segfault occurs.
3010 //
3011 // However, it's essential not to split the stack region by unmapping
3012 // a region (leaving a hole) that's already part of the stack mapping,
3013 // so if the stack mapping has already grown beyond the guard pages at
3014 // the time we create them, we have to truncate the stack mapping.
3015 // So, we need to know the extent of the stack mapping when
3016 // create_stack_guard_pages() is called.
3017 
3018 // We only need this for stacks that are growable: at the time of
3019 // writing thread stacks don't use growable mappings (i.e. those
3020 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3021 // only applies to the main thread.
3022 
3023 // If the (growable) stack mapping already extends beyond the point
3024 // where we're going to put our guard pages, truncate the mapping at
3025 // that point by munmap()ping it.  This ensures that when we later
3026 // munmap() the guard pages we don't leave a hole in the stack
3027 // mapping. This only affects the main/initial thread
3028 
3029 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3030 
3031   if (os::Linux::is_initial_thread()) {
3032     // As we manually grow stack up to bottom inside create_attached_thread(),
3033     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3034     // we don't need to do anything special.
3035     // Check it first, before calling heavy function.
3036     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3037     unsigned char vec[1];
3038 
3039     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3040       // Fallback to slow path on all errors, including EAGAIN
3041       stack_extent = (uintptr_t) get_stack_commited_bottom(
3042                                     os::Linux::initial_thread_stack_bottom(),
3043                                     (size_t)addr - stack_extent);
3044     }
3045 
3046     if (stack_extent < (uintptr_t)addr) {
3047       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3048     }
3049   }
3050 
3051   return os::commit_memory(addr, size, !ExecMem);
3052 }
3053 
3054 // If this is a growable mapping, remove the guard pages entirely by
3055 // munmap()ping them.  If not, just call uncommit_memory(). This only
3056 // affects the main/initial thread, but guard against future OS changes
3057 // It's safe to always unmap guard pages for initial thread because we
3058 // always place it right after end of the mapped region
3059 
3060 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3061   uintptr_t stack_extent, stack_base;
3062 
3063   if (os::Linux::is_initial_thread()) {
3064     return ::munmap(addr, size) == 0;
3065   }
3066 
3067   return os::uncommit_memory(addr, size);
3068 }
3069 
3070 static address _highest_vm_reserved_address = NULL;
3071 
3072 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3073 // at 'requested_addr'. If there are existing memory mappings at the same
3074 // location, however, they will be overwritten. If 'fixed' is false,
3075 // 'requested_addr' is only treated as a hint, the return value may or
3076 // may not start from the requested address. Unlike Linux mmap(), this
3077 // function returns NULL to indicate failure.
3078 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3079   char * addr;
3080   int flags;
3081 
3082   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3083   if (fixed) {
3084     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3085     flags |= MAP_FIXED;
3086   }
3087 
3088   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3089   // touch an uncommitted page. Otherwise, the read/write might
3090   // succeed if we have enough swap space to back the physical page.
3091   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3092                        flags, -1, 0);
3093 
3094   if (addr != MAP_FAILED) {
3095     // anon_mmap() should only get called during VM initialization,
3096     // don't need lock (actually we can skip locking even it can be called
3097     // from multiple threads, because _highest_vm_reserved_address is just a
3098     // hint about the upper limit of non-stack memory regions.)
3099     if ((address)addr + bytes > _highest_vm_reserved_address) {
3100       _highest_vm_reserved_address = (address)addr + bytes;
3101     }
3102   }
3103 
3104   return addr == MAP_FAILED ? NULL : addr;
3105 }
3106 
3107 // Don't update _highest_vm_reserved_address, because there might be memory
3108 // regions above addr + size. If so, releasing a memory region only creates
3109 // a hole in the address space, it doesn't help prevent heap-stack collision.
3110 //
3111 static int anon_munmap(char * addr, size_t size) {
3112   return ::munmap(addr, size) == 0;
3113 }
3114 
3115 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3116                          size_t alignment_hint) {
3117   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3118 }
3119 
3120 bool os::pd_release_memory(char* addr, size_t size) {
3121   return anon_munmap(addr, size);
3122 }
3123 
3124 static address highest_vm_reserved_address() {
3125   return _highest_vm_reserved_address;
3126 }
3127 
3128 static bool linux_mprotect(char* addr, size_t size, int prot) {
3129   // Linux wants the mprotect address argument to be page aligned.
3130   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3131 
3132   // According to SUSv3, mprotect() should only be used with mappings
3133   // established by mmap(), and mmap() always maps whole pages. Unaligned
3134   // 'addr' likely indicates problem in the VM (e.g. trying to change
3135   // protection of malloc'ed or statically allocated memory). Check the
3136   // caller if you hit this assert.
3137   assert(addr == bottom, "sanity check");
3138 
3139   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3140   return ::mprotect(bottom, size, prot) == 0;
3141 }
3142 
3143 // Set protections specified
3144 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3145                         bool is_committed) {
3146   unsigned int p = 0;
3147   switch (prot) {
3148   case MEM_PROT_NONE: p = PROT_NONE; break;
3149   case MEM_PROT_READ: p = PROT_READ; break;
3150   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3151   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3152   default:
3153     ShouldNotReachHere();
3154   }
3155   // is_committed is unused.
3156   return linux_mprotect(addr, bytes, p);
3157 }
3158 
3159 bool os::guard_memory(char* addr, size_t size) {
3160   return linux_mprotect(addr, size, PROT_NONE);
3161 }
3162 
3163 bool os::unguard_memory(char* addr, size_t size) {
3164   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3165 }
3166 
3167 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3168   bool result = false;
3169   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3170                  MAP_ANONYMOUS|MAP_PRIVATE,
3171                  -1, 0);
3172   if (p != MAP_FAILED) {
3173     void *aligned_p = align_ptr_up(p, page_size);
3174 
3175     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3176 
3177     munmap(p, page_size * 2);
3178   }
3179 
3180   if (warn && !result) {
3181     warning("TransparentHugePages is not supported by the operating system.");
3182   }
3183 
3184   return result;
3185 }
3186 
3187 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3188   bool result = false;
3189   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3190                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3191                  -1, 0);
3192 
3193   if (p != MAP_FAILED) {
3194     // We don't know if this really is a huge page or not.
3195     FILE *fp = fopen("/proc/self/maps", "r");
3196     if (fp) {
3197       while (!feof(fp)) {
3198         char chars[257];
3199         long x = 0;
3200         if (fgets(chars, sizeof(chars), fp)) {
3201           if (sscanf(chars, "%lx-%*x", &x) == 1
3202               && x == (long)p) {
3203             if (strstr (chars, "hugepage")) {
3204               result = true;
3205               break;
3206             }
3207           }
3208         }
3209       }
3210       fclose(fp);
3211     }
3212     munmap(p, page_size);
3213   }
3214 
3215   if (warn && !result) {
3216     warning("HugeTLBFS is not supported by the operating system.");
3217   }
3218 
3219   return result;
3220 }
3221 
3222 /*
3223 * Set the coredump_filter bits to include largepages in core dump (bit 6)
3224 *
3225 * From the coredump_filter documentation:
3226 *
3227 * - (bit 0) anonymous private memory
3228 * - (bit 1) anonymous shared memory
3229 * - (bit 2) file-backed private memory
3230 * - (bit 3) file-backed shared memory
3231 * - (bit 4) ELF header pages in file-backed private memory areas (it is
3232 *           effective only if the bit 2 is cleared)
3233 * - (bit 5) hugetlb private memory
3234 * - (bit 6) hugetlb shared memory
3235 */
3236 static void set_coredump_filter(void) {
3237   FILE *f;
3238   long cdm;
3239 
3240   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3241     return;
3242   }
3243 
3244   if (fscanf(f, "%lx", &cdm) != 1) {
3245     fclose(f);
3246     return;
3247   }
3248 
3249   rewind(f);
3250 
3251   if ((cdm & LARGEPAGES_BIT) == 0) {
3252     cdm |= LARGEPAGES_BIT;
3253     fprintf(f, "%#lx", cdm);
3254   }
3255 
3256   fclose(f);
3257 }
3258 
3259 // Large page support
3260 
3261 static size_t _large_page_size = 0;
3262 
3263 size_t os::Linux::find_large_page_size() {
3264   size_t large_page_size = 0;
3265 
3266   // large_page_size on Linux is used to round up heap size. x86 uses either
3267   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3268   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3269   // page as large as 256M.
3270   //
3271   // Here we try to figure out page size by parsing /proc/meminfo and looking
3272   // for a line with the following format:
3273   //    Hugepagesize:     2048 kB
3274   //
3275   // If we can't determine the value (e.g. /proc is not mounted, or the text
3276   // format has been changed), we'll use the largest page size supported by
3277   // the processor.
3278 
3279 #ifndef ZERO
3280   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3281                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3282 #endif // ZERO
3283 
3284   FILE *fp = fopen("/proc/meminfo", "r");
3285   if (fp) {
3286     while (!feof(fp)) {
3287       int x = 0;
3288       char buf[16];
3289       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3290         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3291           large_page_size = x * K;
3292           break;
3293         }
3294       } else {
3295         // skip to next line
3296         for (;;) {
3297           int ch = fgetc(fp);
3298           if (ch == EOF || ch == (int)'\n') break;
3299         }
3300       }
3301     }
3302     fclose(fp);
3303   }
3304 
3305   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3306     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3307         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3308         proper_unit_for_byte_size(large_page_size));
3309   }
3310 
3311   return large_page_size;
3312 }
3313 
3314 size_t os::Linux::setup_large_page_size() {
3315   _large_page_size = Linux::find_large_page_size();
3316   const size_t default_page_size = (size_t)Linux::page_size();
3317   if (_large_page_size > default_page_size) {
3318     _page_sizes[0] = _large_page_size;
3319     _page_sizes[1] = default_page_size;
3320     _page_sizes[2] = 0;
3321   }
3322 
3323   return _large_page_size;
3324 }
3325 
3326 bool os::Linux::setup_large_page_type(size_t page_size) {
3327   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3328       FLAG_IS_DEFAULT(UseSHM) &&
3329       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3330 
3331     // The type of large pages has not been specified by the user.
3332 
3333     // Try UseHugeTLBFS and then UseSHM.
3334     UseHugeTLBFS = UseSHM = true;
3335 
3336     // Don't try UseTransparentHugePages since there are known
3337     // performance issues with it turned on. This might change in the future.
3338     UseTransparentHugePages = false;
3339   }
3340 
3341   if (UseTransparentHugePages) {
3342     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3343     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3344       UseHugeTLBFS = false;
3345       UseSHM = false;
3346       return true;
3347     }
3348     UseTransparentHugePages = false;
3349   }
3350 
3351   if (UseHugeTLBFS) {
3352     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3353     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3354       UseSHM = false;
3355       return true;
3356     }
3357     UseHugeTLBFS = false;
3358   }
3359 
3360   return UseSHM;
3361 }
3362 
3363 void os::large_page_init() {
3364   if (!UseLargePages &&
3365       !UseTransparentHugePages &&
3366       !UseHugeTLBFS &&
3367       !UseSHM) {
3368     // Not using large pages.
3369     return;
3370   }
3371 
3372   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3373     // The user explicitly turned off large pages.
3374     // Ignore the rest of the large pages flags.
3375     UseTransparentHugePages = false;
3376     UseHugeTLBFS = false;
3377     UseSHM = false;
3378     return;
3379   }
3380 
3381   size_t large_page_size = Linux::setup_large_page_size();
3382   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3383 
3384   set_coredump_filter();
3385 }
3386 
3387 #ifndef SHM_HUGETLB
3388 #define SHM_HUGETLB 04000
3389 #endif
3390 
3391 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3392   // "exec" is passed in but not used.  Creating the shared image for
3393   // the code cache doesn't have an SHM_X executable permission to check.
3394   assert(UseLargePages && UseSHM, "only for SHM large pages");
3395   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3396 
3397   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3398     return NULL; // Fallback to small pages.
3399   }
3400 
3401   key_t key = IPC_PRIVATE;
3402   char *addr;
3403 
3404   bool warn_on_failure = UseLargePages &&
3405                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3406                          !FLAG_IS_DEFAULT(UseSHM) ||
3407                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3408                         );
3409   char msg[128];
3410 
3411   // Create a large shared memory region to attach to based on size.
