1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 // FIXME, formats have issues.  Disable this macro definition, compile, and study warnings for more information.
  27 #define ATTRIBUTE_PRINTF(x,y)
  28 #endif
  29 
  30 #include "precompiled.hpp"
  31 #include "classfile/stringTable.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  35 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  36 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  37 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  38 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  39 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  40 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  41 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  42 #include "gc_implementation/g1/g1EvacFailure.hpp"
  43 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  44 #include "gc_implementation/g1/g1Log.hpp"
  45 #include "gc_implementation/g1/g1MarkSweep.hpp"
  46 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  47 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
  48 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
  49 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  50 #include "gc_implementation/g1/g1StringDedup.hpp"
  51 #include "gc_implementation/g1/g1YCTypes.hpp"
  52 #include "gc_implementation/g1/heapRegion.inline.hpp"
  53 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  54 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  55 #include "gc_implementation/g1/vm_operations_g1.hpp"
  56 #include "gc_implementation/shared/gcHeapSummary.hpp"
  57 #include "gc_implementation/shared/gcTimer.hpp"
  58 #include "gc_implementation/shared/gcTrace.hpp"
  59 #include "gc_implementation/shared/gcTraceTime.hpp"
  60 #include "gc_implementation/shared/isGCActiveMark.hpp"
  61 #include "memory/allocation.hpp"
  62 #include "memory/gcLocker.inline.hpp"
  63 #include "memory/generationSpec.hpp"
  64 #include "memory/iterator.hpp"
  65 #include "memory/referenceProcessor.hpp"
  66 #include "oops/oop.inline.hpp"
  67 #include "oops/oop.pcgc.inline.hpp"
  68 #include "runtime/atomic.inline.hpp"
  69 #include "runtime/orderAccess.inline.hpp"
  70 #include "runtime/vmThread.hpp"
  71 #include "utilities/globalDefinitions.hpp"
  72 
  73 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  74 
  75 // turn it on so that the contents of the young list (scan-only /
  76 // to-be-collected) are printed at "strategic" points before / during
  77 // / after the collection --- this is useful for debugging
  78 #define YOUNG_LIST_VERBOSE 0
  79 // CURRENT STATUS
  80 // This file is under construction.  Search for "FIXME".
  81 
  82 // INVARIANTS/NOTES
  83 //
  84 // All allocation activity covered by the G1CollectedHeap interface is
  85 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  86 // and allocate_new_tlab, which are the "entry" points to the
  87 // allocation code from the rest of the JVM.  (Note that this does not
  88 // apply to TLAB allocation, which is not part of this interface: it
  89 // is done by clients of this interface.)
  90 
  91 // Notes on implementation of parallelism in different tasks.
  92 //
  93 // G1ParVerifyTask uses heap_region_par_iterate() for parallelism.
  94 // The number of GC workers is passed to heap_region_par_iterate().
  95 // It does use run_task() which sets _n_workers in the task.
  96 // G1ParTask executes g1_process_roots() ->
  97 // SharedHeap::process_roots() which calls eventually to
  98 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  99 // SequentialSubTasksDone.  SharedHeap::process_roots() also
 100 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
 101 //
 102 
 103 // Local to this file.
 104 
 105 class RefineCardTableEntryClosure: public CardTableEntryClosure {
 106   bool _concurrent;
 107 public:
 108   RefineCardTableEntryClosure() : _concurrent(true) { }
 109 
 110   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 111     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 112     // This path is executed by the concurrent refine or mutator threads,
 113     // concurrently, and so we do not care if card_ptr contains references
 114     // that point into the collection set.
 115     assert(!oops_into_cset, "should be");
 116 
 117     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 118       // Caller will actually yield.
 119       return false;
 120     }
 121     // Otherwise, we finished successfully; return true.
 122     return true;
 123   }
 124 
 125   void set_concurrent(bool b) { _concurrent = b; }
 126 };
 127 
 128 
 129 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 130   size_t _num_processed;
 131   CardTableModRefBS* _ctbs;
 132   int _histo[256];
 133 
 134  public:
 135   ClearLoggedCardTableEntryClosure() :
 136     _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
 137   {
 138     for (int i = 0; i < 256; i++) _histo[i] = 0;
 139   }
 140 
 141   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 142     unsigned char* ujb = (unsigned char*)card_ptr;
 143     int ind = (int)(*ujb);
 144     _histo[ind]++;
 145 
 146     *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
 147     _num_processed++;
 148 
 149     return true;
 150   }
 151 
 152   size_t num_processed() { return _num_processed; }
 153 
 154   void print_histo() {
 155     gclog_or_tty->print_cr("Card table value histogram:");
 156     for (int i = 0; i < 256; i++) {
 157       if (_histo[i] != 0) {
 158         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 159       }
 160     }
 161   }
 162 };
 163 
 164 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 165  private:
 166   size_t _num_processed;
 167 
 168  public:
 169   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 170 
 171   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 172     *card_ptr = CardTableModRefBS::dirty_card_val();
 173     _num_processed++;
 174     return true;
 175   }
 176 
 177   size_t num_processed() const { return _num_processed; }
 178 };
 179 
 180 YoungList::YoungList(G1CollectedHeap* g1h) :
 181     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 182     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 183   guarantee(check_list_empty(false), "just making sure...");
 184 }
 185 
 186 void YoungList::push_region(HeapRegion *hr) {
 187   assert(!hr->is_young(), "should not already be young");
 188   assert(hr->get_next_young_region() == NULL, "cause it should!");
 189 
 190   hr->set_next_young_region(_head);
 191   _head = hr;
 192 
 193   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 194   ++_length;
 195 }
 196 
 197 void YoungList::add_survivor_region(HeapRegion* hr) {
 198   assert(hr->is_survivor(), "should be flagged as survivor region");
 199   assert(hr->get_next_young_region() == NULL, "cause it should!");
 200 
 201   hr->set_next_young_region(_survivor_head);
 202   if (_survivor_head == NULL) {
 203     _survivor_tail = hr;
 204   }
 205   _survivor_head = hr;
 206   ++_survivor_length;
 207 }
 208 
 209 void YoungList::empty_list(HeapRegion* list) {
 210   while (list != NULL) {
 211     HeapRegion* next = list->get_next_young_region();
 212     list->set_next_young_region(NULL);
 213     list->uninstall_surv_rate_group();
 214     // This is called before a Full GC and all the non-empty /
 215     // non-humongous regions at the end of the Full GC will end up as
 216     // old anyway.
