1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  37 #include "gc_implementation/parNew/parNewGeneration.hpp"
  38 #include "gc_implementation/shared/collectorCounters.hpp"
  39 #include "gc_implementation/shared/gcTimer.hpp"
  40 #include "gc_implementation/shared/gcTrace.hpp"
  41 #include "gc_implementation/shared/gcTraceTime.hpp"
  42 #include "gc_implementation/shared/isGCActiveMark.hpp"
  43 #include "gc_interface/collectedHeap.inline.hpp"
  44 #include "memory/allocation.hpp"
  45 #include "memory/cardTableRS.hpp"
  46 #include "memory/collectorPolicy.hpp"
  47 #include "memory/gcLocker.inline.hpp"
  48 #include "memory/genCollectedHeap.hpp"
  49 #include "memory/genMarkSweep.hpp"
  50 #include "memory/genOopClosures.inline.hpp"
  51 #include "memory/iterator.inline.hpp"
  52 #include "memory/padded.hpp"
  53 #include "memory/referencePolicy.hpp"
  54 #include "memory/resourceArea.hpp"
  55 #include "memory/tenuredGeneration.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "prims/jvmtiExport.hpp"
  58 #include "runtime/atomic.inline.hpp"
  59 #include "runtime/globals_extension.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/java.hpp"
  62 #include "runtime/orderAccess.inline.hpp"
  63 #include "runtime/vmThread.hpp"
  64 #include "services/memoryService.hpp"
  65 #include "services/runtimeService.hpp"
  66 
  67 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  68 
  69 // statics
  70 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  71 bool CMSCollector::_full_gc_requested = false;
  72 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  73 
  74 //////////////////////////////////////////////////////////////////
  75 // In support of CMS/VM thread synchronization
  76 //////////////////////////////////////////////////////////////////
  77 // We split use of the CGC_lock into 2 "levels".
  78 // The low-level locking is of the usual CGC_lock monitor. We introduce
  79 // a higher level "token" (hereafter "CMS token") built on top of the
  80 // low level monitor (hereafter "CGC lock").
  81 // The token-passing protocol gives priority to the VM thread. The
  82 // CMS-lock doesn't provide any fairness guarantees, but clients
  83 // should ensure that it is only held for very short, bounded
  84 // durations.
  85 //
  86 // When either of the CMS thread or the VM thread is involved in
  87 // collection operations during which it does not want the other
  88 // thread to interfere, it obtains the CMS token.
  89 //
  90 // If either thread tries to get the token while the other has
  91 // it, that thread waits. However, if the VM thread and CMS thread
  92 // both want the token, then the VM thread gets priority while the
  93 // CMS thread waits. This ensures, for instance, that the "concurrent"
  94 // phases of the CMS thread's work do not block out the VM thread
  95 // for long periods of time as the CMS thread continues to hog
  96 // the token. (See bug 4616232).
  97 //
  98 // The baton-passing functions are, however, controlled by the
  99 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 100 // and here the low-level CMS lock, not the high level token,
 101 // ensures mutual exclusion.
 102 //
 103 // Two important conditions that we have to satisfy:
 104 // 1. if a thread does a low-level wait on the CMS lock, then it
 105 //    relinquishes the CMS token if it were holding that token
 106 //    when it acquired the low-level CMS lock.
 107 // 2. any low-level notifications on the low-level lock
 108 //    should only be sent when a thread has relinquished the token.
 109 //
 110 // In the absence of either property, we'd have potential deadlock.
 111 //
 112 // We protect each of the CMS (concurrent and sequential) phases
 113 // with the CMS _token_, not the CMS _lock_.
 114 //
 115 // The only code protected by CMS lock is the token acquisition code
 116 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 117 // baton-passing code.
 118 //
 119 // Unfortunately, i couldn't come up with a good abstraction to factor and
 120 // hide the naked CGC_lock manipulation in the baton-passing code
 121 // further below. That's something we should try to do. Also, the proof
 122 // of correctness of this 2-level locking scheme is far from obvious,
 123 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 124 // that there may be a theoretical possibility of delay/starvation in the
 125 // low-level lock/wait/notify scheme used for the baton-passing because of
 126 // potential interference with the priority scheme embodied in the
 127 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 128 // invocation further below and marked with "XXX 20011219YSR".
 129 // Indeed, as we note elsewhere, this may become yet more slippery
 130 // in the presence of multiple CMS and/or multiple VM threads. XXX
 131 
 132 class CMSTokenSync: public StackObj {
 133  private:
 134   bool _is_cms_thread;
 135  public:
 136   CMSTokenSync(bool is_cms_thread):
 137     _is_cms_thread(is_cms_thread) {
 138     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 139            "Incorrect argument to constructor");
 140     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 141   }
 142 
 143   ~CMSTokenSync() {
 144     assert(_is_cms_thread ?
 145              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 146              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 147           "Incorrect state");
 148     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 149   }
 150 };
 151 
 152 // Convenience class that does a CMSTokenSync, and then acquires
 153 // upto three locks.
 154 class CMSTokenSyncWithLocks: public CMSTokenSync {
 155  private:
 156   // Note: locks are acquired in textual declaration order
 157   // and released in the opposite order
 158   MutexLockerEx _locker1, _locker2, _locker3;
 159  public:
 160   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 161                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 162     CMSTokenSync(is_cms_thread),
 163     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 164     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 165     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 166   { }
 167 };
 168 
 169 
 170 // Wrapper class to temporarily disable icms during a foreground cms collection.
 171 class ICMSDisabler: public StackObj {
 172  public:
 173   // The ctor disables icms and wakes up the thread so it notices the change;
 174   // the dtor re-enables icms.  Note that the CMSCollector methods will check
 175   // CMSIncrementalMode.
 176   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
 177   ~ICMSDisabler() { CMSCollector::enable_icms(); }
 178 };
 179 
 180 //////////////////////////////////////////////////////////////////
 181 //  Concurrent Mark-Sweep Generation /////////////////////////////
 182 //////////////////////////////////////////////////////////////////
 183 
 184 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 185 
 186 // This struct contains per-thread things necessary to support parallel
 187 // young-gen collection.
 188 class CMSParGCThreadState: public CHeapObj<mtGC> {
 189  public:
 190   CFLS_LAB lab;
 191   PromotionInfo promo;
 192 
 193   // Constructor.
 194   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 195     promo.setSpace(cfls);
 196   }
 197 };
 198 
 199 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 200      ReservedSpace rs, size_t initial_byte_size, int level,
 201      CardTableRS* ct, bool use_adaptive_freelists,
 202      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 203   CardGeneration(rs, initial_byte_size, level, ct),
 204   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 205   _debug_collection_type(Concurrent_collection_type),
 206   _did_compact(false)
 207 {
 208   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 209   HeapWord* end    = (HeapWord*) _virtual_space.high();
 210 
 211   _direct_allocated_words = 0;
 212   NOT_PRODUCT(
 213     _numObjectsPromoted = 0;
 214     _numWordsPromoted = 0;
 215     _numObjectsAllocated = 0;
 216     _numWordsAllocated = 0;
 217   )
 218 
 219   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 220                                            use_adaptive_freelists,
 221                                            dictionaryChoice);
 222   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 223   if (_cmsSpace == NULL) {
 224     vm_exit_during_initialization(
 225       "CompactibleFreeListSpace allocation failure");
 226   }
 227   _cmsSpace->_gen = this;
 228 
 229   _gc_stats = new CMSGCStats();
 230 
 231   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 232   // offsets match. The ability to tell free chunks from objects
 233   // depends on this property.
 234   debug_only(
 235     FreeChunk* junk = NULL;
 236     assert(UseCompressedClassPointers ||
 237            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 238            "Offset of FreeChunk::_prev within FreeChunk must match"
 239            "  that of OopDesc::_klass within OopDesc");
 240   )
 241   if (CollectedHeap::use_parallel_gc_threads()) {
 242     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 243     _par_gc_thread_states =
 244       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC);
 245     if (_par_gc_thread_states == NULL) {
 246       vm_exit_during_initialization("Could not allocate par gc structs");
 247     }
 248     for (uint i = 0; i < ParallelGCThreads; i++) {
 249       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 250       if (_par_gc_thread_states[i] == NULL) {
 251         vm_exit_during_initialization("Could not allocate par gc structs");
 252       }
 253     }
 254   } else {
 255     _par_gc_thread_states = NULL;
 256   }
 257   _incremental_collection_failed = false;
 258   // The "dilatation_factor" is the expansion that can occur on
 259   // account of the fact that the minimum object size in the CMS
 260   // generation may be larger than that in, say, a contiguous young
 261   //  generation.
 262   // Ideally, in the calculation below, we'd compute the dilatation
 263   // factor as: MinChunkSize/(promoting_gen's min object size)
 264   // Since we do not have such a general query interface for the
 265   // promoting generation, we'll instead just use the minimum
 266   // object size (which today is a header's worth of space);
 267   // note that all arithmetic is in units of HeapWords.
 268   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 269   assert(_dilatation_factor >= 1.0, "from previous assert");
 270 }
 271 
 272 
 273 // The field "_initiating_occupancy" represents the occupancy percentage
 274 // at which we trigger a new collection cycle.  Unless explicitly specified
 275 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 276 // is calculated by:
 277 //
 278 //   Let "f" be MinHeapFreeRatio in
 279 //
 280 //    _initiating_occupancy = 100-f +
 281 //                           f * (CMSTriggerRatio/100)
 282 //   where CMSTriggerRatio is the argument "tr" below.
 283 //
 284 // That is, if we assume the heap is at its desired maximum occupancy at the
 285 // end of a collection, we let CMSTriggerRatio of the (purported) free
 286 // space be allocated before initiating a new collection cycle.
 287 //
 288 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 289   assert(io <= 100 && tr <= 100, "Check the arguments");
 290   if (io >= 0) {
 291     _initiating_occupancy = (double)io / 100.0;
 292   } else {
 293     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 294                              (double)(tr * MinHeapFreeRatio) / 100.0)
 295                             / 100.0;
 296   }
 297 }
 298 
 299 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 300   assert(collector() != NULL, "no collector");
 301   collector()->ref_processor_init();
 302 }
 303 
 304 void CMSCollector::ref_processor_init() {
 305   if (_ref_processor == NULL) {
 306     // Allocate and initialize a reference processor
 307     _ref_processor =
 308       new ReferenceProcessor(_span,                               // span
 309                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 310                              (int) ParallelGCThreads,             // mt processing degree
 311                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 312                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 313                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 314                              &_is_alive_closure);                 // closure for liveness info
 315     // Initialize the _ref_processor field of CMSGen
 316     _cmsGen->set_ref_processor(_ref_processor);
 317 
 318   }
 319 }
 320 
 321 AdaptiveSizePolicy* CMSCollector::size_policy() {
 322   GenCollectedHeap* gch = GenCollectedHeap::heap();
 323   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 324     "Wrong type of heap");
 325   return gch->gen_policy()->size_policy();
 326 }
 327 
 328 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 329 
 330   const char* gen_name = "old";
 331   GenCollectorPolicy* gcp = (GenCollectorPolicy*) GenCollectedHeap::heap()->collector_policy();
 332 
 333   // Generation Counters - generation 1, 1 subspace
 334   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 335       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 336 
 337   _space_counters = new GSpaceCounters(gen_name, 0,
 338                                        _virtual_space.reserved_size(),
 339                                        this, _gen_counters);
 340 }
 341 
 342 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 343   _cms_gen(cms_gen)
 344 {
 345   assert(alpha <= 100, "bad value");
 346   _saved_alpha = alpha;
 347 
 348   // Initialize the alphas to the bootstrap value of 100.
 349   _gc0_alpha = _cms_alpha = 100;
 350 
 351   _cms_begin_time.update();
 352   _cms_end_time.update();
 353 
 354   _gc0_duration = 0.0;
 355   _gc0_period = 0.0;
 356   _gc0_promoted = 0;
 357 
 358   _cms_duration = 0.0;
 359   _cms_period = 0.0;
 360   _cms_allocated = 0;
 361 
 362   _cms_used_at_gc0_begin = 0;
 363   _cms_used_at_gc0_end = 0;
 364   _allow_duty_cycle_reduction = false;
 365   _valid_bits = 0;
 366   _icms_duty_cycle = CMSIncrementalDutyCycle;
 367 }
 368 
 369 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 370   // TBD: CR 6909490
 371   return 1.0;
 372 }
 373 
 374 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 375 }
 376 
 377 // If promotion failure handling is on use
 378 // the padded average size of the promotion for each
 379 // young generation collection.
 380 double CMSStats::time_until_cms_gen_full() const {
 381   size_t cms_free = _cms_gen->cmsSpace()->free();
 382   GenCollectedHeap* gch = GenCollectedHeap::heap();
 383   size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(),
 384                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 385   if (cms_free > expected_promotion) {
 386     // Start a cms collection if there isn't enough space to promote
 387     // for the next minor collection.  Use the padded average as
 388     // a safety factor.
 389     cms_free -= expected_promotion;
 390 
 391     // Adjust by the safety factor.
 392     double cms_free_dbl = (double)cms_free;
 393     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 394     // Apply a further correction factor which tries to adjust
 395     // for recent occurance of concurrent mode failures.
 396     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 397     cms_free_dbl = cms_free_dbl * cms_adjustment;
 398 
 399     if (PrintGCDetails && Verbose) {
 400       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 401         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 402         cms_free, expected_promotion);
 403       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 404         cms_free_dbl, cms_consumption_rate() + 1.0);
 405     }
 406     // Add 1 in case the consumption rate goes to zero.
 407     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 408   }
 409   return 0.0;
 410 }
 411 
 412 // Compare the duration of the cms collection to the
 413 // time remaining before the cms generation is empty.
 414 // Note that the time from the start of the cms collection
 415 // to the start of the cms sweep (less than the total
 416 // duration of the cms collection) can be used.  This
 417 // has been tried and some applications experienced
 418 // promotion failures early in execution.  This was
 419 // possibly because the averages were not accurate
 420 // enough at the beginning.
 421 double CMSStats::time_until_cms_start() const {
 422   // We add "gc0_period" to the "work" calculation
 423   // below because this query is done (mostly) at the
 424   // end of a scavenge, so we need to conservatively
 425   // account for that much possible delay
 426   // in the query so as to avoid concurrent mode failures
 427   // due to starting the collection just a wee bit too
 428   // late.
 429   double work = cms_duration() + gc0_period();
 430   double deadline = time_until_cms_gen_full();
 431   // If a concurrent mode failure occurred recently, we want to be
 432   // more conservative and halve our expected time_until_cms_gen_full()
 433   if (work > deadline) {
 434     if (Verbose && PrintGCDetails) {
 435       gclog_or_tty->print(
 436         " CMSCollector: collect because of anticipated promotion "
 437         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 438         gc0_period(), time_until_cms_gen_full());
 439     }
 440     return 0.0;
 441   }
 442   return work - deadline;
 443 }
 444 
 445 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
 446 // amount of change to prevent wild oscillation.
 447 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
 448                                               unsigned int new_duty_cycle) {
 449   assert(old_duty_cycle <= 100, "bad input value");
 450   assert(new_duty_cycle <= 100, "bad input value");
 451 
 452   // Note:  use subtraction with caution since it may underflow (values are
 453   // unsigned).  Addition is safe since we're in the range 0-100.
 454   unsigned int damped_duty_cycle = new_duty_cycle;
 455   if (new_duty_cycle < old_duty_cycle) {
 456     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
 457     if (new_duty_cycle + largest_delta < old_duty_cycle) {
 458       damped_duty_cycle = old_duty_cycle - largest_delta;
 459     }
 460   } else if (new_duty_cycle > old_duty_cycle) {
 461     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
 462     if (new_duty_cycle > old_duty_cycle + largest_delta) {
 463       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
 464     }
 465   }
 466   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
 467 
 468   if (CMSTraceIncrementalPacing) {
 469     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
 470                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
 471   }
 472   return damped_duty_cycle;
 473 }
 474 
 475 unsigned int CMSStats::icms_update_duty_cycle_impl() {
 476   assert(CMSIncrementalPacing && valid(),
 477          "should be handled in icms_update_duty_cycle()");
 478 
 479   double cms_time_so_far = cms_timer().seconds();
 480   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
 481   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
 482 
 483   // Avoid division by 0.
 484   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
 485   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
 486 
 487   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
 488   if (new_duty_cycle > _icms_duty_cycle) {
 489     // Avoid very small duty cycles (1 or 2); 0 is allowed.
 490     if (new_duty_cycle > 2) {
 491       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
 492                                                 new_duty_cycle);
 493     }
 494   } else if (_allow_duty_cycle_reduction) {
 495     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
 496     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
 497     // Respect the minimum duty cycle.
 498     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
 499     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
 500   }
 501 
 502   if (PrintGCDetails || CMSTraceIncrementalPacing) {
 503     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
 504   }
 505 
 506   _allow_duty_cycle_reduction = false;
 507   return _icms_duty_cycle;
 508 }
 509 
 510 #ifndef PRODUCT
 511 void CMSStats::print_on(outputStream *st) const {
 512   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 513   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 514                gc0_duration(), gc0_period(), gc0_promoted());
 515   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 516             cms_duration(), cms_duration_per_mb(),
 517             cms_period(), cms_allocated());
 518   st->print(",cms_since_beg=%g,cms_since_end=%g",
 519             cms_time_since_begin(), cms_time_since_end());
 520   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 521             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 522   if (CMSIncrementalMode) {
 523     st->print(",dc=%d", icms_duty_cycle());
 524   }
 525 
 526   if (valid()) {
 527     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 528               promotion_rate(), cms_allocation_rate());
 529     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 530               cms_consumption_rate(), time_until_cms_gen_full());
 531   }
 532   st->print(" ");
 533 }
 534 #endif // #ifndef PRODUCT
 535 
 536 CMSCollector::CollectorState CMSCollector::_collectorState =
 537                              CMSCollector::Idling;
 538 bool CMSCollector::_foregroundGCIsActive = false;
 539 bool CMSCollector::_foregroundGCShouldWait = false;
 540 
 541 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 542                            CardTableRS*                   ct,
 543                            ConcurrentMarkSweepPolicy*     cp):
 544   _cmsGen(cmsGen),
 545   _ct(ct),
 546   _ref_processor(NULL),    // will be set later
 547   _conc_workers(NULL),     // may be set later
 548   _abort_preclean(false),
 549   _start_sampling(false),
 550   _between_prologue_and_epilogue(false),
 551   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 552   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 553                  -1 /* lock-free */, "No_lock" /* dummy */),
 554   _modUnionClosure(&_modUnionTable),
 555   _modUnionClosurePar(&_modUnionTable),
 556   // Adjust my span to cover old (cms) gen
 557   _span(cmsGen->reserved()),
 558   // Construct the is_alive_closure with _span & markBitMap
 559   _is_alive_closure(_span, &_markBitMap),
 560   _restart_addr(NULL),
 561   _overflow_list(NULL),
 562   _stats(cmsGen),
 563   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true)),
 564   _eden_chunk_array(NULL),     // may be set in ctor body
 565   _eden_chunk_capacity(0),     // -- ditto --
 566   _eden_chunk_index(0),        // -- ditto --
 567   _survivor_plab_array(NULL),  // -- ditto --
 568   _survivor_chunk_array(NULL), // -- ditto --
 569   _survivor_chunk_capacity(0), // -- ditto --
 570   _survivor_chunk_index(0),    // -- ditto --
 571   _ser_pmc_preclean_ovflw(0),
 572   _ser_kac_preclean_ovflw(0),
 573   _ser_pmc_remark_ovflw(0),
 574   _par_pmc_remark_ovflw(0),
 575   _ser_kac_ovflw(0),
 576   _par_kac_ovflw(0),
 577 #ifndef PRODUCT
 578   _num_par_pushes(0),
 579 #endif
 580   _collection_count_start(0),
 581   _verifying(false),
 582   _icms_start_limit(NULL),
 583   _icms_stop_limit(NULL),
 584   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 585   _completed_initialization(false),
 586   _collector_policy(cp),
 587   _should_unload_classes(CMSClassUnloadingEnabled),
 588   _concurrent_cycles_since_last_unload(0),
 589   _roots_scanning_options(SharedHeap::SO_None),
 590   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 591   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 592   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 593   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 594   _cms_start_registered(false)
 595 {
 596   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 597     ExplicitGCInvokesConcurrent = true;
 598   }
 599   // Now expand the span and allocate the collection support structures
 600   // (MUT, marking bit map etc.) to cover both generations subject to
 601   // collection.
 602 
 603   // For use by dirty card to oop closures.
 604   _cmsGen->cmsSpace()->set_collector(this);
 605 
 606   // Allocate MUT and marking bit map
 607   {
 608     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 609     if (!_markBitMap.allocate(_span)) {
 610       warning("Failed to allocate CMS Bit Map");
 611       return;
 612     }
 613     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 614   }
 615   {
 616     _modUnionTable.allocate(_span);
 617     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 618   }
 619 
 620   if (!_markStack.allocate(MarkStackSize)) {
 621     warning("Failed to allocate CMS Marking Stack");
 622     return;
 623   }
 624 
 625   // Support for multi-threaded concurrent phases
 626   if (CMSConcurrentMTEnabled) {
 627     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 628       // just for now
 629       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 630     }
 631     if (ConcGCThreads > 1) {
 632       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
 633                                  ConcGCThreads, true);
 634       if (_conc_workers == NULL) {
 635         warning("GC/CMS: _conc_workers allocation failure: "
 636               "forcing -CMSConcurrentMTEnabled");
 637         CMSConcurrentMTEnabled = false;
 638       } else {
 639         _conc_workers->initialize_workers();
 640       }
 641     } else {
 642       CMSConcurrentMTEnabled = false;
 643     }
 644   }
 645   if (!CMSConcurrentMTEnabled) {
 646     ConcGCThreads = 0;
 647   } else {
 648     // Turn off CMSCleanOnEnter optimization temporarily for
 649     // the MT case where it's not fixed yet; see 6178663.
 650     CMSCleanOnEnter = false;
 651   }
 652   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 653          "Inconsistency");
 654 
 655   // Parallel task queues; these are shared for the
 656   // concurrent and stop-world phases of CMS, but
 657   // are not shared with parallel scavenge (ParNew).
 658   {
 659     uint i;
 660     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 661 
 662     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 663          || ParallelRefProcEnabled)
 664         && num_queues > 0) {
 665       _task_queues = new OopTaskQueueSet(num_queues);
 666       if (_task_queues == NULL) {
 667         warning("task_queues allocation failure.");
 668         return;
 669       }
 670       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 671       if (_hash_seed == NULL) {
 672         warning("_hash_seed array allocation failure");
 673         return;
 674       }
 675 
 676       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 677       for (i = 0; i < num_queues; i++) {
 678         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 679         if (q == NULL) {
 680           warning("work_queue allocation failure.");
 681           return;
 682         }
 683         _task_queues->register_queue(i, q);
 684       }
 685       for (i = 0; i < num_queues; i++) {
 686         _task_queues->queue(i)->initialize();
 687         _hash_seed[i] = 17;  // copied from ParNew
 688       }
 689     }
 690   }
 691 
 692   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 693 
 694   // Clip CMSBootstrapOccupancy between 0 and 100.
 695   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
 696 
 697   _full_gcs_since_conc_gc = 0;
 698 
 699   // Now tell CMS generations the identity of their collector
 700   ConcurrentMarkSweepGeneration::set_collector(this);
 701 
 702   // Create & start a CMS thread for this CMS collector
 703   _cmsThread = ConcurrentMarkSweepThread::start(this);
 704   assert(cmsThread() != NULL, "CMS Thread should have been created");
 705   assert(cmsThread()->collector() == this,
 706          "CMS Thread should refer to this gen");
 707   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 708 
 709   // Support for parallelizing young gen rescan
 710   GenCollectedHeap* gch = GenCollectedHeap::heap();
 711   _young_gen = gch->prev_gen(_cmsGen);
 712   if (gch->supports_inline_contig_alloc()) {
 713     _top_addr = gch->top_addr();
 714     _end_addr = gch->end_addr();
 715     assert(_young_gen != NULL, "no _young_gen");
 716     _eden_chunk_index = 0;
 717     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 718     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 719     if (_eden_chunk_array == NULL) {
 720       _eden_chunk_capacity = 0;
 721       warning("GC/CMS: _eden_chunk_array allocation failure");
 722     }
 723   }
 724   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
 725 
 726   // Support for parallelizing survivor space rescan
 727   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 728     const size_t max_plab_samples =
 729       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
 730 
 731     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 732     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 733     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 734     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
 735         || _cursor == NULL) {
 736       warning("Failed to allocate survivor plab/chunk array");
 737       if (_survivor_plab_array  != NULL) {
 738         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 739         _survivor_plab_array = NULL;
 740       }
 741       if (_survivor_chunk_array != NULL) {
 742         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 743         _survivor_chunk_array = NULL;
 744       }
 745       if (_cursor != NULL) {
 746         FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC);
 747         _cursor = NULL;
 748       }
 749     } else {
 750       _survivor_chunk_capacity = 2*max_plab_samples;
 751       for (uint i = 0; i < ParallelGCThreads; i++) {
 752         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 753         if (vec == NULL) {
 754           warning("Failed to allocate survivor plab array");
 755           for (int j = i; j > 0; j--) {
 756             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC);
 757           }
 758           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 759           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 760           _survivor_plab_array = NULL;
 761           _survivor_chunk_array = NULL;
 762           _survivor_chunk_capacity = 0;
 763           break;
 764         } else {
 765           ChunkArray* cur =
 766             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
 767                                                         max_plab_samples);
 768           assert(cur->end() == 0, "Should be 0");
 769           assert(cur->array() == vec, "Should be vec");
 770           assert(cur->capacity() == max_plab_samples, "Error");
 771         }
 772       }
 773     }
 774   }
 775   assert(   (   _survivor_plab_array  != NULL
 776              && _survivor_chunk_array != NULL)
 777          || (   _survivor_chunk_capacity == 0
 778              && _survivor_chunk_index == 0),
 779          "Error");
 780 
 781   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 782   _gc_counters = new CollectorCounters("CMS", 1);
 783   _completed_initialization = true;
 784   _inter_sweep_timer.start();  // start of time
 785 }
 786 
 787 const char* ConcurrentMarkSweepGeneration::name() const {
 788   return "concurrent mark-sweep generation";
 789 }
 790 void ConcurrentMarkSweepGeneration::update_counters() {
 791   if (UsePerfData) {
 792     _space_counters->update_all();
 793     _gen_counters->update_all();
 794   }
 795 }
 796 
 797 // this is an optimized version of update_counters(). it takes the
 798 // used value as a parameter rather than computing it.
 799 //
 800 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 801   if (UsePerfData) {
 802     _space_counters->update_used(used);
 803     _space_counters->update_capacity();
 804     _gen_counters->update_all();
 805   }
 806 }
 807 
 808 void ConcurrentMarkSweepGeneration::print() const {
 809   Generation::print();
 810   cmsSpace()->print();
 811 }
 812 
 813 #ifndef PRODUCT
 814 void ConcurrentMarkSweepGeneration::print_statistics() {
 815   cmsSpace()->printFLCensus(0);
 816 }
 817 #endif
 818 
 819 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 820   GenCollectedHeap* gch = GenCollectedHeap::heap();
 821   if (PrintGCDetails) {
 822     if (Verbose) {
 823       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 824         level(), short_name(), s, used(), capacity());
 825     } else {
 826       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 827         level(), short_name(), s, used() / K, capacity() / K);
 828     }
 829   }
 830   if (Verbose) {
 831     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 832               gch->used(), gch->capacity());
 833   } else {
 834     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 835               gch->used() / K, gch->capacity() / K);
 836   }
 837 }
 838 
 839 size_t
 840 ConcurrentMarkSweepGeneration::contiguous_available() const {
 841   // dld proposes an improvement in precision here. If the committed
 842   // part of the space ends in a free block we should add that to
 843   // uncommitted size in the calculation below. Will make this
 844   // change later, staying with the approximation below for the
 845   // time being. -- ysr.
 846   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 847 }
 848 
 849 size_t
 850 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 851   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 852 }
 853 
 854 size_t ConcurrentMarkSweepGeneration::max_available() const {
 855   return free() + _virtual_space.uncommitted_size();
 856 }
 857 
 858 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 859   size_t available = max_available();
 860   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 861   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 862   if (Verbose && PrintGCDetails) {
 863     gclog_or_tty->print_cr(
 864       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 865       "max_promo("SIZE_FORMAT")",
 866       res? "":" not", available, res? ">=":"<",
 867       av_promo, max_promotion_in_bytes);
 868   }
 869   return res;
 870 }
 871 
 872 // At a promotion failure dump information on block layout in heap
 873 // (cms old generation).
 874 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 875   if (CMSDumpAtPromotionFailure) {
 876     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 877   }
 878 }
 879 
 880 CompactibleSpace*
 881 ConcurrentMarkSweepGeneration::first_compaction_space() const {
 882   return _cmsSpace;
 883 }
 884 
 885 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 886   // Clear the promotion information.  These pointers can be adjusted
 887   // along with all the other pointers into the heap but
 888   // compaction is expected to be a rare event with
 889   // a heap using cms so don't do it without seeing the need.
 890   if (CollectedHeap::use_parallel_gc_threads()) {
 891     for (uint i = 0; i < ParallelGCThreads; i++) {
 892       _par_gc_thread_states[i]->promo.reset();
 893     }
 894   }
 895 }
 896 
 897 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
 898   blk->do_space(_cmsSpace);
 899 }
 900 
 901 void ConcurrentMarkSweepGeneration::compute_new_size() {
 902   assert_locked_or_safepoint(Heap_lock);
 903 
 904   // If incremental collection failed, we just want to expand
 905   // to the limit.
 906   if (incremental_collection_failed()) {
 907     clear_incremental_collection_failed();
 908     grow_to_reserved();
 909     return;
 910   }
 911 
 912   // The heap has been compacted but not reset yet.
 913   // Any metric such as free() or used() will be incorrect.
 914 
 915   CardGeneration::compute_new_size();
 916 
 917   // Reset again after a possible resizing
 918   if (did_compact()) {
 919     cmsSpace()->reset_after_compaction();
 920   }
 921 }
 922 
 923 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 924   assert_locked_or_safepoint(Heap_lock);
 925 
 926   // If incremental collection failed, we just want to expand
 927   // to the limit.
 928   if (incremental_collection_failed()) {
 929     clear_incremental_collection_failed();
 930     grow_to_reserved();
 931     return;
 932   }
 933 
 934   double free_percentage = ((double) free()) / capacity();
 935   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 936   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 937 
 938   // compute expansion delta needed for reaching desired free percentage
 939   if (free_percentage < desired_free_percentage) {
 940     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 941     assert(desired_capacity >= capacity(), "invalid expansion size");
 942     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 943     if (PrintGCDetails && Verbose) {
 944       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 945       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 946       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 947       gclog_or_tty->print_cr("  Desired free fraction %f",
 948         desired_free_percentage);
 949       gclog_or_tty->print_cr("  Maximum free fraction %f",
 950         maximum_free_percentage);
 951       gclog_or_tty->print_cr("  Capacity "SIZE_FORMAT, capacity()/1000);
 952       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 953         desired_capacity/1000);
 954       int prev_level = level() - 1;
 955       if (prev_level >= 0) {
 956         size_t prev_size = 0;
 957         GenCollectedHeap* gch = GenCollectedHeap::heap();
 958         Generation* prev_gen = gch->_gens[prev_level];
 959         prev_size = prev_gen->capacity();
 960           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 961                                  prev_size/1000);
 962       }
 963       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 964         unsafe_max_alloc_nogc()/1000);
 965       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 966         contiguous_available()/1000);
 967       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 968         expand_bytes);
 969     }
 970     // safe if expansion fails
 971     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 972     if (PrintGCDetails && Verbose) {
 973       gclog_or_tty->print_cr("  Expanded free fraction %f",
 974         ((double) free()) / capacity());
 975     }
 976   } else {
 977     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 978     assert(desired_capacity <= capacity(), "invalid expansion size");
 979     size_t shrink_bytes = capacity() - desired_capacity;
 980     // Don't shrink unless the delta is greater than the minimum shrink we want
 981     if (shrink_bytes >= MinHeapDeltaBytes) {
 982       shrink_free_list_by(shrink_bytes);
 983     }
 984   }
 985 }
 986 
 987 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 988   return cmsSpace()->freelistLock();
 989 }
 990 
 991 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
 992                                                   bool   tlab) {
 993   CMSSynchronousYieldRequest yr;
 994   MutexLockerEx x(freelistLock(),
 995                   Mutex::_no_safepoint_check_flag);
 996   return have_lock_and_allocate(size, tlab);
 997 }
 998 
 999 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
1000                                                   bool   tlab /* ignored */) {
1001   assert_lock_strong(freelistLock());
1002   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
1003   HeapWord* res = cmsSpace()->allocate(adjustedSize);
1004   // Allocate the object live (grey) if the background collector has
1005   // started marking. This is necessary because the marker may
1006   // have passed this address and consequently this object will
1007   // not otherwise be greyed and would be incorrectly swept up.
1008   // Note that if this object contains references, the writing
1009   // of those references will dirty the card containing this object
1010   // allowing the object to be blackened (and its references scanned)
1011   // either during a preclean phase or at the final checkpoint.
1012   if (res != NULL) {
1013     // We may block here with an uninitialized object with
1014     // its mark-bit or P-bits not yet set. Such objects need
1015     // to be safely navigable by block_start().
1016     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
1017     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
1018     collector()->direct_allocated(res, adjustedSize);
1019     _direct_allocated_words += adjustedSize;
1020     // allocation counters
1021     NOT_PRODUCT(
1022       _numObjectsAllocated++;
1023       _numWordsAllocated += (int)adjustedSize;
1024     )
1025   }
1026   return res;
1027 }
1028 
1029 // In the case of direct allocation by mutators in a generation that
1030 // is being concurrently collected, the object must be allocated
1031 // live (grey) if the background collector has started marking.
1032 // This is necessary because the marker may
1033 // have passed this address and consequently this object will
1034 // not otherwise be greyed and would be incorrectly swept up.
1035 // Note that if this object contains references, the writing
1036 // of those references will dirty the card containing this object
1037 // allowing the object to be blackened (and its references scanned)
1038 // either during a preclean phase or at the final checkpoint.
1039 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
1040   assert(_markBitMap.covers(start, size), "Out of bounds");
1041   if (_collectorState >= Marking) {
1042     MutexLockerEx y(_markBitMap.lock(),
1043                     Mutex::_no_safepoint_check_flag);
1044     // [see comments preceding SweepClosure::do_blk() below for details]
1045     //
1046     // Can the P-bits be deleted now?  JJJ
1047     //
1048     // 1. need to mark the object as live so it isn't collected
1049     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
1050     // 3. need to mark the end of the object so marking, precleaning or sweeping
1051     //    can skip over uninitialized or unparsable objects. An allocated
1052     //    object is considered uninitialized for our purposes as long as
1053     //    its klass word is NULL.  All old gen objects are parsable
1054     //    as soon as they are initialized.)
1055     _markBitMap.mark(start);          // object is live
1056     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
1057     _markBitMap.mark(start + size - 1);
1058                                       // mark end of object
1059   }
1060   // check that oop looks uninitialized
1061   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
1062 }
1063 
1064 void CMSCollector::promoted(bool par, HeapWord* start,
1065                             bool is_obj_array, size_t obj_size) {
1066   assert(_markBitMap.covers(start), "Out of bounds");
1067   // See comment in direct_allocated() about when objects should
1068   // be allocated live.
1069   if (_collectorState >= Marking) {
1070     // we already hold the marking bit map lock, taken in
1071     // the prologue
1072     if (par) {
1073       _markBitMap.par_mark(start);
1074     } else {
1075       _markBitMap.mark(start);
1076     }
1077     // We don't need to mark the object as uninitialized (as
1078     // in direct_allocated above) because this is being done with the
1079     // world stopped and the object will be initialized by the
1080     // time the marking, precleaning or sweeping get to look at it.
1081     // But see the code for copying objects into the CMS generation,
1082     // where we need to ensure that concurrent readers of the
1083     // block offset table are able to safely navigate a block that
1084     // is in flux from being free to being allocated (and in
1085     // transition while being copied into) and subsequently
1086     // becoming a bona-fide object when the copy/promotion is complete.
1087     assert(SafepointSynchronize::is_at_safepoint(),
1088            "expect promotion only at safepoints");
1089 
1090     if (_collectorState < Sweeping) {
1091       // Mark the appropriate cards in the modUnionTable, so that
1092       // this object gets scanned before the sweep. If this is
1093       // not done, CMS generation references in the object might
1094       // not get marked.
1095       // For the case of arrays, which are otherwise precisely
1096       // marked, we need to dirty the entire array, not just its head.
1097       if (is_obj_array) {
1098         // The [par_]mark_range() method expects mr.end() below to
1099         // be aligned to the granularity of a bit's representation
1100         // in the heap. In the case of the MUT below, that's a
1101         // card size.
1102         MemRegion mr(start,
1103                      (HeapWord*)round_to((intptr_t)(start + obj_size),
1104                         CardTableModRefBS::card_size /* bytes */));
1105         if (par) {
1106           _modUnionTable.par_mark_range(mr);
1107         } else {
1108           _modUnionTable.mark_range(mr);
1109         }
1110       } else {  // not an obj array; we can just mark the head
1111         if (par) {
1112           _modUnionTable.par_mark(start);
1113         } else {
1114           _modUnionTable.mark(start);
1115         }
1116       }
1117     }
1118   }
1119 }
1120 
1121 static inline size_t percent_of_space(Space* space, HeapWord* addr)
1122 {
1123   size_t delta = pointer_delta(addr, space->bottom());
1124   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
1125 }
1126 
1127 void CMSCollector::icms_update_allocation_limits()
1128 {
1129   Generation* young = GenCollectedHeap::heap()->get_gen(0);
1130   EdenSpace* eden = young->as_DefNewGeneration()->eden();
1131 
1132   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
1133   if (CMSTraceIncrementalPacing) {
1134     stats().print();
1135   }
1136 
1137   assert(duty_cycle <= 100, "invalid duty cycle");
1138   if (duty_cycle != 0) {
1139     // The duty_cycle is a percentage between 0 and 100; convert to words and
1140     // then compute the offset from the endpoints of the space.
1141     size_t free_words = eden->free() / HeapWordSize;
1142     double free_words_dbl = (double)free_words;
1143     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
1144     size_t offset_words = (free_words - duty_cycle_words) / 2;
1145 
1146     _icms_start_limit = eden->top() + offset_words;
1147     _icms_stop_limit = eden->end() - offset_words;
1148 
1149     // The limits may be adjusted (shifted to the right) by
1150     // CMSIncrementalOffset, to allow the application more mutator time after a
1151     // young gen gc (when all mutators were stopped) and before CMS starts and
1152     // takes away one or more cpus.
1153     if (CMSIncrementalOffset != 0) {
1154       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
1155       size_t adjustment = (size_t)adjustment_dbl;
1156       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
1157       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
1158         _icms_start_limit += adjustment;
1159         _icms_stop_limit = tmp_stop;
1160       }
1161     }
1162   }
1163   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
1164     _icms_start_limit = _icms_stop_limit = eden->end();
1165   }
1166 
1167   // Install the new start limit.
1168   eden->set_soft_end(_icms_start_limit);
1169 
1170   if (CMSTraceIncrementalMode) {
1171     gclog_or_tty->print(" icms alloc limits:  "
1172                            PTR_FORMAT "," PTR_FORMAT
1173                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
1174                            p2i(_icms_start_limit), p2i(_icms_stop_limit),
1175                            percent_of_space(eden, _icms_start_limit),
1176                            percent_of_space(eden, _icms_stop_limit));
1177     if (Verbose) {
1178       gclog_or_tty->print("eden:  ");
1179       eden->print_on(gclog_or_tty);
1180     }
1181   }
1182 }
1183 
1184 // Any changes here should try to maintain the invariant
1185 // that if this method is called with _icms_start_limit
1186 // and _icms_stop_limit both NULL, then it should return NULL
1187 // and not notify the icms thread.
1188 HeapWord*
1189 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
1190                                        size_t word_size)
1191 {
1192   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
1193   // nop.
1194   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
1195     if (top <= _icms_start_limit) {
1196       if (CMSTraceIncrementalMode) {
1197         space->print_on(gclog_or_tty);
1198         gclog_or_tty->stamp();
1199         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
1200                                ", new limit=" PTR_FORMAT
1201                                " (" SIZE_FORMAT "%%)",
1202                                p2i(top), p2i(_icms_stop_limit),
1203                                percent_of_space(space, _icms_stop_limit));
1204       }
1205       ConcurrentMarkSweepThread::start_icms();
1206       assert(top < _icms_stop_limit, "Tautology");
1207       if (word_size < pointer_delta(_icms_stop_limit, top)) {
1208         return _icms_stop_limit;
1209       }
1210 
1211       // The allocation will cross both the _start and _stop limits, so do the
1212       // stop notification also and return end().