3412   // Currently, size is the total size of the heap
3413   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3414   if (shmid == -1) {
3415      // Possible reasons for shmget failure:
3416      // 1. shmmax is too small for Java heap.
3417      //    > check shmmax value: cat /proc/sys/kernel/shmmax
3418      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3419      // 2. not enough large page memory.
3420      //    > check available large pages: cat /proc/meminfo
3421      //    > increase amount of large pages:
3422      //          echo new_value > /proc/sys/vm/nr_hugepages
3423      //      Note 1: different Linux may use different name for this property,
3424      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3425      //      Note 2: it's possible there's enough physical memory available but
3426      //            they are so fragmented after a long run that they can't
3427      //            coalesce into large pages. Try to reserve large pages when
3428      //            the system is still "fresh".
3429      if (warn_on_failure) {
3430        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3431        warning(msg);
3432      }
3433      return NULL;
3434   }
3435 
3436   // attach to the region
3437   addr = (char*)shmat(shmid, req_addr, 0);
3438   int err = errno;
3439 
3440   // Remove shmid. If shmat() is successful, the actual shared memory segment
3441   // will be deleted when it's detached by shmdt() or when the process
3442   // terminates. If shmat() is not successful this will remove the shared
3443   // segment immediately.
3444   shmctl(shmid, IPC_RMID, NULL);
3445 
3446   if ((intptr_t)addr == -1) {
3447      if (warn_on_failure) {
3448        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3449        warning(msg);
3450      }
3451      return NULL;
3452   }
3453 
3454   return addr;
3455 }
3456 
3457 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3458   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3459 
3460   bool warn_on_failure = UseLargePages &&
3461       (!FLAG_IS_DEFAULT(UseLargePages) ||
3462        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3463        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3464 
3465   if (warn_on_failure) {
3466     char msg[128];
3467     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3468         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3469     warning(msg);
3470   }
3471 }
3472 
3473 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3474   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3475   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3476   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3477 
3478   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3479   char* addr = (char*)::mmap(req_addr, bytes, prot,
3480                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3481                              -1, 0);
3482 
3483   if (addr == MAP_FAILED) {
3484     warn_on_large_pages_failure(req_addr, bytes, errno);
3485     return NULL;
3486   }
3487 
3488   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3489 
3490   return addr;
3491 }
3492 
3493 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3494   size_t large_page_size = os::large_page_size();
3495 
3496   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3497 
3498   // Allocate small pages.
3499 
3500   char* start;
3501   if (req_addr != NULL) {
3502     assert(is_ptr_aligned(req_addr, alignment), "Must be");
3503     assert(is_size_aligned(bytes, alignment), "Must be");
3504     start = os::reserve_memory(bytes, req_addr);
3505     assert(start == NULL || start == req_addr, "Must be");
3506   } else {
3507     start = os::reserve_memory_aligned(bytes, alignment);
3508   }
3509 
3510   if (start == NULL) {
3511     return NULL;
3512   }
3513 
3514   assert(is_ptr_aligned(start, alignment), "Must be");
3515 
3516   // os::reserve_memory_special will record this memory area.
3517   // Need to release it here to prevent overlapping reservations.
3518   MemTracker::record_virtual_memory_release((address)start, bytes);
3519 
3520   char* end = start + bytes;
3521 
3522   // Find the regions of the allocated chunk that can be promoted to large pages.
3523   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3524   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3525 
3526   size_t lp_bytes = lp_end - lp_start;
3527 
3528   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3529 
3530   if (lp_bytes == 0) {
3531     // The mapped region doesn't even span the start and the end of a large page.
3532     // Fall back to allocate a non-special area.
3533     ::munmap(start, end - start);
3534     return NULL;
3535   }
3536 
3537   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3538 
3539 
3540   void* result;
3541 
3542   if (start != lp_start) {
3543     result = ::mmap(start, lp_start - start, prot,
3544                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3545                     -1, 0);
3546     if (result == MAP_FAILED) {
3547       ::munmap(lp_start, end - lp_start);
3548       return NULL;
3549     }
3550   }
3551 
3552   result = ::mmap(lp_start, lp_bytes, prot,
3553                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3554                   -1, 0);
3555   if (result == MAP_FAILED) {
3556     warn_on_large_pages_failure(req_addr, bytes, errno);
3557     // If the mmap above fails, the large pages region will be unmapped and we
3558     // have regions before and after with small pages. Release these regions.
3559     //
3560     // |  mapped  |  unmapped  |  mapped  |
3561     // ^          ^            ^          ^
3562     // start      lp_start     lp_end     end
3563     //
3564     ::munmap(start, lp_start - start);
3565     ::munmap(lp_end, end - lp_end);
3566     return NULL;
3567   }
3568 
3569   if (lp_end != end) {
3570       result = ::mmap(lp_end, end - lp_end, prot,
3571                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3572                       -1, 0);
3573     if (result == MAP_FAILED) {
3574       ::munmap(start, lp_end - start);
3575       return NULL;
3576     }
3577   }
3578 
3579   return start;
3580 }
3581 
3582 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3583   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3584   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3585   assert(is_power_of_2(alignment), "Must be");
3586   assert(is_power_of_2(os::large_page_size()), "Must be");
3587   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3588 
3589   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3590     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3591   } else {
3592     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3593   }
3594 }
3595 
3596 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3597   assert(UseLargePages, "only for large pages");
3598 
3599   char* addr;
3600   if (UseSHM) {
3601     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3602   } else {
3603     assert(UseHugeTLBFS, "must be");
3604     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3605   }
3606 
3607   if (addr != NULL) {
3608     if (UseNUMAInterleaving) {
3609       numa_make_global(addr, bytes);
3610     }
3611 
3612     // The memory is committed
3613     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
3614   }
3615 
3616   return addr;
3617 }
3618 
3619 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3620   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3621   return shmdt(base) == 0;
3622 }
3623 
3624 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3625   return pd_release_memory(base, bytes);
3626 }
3627 
3628 bool os::release_memory_special(char* base, size_t bytes) {
3629   assert(UseLargePages, "only for large pages");
3630 
3631   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3632 
3633   bool res;
3634   if (UseSHM) {
3635     res = os::Linux::release_memory_special_shm(base, bytes);
3636   } else {
3637     assert(UseHugeTLBFS, "must be");
3638     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3639   }
3640 
3641   if (res) {
3642     tkr.record((address)base, bytes);
3643   } else {
3644     tkr.discard();
3645   }
3646 
3647   return res;
3648 }
3649 
3650 size_t os::large_page_size() {
3651   return _large_page_size;
3652 }
3653 
3654 // With SysV SHM the entire memory region must be allocated as shared
3655 // memory.
3656 // HugeTLBFS allows application to commit large page memory on demand.
3657 // However, when committing memory with HugeTLBFS fails, the region
3658 // that was supposed to be committed will lose the old reservation
3659 // and allow other threads to steal that memory region. Because of this
3660 // behavior we can't commit HugeTLBFS memory.
3661 bool os::can_commit_large_page_memory() {
3662   return UseTransparentHugePages;
3663 }
3664 
3665 bool os::can_execute_large_page_memory() {
3666   return UseTransparentHugePages || UseHugeTLBFS;
3667 }
3668 
3669 // Reserve memory at an arbitrary address, only if that area is
3670 // available (and not reserved for something else).
3671 
3672 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3673   const int max_tries = 10;
3674   char* base[max_tries];
3675   size_t size[max_tries];
3676   const size_t gap = 0x000000;
3677 
3678   // Assert only that the size is a multiple of the page size, since
3679   // that's all that mmap requires, and since that's all we really know
3680   // about at this low abstraction level.  If we need higher alignment,
3681   // we can either pass an alignment to this method or verify alignment
3682   // in one of the methods further up the call chain.  See bug 5044738.
3683   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3684 
3685   // Repeatedly allocate blocks until the block is allocated at the
3686   // right spot. Give up after max_tries. Note that reserve_memory() will
3687   // automatically update _highest_vm_reserved_address if the call is
3688   // successful. The variable tracks the highest memory address every reserved
3689   // by JVM. It is used to detect heap-stack collision if running with
3690   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3691   // space than needed, it could confuse the collision detecting code. To
3692   // solve the problem, save current _highest_vm_reserved_address and
3693   // calculate the correct value before return.
3694   address old_highest = _highest_vm_reserved_address;
3695 
3696   // Linux mmap allows caller to pass an address as hint; give it a try first,
3697   // if kernel honors the hint then we can return immediately.
3698   char * addr = anon_mmap(requested_addr, bytes, false);
3699   if (addr == requested_addr) {
3700      return requested_addr;
3701   }
3702 
3703   if (addr != NULL) {
3704      // mmap() is successful but it fails to reserve at the requested address
3705      anon_munmap(addr, bytes);
3706   }
3707 
3708   int i;
3709   for (i = 0; i < max_tries; ++i) {
3710     base[i] = reserve_memory(bytes);
3711 
3712     if (base[i] != NULL) {
3713       // Is this the block we wanted?
3714       if (base[i] == requested_addr) {
3715         size[i] = bytes;
3716         break;
3717       }
3718 
3719       // Does this overlap the block we wanted? Give back the overlapped
3720       // parts and try again.
3721 
3722       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3723       if (top_overlap >= 0 && top_overlap < bytes) {
3724         unmap_memory(base[i], top_overlap);
3725         base[i] += top_overlap;
3726         size[i] = bytes - top_overlap;
3727       } else {
3728         size_t bottom_overlap = base[i] + bytes - requested_addr;
3729         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3730           unmap_memory(requested_addr, bottom_overlap);
3731           size[i] = bytes - bottom_overlap;
3732         } else {
3733           size[i] = bytes;
3734         }
3735       }
3736     }
3737   }
3738 
3739   // Give back the unused reserved pieces.
3740 
3741   for (int j = 0; j < i; ++j) {
3742     if (base[j] != NULL) {
3743       unmap_memory(base[j], size[j]);
3744     }
3745   }
3746 
3747   if (i < max_tries) {
3748     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3749     return requested_addr;
3750   } else {
3751     _highest_vm_reserved_address = old_highest;
3752     return NULL;
3753   }
3754 }
3755 
3756 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3757   return ::read(fd, buf, nBytes);
3758 }
3759 
3760 //
3761 // Short sleep, direct OS call.
3762 //
3763 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3764 // sched_yield(2) will actually give up the CPU:
3765 //
3766 //   * Alone on this pariticular CPU, keeps running.
3767 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3768 //     (pre 2.6.39).
3769 //
3770 // So calling this with 0 is an alternative.
3771 //
3772 void os::naked_short_sleep(jlong ms) {
3773   struct timespec req;
3774 
3775   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3776   req.tv_sec = 0;
3777   if (ms > 0) {
3778     req.tv_nsec = (ms % 1000) * 1000000;
3779   }
3780   else {
3781     req.tv_nsec = 1;
3782   }
3783 
3784   nanosleep(&req, NULL);
3785 
3786   return;
3787 }
3788 
3789 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3790 void os::infinite_sleep() {
3791   while (true) {    // sleep forever ...
3792     ::sleep(100);   // ... 100 seconds at a time
3793   }
3794 }
3795 
3796 // Used to convert frequent JVM_Yield() to nops
3797 bool os::dont_yield() {
3798   return DontYieldALot;
3799 }
3800 
3801 void os::yield() {
3802   sched_yield();
3803 }
3804 
3805 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3806 
3807 void os::yield_all(int attempts) {
3808   // Yields to all threads, including threads with lower priorities
3809   // Threads on Linux are all with same priority. The Solaris style
3810   // os::yield_all() with nanosleep(1ms) is not necessary.
3811   sched_yield();
3812 }
3813 
3814 // Called from the tight loops to possibly influence time-sharing heuristics
3815 void os::loop_breaker(int attempts) {
3816   os::yield_all(attempts);
3817 }
3818 
3819 ////////////////////////////////////////////////////////////////////////////////
3820 // thread priority support
3821 
3822 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3823 // only supports dynamic priority, static priority must be zero. For real-time
3824 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3825 // However, for large multi-threaded applications, SCHED_RR is not only slower
3826 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3827 // of 5 runs - Sep 2005).
