1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/disassembler.hpp"
  31 #include "gc_interface/collectedHeap.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "interpreter/linkResolver.hpp"
  35 #include "interpreter/templateTable.hpp"
  36 #include "memory/oopFactory.hpp"
  37 #include "memory/universe.inline.hpp"
  38 #include "oops/constantPool.hpp"
  39 #include "oops/instanceKlass.hpp"
  40 #include "oops/methodData.hpp"
  41 #include "oops/objArrayKlass.hpp"
  42 #include "oops/objArrayOop.inline.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "oops/symbol.hpp"
  45 #include "prims/jvmtiExport.hpp"
  46 #include "prims/nativeLookup.hpp"
  47 #include "runtime/atomic.inline.hpp"
  48 #include "runtime/biasedLocking.hpp"
  49 #include "runtime/compilationPolicy.hpp"
  50 #include "runtime/deoptimization.hpp"
  51 #include "runtime/fieldDescriptor.hpp"
  52 #include "runtime/handles.inline.hpp"
  53 #include "runtime/icache.hpp"
  54 #include "runtime/interfaceSupport.hpp"
  55 #include "runtime/java.hpp"
  56 #include "runtime/jfieldIDWorkaround.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/synchronizer.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "utilities/events.hpp"
  63 #ifdef COMPILER2
  64 #include "opto/runtime.hpp"
  65 #endif
  66 
  67 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  68 
  69 class UnlockFlagSaver {
  70   private:
  71     JavaThread* _thread;
  72     bool _do_not_unlock;
  73   public:
  74     UnlockFlagSaver(JavaThread* t) {
  75       _thread = t;
  76       _do_not_unlock = t->do_not_unlock_if_synchronized();
  77       t->set_do_not_unlock_if_synchronized(false);
  78     }
  79     ~UnlockFlagSaver() {
  80       _thread->set_do_not_unlock_if_synchronized(_do_not_unlock);
  81     }
  82 };
  83 
  84 //------------------------------------------------------------------------------------------------------------------------
  85 // State accessors
  86 
  87 void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) {
  88   last_frame(thread).interpreter_frame_set_bcp(bcp);
  89   if (ProfileInterpreter) {
  90     // ProfileTraps uses MDOs independently of ProfileInterpreter.
  91     // That is why we must check both ProfileInterpreter and mdo != NULL.
  92     MethodData* mdo = last_frame(thread).interpreter_frame_method()->method_data();
  93     if (mdo != NULL) {
  94       NEEDS_CLEANUP;
  95       last_frame(thread).interpreter_frame_set_mdp(mdo->bci_to_dp(last_frame(thread).interpreter_frame_bci()));
  96     }
  97   }
  98 }
  99 
 100 //------------------------------------------------------------------------------------------------------------------------
 101 // Constants
 102 
 103 
 104 IRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide))
 105   // access constant pool
 106   ConstantPool* pool = method(thread)->constants();
 107   int index = wide ? get_index_u2(thread, Bytecodes::_ldc_w) : get_index_u1(thread, Bytecodes::_ldc);
 108   constantTag tag = pool->tag_at(index);
 109 
 110   assert (tag.is_unresolved_klass() || tag.is_klass(), "wrong ldc call");
 111   Klass* klass = pool->klass_at(index, CHECK);
 112     oop java_class = klass->java_mirror();
 113     thread->set_vm_result(java_class);
 114 IRT_END
 115 
 116 IRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* thread, Bytecodes::Code bytecode)) {
 117   assert(bytecode == Bytecodes::_fast_aldc ||
 118          bytecode == Bytecodes::_fast_aldc_w, "wrong bc");
 119   ResourceMark rm(thread);
 120   methodHandle m (thread, method(thread));
 121   Bytecode_loadconstant ldc(m, bci(thread));
 122   oop result = ldc.resolve_constant(CHECK);
 123 #ifdef ASSERT
 124   {
 125     // The bytecode wrappers aren't GC-safe so construct a new one
 126     Bytecode_loadconstant ldc2(m, bci(thread));
 127     oop coop = m->constants()->resolved_references()->obj_at(ldc2.cache_index());
 128     assert(result == coop, "expected result for assembly code");
 129   }
 130 #endif
 131   thread->set_vm_result(result);
 132 }
 133 IRT_END
 134 
 135 
 136 //------------------------------------------------------------------------------------------------------------------------
 137 // Allocation
 138 
 139 IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, ConstantPool* pool, int index))
 140   Klass* k_oop = pool->klass_at(index, CHECK);
 141   instanceKlassHandle klass (THREAD, k_oop);
 142 
 143   // Make sure we are not instantiating an abstract klass
 144   klass->check_valid_for_instantiation(true, CHECK);
 145 
 146   // Make sure klass is initialized
 147   klass->initialize(CHECK);
 148 
 149   // At this point the class may not be fully initialized
 150   // because of recursive initialization. If it is fully
 151   // initialized & has_finalized is not set, we rewrite
 152   // it into its fast version (Note: no locking is needed
 153   // here since this is an atomic byte write and can be
 154   // done more than once).
 155   //
 156   // Note: In case of classes with has_finalized we don't
 157   //       rewrite since that saves us an extra check in
 158   //       the fast version which then would call the
 159   //       slow version anyway (and do a call back into
 160   //       Java).
 161   //       If we have a breakpoint, then we don't rewrite
 162   //       because the _breakpoint bytecode would be lost.
 163   oop obj = klass->allocate_instance(CHECK);
 164   thread->set_vm_result(obj);
 165 IRT_END
 166 
 167 
 168 IRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size))
 169   oop obj = oopFactory::new_typeArray(type, size, CHECK);
 170   thread->set_vm_result(obj);
 171 IRT_END
 172 
 173 
 174 IRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, ConstantPool* pool, int index, jint size))
 175   // Note: no oopHandle for pool & klass needed since they are not used
 176   //       anymore after new_objArray() and no GC can happen before.
 177   //       (This may have to change if this code changes!)
 178   Klass*    klass = pool->klass_at(index, CHECK);
 179   objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK);
 180   thread->set_vm_result(obj);
 181 IRT_END
 182 
 183 
 184 IRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address))
 185   // We may want to pass in more arguments - could make this slightly faster
 186   ConstantPool* constants = method(thread)->constants();
 187   int          i = get_index_u2(thread, Bytecodes::_multianewarray);
 188   Klass* klass = constants->klass_at(i, CHECK);
 189   int   nof_dims = number_of_dimensions(thread);
 190   assert(klass->is_klass(), "not a class");
 191   assert(nof_dims >= 1, "multianewarray rank must be nonzero");
 192 
 193   // We must create an array of jints to pass to multi_allocate.