 217     list->set_old();
 218     list = next;
 219   }
 220 }
 221 
 222 void YoungList::empty_list() {
 223   assert(check_list_well_formed(), "young list should be well formed");
 224 
 225   empty_list(_head);
 226   _head = NULL;
 227   _length = 0;
 228 
 229   empty_list(_survivor_head);
 230   _survivor_head = NULL;
 231   _survivor_tail = NULL;
 232   _survivor_length = 0;
 233 
 234   _last_sampled_rs_lengths = 0;
 235 
 236   assert(check_list_empty(false), "just making sure...");
 237 }
 238 
 239 bool YoungList::check_list_well_formed() {
 240   bool ret = true;
 241 
 242   uint length = 0;
 243   HeapRegion* curr = _head;
 244   HeapRegion* last = NULL;
 245   while (curr != NULL) {
 246     if (!curr->is_young()) {
 247       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 248                              "incorrectly tagged (y: %d, surv: %d)",
 249                              curr->bottom(), curr->end(),
 250                              curr->is_young(), curr->is_survivor());
 251       ret = false;
 252     }
 253     ++length;
 254     last = curr;
 255     curr = curr->get_next_young_region();
 256   }
 257   ret = ret && (length == _length);
 258 
 259   if (!ret) {
 260     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 261     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 262                            length, _length);
 263   }
 264 
 265   return ret;
 266 }
 267 
 268 bool YoungList::check_list_empty(bool check_sample) {
 269   bool ret = true;
 270 
 271   if (_length != 0) {
 272     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 273                   _length);
 274     ret = false;
 275   }
 276   if (check_sample && _last_sampled_rs_lengths != 0) {
 277     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 278     ret = false;
 279   }
 280   if (_head != NULL) {
 281     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 282     ret = false;
 283   }
 284   if (!ret) {
 285     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 286   }
 287 
 288   return ret;
 289 }
 290 
 291 void
 292 YoungList::rs_length_sampling_init() {
 293   _sampled_rs_lengths = 0;
 294   _curr               = _head;
 295 }
 296 
 297 bool
 298 YoungList::rs_length_sampling_more() {
 299   return _curr != NULL;
 300 }
 301 
 302 void
 303 YoungList::rs_length_sampling_next() {
 304   assert( _curr != NULL, "invariant" );
 305   size_t rs_length = _curr->rem_set()->occupied();
 306 
 307   _sampled_rs_lengths += rs_length;
 308 
 309   // The current region may not yet have been added to the
 310   // incremental collection set (it gets added when it is
 311   // retired as the current allocation region).
 312   if (_curr->in_collection_set()) {
 313     // Update the collection set policy information for this region
 314     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 315   }
 316 
 317   _curr = _curr->get_next_young_region();
 318   if (_curr == NULL) {
 319     _last_sampled_rs_lengths = _sampled_rs_lengths;
 320     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 321   }
 322 }
 323 
 324 void
 325 YoungList::reset_auxilary_lists() {
 326   guarantee( is_empty(), "young list should be empty" );
 327   assert(check_list_well_formed(), "young list should be well formed");
 328 
 329   // Add survivor regions to SurvRateGroup.
 330   _g1h->g1_policy()->note_start_adding_survivor_regions();
 331   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 332 
 333   int young_index_in_cset = 0;
 334   for (HeapRegion* curr = _survivor_head;
 335        curr != NULL;
 336        curr = curr->get_next_young_region()) {
 337     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 338 
 339     // The region is a non-empty survivor so let's add it to
 340     // the incremental collection set for the next evacuation
 341     // pause.
 342     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 343     young_index_in_cset += 1;
 344   }
 345   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 346   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 347 
 348   _head   = _survivor_head;
 349   _length = _survivor_length;
 350   if (_survivor_head != NULL) {
 351     assert(_survivor_tail != NULL, "cause it shouldn't be");
 352     assert(_survivor_length > 0, "invariant");
 353     _survivor_tail->set_next_young_region(NULL);
 354   }
 355 
 356   // Don't clear the survivor list handles until the start of
 357   // the next evacuation pause - we need it in order to re-tag
 358   // the survivor regions from this evacuation pause as 'young'
 359   // at the start of the next.
