1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm.h"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.inline.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.inline.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "services/attachListener.hpp"
  67 #include "services/memTracker.hpp"
  68 #include "services/runtimeService.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/growableArray.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 #ifdef _DEBUG
  76 #include <crtdbg.h>
  77 #endif
  78 
  79 
  80 #include <windows.h>
  81 #include <sys/types.h>
  82 #include <sys/stat.h>
  83 #include <sys/timeb.h>
  84 #include <objidl.h>
  85 #include <shlobj.h>
  86 
  87 #include <malloc.h>
  88 #include <signal.h>
  89 #include <direct.h>
  90 #include <errno.h>
  91 #include <fcntl.h>
  92 #include <io.h>
  93 #include <process.h>              // For _beginthreadex(), _endthreadex()
  94 #include <imagehlp.h>             // For os::dll_address_to_function_name
  95 // for enumerating dll libraries
  96 #include <vdmdbg.h>
  97 
  98 // for timer info max values which include all bits
  99 #define ALL_64_BITS CONST64(-1)
 100 
 101 // For DLL loading/load error detection
 102 // Values of PE COFF
 103 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 104 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 105 
 106 static HANDLE main_process;
 107 static HANDLE main_thread;
 108 static int    main_thread_id;
 109 
 110 static FILETIME process_creation_time;
 111 static FILETIME process_exit_time;
 112 static FILETIME process_user_time;
 113 static FILETIME process_kernel_time;
 114 
 115 #ifdef _M_IA64
 116   #define __CPU__ ia64
 117 #elif _M_AMD64
 118   #define __CPU__ amd64
 119 #else
 120   #define __CPU__ i486
 121 #endif
 122 
 123 // save DLL module handle, used by GetModuleFileName
 124 
 125 HINSTANCE vm_lib_handle;
 126 
 127 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 128   switch (reason) {
 129   case DLL_PROCESS_ATTACH:
 130     vm_lib_handle = hinst;
 131     if (ForceTimeHighResolution) {
 132       timeBeginPeriod(1L);
 133     }
 134     break;
 135   case DLL_PROCESS_DETACH:
 136     if (ForceTimeHighResolution) {
 137       timeEndPeriod(1L);
 138     }
 139     break;
 140   default:
 141     break;
 142   }
 143   return true;
 144 }
 145 
 146 static inline double fileTimeAsDouble(FILETIME* time) {
 147   const double high  = (double) ((unsigned int) ~0);
 148   const double split = 10000000.0;
 149   double result = (time->dwLowDateTime / split) +
 150                    time->dwHighDateTime * (high/split);
 151   return result;
 152 }
 153 
 154 // Implementation of os
 155 
 156 bool os::getenv(const char* name, char* buffer, int len) {
 157   int result = GetEnvironmentVariable(name, buffer, len);
 158   return result > 0 && result < len;
 159 }
 160 
 161 bool os::unsetenv(const char* name) {
 162   assert(name != NULL, "Null pointer");
 163   return (SetEnvironmentVariable(name, NULL) == TRUE);
 164 }
 165 
 166 // No setuid programs under Windows.
 167 bool os::have_special_privileges() {
 168   return false;
 169 }
 170 
 171 
 172 // This method is  a periodic task to check for misbehaving JNI applications
 173 // under CheckJNI, we can add any periodic checks here.
 174 // For Windows at the moment does nothing
 175 void os::run_periodic_checks() {
 176   return;
 177 }
 178 
 179 // previous UnhandledExceptionFilter, if there is one
 180 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 181 
 182 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 183 
 184 void os::init_system_properties_values() {
 185   // sysclasspath, java_home, dll_dir
 186   {
 187     char *home_path;
 188     char *dll_path;
 189     char *pslash;
 190     char *bin = "\\bin";
 191     char home_dir[MAX_PATH];
 192 
 193     if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
 194       os::jvm_path(home_dir, sizeof(home_dir));
 195       // Found the full path to jvm.dll.
 196       // Now cut the path to <java_home>/jre if we can.
 197       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 198       pslash = strrchr(home_dir, '\\');
 199       if (pslash != NULL) {
 200         *pslash = '\0';                   // get rid of \{client|server}
 201         pslash = strrchr(home_dir, '\\');
 202         if (pslash != NULL) {
 203           *pslash = '\0';                 // get rid of \bin
 204         }
 205       }
 206     }
 207 
 208     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 209     if (home_path == NULL) {
 210       return;
 211     }
 212     strcpy(home_path, home_dir);
 213     Arguments::set_java_home(home_path);
 214     FREE_C_HEAP_ARRAY(char, home_path);
 215 
 216     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 217                                 mtInternal);
 218     if (dll_path == NULL) {
 219       return;
 220     }
 221     strcpy(dll_path, home_dir);
 222     strcat(dll_path, bin);
 223     Arguments::set_dll_dir(dll_path);
 224     FREE_C_HEAP_ARRAY(char, dll_path);
 225 
 226     if (!set_boot_path('\\', ';')) {
 227       return;
 228     }
 229   }
 230 
 231 // library_path
 232 #define EXT_DIR "\\lib\\ext"
 233 #define BIN_DIR "\\bin"
 234 #define PACKAGE_DIR "\\Sun\\Java"
 235   {
 236     // Win32 library search order (See the documentation for LoadLibrary):
 237     //
 238     // 1. The directory from which application is loaded.
 239     // 2. The system wide Java Extensions directory (Java only)
 240     // 3. System directory (GetSystemDirectory)
 241     // 4. Windows directory (GetWindowsDirectory)
 242     // 5. The PATH environment variable
 243     // 6. The current directory
 244 
 245     char *library_path;
 246     char tmp[MAX_PATH];
 247     char *path_str = ::getenv("PATH");
 248 
 249     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 250                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 251 
 252     library_path[0] = '\0';
 253 
 254     GetModuleFileName(NULL, tmp, sizeof(tmp));
 255     *(strrchr(tmp, '\\')) = '\0';
 256     strcat(library_path, tmp);
 257 
 258     GetWindowsDirectory(tmp, sizeof(tmp));
 259     strcat(library_path, ";");
 260     strcat(library_path, tmp);
 261     strcat(library_path, PACKAGE_DIR BIN_DIR);
 262 
 263     GetSystemDirectory(tmp, sizeof(tmp));
 264     strcat(library_path, ";");
 265     strcat(library_path, tmp);
 266 
 267     GetWindowsDirectory(tmp, sizeof(tmp));
 268     strcat(library_path, ";");
 269     strcat(library_path, tmp);
 270 
 271     if (path_str) {
 272       strcat(library_path, ";");
 273       strcat(library_path, path_str);
 274     }
 275 
 276     strcat(library_path, ";.");
 277 
 278     Arguments::set_library_path(library_path);
 279     FREE_C_HEAP_ARRAY(char, library_path);
 280   }
 281 
 282   // Default extensions directory
 283   {
 284     char path[MAX_PATH];
 285     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 286     GetWindowsDirectory(path, MAX_PATH);
 287     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 288             path, PACKAGE_DIR, EXT_DIR);
 289     Arguments::set_ext_dirs(buf);
 290   }
 291   #undef EXT_DIR
 292   #undef BIN_DIR
 293   #undef PACKAGE_DIR
 294 
 295 #ifndef _WIN64
 296   // set our UnhandledExceptionFilter and save any previous one
 297   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 298 #endif
 299 
 300   // Done
 301   return;
 302 }
 303 
 304 void os::breakpoint() {
 305   DebugBreak();
 306 }
 307 
 308 // Invoked from the BREAKPOINT Macro
 309 extern "C" void breakpoint() {
 310   os::breakpoint();
 311 }
 312 
 313 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 314 // So far, this method is only used by Native Memory Tracking, which is
 315 // only supported on Windows XP or later.
 316 //
 317 int os::get_native_stack(address* stack, int frames, int toSkip) {
 318 #ifdef _NMT_NOINLINE_
 319   toSkip++;
 320 #endif
 321   int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
 322                                                        (PVOID*)stack, NULL);
 323   for (int index = captured; index < frames; index ++) {
 324     stack[index] = NULL;
 325   }
 326   return captured;
 327 }
 328 
 329 
 330 // os::current_stack_base()
 331 //
 332 //   Returns the base of the stack, which is the stack's
 333 //   starting address.  This function must be called
 334 //   while running on the stack of the thread being queried.
 335 
 336 address os::current_stack_base() {
 337   MEMORY_BASIC_INFORMATION minfo;
 338   address stack_bottom;
 339   size_t stack_size;
 340 
 341   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 342   stack_bottom =  (address)minfo.AllocationBase;
 343   stack_size = minfo.RegionSize;
 344 
 345   // Add up the sizes of all the regions with the same
 346   // AllocationBase.
 347   while (1) {
 348     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 349     if (stack_bottom == (address)minfo.AllocationBase) {
 350       stack_size += minfo.RegionSize;
 351     } else {
 352       break;
 353     }
 354   }
 355 
 356 #ifdef _M_IA64
 357   // IA64 has memory and register stacks
 358   //
 359   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 360   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 361   // growing downwards, 2MB summed up)
 362   //
 363   // ...
 364   // ------- top of stack (high address) -----
 365   // |
 366   // |      1MB
 367   // |      Backing Store (Register Stack)
 368   // |
 369   // |         / \
 370   // |          |
 371   // |          |
 372   // |          |
 373   // ------------------------ stack base -----
 374   // |      1MB
 375   // |      Memory Stack
 376   // |
 377   // |          |
 378   // |          |
 379   // |          |
 380   // |         \ /
 381   // |
 382   // ----- bottom of stack (low address) -----
 383   // ...
 384 
 385   stack_size = stack_size / 2;
 386 #endif
 387   return stack_bottom + stack_size;
 388 }
 389 
 390 size_t os::current_stack_size() {
 391   size_t sz;
 392   MEMORY_BASIC_INFORMATION minfo;
 393   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 394   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 395   return sz;
 396 }
 397 
 398 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 399   const struct tm* time_struct_ptr = localtime(clock);
 400   if (time_struct_ptr != NULL) {
 401     *res = *time_struct_ptr;
 402     return res;
 403   }
 404   return NULL;
 405 }
 406 
 407 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 408 
 409 // Thread start routine for all new Java threads
 410 static unsigned __stdcall java_start(Thread* thread) {
 411   // Try to randomize the cache line index of hot stack frames.
 412   // This helps when threads of the same stack traces evict each other's
 413   // cache lines. The threads can be either from the same JVM instance, or
 414   // from different JVM instances. The benefit is especially true for
 415   // processors with hyperthreading technology.
 416   static int counter = 0;
 417   int pid = os::current_process_id();
 418   _alloca(((pid ^ counter++) & 7) * 128);
 419 
 420   OSThread* osthr = thread->osthread();
 421   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 422 
 423   if (UseNUMA) {
 424     int lgrp_id = os::numa_get_group_id();
 425     if (lgrp_id != -1) {
 426       thread->set_lgrp_id(lgrp_id);
 427     }
 428   }
 429 
 430   // Diagnostic code to investigate JDK-6573254
 431   int res = 30115;  // non-java thread
 432   if (thread->is_Java_thread()) {
 433     res = 20115;    // java thread
 434   }
 435 
 436   // Install a win32 structured exception handler around every thread created
 437   // by VM, so VM can generate error dump when an exception occurred in non-
 438   // Java thread (e.g. VM thread).
 439   __try {
 440     thread->run();
 441   } __except(topLevelExceptionFilter(
 442                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 443     // Nothing to do.
 444   }
 445 
 446   // One less thread is executing
 447   // When the VMThread gets here, the main thread may have already exited
 448   // which frees the CodeHeap containing the Atomic::add code
 449   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 450     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 451   }
 452 
 453   // Thread must not return from exit_process_or_thread(), but if it does,
 454   // let it proceed to exit normally
 455   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 456 }
 457 
 458 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 459                                   int thread_id) {
 460   // Allocate the OSThread object
 461   OSThread* osthread = new OSThread(NULL, NULL);
 462   if (osthread == NULL) return NULL;
 463 
 464   // Initialize support for Java interrupts
 465   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 466   if (interrupt_event == NULL) {
 467     delete osthread;
 468     return NULL;
 469   }
 470   osthread->set_interrupt_event(interrupt_event);
 471 
 472   // Store info on the Win32 thread into the OSThread
 473   osthread->set_thread_handle(thread_handle);
 474   osthread->set_thread_id(thread_id);
 475 
 476   if (UseNUMA) {
 477     int lgrp_id = os::numa_get_group_id();
 478     if (lgrp_id != -1) {
 479       thread->set_lgrp_id(lgrp_id);
 480     }
 481   }
 482 
 483   // Initial thread state is INITIALIZED, not SUSPENDED
 484   osthread->set_state(INITIALIZED);
 485 
 486   return osthread;
 487 }
 488 
 489 
 490 bool os::create_attached_thread(JavaThread* thread) {
 491 #ifdef ASSERT
 492   thread->verify_not_published();
 493 #endif
 494   HANDLE thread_h;
 495   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 496                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 497     fatal("DuplicateHandle failed\n");
 498   }
 499   OSThread* osthread = create_os_thread(thread, thread_h,
 500                                         (int)current_thread_id());
 501   if (osthread == NULL) {
 502     return false;
 503   }
 504 
 505   // Initial thread state is RUNNABLE
 506   osthread->set_state(RUNNABLE);
 507 
 508   thread->set_osthread(osthread);
 509   return true;
 510 }
 511 
 512 bool os::create_main_thread(JavaThread* thread) {
 513 #ifdef ASSERT
 514   thread->verify_not_published();
 515 #endif
 516   if (_starting_thread == NULL) {
 517     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 518     if (_starting_thread == NULL) {
 519       return false;
 520     }
 521   }
 522 
 523   // The primordial thread is runnable from the start)
 524   _starting_thread->set_state(RUNNABLE);
 525 
 526   thread->set_osthread(_starting_thread);
 527   return true;
 528 }
 529 
 530 // Allocate and initialize a new OSThread
 531 bool os::create_thread(Thread* thread, ThreadType thr_type,
 532                        size_t stack_size) {
 533   unsigned thread_id;
 534 
 535   // Allocate the OSThread object
 536   OSThread* osthread = new OSThread(NULL, NULL);
 537   if (osthread == NULL) {
 538     return false;
 539   }
 540 
 541   // Initialize support for Java interrupts
 542   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 543   if (interrupt_event == NULL) {
 544     delete osthread;
 545     return NULL;
 546   }
 547   osthread->set_interrupt_event(interrupt_event);
 548   osthread->set_interrupted(false);
 549 
 550   thread->set_osthread(osthread);
 551 
 552   if (stack_size == 0) {
 553     switch (thr_type) {
 554     case os::java_thread:
 555       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 556       if (JavaThread::stack_size_at_create() > 0) {
 557         stack_size = JavaThread::stack_size_at_create();
 558       }
 559       break;
 560     case os::compiler_thread:
 561       if (CompilerThreadStackSize > 0) {
 562         stack_size = (size_t)(CompilerThreadStackSize * K);
 563         break;
 564       } // else fall through:
 565         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 566     case os::vm_thread:
 567     case os::pgc_thread:
 568     case os::cgc_thread:
 569     case os::watcher_thread:
 570       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 571       break;
 572     }
 573   }
 574 
 575   // Create the Win32 thread
 576   //
 577   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 578   // does not specify stack size. Instead, it specifies the size of
 579   // initially committed space. The stack size is determined by
 580   // PE header in the executable. If the committed "stack_size" is larger
 581   // than default value in the PE header, the stack is rounded up to the
 582   // nearest multiple of 1MB. For example if the launcher has default
 583   // stack size of 320k, specifying any size less than 320k does not
 584   // affect the actual stack size at all, it only affects the initial
 585   // commitment. On the other hand, specifying 'stack_size' larger than
 586   // default value may cause significant increase in memory usage, because
 587   // not only the stack space will be rounded up to MB, but also the
 588   // entire space is committed upfront.
 589   //
 590   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 591   // for CreateThread() that can treat 'stack_size' as stack size. However we
 592   // are not supposed to call CreateThread() directly according to MSDN
 593   // document because JVM uses C runtime library. The good news is that the
 594   // flag appears to work with _beginthredex() as well.
 595 
 596 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 597   #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 598 #endif
 599 
 600   HANDLE thread_handle =
 601     (HANDLE)_beginthreadex(NULL,
 602                            (unsigned)stack_size,
 603                            (unsigned (__stdcall *)(void*)) java_start,
 604                            thread,
 605                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 606                            &thread_id);
 607   if (thread_handle == NULL) {
 608     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 609     // without the flag.
 610     thread_handle =
 611       (HANDLE)_beginthreadex(NULL,
 612                              (unsigned)stack_size,
 613                              (unsigned (__stdcall *)(void*)) java_start,
 614                              thread,
 615                              CREATE_SUSPENDED,
 616                              &thread_id);
 617   }
 618   if (thread_handle == NULL) {
 619     // Need to clean up stuff we've allocated so far
 620     CloseHandle(osthread->interrupt_event());
 621     thread->set_osthread(NULL);
 622     delete osthread;
 623     return NULL;
 624   }
 625 
 626   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 627 
 628   // Store info on the Win32 thread into the OSThread
 629   osthread->set_thread_handle(thread_handle);
 630   osthread->set_thread_id(thread_id);
 631 
 632   // Initial thread state is INITIALIZED, not SUSPENDED
 633   osthread->set_state(INITIALIZED);
 634 
 635   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 636   return true;
 637 }
 638 
 639 
 640 // Free Win32 resources related to the OSThread
 641 void os::free_thread(OSThread* osthread) {
 642   assert(osthread != NULL, "osthread not set");
 643   CloseHandle(osthread->thread_handle());
 644   CloseHandle(osthread->interrupt_event());
 645   delete osthread;
 646 }
 647 
 648 static jlong first_filetime;
 649 static jlong initial_performance_count;
 650 static jlong performance_frequency;
 651 
 652 
 653 jlong as_long(LARGE_INTEGER x) {
 654   jlong result = 0; // initialization to avoid warning
 655   set_high(&result, x.HighPart);
 656   set_low(&result, x.LowPart);
 657   return result;
 658 }
 659 
 660 
 661 jlong os::elapsed_counter() {
 662   LARGE_INTEGER count;
 663   if (win32::_has_performance_count) {
 664     QueryPerformanceCounter(&count);
 665     return as_long(count) - initial_performance_count;
 666   } else {
 667     FILETIME wt;
 668     GetSystemTimeAsFileTime(&wt);
 669     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 670   }
 671 }
 672 
 673 
 674 jlong os::elapsed_frequency() {
 675   if (win32::_has_performance_count) {
 676     return performance_frequency;
 677   } else {
 678     // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 679     return 10000000;
 680   }
 681 }
 682 
 683 
 684 julong os::available_memory() {
 685   return win32::available_memory();
 686 }
 687 
 688 julong os::win32::available_memory() {
 689   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 690   // value if total memory is larger than 4GB
 691   MEMORYSTATUSEX ms;
 692   ms.dwLength = sizeof(ms);
 693   GlobalMemoryStatusEx(&ms);
 694 
 695   return (julong)ms.ullAvailPhys;
 696 }
 697 
 698 julong os::physical_memory() {
 699   return win32::physical_memory();
 700 }
 701 
 702 bool os::has_allocatable_memory_limit(julong* limit) {
 703   MEMORYSTATUSEX ms;
 704   ms.dwLength = sizeof(ms);
 705   GlobalMemoryStatusEx(&ms);
 706 #ifdef _LP64
 707   *limit = (julong)ms.ullAvailVirtual;
 708   return true;
 709 #else
 710   // Limit to 1400m because of the 2gb address space wall
 711   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 712   return true;
 713 #endif
 714 }
 715 
 716 // VC6 lacks DWORD_PTR
 717 #if _MSC_VER < 1300
 718 typedef UINT_PTR DWORD_PTR;
 719 #endif
 720 
 721 int os::active_processor_count() {
 722   DWORD_PTR lpProcessAffinityMask = 0;
 723   DWORD_PTR lpSystemAffinityMask = 0;
 724   int proc_count = processor_count();
 725   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 726       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 727     // Nof active processors is number of bits in process affinity mask
 728     int bitcount = 0;
 729     while (lpProcessAffinityMask != 0) {
 730       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 731       bitcount++;
 732     }
 733     return bitcount;
 734   } else {
 735     return proc_count;
 736   }
 737 }
 738 
 739 void os::set_native_thread_name(const char *name) {
 740 
 741   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 742   //
 743   // Note that unfortunately this only works if the process
 744   // is already attached to a debugger; debugger must observe
 745   // the exception below to show the correct name.
 746 
 747   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 748   struct {
 749     DWORD dwType;     // must be 0x1000
 750     LPCSTR szName;    // pointer to name (in user addr space)
 751     DWORD dwThreadID; // thread ID (-1=caller thread)
 752     DWORD dwFlags;    // reserved for future use, must be zero
 753   } info;
 754 
 755   info.dwType = 0x1000;
 756   info.szName = name;
 757   info.dwThreadID = -1;
 758   info.dwFlags = 0;
 759 
 760   __try {
 761     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 762   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
 763 }
 764 
 765 bool os::distribute_processes(uint length, uint* distribution) {
 766   // Not yet implemented.
 767   return false;
 768 }
 769 
 770 bool os::bind_to_processor(uint processor_id) {
 771   // Not yet implemented.