 194   ResourceMark rm(thread);
 195   const int small_dims = 10;
 196   jint dim_array[small_dims];
 197   jint *dims = &dim_array[0];
 198   if (nof_dims > small_dims) {
 199     dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims);
 200   }
 201   for (int index = 0; index < nof_dims; index++) {
 202     // offset from first_size_address is addressed as local[index]
 203     int n = Interpreter::local_offset_in_bytes(index)/jintSize;
 204     dims[index] = first_size_address[n];
 205   }
 206   oop obj = ArrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK);
 207   thread->set_vm_result(obj);
 208 IRT_END
 209 
 210 
 211 IRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 212   assert(obj->is_oop(), "must be a valid oop");
 213   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 214   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 215 IRT_END
 216 
 217 
 218 // Quicken instance-of and check-cast bytecodes
 219 IRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread))
 220   // Force resolving; quicken the bytecode
 221   int which = get_index_u2(thread, Bytecodes::_checkcast);
 222   ConstantPool* cpool = method(thread)->constants();
 223   // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded
 224   // program we might have seen an unquick'd bytecode in the interpreter but have another
 225   // thread quicken the bytecode before we get here.
 226   // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" );
 227   Klass* klass = cpool->klass_at(which, CHECK);
 228   thread->set_vm_result_2(klass);
 229 IRT_END
 230 
 231 
 232 //------------------------------------------------------------------------------------------------------------------------
 233 // Exceptions
 234 
 235 void InterpreterRuntime::note_trap_inner(JavaThread* thread, int reason,
 236                                          methodHandle trap_method, int trap_bci, TRAPS) {
 237   if (trap_method.not_null()) {
 238     MethodData* trap_mdo = trap_method->method_data();
 239     if (trap_mdo == NULL) {
 240       Method::build_interpreter_method_data(trap_method, THREAD);
 241       if (HAS_PENDING_EXCEPTION) {
 242         assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())),
 243                "we expect only an OOM error here");
 244         CLEAR_PENDING_EXCEPTION;
 245       }
 246       trap_mdo = trap_method->method_data();
 247       // and fall through...
 248     }
 249     if (trap_mdo != NULL) {
 250       // Update per-method count of trap events.  The interpreter
 251       // is updating the MDO to simulate the effect of compiler traps.
 252       Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason);
 253     }
 254   }
 255 }
 256 
 257 // Assume the compiler is (or will be) interested in this event.
 258 // If necessary, create an MDO to hold the information, and record it.
 259 void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) {
 260   assert(ProfileTraps, "call me only if profiling");
 261   methodHandle trap_method(thread, method(thread));
 262   int trap_bci = trap_method->bci_from(bcp(thread));
 263   note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
 264 }
 265 
 266 #ifdef CC_INTERP
 267 // As legacy note_trap, but we have more arguments.
 268 IRT_ENTRY(void, InterpreterRuntime::note_trap(JavaThread* thread, int reason, Method *method, int trap_bci))
 269   methodHandle trap_method(method);
 270   note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
 271 IRT_END
 272 
 273 // Class Deoptimization is not visible in BytecodeInterpreter, so we need a wrapper
 274 // for each exception.
 275 void InterpreterRuntime::note_nullCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 276   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_null_check, method, trap_bci); }
 277 void InterpreterRuntime::note_div0Check_trap(JavaThread* thread, Method *method, int trap_bci)
 278   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_div0_check, method, trap_bci); }
 279 void InterpreterRuntime::note_rangeCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 280   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_range_check, method, trap_bci); }
 281 void InterpreterRuntime::note_classCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 282   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_class_check, method, trap_bci); }
 283 void InterpreterRuntime::note_arrayCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 284   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_array_check, method, trap_bci); }
 285 #endif // CC_INTERP
 286 
 287 
 288 static Handle get_preinitialized_exception(Klass* k, TRAPS) {
 289   // get klass
 290   InstanceKlass* klass = InstanceKlass::cast(k);
 291   assert(klass->is_initialized(),
 292          "this klass should have been initialized during VM initialization");
 293   // create instance - do not call constructor since we may have no
 294   // (java) stack space left (should assert constructor is empty)
 295   Handle exception;
 296   oop exception_oop = klass->allocate_instance(CHECK_(exception));
 297   exception = Handle(THREAD, exception_oop);
 298   if (StackTraceInThrowable) {
 299     java_lang_Throwable::fill_in_stack_trace(exception);
 300   }
 301   return exception;
 302 }
 303 
 304 // Special handling for stack overflow: since we don't have any (java) stack
 305 // space left we use the pre-allocated & pre-initialized StackOverflowError
 306 // klass to create an stack overflow error instance.  We do not call its
 307 // constructor for the same reason (it is empty, anyway).
 308 IRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread))
 309   Handle exception = get_preinitialized_exception(
 310                                  SystemDictionary::StackOverflowError_klass(),
 311                                  CHECK);
 312   THROW_HANDLE(exception);
 313 IRT_END
 314 
 315 
 316 IRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message))
 317   // lookup exception klass
 318   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 319   if (ProfileTraps) {
 320     if (s == vmSymbols::java_lang_ArithmeticException()) {
 321       note_trap(thread, Deoptimization::Reason_div0_check, CHECK);
 322     } else if (s == vmSymbols::java_lang_NullPointerException()) {
 323       note_trap(thread, Deoptimization::Reason_null_check, CHECK);
 324     }
 325   }
 326   // create exception
 327   Handle exception = Exceptions::new_exception(thread, s, message);
 328   thread->set_vm_result(exception());
 329 IRT_END
 330 
 331 
 332 IRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj))
 333   ResourceMark rm(thread);
 334   const char* klass_name = obj->klass()->external_name();
 335   // lookup exception klass
 336   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 337   if (ProfileTraps) {
 338     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
 339   }
 340   // create exception, with klass name as detail message
 341   Handle exception = Exceptions::new_exception(thread, s, klass_name);
 342   thread->set_vm_result(exception());
 343 IRT_END
 344 
 345 
 346 IRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, char* name, jint index))
 347   char message[jintAsStringSize];
 348   // lookup exception klass
 349   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 350   if (ProfileTraps) {
 351     note_trap(thread, Deoptimization::Reason_range_check, CHECK);
 352   }
 353   // create exception
 354   sprintf(message, "%d", index);
 355   THROW_MSG(s, message);
 356 IRT_END
 357 
 358 IRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException(
 359   JavaThread* thread, oopDesc* obj))
 360 
 361   ResourceMark rm(thread);
 362   char* message = SharedRuntime::generate_class_cast_message(
 363     thread, obj->klass()->external_name());
 364 
 365   if (ProfileTraps) {
 366     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
 367   }
 368 
 369   // create exception
 370   THROW_MSG(vmSymbols::java_lang_ClassCastException(), message);
 371 IRT_END
 372 
 373 // exception_handler_for_exception(...) returns the continuation address,
 374 // the exception oop (via TLS) and sets the bci/bcp for the continuation.