 360 
 361   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 362 
 363   assert(check_list_well_formed(), "young list should be well formed");
 364 }
 365 
 366 void YoungList::print() {
 367   HeapRegion* lists[] = {_head,   _survivor_head};
 368   const char* names[] = {"YOUNG", "SURVIVOR"};
 369 
 370   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 371     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 372     HeapRegion *curr = lists[list];
 373     if (curr == NULL)
 374       gclog_or_tty->print_cr("  empty");
 375     while (curr != NULL) {
 376       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 377                              HR_FORMAT_PARAMS(curr),
 378                              curr->prev_top_at_mark_start(),
 379                              curr->next_top_at_mark_start(),
 380                              curr->age_in_surv_rate_group_cond());
 381       curr = curr->get_next_young_region();
 382     }
 383   }
 384 
 385   gclog_or_tty->cr();
 386 }
 387 
 388 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 389   OtherRegionsTable::invalidate(start_idx, num_regions);
 390 }
 391 
 392 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions) {
 393   reset_from_card_cache(start_idx, num_regions);
 394 }
 395 
 396 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 397 {
 398   // Claim the right to put the region on the dirty cards region list
 399   // by installing a self pointer.
 400   HeapRegion* next = hr->get_next_dirty_cards_region();
 401   if (next == NULL) {
 402     HeapRegion* res = (HeapRegion*)
 403       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 404                           NULL);
 405     if (res == NULL) {
 406       HeapRegion* head;
 407       do {
 408         // Put the region to the dirty cards region list.
 409         head = _dirty_cards_region_list;
 410         next = (HeapRegion*)
 411           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 412         if (next == head) {
 413           assert(hr->get_next_dirty_cards_region() == hr,
 414                  "hr->get_next_dirty_cards_region() != hr");
 415           if (next == NULL) {
 416             // The last region in the list points to itself.
 417             hr->set_next_dirty_cards_region(hr);
 418           } else {
 419             hr->set_next_dirty_cards_region(next);
 420           }
 421         }
 422       } while (next != head);
 423     }
 424   }
 425 }
 426 
 427 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 428 {
 429   HeapRegion* head;
 430   HeapRegion* hr;
 431   do {
 432     head = _dirty_cards_region_list;
 433     if (head == NULL) {
 434       return NULL;
 435     }
 436     HeapRegion* new_head = head->get_next_dirty_cards_region();
 437     if (head == new_head) {
 438       // The last region.
 439       new_head = NULL;
 440     }
 441     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 442                                           head);
 443   } while (hr != head);
 444   assert(hr != NULL, "invariant");
 445   hr->set_next_dirty_cards_region(NULL);
 446   return hr;
 447 }
 448 
 449 #ifdef ASSERT
 450 // A region is added to the collection set as it is retired
 451 // so an address p can point to a region which will be in the
 452 // collection set but has not yet been retired.  This method
 453 // therefore is only accurate during a GC pause after all
 454 // regions have been retired.  It is used for debugging
 455 // to check if an nmethod has references to objects that can
 456 // be move during a partial collection.  Though it can be
 457 // inaccurate, it is sufficient for G1 because the conservative
 458 // implementation of is_scavengable() for G1 will indicate that
 459 // all nmethods must be scanned during a partial collection.
 460 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 461   if (p == NULL) {
 462     return false;
 463   }
 464   return heap_region_containing(p)->in_collection_set();
 465 }
 466 #endif
 467 
 468 // Returns true if the reference points to an object that
 469 // can move in an incremental collection.
 470 bool G1CollectedHeap::is_scavengable(const void* p) {
 471   HeapRegion* hr = heap_region_containing(p);
 472   return !hr->is_humongous();
 473 }
 474 
 475 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 476   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 477   CardTableModRefBS* ct_bs = g1_barrier_set();
 478 
 479   // Count the dirty cards at the start.
 480   CountNonCleanMemRegionClosure count1(this);
 481   ct_bs->mod_card_iterate(&count1);
 482   int orig_count = count1.n();
 483 
 484   // First clear the logged cards.
 485   ClearLoggedCardTableEntryClosure clear;
 486   dcqs.apply_closure_to_all_completed_buffers(&clear);
 487   dcqs.iterate_closure_all_threads(&clear, false);
 488   clear.print_histo();
 489 
 490   // Now ensure that there's no dirty cards.
 491   CountNonCleanMemRegionClosure count2(this);
 492   ct_bs->mod_card_iterate(&count2);
 493   if (count2.n() != 0) {
 494     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 495                            count2.n(), orig_count);
 496   }
 497   guarantee(count2.n() == 0, "Card table should be clean.");
 498 
 499   RedirtyLoggedCardTableEntryClosure redirty;
 500   dcqs.apply_closure_to_all_completed_buffers(&redirty);
 501   dcqs.iterate_closure_all_threads(&redirty, false);
 502   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 503                          clear.num_processed(), orig_count);
 504   guarantee(redirty.num_processed() == clear.num_processed(),
 505             err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT,
 506                     redirty.num_processed(), clear.num_processed()));
 507 
 508   CountNonCleanMemRegionClosure count3(this);
 509   ct_bs->mod_card_iterate(&count3);
 510   if (count3.n() != orig_count) {
 511     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 512                            orig_count, count3.n());
 513     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 514   }
 515 }
 516 
 517 // Private class members.
 518 
 519 G1CollectedHeap* G1CollectedHeap::_g1h;
 520 
 521 // Private methods.
 522 
 523 HeapRegion*
 524 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 525   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 526   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 527     if (!_secondary_free_list.is_empty()) {
 528       if (G1ConcRegionFreeingVerbose) {
 529         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 530                                "secondary_free_list has %u entries",
 531                                _secondary_free_list.length());
 532       }
 533       // It looks as if there are free regions available on the
 534       // secondary_free_list. Let's move them to the free_list and try
 535       // again to allocate from it.