1213       if (CMSTraceIncrementalMode) {
1214         space->print_on(gclog_or_tty);
1215         gclog_or_tty->stamp();
1216         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
1217                                ", new limit=" PTR_FORMAT
1218                                " (" SIZE_FORMAT "%%)",
1219                                p2i(top), p2i(space->end()),
1220                                percent_of_space(space, space->end()));
1221       }
1222       ConcurrentMarkSweepThread::stop_icms();
1223       return space->end();
1224     }
1225 
1226     if (top <= _icms_stop_limit) {
1227       if (CMSTraceIncrementalMode) {
1228         space->print_on(gclog_or_tty);
1229         gclog_or_tty->stamp();
1230         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
1231                                ", new limit=" PTR_FORMAT
1232                                " (" SIZE_FORMAT "%%)",
1233                                top, space->end(),
1234                                percent_of_space(space, space->end()));
1235       }
1236       ConcurrentMarkSweepThread::stop_icms();
1237       return space->end();
1238     }
1239 
1240     if (CMSTraceIncrementalMode) {
1241       space->print_on(gclog_or_tty);
1242       gclog_or_tty->stamp();
1243       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
1244                              ", new limit=" PTR_FORMAT,
1245                              top, NULL);
1246     }
1247   }
1248 
1249   return NULL;
1250 }
1251 
1252 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
1253   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1254   // allocate, copy and if necessary update promoinfo --
1255   // delegate to underlying space.
1256   assert_lock_strong(freelistLock());
1257 
1258 #ifndef PRODUCT
1259   if (Universe::heap()->promotion_should_fail()) {
1260     return NULL;
1261   }
1262 #endif  // #ifndef PRODUCT
1263 
1264   oop res = _cmsSpace->promote(obj, obj_size);
1265   if (res == NULL) {
1266     // expand and retry
1267     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
1268     expand(s*HeapWordSize, MinHeapDeltaBytes,
1269       CMSExpansionCause::_satisfy_promotion);
1270     // Since there's currently no next generation, we don't try to promote
1271     // into a more senior generation.
1272     assert(next_gen() == NULL, "assumption, based upon which no attempt "
1273                                "is made to pass on a possibly failing "
1274                                "promotion to next generation");
1275     res = _cmsSpace->promote(obj, obj_size);
1276   }
1277   if (res != NULL) {
1278     // See comment in allocate() about when objects should
1279     // be allocated live.
1280     assert(obj->is_oop(), "Will dereference klass pointer below");
1281     collector()->promoted(false,           // Not parallel
1282                           (HeapWord*)res, obj->is_objArray(), obj_size);
1283     // promotion counters
1284     NOT_PRODUCT(
1285       _numObjectsPromoted++;
1286       _numWordsPromoted +=
1287         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1288     )
1289   }
1290   return res;
1291 }
1292 
1293 
1294 HeapWord*
1295 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
1296                                              HeapWord* top,
1297                                              size_t word_sz)
1298 {
1299   return collector()->allocation_limit_reached(space, top, word_sz);
1300 }
1301 
1302 // IMPORTANT: Notes on object size recognition in CMS.
1303 // ---------------------------------------------------
1304 // A block of storage in the CMS generation is always in
1305 // one of three states. A free block (FREE), an allocated
1306 // object (OBJECT) whose size() method reports the correct size,
1307 // and an intermediate state (TRANSIENT) in which its size cannot
1308 // be accurately determined.
1309 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1310 // -----------------------------------------------------
1311 // FREE:      klass_word & 1 == 1; mark_word holds block size
1312 //
1313 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1314 //            obj->size() computes correct size
1315 //
1316 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1317 //
1318 // STATE IDENTIFICATION: (64 bit+COOPS)
1319 // ------------------------------------
1320 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1321 //
1322 // OBJECT:    klass_word installed; klass_word != 0;
1323 //            obj->size() computes correct size
1324 //
1325 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1326 //
1327 //
1328 // STATE TRANSITION DIAGRAM
1329 //
1330 //        mut / parnew                     mut  /  parnew
1331 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1332 //  ^                                                                   |
1333 //  |------------------------ DEAD <------------------------------------|
1334 //         sweep                            mut
1335 //
1336 // While a block is in TRANSIENT state its size cannot be determined
1337 // so readers will either need to come back later or stall until
1338 // the size can be determined. Note that for the case of direct
1339 // allocation, P-bits, when available, may be used to determine the
1340 // size of an object that may not yet have been initialized.
1341 
1342 // Things to support parallel young-gen collection.
1343 oop
1344 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1345                                            oop old, markOop m,
1346                                            size_t word_sz) {
1347 #ifndef PRODUCT
1348   if (Universe::heap()->promotion_should_fail()) {
1349     return NULL;
1350   }
1351 #endif  // #ifndef PRODUCT
1352 
1353   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1354   PromotionInfo* promoInfo = &ps->promo;
1355   // if we are tracking promotions, then first ensure space for
1356   // promotion (including spooling space for saving header if necessary).
1357   // then allocate and copy, then track promoted info if needed.
1358   // When tracking (see PromotionInfo::track()), the mark word may
1359   // be displaced and in this case restoration of the mark word
1360   // occurs in the (oop_since_save_marks_)iterate phase.
1361   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1362     // Out of space for allocating spooling buffers;
1363     // try expanding and allocating spooling buffers.
1364     if (!expand_and_ensure_spooling_space(promoInfo)) {
1365       return NULL;
1366     }
1367   }
1368   assert(promoInfo->has_spooling_space(), "Control point invariant");
1369   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1370   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1371   if (obj_ptr == NULL) {
1372      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1373      if (obj_ptr == NULL) {
1374        return NULL;
1375      }
1376   }
1377   oop obj = oop(obj_ptr);
1378   OrderAccess::storestore();
1379   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1380   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1381   // IMPORTANT: See note on object initialization for CMS above.
1382   // Otherwise, copy the object.  Here we must be careful to insert the
1383   // klass pointer last, since this marks the block as an allocated object.
1384   // Except with compressed oops it's the mark word.
1385   HeapWord* old_ptr = (HeapWord*)old;
1386   // Restore the mark word copied above.
1387   obj->set_mark(m);
1388   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1389   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1390   OrderAccess::storestore();
1391 
1392   if (UseCompressedClassPointers) {
1393     // Copy gap missed by (aligned) header size calculation below
1394     obj->set_klass_gap(old->klass_gap());
1395   }
1396   if (word_sz > (size_t)oopDesc::header_size()) {
1397     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1398                                  obj_ptr + oopDesc::header_size(),
1399                                  word_sz - oopDesc::header_size());
1400   }
1401 
1402   // Now we can track the promoted object, if necessary.  We take care
1403   // to delay the transition from uninitialized to full object
1404   // (i.e., insertion of klass pointer) until after, so that it
1405   // atomically becomes a promoted object.
1406   if (promoInfo->tracking()) {
1407     promoInfo->track((PromotedObject*)obj, old->klass());
1408   }
1409   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1410   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1411   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1412 
1413   // Finally, install the klass pointer (this should be volatile).
1414   OrderAccess::storestore();
1415   obj->set_klass(old->klass());
1416   // We should now be able to calculate the right size for this object
1417   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1418 
1419   collector()->promoted(true,          // parallel
1420                         obj_ptr, old->is_objArray(), word_sz);
1421 
1422   NOT_PRODUCT(
1423     Atomic::inc_ptr(&_numObjectsPromoted);
1424     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1425   )
1426 
1427   return obj;
1428 }
1429 
1430 void
1431 ConcurrentMarkSweepGeneration::
1432 par_promote_alloc_undo(int thread_num,
1433                        HeapWord* obj, size_t word_sz) {
1434   // CMS does not support promotion undo.
1435   ShouldNotReachHere();
1436 }
1437 
1438 void
1439 ConcurrentMarkSweepGeneration::
1440 par_promote_alloc_done(int thread_num) {
1441   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1442   ps->lab.retire(thread_num);
1443 }
1444 
1445 void
1446 ConcurrentMarkSweepGeneration::
1447 par_oop_since_save_marks_iterate_done(int thread_num) {
1448   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1449   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1450   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1451 }
1452 
1453 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1454                                                    size_t size,
1455                                                    bool   tlab)
1456 {
1457   // We allow a STW collection only if a full
1458   // collection was requested.
1459   return full || should_allocate(size, tlab); // FIX ME !!!
1460   // This and promotion failure handling are connected at the
1461   // hip and should be fixed by untying them.
1462 }
1463 
1464 bool CMSCollector::shouldConcurrentCollect() {
1465   if (_full_gc_requested) {
1466     if (Verbose && PrintGCDetails) {
1467       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1468                              " gc request (or gc_locker)");
1469     }
1470     return true;
1471   }
1472 
1473   // For debugging purposes, change the type of collection.
1474   // If the rotation is not on the concurrent collection
1475   // type, don't start a concurrent collection.
1476   NOT_PRODUCT(
1477     if (RotateCMSCollectionTypes &&
1478         (_cmsGen->debug_collection_type() !=
1479           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
1480       assert(_cmsGen->debug_collection_type() !=
1481         ConcurrentMarkSweepGeneration::Unknown_collection_type,
1482         "Bad cms collection type");
1483       return false;
1484     }
1485   )
1486 
1487   FreelistLocker x(this);
1488   // ------------------------------------------------------------------
1489   // Print out lots of information which affects the initiation of
1490   // a collection.
1491   if (PrintCMSInitiationStatistics && stats().valid()) {
1492     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1493     gclog_or_tty->stamp();
1494     gclog_or_tty->cr();
1495     stats().print_on(gclog_or_tty);
1496     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1497       stats().time_until_cms_gen_full());
1498     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1499     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1500                            _cmsGen->contiguous_available());
1501     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1502     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1503     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1504     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1505     gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1506     gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1507     gclog_or_tty->print_cr("metadata initialized %d",
1508       MetaspaceGC::should_concurrent_collect());
1509   }
1510   // ------------------------------------------------------------------
1511 
1512   // If the estimated time to complete a cms collection (cms_duration())
1513   // is less than the estimated time remaining until the cms generation
1514   // is full, start a collection.
1515   if (!UseCMSInitiatingOccupancyOnly) {
1516     if (stats().valid()) {
1517       if (stats().time_until_cms_start() == 0.0) {
1518         return true;
1519       }
1520     } else {
1521       // We want to conservatively collect somewhat early in order
1522       // to try and "bootstrap" our CMS/promotion statistics;
1523       // this branch will not fire after the first successful CMS
1524       // collection because the stats should then be valid.
1525       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1526         if (Verbose && PrintGCDetails) {
1527           gclog_or_tty->print_cr(
1528             " CMSCollector: collect for bootstrapping statistics:"
1529             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1530             _bootstrap_occupancy);
1531         }
1532         return true;
1533       }
1534     }
1535   }
1536 
1537   // Otherwise, we start a collection cycle if
1538   // old gen want a collection cycle started. Each may use
1539   // an appropriate criterion for making this decision.
1540   // XXX We need to make sure that the gen expansion
1541   // criterion dovetails well with this. XXX NEED TO FIX THIS
1542   if (_cmsGen->should_concurrent_collect()) {
1543     if (Verbose && PrintGCDetails) {
1544       gclog_or_tty->print_cr("CMS old gen initiated");
1545     }
1546     return true;
1547   }
1548 
1549   // We start a collection if we believe an incremental collection may fail;
1550   // this is not likely to be productive in practice because it's probably too
1551   // late anyway.
1552   GenCollectedHeap* gch = GenCollectedHeap::heap();
1553   assert(gch->collector_policy()->is_generation_policy(),
1554          "You may want to check the correctness of the following");
1555   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1556     if (Verbose && PrintGCDetails) {
1557       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1558     }
1559     return true;
1560   }
1561 
1562   if (MetaspaceGC::should_concurrent_collect()) {
1563     if (Verbose && PrintGCDetails) {
1564       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1565     }
1566     return true;
1567   }
1568 
1569   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1570   if (CMSTriggerInterval >= 0) {
1571     if (CMSTriggerInterval == 0) {
1572       // Trigger always
1573       return true;
1574     }
1575 
1576     // Check the CMS time since begin (we do not check the stats validity
1577     // as we want to be able to trigger the first CMS cycle as well)
1578     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1579       if (Verbose && PrintGCDetails) {
1580         if (stats().valid()) {
1581           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1582                                  stats().cms_time_since_begin());
1583         } else {
1584           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)");
1585         }
1586       }
1587       return true;
1588     }
1589   }
1590 
1591   return false;
1592 }
1593 
1594 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1595 
1596 // Clear _expansion_cause fields of constituent generations
1597 void CMSCollector::clear_expansion_cause() {
1598   _cmsGen->clear_expansion_cause();
1599 }
1600 
1601 // We should be conservative in starting a collection cycle.  To
1602 // start too eagerly runs the risk of collecting too often in the
1603 // extreme.  To collect too rarely falls back on full collections,
1604 // which works, even if not optimum in terms of concurrent work.
1605 // As a work around for too eagerly collecting, use the flag
1606 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1607 // giving the user an easily understandable way of controlling the
1608 // collections.
1609 // We want to start a new collection cycle if any of the following
1610 // conditions hold:
1611 // . our current occupancy exceeds the configured initiating occupancy
1612 //   for this generation, or
1613 // . we recently needed to expand this space and have not, since that
1614 //   expansion, done a collection of this generation, or
1615 // . the underlying space believes that it may be a good idea to initiate
1616 //   a concurrent collection (this may be based on criteria such as the
1617 //   following: the space uses linear allocation and linear allocation is
1618 //   going to fail, or there is believed to be excessive fragmentation in
1619 //   the generation, etc... or ...
1620 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1621 //   the case of the old generation; see CR 6543076):
1622 //   we may be approaching a point at which allocation requests may fail because
1623 //   we will be out of sufficient free space given allocation rate estimates.]
1624 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1625 
1626   assert_lock_strong(freelistLock());
1627   if (occupancy() > initiating_occupancy()) {
1628     if (PrintGCDetails && Verbose) {
1629       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1630         short_name(), occupancy(), initiating_occupancy());
1631     }
1632     return true;
1633   }
1634   if (UseCMSInitiatingOccupancyOnly) {
1635     return false;
1636   }
1637   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1638     if (PrintGCDetails && Verbose) {
1639       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1640         short_name());
1641     }
1642     return true;
1643   }
1644   if (_cmsSpace->should_concurrent_collect()) {
1645     if (PrintGCDetails && Verbose) {
1646       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1647         short_name());
1648     }
1649     return true;
1650   }
1651   return false;
1652 }
1653 
1654 void ConcurrentMarkSweepGeneration::collect(bool   full,
1655                                             bool   clear_all_soft_refs,
1656                                             size_t size,
1657                                             bool   tlab)
1658 {
1659   collector()->collect(full, clear_all_soft_refs, size, tlab);
1660 }
1661 
1662 void CMSCollector::collect(bool   full,
1663                            bool   clear_all_soft_refs,
1664                            size_t size,
1665                            bool   tlab)
1666 {
1667   if (!UseCMSCollectionPassing && _collectorState > Idling) {
1668     // For debugging purposes skip the collection if the state
1669     // is not currently idle
1670     if (TraceCMSState) {
1671       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
1672         Thread::current(), full, _collectorState);
1673     }
1674     return;
1675   }
1676 
1677   // The following "if" branch is present for defensive reasons.
1678   // In the current uses of this interface, it can be replaced with:
1679   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1680   // But I am not placing that assert here to allow future
1681   // generality in invoking this interface.
1682   if (GC_locker::is_active()) {
1683     // A consistency test for GC_locker
1684     assert(GC_locker::needs_gc(), "Should have been set already");
1685     // Skip this foreground collection, instead
1686     // expanding the heap if necessary.
1687     // Need the free list locks for the call to free() in compute_new_size()
1688     compute_new_size();
1689     return;
1690   }
1691   acquire_control_and_collect(full, clear_all_soft_refs);
1692   _full_gcs_since_conc_gc++;
1693 }
1694 
1695 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1696   GenCollectedHeap* gch = GenCollectedHeap::heap();
1697   unsigned int gc_count = gch->total_full_collections();
1698   if (gc_count == full_gc_count) {
1699     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1700     _full_gc_requested = true;
1701     _full_gc_cause = cause;
1702     CGC_lock->notify();   // nudge CMS thread
1703   } else {
1704     assert(gc_count > full_gc_count, "Error: causal loop");
1705   }
1706 }
1707 
1708 bool CMSCollector::is_external_interruption() {
1709   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1710   return GCCause::is_user_requested_gc(cause) ||
1711          GCCause::is_serviceability_requested_gc(cause);
1712 }
1713 
1714 void CMSCollector::report_concurrent_mode_interruption() {
1715   if (is_external_interruption()) {
1716     if (PrintGCDetails) {
1717       gclog_or_tty->print(" (concurrent mode interrupted)");
1718     }
1719   } else {
1720     if (PrintGCDetails) {
1721       gclog_or_tty->print(" (concurrent mode failure)");
1722     }
1723     _gc_tracer_cm->report_concurrent_mode_failure();
1724   }
1725 }
1726 
1727 
1728 // The foreground and background collectors need to coordinate in order
1729 // to make sure that they do not mutually interfere with CMS collections.
1730 // When a background collection is active,
1731 // the foreground collector may need to take over (preempt) and
1732 // synchronously complete an ongoing collection. Depending on the
1733 // frequency of the background collections and the heap usage
1734 // of the application, this preemption can be seldom or frequent.
1735 // There are only certain
1736 // points in the background collection that the "collection-baton"
1737 // can be passed to the foreground collector.
1738 //
1739 // The foreground collector will wait for the baton before
1740 // starting any part of the collection.  The foreground collector
1741 // will only wait at one location.
1742 //
1743 // The background collector will yield the baton before starting a new
1744 // phase of the collection (e.g., before initial marking, marking from roots,
1745 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1746 // of the loop which switches the phases. The background collector does some
1747 // of the phases (initial mark, final re-mark) with the world stopped.
1748 // Because of locking involved in stopping the world,
1749 // the foreground collector should not block waiting for the background
1750 // collector when it is doing a stop-the-world phase.  The background
1751 // collector will yield the baton at an additional point just before
1752 // it enters a stop-the-world phase.  Once the world is stopped, the
1753 // background collector checks the phase of the collection.  If the
1754 // phase has not changed, it proceeds with the collection.  If the
1755 // phase has changed, it skips that phase of the collection.  See
1756 // the comments on the use of the Heap_lock in collect_in_background().
1757 //
1758 // Variable used in baton passing.
1759 //   _foregroundGCIsActive - Set to true by the foreground collector when
1760 //      it wants the baton.  The foreground clears it when it has finished
1761 //      the collection.
1762 //   _foregroundGCShouldWait - Set to true by the background collector
1763 //        when it is running.  The foreground collector waits while
1764 //      _foregroundGCShouldWait is true.
1765 //  CGC_lock - monitor used to protect access to the above variables
1766 //      and to notify the foreground and background collectors.
1767 //  _collectorState - current state of the CMS collection.
1768 //
1769 // The foreground collector
1770 //   acquires the CGC_lock
1771 //   sets _foregroundGCIsActive
1772 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1773 //     various locks acquired in preparation for the collection
1774 //     are released so as not to block the background collector
1775 //     that is in the midst of a collection
1776 //   proceeds with the collection
1777 //   clears _foregroundGCIsActive
1778 //   returns
1779 //
1780 // The background collector in a loop iterating on the phases of the
1781 //      collection
1782 //   acquires the CGC_lock
1783 //   sets _foregroundGCShouldWait
1784 //   if _foregroundGCIsActive is set
1785 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1786 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1787 //     and exits the loop.
1788 //   otherwise
1789 //     proceed with that phase of the collection
1790 //     if the phase is a stop-the-world phase,
1791 //       yield the baton once more just before enqueueing
1792 //       the stop-world CMS operation (executed by the VM thread).
1793 //   returns after all phases of the collection are done
1794 //
1795 
1796 void CMSCollector::acquire_control_and_collect(bool full,
1797         bool clear_all_soft_refs) {
1798   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1799   assert(!Thread::current()->is_ConcurrentGC_thread(),
1800          "shouldn't try to acquire control from self!");
1801 
1802   // Start the protocol for acquiring control of the
1803   // collection from the background collector (aka CMS thread).
1804   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1805          "VM thread should have CMS token");
1806   // Remember the possibly interrupted state of an ongoing
1807   // concurrent collection
1808   CollectorState first_state = _collectorState;
1809 
1810   // Signal to a possibly ongoing concurrent collection that
1811   // we want to do a foreground collection.
1812   _foregroundGCIsActive = true;
1813 
1814   // Disable incremental mode during a foreground collection.
1815   ICMSDisabler icms_disabler;
1816 
1817   // release locks and wait for a notify from the background collector
1818   // releasing the locks in only necessary for phases which
1819   // do yields to improve the granularity of the collection.
1820   assert_lock_strong(bitMapLock());
1821   // We need to lock the Free list lock for the space that we are
1822   // currently collecting.
1823   assert(haveFreelistLocks(), "Must be holding free list locks");
1824   bitMapLock()->unlock();
1825   releaseFreelistLocks();
1826   {
1827     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1828     if (_foregroundGCShouldWait) {
1829       // We are going to be waiting for action for the CMS thread;
1830       // it had better not be gone (for instance at shutdown)!
1831       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1832              "CMS thread must be running");
1833       // Wait here until the background collector gives us the go-ahead
1834       ConcurrentMarkSweepThread::clear_CMS_flag(
1835         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1836       // Get a possibly blocked CMS thread going:
1837       //   Note that we set _foregroundGCIsActive true above,
1838       //   without protection of the CGC_lock.
1839       CGC_lock->notify();
1840       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1841              "Possible deadlock");
1842       while (_foregroundGCShouldWait) {
1843         // wait for notification
1844         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1845         // Possibility of delay/starvation here, since CMS token does
1846         // not know to give priority to VM thread? Actually, i think
1847         // there wouldn't be any delay/starvation, but the proof of
1848         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1849       }
1850       ConcurrentMarkSweepThread::set_CMS_flag(
1851         ConcurrentMarkSweepThread::CMS_vm_has_token);
1852     }
1853   }
1854   // The CMS_token is already held.  Get back the other locks.
1855   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1856          "VM thread should have CMS token");
1857   getFreelistLocks();
1858   bitMapLock()->lock_without_safepoint_check();
1859   if (TraceCMSState) {
1860     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1861       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
1862     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1863   }
1864 
1865   // Check if we need to do a compaction, or if not, whether
1866   // we need to start the mark-sweep from scratch.
1867   bool should_compact    = false;
1868   bool should_start_over = false;
1869   decide_foreground_collection_type(clear_all_soft_refs,
1870     &should_compact, &should_start_over);
1871 
1872 NOT_PRODUCT(
1873   if (RotateCMSCollectionTypes) {
1874     if (_cmsGen->debug_collection_type() ==
1875         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
1876       should_compact = true;
1877     } else if (_cmsGen->debug_collection_type() ==
1878                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
1879       should_compact = false;
1880     }
1881   }
1882 )
1883 
1884   if (first_state > Idling) {
1885     report_concurrent_mode_interruption();
1886   }
1887 
1888   set_did_compact(should_compact);
1889   if (should_compact) {
1890     // If the collection is being acquired from the background
1891     // collector, there may be references on the discovered
1892     // references lists that have NULL referents (being those
1893     // that were concurrently cleared by a mutator) or
1894     // that are no longer active (having been enqueued concurrently
1895     // by the mutator).
1896     // Scrub the list of those references because Mark-Sweep-Compact
1897     // code assumes referents are not NULL and that all discovered
1898     // Reference objects are active.
1899     ref_processor()->clean_up_discovered_references();
1900 
1901     if (first_state > Idling) {
1902       save_heap_summary();
1903     }
1904 
1905     do_compaction_work(clear_all_soft_refs);
1906 
1907     // Has the GC time limit been exceeded?
1908     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
1909     size_t max_eden_size = young_gen->max_capacity() -
1910                            young_gen->to()->capacity() -
1911                            young_gen->from()->capacity();
1912     GenCollectedHeap* gch = GenCollectedHeap::heap();
1913     GCCause::Cause gc_cause = gch->gc_cause();
1914     size_policy()->check_gc_overhead_limit(_young_gen->used(),
1915                                            young_gen->eden()->used(),
1916                                            _cmsGen->max_capacity(),
1917                                            max_eden_size,
1918                                            full,
1919                                            gc_cause,
1920                                            gch->collector_policy());
1921   } else {
1922     do_mark_sweep_work(clear_all_soft_refs, first_state,
1923       should_start_over);
1924   }
1925   // Reset the expansion cause, now that we just completed
1926   // a collection cycle.
1927   clear_expansion_cause();
1928   _foregroundGCIsActive = false;
1929   return;
1930 }
1931 
1932 // Resize the tenured generation
1933 // after obtaining the free list locks for the
1934 // two generations.
1935 void CMSCollector::compute_new_size() {
1936   assert_locked_or_safepoint(Heap_lock);
1937   FreelistLocker z(this);
1938   MetaspaceGC::compute_new_size();
1939   _cmsGen->compute_new_size_free_list();
1940 }
1941 
1942 // A work method used by foreground collection to determine
1943 // what type of collection (compacting or not, continuing or fresh)
1944 // it should do.
1945 // NOTE: the intent is to make UseCMSCompactAtFullCollection
1946 // and CMSCompactWhenClearAllSoftRefs the default in the future
1947 // and do away with the flags after a suitable period.
1948 void CMSCollector::decide_foreground_collection_type(
1949   bool clear_all_soft_refs, bool* should_compact,
1950   bool* should_start_over) {
1951   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
1952   // flag is set, and we have either requested a System.gc() or
1953   // the number of full gc's since the last concurrent cycle
1954   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
1955   // or if an incremental collection has failed
1956   GenCollectedHeap* gch = GenCollectedHeap::heap();
1957   assert(gch->collector_policy()->is_generation_policy(),
1958          "You may want to check the correctness of the following");
1959   // Inform cms gen if this was due to partial collection failing.
1960   // The CMS gen may use this fact to determine its expansion policy.
1961   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1962     assert(!_cmsGen->incremental_collection_failed(),
1963            "Should have been noticed, reacted to and cleared");
1964     _cmsGen->set_incremental_collection_failed();
1965   }
1966   *should_compact =
1967     UseCMSCompactAtFullCollection &&
1968     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
1969      GCCause::is_user_requested_gc(gch->gc_cause()) ||
1970      gch->incremental_collection_will_fail(true /* consult_young */));
1971   *should_start_over = false;
1972   if (clear_all_soft_refs && !*should_compact) {
1973     // We are about to do a last ditch collection attempt
1974     // so it would normally make sense to do a compaction
1975     // to reclaim as much space as possible.
1976     if (CMSCompactWhenClearAllSoftRefs) {
1977       // Default: The rationale is that in this case either
1978       // we are past the final marking phase, in which case
1979       // we'd have to start over, or so little has been done
1980       // that there's little point in saving that work. Compaction
1981       // appears to be the sensible choice in either case.
1982       *should_compact = true;
1983     } else {
1984       // We have been asked to clear all soft refs, but not to
1985       // compact. Make sure that we aren't past the final checkpoint
1986       // phase, for that is where we process soft refs. If we are already
1987       // past that phase, we'll need to redo the refs discovery phase and
1988       // if necessary clear soft refs that weren't previously
1989       // cleared. We do so by remembering the phase in which
1990       // we came in, and if we are past the refs processing
1991       // phase, we'll choose to just redo the mark-sweep
1992       // collection from scratch.
1993       if (_collectorState > FinalMarking) {
1994         // We are past the refs processing phase;
1995         // start over and do a fresh synchronous CMS cycle
1996         _collectorState = Resetting; // skip to reset to start new cycle
1997         reset(false /* == !asynch */);
1998         *should_start_over = true;
1999       } // else we can continue a possibly ongoing current cycle
2000     }
2001   }
2002 }
2003 
2004 // A work method used by the foreground collector to do
2005 // a mark-sweep-compact.
2006 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
2007   GenCollectedHeap* gch = GenCollectedHeap::heap();
2008 
2009   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
2010   gc_timer->register_gc_start();
2011 
2012   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
2013   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
2014 
2015   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL, gc_tracer->gc_id());
2016   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
2017     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
2018       "collections passed to foreground collector", _full_gcs_since_conc_gc);
2019   }
2020 
2021   // Temporarily widen the span of the weak reference processing to
2022   // the entire heap.
2023   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
2024   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
2025   // Temporarily, clear the "is_alive_non_header" field of the
2026   // reference processor.
2027   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
2028   // Temporarily make reference _processing_ single threaded (non-MT).
2029   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
2030   // Temporarily make refs discovery atomic
2031   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
2032   // Temporarily make reference _discovery_ single threaded (non-MT)
2033   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
2034 
2035   ref_processor()->set_enqueuing_is_done(false);
2036   ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/);
2037   ref_processor()->setup_policy(clear_all_soft_refs);
2038   // If an asynchronous collection finishes, the _modUnionTable is
2039   // all clear.  If we are assuming the collection from an asynchronous
2040   // collection, clear the _modUnionTable.
2041   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
2042     "_modUnionTable should be clear if the baton was not passed");
2043   _modUnionTable.clear_all();
2044   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
2045     "mod union for klasses should be clear if the baton was passed");
2046   _ct->klass_rem_set()->clear_mod_union();
2047 
2048   // We must adjust the allocation statistics being maintained
2049   // in the free list space. We do so by reading and clearing
2050   // the sweep timer and updating the block flux rate estimates below.
2051   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
2052   if (_inter_sweep_timer.is_active()) {
2053     _inter_sweep_timer.stop();
2054     // Note that we do not use this sample to update the _inter_sweep_estimate.
2055     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
2056                                             _inter_sweep_estimate.padded_average(),
2057                                             _intra_sweep_estimate.padded_average());
2058   }
2059 
2060   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
2061     ref_processor(), clear_all_soft_refs);
2062   #ifdef ASSERT
2063     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
2064     size_t free_size = cms_space->free();
2065     assert(free_size ==
2066            pointer_delta(cms_space->end(), cms_space->compaction_top())
2067            * HeapWordSize,
2068       "All the free space should be compacted into one chunk at top");
2069     assert(cms_space->dictionary()->total_chunk_size(
2070                                       debug_only(cms_space->freelistLock())) == 0 ||
2071            cms_space->totalSizeInIndexedFreeLists() == 0,
2072       "All the free space should be in a single chunk");
2073     size_t num = cms_space->totalCount();
2074     assert((free_size == 0 && num == 0) ||
2075            (free_size > 0  && (num == 1 || num == 2)),
2076          "There should be at most 2 free chunks after compaction");
2077   #endif // ASSERT
2078   _collectorState = Resetting;
2079   assert(_restart_addr == NULL,
2080          "Should have been NULL'd before baton was passed");
2081   reset(false /* == !asynch */);
2082   _cmsGen->reset_after_compaction();
2083   _concurrent_cycles_since_last_unload = 0;
2084 
2085   // Clear any data recorded in the PLAB chunk arrays.
2086   if (_survivor_plab_array != NULL) {
2087     reset_survivor_plab_arrays();
2088   }
2089 
2090   // Adjust the per-size allocation stats for the next epoch.
2091   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
2092   // Restart the "inter sweep timer" for the next epoch.
2093   _inter_sweep_timer.reset();
2094   _inter_sweep_timer.start();
2095 
2096   gc_timer->register_gc_end();
2097 
2098   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
2099 
2100   // For a mark-sweep-compact, compute_new_size() will be called
2101   // in the heap's do_collection() method.
2102 }
2103 
2104 // A work method used by the foreground collector to do
2105 // a mark-sweep, after taking over from a possibly on-going
2106 // concurrent mark-sweep collection.
2107 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
2108   CollectorState first_state, bool should_start_over) {
2109   if (PrintGC && Verbose) {
2110     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
2111       "collector with count %d",
2112       _full_gcs_since_conc_gc);
2113   }
2114   switch (_collectorState) {
2115     case Idling:
2116       if (first_state == Idling || should_start_over) {
2117         // The background GC was not active, or should
2118         // restarted from scratch;  start the cycle.
2119         _collectorState = InitialMarking;
2120       }
2121       // If first_state was not Idling, then a background GC
2122       // was in progress and has now finished.  No need to do it
2123       // again.  Leave the state as Idling.
2124       break;
2125     case Precleaning:
2126       // In the foreground case don't do the precleaning since
2127       // it is not done concurrently and there is extra work
2128       // required.
2129       _collectorState = FinalMarking;
2130   }
2131   collect_in_foreground(clear_all_soft_refs, GenCollectedHeap::heap()->gc_cause());
2132 
2133   // For a mark-sweep, compute_new_size() will be called
2134   // in the heap's do_collection() method.
2135 }
2136 
2137 
2138 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
2139   DefNewGeneration* dng = _young_gen->as_DefNewGeneration();
2140   EdenSpace* eden_space = dng->eden();
2141   ContiguousSpace* from_space = dng->from();
2142   ContiguousSpace* to_space   = dng->to();
2143   // Eden
2144   if (_eden_chunk_array != NULL) {
2145     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
2146                            eden_space->bottom(), eden_space->top(),
2147                            eden_space->end(), eden_space->capacity());
2148     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
2149                            "_eden_chunk_capacity=" SIZE_FORMAT,
2150                            _eden_chunk_index, _eden_chunk_capacity);
2151     for (size_t i = 0; i < _eden_chunk_index; i++) {
2152       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
2153                              i, _eden_chunk_array[i]);
2154     }
2155   }
2156   // Survivor
2157   if (_survivor_chunk_array != NULL) {
2158     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
2159                            from_space->bottom(), from_space->top(),
2160                            from_space->end(), from_space->capacity());
2161     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
2162                            "_survivor_chunk_capacity=" SIZE_FORMAT,
2163                            _survivor_chunk_index, _survivor_chunk_capacity);
2164     for (size_t i = 0; i < _survivor_chunk_index; i++) {
2165       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
2166                              i, _survivor_chunk_array[i]);
2167     }
2168   }
2169 }
2170 
2171 void CMSCollector::getFreelistLocks() const {
2172   // Get locks for all free lists in all generations that this
2173   // collector is responsible for
2174   _cmsGen->freelistLock()->lock_without_safepoint_check();
2175 }
2176 
2177 void CMSCollector::releaseFreelistLocks() const {
2178   // Release locks for all free lists in all generations that this
2179   // collector is responsible for
2180   _cmsGen->freelistLock()->unlock();
2181 }
2182 
2183 bool CMSCollector::haveFreelistLocks() const {
2184   // Check locks for all free lists in all generations that this
2185   // collector is responsible for
2186   assert_lock_strong(_cmsGen->freelistLock());
2187   PRODUCT_ONLY(ShouldNotReachHere());
2188   return true;
2189 }
2190 
2191 // A utility class that is used by the CMS collector to
2192 // temporarily "release" the foreground collector from its
2193 // usual obligation to wait for the background collector to
2194 // complete an ongoing phase before proceeding.
2195 class ReleaseForegroundGC: public StackObj {
2196  private:
2197   CMSCollector* _c;
2198  public:
2199   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
2200     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
2201     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2202     // allow a potentially blocked foreground collector to proceed
2203     _c->_foregroundGCShouldWait = false;
2204     if (_c->_foregroundGCIsActive) {
2205       CGC_lock->notify();
2206     }
2207     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2208            "Possible deadlock");
2209   }
2210 
2211   ~ReleaseForegroundGC() {
2212     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
2213     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2214     _c->_foregroundGCShouldWait = true;
2215   }
2216 };
2217 
2218 // There are separate collect_in_background and collect_in_foreground because of
2219 // the different locking requirements of the background collector and the
2220 // foreground collector.  There was originally an attempt to share
2221 // one "collect" method between the background collector and the foreground
2222 // collector but the if-then-else required made it cleaner to have
2223 // separate methods.
2224 void CMSCollector::collect_in_background(bool clear_all_soft_refs, GCCause::Cause cause) {
2225   assert(Thread::current()->is_ConcurrentGC_thread(),
2226     "A CMS asynchronous collection is only allowed on a CMS thread.");
2227 
2228   GenCollectedHeap* gch = GenCollectedHeap::heap();
2229   {
2230     bool safepoint_check = Mutex::_no_safepoint_check_flag;
2231     MutexLockerEx hl(Heap_lock, safepoint_check);
2232     FreelistLocker fll(this);
2233     MutexLockerEx x(CGC_lock, safepoint_check);
2234     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
2235       // The foreground collector is active or we're
2236       // not using asynchronous collections.  Skip this
2237       // background collection.
2238       assert(!_foregroundGCShouldWait, "Should be clear");
2239       return;
2240     } else {
2241       assert(_collectorState == Idling, "Should be idling before start.");
2242       _collectorState = InitialMarking;
2243       register_gc_start(cause);
2244       // Reset the expansion cause, now that we are about to begin
2245       // a new cycle.
2246       clear_expansion_cause();
2247 
2248       // Clear the MetaspaceGC flag since a concurrent collection
2249       // is starting but also clear it after the collection.
2250       MetaspaceGC::set_should_concurrent_collect(false);
2251     }
2252     // Decide if we want to enable class unloading as part of the
2253     // ensuing concurrent GC cycle.
2254     update_should_unload_classes();
2255     _full_gc_requested = false;           // acks all outstanding full gc requests
2256     _full_gc_cause = GCCause::_no_gc;
2257     // Signal that we are about to start a collection
2258     gch->increment_total_full_collections();  // ... starting a collection cycle
2259     _collection_count_start = gch->total_full_collections();
2260   }
2261 
2262   // Used for PrintGC
2263   size_t prev_used;
2264   if (PrintGC && Verbose) {
2265     prev_used = _cmsGen->used(); // XXXPERM
2266   }
2267 
2268   // The change of the collection state is normally done at this level;
2269   // the exceptions are phases that are executed while the world is
2270   // stopped.  For those phases the change of state is done while the
2271   // world is stopped.  For baton passing purposes this allows the
2272   // background collector to finish the phase and change state atomically.
2273   // The foreground collector cannot wait on a phase that is done
2274   // while the world is stopped because the foreground collector already
2275   // has the world stopped and would deadlock.
2276   while (_collectorState != Idling) {
2277     if (TraceCMSState) {
2278       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2279         Thread::current(), _collectorState);
2280     }
2281     // The foreground collector
2282     //   holds the Heap_lock throughout its collection.
2283     //   holds the CMS token (but not the lock)
2284     //     except while it is waiting for the background collector to yield.
2285     //
2286     // The foreground collector should be blocked (not for long)
2287     //   if the background collector is about to start a phase
2288     //   executed with world stopped.  If the background
2289     //   collector has already started such a phase, the
2290     //   foreground collector is blocked waiting for the
2291     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
2292     //   are executed in the VM thread.
2293     //
2294     // The locking order is
2295     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
2296     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
2297     //   CMS token  (claimed in
2298     //                stop_world_and_do() -->
2299     //                  safepoint_synchronize() -->
2300     //                    CMSThread::synchronize())
2301 
2302     {
2303       // Check if the FG collector wants us to yield.
2304       CMSTokenSync x(true); // is cms thread
2305       if (waitForForegroundGC()) {
2306         // We yielded to a foreground GC, nothing more to be
2307         // done this round.
2308         assert(_foregroundGCShouldWait == false, "We set it to false in "
2309                "waitForForegroundGC()");
2310         if (TraceCMSState) {
2311           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2312             " exiting collection CMS state %d",
2313             Thread::current(), _collectorState);
2314         }
2315         return;
2316       } else {
2317         // The background collector can run but check to see if the
2318         // foreground collector has done a collection while the
2319         // background collector was waiting to get the CGC_lock
2320         // above.  If yes, break so that _foregroundGCShouldWait
2321         // is cleared before returning.
2322         if (_collectorState == Idling) {
2323           break;
2324         }
2325       }
2326     }
2327 
2328     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
2329       "should be waiting");
2330 
2331     switch (_collectorState) {
2332       case InitialMarking:
2333         {
2334           ReleaseForegroundGC x(this);
2335           stats().record_cms_begin();
2336           VM_CMS_Initial_Mark initial_mark_op(this);
2337           VMThread::execute(&initial_mark_op);
2338         }
2339         // The collector state may be any legal state at this point
2340         // since the background collector may have yielded to the
2341         // foreground collector.
2342         break;
2343       case Marking:
2344         // initial marking in checkpointRootsInitialWork has been completed
2345         if (markFromRoots(true)) { // we were successful
2346           assert(_collectorState == Precleaning, "Collector state should "
2347             "have changed");
2348         } else {
2349           assert(_foregroundGCIsActive, "Internal state inconsistency");
2350         }
2351         break;
2352       case Precleaning:
2353         // marking from roots in markFromRoots has been completed
2354         preclean();
2355         assert(_collectorState == AbortablePreclean ||
2356                _collectorState == FinalMarking,
2357                "Collector state should have changed");
2358         break;
2359       case AbortablePreclean:
2360         abortable_preclean();
2361         assert(_collectorState == FinalMarking, "Collector state should "
2362           "have changed");
2363         break;
2364       case FinalMarking:
2365         {
2366           ReleaseForegroundGC x(this);
2367 
2368           VM_CMS_Final_Remark final_remark_op(this);
2369           VMThread::execute(&final_remark_op);
2370         }
2371         assert(_foregroundGCShouldWait, "block post-condition");
2372         break;
2373       case Sweeping:
2374         // final marking in checkpointRootsFinal has been completed
2375         sweep(true);
2376         assert(_collectorState == Resizing, "Collector state change "
2377           "to Resizing must be done under the free_list_lock");
2378         _full_gcs_since_conc_gc = 0;
2379 
2380       case Resizing: {
2381         // Sweeping has been completed...
2382         // At this point the background collection has completed.
2383         // Don't move the call to compute_new_size() down
2384         // into code that might be executed if the background
2385         // collection was preempted.