 772   return false;
 773 }
 774 
 775 void os::win32::initialize_performance_counter() {
 776   LARGE_INTEGER count;
 777   if (QueryPerformanceFrequency(&count)) {
 778     win32::_has_performance_count = 1;
 779     performance_frequency = as_long(count);
 780     QueryPerformanceCounter(&count);
 781     initial_performance_count = as_long(count);
 782   } else {
 783     win32::_has_performance_count = 0;
 784     FILETIME wt;
 785     GetSystemTimeAsFileTime(&wt);
 786     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 787   }
 788 }
 789 
 790 
 791 double os::elapsedTime() {
 792   return (double) elapsed_counter() / (double) elapsed_frequency();
 793 }
 794 
 795 
 796 // Windows format:
 797 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 798 // Java format:
 799 //   Java standards require the number of milliseconds since 1/1/1970
 800 
 801 // Constant offset - calculated using offset()
 802 static jlong  _offset   = 116444736000000000;
 803 // Fake time counter for reproducible results when debugging
 804 static jlong  fake_time = 0;
 805 
 806 #ifdef ASSERT
 807 // Just to be safe, recalculate the offset in debug mode
 808 static jlong _calculated_offset = 0;
 809 static int   _has_calculated_offset = 0;
 810 
 811 jlong offset() {
 812   if (_has_calculated_offset) return _calculated_offset;
 813   SYSTEMTIME java_origin;
 814   java_origin.wYear          = 1970;
 815   java_origin.wMonth         = 1;
 816   java_origin.wDayOfWeek     = 0; // ignored
 817   java_origin.wDay           = 1;
 818   java_origin.wHour          = 0;
 819   java_origin.wMinute        = 0;
 820   java_origin.wSecond        = 0;
 821   java_origin.wMilliseconds  = 0;
 822   FILETIME jot;
 823   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 824     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 825   }
 826   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 827   _has_calculated_offset = 1;
 828   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 829   return _calculated_offset;
 830 }
 831 #else
 832 jlong offset() {
 833   return _offset;
 834 }
 835 #endif
 836 
 837 jlong windows_to_java_time(FILETIME wt) {
 838   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 839   return (a - offset()) / 10000;
 840 }
 841 
 842 // Returns time ticks in (10th of micro seconds)
 843 jlong windows_to_time_ticks(FILETIME wt) {
 844   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 845   return (a - offset());
 846 }
 847 
 848 FILETIME java_to_windows_time(jlong l) {
 849   jlong a = (l * 10000) + offset();
 850   FILETIME result;
 851   result.dwHighDateTime = high(a);
 852   result.dwLowDateTime  = low(a);
 853   return result;
 854 }
 855 
 856 bool os::supports_vtime() { return true; }
 857 bool os::enable_vtime() { return false; }
 858 bool os::vtime_enabled() { return false; }
 859 
 860 double os::elapsedVTime() {
 861   FILETIME created;
 862   FILETIME exited;
 863   FILETIME kernel;
 864   FILETIME user;
 865   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 866     // the resolution of windows_to_java_time() should be sufficient (ms)
 867     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 868   } else {
 869     return elapsedTime();
 870   }
 871 }
 872 
 873 jlong os::javaTimeMillis() {
 874   if (UseFakeTimers) {
 875     return fake_time++;
 876   } else {
 877     FILETIME wt;
 878     GetSystemTimeAsFileTime(&wt);
 879     return windows_to_java_time(wt);
 880   }
 881 }
 882 
 883 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 884   FILETIME wt;
 885   GetSystemTimeAsFileTime(&wt);
 886   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 887   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 888   seconds = secs;
 889   nanos = jlong(ticks - (secs*10000000)) * 100;
 890 }
 891 
 892 jlong os::javaTimeNanos() {
 893   if (!win32::_has_performance_count) {
 894     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 895   } else {
 896     LARGE_INTEGER current_count;
 897     QueryPerformanceCounter(&current_count);
 898     double current = as_long(current_count);
 899     double freq = performance_frequency;
 900     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 901     return time;
 902   }
 903 }
 904 
 905 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 906   if (!win32::_has_performance_count) {
 907     // javaTimeMillis() doesn't have much percision,
 908     // but it is not going to wrap -- so all 64 bits
 909     info_ptr->max_value = ALL_64_BITS;
 910 
 911     // this is a wall clock timer, so may skip
 912     info_ptr->may_skip_backward = true;
 913     info_ptr->may_skip_forward = true;
 914   } else {
 915     jlong freq = performance_frequency;
 916     if (freq < NANOSECS_PER_SEC) {
 917       // the performance counter is 64 bits and we will
 918       // be multiplying it -- so no wrap in 64 bits
 919       info_ptr->max_value = ALL_64_BITS;
 920     } else if (freq > NANOSECS_PER_SEC) {
 921       // use the max value the counter can reach to
 922       // determine the max value which could be returned
 923       julong max_counter = (julong)ALL_64_BITS;
 924       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 925     } else {
 926       // the performance counter is 64 bits and we will
 927       // be using it directly -- so no wrap in 64 bits
 928       info_ptr->max_value = ALL_64_BITS;
 929     }
 930 
 931     // using a counter, so no skipping
 932     info_ptr->may_skip_backward = false;
 933     info_ptr->may_skip_forward = false;
 934   }
 935   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 936 }
 937 
 938 char* os::local_time_string(char *buf, size_t buflen) {
 939   SYSTEMTIME st;
 940   GetLocalTime(&st);
 941   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 942                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 943   return buf;
 944 }
 945 
 946 bool os::getTimesSecs(double* process_real_time,
 947                       double* process_user_time,
 948                       double* process_system_time) {
 949   HANDLE h_process = GetCurrentProcess();
 950   FILETIME create_time, exit_time, kernel_time, user_time;
 951   BOOL result = GetProcessTimes(h_process,
 952                                 &create_time,
 953                                 &exit_time,
 954                                 &kernel_time,
 955                                 &user_time);
 956   if (result != 0) {
 957     FILETIME wt;
 958     GetSystemTimeAsFileTime(&wt);
 959     jlong rtc_millis = windows_to_java_time(wt);
 960     jlong user_millis = windows_to_java_time(user_time);
 961     jlong system_millis = windows_to_java_time(kernel_time);
 962     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 963     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 964     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 965     return true;
 966   } else {
 967     return false;
 968   }
 969 }
 970 
 971 void os::shutdown() {
 972   // allow PerfMemory to attempt cleanup of any persistent resources
 973   perfMemory_exit();
 974 
 975   // flush buffered output, finish log files
 976   ostream_abort();
 977 
 978   // Check for abort hook
 979   abort_hook_t abort_hook = Arguments::abort_hook();
 980   if (abort_hook != NULL) {
 981     abort_hook();
 982   }
 983 }
 984 
 985 
 986 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 987                                          PMINIDUMP_EXCEPTION_INFORMATION,
 988                                          PMINIDUMP_USER_STREAM_INFORMATION,
 989                                          PMINIDUMP_CALLBACK_INFORMATION);
 990 
 991 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
 992   HINSTANCE dbghelp;
 993   EXCEPTION_POINTERS ep;
 994   MINIDUMP_EXCEPTION_INFORMATION mei;
 995   MINIDUMP_EXCEPTION_INFORMATION* pmei;
 996 
 997   HANDLE hProcess = GetCurrentProcess();
 998   DWORD processId = GetCurrentProcessId();
 999   HANDLE dumpFile;
1000   MINIDUMP_TYPE dumpType;
1001   static const char* cwd;
1002 
1003 // Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
1004 #ifndef ASSERT
1005   // If running on a client version of Windows and user has not explicitly enabled dumping
1006   if (!os::win32::is_windows_server() && !CreateCoredumpOnCrash) {
1007     VMError::report_coredump_status("Coredumps are not enabled by default on client versions of Windows", false);
1008     return;
1009     // If running on a server version of Windows and user has explictly disabled dumping
1010   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
1011     VMError::report_coredump_status("Coredump has been disabled from the command line", false);
1012     return;
1013   }
1014 #else
1015   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
1016     VMError::report_coredump_status("Coredump has been disabled from the command line", false);
1017     return;
1018   }
1019 #endif
1020 
1021   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1022 
1023   if (dbghelp == NULL) {
1024     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
1025     return;
1026   }
1027 
1028   _MiniDumpWriteDump =
1029       CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1030                                     PMINIDUMP_EXCEPTION_INFORMATION,
1031                                     PMINIDUMP_USER_STREAM_INFORMATION,
1032                                     PMINIDUMP_CALLBACK_INFORMATION),
1033                                     GetProcAddress(dbghelp,
1034                                     "MiniDumpWriteDump"));
1035 
1036   if (_MiniDumpWriteDump == NULL) {
1037     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
1038     return;
1039   }
1040 
1041   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1042 
1043 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
1044 // API_VERSION_NUMBER 11 or higher contains the ones we want though
1045 #if API_VERSION_NUMBER >= 11
1046   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1047                              MiniDumpWithUnloadedModules);
1048 #endif
1049 
1050   cwd = get_current_directory(NULL, 0);
1051   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp", cwd, current_process_id());
1052   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
1053 
1054   if (dumpFile == INVALID_HANDLE_VALUE) {
1055     VMError::report_coredump_status("Failed to create file for dumping", false);
1056     return;
1057   }
1058   if (exceptionRecord != NULL && contextRecord != NULL) {
1059     ep.ContextRecord = (PCONTEXT) contextRecord;
1060     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
1061 
1062     mei.ThreadId = GetCurrentThreadId();
1063     mei.ExceptionPointers = &ep;
1064     pmei = &mei;
1065   } else {
1066     pmei = NULL;
1067   }
1068 
1069 
1070   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1071   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1072   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1073       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1074     DWORD error = GetLastError();
1075     LPTSTR msgbuf = NULL;
1076 
1077     if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
1078                       FORMAT_MESSAGE_FROM_SYSTEM |
1079                       FORMAT_MESSAGE_IGNORE_INSERTS,
1080                       NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
1081 
1082       jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
1083       LocalFree(msgbuf);
1084     } else {
1085       // Call to FormatMessage failed, just include the result from GetLastError
1086       jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
1087     }
1088     VMError::report_coredump_status(buffer, false);
1089   } else {
1090     VMError::report_coredump_status(buffer, true);
1091   }
1092 
1093   CloseHandle(dumpFile);
1094 }
1095 
1096 
1097 void os::abort(bool dump_core) {
1098   os::shutdown();
1099   // no core dump on Windows
1100   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1101 }
1102 
1103 // Die immediately, no exit hook, no abort hook, no cleanup.
1104 void os::die() {
1105   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1106 }
1107 
1108 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1109 //  * dirent_md.c       1.15 00/02/02
1110 //
1111 // The declarations for DIR and struct dirent are in jvm_win32.h.
1112 
1113 // Caller must have already run dirname through JVM_NativePath, which removes
1114 // duplicate slashes and converts all instances of '/' into '\\'.
1115 
1116 DIR * os::opendir(const char *dirname) {
1117   assert(dirname != NULL, "just checking");   // hotspot change
1118   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1119   DWORD fattr;                                // hotspot change
1120   char alt_dirname[4] = { 0, 0, 0, 0 };
1121 
1122   if (dirp == 0) {
1123     errno = ENOMEM;
1124     return 0;
1125   }
1126 
1127   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1128   // as a directory in FindFirstFile().  We detect this case here and
1129   // prepend the current drive name.
1130   //
1131   if (dirname[1] == '\0' && dirname[0] == '\\') {
1132     alt_dirname[0] = _getdrive() + 'A' - 1;
1133     alt_dirname[1] = ':';
1134     alt_dirname[2] = '\\';
1135     alt_dirname[3] = '\0';
1136     dirname = alt_dirname;
1137   }
1138 
1139   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1140   if (dirp->path == 0) {
1141     free(dirp);
1142     errno = ENOMEM;
1143     return 0;
1144   }
1145   strcpy(dirp->path, dirname);
1146 
1147   fattr = GetFileAttributes(dirp->path);
1148   if (fattr == 0xffffffff) {
1149     free(dirp->path);
1150     free(dirp);
1151     errno = ENOENT;
1152     return 0;
1153   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1154     free(dirp->path);
1155     free(dirp);
1156     errno = ENOTDIR;
1157     return 0;
1158   }
1159 
1160   // Append "*.*", or possibly "\\*.*", to path
1161   if (dirp->path[1] == ':' &&
1162       (dirp->path[2] == '\0' ||
1163       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1164     // No '\\' needed for cases like "Z:" or "Z:\"
1165     strcat(dirp->path, "*.*");
1166   } else {
1167     strcat(dirp->path, "\\*.*");
1168   }
1169 
1170   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1171   if (dirp->handle == INVALID_HANDLE_VALUE) {
1172     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1173       free(dirp->path);
1174       free(dirp);
1175       errno = EACCES;
1176       return 0;
1177     }
1178   }
1179   return dirp;
1180 }
1181 
1182 // parameter dbuf unused on Windows
1183 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1184   assert(dirp != NULL, "just checking");      // hotspot change
1185   if (dirp->handle == INVALID_HANDLE_VALUE) {
1186     return 0;
1187   }
1188 
1189   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1190 
1191   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1192     if (GetLastError() == ERROR_INVALID_HANDLE) {
1193       errno = EBADF;
1194       return 0;
1195     }
1196     FindClose(dirp->handle);
1197     dirp->handle = INVALID_HANDLE_VALUE;
1198   }
1199 
1200   return &dirp->dirent;
1201 }
1202 
1203 int os::closedir(DIR *dirp) {
1204   assert(dirp != NULL, "just checking");      // hotspot change
1205   if (dirp->handle != INVALID_HANDLE_VALUE) {
1206     if (!FindClose(dirp->handle)) {
1207       errno = EBADF;
1208       return -1;
1209     }
1210     dirp->handle = INVALID_HANDLE_VALUE;
1211   }
1212   free(dirp->path);
1213   free(dirp);
1214   return 0;
1215 }
1216 
1217 // This must be hard coded because it's the system's temporary
1218 // directory not the java application's temp directory, ala java.io.tmpdir.
1219 const char* os::get_temp_directory() {
1220   static char path_buf[MAX_PATH];
1221   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1222     return path_buf;
1223   } else {
1224     path_buf[0] = '\0';
1225     return path_buf;
1226   }
1227 }
1228 
1229 static bool file_exists(const char* filename) {
1230   if (filename == NULL || strlen(filename) == 0) {
1231     return false;
1232   }
1233   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1234 }
1235 
1236 bool os::dll_build_name(char *buffer, size_t buflen,
1237                         const char* pname, const char* fname) {
1238   bool retval = false;
1239   const size_t pnamelen = pname ? strlen(pname) : 0;
1240   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1241 
1242   // Return error on buffer overflow.
1243   if (pnamelen + strlen(fname) + 10 > buflen) {
1244     return retval;
1245   }
1246 
1247   if (pnamelen == 0) {
1248     jio_snprintf(buffer, buflen, "%s.dll", fname);
1249     retval = true;
1250   } else if (c == ':' || c == '\\') {
1251     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1252     retval = true;
1253   } else if (strchr(pname, *os::path_separator()) != NULL) {
1254     int n;
1255     char** pelements = split_path(pname, &n);
1256     if (pelements == NULL) {
1257       return false;
1258     }
1259     for (int i = 0; i < n; i++) {
1260       char* path = pelements[i];
1261       // Really shouldn't be NULL, but check can't hurt
1262       size_t plen = (path == NULL) ? 0 : strlen(path);
1263       if (plen == 0) {
1264         continue; // skip the empty path values
1265       }
1266       const char lastchar = path[plen - 1];
1267       if (lastchar == ':' || lastchar == '\\') {
1268         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1269       } else {
1270         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1271       }
1272       if (file_exists(buffer)) {
1273         retval = true;
1274         break;
1275       }
1276     }
1277     // release the storage
1278     for (int i = 0; i < n; i++) {
1279       if (pelements[i] != NULL) {
1280         FREE_C_HEAP_ARRAY(char, pelements[i]);
1281       }
1282     }
1283     if (pelements != NULL) {
1284       FREE_C_HEAP_ARRAY(char*, pelements);
1285     }
1286   } else {
1287     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1288     retval = true;
1289   }
1290   return retval;
1291 }
1292 
1293 // Needs to be in os specific directory because windows requires another
1294 // header file <direct.h>
1295 const char* os::get_current_directory(char *buf, size_t buflen) {
1296   int n = static_cast<int>(buflen);
1297   if (buflen > INT_MAX)  n = INT_MAX;
1298   return _getcwd(buf, n);
1299 }
1300 
1301 //-----------------------------------------------------------
1302 // Helper functions for fatal error handler
1303 #ifdef _WIN64
1304 // Helper routine which returns true if address in
1305 // within the NTDLL address space.
1306 //
1307 static bool _addr_in_ntdll(address addr) {
1308   HMODULE hmod;
1309   MODULEINFO minfo;
1310 
1311   hmod = GetModuleHandle("NTDLL.DLL");
1312   if (hmod == NULL) return false;
1313   if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1314                                           &minfo, sizeof(MODULEINFO))) {
1315     return false;
1316   }
1317 
1318   if ((addr >= minfo.lpBaseOfDll) &&
1319       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1320     return true;
1321   } else {
1322     return false;
1323   }
1324 }
1325 #endif
1326 
1327 struct _modinfo {
1328   address addr;
1329   char*   full_path;   // point to a char buffer
1330   int     buflen;      // size of the buffer
1331   address base_addr;
1332 };
1333 
1334 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1335                                   address top_address, void * param) {
1336   struct _modinfo *pmod = (struct _modinfo *)param;
1337   if (!pmod) return -1;
1338 
1339   if (base_addr   <= pmod->addr &&
1340       top_address > pmod->addr) {
1341     // if a buffer is provided, copy path name to the buffer
1342     if (pmod->full_path) {
1343       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1344     }
1345     pmod->base_addr = base_addr;
1346     return 1;
1347   }
1348   return 0;
1349 }
1350 
1351 bool os::dll_address_to_library_name(address addr, char* buf,
1352                                      int buflen, int* offset) {
1353   // buf is not optional, but offset is optional
1354   assert(buf != NULL, "sanity check");
1355 
1356 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1357 //       return the full path to the DLL file, sometimes it returns path
1358 //       to the corresponding PDB file (debug info); sometimes it only
1359 //       returns partial path, which makes life painful.
1360 
1361   struct _modinfo mi;
1362   mi.addr      = addr;
1363   mi.full_path = buf;
1364   mi.buflen    = buflen;
1365   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1366     // buf already contains path name
1367     if (offset) *offset = addr - mi.base_addr;
1368     return true;
1369   }
1370 
1371   buf[0] = '\0';
1372   if (offset) *offset = -1;
1373   return false;
1374 }
1375 
1376 bool os::dll_address_to_function_name(address addr, char *buf,
1377                                       int buflen, int *offset) {
1378   // buf is not optional, but offset is optional
1379   assert(buf != NULL, "sanity check");
1380 
1381   if (Decoder::decode(addr, buf, buflen, offset)) {
1382     return true;
1383   }
1384   if (offset != NULL)  *offset  = -1;
1385   buf[0] = '\0';
1386   return false;
1387 }
1388 
1389 // save the start and end address of jvm.dll into param[0] and param[1]
1390 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1391                            address top_address, void * param) {
1392   if (!param) return -1;
1393 
1394   if (base_addr   <= (address)_locate_jvm_dll &&
1395       top_address > (address)_locate_jvm_dll) {
1396     ((address*)param)[0] = base_addr;
1397     ((address*)param)[1] = top_address;
1398     return 1;
1399   }
1400   return 0;
1401 }
1402 
1403 address vm_lib_location[2];    // start and end address of jvm.dll
1404 
1405 // check if addr is inside jvm.dll
1406 bool os::address_is_in_vm(address addr) {
1407   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1408     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1409       assert(false, "Can't find jvm module.");
1410       return false;
1411     }
1412   }
1413 
1414   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1415 }
1416 
1417 // print module info; param is outputStream*
1418 static int _print_module(const char* fname, address base_address,
1419                          address top_address, void* param) {
1420   if (!param) return -1;
1421 
1422   outputStream* st = (outputStream*)param;
1423 
1424   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1425   return 0;
1426 }
1427 
1428 // Loads .dll/.so and
1429 // in case of error it checks if .dll/.so was built for the
1430 // same architecture as Hotspot is running on
1431 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1432   void * result = LoadLibrary(name);
1433   if (result != NULL) {
1434     return result;
1435   }
1436 
1437   DWORD errcode = GetLastError();
1438   if (errcode == ERROR_MOD_NOT_FOUND) {
1439     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1440     ebuf[ebuflen - 1] = '\0';
1441     return NULL;
1442   }
1443 
1444   // Parsing dll below
1445   // If we can read dll-info and find that dll was built
1446   // for an architecture other than Hotspot is running in
1447   // - then print to buffer "DLL was built for a different architecture"
1448   // else call os::lasterror to obtain system error message
1449 
1450   // Read system error message into ebuf
1451   // It may or may not be overwritten below (in the for loop and just above)
1452   lasterror(ebuf, (size_t) ebuflen);
1453   ebuf[ebuflen - 1] = '\0';
1454   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1455   if (fd < 0) {
1456     return NULL;
1457   }
1458 
1459   uint32_t signature_offset;
1460   uint16_t lib_arch = 0;
1461   bool failed_to_get_lib_arch =
1462     ( // Go to position 3c in the dll
1463      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1464      ||
1465      // Read location of signature
1466      (sizeof(signature_offset) !=
1467      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1468      ||
1469      // Go to COFF File Header in dll
1470      // that is located after "signature" (4 bytes long)
1471      (os::seek_to_file_offset(fd,
1472      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1473      ||
1474      // Read field that contains code of architecture
1475      // that dll was built for
1476      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1477     );
1478 
1479   ::close(fd);
1480   if (failed_to_get_lib_arch) {
1481     // file i/o error - report os::lasterror(...) msg
1482     return NULL;
1483   }
1484 
1485   typedef struct {
1486     uint16_t arch_code;
1487     char* arch_name;
1488   } arch_t;
1489 
1490   static const arch_t arch_array[] = {
1491     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1492     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1493     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1494   };
1495 #if   (defined _M_IA64)
1496   static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1497 #elif (defined _M_AMD64)
1498   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1499 #elif (defined _M_IX86)
1500   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1501 #else
1502   #error Method os::dll_load requires that one of following \
1503          is defined :_M_IA64,_M_AMD64 or _M_IX86
1504 #endif
1505 
1506 
1507   // Obtain a string for printf operation
1508   // lib_arch_str shall contain string what platform this .dll was built for
1509   // running_arch_str shall string contain what platform Hotspot was built for
1510   char *running_arch_str = NULL, *lib_arch_str = NULL;
1511   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1512     if (lib_arch == arch_array[i].arch_code) {
1513       lib_arch_str = arch_array[i].arch_name;
1514     }
1515     if (running_arch == arch_array[i].arch_code) {
1516       running_arch_str = arch_array[i].arch_name;
1517     }
1518   }
1519 
1520   assert(running_arch_str,
1521          "Didn't find running architecture code in arch_array");
1522 
1523   // If the architecture is right
1524   // but some other error took place - report os::lasterror(...) msg
1525   if (lib_arch == running_arch) {
1526     return NULL;
1527   }
1528 
1529   if (lib_arch_str != NULL) {
1530     ::_snprintf(ebuf, ebuflen - 1,
1531                 "Can't load %s-bit .dll on a %s-bit platform",
1532                 lib_arch_str, running_arch_str);
1533   } else {
1534     // don't know what architecture this dll was build for
1535     ::_snprintf(ebuf, ebuflen - 1,
1536                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1537                 lib_arch, running_arch_str);
1538   }
1539 
1540   return NULL;
1541 }
1542 
1543 void os::print_dll_info(outputStream *st) {
1544   st->print_cr("Dynamic libraries:");
1545   get_loaded_modules_info(_print_module, (void *)st);
1546 }
1547 
1548 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1549   HANDLE   hProcess;
1550 
1551 # define MAX_NUM_MODULES 128
1552   HMODULE     modules[MAX_NUM_MODULES];
1553   static char filename[MAX_PATH];
1554   int         result = 0;
1555 
1556   if (!os::PSApiDll::PSApiAvailable()) {
1557     return 0;
1558   }
1559 
1560   int pid = os::current_process_id();
1561   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1562                          FALSE, pid);
1563   if (hProcess == NULL) return 0;
1564 
1565   DWORD size_needed;
1566   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1567                                         sizeof(modules), &size_needed)) {
1568     CloseHandle(hProcess);
1569     return 0;
1570   }
1571 
1572   // number of modules that are currently loaded
1573   int num_modules = size_needed / sizeof(HMODULE);
1574 
1575   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1576     // Get Full pathname:
1577     if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1578                                            filename, sizeof(filename))) {
1579       filename[0] = '\0';
1580     }
1581 
1582     MODULEINFO modinfo;
1583     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1584                                             &modinfo, sizeof(modinfo))) {
1585       modinfo.lpBaseOfDll = NULL;
1586       modinfo.SizeOfImage = 0;
1587     }
1588 
1589     // Invoke callback function
1590     result = callback(filename, (address)modinfo.lpBaseOfDll,
1591                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1592     if (result) break;
1593   }
1594 
1595   CloseHandle(hProcess);
1596   return result;
1597 }
1598 
1599 void os::print_os_info_brief(outputStream* st) {
1600   os::print_os_info(st);
1601 }
1602 
1603 void os::print_os_info(outputStream* st) {
1604 #ifdef ASSERT
1605   char buffer[1024];
1606   DWORD size = sizeof(buffer);
1607   st->print(" HostName: ");
1608   if (GetComputerNameEx(ComputerNameDnsHostname, buffer, &size)) {
1609     st->print("%s", buffer);
1610   } else {
1611     st->print("N/A");
1612   }
1613 #endif
1614   st->print(" OS:");
1615   os::win32::print_windows_version(st);
1616 }
1617 
1618 void os::win32::print_windows_version(outputStream* st) {
1619   OSVERSIONINFOEX osvi;
1620   VS_FIXEDFILEINFO *file_info;
1621   TCHAR kernel32_path[MAX_PATH];
1622   UINT len, ret;
1623 
1624   // Use the GetVersionEx information to see if we're on a server or
1625   // workstation edition of Windows. Starting with Windows 8.1 we can't
1626   // trust the OS version information returned by this API.