3828 //
3829 // The following code actually changes the niceness of kernel-thread/LWP. It
3830 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3831 // not the entire user process, and user level threads are 1:1 mapped to kernel
3832 // threads. It has always been the case, but could change in the future. For
3833 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3834 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3835 
3836 int os::java_to_os_priority[CriticalPriority + 1] = {
3837   19,              // 0 Entry should never be used
3838 
3839    4,              // 1 MinPriority
3840    3,              // 2
3841    2,              // 3
3842 
3843    1,              // 4
3844    0,              // 5 NormPriority
3845   -1,              // 6
3846 
3847   -2,              // 7
3848   -3,              // 8
3849   -4,              // 9 NearMaxPriority
3850 
3851   -5,              // 10 MaxPriority
3852 
3853   -5               // 11 CriticalPriority
3854 };
3855 
3856 static int prio_init() {
3857   if (ThreadPriorityPolicy == 1) {
3858     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3859     // if effective uid is not root. Perhaps, a more elegant way of doing
3860     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3861     if (geteuid() != 0) {
3862       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3863         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3864       }
3865       ThreadPriorityPolicy = 0;
3866     }
3867   }
3868   if (UseCriticalJavaThreadPriority) {
3869     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3870   }
3871   return 0;
3872 }
3873 
3874 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3875   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3876 
3877   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3878   return (ret == 0) ? OS_OK : OS_ERR;
3879 }
3880 
3881 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3882   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3883     *priority_ptr = java_to_os_priority[NormPriority];
3884     return OS_OK;
3885   }
3886 
3887   errno = 0;
3888   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3889   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3890 }
3891 
3892 // Hint to the underlying OS that a task switch would not be good.
3893 // Void return because it's a hint and can fail.
3894 void os::hint_no_preempt() {}
3895 
3896 ////////////////////////////////////////////////////////////////////////////////
3897 // suspend/resume support
3898 
3899 //  the low-level signal-based suspend/resume support is a remnant from the
3900 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3901 //  within hotspot. Now there is a single use-case for this:
3902 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3903 //      that runs in the watcher thread.
3904 //  The remaining code is greatly simplified from the more general suspension
3905 //  code that used to be used.
3906 //
3907 //  The protocol is quite simple:
3908 //  - suspend:
3909 //      - sends a signal to the target thread
3910 //      - polls the suspend state of the osthread using a yield loop
3911 //      - target thread signal handler (SR_handler) sets suspend state
3912 //        and blocks in sigsuspend until continued
3913 //  - resume:
3914 //      - sets target osthread state to continue
3915 //      - sends signal to end the sigsuspend loop in the SR_handler
3916 //
3917 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3918 //
3919 
3920 static void resume_clear_context(OSThread *osthread) {
3921   osthread->set_ucontext(NULL);
3922   osthread->set_siginfo(NULL);
3923 }
3924 
3925 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3926   osthread->set_ucontext(context);
3927   osthread->set_siginfo(siginfo);
3928 }
3929 
3930 //
3931 // Handler function invoked when a thread's execution is suspended or
3932 // resumed. We have to be careful that only async-safe functions are
3933 // called here (Note: most pthread functions are not async safe and
3934 // should be avoided.)
3935 //
3936 // Note: sigwait() is a more natural fit than sigsuspend() from an
3937 // interface point of view, but sigwait() prevents the signal hander
3938 // from being run. libpthread would get very confused by not having
3939 // its signal handlers run and prevents sigwait()'s use with the
3940 // mutex granting granting signal.
3941 //
3942 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3943 //
3944 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3945   // Save and restore errno to avoid confusing native code with EINTR
3946   // after sigsuspend.
3947   int old_errno = errno;
3948 
3949   Thread* thread = Thread::current();
3950   OSThread* osthread = thread->osthread();
3951   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3952 
3953   os::SuspendResume::State current = osthread->sr.state();
3954   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3955     suspend_save_context(osthread, siginfo, context);
3956 
3957     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3958     os::SuspendResume::State state = osthread->sr.suspended();
3959     if (state == os::SuspendResume::SR_SUSPENDED) {
3960       sigset_t suspend_set;  // signals for sigsuspend()
3961 
3962       // get current set of blocked signals and unblock resume signal
3963       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3964       sigdelset(&suspend_set, SR_signum);
3965 
3966       sr_semaphore.signal();
3967       // wait here until we are resumed
3968       while (1) {
3969         sigsuspend(&suspend_set);
3970 
3971         os::SuspendResume::State result = osthread->sr.running();
3972         if (result == os::SuspendResume::SR_RUNNING) {
3973           sr_semaphore.signal();
3974           break;
3975         }
3976       }
3977 
3978     } else if (state == os::SuspendResume::SR_RUNNING) {
3979       // request was cancelled, continue
3980     } else {
3981       ShouldNotReachHere();
3982     }
3983 
3984     resume_clear_context(osthread);
3985   } else if (current == os::SuspendResume::SR_RUNNING) {
3986     // request was cancelled, continue
3987   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3988     // ignore
3989   } else {
3990     // ignore
3991   }
3992 
3993   errno = old_errno;
3994 }
3995 
3996 
3997 static int SR_initialize() {
3998   struct sigaction act;
3999   char *s;
4000   /* Get signal number to use for suspend/resume */
4001   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4002     int sig = ::strtol(s, 0, 10);
4003     if (sig > 0 || sig < _NSIG) {
4004         SR_signum = sig;
4005     }
4006   }
4007 
4008   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4009         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4010 
4011   sigemptyset(&SR_sigset);
4012   sigaddset(&SR_sigset, SR_signum);
4013 
4014   /* Set up signal handler for suspend/resume */
4015   act.sa_flags = SA_RESTART|SA_SIGINFO;
4016   act.sa_handler = (void (*)(int)) SR_handler;
4017 
4018   // SR_signum is blocked by default.
4019   // 4528190 - We also need to block pthread restart signal (32 on all
4020   // supported Linux platforms). Note that LinuxThreads need to block
4021   // this signal for all threads to work properly. So we don't have
4022   // to use hard-coded signal number when setting up the mask.
4023   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4024 
4025   if (sigaction(SR_signum, &act, 0) == -1) {
4026     return -1;
4027   }
4028 
4029   // Save signal flag
4030   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4031   return 0;
4032 }
4033 
4034 static int sr_notify(OSThread* osthread) {
4035   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4036   assert_status(status == 0, status, "pthread_kill");
4037   return status;
4038 }
4039 
4040 // "Randomly" selected value for how long we want to spin
4041 // before bailing out on suspending a thread, also how often
4042 // we send a signal to a thread we want to resume
4043 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4044 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4045 
4046 // returns true on success and false on error - really an error is fatal
4047 // but this seems the normal response to library errors
4048 static bool do_suspend(OSThread* osthread) {
4049   assert(osthread->sr.is_running(), "thread should be running");
4050   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4051 
4052   // mark as suspended and send signal
4053   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4054     // failed to switch, state wasn't running?
4055     ShouldNotReachHere();
4056     return false;
4057   }
4058 
4059   if (sr_notify(osthread) != 0) {
4060     ShouldNotReachHere();
4061   }
4062 
4063   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4064   while (true) {
4065     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4066       break;
4067     } else {
4068       // timeout
4069       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4070       if (cancelled == os::SuspendResume::SR_RUNNING) {
4071         return false;
4072       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4073         // make sure that we consume the signal on the semaphore as well
4074         sr_semaphore.wait();
4075         break;
4076       } else {
4077         ShouldNotReachHere();
4078         return false;
4079       }
4080     }
4081   }
4082 
4083   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4084   return true;
4085 }
4086 
4087 static void do_resume(OSThread* osthread) {
4088   assert(osthread->sr.is_suspended(), "thread should be suspended");
4089   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4090 
4091   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4092     // failed to switch to WAKEUP_REQUEST
4093     ShouldNotReachHere();
4094     return;
4095   }
4096 
4097   while (true) {
4098     if (sr_notify(osthread) == 0) {
4099       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4100         if (osthread->sr.is_running()) {
4101           return;
4102         }
4103       }
4104     } else {
4105       ShouldNotReachHere();
4106     }
4107   }
4108 
4109   guarantee(osthread->sr.is_running(), "Must be running!");
4110 }
4111 
4112 ///////////////////////////////////////////////////////////////////////////////////
4113 // signal handling (except suspend/resume)
4114 
4115 // This routine may be used by user applications as a "hook" to catch signals.
4116 // The user-defined signal handler must pass unrecognized signals to this
4117 // routine, and if it returns true (non-zero), then the signal handler must
4118 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4119 // routine will never retun false (zero), but instead will execute a VM panic
4120 // routine kill the process.
4121 //
4122 // If this routine returns false, it is OK to call it again.  This allows
4123 // the user-defined signal handler to perform checks either before or after
4124 // the VM performs its own checks.  Naturally, the user code would be making
4125 // a serious error if it tried to handle an exception (such as a null check
4126 // or breakpoint) that the VM was generating for its own correct operation.
4127 //
4128 // This routine may recognize any of the following kinds of signals:
4129 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4130 // It should be consulted by handlers for any of those signals.
4131 //
4132 // The caller of this routine must pass in the three arguments supplied
4133 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4134 // field of the structure passed to sigaction().  This routine assumes that
4135 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4136 //
4137 // Note that the VM will print warnings if it detects conflicting signal
4138 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4139 //
4140 extern "C" JNIEXPORT int
4141 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4142                         void* ucontext, int abort_if_unrecognized);
4143 
4144 void signalHandler(int sig, siginfo_t* info, void* uc) {
4145   assert(info != NULL && uc != NULL, "it must be old kernel");
4146   int orig_errno = errno;  // Preserve errno value over signal handler.
4147   JVM_handle_linux_signal(sig, info, uc, true);
4148   errno = orig_errno;
4149 }
4150 
4151 
4152 // This boolean allows users to forward their own non-matching signals
4153 // to JVM_handle_linux_signal, harmlessly.
4154 bool os::Linux::signal_handlers_are_installed = false;
4155 
4156 // For signal-chaining
4157 struct sigaction os::Linux::sigact[MAXSIGNUM];
4158 unsigned int os::Linux::sigs = 0;
4159 bool os::Linux::libjsig_is_loaded = false;
4160 typedef struct sigaction *(*get_signal_t)(int);
4161 get_signal_t os::Linux::get_signal_action = NULL;
4162 
4163 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4164   struct sigaction *actp = NULL;
4165 
4166   if (libjsig_is_loaded) {
4167     // Retrieve the old signal handler from libjsig
4168     actp = (*get_signal_action)(sig);
4169   }
4170   if (actp == NULL) {
4171     // Retrieve the preinstalled signal handler from jvm
4172     actp = get_preinstalled_handler(sig);
4173   }
4174 
4175   return actp;
4176 }
4177 
4178 static bool call_chained_handler(struct sigaction *actp, int sig,
4179                                  siginfo_t *siginfo, void *context) {
4180   // Call the old signal handler
4181   if (actp->sa_handler == SIG_DFL) {
4182     // It's more reasonable to let jvm treat it as an unexpected exception
4183     // instead of taking the default action.
4184     return false;
4185   } else if (actp->sa_handler != SIG_IGN) {
4186     if ((actp->sa_flags & SA_NODEFER) == 0) {
4187       // automaticlly block the signal
4188       sigaddset(&(actp->sa_mask), sig);
4189     }
4190 
4191     sa_handler_t hand;
4192     sa_sigaction_t sa;
4193     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4194     // retrieve the chained handler
4195     if (siginfo_flag_set) {
4196       sa = actp->sa_sigaction;
4197     } else {
4198       hand = actp->sa_handler;
4199     }
4200 
4201     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4202       actp->sa_handler = SIG_DFL;
4203     }
4204 
4205     // try to honor the signal mask
4206     sigset_t oset;
4207     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4208 
4209     // call into the chained handler
4210     if (siginfo_flag_set) {
4211       (*sa)(sig, siginfo, context);
4212     } else {
4213       (*hand)(sig);
4214     }
4215 
4216     // restore the signal mask
4217     pthread_sigmask(SIG_SETMASK, &oset, 0);
4218   }
4219   // Tell jvm's signal handler the signal is taken care of.