2386         {
2387           ReleaseForegroundGC x(this);   // unblock FG collection
2388           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
2389           CMSTokenSync        z(true);   // not strictly needed.
2390           if (_collectorState == Resizing) {
2391             compute_new_size();
2392             save_heap_summary();
2393             _collectorState = Resetting;
2394           } else {
2395             assert(_collectorState == Idling, "The state should only change"
2396                    " because the foreground collector has finished the collection");
2397           }
2398         }
2399         break;
2400       }
2401       case Resetting:
2402         // CMS heap resizing has been completed
2403         reset(true);
2404         assert(_collectorState == Idling, "Collector state should "
2405           "have changed");
2406 
2407         MetaspaceGC::set_should_concurrent_collect(false);
2408 
2409         stats().record_cms_end();
2410         // Don't move the concurrent_phases_end() and compute_new_size()
2411         // calls to here because a preempted background collection
2412         // has it's state set to "Resetting".
2413         break;
2414       case Idling:
2415       default:
2416         ShouldNotReachHere();
2417         break;
2418     }
2419     if (TraceCMSState) {
2420       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2421         Thread::current(), _collectorState);
2422     }
2423     assert(_foregroundGCShouldWait, "block post-condition");
2424   }
2425 
2426   // Should this be in gc_epilogue?
2427   collector_policy()->counters()->update_counters();
2428 
2429   {
2430     // Clear _foregroundGCShouldWait and, in the event that the
2431     // foreground collector is waiting, notify it, before
2432     // returning.
2433     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2434     _foregroundGCShouldWait = false;
2435     if (_foregroundGCIsActive) {
2436       CGC_lock->notify();
2437     }
2438     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2439            "Possible deadlock");
2440   }
2441   if (TraceCMSState) {
2442     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2443       " exiting collection CMS state %d",
2444       Thread::current(), _collectorState);
2445   }
2446   if (PrintGC && Verbose) {
2447     _cmsGen->print_heap_change(prev_used);
2448   }
2449 }
2450 
2451 void CMSCollector::register_foreground_gc_start(GCCause::Cause cause) {
2452   if (!_cms_start_registered) {
2453     register_gc_start(cause);
2454   }
2455 }
2456 
2457 void CMSCollector::register_gc_start(GCCause::Cause cause) {
2458   _cms_start_registered = true;
2459   _gc_timer_cm->register_gc_start();
2460   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
2461 }
2462 
2463 void CMSCollector::register_gc_end() {
2464   if (_cms_start_registered) {
2465     report_heap_summary(GCWhen::AfterGC);
2466 
2467     _gc_timer_cm->register_gc_end();
2468     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2469     _cms_start_registered = false;
2470   }
2471 }
2472 
2473 void CMSCollector::save_heap_summary() {
2474   GenCollectedHeap* gch = GenCollectedHeap::heap();
2475   _last_heap_summary = gch->create_heap_summary();
2476   _last_metaspace_summary = gch->create_metaspace_summary();
2477 }
2478 
2479 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2480   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
2481   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
2482 }
2483 
2484 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause) {
2485   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
2486          "Foreground collector should be waiting, not executing");
2487   assert(Thread::current()->is_VM_thread(), "A foreground collection"
2488     "may only be done by the VM Thread with the world stopped");
2489   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
2490          "VM thread should have CMS token");
2491 
2492   // The gc id is created in register_foreground_gc_start if this collection is synchronous
2493   const GCId gc_id = _collectorState == InitialMarking ? GCId::peek() : _gc_tracer_cm->gc_id();
2494   NOT_PRODUCT(GCTraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
2495     true, NULL, gc_id);)
2496   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
2497 
2498   HandleMark hm;  // Discard invalid handles created during verification
2499 
2500   if (VerifyBeforeGC &&
2501       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2502     Universe::verify();
2503   }
2504 
2505   // Snapshot the soft reference policy to be used in this collection cycle.
2506   ref_processor()->setup_policy(clear_all_soft_refs);
2507 
2508   // Decide if class unloading should be done
2509   update_should_unload_classes();
2510 
2511   bool init_mark_was_synchronous = false; // until proven otherwise
2512   while (_collectorState != Idling) {
2513     if (TraceCMSState) {
2514       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2515         Thread::current(), _collectorState);
2516     }
2517     switch (_collectorState) {
2518       case InitialMarking:
2519         register_foreground_gc_start(cause);
2520         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
2521         checkpointRootsInitial(false);
2522         assert(_collectorState == Marking, "Collector state should have changed"
2523           " within checkpointRootsInitial()");
2524         break;
2525       case Marking:
2526         // initial marking in checkpointRootsInitialWork has been completed
2527         if (VerifyDuringGC &&
2528             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2529           Universe::verify("Verify before initial mark: ");
2530         }
2531         {
2532           bool res = markFromRoots(false);
2533           assert(res && _collectorState == FinalMarking, "Collector state should "
2534             "have changed");
2535           break;
2536         }
2537       case FinalMarking:
2538         if (VerifyDuringGC &&
2539             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2540           Universe::verify("Verify before re-mark: ");
2541         }
2542         checkpointRootsFinal(false, clear_all_soft_refs,
2543                              init_mark_was_synchronous);
2544         assert(_collectorState == Sweeping, "Collector state should not "
2545           "have changed within checkpointRootsFinal()");
2546         break;
2547       case Sweeping:
2548         // final marking in checkpointRootsFinal has been completed
2549         if (VerifyDuringGC &&
2550             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2551           Universe::verify("Verify before sweep: ");
2552         }
2553         sweep(false);
2554         assert(_collectorState == Resizing, "Incorrect state");
2555         break;
2556       case Resizing: {
2557         // Sweeping has been completed; the actual resize in this case
2558         // is done separately; nothing to be done in this state.
2559         _collectorState = Resetting;
2560         break;
2561       }
2562       case Resetting:
2563         // The heap has been resized.
2564         if (VerifyDuringGC &&
2565             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2566           Universe::verify("Verify before reset: ");
2567         }
2568         save_heap_summary();
2569         reset(false);
2570         assert(_collectorState == Idling, "Collector state should "
2571           "have changed");
2572         break;
2573       case Precleaning:
2574       case AbortablePreclean:
2575         // Elide the preclean phase
2576         _collectorState = FinalMarking;
2577         break;
2578       default:
2579         ShouldNotReachHere();
2580     }
2581     if (TraceCMSState) {
2582       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2583         Thread::current(), _collectorState);
2584     }
2585   }
2586 
2587   if (VerifyAfterGC &&
2588       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2589     Universe::verify();
2590   }
2591   if (TraceCMSState) {
2592     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2593       " exiting collection CMS state %d",
2594       Thread::current(), _collectorState);
2595   }
2596 }
2597 
2598 bool CMSCollector::waitForForegroundGC() {
2599   bool res = false;
2600   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2601          "CMS thread should have CMS token");
2602   // Block the foreground collector until the
2603   // background collectors decides whether to
2604   // yield.
2605   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2606   _foregroundGCShouldWait = true;
2607   if (_foregroundGCIsActive) {
2608     // The background collector yields to the
2609     // foreground collector and returns a value
2610     // indicating that it has yielded.  The foreground
2611     // collector can proceed.
2612     res = true;
2613     _foregroundGCShouldWait = false;
2614     ConcurrentMarkSweepThread::clear_CMS_flag(
2615       ConcurrentMarkSweepThread::CMS_cms_has_token);
2616     ConcurrentMarkSweepThread::set_CMS_flag(
2617       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2618     // Get a possibly blocked foreground thread going
2619     CGC_lock->notify();
2620     if (TraceCMSState) {
2621       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2622         Thread::current(), _collectorState);
2623     }
2624     while (_foregroundGCIsActive) {
2625       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2626     }
2627     ConcurrentMarkSweepThread::set_CMS_flag(
2628       ConcurrentMarkSweepThread::CMS_cms_has_token);
2629     ConcurrentMarkSweepThread::clear_CMS_flag(
2630       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2631   }
2632   if (TraceCMSState) {
2633     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2634       Thread::current(), _collectorState);
2635   }
2636   return res;
2637 }
2638 
2639 // Because of the need to lock the free lists and other structures in
2640 // the collector, common to all the generations that the collector is
2641 // collecting, we need the gc_prologues of individual CMS generations
2642 // delegate to their collector. It may have been simpler had the
2643 // current infrastructure allowed one to call a prologue on a
2644 // collector. In the absence of that we have the generation's
2645 // prologue delegate to the collector, which delegates back
2646 // some "local" work to a worker method in the individual generations
2647 // that it's responsible for collecting, while itself doing any
2648 // work common to all generations it's responsible for. A similar
2649 // comment applies to the  gc_epilogue()'s.
2650 // The role of the variable _between_prologue_and_epilogue is to
2651 // enforce the invocation protocol.
2652 void CMSCollector::gc_prologue(bool full) {
2653   // Call gc_prologue_work() for the CMSGen
2654   // we are responsible for.
2655 
2656   // The following locking discipline assumes that we are only called
2657   // when the world is stopped.
2658   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2659 
2660   // The CMSCollector prologue must call the gc_prologues for the
2661   // "generations" that it's responsible
2662   // for.
2663 
2664   assert(   Thread::current()->is_VM_thread()
2665          || (   CMSScavengeBeforeRemark
2666              && Thread::current()->is_ConcurrentGC_thread()),
2667          "Incorrect thread type for prologue execution");
2668 
2669   if (_between_prologue_and_epilogue) {
2670     // We have already been invoked; this is a gc_prologue delegation
2671     // from yet another CMS generation that we are responsible for, just
2672     // ignore it since all relevant work has already been done.
2673     return;
2674   }
2675 
2676   // set a bit saying prologue has been called; cleared in epilogue
2677   _between_prologue_and_epilogue = true;
2678   // Claim locks for common data structures, then call gc_prologue_work()
2679   // for each CMSGen.
2680 
2681   getFreelistLocks();   // gets free list locks on constituent spaces
2682   bitMapLock()->lock_without_safepoint_check();
2683 
2684   // Should call gc_prologue_work() for all cms gens we are responsible for
2685   bool duringMarking =    _collectorState >= Marking
2686                          && _collectorState < Sweeping;
2687 
2688   // The young collections clear the modified oops state, which tells if
2689   // there are any modified oops in the class. The remark phase also needs
2690   // that information. Tell the young collection to save the union of all
2691   // modified klasses.
2692   if (duringMarking) {
2693     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2694   }
2695 
2696   bool registerClosure = duringMarking;
2697 
2698   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
2699                                                &_modUnionClosurePar
2700                                                : &_modUnionClosure;
2701   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2702 
2703   if (!full) {
2704     stats().record_gc0_begin();
2705   }
2706 }
2707 
2708 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2709 
2710   _capacity_at_prologue = capacity();
2711   _used_at_prologue = used();
2712 
2713   // Delegate to CMScollector which knows how to coordinate between
2714   // this and any other CMS generations that it is responsible for
2715   // collecting.
2716   collector()->gc_prologue(full);
2717 }
2718 
2719 // This is a "private" interface for use by this generation's CMSCollector.
2720 // Not to be called directly by any other entity (for instance,
2721 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2722 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2723   bool registerClosure, ModUnionClosure* modUnionClosure) {
2724   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2725   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2726     "Should be NULL");
2727   if (registerClosure) {
2728     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2729   }
2730   cmsSpace()->gc_prologue();
2731   // Clear stat counters
2732   NOT_PRODUCT(
2733     assert(_numObjectsPromoted == 0, "check");
2734     assert(_numWordsPromoted   == 0, "check");
2735     if (Verbose && PrintGC) {
2736       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2737                           SIZE_FORMAT" bytes concurrently",
2738       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2739     }
2740     _numObjectsAllocated = 0;
2741     _numWordsAllocated   = 0;
2742   )
2743 }
2744 
2745 void CMSCollector::gc_epilogue(bool full) {
2746   // The following locking discipline assumes that we are only called
2747   // when the world is stopped.
2748   assert(SafepointSynchronize::is_at_safepoint(),
2749          "world is stopped assumption");
2750 
2751   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2752   // if linear allocation blocks need to be appropriately marked to allow the
2753   // the blocks to be parsable. We also check here whether we need to nudge the
2754   // CMS collector thread to start a new cycle (if it's not already active).
2755   assert(   Thread::current()->is_VM_thread()
2756          || (   CMSScavengeBeforeRemark
2757              && Thread::current()->is_ConcurrentGC_thread()),
2758          "Incorrect thread type for epilogue execution");
2759 
2760   if (!_between_prologue_and_epilogue) {
2761     // We have already been invoked; this is a gc_epilogue delegation
2762     // from yet another CMS generation that we are responsible for, just
2763     // ignore it since all relevant work has already been done.
2764     return;
2765   }
2766   assert(haveFreelistLocks(), "must have freelist locks");
2767   assert_lock_strong(bitMapLock());
2768 
2769   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2770 
2771   _cmsGen->gc_epilogue_work(full);
2772 
2773   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2774     // in case sampling was not already enabled, enable it
2775     _start_sampling = true;
2776   }
2777   // reset _eden_chunk_array so sampling starts afresh
2778   _eden_chunk_index = 0;
2779 
2780   size_t cms_used   = _cmsGen->cmsSpace()->used();
2781 
2782   // update performance counters - this uses a special version of
2783   // update_counters() that allows the utilization to be passed as a
2784   // parameter, avoiding multiple calls to used().
2785   //
2786   _cmsGen->update_counters(cms_used);
2787 
2788   if (CMSIncrementalMode) {
2789     icms_update_allocation_limits();
2790   }
2791 
2792   bitMapLock()->unlock();
2793   releaseFreelistLocks();
2794 
2795   if (!CleanChunkPoolAsync) {
2796     Chunk::clean_chunk_pool();
2797   }
2798 
2799   set_did_compact(false);
2800   _between_prologue_and_epilogue = false;  // ready for next cycle
2801 }
2802 
2803 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2804   collector()->gc_epilogue(full);
2805 
2806   // Also reset promotion tracking in par gc thread states.
2807   if (CollectedHeap::use_parallel_gc_threads()) {
2808     for (uint i = 0; i < ParallelGCThreads; i++) {
2809       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2810     }
2811   }
2812 }
2813 
2814 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2815   assert(!incremental_collection_failed(), "Should have been cleared");
2816   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2817   cmsSpace()->gc_epilogue();
2818     // Print stat counters
2819   NOT_PRODUCT(
2820     assert(_numObjectsAllocated == 0, "check");
2821     assert(_numWordsAllocated == 0, "check");
2822     if (Verbose && PrintGC) {
2823       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2824                           SIZE_FORMAT" bytes",
2825                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2826     }
2827     _numObjectsPromoted = 0;
2828     _numWordsPromoted   = 0;
2829   )
2830 
2831   if (PrintGC && Verbose) {
2832     // Call down the chain in contiguous_available needs the freelistLock
2833     // so print this out before releasing the freeListLock.
2834     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2835                         contiguous_available());
2836   }
2837 }
2838 
2839 #ifndef PRODUCT
2840 bool CMSCollector::have_cms_token() {
2841   Thread* thr = Thread::current();
2842   if (thr->is_VM_thread()) {
2843     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2844   } else if (thr->is_ConcurrentGC_thread()) {
2845     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2846   } else if (thr->is_GC_task_thread()) {
2847     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2848            ParGCRareEvent_lock->owned_by_self();
2849   }
2850   return false;
2851 }
2852 #endif
2853 
2854 // Check reachability of the given heap address in CMS generation,
2855 // treating all other generations as roots.
2856 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2857   // We could "guarantee" below, rather than assert, but I'll
2858   // leave these as "asserts" so that an adventurous debugger
2859   // could try this in the product build provided some subset of
2860   // the conditions were met, provided they were interested in the
2861   // results and knew that the computation below wouldn't interfere
2862   // with other concurrent computations mutating the structures
2863   // being read or written.
2864   assert(SafepointSynchronize::is_at_safepoint(),
2865          "Else mutations in object graph will make answer suspect");
2866   assert(have_cms_token(), "Should hold cms token");
2867   assert(haveFreelistLocks(), "must hold free list locks");
2868   assert_lock_strong(bitMapLock());
2869 
2870   // Clear the marking bit map array before starting, but, just
2871   // for kicks, first report if the given address is already marked
2872   gclog_or_tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", addr,
2873                 _markBitMap.isMarked(addr) ? "" : " not");
2874 
2875   if (verify_after_remark()) {
2876     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2877     bool result = verification_mark_bm()->isMarked(addr);
2878     gclog_or_tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", addr,
2879                            result ? "IS" : "is NOT");
2880     return result;
2881   } else {
2882     gclog_or_tty->print_cr("Could not compute result");
2883     return false;
2884   }
2885 }
2886 
2887 
2888 void
2889 CMSCollector::print_on_error(outputStream* st) {
2890   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2891   if (collector != NULL) {
2892     CMSBitMap* bitmap = &collector->_markBitMap;
2893     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, bitmap);
2894     bitmap->print_on_error(st, " Bits: ");
2895 
2896     st->cr();
2897 
2898     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2899     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, mut_bitmap);
2900     mut_bitmap->print_on_error(st, " Bits: ");
2901   }
2902 }
2903 
2904 ////////////////////////////////////////////////////////
2905 // CMS Verification Support
2906 ////////////////////////////////////////////////////////
2907 // Following the remark phase, the following invariant
2908 // should hold -- each object in the CMS heap which is
2909 // marked in markBitMap() should be marked in the verification_mark_bm().
2910 
2911 class VerifyMarkedClosure: public BitMapClosure {
2912   CMSBitMap* _marks;
2913   bool       _failed;
2914 
2915  public:
2916   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2917 
2918   bool do_bit(size_t offset) {
2919     HeapWord* addr = _marks->offsetToHeapWord(offset);
2920     if (!_marks->isMarked(addr)) {
2921       oop(addr)->print_on(gclog_or_tty);
2922       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
2923       _failed = true;
2924     }
2925     return true;
2926   }
2927 
2928   bool failed() { return _failed; }
2929 };
2930 
2931 bool CMSCollector::verify_after_remark(bool silent) {
2932   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2933   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2934   static bool init = false;
2935 
2936   assert(SafepointSynchronize::is_at_safepoint(),
2937          "Else mutations in object graph will make answer suspect");
2938   assert(have_cms_token(),
2939          "Else there may be mutual interference in use of "
2940          " verification data structures");
2941   assert(_collectorState > Marking && _collectorState <= Sweeping,
2942          "Else marking info checked here may be obsolete");
2943   assert(haveFreelistLocks(), "must hold free list locks");
2944   assert_lock_strong(bitMapLock());
2945 
2946 
2947   // Allocate marking bit map if not already allocated
2948   if (!init) { // first time
2949     if (!verification_mark_bm()->allocate(_span)) {
2950       return false;
2951     }
2952     init = true;
2953   }
2954 
2955   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2956 
2957   // Turn off refs discovery -- so we will be tracing through refs.
2958   // This is as intended, because by this time
2959   // GC must already have cleared any refs that need to be cleared,
2960   // and traced those that need to be marked; moreover,
2961   // the marking done here is not going to interfere in any
2962   // way with the marking information used by GC.
2963   NoRefDiscovery no_discovery(ref_processor());
2964 
2965   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2966 
2967   // Clear any marks from a previous round
2968   verification_mark_bm()->clear_all();
2969   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2970   verify_work_stacks_empty();
2971 
2972   GenCollectedHeap* gch = GenCollectedHeap::heap();
2973   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2974   // Update the saved marks which may affect the root scans.
2975   gch->save_marks();
2976 
2977   if (CMSRemarkVerifyVariant == 1) {
2978     // In this first variant of verification, we complete
2979     // all marking, then check if the new marks-vector is
2980     // a subset of the CMS marks-vector.
2981     verify_after_remark_work_1();
2982   } else if (CMSRemarkVerifyVariant == 2) {
2983     // In this second variant of verification, we flag an error
2984     // (i.e. an object reachable in the new marks-vector not reachable
2985     // in the CMS marks-vector) immediately, also indicating the
2986     // identify of an object (A) that references the unmarked object (B) --
2987     // presumably, a mutation to A failed to be picked up by preclean/remark?
2988     verify_after_remark_work_2();
2989   } else {
2990     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
2991             CMSRemarkVerifyVariant);
2992   }
2993   if (!silent) gclog_or_tty->print(" done] ");
2994   return true;
2995 }
2996 
2997 void CMSCollector::verify_after_remark_work_1() {
2998   ResourceMark rm;
2999   HandleMark  hm;
3000   GenCollectedHeap* gch = GenCollectedHeap::heap();
3001 
3002   // Get a clear set of claim bits for the roots processing to work with.
3003   ClassLoaderDataGraph::clear_claimed_marks();
3004 
3005   // Mark from roots one level into CMS
3006   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
3007   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3008 
3009   gch->gen_process_roots(_cmsGen->level(),
3010                          true,   // younger gens are roots
3011                          true,   // activate StrongRootsScope
3012                          SharedHeap::ScanningOption(roots_scanning_options()),
3013                          should_unload_classes(),
3014                          &notOlder,
3015                          NULL,
3016                          NULL);  // SSS: Provide correct closure
3017 
3018   // Now mark from the roots
3019   MarkFromRootsClosure markFromRootsClosure(this, _span,
3020     verification_mark_bm(), verification_mark_stack(),
3021     false /* don't yield */, true /* verifying */);
3022   assert(_restart_addr == NULL, "Expected pre-condition");
3023   verification_mark_bm()->iterate(&markFromRootsClosure);
3024   while (_restart_addr != NULL) {
3025     // Deal with stack overflow: by restarting at the indicated
3026     // address.
3027     HeapWord* ra = _restart_addr;
3028     markFromRootsClosure.reset(ra);
3029     _restart_addr = NULL;
3030     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3031   }
3032   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3033   verify_work_stacks_empty();
3034 
3035   // Marking completed -- now verify that each bit marked in
3036   // verification_mark_bm() is also marked in markBitMap(); flag all
3037   // errors by printing corresponding objects.
3038   VerifyMarkedClosure vcl(markBitMap());
3039   verification_mark_bm()->iterate(&vcl);
3040   if (vcl.failed()) {
3041     gclog_or_tty->print("Verification failed");
3042     Universe::heap()->print_on(gclog_or_tty);
3043     fatal("CMS: failed marking verification after remark");
3044   }
3045 }
3046 
3047 class VerifyKlassOopsKlassClosure : public KlassClosure {
3048   class VerifyKlassOopsClosure : public OopClosure {
3049     CMSBitMap* _bitmap;
3050    public:
3051     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
3052     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
3053     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3054   } _oop_closure;
3055  public:
3056   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
3057   void do_klass(Klass* k) {
3058     k->oops_do(&_oop_closure);
3059   }
3060 };
3061 
3062 void CMSCollector::verify_after_remark_work_2() {
3063   ResourceMark rm;
3064   HandleMark  hm;
3065   GenCollectedHeap* gch = GenCollectedHeap::heap();
3066 
3067   // Get a clear set of claim bits for the roots processing to work with.
3068   ClassLoaderDataGraph::clear_claimed_marks();
3069 
3070   // Mark from roots one level into CMS
3071   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
3072                                      markBitMap());
3073   CLDToOopClosure cld_closure(&notOlder, true);
3074 
3075   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3076 
3077   gch->gen_process_roots(_cmsGen->level(),
3078                          true,   // younger gens are roots
3079                          true,   // activate StrongRootsScope
3080                          SharedHeap::ScanningOption(roots_scanning_options()),
3081                          should_unload_classes(),
3082                          &notOlder,
3083                          NULL,
3084                          &cld_closure);
3085 
3086   // Now mark from the roots
3087   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
3088     verification_mark_bm(), markBitMap(), verification_mark_stack());
3089   assert(_restart_addr == NULL, "Expected pre-condition");
3090   verification_mark_bm()->iterate(&markFromRootsClosure);
3091   while (_restart_addr != NULL) {
3092     // Deal with stack overflow: by restarting at the indicated
3093     // address.
3094     HeapWord* ra = _restart_addr;
3095     markFromRootsClosure.reset(ra);
3096     _restart_addr = NULL;
3097     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3098   }
3099   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3100   verify_work_stacks_empty();
3101 
3102   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
3103   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
3104 
3105   // Marking completed -- now verify that each bit marked in
3106   // verification_mark_bm() is also marked in markBitMap(); flag all
3107   // errors by printing corresponding objects.
3108   VerifyMarkedClosure vcl(markBitMap());
3109   verification_mark_bm()->iterate(&vcl);
3110   assert(!vcl.failed(), "Else verification above should not have succeeded");
3111 }
3112 
3113 void ConcurrentMarkSweepGeneration::save_marks() {
3114   // delegate to CMS space
3115   cmsSpace()->save_marks();
3116   for (uint i = 0; i < ParallelGCThreads; i++) {
3117     _par_gc_thread_states[i]->promo.startTrackingPromotions();
3118   }
3119 }
3120 
3121 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
3122   return cmsSpace()->no_allocs_since_save_marks();
3123 }
3124 
3125 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
3126                                                                 \
3127 void ConcurrentMarkSweepGeneration::                            \
3128 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
3129   cl->set_generation(this);                                     \
3130   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
3131   cl->reset_generation();                                       \
3132   save_marks();                                                 \
3133 }
3134 
3135 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
3136 
3137 void
3138 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
3139   cl->set_generation(this);
3140   younger_refs_in_space_iterate(_cmsSpace, cl);
3141   cl->reset_generation();
3142 }
3143 
3144 void
3145 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
3146   if (freelistLock()->owned_by_self()) {
3147     Generation::oop_iterate(cl);
3148   } else {
3149     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3150     Generation::oop_iterate(cl);
3151   }
3152 }
3153 
3154 void
3155 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
3156   if (freelistLock()->owned_by_self()) {
3157     Generation::object_iterate(cl);
3158   } else {
3159     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3160     Generation::object_iterate(cl);
3161   }
3162 }
3163 
3164 void
3165 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
3166   if (freelistLock()->owned_by_self()) {
3167     Generation::safe_object_iterate(cl);
3168   } else {
3169     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3170     Generation::safe_object_iterate(cl);
3171   }
3172 }
3173 
3174 void
3175 ConcurrentMarkSweepGeneration::post_compact() {
3176 }
3177 
3178 void
3179 ConcurrentMarkSweepGeneration::prepare_for_verify() {
3180   // Fix the linear allocation blocks to look like free blocks.
3181 
3182   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3183   // are not called when the heap is verified during universe initialization and
3184   // at vm shutdown.
3185   if (freelistLock()->owned_by_self()) {
3186     cmsSpace()->prepare_for_verify();
3187   } else {
3188     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3189     cmsSpace()->prepare_for_verify();
3190   }
3191 }
3192 
3193 void
3194 ConcurrentMarkSweepGeneration::verify() {
3195   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3196   // are not called when the heap is verified during universe initialization and
3197   // at vm shutdown.
3198   if (freelistLock()->owned_by_self()) {
3199     cmsSpace()->verify();
3200   } else {
3201     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3202     cmsSpace()->verify();
3203   }
3204 }
3205 
3206 void CMSCollector::verify() {
3207   _cmsGen->verify();
3208 }
3209 
3210 #ifndef PRODUCT
3211 bool CMSCollector::overflow_list_is_empty() const {
3212   assert(_num_par_pushes >= 0, "Inconsistency");
3213   if (_overflow_list == NULL) {
3214     assert(_num_par_pushes == 0, "Inconsistency");
3215   }
3216   return _overflow_list == NULL;
3217 }
3218 
3219 // The methods verify_work_stacks_empty() and verify_overflow_empty()
3220 // merely consolidate assertion checks that appear to occur together frequently.
3221 void CMSCollector::verify_work_stacks_empty() const {
3222   assert(_markStack.isEmpty(), "Marking stack should be empty");
3223   assert(overflow_list_is_empty(), "Overflow list should be empty");
3224 }
3225 
3226 void CMSCollector::verify_overflow_empty() const {
3227   assert(overflow_list_is_empty(), "Overflow list should be empty");
3228   assert(no_preserved_marks(), "No preserved marks");
3229 }
3230 #endif // PRODUCT
3231 
3232 // Decide if we want to enable class unloading as part of the
3233 // ensuing concurrent GC cycle. We will collect and
3234 // unload classes if it's the case that:
3235 // (1) an explicit gc request has been made and the flag
3236 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
3237 // (2) (a) class unloading is enabled at the command line, and
3238 //     (b) old gen is getting really full
3239 // NOTE: Provided there is no change in the state of the heap between
3240 // calls to this method, it should have idempotent results. Moreover,
3241 // its results should be monotonically increasing (i.e. going from 0 to 1,
3242 // but not 1 to 0) between successive calls between which the heap was
3243 // not collected. For the implementation below, it must thus rely on
3244 // the property that concurrent_cycles_since_last_unload()
3245 // will not decrease unless a collection cycle happened and that
3246 // _cmsGen->is_too_full() are
3247 // themselves also monotonic in that sense. See check_monotonicity()
3248 // below.
3249 void CMSCollector::update_should_unload_classes() {
3250   _should_unload_classes = false;
3251   // Condition 1 above
3252   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
3253     _should_unload_classes = true;
3254   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
3255     // Disjuncts 2.b.(i,ii,iii) above
3256     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
3257                               CMSClassUnloadingMaxInterval)
3258                            || _cmsGen->is_too_full();
3259   }
3260 }
3261 
3262 bool ConcurrentMarkSweepGeneration::is_too_full() const {
3263   bool res = should_concurrent_collect();
3264   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
3265   return res;
3266 }
3267 
3268 void CMSCollector::setup_cms_unloading_and_verification_state() {
3269   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
3270                              || VerifyBeforeExit;
3271   const  int  rso           =   SharedHeap::SO_AllCodeCache;
3272 
3273   // We set the proper root for this CMS cycle here.
3274   if (should_unload_classes()) {   // Should unload classes this cycle
3275     remove_root_scanning_option(rso);  // Shrink the root set appropriately
3276     set_verifying(should_verify);    // Set verification state for this cycle
3277     return;                            // Nothing else needs to be done at this time
3278   }
3279 
3280   // Not unloading classes this cycle
3281   assert(!should_unload_classes(), "Inconsistency!");
3282 
3283   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
3284     // Include symbols, strings and code cache elements to prevent their resurrection.
3285     add_root_scanning_option(rso);
3286     set_verifying(true);
3287   } else if (verifying() && !should_verify) {
3288     // We were verifying, but some verification flags got disabled.
3289     set_verifying(false);
3290     // Exclude symbols, strings and code cache elements from root scanning to
3291     // reduce IM and RM pauses.
3292     remove_root_scanning_option(rso);
3293   }
3294 }
3295 
3296 
3297 #ifndef PRODUCT
3298 HeapWord* CMSCollector::block_start(const void* p) const {
3299   const HeapWord* addr = (HeapWord*)p;
3300   if (_span.contains(p)) {
3301     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
3302       return _cmsGen->cmsSpace()->block_start(p);
3303     }
3304   }
3305   return NULL;
3306 }
3307 #endif
3308 
3309 HeapWord*
3310 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
3311                                                    bool   tlab,
3312                                                    bool   parallel) {
3313   CMSSynchronousYieldRequest yr;
3314   assert(!tlab, "Can't deal with TLAB allocation");
3315   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3316   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
3317     CMSExpansionCause::_satisfy_allocation);
3318   if (GCExpandToAllocateDelayMillis > 0) {
3319     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3320   }
3321   return have_lock_and_allocate(word_size, tlab);
3322 }
3323 
3324 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
3325 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
3326 // to CardGeneration and share it...
3327 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
3328   return CardGeneration::expand(bytes, expand_bytes);
3329 }
3330 
3331 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
3332   CMSExpansionCause::Cause cause)
3333 {
3334 
3335   bool success = expand(bytes, expand_bytes);
3336 
3337   // remember why we expanded; this information is used
3338   // by shouldConcurrentCollect() when making decisions on whether to start
3339   // a new CMS cycle.
3340   if (success) {
3341     set_expansion_cause(cause);
3342     if (PrintGCDetails && Verbose) {
3343       gclog_or_tty->print_cr("Expanded CMS gen for %s",
3344         CMSExpansionCause::to_string(cause));
3345     }
3346   }
3347 }
3348 
3349 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
3350   HeapWord* res = NULL;
3351   MutexLocker x(ParGCRareEvent_lock);
3352   while (true) {
3353     // Expansion by some other thread might make alloc OK now:
3354     res = ps->lab.alloc(word_sz);
3355     if (res != NULL) return res;
3356     // If there's not enough expansion space available, give up.
3357     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
3358       return NULL;
3359     }
3360     // Otherwise, we try expansion.
3361     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
3362       CMSExpansionCause::_allocate_par_lab);
3363     // Now go around the loop and try alloc again;
3364     // A competing par_promote might beat us to the expansion space,
3365     // so we may go around the loop again if promotion fails again.
3366     if (GCExpandToAllocateDelayMillis > 0) {
3367       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3368     }
3369   }
3370 }
3371 
3372 
3373 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
3374   PromotionInfo* promo) {
3375   MutexLocker x(ParGCRareEvent_lock);
3376   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
3377   while (true) {
3378     // Expansion by some other thread might make alloc OK now:
3379     if (promo->ensure_spooling_space()) {
3380       assert(promo->has_spooling_space(),
3381              "Post-condition of successful ensure_spooling_space()");
3382       return true;
3383     }
3384     // If there's not enough expansion space available, give up.
3385     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
3386       return false;
3387     }
3388     // Otherwise, we try expansion.
3389     expand(refill_size_bytes, MinHeapDeltaBytes,
3390       CMSExpansionCause::_allocate_par_spooling_space);
3391     // Now go around the loop and try alloc again;
3392     // A competing allocation might beat us to the expansion space,
3393     // so we may go around the loop again if allocation fails again.
3394     if (GCExpandToAllocateDelayMillis > 0) {
3395       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3396     }
3397   }
3398 }
3399 
3400 
3401 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
3402   assert_locked_or_safepoint(ExpandHeap_lock);
3403   // Shrink committed space
3404   _virtual_space.shrink_by(bytes);
3405   // Shrink space; this also shrinks the space's BOT
3406   _cmsSpace->set_end((HeapWord*) _virtual_space.high());
3407   size_t new_word_size = heap_word_size(_cmsSpace->capacity());
3408   // Shrink the shared block offset array
3409   _bts->resize(new_word_size);
3410   MemRegion mr(_cmsSpace->bottom(), new_word_size);
3411   // Shrink the card table
3412   Universe::heap()->barrier_set()->resize_covered_region(mr);
3413 
3414   if (Verbose && PrintGC) {
3415     size_t new_mem_size = _virtual_space.committed_size();
3416     size_t old_mem_size = new_mem_size + bytes;
3417     gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3418                   name(), old_mem_size/K, new_mem_size/K);
3419   }
3420 }
3421 
3422 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
3423   assert_locked_or_safepoint(Heap_lock);
3424   size_t size = ReservedSpace::page_align_size_down(bytes);
3425   // Only shrink if a compaction was done so that all the free space
3426   // in the generation is in a contiguous block at the end.
3427   if (size > 0 && did_compact()) {
3428     shrink_by(size);
3429   }
3430 }
3431 
3432 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
3433   assert_locked_or_safepoint(Heap_lock);
3434   bool result = _virtual_space.expand_by(bytes);
3435   if (result) {
3436     size_t new_word_size =
3437       heap_word_size(_virtual_space.committed_size());
3438     MemRegion mr(_cmsSpace->bottom(), new_word_size);
3439     _bts->resize(new_word_size);  // resize the block offset shared array
3440     Universe::heap()->barrier_set()->resize_covered_region(mr);
3441     // Hmmmm... why doesn't CFLS::set_end verify locking?
3442     // This is quite ugly; FIX ME XXX
3443     _cmsSpace->assert_locked(freelistLock());
3444     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
3445 
3446     // update the space and generation capacity counters
3447     if (UsePerfData) {
3448       _space_counters->update_capacity();
3449       _gen_counters->update_all();
3450     }
3451 
3452     if (Verbose && PrintGC) {
3453       size_t new_mem_size = _virtual_space.committed_size();
3454       size_t old_mem_size = new_mem_size - bytes;
3455       gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3456                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
3457     }
3458   }
3459   return result;
3460 }
3461 
3462 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
3463   assert_locked_or_safepoint(Heap_lock);
3464   bool success = true;
3465   const size_t remaining_bytes = _virtual_space.uncommitted_size();
3466   if (remaining_bytes > 0) {
3467     success = grow_by(remaining_bytes);
3468     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
3469   }
3470   return success;
3471 }
3472 
3473 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
3474   assert_locked_or_safepoint(Heap_lock);
3475   assert_lock_strong(freelistLock());
3476   if (PrintGCDetails && Verbose) {
3477     warning("Shrinking of CMS not yet implemented");
3478   }
3479   return;
3480 }
3481 
3482 
3483 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
3484 // phases.
3485 class CMSPhaseAccounting: public StackObj {
3486  public:
3487   CMSPhaseAccounting(CMSCollector *collector,
3488                      const char *phase,
3489                      const GCId gc_id,
3490                      bool print_cr = true);
3491   ~CMSPhaseAccounting();
3492 
3493  private:
3494   CMSCollector *_collector;
3495   const char *_phase;
3496   elapsedTimer _wallclock;
3497   bool _print_cr;
3498   const GCId _gc_id;
3499 
3500  public:
3501   // Not MT-safe; so do not pass around these StackObj's
3502   // where they may be accessed by other threads.
3503   jlong wallclock_millis() {
3504     assert(_wallclock.is_active(), "Wall clock should not stop");
3505     _wallclock.stop();  // to record time
3506     jlong ret = _wallclock.milliseconds();
3507     _wallclock.start(); // restart
3508     return ret;
3509   }
3510 };
3511 
3512 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
3513                                        const char *phase,
3514                                        const GCId gc_id,
3515                                        bool print_cr) :
3516   _collector(collector), _phase(phase), _print_cr(print_cr), _gc_id(gc_id) {
3517 
3518   if (PrintCMSStatistics != 0) {
3519     _collector->resetYields();
3520   }
3521   if (PrintGCDetails) {
3522     gclog_or_tty->gclog_stamp(_gc_id);
3523     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
3524       _collector->cmsGen()->short_name(), _phase);
3525   }
3526   _collector->resetTimer();
3527   _wallclock.start();
3528   _collector->startTimer();
3529 }
3530 
3531 CMSPhaseAccounting::~CMSPhaseAccounting() {
3532   assert(_wallclock.is_active(), "Wall clock should not have stopped");
3533   _collector->stopTimer();
3534   _wallclock.stop();
3535   if (PrintGCDetails) {
3536     gclog_or_tty->gclog_stamp(_gc_id);
3537     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
3538                  _collector->cmsGen()->short_name(),
3539                  _phase, _collector->timerValue(), _wallclock.seconds());
3540     if (_print_cr) {
3541       gclog_or_tty->cr();
3542     }
3543     if (PrintCMSStatistics != 0) {
3544       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
3545                     _collector->yields());
3546     }
3547   }
3548 }
3549 
3550 // CMS work
3551 
3552 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
3553 class CMSParMarkTask : public AbstractGangTask {
3554  protected:
3555   CMSCollector*     _collector;
3556   int               _n_workers;
3557   CMSParMarkTask(const char* name, CMSCollector* collector, int n_workers) :
3558       AbstractGangTask(name),
3559       _collector(collector),
3560       _n_workers(n_workers) {}
3561   // Work method in support of parallel rescan ... of young gen spaces
3562   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
3563                              ContiguousSpace* space,
3564                              HeapWord** chunk_array, size_t chunk_top);
3565   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
3566 };
3567 
3568 // Parallel initial mark task
3569 class CMSParInitialMarkTask: public CMSParMarkTask {
3570  public:
3571   CMSParInitialMarkTask(CMSCollector* collector, int n_workers) :
3572       CMSParMarkTask("Scan roots and young gen for initial mark in parallel",
3573                      collector, n_workers) {}
3574   void work(uint worker_id);
3575 };
3576 
3577 // Checkpoint the roots into this generation from outside
3578 // this generation. [Note this initial checkpoint need only
3579 // be approximate -- we'll do a catch up phase subsequently.]
3580 void CMSCollector::checkpointRootsInitial(bool asynch) {
3581   assert(_collectorState == InitialMarking, "Wrong collector state");
3582   check_correct_thread_executing();
3583   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
3584 
3585   save_heap_summary();
3586   report_heap_summary(GCWhen::BeforeGC);
3587 
3588   ReferenceProcessor* rp = ref_processor();
3589   SpecializationStats::clear();
3590   assert(_restart_addr == NULL, "Control point invariant");
3591   if (asynch) {
3592     // acquire locks for subsequent manipulations
3593     MutexLockerEx x(bitMapLock(),
3594                     Mutex::_no_safepoint_check_flag);
3595     checkpointRootsInitialWork(asynch);
3596     // enable ("weak") refs discovery
3597     rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/);
3598     _collectorState = Marking;
3599   } else {
3600     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
3601     // which recognizes if we are a CMS generation, and doesn't try to turn on
3602     // discovery; verify that they aren't meddling.
3603     assert(!rp->discovery_is_atomic(),
3604            "incorrect setting of discovery predicate");
3605     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
3606            "ref discovery for this generation kind");
3607     // already have locks
3608     checkpointRootsInitialWork(asynch);
3609     // now enable ("weak") refs discovery
3610     rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/);
3611     _collectorState = Marking;
3612   }
3613   SpecializationStats::print();
3614 }
3615 
3616 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
3617   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
3618   assert(_collectorState == InitialMarking, "just checking");
3619 
3620   // If there has not been a GC[n-1] since last GC[n] cycle completed,
3621   // precede our marking with a collection of all
3622   // younger generations to keep floating garbage to a minimum.