1627   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1628   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1629   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1630     st->print_cr("Call to GetVersionEx failed");
1631     return;
1632   }
1633   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1634 
1635   // Get the full path to \Windows\System32\kernel32.dll and use that for
1636   // determining what version of Windows we're running on.
1637   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1638   ret = GetSystemDirectory(kernel32_path, len);
1639   if (ret == 0 || ret > len) {
1640     st->print_cr("Call to GetSystemDirectory failed");
1641     return;
1642   }
1643   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1644 
1645   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1646   if (version_size == 0) {
1647     st->print_cr("Call to GetFileVersionInfoSize failed");
1648     return;
1649   }
1650 
1651   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1652   if (version_info == NULL) {
1653     st->print_cr("Failed to allocate version_info");
1654     return;
1655   }
1656 
1657   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1658     os::free(version_info);
1659     st->print_cr("Call to GetFileVersionInfo failed");
1660     return;
1661   }
1662 
1663   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1664     os::free(version_info);
1665     st->print_cr("Call to VerQueryValue failed");
1666     return;
1667   }
1668 
1669   int major_version = HIWORD(file_info->dwProductVersionMS);
1670   int minor_version = LOWORD(file_info->dwProductVersionMS);
1671   int build_number = HIWORD(file_info->dwProductVersionLS);
1672   int build_minor = LOWORD(file_info->dwProductVersionLS);
1673   int os_vers = major_version * 1000 + minor_version;
1674   os::free(version_info);
1675 
1676   st->print(" Windows ");
1677   switch (os_vers) {
1678 
1679   case 6000:
1680     if (is_workstation) {
1681       st->print("Vista");
1682     } else {
1683       st->print("Server 2008");
1684     }
1685     break;
1686 
1687   case 6001:
1688     if (is_workstation) {
1689       st->print("7");
1690     } else {
1691       st->print("Server 2008 R2");
1692     }
1693     break;
1694 
1695   case 6002:
1696     if (is_workstation) {
1697       st->print("8");
1698     } else {
1699       st->print("Server 2012");
1700     }
1701     break;
1702 
1703   case 6003:
1704     if (is_workstation) {
1705       st->print("8.1");
1706     } else {
1707       st->print("Server 2012 R2");
1708     }
1709     break;
1710 
1711   case 10000:
1712     if (is_workstation) {
1713       st->print("10");
1714     } else {
1715       // The server version name of Windows 10 is not known at this time
1716       st->print("%d.%d", major_version, minor_version);
1717     }
1718     break;
1719 
1720   default:
1721     // Unrecognized windows, print out its major and minor versions
1722     st->print("%d.%d", major_version, minor_version);
1723     break;
1724   }
1725 
1726   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1727   // find out whether we are running on 64 bit processor or not
1728   SYSTEM_INFO si;
1729   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1730   os::Kernel32Dll::GetNativeSystemInfo(&si);
1731   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1732     st->print(" , 64 bit");
1733   }
1734 
1735   st->print(" Build %d", build_number);
1736   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1737   st->cr();
1738 }
1739 
1740 void os::pd_print_cpu_info(outputStream* st) {
1741   // Nothing to do for now.
1742 }
1743 
1744 void os::print_memory_info(outputStream* st) {
1745   st->print("Memory:");
1746   st->print(" %dk page", os::vm_page_size()>>10);
1747 
1748   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1749   // value if total memory is larger than 4GB
1750   MEMORYSTATUSEX ms;
1751   ms.dwLength = sizeof(ms);
1752   GlobalMemoryStatusEx(&ms);
1753 
1754   st->print(", physical %uk", os::physical_memory() >> 10);
1755   st->print("(%uk free)", os::available_memory() >> 10);
1756 
1757   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1758   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1759   st->cr();
1760 }
1761 
1762 void os::print_siginfo(outputStream *st, void *siginfo) {
1763   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1764   st->print("siginfo:");
1765   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1766 
1767   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1768       er->NumberParameters >= 2) {
1769     switch (er->ExceptionInformation[0]) {
1770     case 0: st->print(", reading address"); break;
1771     case 1: st->print(", writing address"); break;
1772     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1773                        er->ExceptionInformation[0]);
1774     }
1775     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1776   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1777              er->NumberParameters >= 2 && UseSharedSpaces) {
1778     FileMapInfo* mapinfo = FileMapInfo::current_info();
1779     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1780       st->print("\n\nError accessing class data sharing archive."       \
1781                 " Mapped file inaccessible during execution, "          \
1782                 " possible disk/network problem.");
1783     }
1784   } else {
1785     int num = er->NumberParameters;
1786     if (num > 0) {
1787       st->print(", ExceptionInformation=");
1788       for (int i = 0; i < num; i++) {
1789         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1790       }
1791     }
1792   }
1793   st->cr();
1794 }
1795 
1796 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1797   // do nothing
1798 }
1799 
1800 static char saved_jvm_path[MAX_PATH] = {0};
1801 
1802 // Find the full path to the current module, jvm.dll
1803 void os::jvm_path(char *buf, jint buflen) {
1804   // Error checking.
1805   if (buflen < MAX_PATH) {
1806     assert(false, "must use a large-enough buffer");
1807     buf[0] = '\0';
1808     return;
1809   }
1810   // Lazy resolve the path to current module.
1811   if (saved_jvm_path[0] != 0) {
1812     strcpy(buf, saved_jvm_path);
1813     return;
1814   }
1815 
1816   buf[0] = '\0';
1817   if (Arguments::sun_java_launcher_is_altjvm()) {
1818     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1819     // for a JAVA_HOME environment variable and fix up the path so it
1820     // looks like jvm.dll is installed there (append a fake suffix
1821     // hotspot/jvm.dll).
1822     char* java_home_var = ::getenv("JAVA_HOME");
1823     if (java_home_var != NULL && java_home_var[0] != 0 &&
1824         strlen(java_home_var) < (size_t)buflen) {
1825       strncpy(buf, java_home_var, buflen);
1826 
1827       // determine if this is a legacy image or modules image
1828       // modules image doesn't have "jre" subdirectory
1829       size_t len = strlen(buf);
1830       char* jrebin_p = buf + len;
1831       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1832       if (0 != _access(buf, 0)) {
1833         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1834       }
1835       len = strlen(buf);
1836       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1837     }
1838   }
1839 
1840   if (buf[0] == '\0') {
1841     GetModuleFileName(vm_lib_handle, buf, buflen);
1842   }
1843   strncpy(saved_jvm_path, buf, MAX_PATH);
1844   saved_jvm_path[MAX_PATH - 1] = '\0';
1845 }
1846 
1847 
1848 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1849 #ifndef _WIN64
1850   st->print("_");
1851 #endif
1852 }
1853 
1854 
1855 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1856 #ifndef _WIN64
1857   st->print("@%d", args_size  * sizeof(int));
1858 #endif
1859 }
1860 
1861 // This method is a copy of JDK's sysGetLastErrorString
1862 // from src/windows/hpi/src/system_md.c
1863 
1864 size_t os::lasterror(char* buf, size_t len) {
1865   DWORD errval;
1866 
1867   if ((errval = GetLastError()) != 0) {
1868     // DOS error
1869     size_t n = (size_t)FormatMessage(
1870                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1871                                      NULL,
1872                                      errval,
1873                                      0,
1874                                      buf,
1875                                      (DWORD)len,
1876                                      NULL);
1877     if (n > 3) {
1878       // Drop final '.', CR, LF
1879       if (buf[n - 1] == '\n') n--;
1880       if (buf[n - 1] == '\r') n--;
1881       if (buf[n - 1] == '.') n--;
1882       buf[n] = '\0';
1883     }
1884     return n;
1885   }
1886 
1887   if (errno != 0) {
1888     // C runtime error that has no corresponding DOS error code
1889     const char* s = strerror(errno);
1890     size_t n = strlen(s);
1891     if (n >= len) n = len - 1;
1892     strncpy(buf, s, n);
1893     buf[n] = '\0';
1894     return n;
1895   }
1896 
1897   return 0;
1898 }
1899 
1900 int os::get_last_error() {
1901   DWORD error = GetLastError();
1902   if (error == 0) {
1903     error = errno;
1904   }
1905   return (int)error;
1906 }
1907 
1908 // sun.misc.Signal
1909 // NOTE that this is a workaround for an apparent kernel bug where if
1910 // a signal handler for SIGBREAK is installed then that signal handler
1911 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1912 // See bug 4416763.
1913 static void (*sigbreakHandler)(int) = NULL;
1914 
1915 static void UserHandler(int sig, void *siginfo, void *context) {
1916   os::signal_notify(sig);
1917   // We need to reinstate the signal handler each time...
1918   os::signal(sig, (void*)UserHandler);
1919 }
1920 
1921 void* os::user_handler() {
1922   return (void*) UserHandler;
1923 }
1924 
1925 void* os::signal(int signal_number, void* handler) {
1926   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1927     void (*oldHandler)(int) = sigbreakHandler;
1928     sigbreakHandler = (void (*)(int)) handler;
1929     return (void*) oldHandler;
1930   } else {
1931     return (void*)::signal(signal_number, (void (*)(int))handler);
1932   }
1933 }
1934 
1935 void os::signal_raise(int signal_number) {
1936   raise(signal_number);
1937 }
1938 
1939 // The Win32 C runtime library maps all console control events other than ^C
1940 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1941 // logoff, and shutdown events.  We therefore install our own console handler
1942 // that raises SIGTERM for the latter cases.
1943 //
1944 static BOOL WINAPI consoleHandler(DWORD event) {
1945   switch (event) {
1946   case CTRL_C_EVENT:
1947     if (is_error_reported()) {
1948       // Ctrl-C is pressed during error reporting, likely because the error
1949       // handler fails to abort. Let VM die immediately.
1950       os::die();
1951     }
1952 
1953     os::signal_raise(SIGINT);
1954     return TRUE;
1955     break;
1956   case CTRL_BREAK_EVENT:
1957     if (sigbreakHandler != NULL) {
1958       (*sigbreakHandler)(SIGBREAK);
1959     }
1960     return TRUE;
1961     break;
1962   case CTRL_LOGOFF_EVENT: {
1963     // Don't terminate JVM if it is running in a non-interactive session,
1964     // such as a service process.
1965     USEROBJECTFLAGS flags;
1966     HANDLE handle = GetProcessWindowStation();
1967     if (handle != NULL &&
1968         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1969         sizeof(USEROBJECTFLAGS), NULL)) {
1970       // If it is a non-interactive session, let next handler to deal
1971       // with it.
1972       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1973         return FALSE;
1974       }
1975     }
1976   }
1977   case CTRL_CLOSE_EVENT:
1978   case CTRL_SHUTDOWN_EVENT:
1979     os::signal_raise(SIGTERM);
1980     return TRUE;
1981     break;
1982   default:
1983     break;
1984   }
1985   return FALSE;
1986 }
1987 
1988 // The following code is moved from os.cpp for making this
1989 // code platform specific, which it is by its very nature.
1990 
1991 // Return maximum OS signal used + 1 for internal use only
1992 // Used as exit signal for signal_thread
1993 int os::sigexitnum_pd() {
1994   return NSIG;
1995 }
1996 
1997 // a counter for each possible signal value, including signal_thread exit signal
1998 static volatile jint pending_signals[NSIG+1] = { 0 };
1999 static HANDLE sig_sem = NULL;
2000 
2001 void os::signal_init_pd() {
2002   // Initialize signal structures
2003   memset((void*)pending_signals, 0, sizeof(pending_signals));
2004 
2005   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2006 
2007   // Programs embedding the VM do not want it to attempt to receive
2008   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2009   // shutdown hooks mechanism introduced in 1.3.  For example, when
2010   // the VM is run as part of a Windows NT service (i.e., a servlet
2011   // engine in a web server), the correct behavior is for any console
2012   // control handler to return FALSE, not TRUE, because the OS's
2013   // "final" handler for such events allows the process to continue if
2014   // it is a service (while terminating it if it is not a service).
2015   // To make this behavior uniform and the mechanism simpler, we
2016   // completely disable the VM's usage of these console events if -Xrs
2017   // (=ReduceSignalUsage) is specified.  This means, for example, that
2018   // the CTRL-BREAK thread dump mechanism is also disabled in this
2019   // case.  See bugs 4323062, 4345157, and related bugs.
2020 
2021   if (!ReduceSignalUsage) {
2022     // Add a CTRL-C handler
2023     SetConsoleCtrlHandler(consoleHandler, TRUE);
2024   }
2025 }
2026 
2027 void os::signal_notify(int signal_number) {
2028   BOOL ret;
2029   if (sig_sem != NULL) {
2030     Atomic::inc(&pending_signals[signal_number]);
2031     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2032     assert(ret != 0, "ReleaseSemaphore() failed");
2033   }
2034 }
2035 
2036 static int check_pending_signals(bool wait_for_signal) {
2037   DWORD ret;
2038   while (true) {
2039     for (int i = 0; i < NSIG + 1; i++) {
2040       jint n = pending_signals[i];
2041       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2042         return i;
2043       }
2044     }
2045     if (!wait_for_signal) {
2046       return -1;
2047     }
2048 
2049     JavaThread *thread = JavaThread::current();
2050 
2051     ThreadBlockInVM tbivm(thread);
2052 
2053     bool threadIsSuspended;
2054     do {
2055       thread->set_suspend_equivalent();
2056       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2057       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2058       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2059 
2060       // were we externally suspended while we were waiting?
2061       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2062       if (threadIsSuspended) {
2063         // The semaphore has been incremented, but while we were waiting
2064         // another thread suspended us. We don't want to continue running
2065         // while suspended because that would surprise the thread that
2066         // suspended us.
2067         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2068         assert(ret != 0, "ReleaseSemaphore() failed");
2069 
2070         thread->java_suspend_self();
2071       }
2072     } while (threadIsSuspended);
2073   }
2074 }
2075 
2076 int os::signal_lookup() {
2077   return check_pending_signals(false);
2078 }
2079 
2080 int os::signal_wait() {
2081   return check_pending_signals(true);
2082 }
2083 
2084 // Implicit OS exception handling
2085 
2086 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2087                       address handler) {
2088   JavaThread* thread = JavaThread::current();
2089   // Save pc in thread
2090 #ifdef _M_IA64
2091   // Do not blow up if no thread info available.
2092   if (thread) {
2093     // Saving PRECISE pc (with slot information) in thread.
2094     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2095     // Convert precise PC into "Unix" format
2096     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2097     thread->set_saved_exception_pc((address)precise_pc);
2098   }
2099   // Set pc to handler
2100   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2101   // Clear out psr.ri (= Restart Instruction) in order to continue
2102   // at the beginning of the target bundle.
2103   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2104   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2105 #elif _M_AMD64
2106   // Do not blow up if no thread info available.
2107   if (thread) {
2108     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2109   }
2110   // Set pc to handler
2111   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2112 #else
2113   // Do not blow up if no thread info available.
2114   if (thread) {
2115     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2116   }
2117   // Set pc to handler
2118   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2119 #endif
2120 
2121   // Continue the execution
2122   return EXCEPTION_CONTINUE_EXECUTION;
2123 }
2124 
2125 
2126 // Used for PostMortemDump
2127 extern "C" void safepoints();
2128 extern "C" void find(int x);
2129 extern "C" void events();
2130 
2131 // According to Windows API documentation, an illegal instruction sequence should generate
2132 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2133 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2134 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2135 
2136 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2137 
2138 // From "Execution Protection in the Windows Operating System" draft 0.35
2139 // Once a system header becomes available, the "real" define should be
2140 // included or copied here.
2141 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2142 
2143 // Handle NAT Bit consumption on IA64.
2144 #ifdef _M_IA64
2145   #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2146 #endif
2147 
2148 // Windows Vista/2008 heap corruption check
2149 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2150 
2151 #define def_excpt(val) #val, val
2152 
2153 struct siglabel {
2154   char *name;
2155   int   number;
2156 };
2157 
2158 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2159 // C++ compiler contain this error code. Because this is a compiler-generated
2160 // error, the code is not listed in the Win32 API header files.
2161 // The code is actually a cryptic mnemonic device, with the initial "E"
2162 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2163 // ASCII values of "msc".
2164 
2165 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2166 
2167 
2168 struct siglabel exceptlabels[] = {
2169     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2170     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2171     def_excpt(EXCEPTION_BREAKPOINT),
2172     def_excpt(EXCEPTION_SINGLE_STEP),
2173     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2174     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2175     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2176     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2177     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2178     def_excpt(EXCEPTION_FLT_OVERFLOW),
2179     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2180     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2181     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2182     def_excpt(EXCEPTION_INT_OVERFLOW),
2183     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2184     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2185     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2186     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2187     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2188     def_excpt(EXCEPTION_STACK_OVERFLOW),
2189     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2190     def_excpt(EXCEPTION_GUARD_PAGE),
2191     def_excpt(EXCEPTION_INVALID_HANDLE),
2192     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2193     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2194 #ifdef _M_IA64
2195     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2196 #endif
2197     NULL, 0
2198 };
2199 
2200 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2201   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2202     if (exceptlabels[i].number == exception_code) {
2203       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2204       return buf;
2205     }
2206   }
2207 
2208   return NULL;
2209 }
2210 
2211 //-----------------------------------------------------------------------------
2212 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2213   // handle exception caused by idiv; should only happen for -MinInt/-1
2214   // (division by zero is handled explicitly)
2215 #ifdef _M_IA64
2216   assert(0, "Fix Handle_IDiv_Exception");
2217 #elif _M_AMD64
2218   PCONTEXT ctx = exceptionInfo->ContextRecord;
2219   address pc = (address)ctx->Rip;
2220   assert(pc[0] == 0xF7, "not an idiv opcode");
2221   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2222   assert(ctx->Rax == min_jint, "unexpected idiv exception");
2223   // set correct result values and continue after idiv instruction
2224   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2225   ctx->Rax = (DWORD)min_jint;      // result
2226   ctx->Rdx = (DWORD)0;             // remainder
2227   // Continue the execution
2228 #else
2229   PCONTEXT ctx = exceptionInfo->ContextRecord;
2230   address pc = (address)ctx->Eip;
2231   assert(pc[0] == 0xF7, "not an idiv opcode");
2232   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2233   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2234   // set correct result values and continue after idiv instruction
2235   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2236   ctx->Eax = (DWORD)min_jint;      // result
2237   ctx->Edx = (DWORD)0;             // remainder
2238   // Continue the execution
2239 #endif
2240   return EXCEPTION_CONTINUE_EXECUTION;
2241 }
2242 
2243 //-----------------------------------------------------------------------------
2244 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2245   PCONTEXT ctx = exceptionInfo->ContextRecord;
2246 #ifndef  _WIN64
2247   // handle exception caused by native method modifying control word
2248   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2249 
2250   switch (exception_code) {
2251   case EXCEPTION_FLT_DENORMAL_OPERAND:
2252   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2253   case EXCEPTION_FLT_INEXACT_RESULT:
2254   case EXCEPTION_FLT_INVALID_OPERATION:
2255   case EXCEPTION_FLT_OVERFLOW:
2256   case EXCEPTION_FLT_STACK_CHECK:
2257   case EXCEPTION_FLT_UNDERFLOW:
2258     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2259     if (fp_control_word != ctx->FloatSave.ControlWord) {
2260       // Restore FPCW and mask out FLT exceptions
2261       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2262       // Mask out pending FLT exceptions
2263       ctx->FloatSave.StatusWord &=  0xffffff00;
2264       return EXCEPTION_CONTINUE_EXECUTION;
2265     }
2266   }
2267 
2268   if (prev_uef_handler != NULL) {
2269     // We didn't handle this exception so pass it to the previous
2270     // UnhandledExceptionFilter.