 375 // The exception oop is returned to make sure it is preserved over GC (it
 376 // is only on the stack if the exception was thrown explicitly via athrow).
 377 // During this operation, the expression stack contains the values for the
 378 // bci where the exception happened. If the exception was propagated back
 379 // from a call, the expression stack contains the values for the bci at the
 380 // invoke w/o arguments (i.e., as if one were inside the call).
 381 IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception))
 382 
 383   Handle             h_exception(thread, exception);
 384   methodHandle       h_method   (thread, method(thread));
 385   constantPoolHandle h_constants(thread, h_method->constants());
 386   bool               should_repeat;
 387   int                handler_bci;
 388   int                current_bci = bci(thread);
 389 
 390   if (thread->frames_to_pop_failed_realloc() > 0) {
 391     // Allocation of scalar replaced object used in this frame
 392     // failed. Unconditionally pop the frame.
 393     thread->dec_frames_to_pop_failed_realloc();
 394     thread->set_vm_result(h_exception());
 395     // If the method is synchronized we already unlocked the monitor
 396     // during deoptimization so the interpreter needs to skip it when
 397     // the frame is popped.
 398     thread->set_do_not_unlock_if_synchronized(true);
 399 #ifdef CC_INTERP
 400     return (address) -1;
 401 #else
 402     return Interpreter::remove_activation_entry();
 403 #endif
 404   }
 405 
 406   // Need to do this check first since when _do_not_unlock_if_synchronized
 407   // is set, we don't want to trigger any classloading which may make calls
 408   // into java, or surprisingly find a matching exception handler for bci 0
 409   // since at this moment the method hasn't been "officially" entered yet.
 410   if (thread->do_not_unlock_if_synchronized()) {
 411     ResourceMark rm;
 412     assert(current_bci == 0,  "bci isn't zero for do_not_unlock_if_synchronized");
 413     thread->set_vm_result(exception);
 414 #ifdef CC_INTERP
 415     return (address) -1;
 416 #else
 417     return Interpreter::remove_activation_entry();
 418 #endif
 419   }
 420 
 421   do {
 422     should_repeat = false;
 423 
 424     // assertions
 425 #ifdef ASSERT
 426     assert(h_exception.not_null(), "NULL exceptions should be handled by athrow");
 427     assert(h_exception->is_oop(), "just checking");
 428     // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 429     if (!(h_exception->is_a(SystemDictionary::Throwable_klass()))) {
 430       if (ExitVMOnVerifyError) vm_exit(-1);
 431       ShouldNotReachHere();
 432     }
 433 #endif
 434 
 435     // tracing
 436     if (TraceExceptions) {
 437       ResourceMark rm(thread);
 438       Symbol* message = java_lang_Throwable::detail_message(h_exception());
 439       ttyLocker ttyl;  // Lock after getting the detail message
 440       if (message != NULL) {
 441         tty->print_cr("Exception <%s: %s> (" INTPTR_FORMAT ")",
 442                       h_exception->print_value_string(), message->as_C_string(),
 443                       (address)h_exception());
 444       } else {
 445         tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")",
 446                       h_exception->print_value_string(),
 447                       (address)h_exception());
 448       }
 449       tty->print_cr(" thrown in interpreter method <%s>", h_method->print_value_string());
 450       tty->print_cr(" at bci %d for thread " INTPTR_FORMAT, current_bci, thread);
 451     }
 452 // Don't go paging in something which won't be used.
 453 //     else if (extable->length() == 0) {
 454 //       // disabled for now - interpreter is not using shortcut yet
 455 //       // (shortcut is not to call runtime if we have no exception handlers)
 456 //       // warning("performance bug: should not call runtime if method has no exception handlers");
 457 //     }
 458     // for AbortVMOnException flag
 459     NOT_PRODUCT(Exceptions::debug_check_abort(h_exception));
 460 
 461     // exception handler lookup
 462     KlassHandle h_klass(THREAD, h_exception->klass());
 463     handler_bci = Method::fast_exception_handler_bci_for(h_method, h_klass, current_bci, THREAD);
 464     if (HAS_PENDING_EXCEPTION) {
 465       // We threw an exception while trying to find the exception handler.
 466       // Transfer the new exception to the exception handle which will
 467       // be set into thread local storage, and do another lookup for an
 468       // exception handler for this exception, this time starting at the
 469       // BCI of the exception handler which caused the exception to be
 470       // thrown (bug 4307310).
 471       h_exception = Handle(THREAD, PENDING_EXCEPTION);
 472       CLEAR_PENDING_EXCEPTION;
 473       if (handler_bci >= 0) {
 474         current_bci = handler_bci;
 475         should_repeat = true;
 476       }
 477     }
 478   } while (should_repeat == true);
 479 
 480   // notify JVMTI of an exception throw; JVMTI will detect if this is a first
 481   // time throw or a stack unwinding throw and accordingly notify the debugger
 482   if (JvmtiExport::can_post_on_exceptions()) {
 483     JvmtiExport::post_exception_throw(thread, h_method(), bcp(thread), h_exception());
 484   }
 485 
 486 #ifdef CC_INTERP
 487   address continuation = (address)(intptr_t) handler_bci;
 488 #else
 489   address continuation = NULL;
 490 #endif
 491   address handler_pc = NULL;
 492   if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) {
 493     // Forward exception to callee (leaving bci/bcp untouched) because (a) no
 494     // handler in this method, or (b) after a stack overflow there is not yet
 495     // enough stack space available to reprotect the stack.