3623   // XXX: we won't do this for now -- it's an optimization to be done later.
3624 
3625   // already have locks
3626   assert_lock_strong(bitMapLock());
3627   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
3628 
3629   // Setup the verification and class unloading state for this
3630   // CMS collection cycle.
3631   setup_cms_unloading_and_verification_state();
3632 
3633   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
3634     PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
3635 
3636   // Reset all the PLAB chunk arrays if necessary.
3637   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
3638     reset_survivor_plab_arrays();
3639   }
3640 
3641   ResourceMark rm;
3642   HandleMark  hm;
3643 
3644   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
3645   GenCollectedHeap* gch = GenCollectedHeap::heap();
3646 
3647   verify_work_stacks_empty();
3648   verify_overflow_empty();
3649 
3650   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3651   // Update the saved marks which may affect the root scans.
3652   gch->save_marks();
3653 
3654   // weak reference processing has not started yet.
3655   ref_processor()->set_enqueuing_is_done(false);
3656 
3657   // Need to remember all newly created CLDs,
3658   // so that we can guarantee that the remark finds them.
3659   ClassLoaderDataGraph::remember_new_clds(true);
3660 
3661   // Whenever a CLD is found, it will be claimed before proceeding to mark
3662   // the klasses. The claimed marks need to be cleared before marking starts.
3663   ClassLoaderDataGraph::clear_claimed_marks();
3664 
3665   if (CMSPrintEdenSurvivorChunks) {
3666     print_eden_and_survivor_chunk_arrays();
3667   }
3668 
3669   {
3670     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3671     if (CMSParallelInitialMarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
3672       // The parallel version.
3673       FlexibleWorkGang* workers = gch->workers();
3674       assert(workers != NULL, "Need parallel worker threads.");
3675       int n_workers = workers->active_workers();
3676       CMSParInitialMarkTask tsk(this, n_workers);
3677       gch->set_par_threads(n_workers);
3678       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3679       if (n_workers > 1) {
3680         GenCollectedHeap::StrongRootsScope srs(gch);
3681         workers->run_task(&tsk);
3682       } else {
3683         GenCollectedHeap::StrongRootsScope srs(gch);
3684         tsk.work(0);
3685       }
3686       gch->set_par_threads(0);
3687     } else {
3688       // The serial version.
3689       CLDToOopClosure cld_closure(&notOlder, true);
3690       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3691       gch->gen_process_roots(_cmsGen->level(),
3692                              true,   // younger gens are roots
3693                              true,   // activate StrongRootsScope
3694                              SharedHeap::ScanningOption(roots_scanning_options()),
3695                              should_unload_classes(),
3696                              &notOlder,
3697                              NULL,
3698                              &cld_closure);
3699     }
3700   }
3701 
3702   // Clear mod-union table; it will be dirtied in the prologue of
3703   // CMS generation per each younger generation collection.
3704 
3705   assert(_modUnionTable.isAllClear(),
3706        "Was cleared in most recent final checkpoint phase"
3707        " or no bits are set in the gc_prologue before the start of the next "
3708        "subsequent marking phase.");
3709 
3710   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3711 
3712   // Save the end of the used_region of the constituent generations
3713   // to be used to limit the extent of sweep in each generation.
3714   save_sweep_limits();
3715   verify_overflow_empty();
3716 }
3717 
3718 bool CMSCollector::markFromRoots(bool asynch) {
3719   // we might be tempted to assert that:
3720   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
3721   //        "inconsistent argument?");
3722   // However that wouldn't be right, because it's possible that
3723   // a safepoint is indeed in progress as a younger generation
3724   // stop-the-world GC happens even as we mark in this generation.
3725   assert(_collectorState == Marking, "inconsistent state?");
3726   check_correct_thread_executing();
3727   verify_overflow_empty();
3728 
3729   bool res;
3730   if (asynch) {
3731     // Weak ref discovery note: We may be discovering weak
3732     // refs in this generation concurrent (but interleaved) with
3733     // weak ref discovery by a younger generation collector.
3734 
3735     CMSTokenSyncWithLocks ts(true, bitMapLock());
3736     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3737     CMSPhaseAccounting pa(this, "mark", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3738     res = markFromRootsWork(asynch);
3739     if (res) {
3740       _collectorState = Precleaning;
3741     } else { // We failed and a foreground collection wants to take over
3742       assert(_foregroundGCIsActive, "internal state inconsistency");
3743       assert(_restart_addr == NULL,  "foreground will restart from scratch");
3744       if (PrintGCDetails) {
3745         gclog_or_tty->print_cr("bailing out to foreground collection");
3746       }
3747     }
3748   } else {
3749     assert(SafepointSynchronize::is_at_safepoint(),
3750            "inconsistent with asynch == false");
3751     // already have locks
3752     res = markFromRootsWork(asynch);
3753     _collectorState = FinalMarking;
3754   }
3755   verify_overflow_empty();
3756   return res;
3757 }
3758 
3759 bool CMSCollector::markFromRootsWork(bool asynch) {
3760   // iterate over marked bits in bit map, doing a full scan and mark
3761   // from these roots using the following algorithm:
3762   // . if oop is to the right of the current scan pointer,
3763   //   mark corresponding bit (we'll process it later)
3764   // . else (oop is to left of current scan pointer)
3765   //   push oop on marking stack
3766   // . drain the marking stack
3767 
3768   // Note that when we do a marking step we need to hold the
3769   // bit map lock -- recall that direct allocation (by mutators)
3770   // and promotion (by younger generation collectors) is also
3771   // marking the bit map. [the so-called allocate live policy.]
3772   // Because the implementation of bit map marking is not
3773   // robust wrt simultaneous marking of bits in the same word,
3774   // we need to make sure that there is no such interference
3775   // between concurrent such updates.
3776 
3777   // already have locks
3778   assert_lock_strong(bitMapLock());
3779 
3780   verify_work_stacks_empty();
3781   verify_overflow_empty();
3782   bool result = false;
3783   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3784     result = do_marking_mt(asynch);
3785   } else {
3786     result = do_marking_st(asynch);
3787   }
3788   return result;
3789 }
3790 
3791 // Forward decl
3792 class CMSConcMarkingTask;
3793 
3794 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3795   CMSCollector*       _collector;
3796   CMSConcMarkingTask* _task;
3797  public:
3798   virtual void yield();
3799 
3800   // "n_threads" is the number of threads to be terminated.
3801   // "queue_set" is a set of work queues of other threads.
3802   // "collector" is the CMS collector associated with this task terminator.
3803   // "yield" indicates whether we need the gang as a whole to yield.
3804   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3805     ParallelTaskTerminator(n_threads, queue_set),
3806     _collector(collector) { }
3807 
3808   void set_task(CMSConcMarkingTask* task) {
3809     _task = task;
3810   }
3811 };
3812 
3813 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3814   CMSConcMarkingTask* _task;
3815  public:
3816   bool should_exit_termination();
3817   void set_task(CMSConcMarkingTask* task) {
3818     _task = task;
3819   }
3820 };
3821 
3822 // MT Concurrent Marking Task
3823 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3824   CMSCollector* _collector;
3825   int           _n_workers;                  // requested/desired # workers
3826   bool          _asynch;
3827   bool          _result;
3828   CompactibleFreeListSpace*  _cms_space;
3829   char          _pad_front[64];   // padding to ...
3830   HeapWord*     _global_finger;   // ... avoid sharing cache line
3831   char          _pad_back[64];
3832   HeapWord*     _restart_addr;
3833 
3834   //  Exposed here for yielding support
3835   Mutex* const _bit_map_lock;
3836 
3837   // The per thread work queues, available here for stealing
3838   OopTaskQueueSet*  _task_queues;
3839 
3840   // Termination (and yielding) support
3841   CMSConcMarkingTerminator _term;
3842   CMSConcMarkingTerminatorTerminator _term_term;
3843 
3844  public:
3845   CMSConcMarkingTask(CMSCollector* collector,
3846                  CompactibleFreeListSpace* cms_space,
3847                  bool asynch,
3848                  YieldingFlexibleWorkGang* workers,
3849                  OopTaskQueueSet* task_queues):
3850     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3851     _collector(collector),
3852     _cms_space(cms_space),
3853     _asynch(asynch), _n_workers(0), _result(true),
3854     _task_queues(task_queues),
3855     _term(_n_workers, task_queues, _collector),
3856     _bit_map_lock(collector->bitMapLock())
3857   {
3858     _requested_size = _n_workers;
3859     _term.set_task(this);
3860     _term_term.set_task(this);
3861     _restart_addr = _global_finger = _cms_space->bottom();
3862   }
3863 
3864 
3865   OopTaskQueueSet* task_queues()  { return _task_queues; }
3866 
3867   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3868 
3869   HeapWord** global_finger_addr() { return &_global_finger; }
3870 
3871   CMSConcMarkingTerminator* terminator() { return &_term; }
3872 
3873   virtual void set_for_termination(int active_workers) {
3874     terminator()->reset_for_reuse(active_workers);
3875   }
3876 
3877   void work(uint worker_id);
3878   bool should_yield() {
3879     return    ConcurrentMarkSweepThread::should_yield()
3880            && !_collector->foregroundGCIsActive()
3881            && _asynch;
3882   }
3883 
3884   virtual void coordinator_yield();  // stuff done by coordinator
3885   bool result() { return _result; }
3886 
3887   void reset(HeapWord* ra) {
3888     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3889     _restart_addr = _global_finger = ra;
3890     _term.reset_for_reuse();
3891   }
3892 
3893   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3894                                            OopTaskQueue* work_q);
3895 
3896  private:
3897   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3898   void do_work_steal(int i);
3899   void bump_global_finger(HeapWord* f);
3900 };
3901 
3902 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3903   assert(_task != NULL, "Error");
3904   return _task->yielding();
3905   // Note that we do not need the disjunct || _task->should_yield() above
3906   // because we want terminating threads to yield only if the task
3907   // is already in the midst of yielding, which happens only after at least one
3908   // thread has yielded.
3909 }
3910 
3911 void CMSConcMarkingTerminator::yield() {
3912   if (_task->should_yield()) {
3913     _task->yield();
3914   } else {
3915     ParallelTaskTerminator::yield();
3916   }
3917 }
3918 
3919 ////////////////////////////////////////////////////////////////
3920 // Concurrent Marking Algorithm Sketch
3921 ////////////////////////////////////////////////////////////////
3922 // Until all tasks exhausted (both spaces):
3923 // -- claim next available chunk
3924 // -- bump global finger via CAS
3925 // -- find first object that starts in this chunk
3926 //    and start scanning bitmap from that position
3927 // -- scan marked objects for oops
3928 // -- CAS-mark target, and if successful:
3929 //    . if target oop is above global finger (volatile read)
3930 //      nothing to do
3931 //    . if target oop is in chunk and above local finger
3932 //        then nothing to do
3933 //    . else push on work-queue
3934 // -- Deal with possible overflow issues:
3935 //    . local work-queue overflow causes stuff to be pushed on
3936 //      global (common) overflow queue
3937 //    . always first empty local work queue
3938 //    . then get a batch of oops from global work queue if any
3939 //    . then do work stealing
3940 // -- When all tasks claimed (both spaces)
3941 //    and local work queue empty,
3942 //    then in a loop do:
3943 //    . check global overflow stack; steal a batch of oops and trace
3944 //    . try to steal from other threads oif GOS is empty
3945 //    . if neither is available, offer termination
3946 // -- Terminate and return result
3947 //
3948 void CMSConcMarkingTask::work(uint worker_id) {
3949   elapsedTimer _timer;
3950   ResourceMark rm;
3951   HandleMark hm;
3952 
3953   DEBUG_ONLY(_collector->verify_overflow_empty();)
3954 
3955   // Before we begin work, our work queue should be empty
3956   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3957   // Scan the bitmap covering _cms_space, tracing through grey objects.
3958   _timer.start();
3959   do_scan_and_mark(worker_id, _cms_space);
3960   _timer.stop();
3961   if (PrintCMSStatistics != 0) {
3962     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3963       worker_id, _timer.seconds());
3964       // XXX: need xxx/xxx type of notation, two timers
3965   }
3966 
3967   // ... do work stealing
3968   _timer.reset();
3969   _timer.start();
3970   do_work_steal(worker_id);
3971   _timer.stop();
3972   if (PrintCMSStatistics != 0) {
3973     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3974       worker_id, _timer.seconds());
3975       // XXX: need xxx/xxx type of notation, two timers
3976   }
3977   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3978   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3979   // Note that under the current task protocol, the
3980   // following assertion is true even of the spaces
3981   // expanded since the completion of the concurrent
3982   // marking. XXX This will likely change under a strict
3983   // ABORT semantics.
3984   // After perm removal the comparison was changed to
3985   // greater than or equal to from strictly greater than.
3986   // Before perm removal the highest address sweep would
3987   // have been at the end of perm gen but now is at the
3988   // end of the tenured gen.
3989   assert(_global_finger >=  _cms_space->end(),
3990          "All tasks have been completed");
3991   DEBUG_ONLY(_collector->verify_overflow_empty();)
3992 }
3993 
3994 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3995   HeapWord* read = _global_finger;
3996   HeapWord* cur  = read;
3997   while (f > read) {
3998     cur = read;
3999     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
4000     if (cur == read) {
4001       // our cas succeeded
4002       assert(_global_finger >= f, "protocol consistency");
4003       break;
4004     }
4005   }
4006 }
4007 
4008 // This is really inefficient, and should be redone by
4009 // using (not yet available) block-read and -write interfaces to the
4010 // stack and the work_queue. XXX FIX ME !!!
4011 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
4012                                                       OopTaskQueue* work_q) {
4013   // Fast lock-free check
4014   if (ovflw_stk->length() == 0) {
4015     return false;
4016   }
4017   assert(work_q->size() == 0, "Shouldn't steal");
4018   MutexLockerEx ml(ovflw_stk->par_lock(),
4019                    Mutex::_no_safepoint_check_flag);
4020   // Grab up to 1/4 the size of the work queue
4021   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4022                     (size_t)ParGCDesiredObjsFromOverflowList);
4023   num = MIN2(num, ovflw_stk->length());
4024   for (int i = (int) num; i > 0; i--) {
4025     oop cur = ovflw_stk->pop();
4026     assert(cur != NULL, "Counted wrong?");
4027     work_q->push(cur);
4028   }
4029   return num > 0;
4030 }
4031 
4032 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
4033   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4034   int n_tasks = pst->n_tasks();
4035   // We allow that there may be no tasks to do here because
4036   // we are restarting after a stack overflow.
4037   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
4038   uint nth_task = 0;
4039 
4040   HeapWord* aligned_start = sp->bottom();
4041   if (sp->used_region().contains(_restart_addr)) {
4042     // Align down to a card boundary for the start of 0th task
4043     // for this space.
4044     aligned_start =
4045       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
4046                                  CardTableModRefBS::card_size);
4047   }
4048 
4049   size_t chunk_size = sp->marking_task_size();
4050   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4051     // Having claimed the nth task in this space,
4052     // compute the chunk that it corresponds to:
4053     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
4054                                aligned_start + (nth_task+1)*chunk_size);
4055     // Try and bump the global finger via a CAS;
4056     // note that we need to do the global finger bump
4057     // _before_ taking the intersection below, because
4058     // the task corresponding to that region will be
4059     // deemed done even if the used_region() expands
4060     // because of allocation -- as it almost certainly will
4061     // during start-up while the threads yield in the
4062     // closure below.
4063     HeapWord* finger = span.end();
4064     bump_global_finger(finger);   // atomically
4065     // There are null tasks here corresponding to chunks
4066     // beyond the "top" address of the space.
4067     span = span.intersection(sp->used_region());
4068     if (!span.is_empty()) {  // Non-null task
4069       HeapWord* prev_obj;
4070       assert(!span.contains(_restart_addr) || nth_task == 0,
4071              "Inconsistency");
4072       if (nth_task == 0) {
4073         // For the 0th task, we'll not need to compute a block_start.
4074         if (span.contains(_restart_addr)) {
4075           // In the case of a restart because of stack overflow,
4076           // we might additionally skip a chunk prefix.
4077           prev_obj = _restart_addr;
4078         } else {
4079           prev_obj = span.start();
4080         }
4081       } else {
4082         // We want to skip the first object because
4083         // the protocol is to scan any object in its entirety
4084         // that _starts_ in this span; a fortiori, any
4085         // object starting in an earlier span is scanned
4086         // as part of an earlier claimed task.
4087         // Below we use the "careful" version of block_start
4088         // so we do not try to navigate uninitialized objects.
4089         prev_obj = sp->block_start_careful(span.start());
4090         // Below we use a variant of block_size that uses the
4091         // Printezis bits to avoid waiting for allocated
4092         // objects to become initialized/parsable.
4093         while (prev_obj < span.start()) {
4094           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
4095           if (sz > 0) {
4096             prev_obj += sz;
4097           } else {
4098             // In this case we may end up doing a bit of redundant
4099             // scanning, but that appears unavoidable, short of
4100             // locking the free list locks; see bug 6324141.
4101             break;
4102           }
4103         }
4104       }
4105       if (prev_obj < span.end()) {
4106         MemRegion my_span = MemRegion(prev_obj, span.end());
4107         // Do the marking work within a non-empty span --
4108         // the last argument to the constructor indicates whether the
4109         // iteration should be incremental with periodic yields.
4110         Par_MarkFromRootsClosure cl(this, _collector, my_span,
4111                                     &_collector->_markBitMap,
4112                                     work_queue(i),
4113                                     &_collector->_markStack,
4114                                     _asynch);
4115         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
4116       } // else nothing to do for this task
4117     }   // else nothing to do for this task
4118   }
4119   // We'd be tempted to assert here that since there are no
4120   // more tasks left to claim in this space, the global_finger
4121   // must exceed space->top() and a fortiori space->end(). However,
4122   // that would not quite be correct because the bumping of
4123   // global_finger occurs strictly after the claiming of a task,
4124   // so by the time we reach here the global finger may not yet
4125   // have been bumped up by the thread that claimed the last
4126   // task.
4127   pst->all_tasks_completed();
4128 }
4129 
4130 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
4131  private:
4132   CMSCollector* _collector;
4133   CMSConcMarkingTask* _task;
4134   MemRegion     _span;
4135   CMSBitMap*    _bit_map;
4136   CMSMarkStack* _overflow_stack;
4137   OopTaskQueue* _work_queue;
4138  protected:
4139   DO_OOP_WORK_DEFN
4140  public:
4141   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
4142                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
4143     MetadataAwareOopClosure(collector->ref_processor()),
4144     _collector(collector),
4145     _task(task),
4146     _span(collector->_span),
4147     _work_queue(work_queue),
4148     _bit_map(bit_map),
4149     _overflow_stack(overflow_stack)
4150   { }
4151   virtual void do_oop(oop* p);
4152   virtual void do_oop(narrowOop* p);
4153 
4154   void trim_queue(size_t max);
4155   void handle_stack_overflow(HeapWord* lost);
4156   void do_yield_check() {
4157     if (_task->should_yield()) {
4158       _task->yield();
4159     }
4160   }
4161 };
4162 
4163 // Grey object scanning during work stealing phase --
4164 // the salient assumption here is that any references
4165 // that are in these stolen objects being scanned must
4166 // already have been initialized (else they would not have
4167 // been published), so we do not need to check for
4168 // uninitialized objects before pushing here.
4169 void Par_ConcMarkingClosure::do_oop(oop obj) {
4170   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
4171   HeapWord* addr = (HeapWord*)obj;
4172   // Check if oop points into the CMS generation
4173   // and is not marked
4174   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
4175     // a white object ...
4176     // If we manage to "claim" the object, by being the
4177     // first thread to mark it, then we push it on our
4178     // marking stack
4179     if (_bit_map->par_mark(addr)) {     // ... now grey
4180       // push on work queue (grey set)
4181       bool simulate_overflow = false;
4182       NOT_PRODUCT(
4183         if (CMSMarkStackOverflowALot &&
4184             _collector->simulate_overflow()) {
4185           // simulate a stack overflow
4186           simulate_overflow = true;
4187         }
4188       )
4189       if (simulate_overflow ||
4190           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
4191         // stack overflow
4192         if (PrintCMSStatistics != 0) {
4193           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
4194                                  SIZE_FORMAT, _overflow_stack->capacity());
4195         }
4196         // We cannot assert that the overflow stack is full because
4197         // it may have been emptied since.
4198         assert(simulate_overflow ||
4199                _work_queue->size() == _work_queue->max_elems(),
4200               "Else push should have succeeded");
4201         handle_stack_overflow(addr);
4202       }
4203     } // Else, some other thread got there first
4204     do_yield_check();
4205   }
4206 }
4207 
4208 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
4209 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
4210 
4211 void Par_ConcMarkingClosure::trim_queue(size_t max) {
4212   while (_work_queue->size() > max) {
4213     oop new_oop;
4214     if (_work_queue->pop_local(new_oop)) {
4215       assert(new_oop->is_oop(), "Should be an oop");
4216       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
4217       assert(_span.contains((HeapWord*)new_oop), "Not in span");
4218       new_oop->oop_iterate(this);  // do_oop() above
4219       do_yield_check();
4220     }
4221   }
4222 }
4223 
4224 // Upon stack overflow, we discard (part of) the stack,
4225 // remembering the least address amongst those discarded
4226 // in CMSCollector's _restart_address.
4227 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
4228   // We need to do this under a mutex to prevent other
4229   // workers from interfering with the work done below.
4230   MutexLockerEx ml(_overflow_stack->par_lock(),
4231                    Mutex::_no_safepoint_check_flag);
4232   // Remember the least grey address discarded
4233   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
4234   _collector->lower_restart_addr(ra);
4235   _overflow_stack->reset();  // discard stack contents
4236   _overflow_stack->expand(); // expand the stack if possible
4237 }
4238 
4239 
4240 void CMSConcMarkingTask::do_work_steal(int i) {
4241   OopTaskQueue* work_q = work_queue(i);
4242   oop obj_to_scan;
4243   CMSBitMap* bm = &(_collector->_markBitMap);
4244   CMSMarkStack* ovflw = &(_collector->_markStack);
4245   int* seed = _collector->hash_seed(i);
4246   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
4247   while (true) {
4248     cl.trim_queue(0);
4249     assert(work_q->size() == 0, "Should have been emptied above");
4250     if (get_work_from_overflow_stack(ovflw, work_q)) {
4251       // Can't assert below because the work obtained from the
4252       // overflow stack may already have been stolen from us.
4253       // assert(work_q->size() > 0, "Work from overflow stack");
4254       continue;
4255     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4256       assert(obj_to_scan->is_oop(), "Should be an oop");
4257       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
4258       obj_to_scan->oop_iterate(&cl);
4259     } else if (terminator()->offer_termination(&_term_term)) {
4260       assert(work_q->size() == 0, "Impossible!");
4261       break;
4262     } else if (yielding() || should_yield()) {
4263       yield();
4264     }
4265   }
4266 }
4267 
4268 // This is run by the CMS (coordinator) thread.
4269 void CMSConcMarkingTask::coordinator_yield() {
4270   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4271          "CMS thread should hold CMS token");
4272   // First give up the locks, then yield, then re-lock
4273   // We should probably use a constructor/destructor idiom to
4274   // do this unlock/lock or modify the MutexUnlocker class to
4275   // serve our purpose. XXX
4276   assert_lock_strong(_bit_map_lock);
4277   _bit_map_lock->unlock();
4278   ConcurrentMarkSweepThread::desynchronize(true);
4279   ConcurrentMarkSweepThread::acknowledge_yield_request();
4280   _collector->stopTimer();
4281   if (PrintCMSStatistics != 0) {
4282     _collector->incrementYields();
4283   }
4284   _collector->icms_wait();
4285 
4286   // It is possible for whichever thread initiated the yield request
4287   // not to get a chance to wake up and take the bitmap lock between
4288   // this thread releasing it and reacquiring it. So, while the
4289   // should_yield() flag is on, let's sleep for a bit to give the
4290   // other thread a chance to wake up. The limit imposed on the number
4291   // of iterations is defensive, to avoid any unforseen circumstances
4292   // putting us into an infinite loop. Since it's always been this
4293   // (coordinator_yield()) method that was observed to cause the
4294   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
4295   // which is by default non-zero. For the other seven methods that
4296   // also perform the yield operation, as are using a different
4297   // parameter (CMSYieldSleepCount) which is by default zero. This way we
4298   // can enable the sleeping for those methods too, if necessary.
4299   // See 6442774.
4300   //
4301   // We really need to reconsider the synchronization between the GC
4302   // thread and the yield-requesting threads in the future and we
4303   // should really use wait/notify, which is the recommended
4304   // way of doing this type of interaction. Additionally, we should
4305   // consolidate the eight methods that do the yield operation and they
4306   // are almost identical into one for better maintainability and
4307   // readability. See 6445193.
4308   //
4309   // Tony 2006.06.29
4310   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
4311                    ConcurrentMarkSweepThread::should_yield() &&
4312                    !CMSCollector::foregroundGCIsActive(); ++i) {
4313     os::sleep(Thread::current(), 1, false);
4314     ConcurrentMarkSweepThread::acknowledge_yield_request();
4315   }
4316 
4317   ConcurrentMarkSweepThread::synchronize(true);
4318   _bit_map_lock->lock_without_safepoint_check();
4319   _collector->startTimer();
4320 }
4321 
4322 bool CMSCollector::do_marking_mt(bool asynch) {
4323   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
4324   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
4325                                        conc_workers()->total_workers(),
4326                                        conc_workers()->active_workers(),
4327                                        Threads::number_of_non_daemon_threads());
4328   conc_workers()->set_active_workers(num_workers);
4329 
4330   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4331 
4332   CMSConcMarkingTask tsk(this,
4333                          cms_space,
4334                          asynch,
4335                          conc_workers(),
4336                          task_queues());
4337 
4338   // Since the actual number of workers we get may be different
4339   // from the number we requested above, do we need to do anything different
4340   // below? In particular, may be we need to subclass the SequantialSubTasksDone
4341   // class?? XXX
4342   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
4343 
4344   // Refs discovery is already non-atomic.
4345   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
4346   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
4347   conc_workers()->start_task(&tsk);
4348   while (tsk.yielded()) {
4349     tsk.coordinator_yield();
4350     conc_workers()->continue_task(&tsk);
4351   }
4352   // If the task was aborted, _restart_addr will be non-NULL
4353   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
4354   while (_restart_addr != NULL) {
4355     // XXX For now we do not make use of ABORTED state and have not
4356     // yet implemented the right abort semantics (even in the original
4357     // single-threaded CMS case). That needs some more investigation
4358     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
4359     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
4360     // If _restart_addr is non-NULL, a marking stack overflow
4361     // occurred; we need to do a fresh marking iteration from the
4362     // indicated restart address.
4363     if (_foregroundGCIsActive && asynch) {
4364       // We may be running into repeated stack overflows, having
4365       // reached the limit of the stack size, while making very
4366       // slow forward progress. It may be best to bail out and
4367       // let the foreground collector do its job.
4368       // Clear _restart_addr, so that foreground GC
4369       // works from scratch. This avoids the headache of
4370       // a "rescan" which would otherwise be needed because
4371       // of the dirty mod union table & card table.
4372       _restart_addr = NULL;
4373       return false;
4374     }
4375     // Adjust the task to restart from _restart_addr
4376     tsk.reset(_restart_addr);
4377     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
4378                   _restart_addr);
4379     _restart_addr = NULL;
4380     // Get the workers going again
4381     conc_workers()->start_task(&tsk);
4382     while (tsk.yielded()) {
4383       tsk.coordinator_yield();
4384       conc_workers()->continue_task(&tsk);
4385     }
4386   }
4387   assert(tsk.completed(), "Inconsistency");
4388   assert(tsk.result() == true, "Inconsistency");
4389   return true;
4390 }
4391 
4392 bool CMSCollector::do_marking_st(bool asynch) {
4393   ResourceMark rm;
4394   HandleMark   hm;
4395 
4396   // Temporarily make refs discovery single threaded (non-MT)
4397   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
4398   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
4399     &_markStack, CMSYield && asynch);
4400   // the last argument to iterate indicates whether the iteration
4401   // should be incremental with periodic yields.
4402   _markBitMap.iterate(&markFromRootsClosure);
4403   // If _restart_addr is non-NULL, a marking stack overflow
4404   // occurred; we need to do a fresh iteration from the
4405   // indicated restart address.
4406   while (_restart_addr != NULL) {
4407     if (_foregroundGCIsActive && asynch) {
4408       // We may be running into repeated stack overflows, having
4409       // reached the limit of the stack size, while making very
4410       // slow forward progress. It may be best to bail out and
4411       // let the foreground collector do its job.
4412       // Clear _restart_addr, so that foreground GC
4413       // works from scratch. This avoids the headache of
4414       // a "rescan" which would otherwise be needed because
4415       // of the dirty mod union table & card table.
4416       _restart_addr = NULL;
4417       return false;  // indicating failure to complete marking
4418     }
4419     // Deal with stack overflow:
4420     // we restart marking from _restart_addr
4421     HeapWord* ra = _restart_addr;
4422     markFromRootsClosure.reset(ra);
4423     _restart_addr = NULL;
4424     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
4425   }
4426   return true;
4427 }
4428 
4429 void CMSCollector::preclean() {
4430   check_correct_thread_executing();
4431   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
4432   verify_work_stacks_empty();
4433   verify_overflow_empty();
4434   _abort_preclean = false;
4435   if (CMSPrecleaningEnabled) {
4436     if (!CMSEdenChunksRecordAlways) {
4437       _eden_chunk_index = 0;
4438     }
4439     size_t used = get_eden_used();
4440     size_t capacity = get_eden_capacity();
4441     // Don't start sampling unless we will get sufficiently
4442     // many samples.
4443     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
4444                 * CMSScheduleRemarkEdenPenetration)) {
4445       _start_sampling = true;
4446     } else {
4447       _start_sampling = false;
4448     }
4449     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4450     CMSPhaseAccounting pa(this, "preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
4451     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
4452   }
4453   CMSTokenSync x(true); // is cms thread
4454   if (CMSPrecleaningEnabled) {
4455     sample_eden();
4456     _collectorState = AbortablePreclean;
4457   } else {
4458     _collectorState = FinalMarking;
4459   }
4460   verify_work_stacks_empty();
4461   verify_overflow_empty();
4462 }
4463 
4464 // Try and schedule the remark such that young gen
4465 // occupancy is CMSScheduleRemarkEdenPenetration %.
4466 void CMSCollector::abortable_preclean() {
4467   check_correct_thread_executing();
4468   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
4469   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
4470 
4471   // If Eden's current occupancy is below this threshold,
4472   // immediately schedule the remark; else preclean
4473   // past the next scavenge in an effort to
4474   // schedule the pause as described above. By choosing
4475   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
4476   // we will never do an actual abortable preclean cycle.
4477   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
4478     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4479     CMSPhaseAccounting pa(this, "abortable-preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
4480     // We need more smarts in the abortable preclean
4481     // loop below to deal with cases where allocation
4482     // in young gen is very very slow, and our precleaning
4483     // is running a losing race against a horde of
4484     // mutators intent on flooding us with CMS updates
4485     // (dirty cards).
4486     // One, admittedly dumb, strategy is to give up
4487     // after a certain number of abortable precleaning loops
4488     // or after a certain maximum time. We want to make
4489     // this smarter in the next iteration.
4490     // XXX FIX ME!!! YSR
4491     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
4492     while (!(should_abort_preclean() ||
4493              ConcurrentMarkSweepThread::should_terminate())) {
4494       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
4495       cumworkdone += workdone;
4496       loops++;
4497       // Voluntarily terminate abortable preclean phase if we have
4498       // been at it for too long.
4499       if ((CMSMaxAbortablePrecleanLoops != 0) &&
4500           loops >= CMSMaxAbortablePrecleanLoops) {
4501         if (PrintGCDetails) {
4502           gclog_or_tty->print(" CMS: abort preclean due to loops ");
4503         }
4504         break;
4505       }
4506       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
4507         if (PrintGCDetails) {
4508           gclog_or_tty->print(" CMS: abort preclean due to time ");
4509         }
4510         break;
4511       }
4512       // If we are doing little work each iteration, we should
4513       // take a short break.
4514       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
4515         // Sleep for some time, waiting for work to accumulate
4516         stopTimer();
4517         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
4518         startTimer();
4519         waited++;
4520       }
4521     }
4522     if (PrintCMSStatistics > 0) {
4523       gclog_or_tty->print(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
4524                           loops, waited, cumworkdone);
4525     }
4526   }
4527   CMSTokenSync x(true); // is cms thread
4528   if (_collectorState != Idling) {
4529     assert(_collectorState == AbortablePreclean,
4530            "Spontaneous state transition?");
4531     _collectorState = FinalMarking;
4532   } // Else, a foreground collection completed this CMS cycle.
4533   return;
4534 }
4535 
4536 // Respond to an Eden sampling opportunity
4537 void CMSCollector::sample_eden() {
4538   // Make sure a young gc cannot sneak in between our
4539   // reading and recording of a sample.
4540   assert(Thread::current()->is_ConcurrentGC_thread(),
4541          "Only the cms thread may collect Eden samples");
4542   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4543          "Should collect samples while holding CMS token");
4544   if (!_start_sampling) {
4545     return;
4546   }
4547   // When CMSEdenChunksRecordAlways is true, the eden chunk array
4548   // is populated by the young generation.
4549   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
4550     if (_eden_chunk_index < _eden_chunk_capacity) {
4551       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
4552       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4553              "Unexpected state of Eden");
4554       // We'd like to check that what we just sampled is an oop-start address;
4555       // however, we cannot do that here since the object may not yet have been
4556       // initialized. So we'll instead do the check when we _use_ this sample
4557       // later.
4558       if (_eden_chunk_index == 0 ||
4559           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4560                          _eden_chunk_array[_eden_chunk_index-1])
4561            >= CMSSamplingGrain)) {
4562         _eden_chunk_index++;  // commit sample
4563       }
4564     }
4565   }
4566   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
4567     size_t used = get_eden_used();
4568     size_t capacity = get_eden_capacity();
4569     assert(used <= capacity, "Unexpected state of Eden");
4570     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
4571       _abort_preclean = true;
4572     }
4573   }
4574 }
4575 
4576 
4577 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
4578   assert(_collectorState == Precleaning ||
4579          _collectorState == AbortablePreclean, "incorrect state");
4580   ResourceMark rm;
4581   HandleMark   hm;
4582 
4583   // Precleaning is currently not MT but the reference processor
4584   // may be set for MT.  Disable it temporarily here.
4585   ReferenceProcessor* rp = ref_processor();
4586   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
4587 
4588   // Do one pass of scrubbing the discovered reference lists
4589   // to remove any reference objects with strongly-reachable
4590   // referents.
4591   if (clean_refs) {
4592     CMSPrecleanRefsYieldClosure yield_cl(this);
4593     assert(rp->span().equals(_span), "Spans should be equal");
4594     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
4595                                    &_markStack, true /* preclean */);
4596     CMSDrainMarkingStackClosure complete_trace(this,
4597                                    _span, &_markBitMap, &_markStack,
4598                                    &keep_alive, true /* preclean */);
4599 
4600     // We don't want this step to interfere with a young
4601     // collection because we don't want to take CPU
4602     // or memory bandwidth away from the young GC threads
4603     // (which may be as many as there are CPUs).
4604     // Note that we don't need to protect ourselves from
4605     // interference with mutators because they can't
4606     // manipulate the discovered reference lists nor affect
4607     // the computed reachability of the referents, the
4608     // only properties manipulated by the precleaning
4609     // of these reference lists.
4610     stopTimer();
4611     CMSTokenSyncWithLocks x(true /* is cms thread */,
4612                             bitMapLock());
4613     startTimer();
4614     sample_eden();
4615 
4616     // The following will yield to allow foreground
4617     // collection to proceed promptly. XXX YSR:
4618     // The code in this method may need further
4619     // tweaking for better performance and some restructuring
4620     // for cleaner interfaces.
4621     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
4622     rp->preclean_discovered_references(
4623           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
4624           gc_timer, _gc_tracer_cm->gc_id());
4625   }
4626 
4627   if (clean_survivor) {  // preclean the active survivor space(s)
4628     assert(_young_gen->kind() == Generation::DefNew ||
4629            _young_gen->kind() == Generation::ParNew,
4630          "incorrect type for cast");
4631     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
4632     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
4633                              &_markBitMap, &_modUnionTable,
4634                              &_markStack, true /* precleaning phase */);
4635     stopTimer();
4636     CMSTokenSyncWithLocks ts(true /* is cms thread */,
4637                              bitMapLock());
4638     startTimer();
4639     unsigned int before_count =
4640       GenCollectedHeap::heap()->total_collections();
4641     SurvivorSpacePrecleanClosure
4642       sss_cl(this, _span, &_markBitMap, &_markStack,
4643              &pam_cl, before_count, CMSYield);
4644     dng->from()->object_iterate_careful(&sss_cl);
4645     dng->to()->object_iterate_careful(&sss_cl);
4646   }
4647   MarkRefsIntoAndScanClosure
4648     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
4649              &_markStack, this, CMSYield,
4650              true /* precleaning phase */);
4651   // CAUTION: The following closure has persistent state that may need to
4652   // be reset upon a decrease in the sequence of addresses it
4653   // processes.
4654   ScanMarkedObjectsAgainCarefullyClosure
4655     smoac_cl(this, _span,
4656       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
4657 
4658   // Preclean dirty cards in ModUnionTable and CardTable using
4659   // appropriate convergence criterion;
4660   // repeat CMSPrecleanIter times unless we find that
4661   // we are losing.
4662   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
4663   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
4664          "Bad convergence multiplier");
4665   assert(CMSPrecleanThreshold >= 100,
4666          "Unreasonably low CMSPrecleanThreshold");
4667 
4668   size_t numIter, cumNumCards, lastNumCards, curNumCards;
4669   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
4670        numIter < CMSPrecleanIter;
4671        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
4672     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
4673     if (Verbose && PrintGCDetails) {
4674       gclog_or_tty->print(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
4675     }
4676     // Either there are very few dirty cards, so re-mark
4677     // pause will be small anyway, or our pre-cleaning isn't
4678     // that much faster than the rate at which cards are being
4679     // dirtied, so we might as well stop and re-mark since
4680     // precleaning won't improve our re-mark time by much.
4681     if (curNumCards <= CMSPrecleanThreshold ||
4682         (numIter > 0 &&
4683          (curNumCards * CMSPrecleanDenominator >
4684          lastNumCards * CMSPrecleanNumerator))) {
4685       numIter++;
4686       cumNumCards += curNumCards;
4687       break;
4688     }
4689   }
4690 
4691   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
4692 
4693   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4694   cumNumCards += curNumCards;
4695   if (PrintGCDetails && PrintCMSStatistics != 0) {
4696     gclog_or_tty->print_cr(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
4697                   curNumCards, cumNumCards, numIter);
4698   }
4699   return cumNumCards;   // as a measure of useful work done
4700 }
4701 
4702 // PRECLEANING NOTES:
4703 // Precleaning involves:
4704 // . reading the bits of the modUnionTable and clearing the set bits.
4705 // . For the cards corresponding to the set bits, we scan the
4706 //   objects on those cards. This means we need the free_list_lock
4707 //   so that we can safely iterate over the CMS space when scanning
4708 //   for oops.
4709 // . When we scan the objects, we'll be both reading and setting
4710 //   marks in the marking bit map, so we'll need the marking bit map.
4711 // . For protecting _collector_state transitions, we take the CGC_lock.
4712 //   Note that any races in the reading of of card table entries by the
4713 //   CMS thread on the one hand and the clearing of those entries by the
4714 //   VM thread or the setting of those entries by the mutator threads on the
4715 //   other are quite benign. However, for efficiency it makes sense to keep
4716 //   the VM thread from racing with the CMS thread while the latter is
4717 //   dirty card info to the modUnionTable. We therefore also use the
4718 //   CGC_lock to protect the reading of the card table and the mod union
4719 //   table by the CM thread.
4720 // . We run concurrently with mutator updates, so scanning
4721 //   needs to be done carefully  -- we should not try to scan
4722 //   potentially uninitialized objects.
4723 //
4724 // Locking strategy: While holding the CGC_lock, we scan over and
4725 // reset a maximal dirty range of the mod union / card tables, then lock
4726 // the free_list_lock and bitmap lock to do a full marking, then
4727 // release these locks; and repeat the cycle. This allows for a
4728 // certain amount of fairness in the sharing of these locks between
4729 // the CMS collector on the one hand, and the VM thread and the
4730 // mutators on the other.
4731 
4732 // NOTE: preclean_mod_union_table() and preclean_card_table()
4733 // further below are largely identical; if you need to modify
4734 // one of these methods, please check the other method too.
4735 
4736 size_t CMSCollector::preclean_mod_union_table(
4737   ConcurrentMarkSweepGeneration* gen,
4738   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4739   verify_work_stacks_empty();
4740   verify_overflow_empty();
4741 
4742   // strategy: starting with the first card, accumulate contiguous
4743   // ranges of dirty cards; clear these cards, then scan the region
4744   // covered by these cards.
4745 
4746   // Since all of the MUT is committed ahead, we can just use
4747   // that, in case the generations expand while we are precleaning.