2271     return (prev_uef_handler)(exceptionInfo);
2272   }
2273 #else // !_WIN64
2274   // On Windows, the mxcsr control bits are non-volatile across calls
2275   // See also CR 6192333
2276   //
2277   jint MxCsr = INITIAL_MXCSR;
2278   // we can't use StubRoutines::addr_mxcsr_std()
2279   // because in Win64 mxcsr is not saved there
2280   if (MxCsr != ctx->MxCsr) {
2281     ctx->MxCsr = MxCsr;
2282     return EXCEPTION_CONTINUE_EXECUTION;
2283   }
2284 #endif // !_WIN64
2285 
2286   return EXCEPTION_CONTINUE_SEARCH;
2287 }
2288 
2289 static inline void report_error(Thread* t, DWORD exception_code,
2290                                 address addr, void* siginfo, void* context) {
2291   VMError err(t, exception_code, addr, siginfo, context);
2292   err.report_and_die();
2293 
2294   // If UseOsErrorReporting, this will return here and save the error file
2295   // somewhere where we can find it in the minidump.
2296 }
2297 
2298 //-----------------------------------------------------------------------------
2299 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2300   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2301   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2302 #ifdef _M_IA64
2303   // On Itanium, we need the "precise pc", which has the slot number coded
2304   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2305   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2306   // Convert the pc to "Unix format", which has the slot number coded
2307   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2308   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2309   // information is saved in the Unix format.
2310   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2311 #elif _M_AMD64
2312   address pc = (address) exceptionInfo->ContextRecord->Rip;
2313 #else
2314   address pc = (address) exceptionInfo->ContextRecord->Eip;
2315 #endif
2316   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2317 
2318   // Handle SafeFetch32 and SafeFetchN exceptions.
2319   if (StubRoutines::is_safefetch_fault(pc)) {
2320     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2321   }
2322 
2323 #ifndef _WIN64
2324   // Execution protection violation - win32 running on AMD64 only
2325   // Handled first to avoid misdiagnosis as a "normal" access violation;
2326   // This is safe to do because we have a new/unique ExceptionInformation
2327   // code for this condition.
2328   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2329     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2330     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2331     address addr = (address) exceptionRecord->ExceptionInformation[1];
2332 
2333     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2334       int page_size = os::vm_page_size();
2335 
2336       // Make sure the pc and the faulting address are sane.
2337       //
2338       // If an instruction spans a page boundary, and the page containing
2339       // the beginning of the instruction is executable but the following
2340       // page is not, the pc and the faulting address might be slightly
2341       // different - we still want to unguard the 2nd page in this case.
2342       //
2343       // 15 bytes seems to be a (very) safe value for max instruction size.
2344       bool pc_is_near_addr =
2345         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2346       bool instr_spans_page_boundary =
2347         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2348                          (intptr_t) page_size) > 0);
2349 
2350       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2351         static volatile address last_addr =
2352           (address) os::non_memory_address_word();
2353 
2354         // In conservative mode, don't unguard unless the address is in the VM
2355         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2356             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2357 
2358           // Set memory to RWX and retry
2359           address page_start =
2360             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2361           bool res = os::protect_memory((char*) page_start, page_size,
2362                                         os::MEM_PROT_RWX);
2363 
2364           if (PrintMiscellaneous && Verbose) {
2365             char buf[256];
2366             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2367                          "at " INTPTR_FORMAT
2368                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2369                          page_start, (res ? "success" : strerror(errno)));
2370             tty->print_raw_cr(buf);
2371           }
2372 
2373           // Set last_addr so if we fault again at the same address, we don't
2374           // end up in an endless loop.
2375           //
2376           // There are two potential complications here.  Two threads trapping
2377           // at the same address at the same time could cause one of the
2378           // threads to think it already unguarded, and abort the VM.  Likely
2379           // very rare.
2380           //
2381           // The other race involves two threads alternately trapping at
2382           // different addresses and failing to unguard the page, resulting in
2383           // an endless loop.  This condition is probably even more unlikely
2384           // than the first.
2385           //
2386           // Although both cases could be avoided by using locks or thread
2387           // local last_addr, these solutions are unnecessary complication:
2388           // this handler is a best-effort safety net, not a complete solution.
2389           // It is disabled by default and should only be used as a workaround
2390           // in case we missed any no-execute-unsafe VM code.
2391 
2392           last_addr = addr;
2393 
2394           return EXCEPTION_CONTINUE_EXECUTION;
2395         }
2396       }
2397 
2398       // Last unguard failed or not unguarding
2399       tty->print_raw_cr("Execution protection violation");
2400       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2401                    exceptionInfo->ContextRecord);
2402       return EXCEPTION_CONTINUE_SEARCH;
2403     }
2404   }
2405 #endif // _WIN64
2406 
2407   // Check to see if we caught the safepoint code in the
2408   // process of write protecting the memory serialization page.
2409   // It write enables the page immediately after protecting it
2410   // so just return.
2411   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2412     JavaThread* thread = (JavaThread*) t;
2413     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2414     address addr = (address) exceptionRecord->ExceptionInformation[1];
2415     if (os::is_memory_serialize_page(thread, addr)) {
2416       // Block current thread until the memory serialize page permission restored.
2417       os::block_on_serialize_page_trap();
2418       return EXCEPTION_CONTINUE_EXECUTION;
2419     }
2420   }
2421 
2422   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2423       VM_Version::is_cpuinfo_segv_addr(pc)) {
2424     // Verify that OS save/restore AVX registers.
2425     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2426   }
2427 
2428   if (t != NULL && t->is_Java_thread()) {
2429     JavaThread* thread = (JavaThread*) t;
2430     bool in_java = thread->thread_state() == _thread_in_Java;
2431 
2432     // Handle potential stack overflows up front.
2433     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2434       if (os::uses_stack_guard_pages()) {
2435 #ifdef _M_IA64
2436         // Use guard page for register stack.
2437         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2438         address addr = (address) exceptionRecord->ExceptionInformation[1];
2439         // Check for a register stack overflow on Itanium
2440         if (thread->addr_inside_register_stack_red_zone(addr)) {
2441           // Fatal red zone violation happens if the Java program
2442           // catches a StackOverflow error and does so much processing
2443           // that it runs beyond the unprotected yellow guard zone. As
2444           // a result, we are out of here.
2445           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2446         } else if(thread->addr_inside_register_stack(addr)) {
2447           // Disable the yellow zone which sets the state that
2448           // we've got a stack overflow problem.
2449           if (thread->stack_yellow_zone_enabled()) {
2450             thread->disable_stack_yellow_zone();
2451           }
2452           // Give us some room to process the exception.
2453           thread->disable_register_stack_guard();
2454           // Tracing with +Verbose.
2455           if (Verbose) {
2456             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2457             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2458             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2459             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2460                           thread->register_stack_base(),
2461                           thread->register_stack_base() + thread->stack_size());
2462           }
2463 
2464           // Reguard the permanent register stack red zone just to be sure.
2465           // We saw Windows silently disabling this without telling us.
2466           thread->enable_register_stack_red_zone();
2467 
2468           return Handle_Exception(exceptionInfo,
2469                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2470         }
2471 #endif
2472         if (thread->stack_yellow_zone_enabled()) {
2473           // Yellow zone violation.  The o/s has unprotected the first yellow
2474           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2475           // update the enabled status, even if the zone contains only one page.
2476           thread->disable_stack_yellow_zone();
2477           // If not in java code, return and hope for the best.
2478           return in_java
2479               ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2480               :  EXCEPTION_CONTINUE_EXECUTION;
2481         } else {
2482           // Fatal red zone violation.
2483           thread->disable_stack_red_zone();
2484           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2485           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2486                        exceptionInfo->ContextRecord);
2487           return EXCEPTION_CONTINUE_SEARCH;
2488         }
2489       } else if (in_java) {
2490         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2491         // a one-time-only guard page, which it has released to us.  The next
2492         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2493         return Handle_Exception(exceptionInfo,
2494                                 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2495       } else {
2496         // Can only return and hope for the best.  Further stack growth will
2497         // result in an ACCESS_VIOLATION.
2498         return EXCEPTION_CONTINUE_EXECUTION;
2499       }
2500     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2501       // Either stack overflow or null pointer exception.
2502       if (in_java) {
2503         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2504         address addr = (address) exceptionRecord->ExceptionInformation[1];
2505         address stack_end = thread->stack_base() - thread->stack_size();
2506         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2507           // Stack overflow.
2508           assert(!os::uses_stack_guard_pages(),
2509                  "should be caught by red zone code above.");
2510           return Handle_Exception(exceptionInfo,
2511                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2512         }
2513         // Check for safepoint polling and implicit null
2514         // We only expect null pointers in the stubs (vtable)
2515         // the rest are checked explicitly now.
2516         CodeBlob* cb = CodeCache::find_blob(pc);
2517         if (cb != NULL) {
2518           if (os::is_poll_address(addr)) {
2519             address stub = SharedRuntime::get_poll_stub(pc);
2520             return Handle_Exception(exceptionInfo, stub);
2521           }
2522         }
2523         {
2524 #ifdef _WIN64
2525           // If it's a legal stack address map the entire region in
2526           //
2527           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2528           address addr = (address) exceptionRecord->ExceptionInformation[1];
2529           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2530             addr = (address)((uintptr_t)addr &
2531                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2532             os::commit_memory((char *)addr, thread->stack_base() - addr,
2533                               !ExecMem);
2534             return EXCEPTION_CONTINUE_EXECUTION;
2535           } else
2536 #endif
2537           {
2538             // Null pointer exception.
2539 #ifdef _M_IA64
2540             // Process implicit null checks in compiled code. Note: Implicit null checks
2541             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2542             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2543               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2544               // Handle implicit null check in UEP method entry
2545               if (cb && (cb->is_frame_complete_at(pc) ||
2546                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2547                 if (Verbose) {
2548                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2549                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2550                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2551                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2552                                 *(bundle_start + 1), *bundle_start);
2553                 }
2554                 return Handle_Exception(exceptionInfo,
2555                                         SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2556               }
2557             }
2558 
2559             // Implicit null checks were processed above.  Hence, we should not reach
2560             // here in the usual case => die!
2561             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2562             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2563                          exceptionInfo->ContextRecord);
2564             return EXCEPTION_CONTINUE_SEARCH;
2565 
2566 #else // !IA64
2567 
2568             // Windows 98 reports faulting addresses incorrectly
2569             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2570                 !os::win32::is_nt()) {
2571               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2572               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2573             }
2574             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2575                          exceptionInfo->ContextRecord);
2576             return EXCEPTION_CONTINUE_SEARCH;
2577 #endif
2578           }
2579         }
2580       }
2581 
2582 #ifdef _WIN64
2583       // Special care for fast JNI field accessors.
2584       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2585       // in and the heap gets shrunk before the field access.
2586       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2587         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2588         if (addr != (address)-1) {
2589           return Handle_Exception(exceptionInfo, addr);
2590         }
2591       }
2592 #endif
2593 
2594       // Stack overflow or null pointer exception in native code.
2595       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2596                    exceptionInfo->ContextRecord);
2597       return EXCEPTION_CONTINUE_SEARCH;
2598     } // /EXCEPTION_ACCESS_VIOLATION
2599     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2600 #if defined _M_IA64
2601     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2602               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2603       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2604 
2605       // Compiled method patched to be non entrant? Following conditions must apply:
2606       // 1. must be first instruction in bundle
2607       // 2. must be a break instruction with appropriate code
2608       if ((((uint64_t) pc & 0x0F) == 0) &&
2609           (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2610         return Handle_Exception(exceptionInfo,
2611                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2612       }
2613     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2614 #endif
2615 
2616 
2617     if (in_java) {
2618       switch (exception_code) {
2619       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2620         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2621 
2622       case EXCEPTION_INT_OVERFLOW:
2623         return Handle_IDiv_Exception(exceptionInfo);
2624 
2625       } // switch
2626     }
2627     if (((thread->thread_state() == _thread_in_Java) ||
2628          (thread->thread_state() == _thread_in_native)) &&
2629          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2630       LONG result=Handle_FLT_Exception(exceptionInfo);
2631       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2632     }
2633   }
2634 
2635   if (exception_code != EXCEPTION_BREAKPOINT) {
2636     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2637                  exceptionInfo->ContextRecord);
2638   }
2639   return EXCEPTION_CONTINUE_SEARCH;
2640 }
2641 
2642 #ifndef _WIN64
2643 // Special care for fast JNI accessors.
2644 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2645 // the heap gets shrunk before the field access.
2646 // Need to install our own structured exception handler since native code may
2647 // install its own.
2648 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2649   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2650   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2651     address pc = (address) exceptionInfo->ContextRecord->Eip;
2652     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2653     if (addr != (address)-1) {
2654       return Handle_Exception(exceptionInfo, addr);
2655     }
2656   }
2657   return EXCEPTION_CONTINUE_SEARCH;
2658 }
2659 
2660 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2661   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2662                                                      jobject obj,           \
2663                                                      jfieldID fieldID) {    \
2664     __try {                                                                 \
2665       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2666                                                                  obj,       \
2667                                                                  fieldID);  \
2668     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2669                                               _exception_info())) {         \
2670     }                                                                       \
2671     return 0;                                                               \
2672   }
2673 
2674 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2675 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2676 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2677 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2678 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2679 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2680 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2681 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2682 
2683 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2684   switch (type) {
2685   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2686   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2687   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2688   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2689   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2690   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2691   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2692   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2693   default:        ShouldNotReachHere();
2694   }
2695   return (address)-1;
2696 }
2697 #endif
2698 
2699 void os::win32::call_test_func_with_wrapper(void (*funcPtr)(void)) {
2700   // Install a win32 structured exception handler around the test
2701   // function call so the VM can generate an error dump if needed.
2702   __try {
2703     (*funcPtr)();
2704   } __except(topLevelExceptionFilter(
2705                                      (_EXCEPTION_POINTERS*)_exception_info())) {
2706     // Nothing to do.
2707   }
2708 }
2709 
2710 // Virtual Memory
2711 
2712 int os::vm_page_size() { return os::win32::vm_page_size(); }
2713 int os::vm_allocation_granularity() {
2714   return os::win32::vm_allocation_granularity();
2715 }
2716 
2717 // Windows large page support is available on Windows 2003. In order to use
2718 // large page memory, the administrator must first assign additional privilege
2719 // to the user:
2720 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2721 //   + select Local Policies -> User Rights Assignment
2722 //   + double click "Lock pages in memory", add users and/or groups
2723 //   + reboot
2724 // Note the above steps are needed for administrator as well, as administrators
2725 // by default do not have the privilege to lock pages in memory.
2726 //
2727 // Note about Windows 2003: although the API supports committing large page
2728 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2729 // scenario, I found through experiment it only uses large page if the entire
2730 // memory region is reserved and committed in a single VirtualAlloc() call.
2731 // This makes Windows large page support more or less like Solaris ISM, in
2732 // that the entire heap must be committed upfront. This probably will change
2733 // in the future, if so the code below needs to be revisited.
2734 
2735 #ifndef MEM_LARGE_PAGES
2736   #define MEM_LARGE_PAGES 0x20000000
2737 #endif
2738 
2739 static HANDLE    _hProcess;
2740 static HANDLE    _hToken;
2741 
2742 // Container for NUMA node list info
2743 class NUMANodeListHolder {
2744  private:
2745   int *_numa_used_node_list;  // allocated below
2746   int _numa_used_node_count;
2747 
2748   void free_node_list() {
2749     if (_numa_used_node_list != NULL) {
2750       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2751     }
2752   }
2753 
2754  public:
2755   NUMANodeListHolder() {
2756     _numa_used_node_count = 0;
2757     _numa_used_node_list = NULL;
2758     // do rest of initialization in build routine (after function pointers are set up)
2759   }
2760 
2761   ~NUMANodeListHolder() {
2762     free_node_list();
2763   }
2764 
2765   bool build() {
2766     DWORD_PTR proc_aff_mask;
2767     DWORD_PTR sys_aff_mask;
2768     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2769     ULONG highest_node_number;
2770     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2771     free_node_list();
2772     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2773     for (unsigned int i = 0; i <= highest_node_number; i++) {
2774       ULONGLONG proc_mask_numa_node;
2775       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2776       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2777         _numa_used_node_list[_numa_used_node_count++] = i;
2778       }
2779     }
2780     return (_numa_used_node_count > 1);
2781   }
2782 
2783   int get_count() { return _numa_used_node_count; }
2784   int get_node_list_entry(int n) {
2785     // for indexes out of range, returns -1
2786     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2787   }
2788 
2789 } numa_node_list_holder;
2790 
2791 
2792 
2793 static size_t _large_page_size = 0;
2794 
2795 static bool resolve_functions_for_large_page_init() {
2796   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2797     os::Advapi32Dll::AdvapiAvailable();
2798 }
2799 
2800 static bool request_lock_memory_privilege() {
2801   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2802                           os::current_process_id());
2803 
2804   LUID luid;
2805   if (_hProcess != NULL &&
2806       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2807       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2808 
2809     TOKEN_PRIVILEGES tp;
2810     tp.PrivilegeCount = 1;
2811     tp.Privileges[0].Luid = luid;
2812     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2813 
2814     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2815     // privilege. Check GetLastError() too. See MSDN document.
2816     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2817         (GetLastError() == ERROR_SUCCESS)) {
2818       return true;
2819     }
2820   }
2821 
2822   return false;
2823 }
2824 
2825 static void cleanup_after_large_page_init() {
2826   if (_hProcess) CloseHandle(_hProcess);
2827   _hProcess = NULL;
2828   if (_hToken) CloseHandle(_hToken);
2829   _hToken = NULL;
2830 }
2831 
2832 static bool numa_interleaving_init() {
2833   bool success = false;
2834   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2835 
2836   // print a warning if UseNUMAInterleaving flag is specified on command line
2837   bool warn_on_failure = use_numa_interleaving_specified;
2838 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2839 
2840   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2841   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2842   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2843 
2844   if (os::Kernel32Dll::NumaCallsAvailable()) {
2845     if (numa_node_list_holder.build()) {
2846       if (PrintMiscellaneous && Verbose) {
2847         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2848         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2849           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2850         }
2851         tty->print("\n");
2852       }
2853       success = true;
2854     } else {
2855       WARN("Process does not cover multiple NUMA nodes.");
2856     }
2857   } else {
2858     WARN("NUMA Interleaving is not supported by the operating system.");
2859   }
2860   if (!success) {
2861     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2862   }
2863   return success;
2864 #undef WARN
2865 }
2866 
2867 // this routine is used whenever we need to reserve a contiguous VA range
2868 // but we need to make separate VirtualAlloc calls for each piece of the range
2869 // Reasons for doing this:
2870 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2871 //  * UseNUMAInterleaving requires a separate node for each piece
2872 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2873                                          DWORD prot,
2874                                          bool should_inject_error = false) {
2875   char * p_buf;
2876   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2877   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2878   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2879 
2880   // first reserve enough address space in advance since we want to be
2881   // able to break a single contiguous virtual address range into multiple
2882   // large page commits but WS2003 does not allow reserving large page space
2883   // so we just use 4K pages for reserve, this gives us a legal contiguous
2884   // address space. then we will deallocate that reservation, and re alloc
2885   // using large pages
2886   const size_t size_of_reserve = bytes + chunk_size;
2887   if (bytes > size_of_reserve) {
2888     // Overflowed.
2889     return NULL;
2890   }
2891   p_buf = (char *) VirtualAlloc(addr,
2892                                 size_of_reserve,  // size of Reserve
2893                                 MEM_RESERVE,
2894                                 PAGE_READWRITE);
2895   // If reservation failed, return NULL
2896   if (p_buf == NULL) return NULL;
2897   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2898   os::release_memory(p_buf, bytes + chunk_size);
2899 
2900   // we still need to round up to a page boundary (in case we are using large pages)
2901   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2902   // instead we handle this in the bytes_to_rq computation below
2903   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2904 
2905   // now go through and allocate one chunk at a time until all bytes are
2906   // allocated
2907   size_t  bytes_remaining = bytes;
2908   // An overflow of align_size_up() would have been caught above
2909   // in the calculation of size_of_reserve.
2910   char * next_alloc_addr = p_buf;
2911   HANDLE hProc = GetCurrentProcess();
2912 
2913 #ifdef ASSERT
2914   // Variable for the failure injection
2915   long ran_num = os::random();
2916   size_t fail_after = ran_num % bytes;
2917 #endif
2918 
2919   int count=0;
2920   while (bytes_remaining) {
2921     // select bytes_to_rq to get to the next chunk_size boundary
2922 
2923     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2924     // Note allocate and commit
2925     char * p_new;
2926 
2927 #ifdef ASSERT
2928     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2929 #else
2930     const bool inject_error_now = false;
2931 #endif
2932 
2933     if (inject_error_now) {
2934       p_new = NULL;
2935     } else {
2936       if (!UseNUMAInterleaving) {
2937         p_new = (char *) VirtualAlloc(next_alloc_addr,
2938                                       bytes_to_rq,
2939                                       flags,
2940                                       prot);
2941       } else {
2942         // get the next node to use from the used_node_list
2943         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2944         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2945         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2946                                                             next_alloc_addr,
2947                                                             bytes_to_rq,
2948                                                             flags,
2949                                                             prot,
2950                                                             node);
2951       }
2952     }
2953 
2954     if (p_new == NULL) {
2955       // Free any allocated pages
2956       if (next_alloc_addr > p_buf) {
2957         // Some memory was committed so release it.