 496 #ifndef CC_INTERP
 497     continuation = Interpreter::remove_activation_entry();
 498 #endif
 499     // Count this for compilation purposes
 500     h_method->interpreter_throwout_increment(THREAD);
 501   } else {
 502     // handler in this method => change bci/bcp to handler bci/bcp and continue there
 503     handler_pc = h_method->code_base() + handler_bci;
 504 #ifndef CC_INTERP
 505     set_bcp_and_mdp(handler_pc, thread);
 506     continuation = Interpreter::dispatch_table(vtos)[*handler_pc];
 507 #endif
 508   }
 509   // notify debugger of an exception catch
 510   // (this is good for exceptions caught in native methods as well)
 511   if (JvmtiExport::can_post_on_exceptions()) {
 512     JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL));
 513   }
 514 
 515   thread->set_vm_result(h_exception());
 516   return continuation;
 517 IRT_END
 518 
 519 
 520 IRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread))
 521   assert(thread->has_pending_exception(), "must only ne called if there's an exception pending");
 522   // nothing to do - eventually we should remove this code entirely (see comments @ call sites)
 523 IRT_END
 524 
 525 
 526 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread))
 527   THROW(vmSymbols::java_lang_AbstractMethodError());
 528 IRT_END
 529 
 530 
 531 IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 532   THROW(vmSymbols::java_lang_IncompatibleClassChangeError());
 533 IRT_END
 534 
 535 
 536 //------------------------------------------------------------------------------------------------------------------------
 537 // Fields
 538 //
 539 
 540 IRT_ENTRY(void, InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode))
 541   // resolve field
 542   fieldDescriptor info;
 543   constantPoolHandle pool(thread, method(thread)->constants());
 544   bool is_put    = (bytecode == Bytecodes::_putfield  || bytecode == Bytecodes::_nofast_putfield ||
 545                     bytecode == Bytecodes::_putstatic);
 546   bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic);
 547 
 548   {
 549     JvmtiHideSingleStepping jhss(thread);
 550     LinkResolver::resolve_field_access(info, pool, get_index_u2_cpcache(thread, bytecode),
 551                                        bytecode, CHECK);
 552   } // end JvmtiHideSingleStepping
 553 
 554   // check if link resolution caused cpCache to be updated
 555   if (already_resolved(thread)) return;
 556 
 557   // compute auxiliary field attributes
 558   TosState state  = as_TosState(info.field_type());
 559 
 560   // We need to delay resolving put instructions on final fields
 561   // until we actually invoke one. This is required so we throw
 562   // exceptions at the correct place. If we do not resolve completely
 563   // in the current pass, leaving the put_code set to zero will
 564   // cause the next put instruction to reresolve.
 565   Bytecodes::Code put_code = (Bytecodes::Code)0;
 566 
 567   // We also need to delay resolving getstatic instructions until the
 568   // class is intitialized.  This is required so that access to the static
 569   // field will call the initialization function every time until the class
 570   // is completely initialized ala. in 2.17.5 in JVM Specification.
 571   InstanceKlass* klass = InstanceKlass::cast(info.field_holder());
 572   bool uninitialized_static = ((bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic) &&
 573                                !klass->is_initialized());
 574   Bytecodes::Code get_code = (Bytecodes::Code)0;
 575 
 576   if (!uninitialized_static) {
 577     get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield);
 578     if (is_put || !info.access_flags().is_final()) {
 579       put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield);
 580     }
 581   }
 582 
 583   cache_entry(thread)->set_field(
 584     get_code,
 585     put_code,
 586     info.field_holder(),
 587     info.index(),
 588     info.offset(),
 589     state,
 590     info.access_flags().is_final(),
 591     info.access_flags().is_volatile(),
 592     pool->pool_holder()
 593   );
 594 IRT_END
 595 
 596 
 597 //------------------------------------------------------------------------------------------------------------------------
 598 // Synchronization
 599 //
 600 // The interpreter's synchronization code is factored out so that it can
 601 // be shared by method invocation and synchronized blocks.
 602 //%note synchronization_3
 603 
 604 //%note monitor_1
 605 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem))
 606 #ifdef ASSERT
 607   thread->last_frame().interpreter_frame_verify_monitor(elem);
 608 #endif
 609   if (PrintBiasedLockingStatistics) {
 610     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 611   }
 612   Handle h_obj(thread, elem->obj());
 613   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
 614          "must be NULL or an object");
 615   if (UseBiasedLocking) {
 616     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 617     ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK);
 618   } else {
 619     ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK);
 620   }
 621   assert(Universe::heap()->is_in_reserved_or_null(elem->obj()),
 622          "must be NULL or an object");
 623 #ifdef ASSERT
 624   thread->last_frame().interpreter_frame_verify_monitor(elem);
 625 #endif
 626 IRT_END
 627 
 628 
 629 //%note monitor_1
 630 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem))
 631 #ifdef ASSERT
 632   thread->last_frame().interpreter_frame_verify_monitor(elem);
 633 #endif
 634   Handle h_obj(thread, elem->obj());
 635   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
 636          "must be NULL or an object");
 637   if (elem == NULL || h_obj()->is_unlocked()) {
 638     THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 639   }
 640   ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread);
 641   // Free entry. This must be done here, since a pending exception might be installed on
 642   // exit. If it is not cleared, the exception handling code will try to unlock the monitor again.
 643   elem->set_obj(NULL);
 644 #ifdef ASSERT
 645   thread->last_frame().interpreter_frame_verify_monitor(elem);
 646 #endif
 647 IRT_END
 648 
 649 
 650 IRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread))
 651   THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 652 IRT_END
 653 
 654 
 655 IRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread))
 656   // Returns an illegal exception to install into the current thread. The
 657   // pending_exception flag is cleared so normal exception handling does not
 658   // trigger. Any current installed exception will be overwritten. This
 659   // method will be called during an exception unwind.