4220   return true;
4221 }
4222 
4223 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4224   bool chained = false;
4225   // signal-chaining
4226   if (UseSignalChaining) {
4227     struct sigaction *actp = get_chained_signal_action(sig);
4228     if (actp != NULL) {
4229       chained = call_chained_handler(actp, sig, siginfo, context);
4230     }
4231   }
4232   return chained;
4233 }
4234 
4235 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4236   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4237     return &sigact[sig];
4238   }
4239   return NULL;
4240 }
4241 
4242 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4243   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4244   sigact[sig] = oldAct;
4245   sigs |= (unsigned int)1 << sig;
4246 }
4247 
4248 // for diagnostic
4249 int os::Linux::sigflags[MAXSIGNUM];
4250 
4251 int os::Linux::get_our_sigflags(int sig) {
4252   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4253   return sigflags[sig];
4254 }
4255 
4256 void os::Linux::set_our_sigflags(int sig, int flags) {
4257   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4258   sigflags[sig] = flags;
4259 }
4260 
4261 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4262   // Check for overwrite.
4263   struct sigaction oldAct;
4264   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4265 
4266   void* oldhand = oldAct.sa_sigaction
4267                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4268                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4269   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4270       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4271       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4272     if (AllowUserSignalHandlers || !set_installed) {
4273       // Do not overwrite; user takes responsibility to forward to us.
4274       return;
4275     } else if (UseSignalChaining) {
4276       // save the old handler in jvm
4277       save_preinstalled_handler(sig, oldAct);
4278       // libjsig also interposes the sigaction() call below and saves the
4279       // old sigaction on it own.
4280     } else {
4281       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4282                     "%#lx for signal %d.", (long)oldhand, sig));
4283     }
4284   }
4285 
4286   struct sigaction sigAct;
4287   sigfillset(&(sigAct.sa_mask));
4288   sigAct.sa_handler = SIG_DFL;
4289   if (!set_installed) {
4290     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4291   } else {
4292     sigAct.sa_sigaction = signalHandler;
4293     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4294   }
4295   // Save flags, which are set by ours
4296   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4297   sigflags[sig] = sigAct.sa_flags;
4298 
4299   int ret = sigaction(sig, &sigAct, &oldAct);
4300   assert(ret == 0, "check");
4301 
4302   void* oldhand2  = oldAct.sa_sigaction
4303                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4304                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4305   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4306 }
4307 
4308 // install signal handlers for signals that HotSpot needs to
4309 // handle in order to support Java-level exception handling.
4310 
4311 void os::Linux::install_signal_handlers() {
4312   if (!signal_handlers_are_installed) {
4313     signal_handlers_are_installed = true;
4314 
4315     // signal-chaining
4316     typedef void (*signal_setting_t)();
4317     signal_setting_t begin_signal_setting = NULL;
4318     signal_setting_t end_signal_setting = NULL;
4319     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4320                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4321     if (begin_signal_setting != NULL) {
4322       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4323                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4324       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4325                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4326       libjsig_is_loaded = true;
4327       assert(UseSignalChaining, "should enable signal-chaining");
4328     }
4329     if (libjsig_is_loaded) {
4330       // Tell libjsig jvm is setting signal handlers
4331       (*begin_signal_setting)();
4332     }
4333 
4334     set_signal_handler(SIGSEGV, true);
4335     set_signal_handler(SIGPIPE, true);
4336     set_signal_handler(SIGBUS, true);
4337     set_signal_handler(SIGILL, true);
4338     set_signal_handler(SIGFPE, true);
4339 #if defined(PPC64)
4340     set_signal_handler(SIGTRAP, true);
4341 #endif
4342     set_signal_handler(SIGXFSZ, true);
4343 
4344     if (libjsig_is_loaded) {
4345       // Tell libjsig jvm finishes setting signal handlers
4346       (*end_signal_setting)();
4347     }
4348 
4349     // We don't activate signal checker if libjsig is in place, we trust ourselves
4350     // and if UserSignalHandler is installed all bets are off.
4351     // Log that signal checking is off only if -verbose:jni is specified.
4352     if (CheckJNICalls) {
4353       if (libjsig_is_loaded) {
4354         if (PrintJNIResolving) {
4355           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4356         }
4357         check_signals = false;
4358       }
4359       if (AllowUserSignalHandlers) {
4360         if (PrintJNIResolving) {
4361           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4362         }
4363         check_signals = false;
4364       }
4365     }
4366   }
4367 }
4368 
4369 // This is the fastest way to get thread cpu time on Linux.
4370 // Returns cpu time (user+sys) for any thread, not only for current.
4371 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4372 // It might work on 2.6.10+ with a special kernel/glibc patch.
4373 // For reference, please, see IEEE Std 1003.1-2004:
4374 //   http://www.unix.org/single_unix_specification
4375 
4376 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4377   struct timespec tp;
4378   int rc = os::Linux::clock_gettime(clockid, &tp);
4379   assert(rc == 0, "clock_gettime is expected to return 0 code");
4380 
4381   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4382 }
4383 
4384 /////
4385 // glibc on Linux platform uses non-documented flag
4386 // to indicate, that some special sort of signal
4387 // trampoline is used.
4388 // We will never set this flag, and we should
4389 // ignore this flag in our diagnostic
4390 #ifdef SIGNIFICANT_SIGNAL_MASK
4391 #undef SIGNIFICANT_SIGNAL_MASK
4392 #endif
4393 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4394 
4395 static const char* get_signal_handler_name(address handler,
4396                                            char* buf, int buflen) {
4397   int offset;
4398   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4399   if (found) {
4400     // skip directory names
4401     const char *p1, *p2;
4402     p1 = buf;
4403     size_t len = strlen(os::file_separator());
4404     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4405     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4406   } else {
4407     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4408   }
4409   return buf;
4410 }
4411 
4412 static void print_signal_handler(outputStream* st, int sig,
4413                                  char* buf, size_t buflen) {
4414   struct sigaction sa;
4415 
4416   sigaction(sig, NULL, &sa);
4417 
4418   // See comment for SIGNIFICANT_SIGNAL_MASK define
4419   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4420 
4421   st->print("%s: ", os::exception_name(sig, buf, buflen));
4422 
4423   address handler = (sa.sa_flags & SA_SIGINFO)
4424     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4425     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4426 
4427   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4428     st->print("SIG_DFL");
4429   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4430     st->print("SIG_IGN");
4431   } else {
4432     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4433   }
4434 
4435   st->print(", sa_mask[0]=");
4436   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4437 
4438   address rh = VMError::get_resetted_sighandler(sig);
4439   // May be, handler was resetted by VMError?
4440   if(rh != NULL) {
4441     handler = rh;
4442     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4443   }
4444 
4445   st->print(", sa_flags=");
4446   os::Posix::print_sa_flags(st, sa.sa_flags);
4447 
4448   // Check: is it our handler?
4449   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4450      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4451     // It is our signal handler
4452     // check for flags, reset system-used one!
4453     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4454       st->print(
4455                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4456                 os::Linux::get_our_sigflags(sig));
4457     }
4458   }
4459   st->cr();
4460 }
4461 
4462 
4463 #define DO_SIGNAL_CHECK(sig) \
4464   if (!sigismember(&check_signal_done, sig) && (isatty(fileno(stdin)) || sig != SIGINT)) \
4465     os::Linux::check_signal_handler(sig)
4466 
4467 // This method is a periodic task to check for misbehaving JNI applications
4468 // under CheckJNI, we can add any periodic checks here
4469 
4470 void os::run_periodic_checks() {
4471 
4472   if (check_signals == false) return;
4473 
4474   // SEGV and BUS if overridden could potentially prevent
4475   // generation of hs*.log in the event of a crash, debugging
4476   // such a case can be very challenging, so we absolutely
4477   // check the following for a good measure:
4478   DO_SIGNAL_CHECK(SIGSEGV);
4479   DO_SIGNAL_CHECK(SIGILL);
4480   DO_SIGNAL_CHECK(SIGFPE);
4481   DO_SIGNAL_CHECK(SIGBUS);
4482   DO_SIGNAL_CHECK(SIGPIPE);
4483   DO_SIGNAL_CHECK(SIGXFSZ);
4484 #if defined(PPC64)
4485   DO_SIGNAL_CHECK(SIGTRAP);
4486 #endif
4487 
4488   // ReduceSignalUsage allows the user to override these handlers
4489   // see comments at the very top and jvm_solaris.h
4490   if (!ReduceSignalUsage) {
4491     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4492     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4493     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4494     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4495   }
4496 
4497   DO_SIGNAL_CHECK(SR_signum);
4498   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4499 }
4500 
4501 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4502 
4503 static os_sigaction_t os_sigaction = NULL;
4504 
4505 void os::Linux::check_signal_handler(int sig) {
4506   char buf[O_BUFLEN];
4507   address jvmHandler = NULL;
4508 
4509 
4510   struct sigaction act;
4511   if (os_sigaction == NULL) {
4512     // only trust the default sigaction, in case it has been interposed
4513     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4514     if (os_sigaction == NULL) return;
4515   }
4516 
4517   os_sigaction(sig, (struct sigaction*)NULL, &act);
4518 
4519 
4520   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4521 
4522   address thisHandler = (act.sa_flags & SA_SIGINFO)
4523     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4524     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4525 
4526 
4527   switch(sig) {
4528   case SIGSEGV:
4529   case SIGBUS:
4530   case SIGFPE:
4531   case SIGPIPE:
4532   case SIGILL:
4533   case SIGXFSZ:
4534     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4535     break;
4536 
4537   case SHUTDOWN1_SIGNAL:
4538   case SHUTDOWN2_SIGNAL:
4539   case SHUTDOWN3_SIGNAL:
4540   case BREAK_SIGNAL:
4541     jvmHandler = (address)user_handler();
4542     break;
4543 
4544   case INTERRUPT_SIGNAL:
4545     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4546     break;
4547 
4548   default:
4549     if (sig == SR_signum) {
4550       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4551     } else {
4552       return;
4553     }
4554     break;
4555   }
4556 
4557   if (thisHandler != jvmHandler) {
4558     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4559     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4560     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4561     // No need to check this sig any longer
4562     sigaddset(&check_signal_done, sig);
4563   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4564     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4565     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4566     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4567     // No need to check this sig any longer
4568     sigaddset(&check_signal_done, sig);
4569   }
4570 
4571   // Dump all the signal
4572   if (sigismember(&check_signal_done, sig)) {
4573     print_signal_handlers(tty, buf, O_BUFLEN);
4574   }
4575 }
4576 
4577 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4578 
4579 extern bool signal_name(int signo, char* buf, size_t len);
4580 
4581 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4582   if (0 < exception_code && exception_code <= SIGRTMAX) {
4583     // signal
4584     if (!signal_name(exception_code, buf, size)) {
4585       jio_snprintf(buf, size, "SIG%d", exception_code);
4586     }
4587     return buf;
4588   } else {
4589     return NULL;
4590   }
4591 }
4592 
4593 // this is called _before_ the most of global arguments have been parsed
4594 void os::init(void) {
4595   char dummy;   /* used to get a guess on initial stack address */
4596 //  first_hrtime = gethrtime();
4597 
4598   // With LinuxThreads the JavaMain thread pid (primordial thread)
4599   // is different than the pid of the java launcher thread.
4600   // So, on Linux, the launcher thread pid is passed to the VM
4601   // via the sun.java.launcher.pid property.
4602   // Use this property instead of getpid() if it was correctly passed.
4603   // See bug 6351349.