2958         size_t bytes_to_release = bytes - bytes_remaining;
2959         // NMT has yet to record any individual blocks, so it
2960         // need to create a dummy 'reserve' record to match
2961         // the release.
2962         MemTracker::record_virtual_memory_reserve((address)p_buf,
2963                                                   bytes_to_release, CALLER_PC);
2964         os::release_memory(p_buf, bytes_to_release);
2965       }
2966 #ifdef ASSERT
2967       if (should_inject_error) {
2968         if (TracePageSizes && Verbose) {
2969           tty->print_cr("Reserving pages individually failed.");
2970         }
2971       }
2972 #endif
2973       return NULL;
2974     }
2975 
2976     bytes_remaining -= bytes_to_rq;
2977     next_alloc_addr += bytes_to_rq;
2978     count++;
2979   }
2980   // Although the memory is allocated individually, it is returned as one.
2981   // NMT records it as one block.
2982   if ((flags & MEM_COMMIT) != 0) {
2983     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
2984   } else {
2985     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
2986   }
2987 
2988   // made it this far, success
2989   return p_buf;
2990 }
2991 
2992 
2993 
2994 void os::large_page_init() {
2995   if (!UseLargePages) return;
2996 
2997   // print a warning if any large page related flag is specified on command line
2998   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2999                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3000   bool success = false;
3001 
3002 #define WARN(msg) if (warn_on_failure) { warning(msg); }
3003   if (resolve_functions_for_large_page_init()) {
3004     if (request_lock_memory_privilege()) {
3005       size_t s = os::Kernel32Dll::GetLargePageMinimum();
3006       if (s) {
3007 #if defined(IA32) || defined(AMD64)
3008         if (s > 4*M || LargePageSizeInBytes > 4*M) {
3009           WARN("JVM cannot use large pages bigger than 4mb.");
3010         } else {
3011 #endif
3012           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3013             _large_page_size = LargePageSizeInBytes;
3014           } else {
3015             _large_page_size = s;
3016           }
3017           success = true;
3018 #if defined(IA32) || defined(AMD64)
3019         }
3020 #endif
3021       } else {
3022         WARN("Large page is not supported by the processor.");
3023       }
3024     } else {
3025       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3026     }
3027   } else {
3028     WARN("Large page is not supported by the operating system.");
3029   }
3030 #undef WARN
3031 
3032   const size_t default_page_size = (size_t) vm_page_size();
3033   if (success && _large_page_size > default_page_size) {
3034     _page_sizes[0] = _large_page_size;
3035     _page_sizes[1] = default_page_size;
3036     _page_sizes[2] = 0;
3037   }
3038 
3039   cleanup_after_large_page_init();
3040   UseLargePages = success;
3041 }
3042 
3043 // On win32, one cannot release just a part of reserved memory, it's an
3044 // all or nothing deal.  When we split a reservation, we must break the
3045 // reservation into two reservations.
3046 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3047                                   bool realloc) {
3048   if (size > 0) {
3049     release_memory(base, size);
3050     if (realloc) {
3051       reserve_memory(split, base);
3052     }
3053     if (size != split) {
3054       reserve_memory(size - split, base + split);
3055     }
3056   }
3057 }
3058 
3059 // Multiple threads can race in this code but it's not possible to unmap small sections of
3060 // virtual space to get requested alignment, like posix-like os's.
3061 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3062 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3063   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3064          "Alignment must be a multiple of allocation granularity (page size)");
3065   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3066 
3067   size_t extra_size = size + alignment;
3068   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3069 
3070   char* aligned_base = NULL;
3071 
3072   do {
3073     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3074     if (extra_base == NULL) {
3075       return NULL;
3076     }
3077     // Do manual alignment
3078     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3079 
3080     os::release_memory(extra_base, extra_size);
3081 
3082     aligned_base = os::reserve_memory(size, aligned_base);
3083 
3084   } while (aligned_base == NULL);
3085 
3086   return aligned_base;
3087 }
3088 
3089 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3090   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3091          "reserve alignment");
3092   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3093   char* res;
3094   // note that if UseLargePages is on, all the areas that require interleaving
3095   // will go thru reserve_memory_special rather than thru here.
3096   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3097   if (!use_individual) {
3098     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3099   } else {
3100     elapsedTimer reserveTimer;
3101     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3102     // in numa interleaving, we have to allocate pages individually
3103     // (well really chunks of NUMAInterleaveGranularity size)
3104     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3105     if (res == NULL) {
3106       warning("NUMA page allocation failed");
3107     }
3108     if (Verbose && PrintMiscellaneous) {
3109       reserveTimer.stop();
3110       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3111                     reserveTimer.milliseconds(), reserveTimer.ticks());
3112     }
3113   }
3114   assert(res == NULL || addr == NULL || addr == res,
3115          "Unexpected address from reserve.");
3116 
3117   return res;
3118 }
3119 
3120 // Reserve memory at an arbitrary address, only if that area is
3121 // available (and not reserved for something else).
3122 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3123   // Windows os::reserve_memory() fails of the requested address range is
3124   // not avilable.
3125   return reserve_memory(bytes, requested_addr);
3126 }
3127 
3128 size_t os::large_page_size() {
3129   return _large_page_size;
3130 }
3131 
3132 bool os::can_commit_large_page_memory() {
3133   // Windows only uses large page memory when the entire region is reserved
3134   // and committed in a single VirtualAlloc() call. This may change in the
3135   // future, but with Windows 2003 it's not possible to commit on demand.
3136   return false;
3137 }
3138 
3139 bool os::can_execute_large_page_memory() {
3140   return true;
3141 }
3142 
3143 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3144                                  bool exec) {
3145   assert(UseLargePages, "only for large pages");
3146 
3147   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3148     return NULL; // Fallback to small pages.
3149   }
3150 
3151   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3152   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3153 
3154   // with large pages, there are two cases where we need to use Individual Allocation
3155   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3156   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3157   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3158     if (TracePageSizes && Verbose) {
3159       tty->print_cr("Reserving large pages individually.");
3160     }
3161     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3162     if (p_buf == NULL) {
3163       // give an appropriate warning message
3164       if (UseNUMAInterleaving) {
3165         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3166       }
3167       if (UseLargePagesIndividualAllocation) {
3168         warning("Individually allocated large pages failed, "
3169                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3170       }
3171       return NULL;
3172     }
3173 
3174     return p_buf;
3175 
3176   } else {
3177     if (TracePageSizes && Verbose) {
3178       tty->print_cr("Reserving large pages in a single large chunk.");
3179     }
3180     // normal policy just allocate it all at once
3181     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3182     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3183     if (res != NULL) {
3184       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3185     }
3186 
3187     return res;
3188   }
3189 }
3190 
3191 bool os::release_memory_special(char* base, size_t bytes) {
3192   assert(base != NULL, "Sanity check");
3193   return release_memory(base, bytes);
3194 }
3195 
3196 void os::print_statistics() {
3197 }
3198 
3199 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3200   int err = os::get_last_error();
3201   char buf[256];
3202   size_t buf_len = os::lasterror(buf, sizeof(buf));
3203   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3204           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3205           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3206 }
3207 
3208 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3209   if (bytes == 0) {
3210     // Don't bother the OS with noops.
3211     return true;
3212   }
3213   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3214   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3215   // Don't attempt to print anything if the OS call fails. We're
3216   // probably low on resources, so the print itself may cause crashes.
3217 
3218   // unless we have NUMAInterleaving enabled, the range of a commit
3219   // is always within a reserve covered by a single VirtualAlloc
3220   // in that case we can just do a single commit for the requested size
3221   if (!UseNUMAInterleaving) {
3222     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3223       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3224       return false;
3225     }
3226     if (exec) {
3227       DWORD oldprot;
3228       // Windows doc says to use VirtualProtect to get execute permissions
3229       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3230         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3231         return false;
3232       }
3233     }
3234     return true;
3235   } else {
3236 
3237     // when NUMAInterleaving is enabled, the commit might cover a range that
3238     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3239     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3240     // returns represents the number of bytes that can be committed in one step.
3241     size_t bytes_remaining = bytes;
3242     char * next_alloc_addr = addr;
3243     while (bytes_remaining > 0) {
3244       MEMORY_BASIC_INFORMATION alloc_info;
3245       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3246       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3247       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3248                        PAGE_READWRITE) == NULL) {
3249         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3250                                             exec);)
3251         return false;
3252       }
3253       if (exec) {
3254         DWORD oldprot;
3255         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3256                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3257           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3258                                               exec);)
3259           return false;
3260         }
3261       }
3262       bytes_remaining -= bytes_to_rq;
3263       next_alloc_addr += bytes_to_rq;
3264     }
3265   }
3266   // if we made it this far, return true
3267   return true;
3268 }
3269 
3270 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3271                           bool exec) {
3272   // alignment_hint is ignored on this OS
3273   return pd_commit_memory(addr, size, exec);
3274 }
3275 
3276 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3277                                   const char* mesg) {
3278   assert(mesg != NULL, "mesg must be specified");
3279   if (!pd_commit_memory(addr, size, exec)) {
3280     warn_fail_commit_memory(addr, size, exec);
3281     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3282   }
3283 }
3284 
3285 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3286                                   size_t alignment_hint, bool exec,
3287                                   const char* mesg) {
3288   // alignment_hint is ignored on this OS
3289   pd_commit_memory_or_exit(addr, size, exec, mesg);
3290 }
3291 
3292 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3293   if (bytes == 0) {
3294     // Don't bother the OS with noops.
3295     return true;
3296   }
3297   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3298   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3299   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3300 }
3301 
3302 bool os::pd_release_memory(char* addr, size_t bytes) {
3303   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3304 }
3305 
3306 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3307   return os::commit_memory(addr, size, !ExecMem);
3308 }
3309 
3310 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3311   return os::uncommit_memory(addr, size);
3312 }
3313 
3314 // Set protections specified
3315 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3316                         bool is_committed) {
3317   unsigned int p = 0;
3318   switch (prot) {
3319   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3320   case MEM_PROT_READ: p = PAGE_READONLY; break;
3321   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3322   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3323   default:
3324     ShouldNotReachHere();
3325   }
3326 
3327   DWORD old_status;
3328 
3329   // Strange enough, but on Win32 one can change protection only for committed
3330   // memory, not a big deal anyway, as bytes less or equal than 64K
3331   if (!is_committed) {
3332     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3333                           "cannot commit protection page");
3334   }
3335   // One cannot use os::guard_memory() here, as on Win32 guard page
3336   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3337   //
3338   // Pages in the region become guard pages. Any attempt to access a guard page
3339   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3340   // the guard page status. Guard pages thus act as a one-time access alarm.
3341   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3342 }
3343 
3344 bool os::guard_memory(char* addr, size_t bytes) {
3345   DWORD old_status;
3346   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3347 }
3348 
3349 bool os::unguard_memory(char* addr, size_t bytes) {
3350   DWORD old_status;
3351   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3352 }
3353 
3354 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3355 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3356 void os::numa_make_global(char *addr, size_t bytes)    { }
3357 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3358 bool os::numa_topology_changed()                       { return false; }
3359 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3360 int os::numa_get_group_id()                            { return 0; }
3361 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3362   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3363     // Provide an answer for UMA systems
3364     ids[0] = 0;
3365     return 1;
3366   } else {
3367     // check for size bigger than actual groups_num
3368     size = MIN2(size, numa_get_groups_num());
3369     for (int i = 0; i < (int)size; i++) {
3370       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3371     }
3372     return size;
3373   }
3374 }
3375 
3376 bool os::get_page_info(char *start, page_info* info) {
3377   return false;
3378 }
3379 
3380 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3381                      page_info* page_found) {
3382   return end;
3383 }
3384 
3385 char* os::non_memory_address_word() {
3386   // Must never look like an address returned by reserve_memory,
3387   // even in its subfields (as defined by the CPU immediate fields,
3388   // if the CPU splits constants across multiple instructions).
3389   return (char*)-1;
3390 }
3391 
3392 #define MAX_ERROR_COUNT 100
3393 #define SYS_THREAD_ERROR 0xffffffffUL
3394 
3395 void os::pd_start_thread(Thread* thread) {
3396   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3397   // Returns previous suspend state:
3398   // 0:  Thread was not suspended
3399   // 1:  Thread is running now
3400   // >1: Thread is still suspended.
3401   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3402 }
3403 
3404 class HighResolutionInterval : public CHeapObj<mtThread> {
3405   // The default timer resolution seems to be 10 milliseconds.
3406   // (Where is this written down?)
3407   // If someone wants to sleep for only a fraction of the default,
3408   // then we set the timer resolution down to 1 millisecond for
3409   // the duration of their interval.
3410   // We carefully set the resolution back, since otherwise we
3411   // seem to incur an overhead (3%?) that we don't need.
3412   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3413   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3414   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3415   // timeBeginPeriod() if the relative error exceeded some threshold.
3416   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3417   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3418   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3419   // resolution timers running.
3420  private:
3421   jlong resolution;
3422  public:
3423   HighResolutionInterval(jlong ms) {
3424     resolution = ms % 10L;
3425     if (resolution != 0) {
3426       MMRESULT result = timeBeginPeriod(1L);
3427     }
3428   }
3429   ~HighResolutionInterval() {
3430     if (resolution != 0) {
3431       MMRESULT result = timeEndPeriod(1L);
3432     }
3433     resolution = 0L;
3434   }
3435 };
3436 
3437 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3438   jlong limit = (jlong) MAXDWORD;
3439 
3440   while (ms > limit) {
3441     int res;
3442     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3443       return res;
3444     }
3445     ms -= limit;
3446   }
3447 
3448   assert(thread == Thread::current(), "thread consistency check");
3449   OSThread* osthread = thread->osthread();
3450   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3451   int result;
3452   if (interruptable) {
3453     assert(thread->is_Java_thread(), "must be java thread");
3454     JavaThread *jt = (JavaThread *) thread;
3455     ThreadBlockInVM tbivm(jt);
3456 
3457     jt->set_suspend_equivalent();
3458     // cleared by handle_special_suspend_equivalent_condition() or
3459     // java_suspend_self() via check_and_wait_while_suspended()
3460 
3461     HANDLE events[1];
3462     events[0] = osthread->interrupt_event();
3463     HighResolutionInterval *phri=NULL;
3464     if (!ForceTimeHighResolution) {
3465       phri = new HighResolutionInterval(ms);
3466     }
3467     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3468       result = OS_TIMEOUT;
3469     } else {
3470       ResetEvent(osthread->interrupt_event());
3471       osthread->set_interrupted(false);
3472       result = OS_INTRPT;
3473     }
3474     delete phri; //if it is NULL, harmless
3475 
3476     // were we externally suspended while we were waiting?
3477     jt->check_and_wait_while_suspended();
3478   } else {
3479     assert(!thread->is_Java_thread(), "must not be java thread");
3480     Sleep((long) ms);
3481     result = OS_TIMEOUT;
3482   }
3483   return result;
3484 }
3485 
3486 // Short sleep, direct OS call.
3487 //
3488 // ms = 0, means allow others (if any) to run.
3489 //
3490 void os::naked_short_sleep(jlong ms) {
3491   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3492   Sleep(ms);
3493 }
3494 
3495 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3496 void os::infinite_sleep() {
3497   while (true) {    // sleep forever ...
3498     Sleep(100000);  // ... 100 seconds at a time
3499   }
3500 }
3501 
3502 typedef BOOL (WINAPI * STTSignature)(void);
3503 
3504 void os::naked_yield() {
3505   // Use either SwitchToThread() or Sleep(0)
3506   // Consider passing back the return value from SwitchToThread().
3507   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3508     SwitchToThread();
3509   } else {
3510     Sleep(0);
3511   }
3512 }
3513 
3514 // Win32 only gives you access to seven real priorities at a time,
3515 // so we compress Java's ten down to seven.  It would be better
3516 // if we dynamically adjusted relative priorities.
3517 
3518 int os::java_to_os_priority[CriticalPriority + 1] = {
3519   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3520   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3521   THREAD_PRIORITY_LOWEST,                       // 2
3522   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3523   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3524   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3525   THREAD_PRIORITY_NORMAL,                       // 6
3526   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3527   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3528   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3529   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3530   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3531 };
3532 
3533 int prio_policy1[CriticalPriority + 1] = {
3534   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3535   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3536   THREAD_PRIORITY_LOWEST,                       // 2
3537   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3538   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3539   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3540   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3541   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3542   THREAD_PRIORITY_HIGHEST,                      // 8
3543   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3544   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3545   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3546 };
3547 
3548 static int prio_init() {
3549   // If ThreadPriorityPolicy is 1, switch tables
3550   if (ThreadPriorityPolicy == 1) {
3551     int i;
3552     for (i = 0; i < CriticalPriority + 1; i++) {
3553       os::java_to_os_priority[i] = prio_policy1[i];
3554     }
3555   }
3556   if (UseCriticalJavaThreadPriority) {
3557     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3558   }
3559   return 0;
3560 }
3561 
3562 OSReturn os::set_native_priority(Thread* thread, int priority) {
3563   if (!UseThreadPriorities) return OS_OK;
3564   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3565   return ret ? OS_OK : OS_ERR;
3566 }
3567 
3568 OSReturn os::get_native_priority(const Thread* const thread,
3569                                  int* priority_ptr) {
3570   if (!UseThreadPriorities) {
3571     *priority_ptr = java_to_os_priority[NormPriority];
3572     return OS_OK;
3573   }
3574   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3575   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3576     assert(false, "GetThreadPriority failed");
3577     return OS_ERR;
3578   }
3579   *priority_ptr = os_prio;
3580   return OS_OK;
3581 }
3582 
3583 
3584 // Hint to the underlying OS that a task switch would not be good.
3585 // Void return because it's a hint and can fail.
3586 void os::hint_no_preempt() {}
3587 
3588 void os::interrupt(Thread* thread) {
3589   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3590          Threads_lock->owned_by_self(),
3591          "possibility of dangling Thread pointer");
3592 
3593   OSThread* osthread = thread->osthread();
3594   osthread->set_interrupted(true);
3595   // More than one thread can get here with the same value of osthread,
3596   // resulting in multiple notifications.  We do, however, want the store
3597   // to interrupted() to be visible to other threads before we post
3598   // the interrupt event.
3599   OrderAccess::release();
3600   SetEvent(osthread->interrupt_event());
3601   // For JSR166:  unpark after setting status
3602   if (thread->is_Java_thread()) {
3603     ((JavaThread*)thread)->parker()->unpark();
3604   }
3605 
3606   ParkEvent * ev = thread->_ParkEvent;
3607   if (ev != NULL) ev->unpark();
3608 }
3609 
3610 
3611 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3612   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3613          "possibility of dangling Thread pointer");
3614 
3615   OSThread* osthread = thread->osthread();
3616   // There is no synchronization between the setting of the interrupt
3617   // and it being cleared here. It is critical - see 6535709 - that
3618   // we only clear the interrupt state, and reset the interrupt event,
3619   // if we are going to report that we were indeed interrupted - else
3620   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3621   // depending on the timing. By checking thread interrupt event to see
3622   // if the thread gets real interrupt thus prevent spurious wakeup.
3623   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3624   if (interrupted && clear_interrupted) {
3625     osthread->set_interrupted(false);
3626     ResetEvent(osthread->interrupt_event());
3627   } // Otherwise leave the interrupted state alone
3628 
3629   return interrupted;
3630 }
3631 
3632 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3633 ExtendedPC os::get_thread_pc(Thread* thread) {
3634   CONTEXT context;
3635   context.ContextFlags = CONTEXT_CONTROL;
3636   HANDLE handle = thread->osthread()->thread_handle();
3637 #ifdef _M_IA64
3638   assert(0, "Fix get_thread_pc");
3639   return ExtendedPC(NULL);
3640 #else
3641   if (GetThreadContext(handle, &context)) {
3642 #ifdef _M_AMD64
3643     return ExtendedPC((address) context.Rip);
3644 #else
3645     return ExtendedPC((address) context.Eip);
3646 #endif
3647   } else {
3648     return ExtendedPC(NULL);
3649   }
3650 #endif
3651 }
3652 
3653 // GetCurrentThreadId() returns DWORD
3654 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3655 
3656 static int _initial_pid = 0;
3657 
3658 int os::current_process_id() {
3659   return (_initial_pid ? _initial_pid : _getpid());
3660 }
3661 
3662 int    os::win32::_vm_page_size              = 0;
3663 int    os::win32::_vm_allocation_granularity = 0;
3664 int    os::win32::_processor_type            = 0;
3665 // Processor level is not available on non-NT systems, use vm_version instead
3666 int    os::win32::_processor_level           = 0;
3667 julong os::win32::_physical_memory           = 0;
3668 size_t os::win32::_default_stack_size        = 0;
3669 
3670 intx          os::win32::_os_thread_limit    = 0;
3671 volatile intx os::win32::_os_thread_count    = 0;
3672 
3673 bool   os::win32::_is_nt                     = false;
3674 bool   os::win32::_is_windows_2003           = false;
3675 bool   os::win32::_is_windows_server         = false;
3676 
3677 // 6573254
3678 // Currently, the bug is observed across all the supported Windows releases,
3679 // including the latest one (as of this writing - Windows Server 2012 R2)
3680 bool   os::win32::_has_exit_bug              = true;
3681 bool   os::win32::_has_performance_count     = 0;
3682 
3683 void os::win32::initialize_system_info() {
3684   SYSTEM_INFO si;
3685   GetSystemInfo(&si);
3686   _vm_page_size    = si.dwPageSize;
3687   _vm_allocation_granularity = si.dwAllocationGranularity;
3688   _processor_type  = si.dwProcessorType;
3689   _processor_level = si.wProcessorLevel;
3690   set_processor_count(si.dwNumberOfProcessors);
3691 
3692   MEMORYSTATUSEX ms;
3693   ms.dwLength = sizeof(ms);
3694 
3695   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3696   // dwMemoryLoad (% of memory in use)
3697   GlobalMemoryStatusEx(&ms);
3698   _physical_memory = ms.ullTotalPhys;
3699 
3700   OSVERSIONINFOEX oi;
3701   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3702   GetVersionEx((OSVERSIONINFO*)&oi);
3703   switch (oi.dwPlatformId) {
3704   case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3705   case VER_PLATFORM_WIN32_NT:
3706     _is_nt = true;
3707     {
3708       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3709       if (os_vers == 5002) {
3710         _is_windows_2003 = true;
3711       }
3712       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3713           oi.wProductType == VER_NT_SERVER) {
3714         _is_windows_server = true;
3715       }
3716     }
3717     break;
3718   default: fatal("Unknown platform");
3719   }
3720 
3721   _default_stack_size = os::current_stack_size();
3722   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3723   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3724          "stack size not a multiple of page size");
3725 
3726   initialize_performance_counter();
3727 
3728   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3729   // known to deadlock the system, if the VM issues to thread operations with
3730   // a too high frequency, e.g., such as changing the priorities.