 660 
 661   assert(!HAS_PENDING_EXCEPTION, "no pending exception");
 662   Handle exception(thread, thread->vm_result());
 663   assert(exception() != NULL, "vm result should be set");
 664   thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures)
 665   if (!exception->is_a(SystemDictionary::ThreadDeath_klass())) {
 666     exception = get_preinitialized_exception(
 667                        SystemDictionary::IllegalMonitorStateException_klass(),
 668                        CATCH);
 669   }
 670   thread->set_vm_result(exception());
 671 IRT_END
 672 
 673 
 674 //------------------------------------------------------------------------------------------------------------------------
 675 // Invokes
 676 
 677 IRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, Method* method, address bcp))
 678   return method->orig_bytecode_at(method->bci_from(bcp));
 679 IRT_END
 680 
 681 IRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, Method* method, address bcp, Bytecodes::Code new_code))
 682   method->set_orig_bytecode_at(method->bci_from(bcp), new_code);
 683 IRT_END
 684 
 685 IRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, Method* method, address bcp))
 686   JvmtiExport::post_raw_breakpoint(thread, method, bcp);
 687 IRT_END
 688 
 689 IRT_ENTRY(void, InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode)) {
 690   // extract receiver from the outgoing argument list if necessary
 691   Handle receiver(thread, NULL);
 692   if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface) {
 693     ResourceMark rm(thread);
 694     methodHandle m (thread, method(thread));
 695     Bytecode_invoke call(m, bci(thread));
 696     Symbol* signature = call.signature();
 697     receiver = Handle(thread,
 698                   thread->last_frame().interpreter_callee_receiver(signature));
 699     assert(Universe::heap()->is_in_reserved_or_null(receiver()),
 700            "sanity check");
 701     assert(receiver.is_null() ||
 702            !Universe::heap()->is_in_reserved(receiver->klass()),
 703            "sanity check");
 704   }
 705 
 706   // resolve method
 707   CallInfo info;
 708   constantPoolHandle pool(thread, method(thread)->constants());
 709 
 710   {
 711     JvmtiHideSingleStepping jhss(thread);
 712     LinkResolver::resolve_invoke(info, receiver, pool,
 713                                  get_index_u2_cpcache(thread, bytecode), bytecode, CHECK);
 714     if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
 715       int retry_count = 0;
 716       while (info.resolved_method()->is_old()) {
 717         // It is very unlikely that method is redefined more than 100 times
 718         // in the middle of resolve. If it is looping here more than 100 times
 719         // means then there could be a bug here.
 720         guarantee((retry_count++ < 100),
 721                   "Could not resolve to latest version of redefined method");
 722         // method is redefined in the middle of resolve so re-try.
 723         LinkResolver::resolve_invoke(info, receiver, pool,
 724                                      get_index_u2_cpcache(thread, bytecode), bytecode, CHECK);
 725       }
 726     }
 727   } // end JvmtiHideSingleStepping
 728 
 729   // check if link resolution caused cpCache to be updated
 730   if (already_resolved(thread)) return;
 731 
 732   if (bytecode == Bytecodes::_invokeinterface) {
 733     if (TraceItables && Verbose) {
 734       ResourceMark rm(thread);
 735       tty->print_cr("Resolving: klass: %s to method: %s", info.resolved_klass()->name()->as_C_string(), info.resolved_method()->name()->as_C_string());
 736     }
 737   }
 738 #ifdef ASSERT
 739   if (bytecode == Bytecodes::_invokeinterface) {
 740     if (info.resolved_method()->method_holder() ==
 741                                             SystemDictionary::Object_klass()) {
 742       // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec
 743       // (see also CallInfo::set_interface for details)
 744       assert(info.call_kind() == CallInfo::vtable_call ||
 745              info.call_kind() == CallInfo::direct_call, "");
 746       methodHandle rm = info.resolved_method();
 747       assert(rm->is_final() || info.has_vtable_index(),
 748              "should have been set already");
 749     } else if (!info.resolved_method()->has_itable_index()) {
 750       // Resolved something like CharSequence.toString.  Use vtable not itable.
 751       assert(info.call_kind() != CallInfo::itable_call, "");
 752     } else {
 753       // Setup itable entry
 754       assert(info.call_kind() == CallInfo::itable_call, "");
 755       int index = info.resolved_method()->itable_index();
 756       assert(info.itable_index() == index, "");
 757     }
 758   } else {
 759     assert(info.call_kind() == CallInfo::direct_call ||
 760            info.call_kind() == CallInfo::vtable_call, "");
 761   }
 762 #endif
 763   switch (info.call_kind()) {
 764   case CallInfo::direct_call:
 765     cache_entry(thread)->set_direct_call(
 766       bytecode,
 767       info.resolved_method());
 768     break;
 769   case CallInfo::vtable_call:
 770     cache_entry(thread)->set_vtable_call(
 771       bytecode,
 772       info.resolved_method(),
 773       info.vtable_index());
 774     break;
 775   case CallInfo::itable_call:
 776     cache_entry(thread)->set_itable_call(
 777       bytecode,
 778       info.resolved_method(),
 779       info.itable_index());
 780     break;
 781   default:  ShouldNotReachHere();
 782   }
 783 }
 784 IRT_END
 785 
 786 
 787 // First time execution:  Resolve symbols, create a permanent MethodType object.
 788 IRT_ENTRY(void, InterpreterRuntime::resolve_invokehandle(JavaThread* thread)) {
 789   const Bytecodes::Code bytecode = Bytecodes::_invokehandle;
 790 
 791   // resolve method
 792   CallInfo info;
 793   constantPoolHandle pool(thread, method(thread)->constants());
 794 
 795   {
 796     JvmtiHideSingleStepping jhss(thread);
 797     LinkResolver::resolve_invoke(info, Handle(), pool,
 798                                  get_index_u2_cpcache(thread, bytecode), bytecode, CHECK);
 799   } // end JvmtiHideSingleStepping
 800 
 801   cache_entry(thread)->set_method_handle(pool, info);
 802 }
 803 IRT_END
 804 
 805 
 806 // First time execution:  Resolve symbols, create a permanent CallSite object.
 807 IRT_ENTRY(void, InterpreterRuntime::resolve_invokedynamic(JavaThread* thread)) {
 808   const Bytecodes::Code bytecode = Bytecodes::_invokedynamic;
 809 
 810   //TO DO: consider passing BCI to Java.
 811   //  int caller_bci = method(thread)->bci_from(bcp(thread));
 812 
 813   // resolve method
 814   CallInfo info;
 815   constantPoolHandle pool(thread, method(thread)->constants());
 816   int index = get_index_u4(thread, bytecode);
 817   {
 818     JvmtiHideSingleStepping jhss(thread);
 819     LinkResolver::resolve_invoke(info, Handle(), pool,
 820                                  index, bytecode, CHECK);
 821   } // end JvmtiHideSingleStepping
 822 
 823   ConstantPoolCacheEntry* cp_cache_entry = pool->invokedynamic_cp_cache_entry_at(index);
 824   cp_cache_entry->set_dynamic_call(pool, info);
 825 }
 826 IRT_END
 827 
 828 
 829 //------------------------------------------------------------------------------------------------------------------------
 830 // Miscellaneous
 831 
 832 
 833 nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp) {
 834   nmethod* nm = frequency_counter_overflow_inner(thread, branch_bcp);
 835   assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests");
 836   if (branch_bcp != NULL && nm != NULL) {
 837     // This was a successful request for an OSR nmethod.  Because
 838     // frequency_counter_overflow_inner ends with a safepoint check,
 839     // nm could have been unloaded so look it up again.  It's unsafe
 840     // to examine nm directly since it might have been freed and used
 841     // for something else.