 536       append_secondary_free_list();
 537 
 538       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 539              "empty we should have moved at least one entry to the free_list");
 540       HeapRegion* res = _hrm.allocate_free_region(is_old);
 541       if (G1ConcRegionFreeingVerbose) {
 542         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 543                                "allocated "HR_FORMAT" from secondary_free_list",
 544                                HR_FORMAT_PARAMS(res));
 545       }
 546       return res;
 547     }
 548 
 549     // Wait here until we get notified either when (a) there are no
 550     // more free regions coming or (b) some regions have been moved on
 551     // the secondary_free_list.
 552     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 553   }
 554 
 555   if (G1ConcRegionFreeingVerbose) {
 556     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 557                            "could not allocate from secondary_free_list");
 558   }
 559   return NULL;
 560 }
 561 
 562 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 563   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 564          "the only time we use this to allocate a humongous region is "
 565          "when we are allocating a single humongous region");
 566 
 567   HeapRegion* res;
 568   if (G1StressConcRegionFreeing) {
 569     if (!_secondary_free_list.is_empty()) {
 570       if (G1ConcRegionFreeingVerbose) {
 571         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 572                                "forced to look at the secondary_free_list");
 573       }
 574       res = new_region_try_secondary_free_list(is_old);
 575       if (res != NULL) {
 576         return res;
 577       }
 578     }
 579   }
 580 
 581   res = _hrm.allocate_free_region(is_old);
 582 
 583   if (res == NULL) {
 584     if (G1ConcRegionFreeingVerbose) {
 585       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 586                              "res == NULL, trying the secondary_free_list");
 587     }
 588     res = new_region_try_secondary_free_list(is_old);
 589   }
 590   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 591     // Currently, only attempts to allocate GC alloc regions set
 592     // do_expand to true. So, we should only reach here during a
 593     // safepoint. If this assumption changes we might have to
 594     // reconsider the use of _expand_heap_after_alloc_failure.
 595     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 596 
 597     ergo_verbose1(ErgoHeapSizing,
 598                   "attempt heap expansion",
 599                   ergo_format_reason("region allocation request failed")
 600                   ergo_format_byte("allocation request"),
 601                   word_size * HeapWordSize);
 602     if (expand(word_size * HeapWordSize)) {
 603       // Given that expand() succeeded in expanding the heap, and we
 604       // always expand the heap by an amount aligned to the heap
 605       // region size, the free list should in theory not be empty.
 606       // In either case allocate_free_region() will check for NULL.
 607       res = _hrm.allocate_free_region(is_old);
 608     } else {
 609       _expand_heap_after_alloc_failure = false;
 610     }
 611   }
 612   return res;
 613 }
 614 
 615 HeapWord*
 616 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 617                                                            uint num_regions,
 618                                                            size_t word_size,
 619                                                            AllocationContext_t context) {
 620   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 621   assert(is_humongous(word_size), "word_size should be humongous");
 622   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 623 
 624   // Index of last region in the series + 1.
 625   uint last = first + num_regions;
 626 
 627   // We need to initialize the region(s) we just discovered. This is
 628   // a bit tricky given that it can happen concurrently with
 629   // refinement threads refining cards on these regions and
 630   // potentially wanting to refine the BOT as they are scanning
 631   // those cards (this can happen shortly after a cleanup; see CR
 632   // 6991377). So we have to set up the region(s) carefully and in
 633   // a specific order.
 634 
 635   // The word size sum of all the regions we will allocate.
 636   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 637   assert(word_size <= word_size_sum, "sanity");
 638 
 639   // This will be the "starts humongous" region.
 640   HeapRegion* first_hr = region_at(first);
 641   // The header of the new object will be placed at the bottom of
 642   // the first region.
 643   HeapWord* new_obj = first_hr->bottom();
 644   // This will be the new end of the first region in the series that
 645   // should also match the end of the last region in the series.
 646   HeapWord* new_end = new_obj + word_size_sum;
 647   // This will be the new top of the first region that will reflect
 648   // this allocation.
 649   HeapWord* new_top = new_obj + word_size;
 650 
 651   // First, we need to zero the header of the space that we will be
 652   // allocating. When we update top further down, some refinement
 653   // threads might try to scan the region. By zeroing the header we
 654   // ensure that any thread that will try to scan the region will
 655   // come across the zero klass word and bail out.
 656   //
 657   // NOTE: It would not have been correct to have used
 658   // CollectedHeap::fill_with_object() and make the space look like
 659   // an int array. The thread that is doing the allocation will
 660   // later update the object header to a potentially different array
 661   // type and, for a very short period of time, the klass and length
 662   // fields will be inconsistent. This could cause a refinement
 663   // thread to calculate the object size incorrectly.
 664   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 665 
 666   // We will set up the first region as "starts humongous". This
 667   // will also update the BOT covering all the regions to reflect
 668   // that there is a single object that starts at the bottom of the
 669   // first region.
 670   first_hr->set_starts_humongous(new_top, new_end);
 671   first_hr->set_allocation_context(context);
 672   // Then, if there are any, we will set up the "continues
 673   // humongous" regions.
 674   HeapRegion* hr = NULL;
 675   for (uint i = first + 1; i < last; ++i) {
 676     hr = region_at(i);
 677     hr->set_continues_humongous(first_hr);
 678     hr->set_allocation_context(context);
 679   }
 680   // If we have "continues humongous" regions (hr != NULL), then the
 681   // end of the last one should match new_end.