4748   // It might also be fine to just use the committed part of the
4749   // generation, but we might potentially miss cards when the
4750   // generation is rapidly expanding while we are in the midst
4751   // of precleaning.
4752   HeapWord* startAddr = gen->reserved().start();
4753   HeapWord* endAddr   = gen->reserved().end();
4754 
4755   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4756 
4757   size_t numDirtyCards, cumNumDirtyCards;
4758   HeapWord *nextAddr, *lastAddr;
4759   for (cumNumDirtyCards = numDirtyCards = 0,
4760        nextAddr = lastAddr = startAddr;
4761        nextAddr < endAddr;
4762        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4763 
4764     ResourceMark rm;
4765     HandleMark   hm;
4766 
4767     MemRegion dirtyRegion;
4768     {
4769       stopTimer();
4770       // Potential yield point
4771       CMSTokenSync ts(true);
4772       startTimer();
4773       sample_eden();
4774       // Get dirty region starting at nextOffset (inclusive),
4775       // simultaneously clearing it.
4776       dirtyRegion =
4777         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4778       assert(dirtyRegion.start() >= nextAddr,
4779              "returned region inconsistent?");
4780     }
4781     // Remember where the next search should begin.
4782     // The returned region (if non-empty) is a right open interval,
4783     // so lastOffset is obtained from the right end of that
4784     // interval.
4785     lastAddr = dirtyRegion.end();
4786     // Should do something more transparent and less hacky XXX
4787     numDirtyCards =
4788       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4789 
4790     // We'll scan the cards in the dirty region (with periodic
4791     // yields for foreground GC as needed).
4792     if (!dirtyRegion.is_empty()) {
4793       assert(numDirtyCards > 0, "consistency check");
4794       HeapWord* stop_point = NULL;
4795       stopTimer();
4796       // Potential yield point
4797       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4798                                bitMapLock());
4799       startTimer();
4800       {
4801         verify_work_stacks_empty();
4802         verify_overflow_empty();
4803         sample_eden();
4804         stop_point =
4805           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4806       }
4807       if (stop_point != NULL) {
4808         // The careful iteration stopped early either because it found an
4809         // uninitialized object, or because we were in the midst of an
4810         // "abortable preclean", which should now be aborted. Redirty
4811         // the bits corresponding to the partially-scanned or unscanned
4812         // cards. We'll either restart at the next block boundary or
4813         // abort the preclean.
4814         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4815                "Should only be AbortablePreclean.");
4816         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4817         if (should_abort_preclean()) {
4818           break; // out of preclean loop
4819         } else {
4820           // Compute the next address at which preclean should pick up;
4821           // might need bitMapLock in order to read P-bits.
4822           lastAddr = next_card_start_after_block(stop_point);
4823         }
4824       }
4825     } else {
4826       assert(lastAddr == endAddr, "consistency check");
4827       assert(numDirtyCards == 0, "consistency check");
4828       break;
4829     }
4830   }
4831   verify_work_stacks_empty();
4832   verify_overflow_empty();
4833   return cumNumDirtyCards;
4834 }
4835 
4836 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4837 // below are largely identical; if you need to modify
4838 // one of these methods, please check the other method too.
4839 
4840 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4841   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4842   // strategy: it's similar to precleamModUnionTable above, in that
4843   // we accumulate contiguous ranges of dirty cards, mark these cards
4844   // precleaned, then scan the region covered by these cards.
4845   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4846   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4847 
4848   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4849 
4850   size_t numDirtyCards, cumNumDirtyCards;
4851   HeapWord *lastAddr, *nextAddr;
4852 
4853   for (cumNumDirtyCards = numDirtyCards = 0,
4854        nextAddr = lastAddr = startAddr;
4855        nextAddr < endAddr;
4856        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4857 
4858     ResourceMark rm;
4859     HandleMark   hm;
4860 
4861     MemRegion dirtyRegion;
4862     {
4863       // See comments in "Precleaning notes" above on why we
4864       // do this locking. XXX Could the locking overheads be
4865       // too high when dirty cards are sparse? [I don't think so.]
4866       stopTimer();
4867       CMSTokenSync x(true); // is cms thread
4868       startTimer();
4869       sample_eden();
4870       // Get and clear dirty region from card table
4871       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4872                                     MemRegion(nextAddr, endAddr),
4873                                     true,
4874                                     CardTableModRefBS::precleaned_card_val());
4875 
4876       assert(dirtyRegion.start() >= nextAddr,
4877              "returned region inconsistent?");
4878     }
4879     lastAddr = dirtyRegion.end();
4880     numDirtyCards =
4881       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4882 
4883     if (!dirtyRegion.is_empty()) {
4884       stopTimer();
4885       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4886       startTimer();
4887       sample_eden();
4888       verify_work_stacks_empty();
4889       verify_overflow_empty();
4890       HeapWord* stop_point =
4891         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4892       if (stop_point != NULL) {
4893         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4894                "Should only be AbortablePreclean.");
4895         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4896         if (should_abort_preclean()) {
4897           break; // out of preclean loop
4898         } else {
4899           // Compute the next address at which preclean should pick up.
4900           lastAddr = next_card_start_after_block(stop_point);
4901         }
4902       }
4903     } else {
4904       break;
4905     }
4906   }
4907   verify_work_stacks_empty();
4908   verify_overflow_empty();
4909   return cumNumDirtyCards;
4910 }
4911 
4912 class PrecleanKlassClosure : public KlassClosure {
4913   KlassToOopClosure _cm_klass_closure;
4914  public:
4915   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4916   void do_klass(Klass* k) {
4917     if (k->has_accumulated_modified_oops()) {
4918       k->clear_accumulated_modified_oops();
4919 
4920       _cm_klass_closure.do_klass(k);
4921     }
4922   }
4923 };
4924 
4925 // The freelist lock is needed to prevent asserts, is it really needed?
4926 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4927 
4928   cl->set_freelistLock(freelistLock);
4929 
4930   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4931 
4932   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4933   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4934   PrecleanKlassClosure preclean_klass_closure(cl);
4935   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4936 
4937   verify_work_stacks_empty();
4938   verify_overflow_empty();
4939 }
4940 
4941 void CMSCollector::checkpointRootsFinal(bool asynch,
4942   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4943   assert(_collectorState == FinalMarking, "incorrect state transition?");
4944   check_correct_thread_executing();
4945   // world is stopped at this checkpoint
4946   assert(SafepointSynchronize::is_at_safepoint(),
4947          "world should be stopped");
4948   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4949 
4950   verify_work_stacks_empty();
4951   verify_overflow_empty();
4952 
4953   SpecializationStats::clear();
4954   if (PrintGCDetails) {
4955     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
4956                         _young_gen->used() / K,
4957                         _young_gen->capacity() / K);
4958   }
4959   if (asynch) {
4960     if (CMSScavengeBeforeRemark) {
4961       GenCollectedHeap* gch = GenCollectedHeap::heap();
4962       // Temporarily set flag to false, GCH->do_collection will
4963       // expect it to be false and set to true
4964       FlagSetting fl(gch->_is_gc_active, false);
4965       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
4966         PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4967       int level = _cmsGen->level() - 1;
4968       if (level >= 0) {
4969         gch->do_collection(true,        // full (i.e. force, see below)
4970                            false,       // !clear_all_soft_refs
4971                            0,           // size
4972                            false,       // is_tlab
4973                            level        // max_level
4974                           );
4975       }
4976     }
4977     FreelistLocker x(this);
4978     MutexLockerEx y(bitMapLock(),
4979                     Mutex::_no_safepoint_check_flag);
4980     assert(!init_mark_was_synchronous, "but that's impossible!");
4981     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
4982   } else {
4983     // already have all the locks
4984     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
4985                              init_mark_was_synchronous);
4986   }
4987   verify_work_stacks_empty();
4988   verify_overflow_empty();
4989   SpecializationStats::print();
4990 }
4991 
4992 void CMSCollector::checkpointRootsFinalWork(bool asynch,
4993   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4994 
4995   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4996 
4997   assert(haveFreelistLocks(), "must have free list locks");
4998   assert_lock_strong(bitMapLock());
4999 
5000   ResourceMark rm;
5001   HandleMark   hm;
5002 
5003   GenCollectedHeap* gch = GenCollectedHeap::heap();
5004 
5005   if (should_unload_classes()) {
5006     CodeCache::gc_prologue();
5007   }
5008   assert(haveFreelistLocks(), "must have free list locks");
5009   assert_lock_strong(bitMapLock());
5010 
5011   if (!init_mark_was_synchronous) {
5012     // We might assume that we need not fill TLAB's when
5013     // CMSScavengeBeforeRemark is set, because we may have just done
5014     // a scavenge which would have filled all TLAB's -- and besides
5015     // Eden would be empty. This however may not always be the case --
5016     // for instance although we asked for a scavenge, it may not have
5017     // happened because of a JNI critical section. We probably need
5018     // a policy for deciding whether we can in that case wait until
5019     // the critical section releases and then do the remark following
5020     // the scavenge, and skip it here. In the absence of that policy,
5021     // or of an indication of whether the scavenge did indeed occur,
5022     // we cannot rely on TLAB's having been filled and must do
5023     // so here just in case a scavenge did not happen.
5024     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
5025     // Update the saved marks which may affect the root scans.
5026     gch->save_marks();
5027 
5028     if (CMSPrintEdenSurvivorChunks) {
5029       print_eden_and_survivor_chunk_arrays();
5030     }
5031 
5032     {
5033       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
5034 
5035       // Note on the role of the mod union table:
5036       // Since the marker in "markFromRoots" marks concurrently with
5037       // mutators, it is possible for some reachable objects not to have been
5038       // scanned. For instance, an only reference to an object A was
5039       // placed in object B after the marker scanned B. Unless B is rescanned,
5040       // A would be collected. Such updates to references in marked objects
5041       // are detected via the mod union table which is the set of all cards
5042       // dirtied since the first checkpoint in this GC cycle and prior to
5043       // the most recent young generation GC, minus those cleaned up by the
5044       // concurrent precleaning.
5045       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
5046         GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5047         do_remark_parallel();
5048       } else {
5049         GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
5050                     _gc_timer_cm, _gc_tracer_cm->gc_id());
5051         do_remark_non_parallel();
5052       }
5053     }
5054   } else {
5055     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
5056     // The initial mark was stop-world, so there's no rescanning to
5057     // do; go straight on to the next step below.
5058   }
5059   verify_work_stacks_empty();
5060   verify_overflow_empty();
5061 
5062   {
5063     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
5064     refProcessingWork(asynch, clear_all_soft_refs);
5065   }
5066   verify_work_stacks_empty();
5067   verify_overflow_empty();
5068 
5069   if (should_unload_classes()) {
5070     CodeCache::gc_epilogue();
5071   }
5072   JvmtiExport::gc_epilogue();
5073 
5074   // If we encountered any (marking stack / work queue) overflow
5075   // events during the current CMS cycle, take appropriate
5076   // remedial measures, where possible, so as to try and avoid
5077   // recurrence of that condition.
5078   assert(_markStack.isEmpty(), "No grey objects");
5079   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
5080                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
5081   if (ser_ovflw > 0) {
5082     if (PrintCMSStatistics != 0) {
5083       gclog_or_tty->print_cr("Marking stack overflow (benign) "
5084         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
5085         ", kac_preclean="SIZE_FORMAT")",
5086         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
5087         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
5088     }
5089     _markStack.expand();
5090     _ser_pmc_remark_ovflw = 0;
5091     _ser_pmc_preclean_ovflw = 0;
5092     _ser_kac_preclean_ovflw = 0;
5093     _ser_kac_ovflw = 0;
5094   }
5095   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
5096     if (PrintCMSStatistics != 0) {
5097       gclog_or_tty->print_cr("Work queue overflow (benign) "
5098         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
5099         _par_pmc_remark_ovflw, _par_kac_ovflw);
5100     }
5101     _par_pmc_remark_ovflw = 0;
5102     _par_kac_ovflw = 0;
5103   }
5104   if (PrintCMSStatistics != 0) {
5105      if (_markStack._hit_limit > 0) {
5106        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
5107                               _markStack._hit_limit);
5108      }
5109      if (_markStack._failed_double > 0) {
5110        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
5111                               " current capacity "SIZE_FORMAT,
5112                               _markStack._failed_double,
5113                               _markStack.capacity());
5114      }
5115   }
5116   _markStack._hit_limit = 0;
5117   _markStack._failed_double = 0;
5118 
5119   if ((VerifyAfterGC || VerifyDuringGC) &&
5120       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5121     verify_after_remark();
5122   }
5123 
5124   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
5125 
5126   // Change under the freelistLocks.
5127   _collectorState = Sweeping;
5128   // Call isAllClear() under bitMapLock
5129   assert(_modUnionTable.isAllClear(),
5130       "Should be clear by end of the final marking");
5131   assert(_ct->klass_rem_set()->mod_union_is_clear(),
5132       "Should be clear by end of the final marking");
5133 }
5134 
5135 void CMSParInitialMarkTask::work(uint worker_id) {
5136   elapsedTimer _timer;
5137   ResourceMark rm;
5138   HandleMark   hm;
5139 
5140   // ---------- scan from roots --------------
5141   _timer.start();
5142   GenCollectedHeap* gch = GenCollectedHeap::heap();
5143   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
5144 
5145   // ---------- young gen roots --------------
5146   {
5147     work_on_young_gen_roots(worker_id, &par_mri_cl);
5148     _timer.stop();
5149     if (PrintCMSStatistics != 0) {
5150       gclog_or_tty->print_cr(
5151         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
5152         worker_id, _timer.seconds());
5153     }
5154   }
5155 
5156   // ---------- remaining roots --------------
5157   _timer.reset();
5158   _timer.start();
5159 
5160   CLDToOopClosure cld_closure(&par_mri_cl, true);
5161 
5162   gch->gen_process_roots(_collector->_cmsGen->level(),
5163                          false,     // yg was scanned above
5164                          false,     // this is parallel code
5165                          SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5166                          _collector->should_unload_classes(),
5167                          &par_mri_cl,
5168                          NULL,
5169                          &cld_closure);
5170   assert(_collector->should_unload_classes()
5171          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5172          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5173   _timer.stop();
5174   if (PrintCMSStatistics != 0) {
5175     gclog_or_tty->print_cr(
5176       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
5177       worker_id, _timer.seconds());
5178   }
5179 }
5180 
5181 // Parallel remark task
5182 class CMSParRemarkTask: public CMSParMarkTask {
5183   CompactibleFreeListSpace* _cms_space;
5184 
5185   // The per-thread work queues, available here for stealing.
5186   OopTaskQueueSet*       _task_queues;
5187   ParallelTaskTerminator _term;
5188 
5189  public:
5190   // A value of 0 passed to n_workers will cause the number of
5191   // workers to be taken from the active workers in the work gang.
5192   CMSParRemarkTask(CMSCollector* collector,
5193                    CompactibleFreeListSpace* cms_space,
5194                    int n_workers, FlexibleWorkGang* workers,
5195                    OopTaskQueueSet* task_queues):
5196     CMSParMarkTask("Rescan roots and grey objects in parallel",
5197                    collector, n_workers),
5198     _cms_space(cms_space),
5199     _task_queues(task_queues),
5200     _term(n_workers, task_queues) { }
5201 
5202   OopTaskQueueSet* task_queues() { return _task_queues; }
5203 
5204   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5205 
5206   ParallelTaskTerminator* terminator() { return &_term; }
5207   int n_workers() { return _n_workers; }
5208 
5209   void work(uint worker_id);
5210 
5211  private:
5212   // ... of  dirty cards in old space
5213   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
5214                                   Par_MarkRefsIntoAndScanClosure* cl);
5215 
5216   // ... work stealing for the above
5217   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
5218 };
5219 
5220 class RemarkKlassClosure : public KlassClosure {
5221   KlassToOopClosure _cm_klass_closure;
5222  public:
5223   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
5224   void do_klass(Klass* k) {
5225     // Check if we have modified any oops in the Klass during the concurrent marking.
5226     if (k->has_accumulated_modified_oops()) {
5227       k->clear_accumulated_modified_oops();
5228 
5229       // We could have transfered the current modified marks to the accumulated marks,
5230       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
5231     } else if (k->has_modified_oops()) {
5232       // Don't clear anything, this info is needed by the next young collection.
5233     } else {
5234       // No modified oops in the Klass.
5235       return;
5236     }
5237 
5238     // The klass has modified fields, need to scan the klass.
5239     _cm_klass_closure.do_klass(k);
5240   }
5241 };
5242 
5243 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
5244   DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
5245   EdenSpace* eden_space = dng->eden();
5246   ContiguousSpace* from_space = dng->from();
5247   ContiguousSpace* to_space   = dng->to();
5248 
5249   HeapWord** eca = _collector->_eden_chunk_array;
5250   size_t     ect = _collector->_eden_chunk_index;
5251   HeapWord** sca = _collector->_survivor_chunk_array;
5252   size_t     sct = _collector->_survivor_chunk_index;
5253 
5254   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
5255   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
5256 
5257   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
5258   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
5259   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
5260 }
5261 
5262 // work_queue(i) is passed to the closure
5263 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
5264 // also is passed to do_dirty_card_rescan_tasks() and to
5265 // do_work_steal() to select the i-th task_queue.
5266 
5267 void CMSParRemarkTask::work(uint worker_id) {
5268   elapsedTimer _timer;
5269   ResourceMark rm;
5270   HandleMark   hm;
5271 
5272   // ---------- rescan from roots --------------
5273   _timer.start();
5274   GenCollectedHeap* gch = GenCollectedHeap::heap();
5275   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
5276     _collector->_span, _collector->ref_processor(),
5277     &(_collector->_markBitMap),
5278     work_queue(worker_id));
5279 
5280   // Rescan young gen roots first since these are likely
5281   // coarsely partitioned and may, on that account, constitute
5282   // the critical path; thus, it's best to start off that
5283   // work first.
5284   // ---------- young gen roots --------------
5285   {
5286     work_on_young_gen_roots(worker_id, &par_mrias_cl);
5287     _timer.stop();
5288     if (PrintCMSStatistics != 0) {
5289       gclog_or_tty->print_cr(
5290         "Finished young gen rescan work in %dth thread: %3.3f sec",
5291         worker_id, _timer.seconds());
5292     }
5293   }
5294 
5295   // ---------- remaining roots --------------
5296   _timer.reset();
5297   _timer.start();
5298   gch->gen_process_roots(_collector->_cmsGen->level(),
5299                          false,     // yg was scanned above
5300                          false,     // this is parallel code
5301                          SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5302                          _collector->should_unload_classes(),
5303                          &par_mrias_cl,
5304                          NULL,
5305                          NULL);     // The dirty klasses will be handled below
5306 
5307   assert(_collector->should_unload_classes()
5308          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5309          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5310   _timer.stop();
5311   if (PrintCMSStatistics != 0) {
5312     gclog_or_tty->print_cr(
5313       "Finished remaining root rescan work in %dth thread: %3.3f sec",
5314       worker_id, _timer.seconds());
5315   }
5316 
5317   // ---------- unhandled CLD scanning ----------
5318   if (worker_id == 0) { // Single threaded at the moment.
5319     _timer.reset();
5320     _timer.start();
5321 
5322     // Scan all new class loader data objects and new dependencies that were
5323     // introduced during concurrent marking.
5324     ResourceMark rm;
5325     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5326     for (int i = 0; i < array->length(); i++) {
5327       par_mrias_cl.do_class_loader_data(array->at(i));
5328     }
5329 
5330     // We don't need to keep track of new CLDs anymore.
5331     ClassLoaderDataGraph::remember_new_clds(false);
5332 
5333     _timer.stop();
5334     if (PrintCMSStatistics != 0) {
5335       gclog_or_tty->print_cr(
5336           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
5337           worker_id, _timer.seconds());
5338     }
5339   }
5340 
5341   // ---------- dirty klass scanning ----------
5342   if (worker_id == 0) { // Single threaded at the moment.
5343     _timer.reset();
5344     _timer.start();
5345 
5346     // Scan all classes that was dirtied during the concurrent marking phase.
5347     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
5348     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5349 
5350     _timer.stop();
5351     if (PrintCMSStatistics != 0) {
5352       gclog_or_tty->print_cr(
5353           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
5354           worker_id, _timer.seconds());
5355     }
5356   }
5357 
5358   // We might have added oops to ClassLoaderData::_handles during the
5359   // concurrent marking phase. These oops point to newly allocated objects
5360   // that are guaranteed to be kept alive. Either by the direct allocation
5361   // code, or when the young collector processes the roots. Hence,
5362   // we don't have to revisit the _handles block during the remark phase.
5363 
5364   // ---------- rescan dirty cards ------------
5365   _timer.reset();
5366   _timer.start();
5367 
5368   // Do the rescan tasks for each of the two spaces
5369   // (cms_space) in turn.
5370   // "worker_id" is passed to select the task_queue for "worker_id"
5371   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
5372   _timer.stop();
5373   if (PrintCMSStatistics != 0) {
5374     gclog_or_tty->print_cr(
5375       "Finished dirty card rescan work in %dth thread: %3.3f sec",
5376       worker_id, _timer.seconds());
5377   }
5378 
5379   // ---------- steal work from other threads ...
5380   // ---------- ... and drain overflow list.
5381   _timer.reset();
5382   _timer.start();
5383   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
5384   _timer.stop();
5385   if (PrintCMSStatistics != 0) {
5386     gclog_or_tty->print_cr(
5387       "Finished work stealing in %dth thread: %3.3f sec",
5388       worker_id, _timer.seconds());
5389   }
5390 }
5391 
5392 // Note that parameter "i" is not used.
5393 void
5394 CMSParMarkTask::do_young_space_rescan(uint worker_id,
5395   OopsInGenClosure* cl, ContiguousSpace* space,
5396   HeapWord** chunk_array, size_t chunk_top) {
5397   // Until all tasks completed:
5398   // . claim an unclaimed task
5399   // . compute region boundaries corresponding to task claimed
5400   //   using chunk_array
5401   // . par_oop_iterate(cl) over that region
5402 
5403   ResourceMark rm;
5404   HandleMark   hm;
5405 
5406   SequentialSubTasksDone* pst = space->par_seq_tasks();
5407 
5408   uint nth_task = 0;
5409   uint n_tasks  = pst->n_tasks();
5410 
5411   if (n_tasks > 0) {
5412     assert(pst->valid(), "Uninitialized use?");
5413     HeapWord *start, *end;
5414     while (!pst->is_task_claimed(/* reference */ nth_task)) {
5415       // We claimed task # nth_task; compute its boundaries.
5416       if (chunk_top == 0) {  // no samples were taken
5417         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
5418         start = space->bottom();
5419         end   = space->top();
5420       } else if (nth_task == 0) {
5421         start = space->bottom();
5422         end   = chunk_array[nth_task];
5423       } else if (nth_task < (uint)chunk_top) {
5424         assert(nth_task >= 1, "Control point invariant");
5425         start = chunk_array[nth_task - 1];
5426         end   = chunk_array[nth_task];
5427       } else {
5428         assert(nth_task == (uint)chunk_top, "Control point invariant");
5429         start = chunk_array[chunk_top - 1];
5430         end   = space->top();
5431       }
5432       MemRegion mr(start, end);
5433       // Verify that mr is in space
5434       assert(mr.is_empty() || space->used_region().contains(mr),
5435              "Should be in space");
5436       // Verify that "start" is an object boundary
5437       assert(mr.is_empty() || oop(mr.start())->is_oop(),
5438              "Should be an oop");
5439       space->par_oop_iterate(mr, cl);
5440     }
5441     pst->all_tasks_completed();
5442   }
5443 }
5444 
5445 void
5446 CMSParRemarkTask::do_dirty_card_rescan_tasks(
5447   CompactibleFreeListSpace* sp, int i,
5448   Par_MarkRefsIntoAndScanClosure* cl) {
5449   // Until all tasks completed:
5450   // . claim an unclaimed task
5451   // . compute region boundaries corresponding to task claimed
5452   // . transfer dirty bits ct->mut for that region
5453   // . apply rescanclosure to dirty mut bits for that region
5454 
5455   ResourceMark rm;
5456   HandleMark   hm;
5457 
5458   OopTaskQueue* work_q = work_queue(i);
5459   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
5460   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
5461   // CAUTION: This closure has state that persists across calls to
5462   // the work method dirty_range_iterate_clear() in that it has
5463   // embedded in it a (subtype of) UpwardsObjectClosure. The
5464   // use of that state in the embedded UpwardsObjectClosure instance
5465   // assumes that the cards are always iterated (even if in parallel
5466   // by several threads) in monotonically increasing order per each
5467   // thread. This is true of the implementation below which picks
5468   // card ranges (chunks) in monotonically increasing order globally
5469   // and, a-fortiori, in monotonically increasing order per thread
5470   // (the latter order being a subsequence of the former).
5471   // If the work code below is ever reorganized into a more chaotic
5472   // work-partitioning form than the current "sequential tasks"
5473   // paradigm, the use of that persistent state will have to be
5474   // revisited and modified appropriately. See also related
5475   // bug 4756801 work on which should examine this code to make
5476   // sure that the changes there do not run counter to the
5477   // assumptions made here and necessary for correctness and
5478   // efficiency. Note also that this code might yield inefficient
5479   // behavior in the case of very large objects that span one or
5480   // more work chunks. Such objects would potentially be scanned
5481   // several times redundantly. Work on 4756801 should try and
5482   // address that performance anomaly if at all possible. XXX
5483   MemRegion  full_span  = _collector->_span;
5484   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
5485   MarkFromDirtyCardsClosure
5486     greyRescanClosure(_collector, full_span, // entire span of interest
5487                       sp, bm, work_q, cl);
5488 
5489   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
5490   assert(pst->valid(), "Uninitialized use?");
5491   uint nth_task = 0;
5492   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
5493   MemRegion span = sp->used_region();
5494   HeapWord* start_addr = span.start();
5495   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
5496                                            alignment);
5497   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
5498   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
5499          start_addr, "Check alignment");
5500   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
5501          chunk_size, "Check alignment");
5502 
5503   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5504     // Having claimed the nth_task, compute corresponding mem-region,
5505     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
5506     // The alignment restriction ensures that we do not need any
5507     // synchronization with other gang-workers while setting or
5508     // clearing bits in thus chunk of the MUT.
5509     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
5510                                     start_addr + (nth_task+1)*chunk_size);
5511     // The last chunk's end might be way beyond end of the
5512     // used region. In that case pull back appropriately.
5513     if (this_span.end() > end_addr) {
5514       this_span.set_end(end_addr);
5515       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
5516     }
5517     // Iterate over the dirty cards covering this chunk, marking them
5518     // precleaned, and setting the corresponding bits in the mod union
5519     // table. Since we have been careful to partition at Card and MUT-word
5520     // boundaries no synchronization is needed between parallel threads.
5521     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
5522                                                  &modUnionClosure);
5523 
5524     // Having transferred these marks into the modUnionTable,
5525     // rescan the marked objects on the dirty cards in the modUnionTable.
5526     // Even if this is at a synchronous collection, the initial marking
5527     // may have been done during an asynchronous collection so there
5528     // may be dirty bits in the mod-union table.
5529     _collector->_modUnionTable.dirty_range_iterate_clear(
5530                   this_span, &greyRescanClosure);
5531     _collector->_modUnionTable.verifyNoOneBitsInRange(
5532                                  this_span.start(),
5533                                  this_span.end());
5534   }
5535   pst->all_tasks_completed();  // declare that i am done
5536 }
5537 
5538 // . see if we can share work_queues with ParNew? XXX
5539 void
5540 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
5541                                 int* seed) {
5542   OopTaskQueue* work_q = work_queue(i);
5543   NOT_PRODUCT(int num_steals = 0;)
5544   oop obj_to_scan;
5545   CMSBitMap* bm = &(_collector->_markBitMap);
5546 
5547   while (true) {
5548     // Completely finish any left over work from (an) earlier round(s)
5549     cl->trim_queue(0);
5550     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5551                                          (size_t)ParGCDesiredObjsFromOverflowList);
5552     // Now check if there's any work in the overflow list
5553     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5554     // only affects the number of attempts made to get work from the
5555     // overflow list and does not affect the number of workers.  Just
5556     // pass ParallelGCThreads so this behavior is unchanged.
5557     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5558                                                 work_q,
5559                                                 ParallelGCThreads)) {
5560       // found something in global overflow list;
5561       // not yet ready to go stealing work from others.
5562       // We'd like to assert(work_q->size() != 0, ...)
5563       // because we just took work from the overflow list,
5564       // but of course we can't since all of that could have
5565       // been already stolen from us.
5566       // "He giveth and He taketh away."
5567       continue;
5568     }
5569     // Verify that we have no work before we resort to stealing
5570     assert(work_q->size() == 0, "Have work, shouldn't steal");
5571     // Try to steal from other queues that have work
5572     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5573       NOT_PRODUCT(num_steals++;)
5574       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5575       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5576       // Do scanning work
5577       obj_to_scan->oop_iterate(cl);
5578       // Loop around, finish this work, and try to steal some more
5579     } else if (terminator()->offer_termination()) {
5580         break;  // nirvana from the infinite cycle
5581     }
5582   }
5583   NOT_PRODUCT(
5584     if (PrintCMSStatistics != 0) {
5585       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5586     }
5587   )
5588   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
5589          "Else our work is not yet done");
5590 }
5591 
5592 // Record object boundaries in _eden_chunk_array by sampling the eden
5593 // top in the slow-path eden object allocation code path and record
5594 // the boundaries, if CMSEdenChunksRecordAlways is true. If
5595 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
5596 // sampling in sample_eden() that activates during the part of the
5597 // preclean phase.
5598 void CMSCollector::sample_eden_chunk() {
5599   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
5600     if (_eden_chunk_lock->try_lock()) {
5601       // Record a sample. This is the critical section. The contents
5602       // of the _eden_chunk_array have to be non-decreasing in the
5603       // address order.
5604       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
5605       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
5606              "Unexpected state of Eden");
5607       if (_eden_chunk_index == 0 ||
5608           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
5609            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
5610                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
5611         _eden_chunk_index++;  // commit sample
5612       }
5613       _eden_chunk_lock->unlock();
5614     }
5615   }
5616 }
5617 
5618 // Return a thread-local PLAB recording array, as appropriate.
5619 void* CMSCollector::get_data_recorder(int thr_num) {
5620   if (_survivor_plab_array != NULL &&
5621       (CMSPLABRecordAlways ||
5622        (_collectorState > Marking && _collectorState < FinalMarking))) {
5623     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
5624     ChunkArray* ca = &_survivor_plab_array[thr_num];
5625     ca->reset();   // clear it so that fresh data is recorded
5626     return (void*) ca;
5627   } else {
5628     return NULL;
5629   }
5630 }
5631 
5632 // Reset all the thread-local PLAB recording arrays
5633 void CMSCollector::reset_survivor_plab_arrays() {
5634   for (uint i = 0; i < ParallelGCThreads; i++) {
5635     _survivor_plab_array[i].reset();
5636   }
5637 }
5638 
5639 // Merge the per-thread plab arrays into the global survivor chunk
5640 // array which will provide the partitioning of the survivor space
5641 // for CMS initial scan and rescan.
5642 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
5643                                               int no_of_gc_threads) {
5644   assert(_survivor_plab_array  != NULL, "Error");
5645   assert(_survivor_chunk_array != NULL, "Error");
5646   assert(_collectorState == FinalMarking ||
5647          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
5648   for (int j = 0; j < no_of_gc_threads; j++) {
5649     _cursor[j] = 0;
5650   }
5651   HeapWord* top = surv->top();
5652   size_t i;
5653   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
5654     HeapWord* min_val = top;          // Higher than any PLAB address
5655     uint      min_tid = 0;            // position of min_val this round
5656     for (int j = 0; j < no_of_gc_threads; j++) {
5657       ChunkArray* cur_sca = &_survivor_plab_array[j];
5658       if (_cursor[j] == cur_sca->end()) {
5659         continue;
5660       }
5661       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
5662       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
5663       assert(surv->used_region().contains(cur_val), "Out of bounds value");
5664       if (cur_val < min_val) {
5665         min_tid = j;
5666         min_val = cur_val;
5667       } else {
5668         assert(cur_val < top, "All recorded addresses should be less");
5669       }
5670     }
5671     // At this point min_val and min_tid are respectively
5672     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
5673     // and the thread (j) that witnesses that address.
5674     // We record this address in the _survivor_chunk_array[i]
5675     // and increment _cursor[min_tid] prior to the next round i.
5676     if (min_val == top) {
5677       break;
5678     }
5679     _survivor_chunk_array[i] = min_val;
5680     _cursor[min_tid]++;
5681   }
5682   // We are all done; record the size of the _survivor_chunk_array
5683   _survivor_chunk_index = i; // exclusive: [0, i)
5684   if (PrintCMSStatistics > 0) {
5685     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
5686   }
5687   // Verify that we used up all the recorded entries
5688   #ifdef ASSERT
5689     size_t total = 0;
5690     for (int j = 0; j < no_of_gc_threads; j++) {
5691       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
5692       total += _cursor[j];
5693     }
5694     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5695     // Check that the merged array is in sorted order
5696     if (total > 0) {
5697       for (size_t i = 0; i < total - 1; i++) {
5698         if (PrintCMSStatistics > 0) {
5699           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5700                               i, _survivor_chunk_array[i]);
5701         }
5702         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5703                "Not sorted");
5704       }
5705     }
5706   #endif // ASSERT
5707 }
5708 
5709 // Set up the space's par_seq_tasks structure for work claiming
5710 // for parallel initial scan and rescan of young gen.
5711 // See ParRescanTask where this is currently used.
5712 void
5713 CMSCollector::
5714 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5715   assert(n_threads > 0, "Unexpected n_threads argument");
5716   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
5717 
5718   // Eden space
5719   if (!dng->eden()->is_empty()) {
5720     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
5721     assert(!pst->valid(), "Clobbering existing data?");
5722     // Each valid entry in [0, _eden_chunk_index) represents a task.
5723     size_t n_tasks = _eden_chunk_index + 1;
5724     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5725     // Sets the condition for completion of the subtask (how many threads
5726     // need to finish in order to be done).
5727     pst->set_n_threads(n_threads);
5728     pst->set_n_tasks((int)n_tasks);
5729   }
5730 
5731   // Merge the survivor plab arrays into _survivor_chunk_array
5732   if (_survivor_plab_array != NULL) {
5733     merge_survivor_plab_arrays(dng->from(), n_threads);
5734   } else {
5735     assert(_survivor_chunk_index == 0, "Error");
5736   }
5737 
5738   // To space
5739   {
5740     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
5741     assert(!pst->valid(), "Clobbering existing data?");
5742     // Sets the condition for completion of the subtask (how many threads
5743     // need to finish in order to be done).
5744     pst->set_n_threads(n_threads);
5745     pst->set_n_tasks(1);
5746     assert(pst->valid(), "Error");
5747   }
5748 
5749   // From space
5750   {
5751     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
5752     assert(!pst->valid(), "Clobbering existing data?");
5753     size_t n_tasks = _survivor_chunk_index + 1;
5754     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5755     // Sets the condition for completion of the subtask (how many threads
5756     // need to finish in order to be done).
5757     pst->set_n_threads(n_threads);
5758     pst->set_n_tasks((int)n_tasks);
5759     assert(pst->valid(), "Error");
5760   }
5761 }
5762 
5763 // Parallel version of remark
5764 void CMSCollector::do_remark_parallel() {
5765   GenCollectedHeap* gch = GenCollectedHeap::heap();
5766   FlexibleWorkGang* workers = gch->workers();
5767   assert(workers != NULL, "Need parallel worker threads.");
5768   // Choose to use the number of GC workers most recently set
5769   // into "active_workers".  If active_workers is not set, set it
5770   // to ParallelGCThreads.
5771   int n_workers = workers->active_workers();
5772   if (n_workers == 0) {
5773     assert(n_workers > 0, "Should have been set during scavenge");
5774     n_workers = ParallelGCThreads;
5775     workers->set_active_workers(n_workers);
5776   }
5777   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5778 
5779   CMSParRemarkTask tsk(this,
5780     cms_space,
5781     n_workers, workers, task_queues());
5782 
5783   // Set up for parallel process_roots work.
5784   gch->set_par_threads(n_workers);
5785   // We won't be iterating over the cards in the card table updating
5786   // the younger_gen cards, so we shouldn't call the following else
5787   // the verification code as well as subsequent younger_refs_iterate
5788   // code would get confused. XXX
5789   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5790 
5791   // The young gen rescan work will not be done as part of
5792   // process_roots (which currently doesn't know how to
5793   // parallelize such a scan), but rather will be broken up into
5794   // a set of parallel tasks (via the sampling that the [abortable]
5795   // preclean phase did of EdenSpace, plus the [two] tasks of
5796   // scanning the [two] survivor spaces. Further fine-grain
5797   // parallelization of the scanning of the survivor spaces
5798   // themselves, and of precleaning of the younger gen itself
5799   // is deferred to the future.
5800   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5801 
5802   // The dirty card rescan work is broken up into a "sequence"
5803   // of parallel tasks (per constituent space) that are dynamically
5804   // claimed by the parallel threads.
5805   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5806 
5807   // It turns out that even when we're using 1 thread, doing the work in a
5808   // separate thread causes wide variance in run times.  We can't help this
5809   // in the multi-threaded case, but we special-case n=1 here to get
5810   // repeatable measurements of the 1-thread overhead of the parallel code.
5811   if (n_workers > 1) {
5812     // Make refs discovery MT-safe, if it isn't already: it may not
5813     // necessarily be so, since it's possible that we are doing
5814     // ST marking.
5815     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5816     GenCollectedHeap::StrongRootsScope srs(gch);
5817     workers->run_task(&tsk);
5818   } else {
5819     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5820     GenCollectedHeap::StrongRootsScope srs(gch);
5821     tsk.work(0);
5822   }
5823 
5824   gch->set_par_threads(0);  // 0 ==> non-parallel.
5825   // restore, single-threaded for now, any preserved marks
5826   // as a result of work_q overflow
5827   restore_preserved_marks_if_any();
5828 }
5829 
5830 // Non-parallel version of remark
5831 void CMSCollector::do_remark_non_parallel() {
5832   ResourceMark rm;
5833   HandleMark   hm;
5834   GenCollectedHeap* gch = GenCollectedHeap::heap();
5835   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5836 
5837   MarkRefsIntoAndScanClosure
5838     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5839              &_markStack, this,
5840              false /* should_yield */, false /* not precleaning */);
5841   MarkFromDirtyCardsClosure
5842     markFromDirtyCardsClosure(this, _span,
5843                               NULL,  // space is set further below
5844                               &_markBitMap, &_markStack, &mrias_cl);
5845   {
5846     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5847     // Iterate over the dirty cards, setting the corresponding bits in the
5848     // mod union table.
5849     {
5850       ModUnionClosure modUnionClosure(&_modUnionTable);
5851       _ct->ct_bs()->dirty_card_iterate(
5852                       _cmsGen->used_region(),
5853                       &modUnionClosure);
5854     }
5855     // Having transferred these marks into the modUnionTable, we just need
5856     // to rescan the marked objects on the dirty cards in the modUnionTable.
5857     // The initial marking may have been done during an asynchronous
5858     // collection so there may be dirty bits in the mod-union table.
5859     const int alignment =
5860       CardTableModRefBS::card_size * BitsPerWord;
5861     {
5862       // ... First handle dirty cards in CMS gen
5863       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5864       MemRegion ur = _cmsGen->used_region();
5865       HeapWord* lb = ur.start();
5866       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5867       MemRegion cms_span(lb, ub);
5868       _modUnionTable.dirty_range_iterate_clear(cms_span,
5869                                                &markFromDirtyCardsClosure);
5870       verify_work_stacks_empty();
5871       if (PrintCMSStatistics != 0) {
5872         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5873           markFromDirtyCardsClosure.num_dirty_cards());
5874       }
5875     }
5876   }
5877   if (VerifyDuringGC &&
5878       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5879     HandleMark hm;  // Discard invalid handles created during verification
5880     Universe::verify();
5881   }
5882   {
5883     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5884 
5885     verify_work_stacks_empty();
5886 
5887     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5888     GenCollectedHeap::StrongRootsScope srs(gch);
5889 
5890     gch->gen_process_roots(_cmsGen->level(),
5891                            true,  // younger gens as roots
5892                            false, // use the local StrongRootsScope
5893                            SharedHeap::ScanningOption(roots_scanning_options()),
5894                            should_unload_classes(),
5895                            &mrias_cl,
5896                            NULL,
5897                            NULL); // The dirty klasses will be handled below
5898 
5899     assert(should_unload_classes()
5900            || (roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5901            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5902   }
5903 
5904   {
5905     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5906 
5907     verify_work_stacks_empty();
5908 
5909     // Scan all class loader data objects that might have been introduced
5910     // during concurrent marking.
5911     ResourceMark rm;
5912     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5913     for (int i = 0; i < array->length(); i++) {
5914       mrias_cl.do_class_loader_data(array->at(i));
5915     }
5916 
5917     // We don't need to keep track of new CLDs anymore.