 842     frame fr = thread->last_frame();
 843     Method* method =  fr.interpreter_frame_method();
 844     int bci = method->bci_from(fr.interpreter_frame_bcp());
 845     nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false);
 846   }
 847 #ifndef PRODUCT
 848   if (TraceOnStackReplacement) {
 849     if (nm != NULL) {
 850       tty->print("OSR entry @ pc: " INTPTR_FORMAT ": ", nm->osr_entry());
 851       nm->print();
 852     }
 853   }
 854 #endif
 855   return nm;
 856 }
 857 
 858 IRT_ENTRY(nmethod*,
 859           InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp))
 860   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
 861   // flag, in case this method triggers classloading which will call into Java.
 862   UnlockFlagSaver fs(thread);
 863 
 864   frame fr = thread->last_frame();
 865   assert(fr.is_interpreted_frame(), "must come from interpreter");
 866   methodHandle method(thread, fr.interpreter_frame_method());
 867   const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : InvocationEntryBci;
 868   const int bci = branch_bcp != NULL ? method->bci_from(fr.interpreter_frame_bcp()) : InvocationEntryBci;
 869 
 870   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 871   nmethod* osr_nm = CompilationPolicy::policy()->event(method, method, branch_bci, bci, CompLevel_none, NULL, thread);
 872   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 873 
 874   if (osr_nm != NULL) {
 875     // We may need to do on-stack replacement which requires that no
 876     // monitors in the activation are biased because their
 877     // BasicObjectLocks will need to migrate during OSR. Force
 878     // unbiasing of all monitors in the activation now (even though
 879     // the OSR nmethod might be invalidated) because we don't have a
 880     // safepoint opportunity later once the migration begins.
 881     if (UseBiasedLocking) {
 882       ResourceMark rm;
 883       GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
 884       for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
 885            kptr < fr.interpreter_frame_monitor_begin();
 886            kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
 887         if( kptr->obj() != NULL ) {
 888           objects_to_revoke->append(Handle(THREAD, kptr->obj()));
 889         }
 890       }
 891       BiasedLocking::revoke(objects_to_revoke);
 892     }
 893   }
 894   return osr_nm;
 895 IRT_END
 896 
 897 IRT_LEAF(jint, InterpreterRuntime::bcp_to_di(Method* method, address cur_bcp))
 898   assert(ProfileInterpreter, "must be profiling interpreter");
 899   int bci = method->bci_from(cur_bcp);
 900   MethodData* mdo = method->method_data();
 901   if (mdo == NULL)  return 0;
 902   return mdo->bci_to_di(bci);
 903 IRT_END
 904 
 905 IRT_ENTRY(void, InterpreterRuntime::profile_method(JavaThread* thread))
 906   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
 907   // flag, in case this method triggers classloading which will call into Java.
 908   UnlockFlagSaver fs(thread);
 909 
 910   assert(ProfileInterpreter, "must be profiling interpreter");
 911   frame fr = thread->last_frame();
 912   assert(fr.is_interpreted_frame(), "must come from interpreter");
 913   methodHandle method(thread, fr.interpreter_frame_method());
 914   Method::build_interpreter_method_data(method, THREAD);
 915   if (HAS_PENDING_EXCEPTION) {
 916     assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
 917     CLEAR_PENDING_EXCEPTION;
 918     // and fall through...
 919   }
 920 IRT_END
 921 
 922 
 923 #ifdef ASSERT
 924 IRT_LEAF(void, InterpreterRuntime::verify_mdp(Method* method, address bcp, address mdp))
 925   assert(ProfileInterpreter, "must be profiling interpreter");
 926 
 927   MethodData* mdo = method->method_data();
 928   assert(mdo != NULL, "must not be null");
 929 
 930   int bci = method->bci_from(bcp);
 931 
 932   address mdp2 = mdo->bci_to_dp(bci);
 933   if (mdp != mdp2) {
 934     ResourceMark rm;
 935     ResetNoHandleMark rnm; // In a LEAF entry.
 936     HandleMark hm;
 937     tty->print_cr("FAILED verify : actual mdp %p   expected mdp %p @ bci %d", mdp, mdp2, bci);
 938     int current_di = mdo->dp_to_di(mdp);
 939     int expected_di  = mdo->dp_to_di(mdp2);
 940     tty->print_cr("  actual di %d   expected di %d", current_di, expected_di);
 941     int expected_approx_bci = mdo->data_at(expected_di)->bci();
 942     int approx_bci = -1;
 943     if (current_di >= 0) {
 944       approx_bci = mdo->data_at(current_di)->bci();
 945     }
 946     tty->print_cr("  actual bci is %d  expected bci %d", approx_bci, expected_approx_bci);
 947     mdo->print_on(tty);
 948     method->print_codes();
 949   }
 950   assert(mdp == mdp2, "wrong mdp");
 951 IRT_END
 952 #endif // ASSERT
 953 
 954 IRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci))
 955   assert(ProfileInterpreter, "must be profiling interpreter");
 956   ResourceMark rm(thread);
 957   HandleMark hm(thread);
 958   frame fr = thread->last_frame();
 959   assert(fr.is_interpreted_frame(), "must come from interpreter");
 960   MethodData* h_mdo = fr.interpreter_frame_method()->method_data();
 961 
 962   // Grab a lock to ensure atomic access to setting the return bci and
 963   // the displacement.  This can block and GC, invalidating all naked oops.
 964   MutexLocker ml(RetData_lock);
 965 
 966   // ProfileData is essentially a wrapper around a derived oop, so we
 967   // need to take the lock before making any ProfileData structures.
 968   ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(fr.interpreter_frame_mdp()));
 969   RetData* rdata = data->as_RetData();
 970   address new_mdp = rdata->fixup_ret(return_bci, h_mdo);
 971   fr.interpreter_frame_set_mdp(new_mdp);
 972 IRT_END
 973 
 974 IRT_ENTRY(MethodCounters*, InterpreterRuntime::build_method_counters(JavaThread* thread, Method* m))
 975   MethodCounters* mcs = Method::build_method_counters(m, thread);
 976   if (HAS_PENDING_EXCEPTION) {
 977     assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
 978     CLEAR_PENDING_EXCEPTION;
 979   }
 980   return mcs;
 981 IRT_END
 982 
 983 
 984 IRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread))
 985   // We used to need an explict preserve_arguments here for invoke bytecodes. However,
 986   // stack traversal automatically takes care of preserving arguments for invoke, so
 987   // this is no longer needed.