 682   assert(hr == NULL || hr->end() == new_end, "sanity");
 683 
 684   // Up to this point no concurrent thread would have been able to
 685   // do any scanning on any region in this series. All the top
 686   // fields still point to bottom, so the intersection between
 687   // [bottom,top] and [card_start,card_end] will be empty. Before we
 688   // update the top fields, we'll do a storestore to make sure that
 689   // no thread sees the update to top before the zeroing of the
 690   // object header and the BOT initialization.
 691   OrderAccess::storestore();
 692 
 693   // Now that the BOT and the object header have been initialized,
 694   // we can update top of the "starts humongous" region.
 695   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 696          "new_top should be in this region");
 697   first_hr->set_top(new_top);
 698   if (_hr_printer.is_active()) {
 699     HeapWord* bottom = first_hr->bottom();
 700     HeapWord* end = first_hr->orig_end();
 701     if ((first + 1) == last) {
 702       // the series has a single humongous region
 703       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 704     } else {
 705       // the series has more than one humongous regions
 706       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 707     }
 708   }
 709 
 710   // Now, we will update the top fields of the "continues humongous"
 711   // regions. The reason we need to do this is that, otherwise,
 712   // these regions would look empty and this will confuse parts of
 713   // G1. For example, the code that looks for a consecutive number
 714   // of empty regions will consider them empty and try to
 715   // re-allocate them. We can extend is_empty() to also include
 716   // !is_continues_humongous(), but it is easier to just update the top
 717   // fields here. The way we set top for all regions (i.e., top ==
 718   // end for all regions but the last one, top == new_top for the
 719   // last one) is actually used when we will free up the humongous
 720   // region in free_humongous_region().
 721   hr = NULL;
 722   for (uint i = first + 1; i < last; ++i) {
 723     hr = region_at(i);
 724     if ((i + 1) == last) {
 725       // last continues humongous region
 726       assert(hr->bottom() < new_top && new_top <= hr->end(),
 727              "new_top should fall on this region");
 728       hr->set_top(new_top);
 729       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 730     } else {
 731       // not last one
 732       assert(new_top > hr->end(), "new_top should be above this region");
 733       hr->set_top(hr->end());
 734       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 735     }
 736   }
 737   // If we have continues humongous regions (hr != NULL), then the
 738   // end of the last one should match new_end and its top should
 739   // match new_top.
 740   assert(hr == NULL ||
 741          (hr->end() == new_end && hr->top() == new_top), "sanity");
 742   check_bitmaps("Humongous Region Allocation", first_hr);
 743 
 744   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 745   _allocator->increase_used(first_hr->used());
 746   _humongous_set.add(first_hr);
 747 
 748   return new_obj;
 749 }
 750 
 751 // If could fit into free regions w/o expansion, try.
 752 // Otherwise, if can expand, do so.
 753 // Otherwise, if using ex regions might help, try with ex given back.
 754 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 755   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 756 
 757   verify_region_sets_optional();
 758 
 759   uint first = G1_NO_HRM_INDEX;
 760   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 761 
 762   if (obj_regions == 1) {
 763     // Only one region to allocate, try to use a fast path by directly allocating
 764     // from the free lists. Do not try to expand here, we will potentially do that
 765     // later.
 766     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 767     if (hr != NULL) {
 768       first = hr->hrm_index();
 769     }
 770   } else {
 771     // We can't allocate humongous regions spanning more than one region while
 772     // cleanupComplete() is running, since some of the regions we find to be
 773     // empty might not yet be added to the free list. It is not straightforward
 774     // to know in which list they are on so that we can remove them. We only
 775     // need to do this if we need to allocate more than one region to satisfy the
 776     // current humongous allocation request. If we are only allocating one region
 777     // we use the one-region region allocation code (see above), that already
 778     // potentially waits for regions from the secondary free list.
 779     wait_while_free_regions_coming();
 780     append_secondary_free_list_if_not_empty_with_lock();
 781 
 782     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 783     // are lucky enough to find some.
 784     first = _hrm.find_contiguous_only_empty(obj_regions);
 785     if (first != G1_NO_HRM_INDEX) {
 786       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 787     }
 788   }
 789 
 790   if (first == G1_NO_HRM_INDEX) {
 791     // Policy: We could not find enough regions for the humongous object in the
 792     // free list. Look through the heap to find a mix of free and uncommitted regions.
 793     // If so, try expansion.
 794     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 795     if (first != G1_NO_HRM_INDEX) {
 796       // We found something. Make sure these regions are committed, i.e. expand
 797       // the heap. Alternatively we could do a defragmentation GC.
 798       ergo_verbose1(ErgoHeapSizing,
 799                     "attempt heap expansion",
 800                     ergo_format_reason("humongous allocation request failed")
 801                     ergo_format_byte("allocation request"),
 802                     word_size * HeapWordSize);
 803 
 804       _hrm.expand_at(first, obj_regions);
 805       g1_policy()->record_new_heap_size(num_regions());
 806 
 807 #ifdef ASSERT
 808       for (uint i = first; i < first + obj_regions; ++i) {
 809         HeapRegion* hr = region_at(i);
 810         assert(hr->is_free(), "sanity");
 811         assert(hr->is_empty(), "sanity");
 812         assert(is_on_master_free_list(hr), "sanity");
 813       }
 814 #endif
 815       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 816     } else {
 817       // Policy: Potentially trigger a defragmentation GC.