3731   // The 6000 seems to work well - no deadlocks has been notices on the test
3732   // programs that we have seen experience this problem.
3733   if (!os::win32::is_nt()) {
3734     StarvationMonitorInterval = 6000;
3735   }
3736 }
3737 
3738 
3739 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3740                                       int ebuflen) {
3741   char path[MAX_PATH];
3742   DWORD size;
3743   DWORD pathLen = (DWORD)sizeof(path);
3744   HINSTANCE result = NULL;
3745 
3746   // only allow library name without path component
3747   assert(strchr(name, '\\') == NULL, "path not allowed");
3748   assert(strchr(name, ':') == NULL, "path not allowed");
3749   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3750     jio_snprintf(ebuf, ebuflen,
3751                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3752     return NULL;
3753   }
3754 
3755   // search system directory
3756   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3757     if (size >= pathLen) {
3758       return NULL; // truncated
3759     }
3760     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3761       return NULL; // truncated
3762     }
3763     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3764       return result;
3765     }
3766   }
3767 
3768   // try Windows directory
3769   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3770     if (size >= pathLen) {
3771       return NULL; // truncated
3772     }
3773     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3774       return NULL; // truncated
3775     }
3776     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3777       return result;
3778     }
3779   }
3780 
3781   jio_snprintf(ebuf, ebuflen,
3782                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3783   return NULL;
3784 }
3785 
3786 #define EXIT_TIMEOUT     PRODUCT_ONLY(1000) NOT_PRODUCT(4000) /* 1 sec in product, 4 sec in debug */
3787 
3788 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3789   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3790   return TRUE;
3791 }
3792 
3793 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3794   // Basic approach:
3795   //  - Each exiting thread registers its intent to exit and then does so.
3796   //  - A thread trying to terminate the process must wait for all
3797   //    threads currently exiting to complete their exit.
3798 
3799   if (os::win32::has_exit_bug()) {
3800     // The array holds handles of the threads that have started exiting by calling
3801     // _endthreadex().
3802     // Should be large enough to avoid blocking the exiting thread due to lack of
3803     // a free slot.
3804     static HANDLE handles[MAXIMUM_WAIT_OBJECTS];
3805     static int handle_count = 0;
3806 
3807     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3808     static CRITICAL_SECTION crit_sect;
3809     static volatile jint process_exiting = 0;
3810     int i, j;
3811     DWORD res;
3812     HANDLE hproc, hthr;
3813 
3814     // The first thread that reached this point, initializes the critical section.
3815     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3816       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3817     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3818       EnterCriticalSection(&crit_sect);
3819 
3820       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3821         // Remove from the array those handles of the threads that have completed exiting.
3822         for (i = 0, j = 0; i < handle_count; ++i) {
3823           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3824           if (res == WAIT_TIMEOUT) {
3825             handles[j++] = handles[i];
3826           } else {
3827             if (res == WAIT_FAILED) {
3828               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3829                       GetLastError(), __FILE__, __LINE__);
3830             }
3831             // Don't keep the handle, if we failed waiting for it.
3832             CloseHandle(handles[i]);
3833           }
3834         }
3835 
3836         // If there's no free slot in the array of the kept handles, we'll have to
3837         // wait until at least one thread completes exiting.
3838         if ((handle_count = j) == MAXIMUM_WAIT_OBJECTS) {
3839           // Raise the priority of the oldest exiting thread to increase its chances
3840           // to complete sooner.
3841           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3842           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3843           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3844             i = (res - WAIT_OBJECT_0);
3845             handle_count = MAXIMUM_WAIT_OBJECTS - 1;
3846             for (; i < handle_count; ++i) {
3847               handles[i] = handles[i + 1];
3848             }
3849           } else {
3850             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3851                     (res == WAIT_FAILED ? "failed" : "timed out"),
3852                     GetLastError(), __FILE__, __LINE__);
3853             // Don't keep handles, if we failed waiting for them.
3854             for (i = 0; i < MAXIMUM_WAIT_OBJECTS; ++i) {
3855               CloseHandle(handles[i]);
3856             }
3857             handle_count = 0;
3858           }
3859         }
3860 
3861         // Store a duplicate of the current thread handle in the array of handles.
3862         hproc = GetCurrentProcess();
3863         hthr = GetCurrentThread();
3864         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3865                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3866           warning("DuplicateHandle failed (%u) in %s: %d\n",
3867                   GetLastError(), __FILE__, __LINE__);
3868         } else {
3869           ++handle_count;
3870         }
3871 
3872         // The current exiting thread has stored its handle in the array, and now
3873         // should leave the critical section before calling _endthreadex().
3874 
3875       } else if (what != EPT_THREAD) {
3876         if (handle_count > 0) {
3877           // Before ending the process, make sure all the threads that had called
3878           // _endthreadex() completed.
3879 
3880           // Set the priority level of the current thread to the same value as
3881           // the priority level of exiting threads.
3882           // This is to ensure it will be given a fair chance to execute if
3883           // the timeout expires.
3884           hthr = GetCurrentThread();
3885           SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3886           for (i = 0; i < handle_count; ++i) {
3887             SetThreadPriority(handles[i], THREAD_PRIORITY_ABOVE_NORMAL);
3888           }
3889           res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT);
3890           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3891             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3892                     (res == WAIT_FAILED ? "failed" : "timed out"),
3893                     GetLastError(), __FILE__, __LINE__);
3894           }
3895           for (i = 0; i < handle_count; ++i) {
3896             CloseHandle(handles[i]);
3897           }
3898           handle_count = 0;
3899         }
3900 
3901         OrderAccess::release_store(&process_exiting, 1);
3902       }
3903 
3904       LeaveCriticalSection(&crit_sect);
3905     }
3906 
3907     if (what == EPT_THREAD) {
3908       while (OrderAccess::load_acquire(&process_exiting) != 0) {
3909         // Some other thread is about to call exit(), so we
3910         // don't let the current thread proceed to _endthreadex()
3911         SuspendThread(GetCurrentThread());
3912         // Avoid busy-wait loop, if SuspendThread() failed.
3913         Sleep(EXIT_TIMEOUT);
3914       }
3915     }
3916   }
3917 
3918   // We are here if either
3919   // - there's no 'race at exit' bug on this OS release;
3920   // - initialization of the critical section failed (unlikely);
3921   // - the current thread has stored its handle and left the critical section;
3922   // - the process-exiting thread has raised the flag and left the critical section.
3923   if (what == EPT_THREAD) {
3924     _endthreadex((unsigned)exit_code);
3925   } else if (what == EPT_PROCESS) {
3926     ::exit(exit_code);
3927   } else {
3928     _exit(exit_code);
3929   }
3930 
3931   // Should not reach here
3932   return exit_code;
3933 }
3934 
3935 #undef EXIT_TIMEOUT
3936 
3937 void os::win32::setmode_streams() {
3938   _setmode(_fileno(stdin), _O_BINARY);
3939   _setmode(_fileno(stdout), _O_BINARY);
3940   _setmode(_fileno(stderr), _O_BINARY);
3941 }
3942 
3943 
3944 bool os::is_debugger_attached() {
3945   return IsDebuggerPresent() ? true : false;
3946 }
3947 
3948 
3949 void os::wait_for_keypress_at_exit(void) {
3950   if (PauseAtExit) {
3951     fprintf(stderr, "Press any key to continue...\n");
3952     fgetc(stdin);
3953   }
3954 }
3955 
3956 
3957 int os::message_box(const char* title, const char* message) {
3958   int result = MessageBox(NULL, message, title,
3959                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3960   return result == IDYES;
3961 }
3962 
3963 int os::allocate_thread_local_storage() {
3964   return TlsAlloc();
3965 }
3966 
3967 
3968 void os::free_thread_local_storage(int index) {
3969   TlsFree(index);
3970 }
3971 
3972 
3973 void os::thread_local_storage_at_put(int index, void* value) {
3974   TlsSetValue(index, value);
3975   assert(thread_local_storage_at(index) == value, "Just checking");
3976 }
3977 
3978 
3979 void* os::thread_local_storage_at(int index) {
3980   return TlsGetValue(index);
3981 }
3982 
3983 
3984 #ifndef PRODUCT
3985 #ifndef _WIN64
3986 // Helpers to check whether NX protection is enabled
3987 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3988   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3989       pex->ExceptionRecord->NumberParameters > 0 &&
3990       pex->ExceptionRecord->ExceptionInformation[0] ==
3991       EXCEPTION_INFO_EXEC_VIOLATION) {
3992     return EXCEPTION_EXECUTE_HANDLER;
3993   }
3994   return EXCEPTION_CONTINUE_SEARCH;
3995 }
3996 
3997 void nx_check_protection() {
3998   // If NX is enabled we'll get an exception calling into code on the stack
3999   char code[] = { (char)0xC3 }; // ret
4000   void *code_ptr = (void *)code;
4001   __try {
4002     __asm call code_ptr
4003   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4004     tty->print_raw_cr("NX protection detected.");
4005   }
4006 }
4007 #endif // _WIN64
4008 #endif // PRODUCT
4009 
4010 // this is called _before_ the global arguments have been parsed
4011 void os::init(void) {
4012   _initial_pid = _getpid();
4013 
4014   init_random(1234567);
4015 
4016   win32::initialize_system_info();
4017   win32::setmode_streams();
4018   init_page_sizes((size_t) win32::vm_page_size());
4019 
4020   // This may be overridden later when argument processing is done.
4021   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
4022                 os::win32::is_windows_2003());
4023 
4024   // Initialize main_process and main_thread
4025   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4026   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4027                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4028     fatal("DuplicateHandle failed\n");
4029   }
4030   main_thread_id = (int) GetCurrentThreadId();
4031 }
4032 
4033 // To install functions for atexit processing
4034 extern "C" {
4035   static void perfMemory_exit_helper() {
4036     perfMemory_exit();
4037   }
4038 }
4039 
4040 static jint initSock();
4041 
4042 // this is called _after_ the global arguments have been parsed
4043 jint os::init_2(void) {
4044   // Allocate a single page and mark it as readable for safepoint polling
4045   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4046   guarantee(polling_page != NULL, "Reserve Failed for polling page");
4047 
4048   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4049   guarantee(return_page != NULL, "Commit Failed for polling page");
4050 
4051   os::set_polling_page(polling_page);
4052 
4053 #ifndef PRODUCT
4054   if (Verbose && PrintMiscellaneous) {
4055     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4056                (intptr_t)polling_page);
4057   }
4058 #endif
4059 
4060   if (!UseMembar) {
4061     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4062     guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4063 
4064     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4065     guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4066 
4067     os::set_memory_serialize_page(mem_serialize_page);
4068 
4069 #ifndef PRODUCT
4070     if (Verbose && PrintMiscellaneous) {
4071       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4072                  (intptr_t)mem_serialize_page);
4073     }
4074 #endif
4075   }
4076 
4077   // Setup Windows Exceptions
4078 
4079   // for debugging float code generation bugs
4080   if (ForceFloatExceptions) {
4081 #ifndef  _WIN64
4082     static long fp_control_word = 0;
4083     __asm { fstcw fp_control_word }
4084     // see Intel PPro Manual, Vol. 2, p 7-16
4085     const long precision = 0x20;
4086     const long underflow = 0x10;
4087     const long overflow  = 0x08;
4088     const long zero_div  = 0x04;
4089     const long denorm    = 0x02;
4090     const long invalid   = 0x01;
4091     fp_control_word |= invalid;
4092     __asm { fldcw fp_control_word }
4093 #endif
4094   }
4095 
4096   // If stack_commit_size is 0, windows will reserve the default size,
4097   // but only commit a small portion of it.
4098   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4099   size_t default_reserve_size = os::win32::default_stack_size();
4100   size_t actual_reserve_size = stack_commit_size;
4101   if (stack_commit_size < default_reserve_size) {
4102     // If stack_commit_size == 0, we want this too
4103     actual_reserve_size = default_reserve_size;
4104   }
4105 
4106   // Check minimum allowable stack size for thread creation and to initialize
4107   // the java system classes, including StackOverflowError - depends on page
4108   // size.  Add a page for compiler2 recursion in main thread.
4109   // Add in 2*BytesPerWord times page size to account for VM stack during
4110   // class initialization depending on 32 or 64 bit VM.
4111   size_t min_stack_allowed =
4112             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4113                      2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4114   if (actual_reserve_size < min_stack_allowed) {
4115     tty->print_cr("\nThe stack size specified is too small, "
4116                   "Specify at least %dk",
4117                   min_stack_allowed / K);
4118     return JNI_ERR;
4119   }
4120 
4121   JavaThread::set_stack_size_at_create(stack_commit_size);
4122 
4123   // Calculate theoretical max. size of Threads to guard gainst artifical
4124   // out-of-memory situations, where all available address-space has been
4125   // reserved by thread stacks.
4126   assert(actual_reserve_size != 0, "Must have a stack");
4127 
4128   // Calculate the thread limit when we should start doing Virtual Memory
4129   // banging. Currently when the threads will have used all but 200Mb of space.
4130   //
4131   // TODO: consider performing a similar calculation for commit size instead
4132   // as reserve size, since on a 64-bit platform we'll run into that more
4133   // often than running out of virtual memory space.  We can use the
4134   // lower value of the two calculations as the os_thread_limit.
4135   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4136   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4137 
4138   // at exit methods are called in the reverse order of their registration.
4139   // there is no limit to the number of functions registered. atexit does
4140   // not set errno.
4141 
4142   if (PerfAllowAtExitRegistration) {
4143     // only register atexit functions if PerfAllowAtExitRegistration is set.
4144     // atexit functions can be delayed until process exit time, which
4145     // can be problematic for embedded VM situations. Embedded VMs should
4146     // call DestroyJavaVM() to assure that VM resources are released.
4147 
4148     // note: perfMemory_exit_helper atexit function may be removed in
4149     // the future if the appropriate cleanup code can be added to the
4150     // VM_Exit VMOperation's doit method.
4151     if (atexit(perfMemory_exit_helper) != 0) {
4152       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4153     }
4154   }
4155 
4156 #ifndef _WIN64
4157   // Print something if NX is enabled (win32 on AMD64)
4158   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4159 #endif
4160 
4161   // initialize thread priority policy
4162   prio_init();
4163 
4164   if (UseNUMA && !ForceNUMA) {
4165     UseNUMA = false; // We don't fully support this yet
4166   }
4167 
4168   if (UseNUMAInterleaving) {
4169     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4170     bool success = numa_interleaving_init();
4171     if (!success) UseNUMAInterleaving = false;
4172   }
4173 
4174   if (initSock() != JNI_OK) {
4175     return JNI_ERR;
4176   }
4177 
4178   return JNI_OK;
4179 }
4180 
4181 // Mark the polling page as unreadable
4182 void os::make_polling_page_unreadable(void) {
4183   DWORD old_status;
4184   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4185                       PAGE_NOACCESS, &old_status)) {
4186     fatal("Could not disable polling page");
4187   }
4188 }
4189 
4190 // Mark the polling page as readable
4191 void os::make_polling_page_readable(void) {
4192   DWORD old_status;
4193   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4194                       PAGE_READONLY, &old_status)) {
4195     fatal("Could not enable polling page");
4196   }
4197 }
4198 
4199 
4200 int os::stat(const char *path, struct stat *sbuf) {
4201   char pathbuf[MAX_PATH];
4202   if (strlen(path) > MAX_PATH - 1) {
4203     errno = ENAMETOOLONG;
4204     return -1;
4205   }
4206   os::native_path(strcpy(pathbuf, path));
4207   int ret = ::stat(pathbuf, sbuf);
4208   if (sbuf != NULL && UseUTCFileTimestamp) {
4209     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4210     // the system timezone and so can return different values for the
4211     // same file if/when daylight savings time changes.  This adjustment
4212     // makes sure the same timestamp is returned regardless of the TZ.
4213     //
4214     // See:
4215     // http://msdn.microsoft.com/library/
4216     //   default.asp?url=/library/en-us/sysinfo/base/
4217     //   time_zone_information_str.asp
4218     // and
4219     // http://msdn.microsoft.com/library/default.asp?url=
4220     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4221     //
4222     // NOTE: there is a insidious bug here:  If the timezone is changed
4223     // after the call to stat() but before 'GetTimeZoneInformation()', then
4224     // the adjustment we do here will be wrong and we'll return the wrong
4225     // value (which will likely end up creating an invalid class data
4226     // archive).  Absent a better API for this, or some time zone locking
4227     // mechanism, we'll have to live with this risk.
4228     TIME_ZONE_INFORMATION tz;
4229     DWORD tzid = GetTimeZoneInformation(&tz);
4230     int daylightBias =
4231       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4232     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4233   }
4234   return ret;
4235 }
4236 
4237 
4238 #define FT2INT64(ft) \
4239   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4240 
4241 
4242 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4243 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4244 // of a thread.
4245 //
4246 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4247 // the fast estimate available on the platform.
4248 
4249 // current_thread_cpu_time() is not optimized for Windows yet
4250 jlong os::current_thread_cpu_time() {
4251   // return user + sys since the cost is the same
4252   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4253 }
4254 
4255 jlong os::thread_cpu_time(Thread* thread) {
4256   // consistent with what current_thread_cpu_time() returns.
4257   return os::thread_cpu_time(thread, true /* user+sys */);
4258 }
4259 
4260 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4261   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4262 }
4263 
4264 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4265   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4266   // If this function changes, os::is_thread_cpu_time_supported() should too
4267   if (os::win32::is_nt()) {
4268     FILETIME CreationTime;
4269     FILETIME ExitTime;
4270     FILETIME KernelTime;
4271     FILETIME UserTime;
4272 
4273     if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4274                        &ExitTime, &KernelTime, &UserTime) == 0) {
4275       return -1;
4276     } else if (user_sys_cpu_time) {
4277       return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4278     } else {
4279       return FT2INT64(UserTime) * 100;
4280     }
4281   } else {
4282     return (jlong) timeGetTime() * 1000000;
4283   }
4284 }
4285 
4286 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4287   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4288   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4289   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4290   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4291 }
4292 
4293 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4294   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4295   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4296   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4297   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4298 }
4299 
4300 bool os::is_thread_cpu_time_supported() {
4301   // see os::thread_cpu_time
4302   if (os::win32::is_nt()) {
4303     FILETIME CreationTime;
4304     FILETIME ExitTime;
4305     FILETIME KernelTime;
4306     FILETIME UserTime;
4307 
4308     if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4309                        &KernelTime, &UserTime) == 0) {
4310       return false;
4311     } else {
4312       return true;
4313     }
4314   } else {
4315     return false;
4316   }
4317 }
4318 
4319 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4320 // It does have primitives (PDH API) to get CPU usage and run queue length.
4321 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4322 // If we wanted to implement loadavg on Windows, we have a few options:
4323 //
4324 // a) Query CPU usage and run queue length and "fake" an answer by
4325 //    returning the CPU usage if it's under 100%, and the run queue
4326 //    length otherwise.  It turns out that querying is pretty slow
4327 //    on Windows, on the order of 200 microseconds on a fast machine.
4328 //    Note that on the Windows the CPU usage value is the % usage
4329 //    since the last time the API was called (and the first call
4330 //    returns 100%), so we'd have to deal with that as well.
4331 //
4332 // b) Sample the "fake" answer using a sampling thread and store
4333 //    the answer in a global variable.  The call to loadavg would
4334 //    just return the value of the global, avoiding the slow query.
4335 //
4336 // c) Sample a better answer using exponential decay to smooth the
4337 //    value.  This is basically the algorithm used by UNIX kernels.
4338 //
4339 // Note that sampling thread starvation could affect both (b) and (c).
4340 int os::loadavg(double loadavg[], int nelem) {
4341   return -1;
4342 }
4343 
4344 
4345 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4346 bool os::dont_yield() {
4347   return DontYieldALot;
4348 }
4349 
4350 // This method is a slightly reworked copy of JDK's sysOpen
4351 // from src/windows/hpi/src/sys_api_md.c
4352 
4353 int os::open(const char *path, int oflag, int mode) {
4354   char pathbuf[MAX_PATH];
4355 
4356   if (strlen(path) > MAX_PATH - 1) {
4357     errno = ENAMETOOLONG;
4358     return -1;
4359   }
4360   os::native_path(strcpy(pathbuf, path));
4361   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4362 }
4363 
4364 FILE* os::open(int fd, const char* mode) {
4365   return ::_fdopen(fd, mode);
4366 }
4367 
4368 // Is a (classpath) directory empty?
4369 bool os::dir_is_empty(const char* path) {
4370   WIN32_FIND_DATA fd;
4371   HANDLE f = FindFirstFile(path, &fd);
4372   if (f == INVALID_HANDLE_VALUE) {
4373     return true;
4374   }
4375   FindClose(f);
4376   return false;
4377 }
4378 
4379 // create binary file, rewriting existing file if required
4380 int os::create_binary_file(const char* path, bool rewrite_existing) {
4381   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4382   if (!rewrite_existing) {
4383     oflags |= _O_EXCL;
4384   }
4385   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4386 }
4387 
4388 // return current position of file pointer
4389 jlong os::current_file_offset(int fd) {
4390   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4391 }
4392 
4393 // move file pointer to the specified offset
4394 jlong os::seek_to_file_offset(int fd, jlong offset) {
4395   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4396 }
4397 
4398 
4399 jlong os::lseek(int fd, jlong offset, int whence) {
4400   return (jlong) ::_lseeki64(fd, offset, whence);
4401 }
4402 
4403 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4404   OVERLAPPED ov;
4405   DWORD nread;
4406   BOOL result;
4407 
4408   ZeroMemory(&ov, sizeof(ov));
4409   ov.Offset = (DWORD)offset;
4410   ov.OffsetHigh = (DWORD)(offset >> 32);
4411 
4412   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4413 
4414   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4415 
4416   return result ? nread : 0;
4417 }
4418 
4419 
4420 // This method is a slightly reworked copy of JDK's sysNativePath
4421 // from src/windows/hpi/src/path_md.c
4422 
4423 // Convert a pathname to native format.  On win32, this involves forcing all
4424 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4425 // sometimes rejects '/') and removing redundant separators.  The input path is
4426 // assumed to have been converted into the character encoding used by the local
4427 // system.  Because this might be a double-byte encoding, care is taken to
4428 // treat double-byte lead characters correctly.