 988 
 989   // IRT_END does an implicit safepoint check, hence we are guaranteed to block
 990   // if this is called during a safepoint
 991 
 992   if (JvmtiExport::should_post_single_step()) {
 993     // We are called during regular safepoints and when the VM is
 994     // single stepping. If any thread is marked for single stepping,
 995     // then we may have JVMTI work to do.
 996     JvmtiExport::at_single_stepping_point(thread, method(thread), bcp(thread));
 997   }
 998 IRT_END
 999 
1000 IRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj,
1001 ConstantPoolCacheEntry *cp_entry))
1002 
1003   // check the access_flags for the field in the klass
1004 
1005   InstanceKlass* ik = InstanceKlass::cast(cp_entry->f1_as_klass());
1006   int index = cp_entry->field_index();
1007   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return;
1008 
1009   bool is_static = (obj == NULL);
1010   HandleMark hm(thread);
1011 
1012   Handle h_obj;
1013   if (!is_static) {
1014     // non-static field accessors have an object, but we need a handle
1015     h_obj = Handle(thread, obj);
1016   }
1017   instanceKlassHandle h_cp_entry_f1(thread, (Klass*)cp_entry->f1_as_klass());
1018   jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_cp_entry_f1, cp_entry->f2_as_index(), is_static);
1019   JvmtiExport::post_field_access(thread, method(thread), bcp(thread), h_cp_entry_f1, h_obj, fid);
1020 IRT_END
1021 
1022 IRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread,
1023   oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value))
1024 
1025   Klass* k = (Klass*)cp_entry->f1_as_klass();
1026 
1027   // check the access_flags for the field in the klass
1028   InstanceKlass* ik = InstanceKlass::cast(k);
1029   int index = cp_entry->field_index();
1030   // bail out if field modifications are not watched
1031   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return;
1032 
1033   char sig_type = '\0';
1034 
1035   switch(cp_entry->flag_state()) {
1036     case btos: sig_type = 'Z'; break;
1037     case ctos: sig_type = 'C'; break;
1038     case stos: sig_type = 'S'; break;
1039     case itos: sig_type = 'I'; break;
1040     case ftos: sig_type = 'F'; break;
1041     case atos: sig_type = 'L'; break;
1042     case ltos: sig_type = 'J'; break;
1043     case dtos: sig_type = 'D'; break;
1044     default:  ShouldNotReachHere(); return;
1045   }
1046   bool is_static = (obj == NULL);
1047 
1048   HandleMark hm(thread);
1049   instanceKlassHandle h_klass(thread, k);
1050   jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_klass, cp_entry->f2_as_index(), is_static);
1051   jvalue fvalue;
1052 #ifdef _LP64
1053   fvalue = *value;
1054 #else
1055   // Long/double values are stored unaligned and also noncontiguously with
1056   // tagged stacks.  We can't just do a simple assignment even in the non-
1057   // J/D cases because a C++ compiler is allowed to assume that a jvalue is
1058   // 8-byte aligned, and interpreter stack slots are only 4-byte aligned.
1059   // We assume that the two halves of longs/doubles are stored in interpreter
1060   // stack slots in platform-endian order.
1061   jlong_accessor u;
1062   jint* newval = (jint*)value;
1063   u.words[0] = newval[0];
1064   u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag
1065   fvalue.j = u.long_value;
1066 #endif // _LP64
1067 
1068   Handle h_obj;
1069   if (!is_static) {
1070     // non-static field accessors have an object, but we need a handle
1071     h_obj = Handle(thread, obj);
1072   }
1073 
1074   JvmtiExport::post_raw_field_modification(thread, method(thread), bcp(thread), h_klass, h_obj,
1075                                            fid, sig_type, &fvalue);
1076 IRT_END
1077 
1078 IRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread))
1079   JvmtiExport::post_method_entry(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
1080 IRT_END
1081 
1082 
1083 IRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread))
1084   JvmtiExport::post_method_exit(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
1085 IRT_END
1086 
1087 IRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc))
1088 {
1089   return (Interpreter::contains(pc) ? 1 : 0);
1090 }
1091 IRT_END
1092 
1093 
1094 // Implementation of SignatureHandlerLibrary
1095 
1096 address SignatureHandlerLibrary::set_handler_blob() {
1097   BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size);
1098   if (handler_blob == NULL) {
1099     return NULL;
1100   }
1101   address handler = handler_blob->code_begin();
1102   _handler_blob = handler_blob;
1103   _handler = handler;
1104   return handler;
1105 }
1106 
1107 void SignatureHandlerLibrary::initialize() {
1108   if (_fingerprints != NULL) {
1109     return;
1110   }
1111   if (set_handler_blob() == NULL) {
1112     vm_exit_out_of_memory(blob_size, OOM_MALLOC_ERROR, "native signature handlers");
1113   }
1114 
1115   BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer",
1116                                       SignatureHandlerLibrary::buffer_size);
1117   _buffer = bb->code_begin();
1118 
1119   _fingerprints = new(ResourceObj::C_HEAP, mtCode)GrowableArray<uint64_t>(32, true);
1120   _handlers     = new(ResourceObj::C_HEAP, mtCode)GrowableArray<address>(32, true);
1121 }
1122 
1123 address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) {
1124   address handler   = _handler;
1125   int     insts_size = buffer->pure_insts_size();
1126   if (handler + insts_size > _handler_blob->code_end()) {
1127     // get a new handler blob
1128     handler = set_handler_blob();
1129   }
1130   if (handler != NULL) {
1131     memcpy(handler, buffer->insts_begin(), insts_size);
1132     pd_set_handler(handler);
1133     ICache::invalidate_range(handler, insts_size);
1134     _handler = handler + insts_size;
1135   }
1136   return handler;
1137 }
1138 
1139 void SignatureHandlerLibrary::add(methodHandle method) {
1140   if (method->signature_handler() == NULL) {
1141     // use slow signature handler if we can't do better
1142     int handler_index = -1;
1143     // check if we can use customized (fast) signature handler
1144     if (UseFastSignatureHandlers && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) {
1145       // use customized signature handler
1146       MutexLocker mu(SignatureHandlerLibrary_lock);
1147       // make sure data structure is initialized
1148       initialize();
1149       // lookup method signature's fingerprint
1150       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1151       handler_index = _fingerprints->find(fingerprint);
1152       // create handler if necessary
1153       if (handler_index < 0) {
1154         ResourceMark rm;
1155         ptrdiff_t align_offset = (address)
1156           round_to((intptr_t)_buffer, CodeEntryAlignment) - (address)_buffer;