 818     }
 819   }
 820 
 821   HeapWord* result = NULL;
 822   if (first != G1_NO_HRM_INDEX) {
 823     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 824                                                        word_size, context);
 825     assert(result != NULL, "it should always return a valid result");
 826 
 827     // A successful humongous object allocation changes the used space
 828     // information of the old generation so we need to recalculate the
 829     // sizes and update the jstat counters here.
 830     g1mm()->update_sizes();
 831   }
 832 
 833   verify_region_sets_optional();
 834 
 835   return result;
 836 }
 837 
 838 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 839   assert_heap_not_locked_and_not_at_safepoint();
 840   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 841 
 842   unsigned int dummy_gc_count_before;
 843   int dummy_gclocker_retry_count = 0;
 844   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 845 }
 846 
 847 HeapWord*
 848 G1CollectedHeap::mem_allocate(size_t word_size,
 849                               bool*  gc_overhead_limit_was_exceeded) {
 850   assert_heap_not_locked_and_not_at_safepoint();
 851 
 852   // Loop until the allocation is satisfied, or unsatisfied after GC.
 853   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 854     unsigned int gc_count_before;
 855 
 856     HeapWord* result = NULL;
 857     if (!is_humongous(word_size)) {
 858       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 859     } else {
 860       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 861     }
 862     if (result != NULL) {
 863       return result;
 864     }
 865 
 866     // Create the garbage collection operation...
 867     VM_G1CollectForAllocation op(gc_count_before, word_size);
 868     op.set_allocation_context(AllocationContext::current());
 869 
 870     // ...and get the VM thread to execute it.
 871     VMThread::execute(&op);
 872 
 873     if (op.prologue_succeeded() && op.pause_succeeded()) {
 874       // If the operation was successful we'll return the result even
 875       // if it is NULL. If the allocation attempt failed immediately
 876       // after a Full GC, it's unlikely we'll be able to allocate now.
 877       HeapWord* result = op.result();
 878       if (result != NULL && !is_humongous(word_size)) {
 879         // Allocations that take place on VM operations do not do any
 880         // card dirtying and we have to do it here. We only have to do
 881         // this for non-humongous allocations, though.
 882         dirty_young_block(result, word_size);
 883       }
 884       return result;
 885     } else {
 886       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 887         return NULL;
 888       }
 889       assert(op.result() == NULL,
 890              "the result should be NULL if the VM op did not succeed");
 891     }
 892 
 893     // Give a warning if we seem to be looping forever.
 894     if ((QueuedAllocationWarningCount > 0) &&
 895         (try_count % QueuedAllocationWarningCount == 0)) {
 896       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 897     }
 898   }
 899 
 900   ShouldNotReachHere();
 901   return NULL;
 902 }
 903 
 904 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 905                                                    AllocationContext_t context,
 906                                                    unsigned int *gc_count_before_ret,
 907                                                    int* gclocker_retry_count_ret) {
 908   // Make sure you read the note in attempt_allocation_humongous().
 909 
 910   assert_heap_not_locked_and_not_at_safepoint();
 911   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 912          "be called for humongous allocation requests");
 913 
 914   // We should only get here after the first-level allocation attempt
 915   // (attempt_allocation()) failed to allocate.
 916 
 917   // We will loop until a) we manage to successfully perform the
 918   // allocation or b) we successfully schedule a collection which
 919   // fails to perform the allocation. b) is the only case when we'll
 920   // return NULL.
 921   HeapWord* result = NULL;
 922   for (int try_count = 1; /* we'll return */; try_count += 1) {
 923     bool should_try_gc;
 924     unsigned int gc_count_before;
 925 
 926     {
 927       MutexLockerEx x(Heap_lock);
 928       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 929                                                                                     false /* bot_updates */);
 930       if (result != NULL) {
 931         return result;
 932       }
 933 
 934       // If we reach here, attempt_allocation_locked() above failed to
 935       // allocate a new region. So the mutator alloc region should be NULL.
 936       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 937 
 938       if (GC_locker::is_active_and_needs_gc()) {
 939         if (g1_policy()->can_expand_young_list()) {
 940           // No need for an ergo verbose message here,
 941           // can_expand_young_list() does this when it returns true.
 942           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 943                                                                                        false /* bot_updates */);
 944           if (result != NULL) {
 945             return result;
 946           }
 947         }
 948         should_try_gc = false;
 949       } else {
 950         // The GCLocker may not be active but the GCLocker initiated
 951         // GC may not yet have been performed (GCLocker::needs_gc()
 952         // returns true). In this case we do not try this GC and
 953         // wait until the GCLocker initiated GC is performed, and
 954         // then retry the allocation.
 955         if (GC_locker::needs_gc()) {
 956           should_try_gc = false;
 957         } else {
 958           // Read the GC count while still holding the Heap_lock.
 959           gc_count_before = total_collections();
 960           should_try_gc = true;
 961         }
 962       }
 963     }
 964 
 965     if (should_try_gc) {
 966       bool succeeded;
 967       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 968           GCCause::_g1_inc_collection_pause);
 969       if (result != NULL) {
 970         assert(succeeded, "only way to get back a non-NULL result");
 971         return result;
 972       }
 973 
 974       if (succeeded) {
 975         // If we get here we successfully scheduled a collection which
 976         // failed to allocate. No point in trying to allocate
 977         // further. We'll just return NULL.
 978         MutexLockerEx x(Heap_lock);
 979         *gc_count_before_ret = total_collections();
 980         return NULL;
 981       }
 982     } else {
 983       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 984         MutexLockerEx x(Heap_lock);
 985         *gc_count_before_ret = total_collections();
 986         return NULL;
 987       }
 988       // The GCLocker is either active or the GCLocker initiated
 989       // GC has not yet been performed. Stall until it is and
 990       // then retry the allocation.