4604   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4605 
4606   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4607 
4608   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4609 
4610   init_random(1234567);
4611 
4612   ThreadCritical::initialize();
4613 
4614   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4615   if (Linux::page_size() == -1) {
4616     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4617                   strerror(errno)));
4618   }
4619   init_page_sizes((size_t) Linux::page_size());
4620 
4621   Linux::initialize_system_info();
4622 
4623   // main_thread points to the aboriginal thread
4624   Linux::_main_thread = pthread_self();
4625 
4626   Linux::clock_init();
4627   initial_time_count = javaTimeNanos();
4628 
4629   // pthread_condattr initialization for monotonic clock
4630   int status;
4631   pthread_condattr_t* _condattr = os::Linux::condAttr();
4632   if ((status = pthread_condattr_init(_condattr)) != 0) {
4633     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4634   }
4635   // Only set the clock if CLOCK_MONOTONIC is available
4636   if (os::supports_monotonic_clock()) {
4637     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4638       if (status == EINVAL) {
4639         warning("Unable to use monotonic clock with relative timed-waits" \
4640                 " - changes to the time-of-day clock may have adverse affects");
4641       } else {
4642         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4643       }
4644     }
4645   }
4646   // else it defaults to CLOCK_REALTIME
4647 
4648   pthread_mutex_init(&dl_mutex, NULL);
4649 
4650   // If the pagesize of the VM is greater than 8K determine the appropriate
4651   // number of initial guard pages.  The user can change this with the
4652   // command line arguments, if needed.
4653   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4654     StackYellowPages = 1;
4655     StackRedPages = 1;
4656     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4657   }
4658 }
4659 
4660 // To install functions for atexit system call
4661 extern "C" {
4662   static void perfMemory_exit_helper() {
4663     perfMemory_exit();
4664   }
4665 }
4666 
4667 // this is called _after_ the global arguments have been parsed
4668 jint os::init_2(void)
4669 {
4670   Linux::fast_thread_clock_init();
4671 
4672   // Allocate a single page and mark it as readable for safepoint polling
4673   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4674   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4675 
4676   os::set_polling_page( polling_page );
4677 
4678 #ifndef PRODUCT
4679   if(Verbose && PrintMiscellaneous)
4680     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4681 #endif
4682 
4683   if (!UseMembar) {
4684     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4685     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4686     os::set_memory_serialize_page( mem_serialize_page );
4687 
4688 #ifndef PRODUCT
4689     if(Verbose && PrintMiscellaneous)
4690       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4691 #endif
4692   }
4693 
4694   // initialize suspend/resume support - must do this before signal_sets_init()
4695   if (SR_initialize() != 0) {
4696     perror("SR_initialize failed");
4697     return JNI_ERR;
4698   }
4699 
4700   Linux::signal_sets_init();
4701   Linux::install_signal_handlers();
4702 
4703   // Check minimum allowable stack size for thread creation and to initialize
4704   // the java system classes, including StackOverflowError - depends on page
4705   // size.  Add a page for compiler2 recursion in main thread.
4706   // Add in 2*BytesPerWord times page size to account for VM stack during
4707   // class initialization depending on 32 or 64 bit VM.
4708   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4709             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4710                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4711 
4712   size_t threadStackSizeInBytes = ThreadStackSize * K;
4713   if (threadStackSizeInBytes != 0 &&
4714       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4715         tty->print_cr("\nThe stack size specified is too small, "
4716                       "Specify at least %dk",
4717                       os::Linux::min_stack_allowed/ K);
4718         return JNI_ERR;
4719   }
4720 
4721   // Make the stack size a multiple of the page size so that
4722   // the yellow/red zones can be guarded.
4723   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4724         vm_page_size()));
4725 
4726   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4727 
4728 #if defined(IA32)
4729   workaround_expand_exec_shield_cs_limit();
4730 #endif
4731 
4732   Linux::libpthread_init();
4733   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4734      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4735           Linux::glibc_version(), Linux::libpthread_version(),
4736           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4737   }
4738 
4739   if (UseNUMA) {
4740     if (!Linux::libnuma_init()) {
4741       UseNUMA = false;
4742     } else {
4743       if ((Linux::numa_max_node() < 1)) {
4744         // There's only one node(they start from 0), disable NUMA.
4745         UseNUMA = false;
4746       }
4747     }
4748     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4749     // we can make the adaptive lgrp chunk resizing work. If the user specified
4750     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4751     // disable adaptive resizing.
4752     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4753       if (FLAG_IS_DEFAULT(UseNUMA)) {
4754         UseNUMA = false;
4755       } else {
4756         if (FLAG_IS_DEFAULT(UseLargePages) &&
4757             FLAG_IS_DEFAULT(UseSHM) &&
4758             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4759           UseLargePages = false;
4760         } else {
4761           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4762           UseAdaptiveSizePolicy = false;
4763           UseAdaptiveNUMAChunkSizing = false;
4764         }
4765       }
4766     }
4767     if (!UseNUMA && ForceNUMA) {
4768       UseNUMA = true;
4769     }
4770   }
4771 
4772   if (MaxFDLimit) {
4773     // set the number of file descriptors to max. print out error
4774     // if getrlimit/setrlimit fails but continue regardless.
4775     struct rlimit nbr_files;
4776     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4777     if (status != 0) {
4778       if (PrintMiscellaneous && (Verbose || WizardMode))
4779         perror("os::init_2 getrlimit failed");
4780     } else {
4781       nbr_files.rlim_cur = nbr_files.rlim_max;
4782       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4783       if (status != 0) {
4784         if (PrintMiscellaneous && (Verbose || WizardMode))
4785           perror("os::init_2 setrlimit failed");
4786       }
4787     }
4788   }
4789 
4790   // Initialize lock used to serialize thread creation (see os::create_thread)
4791   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4792 
4793   // at-exit methods are called in the reverse order of their registration.
4794   // atexit functions are called on return from main or as a result of a
4795   // call to exit(3C). There can be only 32 of these functions registered
4796   // and atexit() does not set errno.
4797 
4798   if (PerfAllowAtExitRegistration) {
4799     // only register atexit functions if PerfAllowAtExitRegistration is set.
4800     // atexit functions can be delayed until process exit time, which
4801     // can be problematic for embedded VM situations. Embedded VMs should
4802     // call DestroyJavaVM() to assure that VM resources are released.
4803 
4804     // note: perfMemory_exit_helper atexit function may be removed in
4805     // the future if the appropriate cleanup code can be added to the
4806     // VM_Exit VMOperation's doit method.
4807     if (atexit(perfMemory_exit_helper) != 0) {
4808       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4809     }
4810   }
4811 
4812   // initialize thread priority policy
4813   prio_init();
4814 
4815   return JNI_OK;
4816 }
4817 
4818 // this is called at the end of vm_initialization
4819 void os::init_3(void) {
4820 #ifdef JAVASE_EMBEDDED
4821   // Start the MemNotifyThread
4822   if (LowMemoryProtection) {
4823     MemNotifyThread::start();
4824   }
4825   return;
4826 #endif
4827 }
4828 
4829 // Mark the polling page as unreadable
4830 void os::make_polling_page_unreadable(void) {
4831   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4832     fatal("Could not disable polling page");
4833 };
4834 
4835 // Mark the polling page as readable
4836 void os::make_polling_page_readable(void) {
4837   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4838     fatal("Could not enable polling page");
4839   }
4840 };
4841 
4842 int os::active_processor_count() {
4843   // Linux doesn't yet have a (official) notion of processor sets,
4844   // so just return the number of online processors.
4845   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4846   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4847   return online_cpus;
4848 }
4849 
4850 void os::set_native_thread_name(const char *name) {
4851   // Not yet implemented.
4852   return;
4853 }
4854 
4855 bool os::distribute_processes(uint length, uint* distribution) {
4856   // Not yet implemented.
4857   return false;
4858 }
4859 
4860 bool os::bind_to_processor(uint processor_id) {
4861   // Not yet implemented.
4862   return false;
4863 }
4864 
4865 ///
4866 
4867 void os::SuspendedThreadTask::internal_do_task() {
4868   if (do_suspend(_thread->osthread())) {
4869     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4870     do_task(context);
4871     do_resume(_thread->osthread());
4872   }
4873 }
4874 
4875 class PcFetcher : public os::SuspendedThreadTask {
4876 public:
4877   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4878   ExtendedPC result();
4879 protected:
4880   void do_task(const os::SuspendedThreadTaskContext& context);
4881 private:
4882   ExtendedPC _epc;
4883 };
4884 
4885 ExtendedPC PcFetcher::result() {
4886   guarantee(is_done(), "task is not done yet.");
4887   return _epc;
4888 }
4889 
4890 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4891   Thread* thread = context.thread();
4892   OSThread* osthread = thread->osthread();
4893   if (osthread->ucontext() != NULL) {
4894     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4895   } else {
4896     // NULL context is unexpected, double-check this is the VMThread
4897     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4898   }
4899 }
4900 
4901 // Suspends the target using the signal mechanism and then grabs the PC before
4902 // resuming the target. Used by the flat-profiler only
4903 ExtendedPC os::get_thread_pc(Thread* thread) {
4904   // Make sure that it is called by the watcher for the VMThread
4905   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4906   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4907 
4908   PcFetcher fetcher(thread);
4909   fetcher.run();
4910   return fetcher.result();
4911 }
4912 
4913 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4914 {
4915    if (is_NPTL()) {
4916       return pthread_cond_timedwait(_cond, _mutex, _abstime);
4917    } else {
4918       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4919       // word back to default 64bit precision if condvar is signaled. Java
4920       // wants 53bit precision.  Save and restore current value.
4921       int fpu = get_fpu_control_word();
4922       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4923       set_fpu_control_word(fpu);
4924       return status;
4925    }
4926 }
4927 
4928 ////////////////////////////////////////////////////////////////////////////////
4929 // debug support
4930 
4931 bool os::find(address addr, outputStream* st) {
4932   Dl_info dlinfo;
4933   memset(&dlinfo, 0, sizeof(dlinfo));
4934   if (dladdr(addr, &dlinfo) != 0) {
4935     st->print(PTR_FORMAT ": ", addr);
4936     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4937       st->print("%s+%#x", dlinfo.dli_sname,
4938                  addr - (intptr_t)dlinfo.dli_saddr);
4939     } else if (dlinfo.dli_fbase != NULL) {
4940       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4941     } else {
4942       st->print("<absolute address>");
4943     }
4944     if (dlinfo.dli_fname != NULL) {
4945       st->print(" in %s", dlinfo.dli_fname);
4946     }
4947     if (dlinfo.dli_fbase != NULL) {
4948       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4949     }
4950     st->cr();
4951 
4952     if (Verbose) {
4953       // decode some bytes around the PC
4954       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4955       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4956       address       lowest = (address) dlinfo.dli_sname;
4957       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4958       if (begin < lowest)  begin = lowest;
4959       Dl_info dlinfo2;
4960       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4961           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4962         end = (address) dlinfo2.dli_saddr;
4963       Disassembler::decode(begin, end, st);
4964     }
4965     return true;
4966   }
4967   return false;
4968 }
4969 
4970 ////////////////////////////////////////////////////////////////////////////////
4971 // misc
4972 
4973 // This does not do anything on Linux. This is basically a hook for being
4974 // able to use structured exception handling (thread-local exception filters)
4975 // on, e.g., Win32.
4976 void
4977 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4978                          JavaCallArguments* args, Thread* thread) {
4979   f(value, method, args, thread);
4980 }
4981 
4982 void os::print_statistics() {
4983 }
4984 
4985 int os::message_box(const char* title, const char* message) {
4986   int i;
4987   fdStream err(defaultStream::error_fd());
4988   for (i = 0; i < 78; i++) err.print_raw("=");
4989   err.cr();
4990   err.print_raw_cr(title);
4991   for (i = 0; i < 78; i++) err.print_raw("-");
4992   err.cr();
4993   err.print_raw_cr(message);
4994   for (i = 0; i < 78; i++) err.print_raw("=");
4995   err.cr();
4996 
4997   char buf[16];
4998   // Prevent process from exiting upon "read error" without consuming all CPU
4999   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5000 
5001   return buf[0] == 'y' || buf[0] == 'Y';
5002 }
5003 
5004 int os::stat(const char *path, struct stat *sbuf) {
5005   char pathbuf[MAX_PATH];
5006   if (strlen(path) > MAX_PATH - 1) {
5007     errno = ENAMETOOLONG;
5008     return -1;
5009   }
5010   os::native_path(strcpy(pathbuf, path));
5011   return ::stat(pathbuf, sbuf);
5012 }
5013 
5014 bool os::check_heap(bool force) {
5015   return true;
5016 }
5017 
5018 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5019   return ::vsnprintf(buf, count, format, args);
5020 }
5021 
5022 // Is a (classpath) directory empty?