4429 //
4430 // This procedure modifies the given path in place, as the result is never
4431 // longer than the original.  There is no error return; this operation always
4432 // succeeds.
4433 char * os::native_path(char *path) {
4434   char *src = path, *dst = path, *end = path;
4435   char *colon = NULL;  // If a drive specifier is found, this will
4436                        // point to the colon following the drive letter
4437 
4438   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4439   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4440           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4441 
4442   // Check for leading separators
4443 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4444   while (isfilesep(*src)) {
4445     src++;
4446   }
4447 
4448   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4449     // Remove leading separators if followed by drive specifier.  This
4450     // hack is necessary to support file URLs containing drive
4451     // specifiers (e.g., "file://c:/path").  As a side effect,
4452     // "/c:/path" can be used as an alternative to "c:/path".
4453     *dst++ = *src++;
4454     colon = dst;
4455     *dst++ = ':';
4456     src++;
4457   } else {
4458     src = path;
4459     if (isfilesep(src[0]) && isfilesep(src[1])) {
4460       // UNC pathname: Retain first separator; leave src pointed at
4461       // second separator so that further separators will be collapsed
4462       // into the second separator.  The result will be a pathname
4463       // beginning with "\\\\" followed (most likely) by a host name.
4464       src = dst = path + 1;
4465       path[0] = '\\';     // Force first separator to '\\'
4466     }
4467   }
4468 
4469   end = dst;
4470 
4471   // Remove redundant separators from remainder of path, forcing all
4472   // separators to be '\\' rather than '/'. Also, single byte space
4473   // characters are removed from the end of the path because those
4474   // are not legal ending characters on this operating system.
4475   //
4476   while (*src != '\0') {
4477     if (isfilesep(*src)) {
4478       *dst++ = '\\'; src++;
4479       while (isfilesep(*src)) src++;
4480       if (*src == '\0') {
4481         // Check for trailing separator
4482         end = dst;
4483         if (colon == dst - 2) break;  // "z:\\"
4484         if (dst == path + 1) break;   // "\\"
4485         if (dst == path + 2 && isfilesep(path[0])) {
4486           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4487           // beginning of a UNC pathname.  Even though it is not, by
4488           // itself, a valid UNC pathname, we leave it as is in order
4489           // to be consistent with the path canonicalizer as well
4490           // as the win32 APIs, which treat this case as an invalid
4491           // UNC pathname rather than as an alias for the root
4492           // directory of the current drive.
4493           break;
4494         }
4495         end = --dst;  // Path does not denote a root directory, so
4496                       // remove trailing separator
4497         break;
4498       }
4499       end = dst;
4500     } else {
4501       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4502         *dst++ = *src++;
4503         if (*src) *dst++ = *src++;
4504         end = dst;
4505       } else {  // Copy a single-byte character
4506         char c = *src++;
4507         *dst++ = c;
4508         // Space is not a legal ending character
4509         if (c != ' ') end = dst;
4510       }
4511     }
4512   }
4513 
4514   *end = '\0';
4515 
4516   // For "z:", add "." to work around a bug in the C runtime library
4517   if (colon == dst - 1) {
4518     path[2] = '.';
4519     path[3] = '\0';
4520   }
4521 
4522   return path;
4523 }
4524 
4525 // This code is a copy of JDK's sysSetLength
4526 // from src/windows/hpi/src/sys_api_md.c
4527 
4528 int os::ftruncate(int fd, jlong length) {
4529   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4530   long high = (long)(length >> 32);
4531   DWORD ret;
4532 
4533   if (h == (HANDLE)(-1)) {
4534     return -1;
4535   }
4536 
4537   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4538   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4539     return -1;
4540   }
4541 
4542   if (::SetEndOfFile(h) == FALSE) {
4543     return -1;
4544   }
4545 
4546   return 0;
4547 }
4548 
4549 
4550 // This code is a copy of JDK's sysSync
4551 // from src/windows/hpi/src/sys_api_md.c
4552 // except for the legacy workaround for a bug in Win 98
4553 
4554 int os::fsync(int fd) {
4555   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4556 
4557   if ((!::FlushFileBuffers(handle)) &&
4558       (GetLastError() != ERROR_ACCESS_DENIED)) {
4559     // from winerror.h
4560     return -1;
4561   }
4562   return 0;
4563 }
4564 
4565 static int nonSeekAvailable(int, long *);
4566 static int stdinAvailable(int, long *);
4567 
4568 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4569 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4570 
4571 // This code is a copy of JDK's sysAvailable
4572 // from src/windows/hpi/src/sys_api_md.c
4573 
4574 int os::available(int fd, jlong *bytes) {
4575   jlong cur, end;
4576   struct _stati64 stbuf64;
4577 
4578   if (::_fstati64(fd, &stbuf64) >= 0) {
4579     int mode = stbuf64.st_mode;
4580     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4581       int ret;
4582       long lpbytes;
4583       if (fd == 0) {
4584         ret = stdinAvailable(fd, &lpbytes);
4585       } else {
4586         ret = nonSeekAvailable(fd, &lpbytes);
4587       }
4588       (*bytes) = (jlong)(lpbytes);
4589       return ret;
4590     }
4591     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4592       return FALSE;
4593     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4594       return FALSE;
4595     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4596       return FALSE;
4597     }
4598     *bytes = end - cur;
4599     return TRUE;
4600   } else {
4601     return FALSE;
4602   }
4603 }
4604 
4605 // This code is a copy of JDK's nonSeekAvailable
4606 // from src/windows/hpi/src/sys_api_md.c
4607 
4608 static int nonSeekAvailable(int fd, long *pbytes) {
4609   // This is used for available on non-seekable devices
4610   // (like both named and anonymous pipes, such as pipes
4611   //  connected to an exec'd process).
4612   // Standard Input is a special case.
4613   HANDLE han;
4614 
4615   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4616     return FALSE;
4617   }
4618 
4619   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4620     // PeekNamedPipe fails when at EOF.  In that case we
4621     // simply make *pbytes = 0 which is consistent with the
4622     // behavior we get on Solaris when an fd is at EOF.
4623     // The only alternative is to raise an Exception,
4624     // which isn't really warranted.
4625     //
4626     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4627       return FALSE;
4628     }
4629     *pbytes = 0;
4630   }
4631   return TRUE;
4632 }
4633 
4634 #define MAX_INPUT_EVENTS 2000
4635 
4636 // This code is a copy of JDK's stdinAvailable
4637 // from src/windows/hpi/src/sys_api_md.c
4638 
4639 static int stdinAvailable(int fd, long *pbytes) {
4640   HANDLE han;
4641   DWORD numEventsRead = 0;  // Number of events read from buffer
4642   DWORD numEvents = 0;      // Number of events in buffer
4643   DWORD i = 0;              // Loop index
4644   DWORD curLength = 0;      // Position marker
4645   DWORD actualLength = 0;   // Number of bytes readable
4646   BOOL error = FALSE;       // Error holder
4647   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4648 
4649   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4650     return FALSE;
4651   }
4652 
4653   // Construct an array of input records in the console buffer
4654   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4655   if (error == 0) {
4656     return nonSeekAvailable(fd, pbytes);
4657   }
4658 
4659   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4660   if (numEvents > MAX_INPUT_EVENTS) {
4661     numEvents = MAX_INPUT_EVENTS;
4662   }
4663 
4664   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4665   if (lpBuffer == NULL) {
4666     return FALSE;
4667   }
4668 
4669   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4670   if (error == 0) {
4671     os::free(lpBuffer);
4672     return FALSE;
4673   }
4674 
4675   // Examine input records for the number of bytes available
4676   for (i=0; i<numEvents; i++) {
4677     if (lpBuffer[i].EventType == KEY_EVENT) {
4678 
4679       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4680                                       &(lpBuffer[i].Event);
4681       if (keyRecord->bKeyDown == TRUE) {
4682         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4683         curLength++;
4684         if (*keyPressed == '\r') {
4685           actualLength = curLength;
4686         }
4687       }
4688     }
4689   }
4690 
4691   if (lpBuffer != NULL) {
4692     os::free(lpBuffer);
4693   }
4694 
4695   *pbytes = (long) actualLength;
4696   return TRUE;
4697 }
4698 
4699 // Map a block of memory.
4700 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4701                         char *addr, size_t bytes, bool read_only,
4702                         bool allow_exec) {
4703   HANDLE hFile;
4704   char* base;
4705 
4706   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4707                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4708   if (hFile == NULL) {
4709     if (PrintMiscellaneous && Verbose) {
4710       DWORD err = GetLastError();
4711       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4712     }
4713     return NULL;
4714   }
4715 
4716   if (allow_exec) {
4717     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4718     // unless it comes from a PE image (which the shared archive is not.)
4719     // Even VirtualProtect refuses to give execute access to mapped memory
4720     // that was not previously executable.
4721     //
4722     // Instead, stick the executable region in anonymous memory.  Yuck.
4723     // Penalty is that ~4 pages will not be shareable - in the future
4724     // we might consider DLLizing the shared archive with a proper PE
4725     // header so that mapping executable + sharing is possible.
4726 
4727     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4728                                 PAGE_READWRITE);
4729     if (base == NULL) {
4730       if (PrintMiscellaneous && Verbose) {
4731         DWORD err = GetLastError();
4732         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4733       }
4734       CloseHandle(hFile);
4735       return NULL;
4736     }
4737 
4738     DWORD bytes_read;
4739     OVERLAPPED overlapped;
4740     overlapped.Offset = (DWORD)file_offset;
4741     overlapped.OffsetHigh = 0;
4742     overlapped.hEvent = NULL;
4743     // ReadFile guarantees that if the return value is true, the requested
4744     // number of bytes were read before returning.
4745     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4746     if (!res) {
4747       if (PrintMiscellaneous && Verbose) {
4748         DWORD err = GetLastError();
4749         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4750       }
4751       release_memory(base, bytes);
4752       CloseHandle(hFile);
4753       return NULL;
4754     }
4755   } else {
4756     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4757                                     NULL /* file_name */);
4758     if (hMap == NULL) {
4759       if (PrintMiscellaneous && Verbose) {
4760         DWORD err = GetLastError();
4761         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4762       }
4763       CloseHandle(hFile);
4764       return NULL;
4765     }
4766 
4767     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4768     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4769                                   (DWORD)bytes, addr);
4770     if (base == NULL) {
4771       if (PrintMiscellaneous && Verbose) {
4772         DWORD err = GetLastError();
4773         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4774       }
4775       CloseHandle(hMap);
4776       CloseHandle(hFile);
4777       return NULL;
4778     }
4779 
4780     if (CloseHandle(hMap) == 0) {
4781       if (PrintMiscellaneous && Verbose) {
4782         DWORD err = GetLastError();
4783         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4784       }
4785       CloseHandle(hFile);
4786       return base;
4787     }
4788   }
4789 
4790   if (allow_exec) {
4791     DWORD old_protect;
4792     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4793     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4794 
4795     if (!res) {
4796       if (PrintMiscellaneous && Verbose) {
4797         DWORD err = GetLastError();
4798         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4799       }
4800       // Don't consider this a hard error, on IA32 even if the
4801       // VirtualProtect fails, we should still be able to execute
4802       CloseHandle(hFile);
4803       return base;
4804     }
4805   }
4806 
4807   if (CloseHandle(hFile) == 0) {
4808     if (PrintMiscellaneous && Verbose) {
4809       DWORD err = GetLastError();
4810       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4811     }
4812     return base;
4813   }
4814 
4815   return base;
4816 }
4817 
4818 
4819 // Remap a block of memory.
4820 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4821                           char *addr, size_t bytes, bool read_only,
4822                           bool allow_exec) {
4823   // This OS does not allow existing memory maps to be remapped so we
4824   // have to unmap the memory before we remap it.
4825   if (!os::unmap_memory(addr, bytes)) {
4826     return NULL;
4827   }
4828 
4829   // There is a very small theoretical window between the unmap_memory()
4830   // call above and the map_memory() call below where a thread in native
4831   // code may be able to access an address that is no longer mapped.
4832 
4833   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4834                         read_only, allow_exec);
4835 }
4836 
4837 
4838 // Unmap a block of memory.
4839 // Returns true=success, otherwise false.
4840 
4841 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4842   BOOL result = UnmapViewOfFile(addr);
4843   if (result == 0) {
4844     if (PrintMiscellaneous && Verbose) {
4845       DWORD err = GetLastError();
4846       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4847     }
4848     return false;
4849   }
4850   return true;
4851 }
4852 
4853 void os::pause() {
4854   char filename[MAX_PATH];
4855   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4856     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4857   } else {
4858     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4859   }
4860 
4861   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4862   if (fd != -1) {
4863     struct stat buf;
4864     ::close(fd);
4865     while (::stat(filename, &buf) == 0) {
4866       Sleep(100);
4867     }
4868   } else {
4869     jio_fprintf(stderr,
4870                 "Could not open pause file '%s', continuing immediately.\n", filename);
4871   }
4872 }
4873 
4874 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4875   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4876 }
4877 
4878 // See the caveats for this class in os_windows.hpp
4879 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4880 // into this method and returns false. If no OS EXCEPTION was raised, returns
4881 // true.
4882 // The callback is supposed to provide the method that should be protected.
4883 //
4884 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4885   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4886   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4887          "crash_protection already set?");
4888 
4889   bool success = true;
4890   __try {
4891     WatcherThread::watcher_thread()->set_crash_protection(this);
4892     cb.call();
4893   } __except(EXCEPTION_EXECUTE_HANDLER) {
4894     // only for protection, nothing to do
4895     success = false;
4896   }
4897   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4898   return success;
4899 }
4900 
4901 // An Event wraps a win32 "CreateEvent" kernel handle.
4902 //
4903 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4904 //
4905 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4906 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4907 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4908 //     In addition, an unpark() operation might fetch the handle field, but the
4909 //     event could recycle between the fetch and the SetEvent() operation.
4910 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4911 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4912 //     on an stale but recycled handle would be harmless, but in practice this might
4913 //     confuse other non-Sun code, so it's not a viable approach.
4914 //
4915 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4916 //     with the Event.  The event handle is never closed.  This could be construed
4917 //     as handle leakage, but only up to the maximum # of threads that have been extant
4918 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4919 //     permit a process to have hundreds of thousands of open handles.
4920 //
4921 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4922 //     and release unused handles.
4923 //
4924 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4925 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4926 //
4927 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4928 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4929 //
4930 // We use (2).
4931 //
4932 // TODO-FIXME:
4933 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4934 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4935 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4936 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4937 //     into a single win32 CreateEvent() handle.
4938 //
4939 // Assumption:
4940 //    Only one parker can exist on an event, which is why we allocate
4941 //    them per-thread. Multiple unparkers can coexist.
4942 //
4943 // _Event transitions in park()
4944 //   -1 => -1 : illegal
4945 //    1 =>  0 : pass - return immediately
4946 //    0 => -1 : block; then set _Event to 0 before returning
4947 //
4948 // _Event transitions in unpark()
4949 //    0 => 1 : just return
4950 //    1 => 1 : just return
4951 //   -1 => either 0 or 1; must signal target thread
4952 //         That is, we can safely transition _Event from -1 to either
4953 //         0 or 1.
4954 //
4955 // _Event serves as a restricted-range semaphore.
4956 //   -1 : thread is blocked, i.e. there is a waiter
4957 //    0 : neutral: thread is running or ready,
4958 //        could have been signaled after a wait started
4959 //    1 : signaled - thread is running or ready
4960 //
4961 // Another possible encoding of _Event would be with
4962 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4963 //
4964 
4965 int os::PlatformEvent::park(jlong Millis) {
4966   // Transitions for _Event:
4967   //   -1 => -1 : illegal
4968   //    1 =>  0 : pass - return immediately
4969   //    0 => -1 : block; then set _Event to 0 before returning
4970 
4971   guarantee(_ParkHandle != NULL , "Invariant");
4972   guarantee(Millis > 0          , "Invariant");
4973 
4974   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4975   // the initial park() operation.
4976   // Consider: use atomic decrement instead of CAS-loop
4977 
4978   int v;
4979   for (;;) {
4980     v = _Event;
4981     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4982   }
4983   guarantee((v == 0) || (v == 1), "invariant");
4984   if (v != 0) return OS_OK;
4985 
4986   // Do this the hard way by blocking ...
4987   // TODO: consider a brief spin here, gated on the success of recent
4988   // spin attempts by this thread.
4989   //
4990   // We decompose long timeouts into series of shorter timed waits.
4991   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4992   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4993   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4994   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4995   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4996   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4997   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4998   // for the already waited time.  This policy does not admit any new outcomes.
4999   // In the future, however, we might want to track the accumulated wait time and
5000   // adjust Millis accordingly if we encounter a spurious wakeup.
5001 
5002   const int MAXTIMEOUT = 0x10000000;
5003   DWORD rv = WAIT_TIMEOUT;
5004   while (_Event < 0 && Millis > 0) {
5005     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5006     if (Millis > MAXTIMEOUT) {
5007       prd = MAXTIMEOUT;
5008     }
5009     rv = ::WaitForSingleObject(_ParkHandle, prd);
5010     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5011     if (rv == WAIT_TIMEOUT) {
5012       Millis -= prd;
5013     }
5014   }
5015   v = _Event;
5016   _Event = 0;
5017   // see comment at end of os::PlatformEvent::park() below:
5018   OrderAccess::fence();
5019   // If we encounter a nearly simultanous timeout expiry and unpark()
5020   // we return OS_OK indicating we awoke via unpark().
5021   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5022   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5023 }
5024 
5025 void os::PlatformEvent::park() {
5026   // Transitions for _Event:
5027   //   -1 => -1 : illegal
5028   //    1 =>  0 : pass - return immediately
5029   //    0 => -1 : block; then set _Event to 0 before returning
5030 
5031   guarantee(_ParkHandle != NULL, "Invariant");
5032   // Invariant: Only the thread associated with the Event/PlatformEvent
5033   // may call park().
5034   // Consider: use atomic decrement instead of CAS-loop
5035   int v;
5036   for (;;) {
5037     v = _Event;
5038     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5039   }
5040   guarantee((v == 0) || (v == 1), "invariant");
5041   if (v != 0) return;
5042 
5043   // Do this the hard way by blocking ...
5044   // TODO: consider a brief spin here, gated on the success of recent
5045   // spin attempts by this thread.
5046   while (_Event < 0) {
5047     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5048     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5049   }
5050 
5051   // Usually we'll find _Event == 0 at this point, but as
5052   // an optional optimization we clear it, just in case can
5053   // multiple unpark() operations drove _Event up to 1.
5054   _Event = 0;
5055   OrderAccess::fence();
5056   guarantee(_Event >= 0, "invariant");
5057 }
5058 
5059 void os::PlatformEvent::unpark() {
5060   guarantee(_ParkHandle != NULL, "Invariant");
5061 
5062   // Transitions for _Event:
5063   //    0 => 1 : just return
5064   //    1 => 1 : just return
5065   //   -1 => either 0 or 1; must signal target thread
5066   //         That is, we can safely transition _Event from -1 to either
5067   //         0 or 1.
5068   // See also: "Semaphores in Plan 9" by Mullender & Cox
5069   //
5070   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5071   // that it will take two back-to-back park() calls for the owning
5072   // thread to block. This has the benefit of forcing a spurious return
5073   // from the first park() call after an unpark() call which will help
5074   // shake out uses of park() and unpark() without condition variables.
5075 
5076   if (Atomic::xchg(1, &_Event) >= 0) return;
5077 
5078   ::SetEvent(_ParkHandle);
5079 }
5080 
5081 
5082 // JSR166
5083 // -------------------------------------------------------
5084 
5085 // The Windows implementation of Park is very straightforward: Basic
5086 // operations on Win32 Events turn out to have the right semantics to
5087 // use them directly. We opportunistically resuse the event inherited
5088 // from Monitor.
5089 
5090 void Parker::park(bool isAbsolute, jlong time) {
5091   guarantee(_ParkEvent != NULL, "invariant");
5092   // First, demultiplex/decode time arguments
5093   if (time < 0) { // don't wait
5094     return;
5095   } else if (time == 0 && !isAbsolute) {
5096     time = INFINITE;
5097   } else if (isAbsolute) {
5098     time -= os::javaTimeMillis(); // convert to relative time
5099     if (time <= 0) {  // already elapsed
5100       return;
5101     }
5102   } else { // relative
5103     time /= 1000000;  // Must coarsen from nanos to millis
5104     if (time == 0) {  // Wait for the minimal time unit if zero
5105       time = 1;
5106     }
5107   }
5108 
5109   JavaThread* thread = (JavaThread*)(Thread::current());
5110   assert(thread->is_Java_thread(), "Must be JavaThread");
5111   JavaThread *jt = (JavaThread *)thread;
5112 
5113   // Don't wait if interrupted or already triggered
5114   if (Thread::is_interrupted(thread, false) ||
5115       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5116     ResetEvent(_ParkEvent);
5117     return;
5118   } else {
5119     ThreadBlockInVM tbivm(jt);
5120     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5121     jt->set_suspend_equivalent();
5122 
5123     WaitForSingleObject(_ParkEvent, time);
5124     ResetEvent(_ParkEvent);
5125 
5126     // If externally suspended while waiting, re-suspend
5127     if (jt->handle_special_suspend_equivalent_condition()) {
5128       jt->java_suspend_self();
5129     }
5130   }
5131 }
5132 
5133 void Parker::unpark() {
5134   guarantee(_ParkEvent != NULL, "invariant");
5135   SetEvent(_ParkEvent);
5136 }
5137 
5138 // Run the specified command in a separate process. Return its exit value,
5139 // or -1 on failure (e.g. can't create a new process).