 991       GC_locker::stall_until_clear();
 992       (*gclocker_retry_count_ret) += 1;
 993     }
 994 
 995     // We can reach here if we were unsuccessful in scheduling a
 996     // collection (because another thread beat us to it) or if we were
 997     // stalled due to the GC locker. In either can we should retry the
 998     // allocation attempt in case another thread successfully
 999     // performed a collection and reclaimed enough space. We do the
1000     // first attempt (without holding the Heap_lock) here and the
1001     // follow-on attempt will be at the start of the next loop
1002     // iteration (after taking the Heap_lock).
1003     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
1004                                                                            false /* bot_updates */);
1005     if (result != NULL) {
1006       return result;
1007     }
1008 
1009     // Give a warning if we seem to be looping forever.
1010     if ((QueuedAllocationWarningCount > 0) &&
1011         (try_count % QueuedAllocationWarningCount == 0)) {
1012       warning("G1CollectedHeap::attempt_allocation_slow() "
1013               "retries %d times", try_count);
1014     }
1015   }
1016 
1017   ShouldNotReachHere();
1018   return NULL;
1019 }
1020 
1021 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1022                                                         unsigned int * gc_count_before_ret,
1023                                                         int* gclocker_retry_count_ret) {
1024   // The structure of this method has a lot of similarities to
1025   // attempt_allocation_slow(). The reason these two were not merged
1026   // into a single one is that such a method would require several "if
1027   // allocation is not humongous do this, otherwise do that"
1028   // conditional paths which would obscure its flow. In fact, an early
1029   // version of this code did use a unified method which was harder to
1030   // follow and, as a result, it had subtle bugs that were hard to
1031   // track down. So keeping these two methods separate allows each to
1032   // be more readable. It will be good to keep these two in sync as
1033   // much as possible.
1034 
1035   assert_heap_not_locked_and_not_at_safepoint();
1036   assert(is_humongous(word_size), "attempt_allocation_humongous() "
1037          "should only be called for humongous allocations");
1038 
1039   // Humongous objects can exhaust the heap quickly, so we should check if we
1040   // need to start a marking cycle at each humongous object allocation. We do
1041   // the check before we do the actual allocation. The reason for doing it
1042   // before the allocation is that we avoid having to keep track of the newly
1043   // allocated memory while we do a GC.
1044   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1045                                            word_size)) {
1046     collect(GCCause::_g1_humongous_allocation);
1047   }
1048 
1049   // We will loop until a) we manage to successfully perform the
1050   // allocation or b) we successfully schedule a collection which
1051   // fails to perform the allocation. b) is the only case when we'll
1052   // return NULL.
1053   HeapWord* result = NULL;
1054   for (int try_count = 1; /* we'll return */; try_count += 1) {
1055     bool should_try_gc;
1056     unsigned int gc_count_before;
1057 
1058     {
1059       MutexLockerEx x(Heap_lock);
1060 
1061       // Given that humongous objects are not allocated in young
1062       // regions, we'll first try to do the allocation without doing a
1063       // collection hoping that there's enough space in the heap.
1064       result = humongous_obj_allocate(word_size, AllocationContext::current());
1065       if (result != NULL) {
1066         return result;
1067       }
1068 
1069       if (GC_locker::is_active_and_needs_gc()) {
1070         should_try_gc = false;
1071       } else {
1072          // The GCLocker may not be active but the GCLocker initiated
1073         // GC may not yet have been performed (GCLocker::needs_gc()
1074         // returns true). In this case we do not try this GC and
1075         // wait until the GCLocker initiated GC is performed, and
1076         // then retry the allocation.
1077         if (GC_locker::needs_gc()) {
1078           should_try_gc = false;
1079         } else {
1080           // Read the GC count while still holding the Heap_lock.
1081           gc_count_before = total_collections();
1082           should_try_gc = true;
1083         }
1084       }
1085     }
1086 
1087     if (should_try_gc) {
1088       // If we failed to allocate the humongous object, we should try to
1089       // do a collection pause (if we're allowed) in case it reclaims
1090       // enough space for the allocation to succeed after the pause.
1091 
1092       bool succeeded;
1093       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1094           GCCause::_g1_humongous_allocation);
1095       if (result != NULL) {
1096         assert(succeeded, "only way to get back a non-NULL result");
1097         return result;
1098       }
1099 
1100       if (succeeded) {
1101         // If we get here we successfully scheduled a collection which
1102         // failed to allocate. No point in trying to allocate
1103         // further. We'll just return NULL.
1104         MutexLockerEx x(Heap_lock);
1105         *gc_count_before_ret = total_collections();
1106         return NULL;
1107       }
1108     } else {
1109       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1110         MutexLockerEx x(Heap_lock);
1111         *gc_count_before_ret = total_collections();
1112         return NULL;
1113       }
1114       // The GCLocker is either active or the GCLocker initiated
1115       // GC has not yet been performed. Stall until it is and
1116       // then retry the allocation.
1117       GC_locker::stall_until_clear();
1118       (*gclocker_retry_count_ret) += 1;
1119     }
1120 
1121     // We can reach here if we were unsuccessful in scheduling a
1122     // collection (because another thread beat us to it) or if we were
1123     // stalled due to the GC locker. In either can we should retry the
1124     // allocation attempt in case another thread successfully
1125     // performed a collection and reclaimed enough space.  Give a
1126     // warning if we seem to be looping forever.