5918     ClassLoaderDataGraph::remember_new_clds(false);
5919 
5920     verify_work_stacks_empty();
5921   }
5922 
5923   {
5924     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5925 
5926     verify_work_stacks_empty();
5927 
5928     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5929     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5930 
5931     verify_work_stacks_empty();
5932   }
5933 
5934   // We might have added oops to ClassLoaderData::_handles during the
5935   // concurrent marking phase. These oops point to newly allocated objects
5936   // that are guaranteed to be kept alive. Either by the direct allocation
5937   // code, or when the young collector processes the roots. Hence,
5938   // we don't have to revisit the _handles block during the remark phase.
5939 
5940   verify_work_stacks_empty();
5941   // Restore evacuated mark words, if any, used for overflow list links
5942   if (!CMSOverflowEarlyRestoration) {
5943     restore_preserved_marks_if_any();
5944   }
5945   verify_overflow_empty();
5946 }
5947 
5948 ////////////////////////////////////////////////////////
5949 // Parallel Reference Processing Task Proxy Class
5950 ////////////////////////////////////////////////////////
5951 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5952   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5953   CMSCollector*          _collector;
5954   CMSBitMap*             _mark_bit_map;
5955   const MemRegion        _span;
5956   ProcessTask&           _task;
5957 
5958 public:
5959   CMSRefProcTaskProxy(ProcessTask&     task,
5960                       CMSCollector*    collector,
5961                       const MemRegion& span,
5962                       CMSBitMap*       mark_bit_map,
5963                       AbstractWorkGang* workers,
5964                       OopTaskQueueSet* task_queues):
5965     // XXX Should superclass AGTWOQ also know about AWG since it knows
5966     // about the task_queues used by the AWG? Then it could initialize
5967     // the terminator() object. See 6984287. The set_for_termination()
5968     // below is a temporary band-aid for the regression in 6984287.
5969     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5970       task_queues),
5971     _task(task),
5972     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5973   {
5974     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5975            "Inconsistency in _span");
5976     set_for_termination(workers->active_workers());
5977   }
5978 
5979   OopTaskQueueSet* task_queues() { return queues(); }
5980 
5981   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5982 
5983   void do_work_steal(int i,
5984                      CMSParDrainMarkingStackClosure* drain,
5985                      CMSParKeepAliveClosure* keep_alive,
5986                      int* seed);
5987 
5988   virtual void work(uint worker_id);
5989 };
5990 
5991 void CMSRefProcTaskProxy::work(uint worker_id) {
5992   ResourceMark rm;
5993   HandleMark hm;
5994   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5995   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5996                                         _mark_bit_map,
5997                                         work_queue(worker_id));
5998   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5999                                                  _mark_bit_map,
6000                                                  work_queue(worker_id));
6001   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
6002   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
6003   if (_task.marks_oops_alive()) {
6004     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
6005                   _collector->hash_seed(worker_id));
6006   }
6007   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
6008   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
6009 }
6010 
6011 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
6012   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
6013   EnqueueTask& _task;
6014 
6015 public:
6016   CMSRefEnqueueTaskProxy(EnqueueTask& task)
6017     : AbstractGangTask("Enqueue reference objects in parallel"),
6018       _task(task)
6019   { }
6020 
6021   virtual void work(uint worker_id)
6022   {
6023     _task.work(worker_id);
6024   }
6025 };
6026 
6027 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
6028   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
6029    _span(span),
6030    _bit_map(bit_map),
6031    _work_queue(work_queue),
6032    _mark_and_push(collector, span, bit_map, work_queue),
6033    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6034                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
6035 { }
6036 
6037 // . see if we can share work_queues with ParNew? XXX
6038 void CMSRefProcTaskProxy::do_work_steal(int i,
6039   CMSParDrainMarkingStackClosure* drain,
6040   CMSParKeepAliveClosure* keep_alive,
6041   int* seed) {
6042   OopTaskQueue* work_q = work_queue(i);
6043   NOT_PRODUCT(int num_steals = 0;)
6044   oop obj_to_scan;
6045 
6046   while (true) {
6047     // Completely finish any left over work from (an) earlier round(s)
6048     drain->trim_queue(0);
6049     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
6050                                          (size_t)ParGCDesiredObjsFromOverflowList);
6051     // Now check if there's any work in the overflow list
6052     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
6053     // only affects the number of attempts made to get work from the
6054     // overflow list and does not affect the number of workers.  Just
6055     // pass ParallelGCThreads so this behavior is unchanged.
6056     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
6057                                                 work_q,
6058                                                 ParallelGCThreads)) {
6059       // Found something in global overflow list;
6060       // not yet ready to go stealing work from others.
6061       // We'd like to assert(work_q->size() != 0, ...)
6062       // because we just took work from the overflow list,
6063       // but of course we can't, since all of that might have
6064       // been already stolen from us.
6065       continue;
6066     }
6067     // Verify that we have no work before we resort to stealing
6068     assert(work_q->size() == 0, "Have work, shouldn't steal");
6069     // Try to steal from other queues that have work
6070     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
6071       NOT_PRODUCT(num_steals++;)
6072       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
6073       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
6074       // Do scanning work
6075       obj_to_scan->oop_iterate(keep_alive);
6076       // Loop around, finish this work, and try to steal some more
6077     } else if (terminator()->offer_termination()) {
6078       break;  // nirvana from the infinite cycle
6079     }
6080   }
6081   NOT_PRODUCT(
6082     if (PrintCMSStatistics != 0) {
6083       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
6084     }
6085   )
6086 }
6087 
6088 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
6089 {
6090   GenCollectedHeap* gch = GenCollectedHeap::heap();
6091   FlexibleWorkGang* workers = gch->workers();
6092   assert(workers != NULL, "Need parallel worker threads.");
6093   CMSRefProcTaskProxy rp_task(task, &_collector,
6094                               _collector.ref_processor()->span(),
6095                               _collector.markBitMap(),
6096                               workers, _collector.task_queues());
6097   workers->run_task(&rp_task);
6098 }
6099 
6100 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
6101 {
6102 
6103   GenCollectedHeap* gch = GenCollectedHeap::heap();
6104   FlexibleWorkGang* workers = gch->workers();
6105   assert(workers != NULL, "Need parallel worker threads.");
6106   CMSRefEnqueueTaskProxy enq_task(task);
6107   workers->run_task(&enq_task);
6108 }
6109 
6110 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
6111 
6112   ResourceMark rm;
6113   HandleMark   hm;
6114 
6115   ReferenceProcessor* rp = ref_processor();
6116   assert(rp->span().equals(_span), "Spans should be equal");
6117   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
6118   // Process weak references.
6119   rp->setup_policy(clear_all_soft_refs);
6120   verify_work_stacks_empty();
6121 
6122   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
6123                                           &_markStack, false /* !preclean */);
6124   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
6125                                 _span, &_markBitMap, &_markStack,
6126                                 &cmsKeepAliveClosure, false /* !preclean */);
6127   {
6128     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
6129 
6130     ReferenceProcessorStats stats;
6131     if (rp->processing_is_mt()) {
6132       // Set the degree of MT here.  If the discovery is done MT, there
6133       // may have been a different number of threads doing the discovery
6134       // and a different number of discovered lists may have Ref objects.
6135       // That is OK as long as the Reference lists are balanced (see
6136       // balance_all_queues() and balance_queues()).
6137       GenCollectedHeap* gch = GenCollectedHeap::heap();
6138       int active_workers = ParallelGCThreads;
6139       FlexibleWorkGang* workers = gch->workers();
6140       if (workers != NULL) {
6141         active_workers = workers->active_workers();
6142         // The expectation is that active_workers will have already
6143         // been set to a reasonable value.  If it has not been set,
6144         // investigate.
6145         assert(active_workers > 0, "Should have been set during scavenge");
6146       }
6147       rp->set_active_mt_degree(active_workers);
6148       CMSRefProcTaskExecutor task_executor(*this);
6149       stats = rp->process_discovered_references(&_is_alive_closure,
6150                                         &cmsKeepAliveClosure,
6151                                         &cmsDrainMarkingStackClosure,
6152                                         &task_executor,
6153                                         _gc_timer_cm,
6154                                         _gc_tracer_cm->gc_id());
6155     } else {
6156       stats = rp->process_discovered_references(&_is_alive_closure,
6157                                         &cmsKeepAliveClosure,
6158                                         &cmsDrainMarkingStackClosure,
6159                                         NULL,
6160                                         _gc_timer_cm,
6161                                         _gc_tracer_cm->gc_id());
6162     }
6163     _gc_tracer_cm->report_gc_reference_stats(stats);
6164 
6165   }
6166 
6167   // This is the point where the entire marking should have completed.
6168   verify_work_stacks_empty();
6169 
6170   if (should_unload_classes()) {
6171     {
6172       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
6173 
6174       // Unload classes and purge the SystemDictionary.
6175       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
6176 
6177       // Unload nmethods.
6178       CodeCache::do_unloading(&_is_alive_closure, purged_class);
6179 
6180       // Prune dead klasses from subklass/sibling/implementor lists.
6181       Klass::clean_weak_klass_links(&_is_alive_closure);
6182     }
6183 
6184     {
6185       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
6186       // Clean up unreferenced symbols in symbol table.
6187       SymbolTable::unlink();
6188     }
6189 
6190     {
6191       GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
6192       // Delete entries for dead interned strings.
6193       StringTable::unlink(&_is_alive_closure);
6194     }
6195   }
6196 
6197 
6198   // Restore any preserved marks as a result of mark stack or
6199   // work queue overflow
6200   restore_preserved_marks_if_any();  // done single-threaded for now
6201 
6202   rp->set_enqueuing_is_done(true);
6203   if (rp->processing_is_mt()) {
6204     rp->balance_all_queues();
6205     CMSRefProcTaskExecutor task_executor(*this);
6206     rp->enqueue_discovered_references(&task_executor);
6207   } else {
6208     rp->enqueue_discovered_references(NULL);
6209   }
6210   rp->verify_no_references_recorded();
6211   assert(!rp->discovery_enabled(), "should have been disabled");
6212 }
6213 
6214 #ifndef PRODUCT
6215 void CMSCollector::check_correct_thread_executing() {
6216   Thread* t = Thread::current();
6217   // Only the VM thread or the CMS thread should be here.
6218   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
6219          "Unexpected thread type");
6220   // If this is the vm thread, the foreground process
6221   // should not be waiting.  Note that _foregroundGCIsActive is
6222   // true while the foreground collector is waiting.
6223   if (_foregroundGCShouldWait) {
6224     // We cannot be the VM thread
6225     assert(t->is_ConcurrentGC_thread(),
6226            "Should be CMS thread");
6227   } else {
6228     // We can be the CMS thread only if we are in a stop-world
6229     // phase of CMS collection.
6230     if (t->is_ConcurrentGC_thread()) {
6231       assert(_collectorState == InitialMarking ||
6232              _collectorState == FinalMarking,
6233              "Should be a stop-world phase");
6234       // The CMS thread should be holding the CMS_token.
6235       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6236              "Potential interference with concurrently "
6237              "executing VM thread");
6238     }
6239   }
6240 }
6241 #endif
6242 
6243 void CMSCollector::sweep(bool asynch) {
6244   assert(_collectorState == Sweeping, "just checking");
6245   check_correct_thread_executing();
6246   verify_work_stacks_empty();
6247   verify_overflow_empty();
6248   increment_sweep_count();
6249   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
6250 
6251   _inter_sweep_timer.stop();
6252   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
6253 
6254   assert(!_intra_sweep_timer.is_active(), "Should not be active");
6255   _intra_sweep_timer.reset();
6256   _intra_sweep_timer.start();
6257   if (asynch) {
6258     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6259     CMSPhaseAccounting pa(this, "sweep", _gc_tracer_cm->gc_id(), !PrintGCDetails);
6260     // First sweep the old gen
6261     {
6262       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6263                                bitMapLock());
6264       sweepWork(_cmsGen, asynch);
6265     }
6266 
6267     // Update Universe::_heap_*_at_gc figures.
6268     // We need all the free list locks to make the abstract state
6269     // transition from Sweeping to Resetting. See detailed note
6270     // further below.
6271     {
6272       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
6273       // Update heap occupancy information which is used as
6274       // input to soft ref clearing policy at the next gc.
6275       Universe::update_heap_info_at_gc();
6276       _collectorState = Resizing;
6277     }
6278   } else {
6279     // already have needed locks
6280     sweepWork(_cmsGen,  asynch);
6281     // Update heap occupancy information which is used as
6282     // input to soft ref clearing policy at the next gc.
6283     Universe::update_heap_info_at_gc();
6284     _collectorState = Resizing;
6285   }
6286   verify_work_stacks_empty();
6287   verify_overflow_empty();
6288 
6289   if (should_unload_classes()) {
6290     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
6291     // requires that the virtual spaces are stable and not deleted.
6292     ClassLoaderDataGraph::set_should_purge(true);
6293   }
6294 
6295   _intra_sweep_timer.stop();
6296   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
6297 
6298   _inter_sweep_timer.reset();
6299   _inter_sweep_timer.start();
6300 
6301   // We need to use a monotonically non-decreasing time in ms
6302   // or we will see time-warp warnings and os::javaTimeMillis()
6303   // does not guarantee monotonicity.
6304   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
6305   update_time_of_last_gc(now);
6306 
6307   // NOTE on abstract state transitions:
6308   // Mutators allocate-live and/or mark the mod-union table dirty
6309   // based on the state of the collection.  The former is done in
6310   // the interval [Marking, Sweeping] and the latter in the interval
6311   // [Marking, Sweeping).  Thus the transitions into the Marking state
6312   // and out of the Sweeping state must be synchronously visible
6313   // globally to the mutators.
6314   // The transition into the Marking state happens with the world
6315   // stopped so the mutators will globally see it.  Sweeping is
6316   // done asynchronously by the background collector so the transition
6317   // from the Sweeping state to the Resizing state must be done
6318   // under the freelistLock (as is the check for whether to
6319   // allocate-live and whether to dirty the mod-union table).
6320   assert(_collectorState == Resizing, "Change of collector state to"
6321     " Resizing must be done under the freelistLocks (plural)");
6322 
6323   // Now that sweeping has been completed, we clear
6324   // the incremental_collection_failed flag,
6325   // thus inviting a younger gen collection to promote into
6326   // this generation. If such a promotion may still fail,
6327   // the flag will be set again when a young collection is
6328   // attempted.
6329   GenCollectedHeap* gch = GenCollectedHeap::heap();
6330   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
6331   gch->update_full_collections_completed(_collection_count_start);
6332 }
6333 
6334 // FIX ME!!! Looks like this belongs in CFLSpace, with
6335 // CMSGen merely delegating to it.
6336 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
6337   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
6338   HeapWord*  minAddr        = _cmsSpace->bottom();
6339   HeapWord*  largestAddr    =
6340     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
6341   if (largestAddr == NULL) {
6342     // The dictionary appears to be empty.  In this case
6343     // try to coalesce at the end of the heap.
6344     largestAddr = _cmsSpace->end();
6345   }
6346   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
6347   size_t nearLargestOffset =
6348     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
6349   if (PrintFLSStatistics != 0) {
6350     gclog_or_tty->print_cr(
6351       "CMS: Large Block: " PTR_FORMAT ";"
6352       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
6353       largestAddr,
6354       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
6355   }
6356   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
6357 }
6358 
6359 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
6360   return addr >= _cmsSpace->nearLargestChunk();
6361 }
6362 
6363 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
6364   return _cmsSpace->find_chunk_at_end();
6365 }
6366 
6367 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
6368                                                     bool full) {
6369   // The next lower level has been collected.  Gather any statistics
6370   // that are of interest at this point.
6371   if (!full && (current_level + 1) == level()) {
6372     // Gather statistics on the young generation collection.
6373     collector()->stats().record_gc0_end(used());
6374   }
6375 }
6376 
6377 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
6378   if (PrintGCDetails && Verbose) {
6379     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
6380   }
6381   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
6382   _debug_collection_type =
6383     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
6384   if (PrintGCDetails && Verbose) {
6385     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
6386   }
6387 }
6388 
6389 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
6390   bool asynch) {
6391   // We iterate over the space(s) underlying this generation,
6392   // checking the mark bit map to see if the bits corresponding
6393   // to specific blocks are marked or not. Blocks that are
6394   // marked are live and are not swept up. All remaining blocks
6395   // are swept up, with coalescing on-the-fly as we sweep up
6396   // contiguous free and/or garbage blocks:
6397   // We need to ensure that the sweeper synchronizes with allocators
6398   // and stop-the-world collectors. In particular, the following
6399   // locks are used:
6400   // . CMS token: if this is held, a stop the world collection cannot occur
6401   // . freelistLock: if this is held no allocation can occur from this
6402   //                 generation by another thread
6403   // . bitMapLock: if this is held, no other thread can access or update
6404   //
6405 
6406   // Note that we need to hold the freelistLock if we use
6407   // block iterate below; else the iterator might go awry if
6408   // a mutator (or promotion) causes block contents to change
6409   // (for instance if the allocator divvies up a block).
6410   // If we hold the free list lock, for all practical purposes
6411   // young generation GC's can't occur (they'll usually need to
6412   // promote), so we might as well prevent all young generation
6413   // GC's while we do a sweeping step. For the same reason, we might
6414   // as well take the bit map lock for the entire duration
6415 
6416   // check that we hold the requisite locks
6417   assert(have_cms_token(), "Should hold cms token");
6418   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
6419          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
6420         "Should possess CMS token to sweep");
6421   assert_lock_strong(gen->freelistLock());
6422   assert_lock_strong(bitMapLock());
6423 
6424   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
6425   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
6426   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
6427                                       _inter_sweep_estimate.padded_average(),
6428                                       _intra_sweep_estimate.padded_average());
6429   gen->setNearLargestChunk();
6430 
6431   {
6432     SweepClosure sweepClosure(this, gen, &_markBitMap,
6433                             CMSYield && asynch);
6434     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
6435     // We need to free-up/coalesce garbage/blocks from a
6436     // co-terminal free run. This is done in the SweepClosure
6437     // destructor; so, do not remove this scope, else the
6438     // end-of-sweep-census below will be off by a little bit.
6439   }
6440   gen->cmsSpace()->sweep_completed();
6441   gen->cmsSpace()->endSweepFLCensus(sweep_count());
6442   if (should_unload_classes()) {                // unloaded classes this cycle,
6443     _concurrent_cycles_since_last_unload = 0;   // ... reset count
6444   } else {                                      // did not unload classes,
6445     _concurrent_cycles_since_last_unload++;     // ... increment count
6446   }
6447 }
6448 
6449 // Reset CMS data structures (for now just the marking bit map)
6450 // preparatory for the next cycle.
6451 void CMSCollector::reset(bool asynch) {
6452   if (asynch) {
6453     CMSTokenSyncWithLocks ts(true, bitMapLock());
6454 
6455     // If the state is not "Resetting", the foreground  thread
6456     // has done a collection and the resetting.
6457     if (_collectorState != Resetting) {
6458       assert(_collectorState == Idling, "The state should only change"
6459         " because the foreground collector has finished the collection");
6460       return;
6461     }
6462 
6463     // Clear the mark bitmap (no grey objects to start with)
6464     // for the next cycle.
6465     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6466     CMSPhaseAccounting cmspa(this, "reset", _gc_tracer_cm->gc_id(), !PrintGCDetails);
6467 
6468     HeapWord* curAddr = _markBitMap.startWord();
6469     while (curAddr < _markBitMap.endWord()) {
6470       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
6471       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
6472       _markBitMap.clear_large_range(chunk);
6473       if (ConcurrentMarkSweepThread::should_yield() &&
6474           !foregroundGCIsActive() &&
6475           CMSYield) {
6476         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6477                "CMS thread should hold CMS token");
6478         assert_lock_strong(bitMapLock());
6479         bitMapLock()->unlock();
6480         ConcurrentMarkSweepThread::desynchronize(true);
6481         ConcurrentMarkSweepThread::acknowledge_yield_request();
6482         stopTimer();
6483         if (PrintCMSStatistics != 0) {
6484           incrementYields();
6485         }
6486         icms_wait();
6487 
6488         // See the comment in coordinator_yield()
6489         for (unsigned i = 0; i < CMSYieldSleepCount &&
6490                          ConcurrentMarkSweepThread::should_yield() &&
6491                          !CMSCollector::foregroundGCIsActive(); ++i) {
6492           os::sleep(Thread::current(), 1, false);
6493           ConcurrentMarkSweepThread::acknowledge_yield_request();
6494         }
6495 
6496         ConcurrentMarkSweepThread::synchronize(true);
6497         bitMapLock()->lock_without_safepoint_check();
6498         startTimer();
6499       }
6500       curAddr = chunk.end();
6501     }
6502     // A successful mostly concurrent collection has been done.
6503     // Because only the full (i.e., concurrent mode failure) collections
6504     // are being measured for gc overhead limits, clean the "near" flag
6505     // and count.
6506     size_policy()->reset_gc_overhead_limit_count();
6507     _collectorState = Idling;
6508   } else {
6509     // already have the lock
6510     assert(_collectorState == Resetting, "just checking");
6511     assert_lock_strong(bitMapLock());
6512     _markBitMap.clear_all();
6513     _collectorState = Idling;
6514   }
6515 
6516   // Stop incremental mode after a cycle completes, so that any future cycles
6517   // are triggered by allocation.
6518   stop_icms();
6519 
6520   NOT_PRODUCT(
6521     if (RotateCMSCollectionTypes) {
6522       _cmsGen->rotate_debug_collection_type();
6523     }
6524   )
6525 
6526   register_gc_end();
6527 }
6528 
6529 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
6530   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
6531   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6532   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer_cm->gc_id());
6533   TraceCollectorStats tcs(counters());
6534 
6535   switch (op) {
6536     case CMS_op_checkpointRootsInitial: {
6537       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6538       checkpointRootsInitial(true);       // asynch
6539       if (PrintGC) {
6540         _cmsGen->printOccupancy("initial-mark");
6541       }
6542       break;
6543     }
6544     case CMS_op_checkpointRootsFinal: {
6545       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6546       checkpointRootsFinal(true,    // asynch
6547                            false,   // !clear_all_soft_refs
6548                            false);  // !init_mark_was_synchronous
6549       if (PrintGC) {
6550         _cmsGen->printOccupancy("remark");
6551       }
6552       break;
6553     }
6554     default:
6555       fatal("No such CMS_op");
6556   }
6557 }
6558 
6559 #ifndef PRODUCT
6560 size_t const CMSCollector::skip_header_HeapWords() {
6561   return FreeChunk::header_size();
6562 }
6563 
6564 // Try and collect here conditions that should hold when
6565 // CMS thread is exiting. The idea is that the foreground GC
6566 // thread should not be blocked if it wants to terminate
6567 // the CMS thread and yet continue to run the VM for a while
6568 // after that.
6569 void CMSCollector::verify_ok_to_terminate() const {
6570   assert(Thread::current()->is_ConcurrentGC_thread(),
6571          "should be called by CMS thread");
6572   assert(!_foregroundGCShouldWait, "should be false");
6573   // We could check here that all the various low-level locks
6574   // are not held by the CMS thread, but that is overkill; see
6575   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
6576   // is checked.
6577 }
6578 #endif
6579 
6580 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
6581    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
6582           "missing Printezis mark?");
6583   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6584   size_t size = pointer_delta(nextOneAddr + 1, addr);
6585   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6586          "alignment problem");
6587   assert(size >= 3, "Necessary for Printezis marks to work");
6588   return size;
6589 }
6590 
6591 // A variant of the above (block_size_using_printezis_bits()) except
6592 // that we return 0 if the P-bits are not yet set.
6593 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
6594   if (_markBitMap.isMarked(addr + 1)) {
6595     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
6596     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6597     size_t size = pointer_delta(nextOneAddr + 1, addr);
6598     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6599            "alignment problem");
6600     assert(size >= 3, "Necessary for Printezis marks to work");
6601     return size;
6602   }
6603   return 0;
6604 }
6605 
6606 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
6607   size_t sz = 0;
6608   oop p = (oop)addr;
6609   if (p->klass_or_null() != NULL) {
6610     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
6611   } else {
6612     sz = block_size_using_printezis_bits(addr);
6613   }
6614   assert(sz > 0, "size must be nonzero");
6615   HeapWord* next_block = addr + sz;
6616   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
6617                                              CardTableModRefBS::card_size);
6618   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
6619          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
6620          "must be different cards");
6621   return next_card;
6622 }
6623 
6624 
6625 // CMS Bit Map Wrapper /////////////////////////////////////////
6626 
6627 // Construct a CMS bit map infrastructure, but don't create the
6628 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
6629 // further below.
6630 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
6631   _bm(),
6632   _shifter(shifter),
6633   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
6634 {
6635   _bmStartWord = 0;
6636   _bmWordSize  = 0;
6637 }
6638 
6639 bool CMSBitMap::allocate(MemRegion mr) {
6640   _bmStartWord = mr.start();
6641   _bmWordSize  = mr.word_size();
6642   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
6643                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
6644   if (!brs.is_reserved()) {
6645     warning("CMS bit map allocation failure");
6646     return false;
6647   }
6648   // For now we'll just commit all of the bit map up front.
6649   // Later on we'll try to be more parsimonious with swap.
6650   if (!_virtual_space.initialize(brs, brs.size())) {
6651     warning("CMS bit map backing store failure");
6652     return false;
6653   }
6654   assert(_virtual_space.committed_size() == brs.size(),
6655          "didn't reserve backing store for all of CMS bit map?");
6656   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
6657   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
6658          _bmWordSize, "inconsistency in bit map sizing");
6659   _bm.set_size(_bmWordSize >> _shifter);
6660 
6661   // bm.clear(); // can we rely on getting zero'd memory? verify below
6662   assert(isAllClear(),
6663          "Expected zero'd memory from ReservedSpace constructor");
6664   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
6665          "consistency check");
6666   return true;
6667 }
6668 
6669 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
6670   HeapWord *next_addr, *end_addr, *last_addr;
6671   assert_locked();
6672   assert(covers(mr), "out-of-range error");
6673   // XXX assert that start and end are appropriately aligned
6674   for (next_addr = mr.start(), end_addr = mr.end();
6675        next_addr < end_addr; next_addr = last_addr) {
6676     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
6677     last_addr = dirty_region.end();
6678     if (!dirty_region.is_empty()) {
6679       cl->do_MemRegion(dirty_region);
6680     } else {
6681       assert(last_addr == end_addr, "program logic");
6682       return;
6683     }
6684   }
6685 }
6686 
6687 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
6688   _bm.print_on_error(st, prefix);
6689 }
6690 
6691 #ifndef PRODUCT
6692 void CMSBitMap::assert_locked() const {
6693   CMSLockVerifier::assert_locked(lock());
6694 }
6695 
6696 bool CMSBitMap::covers(MemRegion mr) const {
6697   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
6698   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
6699          "size inconsistency");
6700   return (mr.start() >= _bmStartWord) &&
6701          (mr.end()   <= endWord());
6702 }
6703 
6704 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
6705     return (start >= _bmStartWord && (start + size) <= endWord());
6706 }
6707 
6708 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
6709   // verify that there are no 1 bits in the interval [left, right)
6710   FalseBitMapClosure falseBitMapClosure;
6711   iterate(&falseBitMapClosure, left, right);
6712 }
6713 
6714 void CMSBitMap::region_invariant(MemRegion mr)
6715 {
6716   assert_locked();
6717   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
6718   assert(!mr.is_empty(), "unexpected empty region");
6719   assert(covers(mr), "mr should be covered by bit map");
6720   // convert address range into offset range
6721   size_t start_ofs = heapWordToOffset(mr.start());
6722   // Make sure that end() is appropriately aligned
6723   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
6724                         (1 << (_shifter+LogHeapWordSize))),
6725          "Misaligned mr.end()");
6726   size_t end_ofs   = heapWordToOffset(mr.end());
6727   assert(end_ofs > start_ofs, "Should mark at least one bit");
6728 }
6729 
6730 #endif
6731 
6732 bool CMSMarkStack::allocate(size_t size) {
6733   // allocate a stack of the requisite depth
6734   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6735                    size * sizeof(oop)));
6736   if (!rs.is_reserved()) {
6737     warning("CMSMarkStack allocation failure");
6738     return false;
6739   }
6740   if (!_virtual_space.initialize(rs, rs.size())) {
6741     warning("CMSMarkStack backing store failure");
6742     return false;
6743   }
6744   assert(_virtual_space.committed_size() == rs.size(),
6745          "didn't reserve backing store for all of CMS stack?");
6746   _base = (oop*)(_virtual_space.low());
6747   _index = 0;
6748   _capacity = size;
6749   NOT_PRODUCT(_max_depth = 0);
6750   return true;
6751 }
6752 
6753 // XXX FIX ME !!! In the MT case we come in here holding a
6754 // leaf lock. For printing we need to take a further lock
6755 // which has lower rank. We need to recalibrate the two
6756 // lock-ranks involved in order to be able to print the
6757 // messages below. (Or defer the printing to the caller.
6758 // For now we take the expedient path of just disabling the
6759 // messages for the problematic case.)
6760 void CMSMarkStack::expand() {
6761   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6762   if (_capacity == MarkStackSizeMax) {
6763     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6764       // We print a warning message only once per CMS cycle.
6765       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6766     }
6767     return;
6768   }
6769   // Double capacity if possible
6770   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6771   // Do not give up existing stack until we have managed to
6772   // get the double capacity that we desired.
6773   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6774                    new_capacity * sizeof(oop)));
6775   if (rs.is_reserved()) {
6776     // Release the backing store associated with old stack
6777     _virtual_space.release();
6778     // Reinitialize virtual space for new stack
6779     if (!_virtual_space.initialize(rs, rs.size())) {
6780       fatal("Not enough swap for expanded marking stack");
6781     }
6782     _base = (oop*)(_virtual_space.low());
6783     _index = 0;
6784     _capacity = new_capacity;
6785   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6786     // Failed to double capacity, continue;
6787     // we print a detail message only once per CMS cycle.
6788     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6789             SIZE_FORMAT"K",
6790             _capacity / K, new_capacity / K);
6791   }
6792 }
6793 
6794 
6795 // Closures
6796 // XXX: there seems to be a lot of code  duplication here;
6797 // should refactor and consolidate common code.
6798 
6799 // This closure is used to mark refs into the CMS generation in
6800 // the CMS bit map. Called at the first checkpoint. This closure
6801 // assumes that we do not need to re-mark dirty cards; if the CMS
6802 // generation on which this is used is not an oldest
6803 // generation then this will lose younger_gen cards!
6804 
6805 MarkRefsIntoClosure::MarkRefsIntoClosure(
6806   MemRegion span, CMSBitMap* bitMap):
6807     _span(span),
6808     _bitMap(bitMap)
6809 {
6810     assert(_ref_processor == NULL, "deliberately left NULL");
6811     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6812 }
6813 
6814 void MarkRefsIntoClosure::do_oop(oop obj) {
6815   // if p points into _span, then mark corresponding bit in _markBitMap
6816   assert(obj->is_oop(), "expected an oop");
6817   HeapWord* addr = (HeapWord*)obj;
6818   if (_span.contains(addr)) {
6819     // this should be made more efficient
6820     _bitMap->mark(addr);
6821   }
6822 }
6823 
6824 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6825 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6826 
6827 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6828   MemRegion span, CMSBitMap* bitMap):
6829     _span(span),
6830     _bitMap(bitMap)
6831 {
6832     assert(_ref_processor == NULL, "deliberately left NULL");
6833     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6834 }
6835 
6836 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6837   // if p points into _span, then mark corresponding bit in _markBitMap
6838   assert(obj->is_oop(), "expected an oop");
6839   HeapWord* addr = (HeapWord*)obj;
6840   if (_span.contains(addr)) {
6841     // this should be made more efficient
6842     _bitMap->par_mark(addr);
6843   }
6844 }
6845 
6846 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6847 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6848 
6849 // A variant of the above, used for CMS marking verification.
6850 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6851   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6852     _span(span),
6853     _verification_bm(verification_bm),
6854     _cms_bm(cms_bm)
6855 {
6856     assert(_ref_processor == NULL, "deliberately left NULL");
6857     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6858 }
6859 
6860 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6861   // if p points into _span, then mark corresponding bit in _markBitMap
6862   assert(obj->is_oop(), "expected an oop");
6863   HeapWord* addr = (HeapWord*)obj;
6864   if (_span.contains(addr)) {
6865     _verification_bm->mark(addr);
6866     if (!_cms_bm->isMarked(addr)) {
6867       oop(addr)->print();
6868       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
6869       fatal("... aborting");
6870     }
6871   }
6872 }
6873 
6874 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6875 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6876 
6877 //////////////////////////////////////////////////
6878 // MarkRefsIntoAndScanClosure
6879 //////////////////////////////////////////////////
6880 
6881 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6882                                                        ReferenceProcessor* rp,
6883                                                        CMSBitMap* bit_map,
6884                                                        CMSBitMap* mod_union_table,
6885                                                        CMSMarkStack*  mark_stack,
6886                                                        CMSCollector* collector,
6887                                                        bool should_yield,
6888                                                        bool concurrent_precleaning):
6889   _collector(collector),
6890   _span(span),
6891   _bit_map(bit_map),
6892   _mark_stack(mark_stack),
6893   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6894                       mark_stack, concurrent_precleaning),
6895   _yield(should_yield),
6896   _concurrent_precleaning(concurrent_precleaning),
6897   _freelistLock(NULL)
6898 {
6899   _ref_processor = rp;
6900   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6901 }
6902 
6903 // This closure is used to mark refs into the CMS generation at the
6904 // second (final) checkpoint, and to scan and transitively follow
6905 // the unmarked oops. It is also used during the concurrent precleaning
6906 // phase while scanning objects on dirty cards in the CMS generation.
6907 // The marks are made in the marking bit map and the marking stack is
6908 // used for keeping the (newly) grey objects during the scan.
6909 // The parallel version (Par_...) appears further below.
6910 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6911   if (obj != NULL) {
6912     assert(obj->is_oop(), "expected an oop");
6913     HeapWord* addr = (HeapWord*)obj;
6914     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6915     assert(_collector->overflow_list_is_empty(),
6916            "overflow list should be empty");
6917     if (_span.contains(addr) &&
6918         !_bit_map->isMarked(addr)) {
6919       // mark bit map (object is now grey)
6920       _bit_map->mark(addr);
6921       // push on marking stack (stack should be empty), and drain the
6922       // stack by applying this closure to the oops in the oops popped
6923       // from the stack (i.e. blacken the grey objects)
6924       bool res = _mark_stack->push(obj);
6925       assert(res, "Should have space to push on empty stack");
6926       do {
6927         oop new_oop = _mark_stack->pop();
6928         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6929         assert(_bit_map->isMarked((HeapWord*)new_oop),
6930                "only grey objects on this stack");
6931         // iterate over the oops in this oop, marking and pushing
6932         // the ones in CMS heap (i.e. in _span).
6933         new_oop->oop_iterate(&_pushAndMarkClosure);
6934         // check if it's time to yield
6935         do_yield_check();
6936       } while (!_mark_stack->isEmpty() ||
6937                (!_concurrent_precleaning && take_from_overflow_list()));
6938         // if marking stack is empty, and we are not doing this
6939         // during precleaning, then check the overflow list
6940     }
6941     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6942     assert(_collector->overflow_list_is_empty(),
6943            "overflow list was drained above");
6944     // We could restore evacuated mark words, if any, used for
6945     // overflow list links here because the overflow list is
6946     // provably empty here. That would reduce the maximum
6947     // size requirements for preserved_{oop,mark}_stack.
6948     // But we'll just postpone it until we are all done
6949     // so we can just stream through.
6950     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6951       _collector->restore_preserved_marks_if_any();
6952       assert(_collector->no_preserved_marks(), "No preserved marks");
6953     }
6954     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6955            "All preserved marks should have been restored above");
6956   }
6957 }
6958 
6959 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6960 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6961 
6962 void MarkRefsIntoAndScanClosure::do_yield_work() {
6963   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6964          "CMS thread should hold CMS token");
6965   assert_lock_strong(_freelistLock);
6966   assert_lock_strong(_bit_map->lock());
6967   // relinquish the free_list_lock and bitMaplock()
6968   _bit_map->lock()->unlock();
6969   _freelistLock->unlock();
6970   ConcurrentMarkSweepThread::desynchronize(true);
6971   ConcurrentMarkSweepThread::acknowledge_yield_request();
6972   _collector->stopTimer();
6973   if (PrintCMSStatistics != 0) {
6974     _collector->incrementYields();
6975   }
6976   _collector->icms_wait();
6977 
6978   // See the comment in coordinator_yield()
6979   for (unsigned i = 0;
6980        i < CMSYieldSleepCount &&
6981        ConcurrentMarkSweepThread::should_yield() &&
6982        !CMSCollector::foregroundGCIsActive();
6983        ++i) {
6984     os::sleep(Thread::current(), 1, false);
6985     ConcurrentMarkSweepThread::acknowledge_yield_request();
6986   }
6987 
6988   ConcurrentMarkSweepThread::synchronize(true);
6989   _freelistLock->lock_without_safepoint_check();
6990   _bit_map->lock()->lock_without_safepoint_check();
6991   _collector->startTimer();
6992 }
6993 
6994 ///////////////////////////////////////////////////////////
6995 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6996 //                                 MarkRefsIntoAndScanClosure
6997 ///////////////////////////////////////////////////////////
6998 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6999   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
7000   CMSBitMap* bit_map, OopTaskQueue* work_queue):
7001   _span(span),
7002   _bit_map(bit_map),
7003   _work_queue(work_queue),
7004   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
7005                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
7006   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
7007 {
7008   _ref_processor = rp;
7009   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7010 }
7011 
7012 // This closure is used to mark refs into the CMS generation at the
7013 // second (final) checkpoint, and to scan and transitively follow
7014 // the unmarked oops. The marks are made in the marking bit map and
7015 // the work_queue is used for keeping the (newly) grey objects during
7016 // the scan phase whence they are also available for stealing by parallel
7017 // threads. Since the marking bit map is shared, updates are
7018 // synchronized (via CAS).
7019 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
7020   if (obj != NULL) {
7021     // Ignore mark word because this could be an already marked oop
7022     // that may be chained at the end of the overflow list.
7023     assert(obj->is_oop(true), "expected an oop");
7024     HeapWord* addr = (HeapWord*)obj;
7025     if (_span.contains(addr) &&
7026         !_bit_map->isMarked(addr)) {
7027       // mark bit map (object will become grey):
7028       // It is possible for several threads to be
7029       // trying to "claim" this object concurrently;
7030       // the unique thread that succeeds in marking the
7031       // object first will do the subsequent push on
7032       // to the work queue (or overflow list).
7033       if (_bit_map->par_mark(addr)) {
7034         // push on work_queue (which may not be empty), and trim the
7035         // queue to an appropriate length by applying this closure to
7036         // the oops in the oops popped from the stack (i.e. blacken the
7037         // grey objects)
7038         bool res = _work_queue->push(obj);
7039         assert(res, "Low water mark should be less than capacity?");
7040         trim_queue(_low_water_mark);
7041       } // Else, another thread claimed the object
7042     }
7043   }
7044 }
7045 
7046 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
7047 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
7048 
7049 // This closure is used to rescan the marked objects on the dirty cards
7050 // in the mod union table and the card table proper.
7051 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
7052   oop p, MemRegion mr) {
7053 
7054   size_t size = 0;
7055   HeapWord* addr = (HeapWord*)p;
7056   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7057   assert(_span.contains(addr), "we are scanning the CMS generation");
7058   // check if it's time to yield
7059   if (do_yield_check()) {
7060     // We yielded for some foreground stop-world work,
7061     // and we have been asked to abort this ongoing preclean cycle.
7062     return 0;
7063   }
7064   if (_bitMap->isMarked(addr)) {
7065     // it's marked; is it potentially uninitialized?
7066     if (p->klass_or_null() != NULL) {
7067         // an initialized object; ignore mark word in verification below
7068         // since we are running concurrent with mutators
7069         assert(p->is_oop(true), "should be an oop");
7070         if (p->is_objArray()) {
7071           // objArrays are precisely marked; restrict scanning
7072           // to dirty cards only.
7073           size = CompactibleFreeListSpace::adjustObjectSize(
7074                    p->oop_iterate(_scanningClosure, mr));
7075         } else {
7076           // A non-array may have been imprecisely marked; we need
7077           // to scan object in its entirety.
7078           size = CompactibleFreeListSpace::adjustObjectSize(
7079                    p->oop_iterate(_scanningClosure));
7080         }
7081         #ifdef ASSERT
7082           size_t direct_size =
7083             CompactibleFreeListSpace::adjustObjectSize(p->size());
7084           assert(size == direct_size, "Inconsistency in size");
7085           assert(size >= 3, "Necessary for Printezis marks to work");
7086           if (!_bitMap->isMarked(addr+1)) {
7087             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
7088           } else {
7089             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
7090             assert(_bitMap->isMarked(addr+size-1),
7091                    "inconsistent Printezis mark");
7092           }
7093         #endif // ASSERT
7094     } else {
7095       // An uninitialized object.
7096       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
7097       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7098       size = pointer_delta(nextOneAddr + 1, addr);
7099       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7100              "alignment problem");
7101       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
7102       // will dirty the card when the klass pointer is installed in the
7103       // object (signaling the completion of initialization).
7104     }
7105   } else {
7106     // Either a not yet marked object or an uninitialized object
7107     if (p->klass_or_null() == NULL) {
7108       // An uninitialized object, skip to the next card, since
7109       // we may not be able to read its P-bits yet.
7110       assert(size == 0, "Initial value");
7111     } else {
7112       // An object not (yet) reached by marking: we merely need to
7113       // compute its size so as to go look at the next block.