5023 bool os::dir_is_empty(const char* path) {
5024   DIR *dir = NULL;
5025   struct dirent *ptr;
5026 
5027   dir = opendir(path);
5028   if (dir == NULL) return true;
5029 
5030   /* Scan the directory */
5031   bool result = true;
5032   char buf[sizeof(struct dirent) + MAX_PATH];
5033   while (result && (ptr = ::readdir(dir)) != NULL) {
5034     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5035       result = false;
5036     }
5037   }
5038   closedir(dir);
5039   return result;
5040 }
5041 
5042 // This code originates from JDK's sysOpen and open64_w
5043 // from src/solaris/hpi/src/system_md.c
5044 
5045 #ifndef O_DELETE
5046 #define O_DELETE 0x10000
5047 #endif
5048 
5049 // Open a file. Unlink the file immediately after open returns
5050 // if the specified oflag has the O_DELETE flag set.
5051 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5052 
5053 int os::open(const char *path, int oflag, int mode) {
5054 
5055   if (strlen(path) > MAX_PATH - 1) {
5056     errno = ENAMETOOLONG;
5057     return -1;
5058   }
5059   int fd;
5060   int o_delete = (oflag & O_DELETE);
5061   oflag = oflag & ~O_DELETE;
5062 
5063   fd = ::open64(path, oflag, mode);
5064   if (fd == -1) return -1;
5065 
5066   //If the open succeeded, the file might still be a directory
5067   {
5068     struct stat64 buf64;
5069     int ret = ::fstat64(fd, &buf64);
5070     int st_mode = buf64.st_mode;
5071 
5072     if (ret != -1) {
5073       if ((st_mode & S_IFMT) == S_IFDIR) {
5074         errno = EISDIR;
5075         ::close(fd);
5076         return -1;
5077       }
5078     } else {
5079       ::close(fd);
5080       return -1;
5081     }
5082   }
5083 
5084     /*
5085      * All file descriptors that are opened in the JVM and not
5086      * specifically destined for a subprocess should have the
5087      * close-on-exec flag set.  If we don't set it, then careless 3rd
5088      * party native code might fork and exec without closing all
5089      * appropriate file descriptors (e.g. as we do in closeDescriptors in
5090      * UNIXProcess.c), and this in turn might:
5091      *
5092      * - cause end-of-file to fail to be detected on some file
5093      *   descriptors, resulting in mysterious hangs, or
5094      *
5095      * - might cause an fopen in the subprocess to fail on a system
5096      *   suffering from bug 1085341.
5097      *
5098      * (Yes, the default setting of the close-on-exec flag is a Unix
5099      * design flaw)
5100      *
5101      * See:
5102      * 1085341: 32-bit stdio routines should support file descriptors >255
5103      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5104      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5105      */
5106 #ifdef FD_CLOEXEC
5107     {
5108         int flags = ::fcntl(fd, F_GETFD);
5109         if (flags != -1)
5110             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5111     }
5112 #endif
5113 
5114   if (o_delete != 0) {
5115     ::unlink(path);
5116   }
5117   return fd;
5118 }
5119 
5120 
5121 // create binary file, rewriting existing file if required
5122 int os::create_binary_file(const char* path, bool rewrite_existing) {
5123   int oflags = O_WRONLY | O_CREAT;
5124   if (!rewrite_existing) {
5125     oflags |= O_EXCL;
5126   }
5127   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5128 }
5129 
5130 // return current position of file pointer
5131 jlong os::current_file_offset(int fd) {
5132   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5133 }
5134 
5135 // move file pointer to the specified offset
5136 jlong os::seek_to_file_offset(int fd, jlong offset) {
5137   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5138 }
5139 
5140 // This code originates from JDK's sysAvailable
5141 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5142 
5143 int os::available(int fd, jlong *bytes) {
5144   jlong cur, end;
5145   int mode;
5146   struct stat64 buf64;
5147 
5148   if (::fstat64(fd, &buf64) >= 0) {
5149     mode = buf64.st_mode;
5150     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5151       /*
5152       * XXX: is the following call interruptible? If so, this might
5153       * need to go through the INTERRUPT_IO() wrapper as for other
5154       * blocking, interruptible calls in this file.
5155       */
5156       int n;
5157       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5158         *bytes = n;
5159         return 1;
5160       }
5161     }
5162   }
5163   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5164     return 0;
5165   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5166     return 0;
5167   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5168     return 0;
5169   }
5170   *bytes = end - cur;
5171   return 1;
5172 }
5173 
5174 int os::socket_available(int fd, jint *pbytes) {
5175   // Linux doc says EINTR not returned, unlike Solaris
5176   int ret = ::ioctl(fd, FIONREAD, pbytes);
5177 
5178   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5179   // is expected to return 0 on failure and 1 on success to the jdk.
5180   return (ret < 0) ? 0 : 1;
5181 }
5182 
5183 // Map a block of memory.
5184 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5185                      char *addr, size_t bytes, bool read_only,
5186                      bool allow_exec) {
5187   int prot;
5188   int flags = MAP_PRIVATE;
5189 
5190   if (read_only) {
5191     prot = PROT_READ;
5192   } else {
5193     prot = PROT_READ | PROT_WRITE;
5194   }
5195 
5196   if (allow_exec) {
5197     prot |= PROT_EXEC;
5198   }
5199 
5200   if (addr != NULL) {
5201     flags |= MAP_FIXED;
5202   }
5203 
5204   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5205                                      fd, file_offset);
5206   if (mapped_address == MAP_FAILED) {
5207     return NULL;
5208   }
5209   return mapped_address;
5210 }
5211 
5212 
5213 // Remap a block of memory.
5214 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5215                        char *addr, size_t bytes, bool read_only,
5216                        bool allow_exec) {
5217   // same as map_memory() on this OS
5218   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5219                         allow_exec);
5220 }
5221 
5222 
5223 // Unmap a block of memory.
5224 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5225   return munmap(addr, bytes) == 0;
5226 }
5227 
5228 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5229 
5230 static clockid_t thread_cpu_clockid(Thread* thread) {
5231   pthread_t tid = thread->osthread()->pthread_id();
5232   clockid_t clockid;
5233 
5234   // Get thread clockid
5235   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5236   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5237   return clockid;
5238 }
5239 
5240 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5241 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5242 // of a thread.
5243 //
5244 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5245 // the fast estimate available on the platform.
5246 
5247 jlong os::current_thread_cpu_time() {
5248   if (os::Linux::supports_fast_thread_cpu_time()) {
5249     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5250   } else {
5251     // return user + sys since the cost is the same
5252     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5253   }
5254 }
5255 
5256 jlong os::thread_cpu_time(Thread* thread) {
5257   // consistent with what current_thread_cpu_time() returns
5258   if (os::Linux::supports_fast_thread_cpu_time()) {
5259     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5260   } else {
5261     return slow_thread_cpu_time(thread, true /* user + sys */);
5262   }
5263 }
5264 
5265 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5266   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5267     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5268   } else {
5269     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5270   }
5271 }
5272 
5273 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5274   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5275     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5276   } else {
5277     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5278   }
5279 }
5280 
5281 //
5282 //  -1 on error.
5283 //
5284 
5285 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5286   static bool proc_task_unchecked = true;
5287   pid_t  tid = thread->osthread()->thread_id();
5288   char *s;
5289   char stat[2048];
5290   int statlen;
5291   char proc_name[64];
5292   int count;
5293   long sys_time, user_time;
5294   char cdummy;
5295   int idummy;
5296   long ldummy;
5297   FILE *fp;
5298 
5299   snprintf(proc_name, 64, "/proc/%d/stat", tid);
5300 
5301   // The /proc/<tid>/stat aggregates per-process usage on
5302   // new Linux kernels 2.6+ where NPTL is supported.
5303   // The /proc/self/task/<tid>/stat still has the per-thread usage.
5304   // See bug 6328462.
5305   // There possibly can be cases where there is no directory
5306   // /proc/self/task, so we check its availability.
5307   if (proc_task_unchecked && os::Linux::is_NPTL()) {
5308     // This is executed only once
5309     proc_task_unchecked = false;
5310     fp = fopen("/proc/self/task", "r");
5311     if (fp != NULL) {
5312       snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5313       fclose(fp);
5314     }
5315   }
5316 
5317   fp = fopen(proc_name, "r");
5318   if ( fp == NULL ) return -1;
5319   statlen = fread(stat, 1, 2047, fp);
5320   stat[statlen] = '\0';
5321   fclose(fp);
5322 
5323   // Skip pid and the command string. Note that we could be dealing with
5324   // weird command names, e.g. user could decide to rename java launcher
5325   // to "java 1.4.2 :)", then the stat file would look like
5326   //                1234 (java 1.4.2 :)) R ... ...
5327   // We don't really need to know the command string, just find the last
5328   // occurrence of ")" and then start parsing from there. See bug 4726580.
5329   s = strrchr(stat, ')');
5330   if (s == NULL ) return -1;
5331 
5332   // Skip blank chars
5333   do s++; while (isspace(*s));
5334 
5335   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5336                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5337                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5338                  &user_time, &sys_time);
5339   if ( count != 13 ) return -1;
5340   if (user_sys_cpu_time) {
5341     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5342   } else {
5343     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5344   }
5345 }
5346 
5347 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5348   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5349   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5350   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5351   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5352 }
5353 
5354 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5355   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5356   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5357   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5358   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5359 }
5360 
5361 bool os::is_thread_cpu_time_supported() {
5362   return true;
5363 }
5364 
5365 // System loadavg support.  Returns -1 if load average cannot be obtained.
5366 // Linux doesn't yet have a (official) notion of processor sets,
5367 // so just return the system wide load average.
5368 int os::loadavg(double loadavg[], int nelem) {
5369   return ::getloadavg(loadavg, nelem);
5370 }
5371 
5372 void os::pause() {
5373   char filename[MAX_PATH];
5374   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5375     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5376   } else {
5377     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5378   }
5379 
5380   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5381   if (fd != -1) {
5382     struct stat buf;
5383     ::close(fd);
5384     while (::stat(filename, &buf) == 0) {
5385       (void)::poll(NULL, 0, 100);
5386     }
5387   } else {
5388     jio_fprintf(stderr,
5389       "Could not open pause file '%s', continuing immediately.\n", filename);
5390   }
5391 }
5392 
5393 
5394 // Refer to the comments in os_solaris.cpp park-unpark.
5395 //
5396 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5397 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5398 // For specifics regarding the bug see GLIBC BUGID 261237 :
5399 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5400 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5401 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5402 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5403 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5404 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5405 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5406 // of libpthread avoids the problem, but isn't practical.
5407 //
5408 // Possible remedies:
5409 //
5410 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5411 //      This is palliative and probabilistic, however.  If the thread is preempted
5412 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5413 //      than the minimum period may have passed, and the abstime may be stale (in the
5414 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5415 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5416 //
5417 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5418 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5419 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5420 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5421 //      thread.
5422 //
5423 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5424 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5425 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5426 //      This also works well.  In fact it avoids kernel-level scalability impediments
5427 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5428 //      timers in a graceful fashion.
5429 //
5430 // 4.   When the abstime value is in the past it appears that control returns
5431 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5432 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5433 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5434 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5435 //      It may be possible to avoid reinitialization by checking the return
5436 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5437 //      condvar we must establish the invariant that cond_signal() is only called
5438 //      within critical sections protected by the adjunct mutex.  This prevents
5439 //      cond_signal() from "seeing" a condvar that's in the midst of being
5440 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5441 //      desirable signal-after-unlock optimization that avoids futile context switching.
5442 //
5443 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5444 //      structure when a condvar is used or initialized.  cond_destroy()  would
5445 //      release the helper structure.  Our reinitialize-after-timedwait fix
5446 //      put excessive stress on malloc/free and locks protecting the c-heap.
5447 //
5448 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5449 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5450 // and only enabling the work-around for vulnerable environments.