1157         CodeBuffer buffer((address)(_buffer + align_offset),
1158                           SignatureHandlerLibrary::buffer_size - align_offset);
1159         InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint);
1160         // copy into code heap
1161         address handler = set_handler(&buffer);
1162         if (handler == NULL) {
1163           // use slow signature handler
1164         } else {
1165           // debugging suppport
1166           if (PrintSignatureHandlers) {
1167             tty->cr();
1168             tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)",
1169                           _handlers->length(),
1170                           (method->is_static() ? "static" : "receiver"),
1171                           method->name_and_sig_as_C_string(),
1172                           fingerprint,
1173                           buffer.insts_size());
1174             Disassembler::decode(handler, handler + buffer.insts_size());
1175 #ifndef PRODUCT
1176             tty->print_cr(" --- associated result handler ---");
1177             address rh_begin = Interpreter::result_handler(method()->result_type());
1178             address rh_end = rh_begin;
1179             while (*(int*)rh_end != 0) {
1180               rh_end += sizeof(int);
1181             }
1182             Disassembler::decode(rh_begin, rh_end);
1183 #endif
1184           }
1185           // add handler to library
1186           _fingerprints->append(fingerprint);
1187           _handlers->append(handler);
1188           // set handler index
1189           assert(_fingerprints->length() == _handlers->length(), "sanity check");
1190           handler_index = _fingerprints->length() - 1;
1191         }
1192       }
1193       // Set handler under SignatureHandlerLibrary_lock
1194     if (handler_index < 0) {
1195       // use generic signature handler
1196       method->set_signature_handler(Interpreter::slow_signature_handler());
1197     } else {
1198       // set handler
1199       method->set_signature_handler(_handlers->at(handler_index));
1200     }
1201     } else {
1202       CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
1203       // use generic signature handler
1204       method->set_signature_handler(Interpreter::slow_signature_handler());
1205     }
1206   }
1207 #ifdef ASSERT
1208   int handler_index = -1;
1209   int fingerprint_index = -2;
1210   {
1211     // '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized
1212     // in any way if accessed from multiple threads. To avoid races with another
1213     // thread which may change the arrays in the above, mutex protected block, we
1214     // have to protect this read access here with the same mutex as well!
1215     MutexLocker mu(SignatureHandlerLibrary_lock);
1216     if (_handlers != NULL) {
1217     handler_index = _handlers->find(method->signature_handler());
1218     fingerprint_index = _fingerprints->find(Fingerprinter(method).fingerprint());
1219   }
1220   }
1221   assert(method->signature_handler() == Interpreter::slow_signature_handler() ||
1222          handler_index == fingerprint_index, "sanity check");
1223 #endif // ASSERT
1224 }
1225 
1226 
1227 BufferBlob*              SignatureHandlerLibrary::_handler_blob = NULL;
1228 address                  SignatureHandlerLibrary::_handler      = NULL;
1229 GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL;
1230 GrowableArray<address>*  SignatureHandlerLibrary::_handlers     = NULL;
1231 address                  SignatureHandlerLibrary::_buffer       = NULL;
1232 
1233 
1234 IRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, Method* method))
1235   methodHandle m(thread, method);
1236   assert(m->is_native(), "sanity check");
1237   // lookup native function entry point if it doesn't exist
1238   bool in_base_library;
1239   if (!m->has_native_function()) {
1240     NativeLookup::lookup(m, in_base_library, CHECK);
1241   }
1242   // make sure signature handler is installed
1243   SignatureHandlerLibrary::add(m);
1244   // The interpreter entry point checks the signature handler first,
1245   // before trying to fetch the native entry point and klass mirror.
1246   // We must set the signature handler last, so that multiple processors
1247   // preparing the same method will be sure to see non-null entry & mirror.
1248 IRT_END
1249 
1250 #if defined(IA32) || defined(AMD64) || defined(ARM)
1251 IRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address))
1252   if (src_address == dest_address) {
1253     return;
1254   }
1255   ResetNoHandleMark rnm; // In a LEAF entry.
1256   HandleMark hm;
1257   ResourceMark rm;
1258   frame fr = thread->last_frame();
1259   assert(fr.is_interpreted_frame(), "");
1260   jint bci = fr.interpreter_frame_bci();
1261   methodHandle mh(thread, fr.interpreter_frame_method());
1262   Bytecode_invoke invoke(mh, bci);
1263   ArgumentSizeComputer asc(invoke.signature());
1264   int size_of_arguments = (asc.size() + (invoke.has_receiver() ? 1 : 0)); // receiver
1265   Copy::conjoint_jbytes(src_address, dest_address,
1266                        size_of_arguments * Interpreter::stackElementSize);
1267 IRT_END
1268 #endif
1269 
1270 #if INCLUDE_JVMTI
1271 // This is a support of the JVMTI PopFrame interface.
1272 // Make sure it is an invokestatic of a polymorphic intrinsic that has a member_name argument
1273 // and return it as a vm_result so that it can be reloaded in the list of invokestatic parameters.
1274 // The member_name argument is a saved reference (in local#0) to the member_name.
1275 // For backward compatibility with some JDK versions (7, 8) it can also be a direct method handle.
1276 // FIXME: remove DMH case after j.l.i.InvokerBytecodeGenerator code shape is updated.
1277 IRT_ENTRY(void, InterpreterRuntime::member_name_arg_or_null(JavaThread* thread, address member_name,
1278                                                             Method* method, address bcp))
1279   Bytecodes::Code code = Bytecodes::code_at(method, bcp);
1280   if (code != Bytecodes::_invokestatic) {
1281     return;
1282   }
1283   ConstantPool* cpool = method->constants();
1284   int cp_index = Bytes::get_native_u2(bcp + 1) + ConstantPool::CPCACHE_INDEX_TAG;
1285   Symbol* cname = cpool->klass_name_at(cpool->klass_ref_index_at(cp_index));
1286   Symbol* mname = cpool->name_ref_at(cp_index);
1287 
1288   if (MethodHandles::has_member_arg(cname, mname)) {
1289     oop member_name_oop = (oop) member_name;
1290     if (java_lang_invoke_DirectMethodHandle::is_instance(member_name_oop)) {
1291       // FIXME: remove after j.l.i.InvokerBytecodeGenerator code shape is updated.
1292       member_name_oop = java_lang_invoke_DirectMethodHandle::member(member_name_oop);
1293     }
1294     thread->set_vm_result(member_name_oop);
1295   }
1296 IRT_END
1297 #endif // INCLUDE_JVMTI