7114       assert(p->is_oop(true), "should be an oop");
7115       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
7116     }
7117   }
7118   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7119   return size;
7120 }
7121 
7122 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
7123   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7124          "CMS thread should hold CMS token");
7125   assert_lock_strong(_freelistLock);
7126   assert_lock_strong(_bitMap->lock());
7127   // relinquish the free_list_lock and bitMaplock()
7128   _bitMap->lock()->unlock();
7129   _freelistLock->unlock();
7130   ConcurrentMarkSweepThread::desynchronize(true);
7131   ConcurrentMarkSweepThread::acknowledge_yield_request();
7132   _collector->stopTimer();
7133   if (PrintCMSStatistics != 0) {
7134     _collector->incrementYields();
7135   }
7136   _collector->icms_wait();
7137 
7138   // See the comment in coordinator_yield()
7139   for (unsigned i = 0; i < CMSYieldSleepCount &&
7140                    ConcurrentMarkSweepThread::should_yield() &&
7141                    !CMSCollector::foregroundGCIsActive(); ++i) {
7142     os::sleep(Thread::current(), 1, false);
7143     ConcurrentMarkSweepThread::acknowledge_yield_request();
7144   }
7145 
7146   ConcurrentMarkSweepThread::synchronize(true);
7147   _freelistLock->lock_without_safepoint_check();
7148   _bitMap->lock()->lock_without_safepoint_check();
7149   _collector->startTimer();
7150 }
7151 
7152 
7153 //////////////////////////////////////////////////////////////////
7154 // SurvivorSpacePrecleanClosure
7155 //////////////////////////////////////////////////////////////////
7156 // This (single-threaded) closure is used to preclean the oops in
7157 // the survivor spaces.
7158 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
7159 
7160   HeapWord* addr = (HeapWord*)p;
7161   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7162   assert(!_span.contains(addr), "we are scanning the survivor spaces");
7163   assert(p->klass_or_null() != NULL, "object should be initialized");
7164   // an initialized object; ignore mark word in verification below
7165   // since we are running concurrent with mutators
7166   assert(p->is_oop(true), "should be an oop");
7167   // Note that we do not yield while we iterate over
7168   // the interior oops of p, pushing the relevant ones
7169   // on our marking stack.
7170   size_t size = p->oop_iterate(_scanning_closure);
7171   do_yield_check();
7172   // Observe that below, we do not abandon the preclean
7173   // phase as soon as we should; rather we empty the
7174   // marking stack before returning. This is to satisfy
7175   // some existing assertions. In general, it may be a
7176   // good idea to abort immediately and complete the marking
7177   // from the grey objects at a later time.
7178   while (!_mark_stack->isEmpty()) {
7179     oop new_oop = _mark_stack->pop();
7180     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7181     assert(_bit_map->isMarked((HeapWord*)new_oop),
7182            "only grey objects on this stack");
7183     // iterate over the oops in this oop, marking and pushing
7184     // the ones in CMS heap (i.e. in _span).
7185     new_oop->oop_iterate(_scanning_closure);
7186     // check if it's time to yield
7187     do_yield_check();
7188   }
7189   unsigned int after_count =
7190     GenCollectedHeap::heap()->total_collections();
7191   bool abort = (_before_count != after_count) ||
7192                _collector->should_abort_preclean();
7193   return abort ? 0 : size;
7194 }
7195 
7196 void SurvivorSpacePrecleanClosure::do_yield_work() {
7197   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7198          "CMS thread should hold CMS token");
7199   assert_lock_strong(_bit_map->lock());
7200   // Relinquish the bit map lock
7201   _bit_map->lock()->unlock();
7202   ConcurrentMarkSweepThread::desynchronize(true);
7203   ConcurrentMarkSweepThread::acknowledge_yield_request();
7204   _collector->stopTimer();
7205   if (PrintCMSStatistics != 0) {
7206     _collector->incrementYields();
7207   }
7208   _collector->icms_wait();
7209 
7210   // See the comment in coordinator_yield()
7211   for (unsigned i = 0; i < CMSYieldSleepCount &&
7212                        ConcurrentMarkSweepThread::should_yield() &&
7213                        !CMSCollector::foregroundGCIsActive(); ++i) {
7214     os::sleep(Thread::current(), 1, false);
7215     ConcurrentMarkSweepThread::acknowledge_yield_request();
7216   }
7217 
7218   ConcurrentMarkSweepThread::synchronize(true);
7219   _bit_map->lock()->lock_without_safepoint_check();
7220   _collector->startTimer();
7221 }
7222 
7223 // This closure is used to rescan the marked objects on the dirty cards
7224 // in the mod union table and the card table proper. In the parallel
7225 // case, although the bitMap is shared, we do a single read so the
7226 // isMarked() query is "safe".
7227 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
7228   // Ignore mark word because we are running concurrent with mutators
7229   assert(p->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(p)));
7230   HeapWord* addr = (HeapWord*)p;
7231   assert(_span.contains(addr), "we are scanning the CMS generation");
7232   bool is_obj_array = false;
7233   #ifdef ASSERT
7234     if (!_parallel) {
7235       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
7236       assert(_collector->overflow_list_is_empty(),
7237              "overflow list should be empty");
7238 
7239     }
7240   #endif // ASSERT
7241   if (_bit_map->isMarked(addr)) {
7242     // Obj arrays are precisely marked, non-arrays are not;
7243     // so we scan objArrays precisely and non-arrays in their
7244     // entirety.
7245     if (p->is_objArray()) {
7246       is_obj_array = true;
7247       if (_parallel) {
7248         p->oop_iterate(_par_scan_closure, mr);
7249       } else {
7250         p->oop_iterate(_scan_closure, mr);
7251       }
7252     } else {
7253       if (_parallel) {
7254         p->oop_iterate(_par_scan_closure);
7255       } else {
7256         p->oop_iterate(_scan_closure);
7257       }
7258     }
7259   }
7260   #ifdef ASSERT
7261     if (!_parallel) {
7262       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7263       assert(_collector->overflow_list_is_empty(),
7264              "overflow list should be empty");
7265 
7266     }
7267   #endif // ASSERT
7268   return is_obj_array;
7269 }
7270 
7271 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
7272                         MemRegion span,
7273                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
7274                         bool should_yield, bool verifying):
7275   _collector(collector),
7276   _span(span),
7277   _bitMap(bitMap),
7278   _mut(&collector->_modUnionTable),
7279   _markStack(markStack),
7280   _yield(should_yield),
7281   _skipBits(0)
7282 {
7283   assert(_markStack->isEmpty(), "stack should be empty");
7284   _finger = _bitMap->startWord();
7285   _threshold = _finger;
7286   assert(_collector->_restart_addr == NULL, "Sanity check");
7287   assert(_span.contains(_finger), "Out of bounds _finger?");
7288   DEBUG_ONLY(_verifying = verifying;)
7289 }
7290 
7291 void MarkFromRootsClosure::reset(HeapWord* addr) {
7292   assert(_markStack->isEmpty(), "would cause duplicates on stack");
7293   assert(_span.contains(addr), "Out of bounds _finger?");
7294   _finger = addr;
7295   _threshold = (HeapWord*)round_to(
7296                  (intptr_t)_finger, CardTableModRefBS::card_size);
7297 }
7298 
7299 // Should revisit to see if this should be restructured for
7300 // greater efficiency.
7301 bool MarkFromRootsClosure::do_bit(size_t offset) {
7302   if (_skipBits > 0) {
7303     _skipBits--;
7304     return true;
7305   }
7306   // convert offset into a HeapWord*
7307   HeapWord* addr = _bitMap->startWord() + offset;
7308   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
7309          "address out of range");
7310   assert(_bitMap->isMarked(addr), "tautology");
7311   if (_bitMap->isMarked(addr+1)) {
7312     // this is an allocated but not yet initialized object
7313     assert(_skipBits == 0, "tautology");
7314     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
7315     oop p = oop(addr);
7316     if (p->klass_or_null() == NULL) {
7317       DEBUG_ONLY(if (!_verifying) {)
7318         // We re-dirty the cards on which this object lies and increase
7319         // the _threshold so that we'll come back to scan this object
7320         // during the preclean or remark phase. (CMSCleanOnEnter)
7321         if (CMSCleanOnEnter) {
7322           size_t sz = _collector->block_size_using_printezis_bits(addr);
7323           HeapWord* end_card_addr   = (HeapWord*)round_to(
7324                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7325           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7326           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7327           // Bump _threshold to end_card_addr; note that
7328           // _threshold cannot possibly exceed end_card_addr, anyhow.
7329           // This prevents future clearing of the card as the scan proceeds
7330           // to the right.
7331           assert(_threshold <= end_card_addr,
7332                  "Because we are just scanning into this object");
7333           if (_threshold < end_card_addr) {
7334             _threshold = end_card_addr;
7335           }
7336           if (p->klass_or_null() != NULL) {
7337             // Redirty the range of cards...
7338             _mut->mark_range(redirty_range);
7339           } // ...else the setting of klass will dirty the card anyway.
7340         }
7341       DEBUG_ONLY(})
7342       return true;
7343     }
7344   }
7345   scanOopsInOop(addr);
7346   return true;
7347 }
7348 
7349 // We take a break if we've been at this for a while,
7350 // so as to avoid monopolizing the locks involved.
7351 void MarkFromRootsClosure::do_yield_work() {
7352   // First give up the locks, then yield, then re-lock
7353   // We should probably use a constructor/destructor idiom to
7354   // do this unlock/lock or modify the MutexUnlocker class to
7355   // serve our purpose. XXX
7356   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7357          "CMS thread should hold CMS token");
7358   assert_lock_strong(_bitMap->lock());
7359   _bitMap->lock()->unlock();
7360   ConcurrentMarkSweepThread::desynchronize(true);
7361   ConcurrentMarkSweepThread::acknowledge_yield_request();
7362   _collector->stopTimer();
7363   if (PrintCMSStatistics != 0) {
7364     _collector->incrementYields();
7365   }
7366   _collector->icms_wait();
7367 
7368   // See the comment in coordinator_yield()
7369   for (unsigned i = 0; i < CMSYieldSleepCount &&
7370                        ConcurrentMarkSweepThread::should_yield() &&
7371                        !CMSCollector::foregroundGCIsActive(); ++i) {
7372     os::sleep(Thread::current(), 1, false);
7373     ConcurrentMarkSweepThread::acknowledge_yield_request();
7374   }
7375 
7376   ConcurrentMarkSweepThread::synchronize(true);
7377   _bitMap->lock()->lock_without_safepoint_check();
7378   _collector->startTimer();
7379 }
7380 
7381 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
7382   assert(_bitMap->isMarked(ptr), "expected bit to be set");
7383   assert(_markStack->isEmpty(),
7384          "should drain stack to limit stack usage");
7385   // convert ptr to an oop preparatory to scanning
7386   oop obj = oop(ptr);
7387   // Ignore mark word in verification below, since we
7388   // may be running concurrent with mutators.
7389   assert(obj->is_oop(true), "should be an oop");
7390   assert(_finger <= ptr, "_finger runneth ahead");
7391   // advance the finger to right end of this object
7392   _finger = ptr + obj->size();
7393   assert(_finger > ptr, "we just incremented it above");
7394   // On large heaps, it may take us some time to get through
7395   // the marking phase (especially if running iCMS). During
7396   // this time it's possible that a lot of mutations have
7397   // accumulated in the card table and the mod union table --
7398   // these mutation records are redundant until we have
7399   // actually traced into the corresponding card.
7400   // Here, we check whether advancing the finger would make
7401   // us cross into a new card, and if so clear corresponding
7402   // cards in the MUT (preclean them in the card-table in the
7403   // future).
7404 
7405   DEBUG_ONLY(if (!_verifying) {)
7406     // The clean-on-enter optimization is disabled by default,
7407     // until we fix 6178663.
7408     if (CMSCleanOnEnter && (_finger > _threshold)) {
7409       // [_threshold, _finger) represents the interval
7410       // of cards to be cleared  in MUT (or precleaned in card table).
7411       // The set of cards to be cleared is all those that overlap
7412       // with the interval [_threshold, _finger); note that
7413       // _threshold is always kept card-aligned but _finger isn't
7414       // always card-aligned.
7415       HeapWord* old_threshold = _threshold;
7416       assert(old_threshold == (HeapWord*)round_to(
7417               (intptr_t)old_threshold, CardTableModRefBS::card_size),
7418              "_threshold should always be card-aligned");
7419       _threshold = (HeapWord*)round_to(
7420                      (intptr_t)_finger, CardTableModRefBS::card_size);
7421       MemRegion mr(old_threshold, _threshold);
7422       assert(!mr.is_empty(), "Control point invariant");
7423       assert(_span.contains(mr), "Should clear within span");
7424       _mut->clear_range(mr);
7425     }
7426   DEBUG_ONLY(})
7427   // Note: the finger doesn't advance while we drain
7428   // the stack below.
7429   PushOrMarkClosure pushOrMarkClosure(_collector,
7430                                       _span, _bitMap, _markStack,
7431                                       _finger, this);
7432   bool res = _markStack->push(obj);
7433   assert(res, "Empty non-zero size stack should have space for single push");
7434   while (!_markStack->isEmpty()) {
7435     oop new_oop = _markStack->pop();
7436     // Skip verifying header mark word below because we are
7437     // running concurrent with mutators.
7438     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7439     // now scan this oop's oops
7440     new_oop->oop_iterate(&pushOrMarkClosure);
7441     do_yield_check();
7442   }
7443   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
7444 }
7445 
7446 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
7447                        CMSCollector* collector, MemRegion span,
7448                        CMSBitMap* bit_map,
7449                        OopTaskQueue* work_queue,
7450                        CMSMarkStack*  overflow_stack,
7451                        bool should_yield):
7452   _collector(collector),
7453   _whole_span(collector->_span),
7454   _span(span),
7455   _bit_map(bit_map),
7456   _mut(&collector->_modUnionTable),
7457   _work_queue(work_queue),
7458   _overflow_stack(overflow_stack),
7459   _yield(should_yield),
7460   _skip_bits(0),
7461   _task(task)
7462 {
7463   assert(_work_queue->size() == 0, "work_queue should be empty");
7464   _finger = span.start();
7465   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
7466   assert(_span.contains(_finger), "Out of bounds _finger?");
7467 }
7468 
7469 // Should revisit to see if this should be restructured for
7470 // greater efficiency.
7471 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
7472   if (_skip_bits > 0) {
7473     _skip_bits--;
7474     return true;
7475   }
7476   // convert offset into a HeapWord*
7477   HeapWord* addr = _bit_map->startWord() + offset;
7478   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
7479          "address out of range");
7480   assert(_bit_map->isMarked(addr), "tautology");
7481   if (_bit_map->isMarked(addr+1)) {
7482     // this is an allocated object that might not yet be initialized
7483     assert(_skip_bits == 0, "tautology");
7484     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
7485     oop p = oop(addr);
7486     if (p->klass_or_null() == NULL) {
7487       // in the case of Clean-on-Enter optimization, redirty card
7488       // and avoid clearing card by increasing  the threshold.
7489       return true;
7490     }
7491   }
7492   scan_oops_in_oop(addr);
7493   return true;
7494 }
7495 
7496 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
7497   assert(_bit_map->isMarked(ptr), "expected bit to be set");
7498   // Should we assert that our work queue is empty or
7499   // below some drain limit?
7500   assert(_work_queue->size() == 0,
7501          "should drain stack to limit stack usage");
7502   // convert ptr to an oop preparatory to scanning
7503   oop obj = oop(ptr);
7504   // Ignore mark word in verification below, since we
7505   // may be running concurrent with mutators.
7506   assert(obj->is_oop(true), "should be an oop");
7507   assert(_finger <= ptr, "_finger runneth ahead");
7508   // advance the finger to right end of this object
7509   _finger = ptr + obj->size();
7510   assert(_finger > ptr, "we just incremented it above");
7511   // On large heaps, it may take us some time to get through
7512   // the marking phase (especially if running iCMS). During
7513   // this time it's possible that a lot of mutations have
7514   // accumulated in the card table and the mod union table --
7515   // these mutation records are redundant until we have
7516   // actually traced into the corresponding card.
7517   // Here, we check whether advancing the finger would make
7518   // us cross into a new card, and if so clear corresponding
7519   // cards in the MUT (preclean them in the card-table in the
7520   // future).
7521 
7522   // The clean-on-enter optimization is disabled by default,
7523   // until we fix 6178663.
7524   if (CMSCleanOnEnter && (_finger > _threshold)) {
7525     // [_threshold, _finger) represents the interval
7526     // of cards to be cleared  in MUT (or precleaned in card table).
7527     // The set of cards to be cleared is all those that overlap
7528     // with the interval [_threshold, _finger); note that
7529     // _threshold is always kept card-aligned but _finger isn't
7530     // always card-aligned.
7531     HeapWord* old_threshold = _threshold;
7532     assert(old_threshold == (HeapWord*)round_to(
7533             (intptr_t)old_threshold, CardTableModRefBS::card_size),
7534            "_threshold should always be card-aligned");
7535     _threshold = (HeapWord*)round_to(
7536                    (intptr_t)_finger, CardTableModRefBS::card_size);
7537     MemRegion mr(old_threshold, _threshold);
7538     assert(!mr.is_empty(), "Control point invariant");
7539     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
7540     _mut->clear_range(mr);
7541   }
7542 
7543   // Note: the local finger doesn't advance while we drain
7544   // the stack below, but the global finger sure can and will.
7545   HeapWord** gfa = _task->global_finger_addr();
7546   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
7547                                       _span, _bit_map,
7548                                       _work_queue,
7549                                       _overflow_stack,
7550                                       _finger,
7551                                       gfa, this);
7552   bool res = _work_queue->push(obj);   // overflow could occur here
7553   assert(res, "Will hold once we use workqueues");
7554   while (true) {
7555     oop new_oop;
7556     if (!_work_queue->pop_local(new_oop)) {
7557       // We emptied our work_queue; check if there's stuff that can
7558       // be gotten from the overflow stack.
7559       if (CMSConcMarkingTask::get_work_from_overflow_stack(
7560             _overflow_stack, _work_queue)) {
7561         do_yield_check();
7562         continue;
7563       } else {  // done
7564         break;
7565       }
7566     }
7567     // Skip verifying header mark word below because we are
7568     // running concurrent with mutators.
7569     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7570     // now scan this oop's oops
7571     new_oop->oop_iterate(&pushOrMarkClosure);
7572     do_yield_check();
7573   }
7574   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
7575 }
7576 
7577 // Yield in response to a request from VM Thread or
7578 // from mutators.
7579 void Par_MarkFromRootsClosure::do_yield_work() {
7580   assert(_task != NULL, "sanity");
7581   _task->yield();
7582 }
7583 
7584 // A variant of the above used for verifying CMS marking work.
7585 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
7586                         MemRegion span,
7587                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7588                         CMSMarkStack*  mark_stack):
7589   _collector(collector),
7590   _span(span),
7591   _verification_bm(verification_bm),
7592   _cms_bm(cms_bm),
7593   _mark_stack(mark_stack),
7594   _pam_verify_closure(collector, span, verification_bm, cms_bm,
7595                       mark_stack)
7596 {
7597   assert(_mark_stack->isEmpty(), "stack should be empty");
7598   _finger = _verification_bm->startWord();
7599   assert(_collector->_restart_addr == NULL, "Sanity check");
7600   assert(_span.contains(_finger), "Out of bounds _finger?");
7601 }
7602 
7603 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
7604   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
7605   assert(_span.contains(addr), "Out of bounds _finger?");
7606   _finger = addr;
7607 }
7608 
7609 // Should revisit to see if this should be restructured for
7610 // greater efficiency.
7611 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
7612   // convert offset into a HeapWord*
7613   HeapWord* addr = _verification_bm->startWord() + offset;
7614   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
7615          "address out of range");
7616   assert(_verification_bm->isMarked(addr), "tautology");
7617   assert(_cms_bm->isMarked(addr), "tautology");
7618 
7619   assert(_mark_stack->isEmpty(),
7620          "should drain stack to limit stack usage");
7621   // convert addr to an oop preparatory to scanning
7622   oop obj = oop(addr);
7623   assert(obj->is_oop(), "should be an oop");
7624   assert(_finger <= addr, "_finger runneth ahead");
7625   // advance the finger to right end of this object
7626   _finger = addr + obj->size();
7627   assert(_finger > addr, "we just incremented it above");
7628   // Note: the finger doesn't advance while we drain
7629   // the stack below.
7630   bool res = _mark_stack->push(obj);
7631   assert(res, "Empty non-zero size stack should have space for single push");
7632   while (!_mark_stack->isEmpty()) {
7633     oop new_oop = _mark_stack->pop();
7634     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
7635     // now scan this oop's oops
7636     new_oop->oop_iterate(&_pam_verify_closure);
7637   }
7638   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
7639   return true;
7640 }
7641 
7642 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
7643   CMSCollector* collector, MemRegion span,
7644   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7645   CMSMarkStack*  mark_stack):
7646   MetadataAwareOopClosure(collector->ref_processor()),
7647   _collector(collector),
7648   _span(span),
7649   _verification_bm(verification_bm),
7650   _cms_bm(cms_bm),
7651   _mark_stack(mark_stack)
7652 { }
7653 
7654 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
7655 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
7656 
7657 // Upon stack overflow, we discard (part of) the stack,
7658 // remembering the least address amongst those discarded
7659 // in CMSCollector's _restart_address.
7660 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
7661   // Remember the least grey address discarded
7662   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
7663   _collector->lower_restart_addr(ra);
7664   _mark_stack->reset();  // discard stack contents
7665   _mark_stack->expand(); // expand the stack if possible
7666 }
7667 
7668 void PushAndMarkVerifyClosure::do_oop(oop obj) {
7669   assert(obj->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7670   HeapWord* addr = (HeapWord*)obj;
7671   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
7672     // Oop lies in _span and isn't yet grey or black
7673     _verification_bm->mark(addr);            // now grey
7674     if (!_cms_bm->isMarked(addr)) {
7675       oop(addr)->print();
7676       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
7677                              addr);
7678       fatal("... aborting");
7679     }
7680 
7681     if (!_mark_stack->push(obj)) { // stack overflow
7682       if (PrintCMSStatistics != 0) {
7683         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7684                                SIZE_FORMAT, _mark_stack->capacity());
7685       }
7686       assert(_mark_stack->isFull(), "Else push should have succeeded");
7687       handle_stack_overflow(addr);
7688     }
7689     // anything including and to the right of _finger
7690     // will be scanned as we iterate over the remainder of the
7691     // bit map
7692   }
7693 }
7694 
7695 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
7696                      MemRegion span,
7697                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
7698                      HeapWord* finger, MarkFromRootsClosure* parent) :
7699   MetadataAwareOopClosure(collector->ref_processor()),
7700   _collector(collector),
7701   _span(span),
7702   _bitMap(bitMap),
7703   _markStack(markStack),
7704   _finger(finger),
7705   _parent(parent)
7706 { }
7707 
7708 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
7709                      MemRegion span,
7710                      CMSBitMap* bit_map,
7711                      OopTaskQueue* work_queue,
7712                      CMSMarkStack*  overflow_stack,
7713                      HeapWord* finger,
7714                      HeapWord** global_finger_addr,
7715                      Par_MarkFromRootsClosure* parent) :
7716   MetadataAwareOopClosure(collector->ref_processor()),
7717   _collector(collector),
7718   _whole_span(collector->_span),
7719   _span(span),
7720   _bit_map(bit_map),
7721   _work_queue(work_queue),
7722   _overflow_stack(overflow_stack),
7723   _finger(finger),
7724   _global_finger_addr(global_finger_addr),
7725   _parent(parent)
7726 { }
7727 
7728 // Assumes thread-safe access by callers, who are
7729 // responsible for mutual exclusion.
7730 void CMSCollector::lower_restart_addr(HeapWord* low) {
7731   assert(_span.contains(low), "Out of bounds addr");
7732   if (_restart_addr == NULL) {
7733     _restart_addr = low;
7734   } else {
7735     _restart_addr = MIN2(_restart_addr, low);
7736   }
7737 }
7738 
7739 // Upon stack overflow, we discard (part of) the stack,
7740 // remembering the least address amongst those discarded
7741 // in CMSCollector's _restart_address.
7742 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7743   // Remember the least grey address discarded
7744   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
7745   _collector->lower_restart_addr(ra);
7746   _markStack->reset();  // discard stack contents
7747   _markStack->expand(); // expand the stack if possible
7748 }
7749 
7750 // Upon stack overflow, we discard (part of) the stack,
7751 // remembering the least address amongst those discarded
7752 // in CMSCollector's _restart_address.
7753 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7754   // We need to do this under a mutex to prevent other
7755   // workers from interfering with the work done below.
7756   MutexLockerEx ml(_overflow_stack->par_lock(),
7757                    Mutex::_no_safepoint_check_flag);
7758   // Remember the least grey address discarded
7759   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7760   _collector->lower_restart_addr(ra);
7761   _overflow_stack->reset();  // discard stack contents
7762   _overflow_stack->expand(); // expand the stack if possible
7763 }
7764 
7765 void PushOrMarkClosure::do_oop(oop obj) {
7766   // Ignore mark word because we are running concurrent with mutators.
7767   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7768   HeapWord* addr = (HeapWord*)obj;
7769   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7770     // Oop lies in _span and isn't yet grey or black
7771     _bitMap->mark(addr);            // now grey
7772     if (addr < _finger) {
7773       // the bit map iteration has already either passed, or
7774       // sampled, this bit in the bit map; we'll need to
7775       // use the marking stack to scan this oop's oops.
7776       bool simulate_overflow = false;
7777       NOT_PRODUCT(
7778         if (CMSMarkStackOverflowALot &&
7779             _collector->simulate_overflow()) {
7780           // simulate a stack overflow
7781           simulate_overflow = true;
7782         }
7783       )
7784       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7785         if (PrintCMSStatistics != 0) {
7786           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7787                                  SIZE_FORMAT, _markStack->capacity());
7788         }
7789         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7790         handle_stack_overflow(addr);
7791       }
7792     }
7793     // anything including and to the right of _finger
7794     // will be scanned as we iterate over the remainder of the
7795     // bit map
7796     do_yield_check();
7797   }
7798 }
7799 
7800 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7801 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7802 
7803 void Par_PushOrMarkClosure::do_oop(oop obj) {
7804   // Ignore mark word because we are running concurrent with mutators.
7805   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7806   HeapWord* addr = (HeapWord*)obj;
7807   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7808     // Oop lies in _span and isn't yet grey or black
7809     // We read the global_finger (volatile read) strictly after marking oop
7810     bool res = _bit_map->par_mark(addr);    // now grey
7811     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7812     // Should we push this marked oop on our stack?
7813     // -- if someone else marked it, nothing to do
7814     // -- if target oop is above global finger nothing to do
7815     // -- if target oop is in chunk and above local finger
7816     //      then nothing to do
7817     // -- else push on work queue
7818     if (   !res       // someone else marked it, they will deal with it
7819         || (addr >= *gfa)  // will be scanned in a later task
7820         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7821       return;
7822     }
7823     // the bit map iteration has already either passed, or
7824     // sampled, this bit in the bit map; we'll need to
7825     // use the marking stack to scan this oop's oops.
7826     bool simulate_overflow = false;
7827     NOT_PRODUCT(
7828       if (CMSMarkStackOverflowALot &&
7829           _collector->simulate_overflow()) {
7830         // simulate a stack overflow
7831         simulate_overflow = true;
7832       }
7833     )
7834     if (simulate_overflow ||
7835         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7836       // stack overflow
7837       if (PrintCMSStatistics != 0) {
7838         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7839                                SIZE_FORMAT, _overflow_stack->capacity());
7840       }
7841       // We cannot assert that the overflow stack is full because
7842       // it may have been emptied since.
7843       assert(simulate_overflow ||
7844              _work_queue->size() == _work_queue->max_elems(),
7845             "Else push should have succeeded");
7846       handle_stack_overflow(addr);
7847     }
7848     do_yield_check();
7849   }
7850 }
7851 
7852 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7853 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7854 
7855 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7856                                        MemRegion span,
7857                                        ReferenceProcessor* rp,
7858                                        CMSBitMap* bit_map,
7859                                        CMSBitMap* mod_union_table,
7860                                        CMSMarkStack*  mark_stack,
7861                                        bool           concurrent_precleaning):
7862   MetadataAwareOopClosure(rp),
7863   _collector(collector),
7864   _span(span),
7865   _bit_map(bit_map),
7866   _mod_union_table(mod_union_table),
7867   _mark_stack(mark_stack),
7868   _concurrent_precleaning(concurrent_precleaning)
7869 {
7870   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7871 }
7872 
7873 // Grey object rescan during pre-cleaning and second checkpoint phases --
7874 // the non-parallel version (the parallel version appears further below.)
7875 void PushAndMarkClosure::do_oop(oop obj) {
7876   // Ignore mark word verification. If during concurrent precleaning,
7877   // the object monitor may be locked. If during the checkpoint
7878   // phases, the object may already have been reached by a  different
7879   // path and may be at the end of the global overflow list (so
7880   // the mark word may be NULL).
7881   assert(obj->is_oop_or_null(true /* ignore mark word */),
7882          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7883   HeapWord* addr = (HeapWord*)obj;
7884   // Check if oop points into the CMS generation
7885   // and is not marked
7886   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7887     // a white object ...
7888     _bit_map->mark(addr);         // ... now grey
7889     // push on the marking stack (grey set)
7890     bool simulate_overflow = false;
7891     NOT_PRODUCT(
7892       if (CMSMarkStackOverflowALot &&
7893           _collector->simulate_overflow()) {
7894         // simulate a stack overflow
7895         simulate_overflow = true;
7896       }
7897     )
7898     if (simulate_overflow || !_mark_stack->push(obj)) {
7899       if (_concurrent_precleaning) {
7900          // During precleaning we can just dirty the appropriate card(s)
7901          // in the mod union table, thus ensuring that the object remains
7902          // in the grey set  and continue. In the case of object arrays
7903          // we need to dirty all of the cards that the object spans,
7904          // since the rescan of object arrays will be limited to the
7905          // dirty cards.
7906          // Note that no one can be interfering with us in this action
7907          // of dirtying the mod union table, so no locking or atomics
7908          // are required.
7909          if (obj->is_objArray()) {
7910            size_t sz = obj->size();
7911            HeapWord* end_card_addr = (HeapWord*)round_to(
7912                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7913            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7914            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7915            _mod_union_table->mark_range(redirty_range);
7916          } else {
7917            _mod_union_table->mark(addr);
7918          }
7919          _collector->_ser_pmc_preclean_ovflw++;
7920       } else {
7921          // During the remark phase, we need to remember this oop
7922          // in the overflow list.
7923          _collector->push_on_overflow_list(obj);
7924          _collector->_ser_pmc_remark_ovflw++;
7925       }
7926     }
7927   }
7928 }
7929 
7930 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7931                                                MemRegion span,
7932                                                ReferenceProcessor* rp,
7933                                                CMSBitMap* bit_map,
7934                                                OopTaskQueue* work_queue):
7935   MetadataAwareOopClosure(rp),
7936   _collector(collector),
7937   _span(span),
7938   _bit_map(bit_map),
7939   _work_queue(work_queue)
7940 {
7941   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7942 }
7943 
7944 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7945 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7946 
7947 // Grey object rescan during second checkpoint phase --
7948 // the parallel version.
7949 void Par_PushAndMarkClosure::do_oop(oop obj) {
7950   // In the assert below, we ignore the mark word because
7951   // this oop may point to an already visited object that is
7952   // on the overflow stack (in which case the mark word has
7953   // been hijacked for chaining into the overflow stack --
7954   // if this is the last object in the overflow stack then
7955   // its mark word will be NULL). Because this object may
7956   // have been subsequently popped off the global overflow
7957   // stack, and the mark word possibly restored to the prototypical
7958   // value, by the time we get to examined this failing assert in
7959   // the debugger, is_oop_or_null(false) may subsequently start
7960   // to hold.
7961   assert(obj->is_oop_or_null(true),
7962          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7963   HeapWord* addr = (HeapWord*)obj;
7964   // Check if oop points into the CMS generation
7965   // and is not marked
7966   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7967     // a white object ...
7968     // If we manage to "claim" the object, by being the
7969     // first thread to mark it, then we push it on our
7970     // marking stack
7971     if (_bit_map->par_mark(addr)) {     // ... now grey
7972       // push on work queue (grey set)
7973       bool simulate_overflow = false;
7974       NOT_PRODUCT(
7975         if (CMSMarkStackOverflowALot &&
7976             _collector->par_simulate_overflow()) {
7977           // simulate a stack overflow
7978           simulate_overflow = true;
7979         }
7980       )
7981       if (simulate_overflow || !_work_queue->push(obj)) {
7982         _collector->par_push_on_overflow_list(obj);
7983         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7984       }
7985     } // Else, some other thread got there first
7986   }
7987 }
7988 
7989 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7990 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7991 
7992 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7993   Mutex* bml = _collector->bitMapLock();
7994   assert_lock_strong(bml);
7995   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7996          "CMS thread should hold CMS token");
7997 
7998   bml->unlock();
7999   ConcurrentMarkSweepThread::desynchronize(true);
8000 
8001   ConcurrentMarkSweepThread::acknowledge_yield_request();
8002 
8003   _collector->stopTimer();
8004   if (PrintCMSStatistics != 0) {
8005     _collector->incrementYields();
8006   }
8007   _collector->icms_wait();
8008 
8009   // See the comment in coordinator_yield()
8010   for (unsigned i = 0; i < CMSYieldSleepCount &&
8011                        ConcurrentMarkSweepThread::should_yield() &&
8012                        !CMSCollector::foregroundGCIsActive(); ++i) {
8013     os::sleep(Thread::current(), 1, false);
8014     ConcurrentMarkSweepThread::acknowledge_yield_request();
8015   }
8016 
8017   ConcurrentMarkSweepThread::synchronize(true);
8018   bml->lock();
8019 
8020   _collector->startTimer();
8021 }
8022 
8023 bool CMSPrecleanRefsYieldClosure::should_return() {
8024   if (ConcurrentMarkSweepThread::should_yield()) {
8025     do_yield_work();
8026   }
8027   return _collector->foregroundGCIsActive();
8028 }
8029 
8030 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
8031   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
8032          "mr should be aligned to start at a card boundary");
8033   // We'd like to assert:
8034   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
8035   //        "mr should be a range of cards");
8036   // However, that would be too strong in one case -- the last
8037   // partition ends at _unallocated_block which, in general, can be
8038   // an arbitrary boundary, not necessarily card aligned.
8039   if (PrintCMSStatistics != 0) {
8040     _num_dirty_cards +=
8041          mr.word_size()/CardTableModRefBS::card_size_in_words;
8042   }
8043   _space->object_iterate_mem(mr, &_scan_cl);
8044 }
8045 
8046 SweepClosure::SweepClosure(CMSCollector* collector,
8047                            ConcurrentMarkSweepGeneration* g,
8048                            CMSBitMap* bitMap, bool should_yield) :
8049   _collector(collector),
8050   _g(g),
8051   _sp(g->cmsSpace()),
8052   _limit(_sp->sweep_limit()),
8053   _freelistLock(_sp->freelistLock()),
8054   _bitMap(bitMap),
8055   _yield(should_yield),
8056   _inFreeRange(false),           // No free range at beginning of sweep
8057   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
8058   _lastFreeRangeCoalesced(false),
8059   _freeFinger(g->used_region().start())
8060 {
8061   NOT_PRODUCT(
8062     _numObjectsFreed = 0;
8063     _numWordsFreed   = 0;
8064     _numObjectsLive = 0;
8065     _numWordsLive = 0;
8066     _numObjectsAlreadyFree = 0;
8067     _numWordsAlreadyFree = 0;
8068     _last_fc = NULL;
8069 
8070     _sp->initializeIndexedFreeListArrayReturnedBytes();
8071     _sp->dictionary()->initialize_dict_returned_bytes();
8072   )
8073   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8074          "sweep _limit out of bounds");
8075   if (CMSTraceSweeper) {
8076     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
8077                         _limit);
8078   }
8079 }
8080 
8081 void SweepClosure::print_on(outputStream* st) const {
8082   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
8083                 _sp->bottom(), _sp->end());
8084   tty->print_cr("_limit = " PTR_FORMAT, _limit);
8085   tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger);
8086   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);)
8087   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
8088                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
8089 }
8090 
8091 #ifndef PRODUCT
8092 // Assertion checking only:  no useful work in product mode --
8093 // however, if any of the flags below become product flags,
8094 // you may need to review this code to see if it needs to be
8095 // enabled in product mode.
8096 SweepClosure::~SweepClosure() {
8097   assert_lock_strong(_freelistLock);
8098   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8099          "sweep _limit out of bounds");
8100   if (inFreeRange()) {
8101     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
8102     print();
8103     ShouldNotReachHere();
8104   }
8105   if (Verbose && PrintGC) {
8106     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
8107                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
8108     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
8109                            SIZE_FORMAT" bytes  "
8110       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
8111       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
8112       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
8113     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
8114                         * sizeof(HeapWord);
8115     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
8116 
8117     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
8118       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
8119       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
8120       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
8121       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
8122       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
8123         indexListReturnedBytes);
8124       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
8125         dict_returned_bytes);
8126     }
8127   }
8128   if (CMSTraceSweeper) {
8129     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
8130                            _limit);
8131   }
8132 }
8133 #endif  // PRODUCT
8134 
8135 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
8136     bool freeRangeInFreeLists) {
8137   if (CMSTraceSweeper) {
8138     gclog_or_tty->print("---- Start free range at " PTR_FORMAT " with free block (%d)\n",
8139                freeFinger, freeRangeInFreeLists);
8140   }
8141   assert(!inFreeRange(), "Trampling existing free range");
8142   set_inFreeRange(true);
8143   set_lastFreeRangeCoalesced(false);
8144 
8145   set_freeFinger(freeFinger);
8146   set_freeRangeInFreeLists(freeRangeInFreeLists);
8147   if (CMSTestInFreeList) {
8148     if (freeRangeInFreeLists) {
8149       FreeChunk* fc = (FreeChunk*) freeFinger;
8150       assert(fc->is_free(), "A chunk on the free list should be free.");
8151       assert(fc->size() > 0, "Free range should have a size");
8152       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
8153     }
8154   }
8155 }
8156 
8157 // Note that the sweeper runs concurrently with mutators. Thus,
8158 // it is possible for direct allocation in this generation to happen
8159 // in the middle of the sweep. Note that the sweeper also coalesces
8160 // contiguous free blocks. Thus, unless the sweeper and the allocator
8161 // synchronize appropriately freshly allocated blocks may get swept up.
8162 // This is accomplished by the sweeper locking the free lists while
8163 // it is sweeping. Thus blocks that are determined to be free are
8164 // indeed free. There is however one additional complication:
8165 // blocks that have been allocated since the final checkpoint and
8166 // mark, will not have been marked and so would be treated as
8167 // unreachable and swept up. To prevent this, the allocator marks
8168 // the bit map when allocating during the sweep phase. This leads,
8169 // however, to a further complication -- objects may have been allocated
8170 // but not yet initialized -- in the sense that the header isn't yet
8171 // installed. The sweeper can not then determine the size of the block
8172 // in order to skip over it. To deal with this case, we use a technique
8173 // (due to Printezis) to encode such uninitialized block sizes in the
8174 // bit map. Since the bit map uses a bit per every HeapWord, but the
8175 // CMS generation has a minimum object size of 3 HeapWords, it follows
8176 // that "normal marks" won't be adjacent in the bit map (there will
8177 // always be at least two 0 bits between successive 1 bits). We make use
8178 // of these "unused" bits to represent uninitialized blocks -- the bit
8179 // corresponding to the start of the uninitialized object and the next
8180 // bit are both set. Finally, a 1 bit marks the end of the object that
8181 // started with the two consecutive 1 bits to indicate its potentially
8182 // uninitialized state.
8183 
8184 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
8185   FreeChunk* fc = (FreeChunk*)addr;
8186   size_t res;
8187 
8188   // Check if we are done sweeping. Below we check "addr >= _limit" rather
8189   // than "addr == _limit" because although _limit was a block boundary when
8190   // we started the sweep, it may no longer be one because heap expansion
8191   // may have caused us to coalesce the block ending at the address _limit
8192   // with a newly expanded chunk (this happens when _limit was set to the
8193   // previous _end of the space), so we may have stepped past _limit:
8194   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
8195   if (addr >= _limit) { // we have swept up to or past the limit: finish up
8196     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8197            "sweep _limit out of bounds");
8198     assert(addr < _sp->end(), "addr out of bounds");
8199     // Flush any free range we might be holding as a single
8200     // coalesced chunk to the appropriate free list.