5451 
5452 // utility to compute the abstime argument to timedwait:
5453 // millis is the relative timeout time
5454 // abstime will be the absolute timeout time
5455 // TODO: replace compute_abstime() with unpackTime()
5456 
5457 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5458   if (millis < 0)  millis = 0;
5459 
5460   jlong seconds = millis / 1000;
5461   millis %= 1000;
5462   if (seconds > 50000000) { // see man cond_timedwait(3T)
5463     seconds = 50000000;
5464   }
5465 
5466   if (os::supports_monotonic_clock()) {
5467     struct timespec now;
5468     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5469     assert_status(status == 0, status, "clock_gettime");
5470     abstime->tv_sec = now.tv_sec  + seconds;
5471     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5472     if (nanos >= NANOSECS_PER_SEC) {
5473       abstime->tv_sec += 1;
5474       nanos -= NANOSECS_PER_SEC;
5475     }
5476     abstime->tv_nsec = nanos;
5477   } else {
5478     struct timeval now;
5479     int status = gettimeofday(&now, NULL);
5480     assert(status == 0, "gettimeofday");
5481     abstime->tv_sec = now.tv_sec  + seconds;
5482     long usec = now.tv_usec + millis * 1000;
5483     if (usec >= 1000000) {
5484       abstime->tv_sec += 1;
5485       usec -= 1000000;
5486     }
5487     abstime->tv_nsec = usec * 1000;
5488   }
5489   return abstime;
5490 }
5491 
5492 
5493 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5494 // Conceptually TryPark() should be equivalent to park(0).
5495 
5496 int os::PlatformEvent::TryPark() {
5497   for (;;) {
5498     const int v = _Event ;
5499     guarantee ((v == 0) || (v == 1), "invariant") ;
5500     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5501   }
5502 }
5503 
5504 void os::PlatformEvent::park() {       // AKA "down()"
5505   // Invariant: Only the thread associated with the Event/PlatformEvent
5506   // may call park().
5507   // TODO: assert that _Assoc != NULL or _Assoc == Self
5508   int v ;
5509   for (;;) {
5510       v = _Event ;
5511       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5512   }
5513   guarantee (v >= 0, "invariant") ;
5514   if (v == 0) {
5515      // Do this the hard way by blocking ...
5516      int status = pthread_mutex_lock(_mutex);
5517      assert_status(status == 0, status, "mutex_lock");
5518      guarantee (_nParked == 0, "invariant") ;
5519      ++ _nParked ;
5520      while (_Event < 0) {
5521         status = pthread_cond_wait(_cond, _mutex);
5522         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5523         // Treat this the same as if the wait was interrupted
5524         if (status == ETIME) { status = EINTR; }
5525         assert_status(status == 0 || status == EINTR, status, "cond_wait");
5526      }
5527      -- _nParked ;
5528 
5529     _Event = 0 ;
5530      status = pthread_mutex_unlock(_mutex);
5531      assert_status(status == 0, status, "mutex_unlock");
5532     // Paranoia to ensure our locked and lock-free paths interact
5533     // correctly with each other.
5534     OrderAccess::fence();
5535   }
5536   guarantee (_Event >= 0, "invariant") ;
5537 }
5538 
5539 int os::PlatformEvent::park(jlong millis) {
5540   guarantee (_nParked == 0, "invariant") ;
5541 
5542   int v ;
5543   for (;;) {
5544       v = _Event ;
5545       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5546   }
5547   guarantee (v >= 0, "invariant") ;
5548   if (v != 0) return OS_OK ;
5549 
5550   // We do this the hard way, by blocking the thread.
5551   // Consider enforcing a minimum timeout value.
5552   struct timespec abst;
5553   compute_abstime(&abst, millis);
5554 
5555   int ret = OS_TIMEOUT;
5556   int status = pthread_mutex_lock(_mutex);
5557   assert_status(status == 0, status, "mutex_lock");
5558   guarantee (_nParked == 0, "invariant") ;
5559   ++_nParked ;
5560 
5561   // Object.wait(timo) will return because of
5562   // (a) notification
5563   // (b) timeout
5564   // (c) thread.interrupt
5565   //
5566   // Thread.interrupt and object.notify{All} both call Event::set.
5567   // That is, we treat thread.interrupt as a special case of notification.
5568   // The underlying Solaris implementation, cond_timedwait, admits
5569   // spurious/premature wakeups, but the JLS/JVM spec prevents the
5570   // JVM from making those visible to Java code.  As such, we must
5571   // filter out spurious wakeups.  We assume all ETIME returns are valid.
5572   //
5573   // TODO: properly differentiate simultaneous notify+interrupt.
5574   // In that case, we should propagate the notify to another waiter.
5575 
5576   while (_Event < 0) {
5577     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5578     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5579       pthread_cond_destroy (_cond);
5580       pthread_cond_init (_cond, os::Linux::condAttr()) ;
5581     }
5582     assert_status(status == 0 || status == EINTR ||
5583                   status == ETIME || status == ETIMEDOUT,
5584                   status, "cond_timedwait");
5585     if (!FilterSpuriousWakeups) break ;                 // previous semantics
5586     if (status == ETIME || status == ETIMEDOUT) break ;
5587     // We consume and ignore EINTR and spurious wakeups.
5588   }
5589   --_nParked ;
5590   if (_Event >= 0) {
5591      ret = OS_OK;
5592   }
5593   _Event = 0 ;
5594   status = pthread_mutex_unlock(_mutex);
5595   assert_status(status == 0, status, "mutex_unlock");
5596   assert (_nParked == 0, "invariant") ;
5597   // Paranoia to ensure our locked and lock-free paths interact
5598   // correctly with each other.
5599   OrderAccess::fence();
5600   return ret;
5601 }
5602 
5603 void os::PlatformEvent::unpark() {
5604   // Transitions for _Event:
5605   //    0 :=> 1
5606   //    1 :=> 1
5607   //   -1 :=> either 0 or 1; must signal target thread
5608   //          That is, we can safely transition _Event from -1 to either
5609   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5610   //          unpark() calls.
5611   // See also: "Semaphores in Plan 9" by Mullender & Cox
5612   //
5613   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5614   // that it will take two back-to-back park() calls for the owning
5615   // thread to block. This has the benefit of forcing a spurious return
5616   // from the first park() call after an unpark() call which will help
5617   // shake out uses of park() and unpark() without condition variables.
5618 
5619   if (Atomic::xchg(1, &_Event) >= 0) return;
5620 
5621   // Wait for the thread associated with the event to vacate
5622   int status = pthread_mutex_lock(_mutex);
5623   assert_status(status == 0, status, "mutex_lock");
5624   int AnyWaiters = _nParked;
5625   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5626   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5627     AnyWaiters = 0;
5628     pthread_cond_signal(_cond);
5629   }
5630   status = pthread_mutex_unlock(_mutex);
5631   assert_status(status == 0, status, "mutex_unlock");
5632   if (AnyWaiters != 0) {
5633     status = pthread_cond_signal(_cond);
5634     assert_status(status == 0, status, "cond_signal");
5635   }
5636 
5637   // Note that we signal() _after dropping the lock for "immortal" Events.
5638   // This is safe and avoids a common class of  futile wakeups.  In rare
5639   // circumstances this can cause a thread to return prematurely from
5640   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5641   // simply re-test the condition and re-park itself.
5642 }
5643 
5644 
5645 // JSR166
5646 // -------------------------------------------------------
5647 
5648 /*
5649  * The solaris and linux implementations of park/unpark are fairly
5650  * conservative for now, but can be improved. They currently use a
5651  * mutex/condvar pair, plus a a count.
5652  * Park decrements count if > 0, else does a condvar wait.  Unpark
5653  * sets count to 1 and signals condvar.  Only one thread ever waits
5654  * on the condvar. Contention seen when trying to park implies that someone
5655  * is unparking you, so don't wait. And spurious returns are fine, so there
5656  * is no need to track notifications.
5657  */
5658 
5659 #define MAX_SECS 100000000
5660 /*
5661  * This code is common to linux and solaris and will be moved to a
5662  * common place in dolphin.
5663  *
5664  * The passed in time value is either a relative time in nanoseconds
5665  * or an absolute time in milliseconds. Either way it has to be unpacked
5666  * into suitable seconds and nanoseconds components and stored in the
5667  * given timespec structure.
5668  * Given time is a 64-bit value and the time_t used in the timespec is only
5669  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5670  * overflow if times way in the future are given. Further on Solaris versions
5671  * prior to 10 there is a restriction (see cond_timedwait) that the specified
5672  * number of seconds, in abstime, is less than current_time  + 100,000,000.
5673  * As it will be 28 years before "now + 100000000" will overflow we can
5674  * ignore overflow and just impose a hard-limit on seconds using the value
5675  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5676  * years from "now".
5677  */
5678 
5679 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5680   assert (time > 0, "convertTime");
5681   time_t max_secs = 0;
5682 
5683   if (!os::supports_monotonic_clock() || isAbsolute) {
5684     struct timeval now;
5685     int status = gettimeofday(&now, NULL);
5686     assert(status == 0, "gettimeofday");
5687 
5688     max_secs = now.tv_sec + MAX_SECS;
5689 
5690     if (isAbsolute) {
5691       jlong secs = time / 1000;
5692       if (secs > max_secs) {
5693         absTime->tv_sec = max_secs;
5694       } else {
5695         absTime->tv_sec = secs;
5696       }
5697       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5698     } else {
5699       jlong secs = time / NANOSECS_PER_SEC;
5700       if (secs >= MAX_SECS) {
5701         absTime->tv_sec = max_secs;
5702         absTime->tv_nsec = 0;
5703       } else {
5704         absTime->tv_sec = now.tv_sec + secs;
5705         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5706         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5707           absTime->tv_nsec -= NANOSECS_PER_SEC;
5708           ++absTime->tv_sec; // note: this must be <= max_secs
5709         }
5710       }
5711     }
5712   } else {
5713     // must be relative using monotonic clock
5714     struct timespec now;
5715     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5716     assert_status(status == 0, status, "clock_gettime");
5717     max_secs = now.tv_sec + MAX_SECS;
5718     jlong secs = time / NANOSECS_PER_SEC;
5719     if (secs >= MAX_SECS) {
5720       absTime->tv_sec = max_secs;
5721       absTime->tv_nsec = 0;
5722     } else {
5723       absTime->tv_sec = now.tv_sec + secs;
5724       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5725       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5726         absTime->tv_nsec -= NANOSECS_PER_SEC;
5727         ++absTime->tv_sec; // note: this must be <= max_secs
5728       }
5729     }
5730   }
5731   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5732   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5733   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5734   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5735 }
5736 
5737 void Parker::park(bool isAbsolute, jlong time) {
5738   // Ideally we'd do something useful while spinning, such
5739   // as calling unpackTime().
5740 
5741   // Optional fast-path check:
5742   // Return immediately if a permit is available.
5743   // We depend on Atomic::xchg() having full barrier semantics
5744   // since we are doing a lock-free update to _counter.
5745   if (Atomic::xchg(0, &_counter) > 0) return;
5746 
5747   Thread* thread = Thread::current();
5748   assert(thread->is_Java_thread(), "Must be JavaThread");
5749   JavaThread *jt = (JavaThread *)thread;
5750 
5751   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5752   // Check interrupt before trying to wait
5753   if (Thread::is_interrupted(thread, false)) {
5754     return;
5755   }
5756 
5757   // Next, demultiplex/decode time arguments
5758   timespec absTime;
5759   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5760     return;
5761   }
5762   if (time > 0) {
5763     unpackTime(&absTime, isAbsolute, time);
5764   }
5765 
5766 
5767   // Enter safepoint region
5768   // Beware of deadlocks such as 6317397.
5769   // The per-thread Parker:: mutex is a classic leaf-lock.
5770   // In particular a thread must never block on the Threads_lock while
5771   // holding the Parker:: mutex.  If safepoints are pending both the
5772   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5773   ThreadBlockInVM tbivm(jt);
5774 
5775   // Don't wait if cannot get lock since interference arises from
5776   // unblocking.  Also. check interrupt before trying wait
5777   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5778     return;
5779   }
5780 
5781   int status ;
5782   if (_counter > 0)  { // no wait needed
5783     _counter = 0;
5784     status = pthread_mutex_unlock(_mutex);
5785     assert (status == 0, "invariant") ;
5786     // Paranoia to ensure our locked and lock-free paths interact
5787     // correctly with each other and Java-level accesses.
5788     OrderAccess::fence();
5789     return;
5790   }
5791 
5792 #ifdef ASSERT
5793   // Don't catch signals while blocked; let the running threads have the signals.
5794   // (This allows a debugger to break into the running thread.)