5140 int os::fork_and_exec(char* cmd) {
5141   STARTUPINFO si;
5142   PROCESS_INFORMATION pi;
5143 
5144   memset(&si, 0, sizeof(si));
5145   si.cb = sizeof(si);
5146   memset(&pi, 0, sizeof(pi));
5147   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5148                             cmd,    // command line
5149                             NULL,   // process security attribute
5150                             NULL,   // thread security attribute
5151                             TRUE,   // inherits system handles
5152                             0,      // no creation flags
5153                             NULL,   // use parent's environment block
5154                             NULL,   // use parent's starting directory
5155                             &si,    // (in) startup information
5156                             &pi);   // (out) process information
5157 
5158   if (rslt) {
5159     // Wait until child process exits.
5160     WaitForSingleObject(pi.hProcess, INFINITE);
5161 
5162     DWORD exit_code;
5163     GetExitCodeProcess(pi.hProcess, &exit_code);
5164 
5165     // Close process and thread handles.
5166     CloseHandle(pi.hProcess);
5167     CloseHandle(pi.hThread);
5168 
5169     return (int)exit_code;
5170   } else {
5171     return -1;
5172   }
5173 }
5174 
5175 //--------------------------------------------------------------------------------------------------
5176 // Non-product code
5177 
5178 static int mallocDebugIntervalCounter = 0;
5179 static int mallocDebugCounter = 0;
5180 bool os::check_heap(bool force) {
5181   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5182   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5183     // Note: HeapValidate executes two hardware breakpoints when it finds something
5184     // wrong; at these points, eax contains the address of the offending block (I think).
5185     // To get to the exlicit error message(s) below, just continue twice.
5186     HANDLE heap = GetProcessHeap();
5187 
5188     // If we fail to lock the heap, then gflags.exe has been used
5189     // or some other special heap flag has been set that prevents
5190     // locking. We don't try to walk a heap we can't lock.
5191     if (HeapLock(heap) != 0) {
5192       PROCESS_HEAP_ENTRY phe;
5193       phe.lpData = NULL;
5194       while (HeapWalk(heap, &phe) != 0) {
5195         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5196             !HeapValidate(heap, 0, phe.lpData)) {
5197           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5198           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5199           fatal("corrupted C heap");
5200         }
5201       }
5202       DWORD err = GetLastError();
5203       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5204         fatal(err_msg("heap walk aborted with error %d", err));
5205       }
5206       HeapUnlock(heap);
5207     }
5208     mallocDebugIntervalCounter = 0;
5209   }
5210   return true;
5211 }
5212 
5213 
5214 bool os::find(address addr, outputStream* st) {
5215   // Nothing yet
5216   return false;
5217 }
5218 
5219 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5220   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5221 
5222   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5223     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5224     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5225     address addr = (address) exceptionRecord->ExceptionInformation[1];
5226 
5227     if (os::is_memory_serialize_page(thread, addr)) {
5228       return EXCEPTION_CONTINUE_EXECUTION;
5229     }
5230   }
5231 
5232   return EXCEPTION_CONTINUE_SEARCH;
5233 }
5234 
5235 // We don't build a headless jre for Windows
5236 bool os::is_headless_jre() { return false; }
5237 
5238 static jint initSock() {
5239   WSADATA wsadata;
5240 
5241   if (!os::WinSock2Dll::WinSock2Available()) {
5242     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5243                 ::GetLastError());
5244     return JNI_ERR;
5245   }
5246 
5247   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5248     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5249                 ::GetLastError());
5250     return JNI_ERR;
5251   }
5252   return JNI_OK;
5253 }
5254 
5255 struct hostent* os::get_host_by_name(char* name) {
5256   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5257 }
5258 
5259 int os::socket_close(int fd) {
5260   return ::closesocket(fd);
5261 }
5262 
5263 int os::socket(int domain, int type, int protocol) {
5264   return ::socket(domain, type, protocol);
5265 }
5266 
5267 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5268   return ::connect(fd, him, len);
5269 }
5270 
5271 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5272   return ::recv(fd, buf, (int)nBytes, flags);
5273 }
5274 
5275 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5276   return ::send(fd, buf, (int)nBytes, flags);
5277 }
5278 
5279 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5280   return ::send(fd, buf, (int)nBytes, flags);
5281 }
5282 
5283 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5284 #if defined(IA32)
5285   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5286 #elif defined (AMD64)
5287   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5288 #endif
5289 
5290 // returns true if thread could be suspended,
5291 // false otherwise
5292 static bool do_suspend(HANDLE* h) {
5293   if (h != NULL) {
5294     if (SuspendThread(*h) != ~0) {
5295       return true;
5296     }
5297   }
5298   return false;
5299 }
5300 
5301 // resume the thread
5302 // calling resume on an active thread is a no-op
5303 static void do_resume(HANDLE* h) {
5304   if (h != NULL) {
5305     ResumeThread(*h);
5306   }
5307 }
5308 
5309 // retrieve a suspend/resume context capable handle
5310 // from the tid. Caller validates handle return value.
5311 void get_thread_handle_for_extended_context(HANDLE* h,
5312                                             OSThread::thread_id_t tid) {
5313   if (h != NULL) {
5314     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5315   }
5316 }
5317 
5318 // Thread sampling implementation
5319 //
5320 void os::SuspendedThreadTask::internal_do_task() {
5321   CONTEXT    ctxt;
5322   HANDLE     h = NULL;
5323 
5324   // get context capable handle for thread
5325   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5326 
5327   // sanity
5328   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5329     return;
5330   }
5331 
5332   // suspend the thread
5333   if (do_suspend(&h)) {
5334     ctxt.ContextFlags = sampling_context_flags;
5335     // get thread context
5336     GetThreadContext(h, &ctxt);
5337     SuspendedThreadTaskContext context(_thread, &ctxt);
5338     // pass context to Thread Sampling impl
5339     do_task(context);
5340     // resume thread
5341     do_resume(&h);
5342   }
5343 
5344   // close handle
5345   CloseHandle(h);
5346 }
5347 
5348 
5349 // Kernel32 API
5350 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5351 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5352 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5353 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5354 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5355 
5356 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5357 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5358 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5359 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5360 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5361 
5362 
5363 BOOL                        os::Kernel32Dll::initialized = FALSE;
5364 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5365   assert(initialized && _GetLargePageMinimum != NULL,
5366          "GetLargePageMinimumAvailable() not yet called");
5367   return _GetLargePageMinimum();
5368 }
5369 
5370 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5371   if (!initialized) {
5372     initialize();
5373   }
5374   return _GetLargePageMinimum != NULL;
5375 }
5376 
5377 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5378   if (!initialized) {
5379     initialize();
5380   }
5381   return _VirtualAllocExNuma != NULL;
5382 }
5383 
5384 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5385                                            SIZE_T bytes, DWORD flags,
5386                                            DWORD prot, DWORD node) {
5387   assert(initialized && _VirtualAllocExNuma != NULL,
5388          "NUMACallsAvailable() not yet called");
5389 
5390   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5391 }
5392 
5393 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5394   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5395          "NUMACallsAvailable() not yet called");
5396 
5397   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5398 }
5399 
5400 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5401                                                PULONGLONG proc_mask) {
5402   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5403          "NUMACallsAvailable() not yet called");
5404 
5405   return _GetNumaNodeProcessorMask(node, proc_mask);
5406 }
5407 
5408 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5409                                                  ULONG FrameToCapture,
5410                                                  PVOID* BackTrace,
5411                                                  PULONG BackTraceHash) {
5412   if (!initialized) {
5413     initialize();
5414   }
5415 
5416   if (_RtlCaptureStackBackTrace != NULL) {
5417     return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5418                                      BackTrace, BackTraceHash);
5419   } else {
5420     return 0;
5421   }
5422 }
5423 
5424 void os::Kernel32Dll::initializeCommon() {
5425   if (!initialized) {
5426     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5427     assert(handle != NULL, "Just check");
5428     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5429     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5430     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5431     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5432     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5433     initialized = TRUE;
5434   }
5435 }
5436 
5437 
5438 
5439 #ifndef JDK6_OR_EARLIER
5440 
5441 void os::Kernel32Dll::initialize() {
5442   initializeCommon();
5443 }
5444 
5445 
5446 // Kernel32 API
5447 inline BOOL os::Kernel32Dll::SwitchToThread() {
5448   return ::SwitchToThread();
5449 }
5450 
5451 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5452   return true;
5453 }
5454 
5455 // Help tools
5456 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5457   return true;
5458 }
5459 
5460 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5461                                                         DWORD th32ProcessId) {
5462   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5463 }
5464 
5465 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5466                                            LPMODULEENTRY32 lpme) {
5467   return ::Module32First(hSnapshot, lpme);
5468 }
5469 
5470 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5471                                           LPMODULEENTRY32 lpme) {
5472   return ::Module32Next(hSnapshot, lpme);
5473 }
5474 
5475 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5476   ::GetNativeSystemInfo(lpSystemInfo);
5477 }
5478 
5479 // PSAPI API
5480 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5481                                              HMODULE *lpModule, DWORD cb,
5482                                              LPDWORD lpcbNeeded) {
5483   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5484 }
5485 
5486 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5487                                                HMODULE hModule,
5488                                                LPTSTR lpFilename,
5489                                                DWORD nSize) {
5490   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5491 }
5492 
5493 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5494                                                HMODULE hModule,
5495                                                LPMODULEINFO lpmodinfo,
5496                                                DWORD cb) {
5497   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5498 }
5499 
5500 inline BOOL os::PSApiDll::PSApiAvailable() {
5501   return true;
5502 }
5503 
5504 
5505 // WinSock2 API
5506 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5507                                         LPWSADATA lpWSAData) {
5508   return ::WSAStartup(wVersionRequested, lpWSAData);
5509 }
5510 
5511 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5512   return ::gethostbyname(name);
5513 }
5514 
5515 inline BOOL os::WinSock2Dll::WinSock2Available() {
5516   return true;
5517 }
5518 
5519 // Advapi API
5520 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5521                                                    BOOL DisableAllPrivileges,
5522                                                    PTOKEN_PRIVILEGES NewState,
5523                                                    DWORD BufferLength,
5524                                                    PTOKEN_PRIVILEGES PreviousState,
5525                                                    PDWORD ReturnLength) {
5526   return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5527                                  BufferLength, PreviousState, ReturnLength);
5528 }
5529 
5530 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5531                                               DWORD DesiredAccess,
5532                                               PHANDLE TokenHandle) {
5533   return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5534 }
5535 
5536 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5537                                                   LPCTSTR lpName,
5538                                                   PLUID lpLuid) {
5539   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5540 }
5541 
5542 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5543   return true;
5544 }
5545 
5546 void* os::get_default_process_handle() {
5547   return (void*)GetModuleHandle(NULL);
5548 }
5549 
5550 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5551 // which is used to find statically linked in agents.
5552 // Additionally for windows, takes into account __stdcall names.
5553 // Parameters:
5554 //            sym_name: Symbol in library we are looking for
5555 //            lib_name: Name of library to look in, NULL for shared libs.
5556 //            is_absolute_path == true if lib_name is absolute path to agent
5557 //                                     such as "C:/a/b/L.dll"
5558 //            == false if only the base name of the library is passed in
5559 //               such as "L"
5560 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5561                                     bool is_absolute_path) {
5562   char *agent_entry_name;
5563   size_t len;
5564   size_t name_len;
5565   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5566   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5567   const char *start;
5568 
5569   if (lib_name != NULL) {
5570     len = name_len = strlen(lib_name);
5571     if (is_absolute_path) {
5572       // Need to strip path, prefix and suffix
5573       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5574         lib_name = ++start;
5575       } else {
5576         // Need to check for drive prefix
5577         if ((start = strchr(lib_name, ':')) != NULL) {
5578           lib_name = ++start;
5579         }
5580       }
5581       if (len <= (prefix_len + suffix_len)) {
5582         return NULL;
5583       }
5584       lib_name += prefix_len;
5585       name_len = strlen(lib_name) - suffix_len;
5586     }
5587   }
5588   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5589   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5590   if (agent_entry_name == NULL) {
5591     return NULL;
5592   }
5593   if (lib_name != NULL) {
5594     const char *p = strrchr(sym_name, '@');
5595     if (p != NULL && p != sym_name) {
5596       // sym_name == _Agent_OnLoad@XX
5597       strncpy(agent_entry_name, sym_name, (p - sym_name));
5598       agent_entry_name[(p-sym_name)] = '\0';
5599       // agent_entry_name == _Agent_OnLoad
5600       strcat(agent_entry_name, "_");
5601       strncat(agent_entry_name, lib_name, name_len);
5602       strcat(agent_entry_name, p);
5603       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5604     } else {
5605       strcpy(agent_entry_name, sym_name);
5606       strcat(agent_entry_name, "_");
5607       strncat(agent_entry_name, lib_name, name_len);
5608     }
5609   } else {
5610     strcpy(agent_entry_name, sym_name);
5611   }
5612   return agent_entry_name;
5613 }
5614 
5615 #else
5616 // Kernel32 API
5617 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5618 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD);
5619 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32);
5620 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32);
5621 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5622 
5623 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5624 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5625 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5626 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5627 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5628 
5629 void os::Kernel32Dll::initialize() {
5630   if (!initialized) {
5631     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5632     assert(handle != NULL, "Just check");
5633 
5634     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5635     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5636       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5637     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5638     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5639     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5640     initializeCommon();  // resolve the functions that always need resolving
5641 
5642     initialized = TRUE;
5643   }
5644 }
5645 
5646 BOOL os::Kernel32Dll::SwitchToThread() {
5647   assert(initialized && _SwitchToThread != NULL,
5648          "SwitchToThreadAvailable() not yet called");
5649   return _SwitchToThread();
5650 }
5651 
5652 
5653 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5654   if (!initialized) {
5655     initialize();
5656   }
5657   return _SwitchToThread != NULL;
5658 }
5659 
5660 // Help tools
5661 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5662   if (!initialized) {
5663     initialize();
5664   }
5665   return _CreateToolhelp32Snapshot != NULL &&
5666          _Module32First != NULL &&
5667          _Module32Next != NULL;
5668 }
5669 
5670 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5671                                                  DWORD th32ProcessId) {
5672   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5673          "HelpToolsAvailable() not yet called");
5674 
5675   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5676 }
5677 
5678 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5679   assert(initialized && _Module32First != NULL,
5680          "HelpToolsAvailable() not yet called");
5681 
5682   return _Module32First(hSnapshot, lpme);
5683 }
5684 
5685 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5686                                           LPMODULEENTRY32 lpme) {
5687   assert(initialized && _Module32Next != NULL,
5688          "HelpToolsAvailable() not yet called");
5689 
5690   return _Module32Next(hSnapshot, lpme);
5691 }
5692 
5693 
5694 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5695   if (!initialized) {
5696     initialize();
5697   }
5698   return _GetNativeSystemInfo != NULL;
5699 }
5700 
5701 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5702   assert(initialized && _GetNativeSystemInfo != NULL,
5703          "GetNativeSystemInfoAvailable() not yet called");
5704 
5705   _GetNativeSystemInfo(lpSystemInfo);
5706 }
5707 
5708 // PSAPI API
5709 
5710 
5711 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5712 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);
5713 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5714 
5715 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5716 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5717 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5718 BOOL                    os::PSApiDll::initialized = FALSE;
5719 
5720 void os::PSApiDll::initialize() {
5721   if (!initialized) {
5722     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5723     if (handle != NULL) {
5724       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5725                                                                     "EnumProcessModules");
5726       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5727                                                                       "GetModuleFileNameExA");
5728       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5729                                                                         "GetModuleInformation");
5730     }
5731     initialized = TRUE;
5732   }
5733 }
5734 
5735 
5736 
5737 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule,
5738                                       DWORD cb, LPDWORD lpcbNeeded) {
5739   assert(initialized && _EnumProcessModules != NULL,
5740          "PSApiAvailable() not yet called");
5741   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5742 }
5743 
5744 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule,
5745                                         LPTSTR lpFilename, DWORD nSize) {
5746   assert(initialized && _GetModuleFileNameEx != NULL,
5747          "PSApiAvailable() not yet called");
5748   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5749 }
5750 
5751 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule,
5752                                         LPMODULEINFO lpmodinfo, DWORD cb) {
5753   assert(initialized && _GetModuleInformation != NULL,
5754          "PSApiAvailable() not yet called");
5755   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5756 }
5757 
5758 BOOL os::PSApiDll::PSApiAvailable() {
5759   if (!initialized) {
5760     initialize();
5761   }
5762   return _EnumProcessModules != NULL &&
5763     _GetModuleFileNameEx != NULL &&
5764     _GetModuleInformation != NULL;
5765 }
5766 
5767 
5768 // WinSock2 API
5769 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5770 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5771 
5772 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5773 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5774 BOOL             os::WinSock2Dll::initialized = FALSE;
5775 
5776 void os::WinSock2Dll::initialize() {
5777   if (!initialized) {
5778     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5779     if (handle != NULL) {
5780       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5781       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5782     }
5783     initialized = TRUE;
5784   }
5785 }
5786 
5787 
5788 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5789   assert(initialized && _WSAStartup != NULL,
5790          "WinSock2Available() not yet called");
5791   return _WSAStartup(wVersionRequested, lpWSAData);
5792 }
5793 
5794 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5795   assert(initialized && _gethostbyname != NULL,
5796          "WinSock2Available() not yet called");
5797   return _gethostbyname(name);
5798 }
5799 
5800 BOOL os::WinSock2Dll::WinSock2Available() {
5801   if (!initialized) {
5802     initialize();
5803   }
5804   return _WSAStartup != NULL &&
5805     _gethostbyname != NULL;
5806 }
5807 
5808 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5809 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5810 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5811 
5812 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5813 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5814 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5815 BOOL                     os::Advapi32Dll::initialized = FALSE;
5816 
5817 void os::Advapi32Dll::initialize() {
5818   if (!initialized) {
5819     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5820     if (handle != NULL) {
5821       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5822                                                                           "AdjustTokenPrivileges");
5823       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5824                                                                 "OpenProcessToken");
5825       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5826                                                                         "LookupPrivilegeValueA");
5827     }
5828     initialized = TRUE;
5829   }
5830 }
5831 
5832 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5833                                             BOOL DisableAllPrivileges,
5834                                             PTOKEN_PRIVILEGES NewState,
5835                                             DWORD BufferLength,
5836                                             PTOKEN_PRIVILEGES PreviousState,
5837                                             PDWORD ReturnLength) {
5838   assert(initialized && _AdjustTokenPrivileges != NULL,
5839          "AdvapiAvailable() not yet called");
5840   return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5841                                 BufferLength, PreviousState, ReturnLength);
5842 }
5843 
5844 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5845                                        DWORD DesiredAccess,
5846                                        PHANDLE TokenHandle) {
5847   assert(initialized && _OpenProcessToken != NULL,
5848          "AdvapiAvailable() not yet called");
5849   return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5850 }
5851 
5852 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5853                                            LPCTSTR lpName, PLUID lpLuid) {
5854   assert(initialized && _LookupPrivilegeValue != NULL,
5855          "AdvapiAvailable() not yet called");
5856   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5857 }
5858 
5859 BOOL os::Advapi32Dll::AdvapiAvailable() {
5860   if (!initialized) {
5861     initialize();
5862   }
5863   return _AdjustTokenPrivileges != NULL &&
5864     _OpenProcessToken != NULL &&
5865     _LookupPrivilegeValue != NULL;
5866 }
5867 
5868 #endif
5869 
5870 #ifndef PRODUCT
5871 
5872 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5873 // contiguous memory block at a particular address.
5874 // The test first tries to find a good approximate address to allocate at by using the same
5875 // method to allocate some memory at any address. The test then tries to allocate memory in
5876 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5877 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5878 // the previously allocated memory is available for allocation. The only actual failure
5879 // that is reported is when the test tries to allocate at a particular location but gets a
5880 // different valid one. A NULL return value at this point is not considered an error but may
5881 // be legitimate.
5882 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5883 void TestReserveMemorySpecial_test() {
5884   if (!UseLargePages) {
5885     if (VerboseInternalVMTests) {
5886       gclog_or_tty->print("Skipping test because large pages are disabled");
5887     }
5888     return;
5889   }
5890   // save current value of globals
5891   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5892   bool old_use_numa_interleaving = UseNUMAInterleaving;
5893 
5894   // set globals to make sure we hit the correct code path
5895   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5896 
5897   // do an allocation at an address selected by the OS to get a good one.
5898   const size_t large_allocation_size = os::large_page_size() * 4;
5899   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5900   if (result == NULL) {
5901     if (VerboseInternalVMTests) {
5902       gclog_or_tty->print("Failed to allocate control block with size "SIZE_FORMAT". Skipping remainder of test.",
5903                           large_allocation_size);
5904     }
5905   } else {
5906     os::release_memory_special(result, large_allocation_size);
5907 
5908     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5909     // we managed to get it once.
5910     const size_t expected_allocation_size = os::large_page_size();
5911     char* expected_location = result + os::large_page_size();
5912     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5913     if (actual_location == NULL) {
5914       if (VerboseInternalVMTests) {
5915         gclog_or_tty->print("Failed to allocate any memory at "PTR_FORMAT" size "SIZE_FORMAT". Skipping remainder of test.",
5916                             expected_location, large_allocation_size);
5917       }
5918     } else {
5919       // release memory
5920       os::release_memory_special(actual_location, expected_allocation_size);
5921       // only now check, after releasing any memory to avoid any leaks.
5922       assert(actual_location == expected_location,
5923              err_msg("Failed to allocate memory at requested location "PTR_FORMAT" of size "SIZE_FORMAT", is "PTR_FORMAT" instead",
5924              expected_location, expected_allocation_size, actual_location));
5925     }
5926   }
5927 
5928   // restore globals
5929   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5930   UseNUMAInterleaving = old_use_numa_interleaving;
5931 }
5932 #endif // PRODUCT
5933