8201     if (inFreeRange()) {
8202       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
8203              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger()));
8204       flush_cur_free_chunk(freeFinger(),
8205                            pointer_delta(addr, freeFinger()));
8206       if (CMSTraceSweeper) {
8207         gclog_or_tty->print("Sweep: last chunk: ");
8208         gclog_or_tty->print("put_free_blk " PTR_FORMAT " ("SIZE_FORMAT") "
8209                    "[coalesced:%d]\n",
8210                    freeFinger(), pointer_delta(addr, freeFinger()),
8211                    lastFreeRangeCoalesced() ? 1 : 0);
8212       }
8213     }
8214 
8215     // help the iterator loop finish
8216     return pointer_delta(_sp->end(), addr);
8217   }
8218 
8219   assert(addr < _limit, "sweep invariant");
8220   // check if we should yield
8221   do_yield_check(addr);
8222   if (fc->is_free()) {
8223     // Chunk that is already free
8224     res = fc->size();
8225     do_already_free_chunk(fc);
8226     debug_only(_sp->verifyFreeLists());
8227     // If we flush the chunk at hand in lookahead_and_flush()
8228     // and it's coalesced with a preceding chunk, then the
8229     // process of "mangling" the payload of the coalesced block
8230     // will cause erasure of the size information from the
8231     // (erstwhile) header of all the coalesced blocks but the
8232     // first, so the first disjunct in the assert will not hold
8233     // in that specific case (in which case the second disjunct
8234     // will hold).
8235     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
8236            "Otherwise the size info doesn't change at this step");
8237     NOT_PRODUCT(
8238       _numObjectsAlreadyFree++;
8239       _numWordsAlreadyFree += res;
8240     )
8241     NOT_PRODUCT(_last_fc = fc;)
8242   } else if (!_bitMap->isMarked(addr)) {
8243     // Chunk is fresh garbage
8244     res = do_garbage_chunk(fc);
8245     debug_only(_sp->verifyFreeLists());
8246     NOT_PRODUCT(
8247       _numObjectsFreed++;
8248       _numWordsFreed += res;
8249     )
8250   } else {
8251     // Chunk that is alive.
8252     res = do_live_chunk(fc);
8253     debug_only(_sp->verifyFreeLists());
8254     NOT_PRODUCT(
8255         _numObjectsLive++;
8256         _numWordsLive += res;
8257     )
8258   }
8259   return res;
8260 }
8261 
8262 // For the smart allocation, record following
8263 //  split deaths - a free chunk is removed from its free list because
8264 //      it is being split into two or more chunks.
8265 //  split birth - a free chunk is being added to its free list because
8266 //      a larger free chunk has been split and resulted in this free chunk.
8267 //  coal death - a free chunk is being removed from its free list because
8268 //      it is being coalesced into a large free chunk.
8269 //  coal birth - a free chunk is being added to its free list because
8270 //      it was created when two or more free chunks where coalesced into
8271 //      this free chunk.
8272 //
8273 // These statistics are used to determine the desired number of free
8274 // chunks of a given size.  The desired number is chosen to be relative
8275 // to the end of a CMS sweep.  The desired number at the end of a sweep
8276 // is the
8277 //      count-at-end-of-previous-sweep (an amount that was enough)
8278 //              - count-at-beginning-of-current-sweep  (the excess)
8279 //              + split-births  (gains in this size during interval)
8280 //              - split-deaths  (demands on this size during interval)
8281 // where the interval is from the end of one sweep to the end of the
8282 // next.
8283 //
8284 // When sweeping the sweeper maintains an accumulated chunk which is
8285 // the chunk that is made up of chunks that have been coalesced.  That
8286 // will be termed the left-hand chunk.  A new chunk of garbage that
8287 // is being considered for coalescing will be referred to as the
8288 // right-hand chunk.
8289 //
8290 // When making a decision on whether to coalesce a right-hand chunk with
8291 // the current left-hand chunk, the current count vs. the desired count
8292 // of the left-hand chunk is considered.  Also if the right-hand chunk
8293 // is near the large chunk at the end of the heap (see
8294 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
8295 // left-hand chunk is coalesced.
8296 //
8297 // When making a decision about whether to split a chunk, the desired count
8298 // vs. the current count of the candidate to be split is also considered.
8299 // If the candidate is underpopulated (currently fewer chunks than desired)
8300 // a chunk of an overpopulated (currently more chunks than desired) size may
8301 // be chosen.  The "hint" associated with a free list, if non-null, points
8302 // to a free list which may be overpopulated.
8303 //
8304 
8305 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
8306   const size_t size = fc->size();
8307   // Chunks that cannot be coalesced are not in the
8308   // free lists.
8309   if (CMSTestInFreeList && !fc->cantCoalesce()) {
8310     assert(_sp->verify_chunk_in_free_list(fc),
8311       "free chunk should be in free lists");
8312   }
8313   // a chunk that is already free, should not have been
8314   // marked in the bit map
8315   HeapWord* const addr = (HeapWord*) fc;
8316   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
8317   // Verify that the bit map has no bits marked between
8318   // addr and purported end of this block.
8319   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8320 
8321   // Some chunks cannot be coalesced under any circumstances.
8322   // See the definition of cantCoalesce().
8323   if (!fc->cantCoalesce()) {
8324     // This chunk can potentially be coalesced.
8325     if (_sp->adaptive_freelists()) {
8326       // All the work is done in
8327       do_post_free_or_garbage_chunk(fc, size);
8328     } else {  // Not adaptive free lists
8329       // this is a free chunk that can potentially be coalesced by the sweeper;
8330       if (!inFreeRange()) {
8331         // if the next chunk is a free block that can't be coalesced
8332         // it doesn't make sense to remove this chunk from the free lists
8333         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
8334         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
8335         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
8336             nextChunk->is_free()               &&     // ... which is free...
8337             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
8338           // nothing to do
8339         } else {
8340           // Potentially the start of a new free range:
8341           // Don't eagerly remove it from the free lists.
8342           // No need to remove it if it will just be put
8343           // back again.  (Also from a pragmatic point of view
8344           // if it is a free block in a region that is beyond
8345           // any allocated blocks, an assertion will fail)
8346           // Remember the start of a free run.
8347           initialize_free_range(addr, true);
8348           // end - can coalesce with next chunk
8349         }
8350       } else {
8351         // the midst of a free range, we are coalescing
8352         print_free_block_coalesced(fc);
8353         if (CMSTraceSweeper) {
8354           gclog_or_tty->print("  -- pick up free block " PTR_FORMAT " (" SIZE_FORMAT ")\n", fc, size);
8355         }
8356         // remove it from the free lists
8357         _sp->removeFreeChunkFromFreeLists(fc);
8358         set_lastFreeRangeCoalesced(true);
8359         // If the chunk is being coalesced and the current free range is
8360         // in the free lists, remove the current free range so that it
8361         // will be returned to the free lists in its entirety - all
8362         // the coalesced pieces included.
8363         if (freeRangeInFreeLists()) {
8364           FreeChunk* ffc = (FreeChunk*) freeFinger();
8365           assert(ffc->size() == pointer_delta(addr, freeFinger()),
8366             "Size of free range is inconsistent with chunk size.");
8367           if (CMSTestInFreeList) {
8368             assert(_sp->verify_chunk_in_free_list(ffc),
8369               "free range is not in free lists");
8370           }
8371           _sp->removeFreeChunkFromFreeLists(ffc);
8372           set_freeRangeInFreeLists(false);
8373         }
8374       }
8375     }
8376     // Note that if the chunk is not coalescable (the else arm
8377     // below), we unconditionally flush, without needing to do
8378     // a "lookahead," as we do below.
8379     if (inFreeRange()) lookahead_and_flush(fc, size);
8380   } else {
8381     // Code path common to both original and adaptive free lists.
8382 
8383     // cant coalesce with previous block; this should be treated
8384     // as the end of a free run if any
8385     if (inFreeRange()) {
8386       // we kicked some butt; time to pick up the garbage
8387       assert(freeFinger() < addr, "freeFinger points too high");
8388       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8389     }
8390     // else, nothing to do, just continue
8391   }
8392 }
8393 
8394 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
8395   // This is a chunk of garbage.  It is not in any free list.
8396   // Add it to a free list or let it possibly be coalesced into
8397   // a larger chunk.
8398   HeapWord* const addr = (HeapWord*) fc;
8399   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8400 
8401   if (_sp->adaptive_freelists()) {
8402     // Verify that the bit map has no bits marked between
8403     // addr and purported end of just dead object.
8404     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8405 
8406     do_post_free_or_garbage_chunk(fc, size);
8407   } else {
8408     if (!inFreeRange()) {
8409       // start of a new free range
8410       assert(size > 0, "A free range should have a size");
8411       initialize_free_range(addr, false);
8412     } else {
8413       // this will be swept up when we hit the end of the
8414       // free range
8415       if (CMSTraceSweeper) {
8416         gclog_or_tty->print("  -- pick up garbage " PTR_FORMAT " (" SIZE_FORMAT ")\n", fc, size);
8417       }
8418       // If the chunk is being coalesced and the current free range is
8419       // in the free lists, remove the current free range so that it
8420       // will be returned to the free lists in its entirety - all
8421       // the coalesced pieces included.
8422       if (freeRangeInFreeLists()) {
8423         FreeChunk* ffc = (FreeChunk*)freeFinger();
8424         assert(ffc->size() == pointer_delta(addr, freeFinger()),
8425           "Size of free range is inconsistent with chunk size.");
8426         if (CMSTestInFreeList) {
8427           assert(_sp->verify_chunk_in_free_list(ffc),
8428             "free range is not in free lists");
8429         }
8430         _sp->removeFreeChunkFromFreeLists(ffc);
8431         set_freeRangeInFreeLists(false);
8432       }
8433       set_lastFreeRangeCoalesced(true);
8434     }
8435     // this will be swept up when we hit the end of the free range
8436 
8437     // Verify that the bit map has no bits marked between
8438     // addr and purported end of just dead object.
8439     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8440   }
8441   assert(_limit >= addr + size,
8442          "A freshly garbage chunk can't possibly straddle over _limit");
8443   if (inFreeRange()) lookahead_and_flush(fc, size);
8444   return size;
8445 }
8446 
8447 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
8448   HeapWord* addr = (HeapWord*) fc;
8449   // The sweeper has just found a live object. Return any accumulated
8450   // left hand chunk to the free lists.
8451   if (inFreeRange()) {
8452     assert(freeFinger() < addr, "freeFinger points too high");
8453     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8454   }
8455 
8456   // This object is live: we'd normally expect this to be
8457   // an oop, and like to assert the following:
8458   // assert(oop(addr)->is_oop(), "live block should be an oop");
8459   // However, as we commented above, this may be an object whose
8460   // header hasn't yet been initialized.
8461   size_t size;
8462   assert(_bitMap->isMarked(addr), "Tautology for this control point");
8463   if (_bitMap->isMarked(addr + 1)) {
8464     // Determine the size from the bit map, rather than trying to
8465     // compute it from the object header.
8466     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
8467     size = pointer_delta(nextOneAddr + 1, addr);
8468     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
8469            "alignment problem");
8470 
8471 #ifdef ASSERT
8472       if (oop(addr)->klass_or_null() != NULL) {
8473         // Ignore mark word because we are running concurrent with mutators
8474         assert(oop(addr)->is_oop(true), "live block should be an oop");
8475         assert(size ==
8476                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
8477                "P-mark and computed size do not agree");
8478       }
8479 #endif
8480 
8481   } else {
8482     // This should be an initialized object that's alive.
8483     assert(oop(addr)->klass_or_null() != NULL,
8484            "Should be an initialized object");
8485     // Ignore mark word because we are running concurrent with mutators
8486     assert(oop(addr)->is_oop(true), "live block should be an oop");
8487     // Verify that the bit map has no bits marked between
8488     // addr and purported end of this block.
8489     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8490     assert(size >= 3, "Necessary for Printezis marks to work");
8491     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
8492     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
8493   }
8494   return size;
8495 }
8496 
8497 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
8498                                                  size_t chunkSize) {
8499   // do_post_free_or_garbage_chunk() should only be called in the case
8500   // of the adaptive free list allocator.
8501   const bool fcInFreeLists = fc->is_free();
8502   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
8503   assert((HeapWord*)fc <= _limit, "sweep invariant");
8504   if (CMSTestInFreeList && fcInFreeLists) {
8505     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
8506   }
8507 
8508   if (CMSTraceSweeper) {
8509     gclog_or_tty->print_cr("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", fc, chunkSize);
8510   }
8511 
8512   HeapWord* const fc_addr = (HeapWord*) fc;
8513 
8514   bool coalesce;
8515   const size_t left  = pointer_delta(fc_addr, freeFinger());
8516   const size_t right = chunkSize;
8517   switch (FLSCoalescePolicy) {
8518     // numeric value forms a coalition aggressiveness metric
8519     case 0:  { // never coalesce
8520       coalesce = false;
8521       break;
8522     }
8523     case 1: { // coalesce if left & right chunks on overpopulated lists
8524       coalesce = _sp->coalOverPopulated(left) &&
8525                  _sp->coalOverPopulated(right);
8526       break;
8527     }
8528     case 2: { // coalesce if left chunk on overpopulated list (default)
8529       coalesce = _sp->coalOverPopulated(left);
8530       break;
8531     }
8532     case 3: { // coalesce if left OR right chunk on overpopulated list
8533       coalesce = _sp->coalOverPopulated(left) ||
8534                  _sp->coalOverPopulated(right);
8535       break;
8536     }
8537     case 4: { // always coalesce
8538       coalesce = true;
8539       break;
8540     }
8541     default:
8542      ShouldNotReachHere();
8543   }
8544 
8545   // Should the current free range be coalesced?
8546   // If the chunk is in a free range and either we decided to coalesce above
8547   // or the chunk is near the large block at the end of the heap
8548   // (isNearLargestChunk() returns true), then coalesce this chunk.
8549   const bool doCoalesce = inFreeRange()
8550                           && (coalesce || _g->isNearLargestChunk(fc_addr));
8551   if (doCoalesce) {
8552     // Coalesce the current free range on the left with the new
8553     // chunk on the right.  If either is on a free list,
8554     // it must be removed from the list and stashed in the closure.
8555     if (freeRangeInFreeLists()) {
8556       FreeChunk* const ffc = (FreeChunk*)freeFinger();
8557       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
8558         "Size of free range is inconsistent with chunk size.");
8559       if (CMSTestInFreeList) {
8560         assert(_sp->verify_chunk_in_free_list(ffc),
8561           "Chunk is not in free lists");
8562       }
8563       _sp->coalDeath(ffc->size());
8564       _sp->removeFreeChunkFromFreeLists(ffc);
8565       set_freeRangeInFreeLists(false);
8566     }
8567     if (fcInFreeLists) {
8568       _sp->coalDeath(chunkSize);
8569       assert(fc->size() == chunkSize,
8570         "The chunk has the wrong size or is not in the free lists");
8571       _sp->removeFreeChunkFromFreeLists(fc);
8572     }
8573     set_lastFreeRangeCoalesced(true);
8574     print_free_block_coalesced(fc);
8575   } else {  // not in a free range and/or should not coalesce
8576     // Return the current free range and start a new one.
8577     if (inFreeRange()) {
8578       // In a free range but cannot coalesce with the right hand chunk.
8579       // Put the current free range into the free lists.
8580       flush_cur_free_chunk(freeFinger(),
8581                            pointer_delta(fc_addr, freeFinger()));
8582     }
8583     // Set up for new free range.  Pass along whether the right hand
8584     // chunk is in the free lists.
8585     initialize_free_range((HeapWord*)fc, fcInFreeLists);
8586   }
8587 }
8588 
8589 // Lookahead flush:
8590 // If we are tracking a free range, and this is the last chunk that
8591 // we'll look at because its end crosses past _limit, we'll preemptively
8592 // flush it along with any free range we may be holding on to. Note that
8593 // this can be the case only for an already free or freshly garbage
8594 // chunk. If this block is an object, it can never straddle
8595 // over _limit. The "straddling" occurs when _limit is set at
8596 // the previous end of the space when this cycle started, and
8597 // a subsequent heap expansion caused the previously co-terminal
8598 // free block to be coalesced with the newly expanded portion,
8599 // thus rendering _limit a non-block-boundary making it dangerous
8600 // for the sweeper to step over and examine.
8601 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
8602   assert(inFreeRange(), "Should only be called if currently in a free range.");
8603   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
8604   assert(_sp->used_region().contains(eob - 1),
8605          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
8606                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
8607                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
8608                  eob, eob-1, _limit, _sp->bottom(), _sp->end(), fc, chunk_size));
8609   if (eob >= _limit) {
8610     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
8611     if (CMSTraceSweeper) {
8612       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
8613                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
8614                              "[" PTR_FORMAT "," PTR_FORMAT ")",
8615                              _limit, fc, eob, _sp->bottom(), _sp->end());
8616     }
8617     // Return the storage we are tracking back into the free lists.
8618     if (CMSTraceSweeper) {
8619       gclog_or_tty->print_cr("Flushing ... ");
8620     }
8621     assert(freeFinger() < eob, "Error");
8622     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
8623   }
8624 }
8625 
8626 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
8627   assert(inFreeRange(), "Should only be called if currently in a free range.");
8628   assert(size > 0,
8629     "A zero sized chunk cannot be added to the free lists.");
8630   if (!freeRangeInFreeLists()) {
8631     if (CMSTestInFreeList) {
8632       FreeChunk* fc = (FreeChunk*) chunk;
8633       fc->set_size(size);
8634       assert(!_sp->verify_chunk_in_free_list(fc),
8635         "chunk should not be in free lists yet");
8636     }
8637     if (CMSTraceSweeper) {
8638       gclog_or_tty->print_cr(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists",
8639                     chunk, size);
8640     }
8641     // A new free range is going to be starting.  The current
8642     // free range has not been added to the free lists yet or
8643     // was removed so add it back.
8644     // If the current free range was coalesced, then the death
8645     // of the free range was recorded.  Record a birth now.
8646     if (lastFreeRangeCoalesced()) {
8647       _sp->coalBirth(size);
8648     }
8649     _sp->addChunkAndRepairOffsetTable(chunk, size,
8650             lastFreeRangeCoalesced());
8651   } else if (CMSTraceSweeper) {
8652     gclog_or_tty->print_cr("Already in free list: nothing to flush");
8653   }
8654   set_inFreeRange(false);
8655   set_freeRangeInFreeLists(false);
8656 }
8657 
8658 // We take a break if we've been at this for a while,
8659 // so as to avoid monopolizing the locks involved.
8660 void SweepClosure::do_yield_work(HeapWord* addr) {
8661   // Return current free chunk being used for coalescing (if any)
8662   // to the appropriate freelist.  After yielding, the next
8663   // free block encountered will start a coalescing range of
8664   // free blocks.  If the next free block is adjacent to the
8665   // chunk just flushed, they will need to wait for the next
8666   // sweep to be coalesced.
8667   if (inFreeRange()) {
8668     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8669   }
8670 
8671   // First give up the locks, then yield, then re-lock.
8672   // We should probably use a constructor/destructor idiom to
8673   // do this unlock/lock or modify the MutexUnlocker class to
8674   // serve our purpose. XXX
8675   assert_lock_strong(_bitMap->lock());
8676   assert_lock_strong(_freelistLock);
8677   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8678          "CMS thread should hold CMS token");
8679   _bitMap->lock()->unlock();
8680   _freelistLock->unlock();
8681   ConcurrentMarkSweepThread::desynchronize(true);
8682   ConcurrentMarkSweepThread::acknowledge_yield_request();
8683   _collector->stopTimer();
8684   if (PrintCMSStatistics != 0) {
8685     _collector->incrementYields();
8686   }
8687   _collector->icms_wait();
8688 
8689   // See the comment in coordinator_yield()
8690   for (unsigned i = 0; i < CMSYieldSleepCount &&
8691                        ConcurrentMarkSweepThread::should_yield() &&
8692                        !CMSCollector::foregroundGCIsActive(); ++i) {
8693     os::sleep(Thread::current(), 1, false);
8694     ConcurrentMarkSweepThread::acknowledge_yield_request();
8695   }
8696 
8697   ConcurrentMarkSweepThread::synchronize(true);
8698   _freelistLock->lock();
8699   _bitMap->lock()->lock_without_safepoint_check();
8700   _collector->startTimer();
8701 }
8702 
8703 #ifndef PRODUCT
8704 // This is actually very useful in a product build if it can
8705 // be called from the debugger.  Compile it into the product
8706 // as needed.
8707 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
8708   return debug_cms_space->verify_chunk_in_free_list(fc);
8709 }
8710 #endif
8711 
8712 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
8713   if (CMSTraceSweeper) {
8714     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
8715                            fc, fc->size());
8716   }
8717 }
8718 
8719 // CMSIsAliveClosure
8720 bool CMSIsAliveClosure::do_object_b(oop obj) {
8721   HeapWord* addr = (HeapWord*)obj;
8722   return addr != NULL &&
8723          (!_span.contains(addr) || _bit_map->isMarked(addr));
8724 }
8725 
8726 
8727 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
8728                       MemRegion span,
8729                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
8730                       bool cpc):
8731   _collector(collector),
8732   _span(span),
8733   _bit_map(bit_map),
8734   _mark_stack(mark_stack),
8735   _concurrent_precleaning(cpc) {
8736   assert(!_span.is_empty(), "Empty span could spell trouble");
8737 }
8738 
8739 
8740 // CMSKeepAliveClosure: the serial version
8741 void CMSKeepAliveClosure::do_oop(oop obj) {
8742   HeapWord* addr = (HeapWord*)obj;
8743   if (_span.contains(addr) &&
8744       !_bit_map->isMarked(addr)) {
8745     _bit_map->mark(addr);
8746     bool simulate_overflow = false;
8747     NOT_PRODUCT(
8748       if (CMSMarkStackOverflowALot &&
8749           _collector->simulate_overflow()) {
8750         // simulate a stack overflow
8751         simulate_overflow = true;
8752       }
8753     )
8754     if (simulate_overflow || !_mark_stack->push(obj)) {
8755       if (_concurrent_precleaning) {
8756         // We dirty the overflown object and let the remark
8757         // phase deal with it.
8758         assert(_collector->overflow_list_is_empty(), "Error");
8759         // In the case of object arrays, we need to dirty all of
8760         // the cards that the object spans. No locking or atomics
8761         // are needed since no one else can be mutating the mod union
8762         // table.
8763         if (obj->is_objArray()) {
8764           size_t sz = obj->size();
8765           HeapWord* end_card_addr =
8766             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8767           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8768           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8769           _collector->_modUnionTable.mark_range(redirty_range);
8770         } else {
8771           _collector->_modUnionTable.mark(addr);
8772         }
8773         _collector->_ser_kac_preclean_ovflw++;
8774       } else {
8775         _collector->push_on_overflow_list(obj);
8776         _collector->_ser_kac_ovflw++;
8777       }
8778     }
8779   }
8780 }
8781 
8782 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8783 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8784 
8785 // CMSParKeepAliveClosure: a parallel version of the above.
8786 // The work queues are private to each closure (thread),
8787 // but (may be) available for stealing by other threads.
8788 void CMSParKeepAliveClosure::do_oop(oop obj) {
8789   HeapWord* addr = (HeapWord*)obj;
8790   if (_span.contains(addr) &&
8791       !_bit_map->isMarked(addr)) {
8792     // In general, during recursive tracing, several threads
8793     // may be concurrently getting here; the first one to
8794     // "tag" it, claims it.
8795     if (_bit_map->par_mark(addr)) {
8796       bool res = _work_queue->push(obj);
8797       assert(res, "Low water mark should be much less than capacity");
8798       // Do a recursive trim in the hope that this will keep
8799       // stack usage lower, but leave some oops for potential stealers
8800       trim_queue(_low_water_mark);
8801     } // Else, another thread got there first
8802   }
8803 }
8804 
8805 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8806 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8807 
8808 void CMSParKeepAliveClosure::trim_queue(uint max) {
8809   while (_work_queue->size() > max) {
8810     oop new_oop;
8811     if (_work_queue->pop_local(new_oop)) {
8812       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8813       assert(_bit_map->isMarked((HeapWord*)new_oop),
8814              "no white objects on this stack!");
8815       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8816       // iterate over the oops in this oop, marking and pushing
8817       // the ones in CMS heap (i.e. in _span).
8818       new_oop->oop_iterate(&_mark_and_push);
8819     }
8820   }
8821 }
8822 
8823 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8824                                 CMSCollector* collector,
8825                                 MemRegion span, CMSBitMap* bit_map,
8826                                 OopTaskQueue* work_queue):
8827   _collector(collector),
8828   _span(span),
8829   _bit_map(bit_map),
8830   _work_queue(work_queue) { }
8831 
8832 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8833   HeapWord* addr = (HeapWord*)obj;
8834   if (_span.contains(addr) &&
8835       !_bit_map->isMarked(addr)) {
8836     if (_bit_map->par_mark(addr)) {
8837       bool simulate_overflow = false;
8838       NOT_PRODUCT(
8839         if (CMSMarkStackOverflowALot &&
8840             _collector->par_simulate_overflow()) {
8841           // simulate a stack overflow
8842           simulate_overflow = true;
8843         }
8844       )
8845       if (simulate_overflow || !_work_queue->push(obj)) {
8846         _collector->par_push_on_overflow_list(obj);
8847         _collector->_par_kac_ovflw++;
8848       }
8849     } // Else another thread got there already
8850   }
8851 }
8852 
8853 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8854 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8855 
8856 //////////////////////////////////////////////////////////////////
8857 //  CMSExpansionCause                /////////////////////////////
8858 //////////////////////////////////////////////////////////////////
8859 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8860   switch (cause) {
8861     case _no_expansion:
8862       return "No expansion";
8863     case _satisfy_free_ratio:
8864       return "Free ratio";
8865     case _satisfy_promotion:
8866       return "Satisfy promotion";
8867     case _satisfy_allocation:
8868       return "allocation";
8869     case _allocate_par_lab:
8870       return "Par LAB";
8871     case _allocate_par_spooling_space:
8872       return "Par Spooling Space";
8873     case _adaptive_size_policy:
8874       return "Ergonomics";
8875     default:
8876       return "unknown";
8877   }
8878 }
8879 
8880 void CMSDrainMarkingStackClosure::do_void() {
8881   // the max number to take from overflow list at a time
8882   const size_t num = _mark_stack->capacity()/4;
8883   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8884          "Overflow list should be NULL during concurrent phases");
8885   while (!_mark_stack->isEmpty() ||
8886          // if stack is empty, check the overflow list
8887          _collector->take_from_overflow_list(num, _mark_stack)) {
8888     oop obj = _mark_stack->pop();
8889     HeapWord* addr = (HeapWord*)obj;
8890     assert(_span.contains(addr), "Should be within span");
8891     assert(_bit_map->isMarked(addr), "Should be marked");
8892     assert(obj->is_oop(), "Should be an oop");
8893     obj->oop_iterate(_keep_alive);
8894   }
8895 }
8896 
8897 void CMSParDrainMarkingStackClosure::do_void() {
8898   // drain queue
8899   trim_queue(0);
8900 }
8901 
8902 // Trim our work_queue so its length is below max at return
8903 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8904   while (_work_queue->size() > max) {
8905     oop new_oop;
8906     if (_work_queue->pop_local(new_oop)) {
8907       assert(new_oop->is_oop(), "Expected an oop");
8908       assert(_bit_map->isMarked((HeapWord*)new_oop),
8909              "no white objects on this stack!");
8910       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8911       // iterate over the oops in this oop, marking and pushing
8912       // the ones in CMS heap (i.e. in _span).
8913       new_oop->oop_iterate(&_mark_and_push);
8914     }
8915   }
8916 }
8917 
8918 ////////////////////////////////////////////////////////////////////
8919 // Support for Marking Stack Overflow list handling and related code
8920 ////////////////////////////////////////////////////////////////////
8921 // Much of the following code is similar in shape and spirit to the
8922 // code used in ParNewGC. We should try and share that code
8923 // as much as possible in the future.
8924 
8925 #ifndef PRODUCT
8926 // Debugging support for CMSStackOverflowALot
8927 
8928 // It's OK to call this multi-threaded;  the worst thing
8929 // that can happen is that we'll get a bunch of closely
8930 // spaced simulated overflows, but that's OK, in fact
8931 // probably good as it would exercise the overflow code
8932 // under contention.
8933 bool CMSCollector::simulate_overflow() {
8934   if (_overflow_counter-- <= 0) { // just being defensive
8935     _overflow_counter = CMSMarkStackOverflowInterval;
8936     return true;
8937   } else {
8938     return false;
8939   }
8940 }
8941 
8942 bool CMSCollector::par_simulate_overflow() {
8943   return simulate_overflow();
8944 }
8945 #endif
8946 
8947 // Single-threaded
8948 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8949   assert(stack->isEmpty(), "Expected precondition");
8950   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8951   size_t i = num;
8952   oop  cur = _overflow_list;
8953   const markOop proto = markOopDesc::prototype();
8954   NOT_PRODUCT(ssize_t n = 0;)
8955   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8956     next = oop(cur->mark());
8957     cur->set_mark(proto);   // until proven otherwise
8958     assert(cur->is_oop(), "Should be an oop");
8959     bool res = stack->push(cur);
8960     assert(res, "Bit off more than can chew?");
8961     NOT_PRODUCT(n++;)
8962   }
8963   _overflow_list = cur;
8964 #ifndef PRODUCT
8965   assert(_num_par_pushes >= n, "Too many pops?");
8966   _num_par_pushes -=n;
8967 #endif
8968   return !stack->isEmpty();
8969 }
8970 
8971 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
8972 // (MT-safe) Get a prefix of at most "num" from the list.
8973 // The overflow list is chained through the mark word of
8974 // each object in the list. We fetch the entire list,
8975 // break off a prefix of the right size and return the
8976 // remainder. If other threads try to take objects from
8977 // the overflow list at that time, they will wait for
8978 // some time to see if data becomes available. If (and
8979 // only if) another thread places one or more object(s)
8980 // on the global list before we have returned the suffix
8981 // to the global list, we will walk down our local list
8982 // to find its end and append the global list to
8983 // our suffix before returning it. This suffix walk can
8984 // prove to be expensive (quadratic in the amount of traffic)
8985 // when there are many objects in the overflow list and
8986 // there is much producer-consumer contention on the list.
8987 // *NOTE*: The overflow list manipulation code here and
8988 // in ParNewGeneration:: are very similar in shape,
8989 // except that in the ParNew case we use the old (from/eden)
8990 // copy of the object to thread the list via its klass word.
8991 // Because of the common code, if you make any changes in
8992 // the code below, please check the ParNew version to see if
8993 // similar changes might be needed.
8994 // CR 6797058 has been filed to consolidate the common code.
8995 bool CMSCollector::par_take_from_overflow_list(size_t num,
8996                                                OopTaskQueue* work_q,
8997                                                int no_of_gc_threads) {
8998   assert(work_q->size() == 0, "First empty local work queue");
8999   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
9000   if (_overflow_list == NULL) {
9001     return false;
9002   }
9003   // Grab the entire list; we'll put back a suffix
9004   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
9005   Thread* tid = Thread::current();
9006   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
9007   // set to ParallelGCThreads.
9008   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
9009   size_t sleep_time_millis = MAX2((size_t)1, num/100);
9010   // If the list is busy, we spin for a short while,
9011   // sleeping between attempts to get the list.
9012   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
9013     os::sleep(tid, sleep_time_millis, false);
9014     if (_overflow_list == NULL) {
9015       // Nothing left to take
9016       return false;
9017     } else if (_overflow_list != BUSY) {
9018       // Try and grab the prefix
9019       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
9020     }
9021   }
9022   // If the list was found to be empty, or we spun long
9023   // enough, we give up and return empty-handed. If we leave
9024   // the list in the BUSY state below, it must be the case that
9025   // some other thread holds the overflow list and will set it
9026   // to a non-BUSY state in the future.
9027   if (prefix == NULL || prefix == BUSY) {
9028      // Nothing to take or waited long enough
9029      if (prefix == NULL) {
9030        // Write back the NULL in case we overwrote it with BUSY above
9031        // and it is still the same value.
9032        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
9033      }
9034      return false;
9035   }
9036   assert(prefix != NULL && prefix != BUSY, "Error");
9037   size_t i = num;
9038   oop cur = prefix;
9039   // Walk down the first "num" objects, unless we reach the end.
9040   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
9041   if (cur->mark() == NULL) {
9042     // We have "num" or fewer elements in the list, so there
9043     // is nothing to return to the global list.
9044     // Write back the NULL in lieu of the BUSY we wrote
9045     // above, if it is still the same value.
9046     if (_overflow_list == BUSY) {
9047       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
9048     }
9049   } else {
9050     // Chop off the suffix and return it to the global list.
9051     assert(cur->mark() != BUSY, "Error");
9052     oop suffix_head = cur->mark(); // suffix will be put back on global list
9053     cur->set_mark(NULL);           // break off suffix
9054     // It's possible that the list is still in the empty(busy) state
9055     // we left it in a short while ago; in that case we may be
9056     // able to place back the suffix without incurring the cost
9057     // of a walk down the list.
9058     oop observed_overflow_list = _overflow_list;
9059     oop cur_overflow_list = observed_overflow_list;
9060     bool attached = false;
9061     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
9062       observed_overflow_list =
9063         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9064       if (cur_overflow_list == observed_overflow_list) {
9065         attached = true;
9066         break;
9067       } else cur_overflow_list = observed_overflow_list;
9068     }
9069     if (!attached) {
9070       // Too bad, someone else sneaked in (at least) an element; we'll need
9071       // to do a splice. Find tail of suffix so we can prepend suffix to global
9072       // list.
9073       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
9074       oop suffix_tail = cur;
9075       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
9076              "Tautology");
9077       observed_overflow_list = _overflow_list;
9078       do {
9079         cur_overflow_list = observed_overflow_list;
9080         if (cur_overflow_list != BUSY) {
9081           // Do the splice ...
9082           suffix_tail->set_mark(markOop(cur_overflow_list));
9083         } else { // cur_overflow_list == BUSY
9084           suffix_tail->set_mark(NULL);
9085         }
9086         // ... and try to place spliced list back on overflow_list ...
9087         observed_overflow_list =
9088           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9089       } while (cur_overflow_list != observed_overflow_list);
9090       // ... until we have succeeded in doing so.
9091     }
9092   }
9093 
9094   // Push the prefix elements on work_q
9095   assert(prefix != NULL, "control point invariant");
9096   const markOop proto = markOopDesc::prototype();
9097   oop next;
9098   NOT_PRODUCT(ssize_t n = 0;)
9099   for (cur = prefix; cur != NULL; cur = next) {
9100     next = oop(cur->mark());
9101     cur->set_mark(proto);   // until proven otherwise
9102     assert(cur->is_oop(), "Should be an oop");
9103     bool res = work_q->push(cur);
9104     assert(res, "Bit off more than we can chew?");
9105     NOT_PRODUCT(n++;)
9106   }
9107 #ifndef PRODUCT
9108   assert(_num_par_pushes >= n, "Too many pops?");
9109   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
9110 #endif
9111   return true;
9112 }
9113 
9114 // Single-threaded
9115 void CMSCollector::push_on_overflow_list(oop p) {
9116   NOT_PRODUCT(_num_par_pushes++;)
9117   assert(p->is_oop(), "Not an oop");
9118   preserve_mark_if_necessary(p);
9119   p->set_mark((markOop)_overflow_list);
9120   _overflow_list = p;
9121 }
9122 
9123 // Multi-threaded; use CAS to prepend to overflow list
9124 void CMSCollector::par_push_on_overflow_list(oop p) {
9125   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
9126   assert(p->is_oop(), "Not an oop");
9127   par_preserve_mark_if_necessary(p);
9128   oop observed_overflow_list = _overflow_list;
9129   oop cur_overflow_list;
9130   do {
9131     cur_overflow_list = observed_overflow_list;
9132     if (cur_overflow_list != BUSY) {
9133       p->set_mark(markOop(cur_overflow_list));
9134     } else {
9135       p->set_mark(NULL);
9136     }
9137     observed_overflow_list =
9138       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
9139   } while (cur_overflow_list != observed_overflow_list);
9140 }
9141 #undef BUSY
9142 
9143 // Single threaded
9144 // General Note on GrowableArray: pushes may silently fail
9145 // because we are (temporarily) out of C-heap for expanding
9146 // the stack. The problem is quite ubiquitous and affects
9147 // a lot of code in the JVM. The prudent thing for GrowableArray
9148 // to do (for now) is to exit with an error. However, that may
9149 // be too draconian in some cases because the caller may be
9150 // able to recover without much harm. For such cases, we
9151 // should probably introduce a "soft_push" method which returns
9152 // an indication of success or failure with the assumption that
9153 // the caller may be able to recover from a failure; code in
9154 // the VM can then be changed, incrementally, to deal with such
9155 // failures where possible, thus, incrementally hardening the VM
9156 // in such low resource situations.
9157 void CMSCollector::preserve_mark_work(oop p, markOop m) {
9158   _preserved_oop_stack.push(p);
9159   _preserved_mark_stack.push(m);
9160   assert(m == p->mark(), "Mark word changed");
9161   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9162          "bijection");
9163 }
9164 
9165 // Single threaded
9166 void CMSCollector::preserve_mark_if_necessary(oop p) {
9167   markOop m = p->mark();
9168   if (m->must_be_preserved(p)) {
9169     preserve_mark_work(p, m);
9170   }
9171 }
9172 
9173 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
9174   markOop m = p->mark();
9175   if (m->must_be_preserved(p)) {
9176     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
9177     // Even though we read the mark word without holding
9178     // the lock, we are assured that it will not change
9179     // because we "own" this oop, so no other thread can
9180     // be trying to push it on the overflow list; see
9181     // the assertion in preserve_mark_work() that checks
9182     // that m == p->mark().
9183     preserve_mark_work(p, m);
9184   }
9185 }
9186 
9187 // We should be able to do this multi-threaded,
9188 // a chunk of stack being a task (this is
9189 // correct because each oop only ever appears
9190 // once in the overflow list. However, it's
9191 // not very easy to completely overlap this with
9192 // other operations, so will generally not be done
9193 // until all work's been completed. Because we
9194 // expect the preserved oop stack (set) to be small,
9195 // it's probably fine to do this single-threaded.
9196 // We can explore cleverer concurrent/overlapped/parallel
9197 // processing of preserved marks if we feel the
9198 // need for this in the future. Stack overflow should
9199 // be so rare in practice and, when it happens, its
9200 // effect on performance so great that this will
9201 // likely just be in the noise anyway.
9202 void CMSCollector::restore_preserved_marks_if_any() {
9203   assert(SafepointSynchronize::is_at_safepoint(),
9204          "world should be stopped");
9205   assert(Thread::current()->is_ConcurrentGC_thread() ||
9206          Thread::current()->is_VM_thread(),
9207          "should be single-threaded");
9208   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9209          "bijection");
9210 
9211   while (!_preserved_oop_stack.is_empty()) {
9212     oop p = _preserved_oop_stack.pop();
9213     assert(p->is_oop(), "Should be an oop");
9214     assert(_span.contains(p), "oop should be in _span");
9215     assert(p->mark() == markOopDesc::prototype(),
9216            "Set when taken from overflow list");
9217     markOop m = _preserved_mark_stack.pop();
9218     p->set_mark(m);
9219   }
9220   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
9221          "stacks were cleared above");
9222 }
9223 
9224 #ifndef PRODUCT
9225 bool CMSCollector::no_preserved_marks() const {
9226   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
9227 }
9228 #endif
9229 
9230 // Transfer some number of overflown objects to usual marking
9231 // stack. Return true if some objects were transferred.
9232 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
9233   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
9234                     (size_t)ParGCDesiredObjsFromOverflowList);
9235 
9236   bool res = _collector->take_from_overflow_list(num, _mark_stack);
9237   assert(_collector->overflow_list_is_empty() || res,
9238          "If list is not empty, we should have taken something");
9239   assert(!res || !_mark_stack->isEmpty(),
9240          "If we took something, it should now be on our stack");
9241   return res;
9242 }
9243 
9244 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
9245   size_t res = _sp->block_size_no_stall(addr, _collector);
9246   if (_sp->block_is_obj(addr)) {
9247     if (_live_bit_map->isMarked(addr)) {
9248       // It can't have been dead in a previous cycle
9249       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
9250     } else {
9251       _dead_bit_map->mark(addr);      // mark the dead object
9252     }
9253   }
9254   // Could be 0, if the block size could not be computed without stalling.
9255   return res;
9256 }
9257 
9258 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
9259 
9260   switch (phase) {
9261     case CMSCollector::InitialMarking:
9262       initialize(true  /* fullGC */ ,
9263                  cause /* cause of the GC */,
9264                  true  /* recordGCBeginTime */,
9265                  true  /* recordPreGCUsage */,
9266                  false /* recordPeakUsage */,
9267                  false /* recordPostGCusage */,
9268                  true  /* recordAccumulatedGCTime */,
9269                  false /* recordGCEndTime */,
9270                  false /* countCollection */  );
9271       break;
9272 
9273     case CMSCollector::FinalMarking:
9274       initialize(true  /* fullGC */ ,
9275                  cause /* cause of the GC */,
9276                  false /* recordGCBeginTime */,
9277                  false /* recordPreGCUsage */,
9278                  false /* recordPeakUsage */,
9279                  false /* recordPostGCusage */,
9280                  true  /* recordAccumulatedGCTime */,
9281                  false /* recordGCEndTime */,
9282                  false /* countCollection */  );
9283       break;
9284 
9285     case CMSCollector::Sweeping:
9286       initialize(true  /* fullGC */ ,
9287                  cause /* cause of the GC */,
9288                  false /* recordGCBeginTime */,
9289                  false /* recordPreGCUsage */,
9290                  true  /* recordPeakUsage */,
9291                  true  /* recordPostGCusage */,
9292                  false /* recordAccumulatedGCTime */,
9293                  true  /* recordGCEndTime */,
9294                  true  /* countCollection */  );
9295       break;
9296 
9297     default:
9298       ShouldNotReachHere();
9299   }
9300 }