5795   sigset_t oldsigs;
5796   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5797   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5798 #endif
5799 
5800   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5801   jt->set_suspend_equivalent();
5802   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5803 
5804   assert(_cur_index == -1, "invariant");
5805   if (time == 0) {
5806     _cur_index = REL_INDEX; // arbitrary choice when not timed
5807     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
5808   } else {
5809     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5810     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
5811     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5812       pthread_cond_destroy (&_cond[_cur_index]) ;
5813       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5814     }
5815   }
5816   _cur_index = -1;
5817   assert_status(status == 0 || status == EINTR ||
5818                 status == ETIME || status == ETIMEDOUT,
5819                 status, "cond_timedwait");
5820 
5821 #ifdef ASSERT
5822   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5823 #endif
5824 
5825   _counter = 0 ;
5826   status = pthread_mutex_unlock(_mutex) ;
5827   assert_status(status == 0, status, "invariant") ;
5828   // Paranoia to ensure our locked and lock-free paths interact
5829   // correctly with each other and Java-level accesses.
5830   OrderAccess::fence();
5831 
5832   // If externally suspended while waiting, re-suspend
5833   if (jt->handle_special_suspend_equivalent_condition()) {
5834     jt->java_suspend_self();
5835   }
5836 }
5837 
5838 void Parker::unpark() {
5839   int s, status ;
5840   status = pthread_mutex_lock(_mutex);
5841   assert (status == 0, "invariant") ;
5842   s = _counter;
5843   _counter = 1;
5844   if (s < 1) {
5845     // thread might be parked
5846     if (_cur_index != -1) {
5847       // thread is definitely parked
5848       if (WorkAroundNPTLTimedWaitHang) {
5849         status = pthread_cond_signal (&_cond[_cur_index]);
5850         assert (status == 0, "invariant");
5851         status = pthread_mutex_unlock(_mutex);
5852         assert (status == 0, "invariant");
5853       } else {
5854         status = pthread_mutex_unlock(_mutex);
5855         assert (status == 0, "invariant");
5856         status = pthread_cond_signal (&_cond[_cur_index]);
5857         assert (status == 0, "invariant");
5858       }
5859     } else {
5860       pthread_mutex_unlock(_mutex);
5861       assert (status == 0, "invariant") ;
5862     }
5863   } else {
5864     pthread_mutex_unlock(_mutex);
5865     assert (status == 0, "invariant") ;
5866   }
5867 }
5868 
5869 
5870 extern char** environ;
5871 
5872 #ifndef __NR_fork
5873 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5874 #endif
5875 
5876 #ifndef __NR_execve
5877 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5878 #endif
5879 
5880 // Run the specified command in a separate process. Return its exit value,
5881 // or -1 on failure (e.g. can't fork a new process).
5882 // Unlike system(), this function can be called from signal handler. It
5883 // doesn't block SIGINT et al.
5884 int os::fork_and_exec(char* cmd) {
5885   const char * argv[4] = {"sh", "-c", cmd, NULL};
5886 
5887   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5888   // pthread_atfork handlers and reset pthread library. All we need is a
5889   // separate process to execve. Make a direct syscall to fork process.
5890   // On IA64 there's no fork syscall, we have to use fork() and hope for
5891   // the best...
5892   pid_t pid = NOT_IA64(syscall(__NR_fork);)
5893               IA64_ONLY(fork();)
5894 
5895   if (pid < 0) {
5896     // fork failed
5897     return -1;
5898 
5899   } else if (pid == 0) {
5900     // child process
5901 
5902     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5903     // first to kill every thread on the thread list. Because this list is
5904     // not reset by fork() (see notes above), execve() will instead kill
5905     // every thread in the parent process. We know this is the only thread
5906     // in the new process, so make a system call directly.
5907     // IA64 should use normal execve() from glibc to match the glibc fork()
5908     // above.
5909     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5910     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5911 
5912     // execve failed
5913     _exit(-1);
5914 
5915   } else  {
5916     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5917     // care about the actual exit code, for now.
5918 
5919     int status;
5920 
5921     // Wait for the child process to exit.  This returns immediately if
5922     // the child has already exited. */
5923     while (waitpid(pid, &status, 0) < 0) {
5924         switch (errno) {
5925         case ECHILD: return 0;
5926         case EINTR: break;
5927         default: return -1;
5928         }
5929     }
5930 
5931     if (WIFEXITED(status)) {
5932        // The child exited normally; get its exit code.
5933        return WEXITSTATUS(status);
5934     } else if (WIFSIGNALED(status)) {
5935        // The child exited because of a signal
5936        // The best value to return is 0x80 + signal number,
5937        // because that is what all Unix shells do, and because
5938        // it allows callers to distinguish between process exit and
5939        // process death by signal.
5940        return 0x80 + WTERMSIG(status);
5941     } else {
5942        // Unknown exit code; pass it through
5943        return status;
5944     }
5945   }
5946 }
5947 
5948 // is_headless_jre()
5949 //
5950 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5951 // in order to report if we are running in a headless jre
5952 //
5953 // Since JDK8 xawt/libmawt.so was moved into the same directory
5954 // as libawt.so, and renamed libawt_xawt.so
5955 //
5956 bool os::is_headless_jre() {
5957     struct stat statbuf;
5958     char buf[MAXPATHLEN];
5959     char libmawtpath[MAXPATHLEN];
5960     const char *xawtstr  = "/xawt/libmawt.so";
5961     const char *new_xawtstr = "/libawt_xawt.so";
5962     char *p;
5963 
5964     // Get path to libjvm.so
5965     os::jvm_path(buf, sizeof(buf));
5966 
5967     // Get rid of libjvm.so
5968     p = strrchr(buf, '/');
5969     if (p == NULL) return false;
5970     else *p = '\0';
5971 
5972     // Get rid of client or server
5973     p = strrchr(buf, '/');
5974     if (p == NULL) return false;
5975     else *p = '\0';
5976 
5977     // check xawt/libmawt.so
5978     strcpy(libmawtpath, buf);
5979     strcat(libmawtpath, xawtstr);
5980     if (::stat(libmawtpath, &statbuf) == 0) return false;
5981 
5982     // check libawt_xawt.so
5983     strcpy(libmawtpath, buf);
5984     strcat(libmawtpath, new_xawtstr);
5985     if (::stat(libmawtpath, &statbuf) == 0) return false;
5986 
5987     return true;
5988 }
5989 
5990 // Get the default path to the core file
5991 // Returns the length of the string
5992 int os::get_core_path(char* buffer, size_t bufferSize) {
5993   const char* p = get_current_directory(buffer, bufferSize);
5994 
5995   if (p == NULL) {
5996     assert(p != NULL, "failed to get current directory");
5997     return 0;
5998   }
5999 
6000   return strlen(buffer);
6001 }
6002 
6003 #ifdef JAVASE_EMBEDDED
6004 //
6005 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
6006 //
6007 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
6008 
6009 // ctor
6010 //
6011 MemNotifyThread::MemNotifyThread(int fd): Thread() {
6012   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
6013   _fd = fd;
6014 
6015   if (os::create_thread(this, os::os_thread)) {
6016     _memnotify_thread = this;
6017     os::set_priority(this, NearMaxPriority);
6018     os::start_thread(this);
6019   }
6020 }
6021 
6022 // Where all the work gets done
6023 //
6024 void MemNotifyThread::run() {
6025   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
6026 
6027   // Set up the select arguments
6028   fd_set rfds;
6029   if (_fd != -1) {
6030     FD_ZERO(&rfds);
6031     FD_SET(_fd, &rfds);
6032   }
6033 
6034   // Now wait for the mem_notify device to wake up
6035   while (1) {
6036     // Wait for the mem_notify device to signal us..
6037     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
6038     if (rc == -1) {
6039       perror("select!\n");
6040       break;
6041     } else if (rc) {
6042       //ssize_t free_before = os::available_memory();
6043       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
6044 
6045       // The kernel is telling us there is not much memory left...
6046       // try to do something about that
6047 
6048       // If we are not already in a GC, try one.
6049       if (!Universe::heap()->is_gc_active()) {
6050         Universe::heap()->collect(GCCause::_allocation_failure);
6051 
6052         //ssize_t free_after = os::available_memory();
6053         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
6054         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
6055       }
6056       // We might want to do something like the following if we find the GC's are not helping...
6057       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
6058     }
6059   }
6060 }
6061 
6062 //
6063 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
6064 //
6065 void MemNotifyThread::start() {
6066   int    fd;
6067   fd = open ("/dev/mem_notify", O_RDONLY, 0);
6068   if (fd < 0) {
6069       return;
6070   }
6071 
6072   if (memnotify_thread() == NULL) {
6073     new MemNotifyThread(fd);
6074   }
6075 }
6076 
6077 #endif // JAVASE_EMBEDDED
6078 
6079 
6080 /////////////// Unit tests ///////////////
6081 
6082 #ifndef PRODUCT
6083 
6084 #define test_log(...) \
6085   do {\
6086     if (VerboseInternalVMTests) { \
6087       tty->print_cr(__VA_ARGS__); \
6088       tty->flush(); \
6089     }\
6090   } while (false)
6091 
6092 class TestReserveMemorySpecial : AllStatic {
6093  public:
6094   static void small_page_write(void* addr, size_t size) {
6095     size_t page_size = os::vm_page_size();
6096 
6097     char* end = (char*)addr + size;
6098     for (char* p = (char*)addr; p < end; p += page_size) {
6099       *p = 1;
6100     }
6101   }
6102 
6103   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6104     if (!UseHugeTLBFS) {
6105       return;
6106     }
6107 
6108     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6109 
6110     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6111 
6112     if (addr != NULL) {
6113       small_page_write(addr, size);
6114 
6115       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6116     }
6117   }
6118 
6119   static void test_reserve_memory_special_huge_tlbfs_only() {
6120     if (!UseHugeTLBFS) {
6121       return;
6122     }
6123 
6124     size_t lp = os::large_page_size();
6125 
6126     for (size_t size = lp; size <= lp * 10; size += lp) {
6127       test_reserve_memory_special_huge_tlbfs_only(size);
6128     }
6129   }
6130 
6131   static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6132     if (!UseHugeTLBFS) {
6133         return;
6134     }
6135 
6136     test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6137         size, alignment);
6138 
6139     assert(size >= os::large_page_size(), "Incorrect input to test");
6140 
6141     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6142 
6143     if (addr != NULL) {
6144       small_page_write(addr, size);
6145 
6146       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6147     }
6148   }
6149 
6150   static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6151     size_t lp = os::large_page_size();
6152     size_t ag = os::vm_allocation_granularity();
6153 
6154     for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6155       test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6156     }
6157   }
6158 
6159   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6160     size_t lp = os::large_page_size();
6161     size_t ag = os::vm_allocation_granularity();
6162 
6163     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6164     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6165     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6166     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6167     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6168     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6169     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6170     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6171     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6172   }
6173 
6174   static void test_reserve_memory_special_huge_tlbfs() {
6175     if (!UseHugeTLBFS) {
6176       return;
6177     }
6178 
6179     test_reserve_memory_special_huge_tlbfs_only();
6180     test_reserve_memory_special_huge_tlbfs_mixed();
6181   }
6182 
6183   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6184     if (!UseSHM) {
6185       return;
6186     }
6187 
6188     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6189 
6190     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6191 
6192     if (addr != NULL) {
6193       assert(is_ptr_aligned(addr, alignment), "Check");
6194       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6195 
6196       small_page_write(addr, size);
6197 
6198       os::Linux::release_memory_special_shm(addr, size);
6199     }
6200   }
6201 
6202   static void test_reserve_memory_special_shm() {
6203     size_t lp = os::large_page_size();
6204     size_t ag = os::vm_allocation_granularity();
6205 
6206     for (size_t size = ag; size < lp * 3; size += ag) {
6207       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6208         test_reserve_memory_special_shm(size, alignment);
6209       }
6210     }
6211   }
6212 
6213   static void test() {
6214     test_reserve_memory_special_huge_tlbfs();
6215     test_reserve_memory_special_shm();
6216   }
6217 };
6218 
6219 void TestReserveMemorySpecial_test() {
6220   TestReserveMemorySpecial::test();
6221 }
6222 
6223 #endif