1127 
1128     if ((QueuedAllocationWarningCount > 0) &&
1129         (try_count % QueuedAllocationWarningCount == 0)) {
1130       warning("G1CollectedHeap::attempt_allocation_humongous() "
1131               "retries %d times", try_count);
1132     }
1133   }
1134 
1135   ShouldNotReachHere();
1136   return NULL;
1137 }
1138 
1139 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1140                                                            AllocationContext_t context,
1141                                                            bool expect_null_mutator_alloc_region) {
1142   assert_at_safepoint(true /* should_be_vm_thread */);
1143   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1144                                              !expect_null_mutator_alloc_region,
1145          "the current alloc region was unexpectedly found to be non-NULL");
1146 
1147   if (!is_humongous(word_size)) {
1148     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1149                                                       false /* bot_updates */);
1150   } else {
1151     HeapWord* result = humongous_obj_allocate(word_size, context);
1152     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1153       g1_policy()->set_initiate_conc_mark_if_possible();
1154     }
1155     return result;
1156   }
1157 
1158   ShouldNotReachHere();
1159 }
1160 
1161 class PostMCRemSetClearClosure: public HeapRegionClosure {
1162   G1CollectedHeap* _g1h;
1163   ModRefBarrierSet* _mr_bs;
1164 public:
1165   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1166     _g1h(g1h), _mr_bs(mr_bs) {}
1167 
1168   bool doHeapRegion(HeapRegion* r) {
1169     HeapRegionRemSet* hrrs = r->rem_set();
1170 
1171     if (r->is_continues_humongous()) {
1172       // We'll assert that the strong code root list and RSet is empty
1173       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1174       assert(hrrs->occupied() == 0, "RSet should be empty");
1175       return false;
1176     }
1177 
1178     _g1h->reset_gc_time_stamps(r);
1179     hrrs->clear();
1180     // You might think here that we could clear just the cards
1181     // corresponding to the used region.  But no: if we leave a dirty card
1182     // in a region we might allocate into, then it would prevent that card
1183     // from being enqueued, and cause it to be missed.
1184     // Re: the performance cost: we shouldn't be doing full GC anyway!
1185     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1186 
1187     return false;
1188   }
1189 };
1190 
1191 void G1CollectedHeap::clear_rsets_post_compaction() {
1192   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1193   heap_region_iterate(&rs_clear);
1194 }
1195 
1196 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1197   G1CollectedHeap*   _g1h;
1198   UpdateRSOopClosure _cl;
1199   int                _worker_i;
1200 public:
1201   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1202     _cl(g1->g1_rem_set(), worker_i),
1203     _worker_i(worker_i),
1204     _g1h(g1)
1205   { }
1206 
1207   bool doHeapRegion(HeapRegion* r) {
1208     if (!r->is_continues_humongous()) {
1209       _cl.set_from(r);
1210       r->oop_iterate(&_cl);
1211     }
1212     return false;
1213   }
1214 };
1215 
1216 class ParRebuildRSTask: public AbstractGangTask {
1217   G1CollectedHeap* _g1;
1218   HeapRegionClaimer _hrclaimer;
1219 
1220 public:
1221   ParRebuildRSTask(G1CollectedHeap* g1) :
1222       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1223 
1224   void work(uint worker_id) {
1225     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1226     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1227   }
1228 };
1229 
1230 class PostCompactionPrinterClosure: public HeapRegionClosure {
1231 private:
1232   G1HRPrinter* _hr_printer;
1233 public:
1234   bool doHeapRegion(HeapRegion* hr) {
1235     assert(!hr->is_young(), "not expecting to find young regions");
1236     if (hr->is_free()) {
1237       // We only generate output for non-empty regions.
1238     } else if (hr->is_starts_humongous()) {
1239       if (hr->region_num() == 1) {
1240         // single humongous region
1241         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1242       } else {
1243         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1244       }
1245     } else if (hr->is_continues_humongous()) {
1246       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1247     } else if (hr->is_old()) {
1248       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1249     } else {
1250       ShouldNotReachHere();
1251     }
1252     return false;
1253   }
1254 
1255   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1256     : _hr_printer(hr_printer) { }
1257 };
1258 
1259 void G1CollectedHeap::print_hrm_post_compaction() {
1260   PostCompactionPrinterClosure cl(hr_printer());
1261   heap_region_iterate(&cl);
1262 }
1263 
1264 bool G1CollectedHeap::do_collection(bool explicit_gc,
1265                                     bool clear_all_soft_refs,
1266                                     size_t word_size) {
1267   assert_at_safepoint(true /* should_be_vm_thread */);
1268 
1269   if (GC_locker::check_active_before_gc()) {
1270     return false;
1271   }
1272 
1273   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1274   gc_timer->register_gc_start();
1275 
1276   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1277   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1278 
1279   SvcGCMarker sgcm(SvcGCMarker::FULL);
1280   ResourceMark rm;
1281 
1282   print_heap_before_gc();
1283   trace_heap_before_gc(gc_tracer);
1284 
1285   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1286 
1287   verify_region_sets_optional();
1288 
1289   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1290                            collector_policy()->should_clear_all_soft_refs();
1291 
1292   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1293 
1294   {
1295     IsGCActiveMark x;
1296 
1297     // Timing
1298     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1299     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1300     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1301 
1302     {
1303       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1304       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1305       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1306 
1307       double start = os::elapsedTime();
1308       g1_policy()->record_full_collection_start();
1309 
1310       // Note: When we have a more flexible GC logging framework that
1311       // allows us to add optional attributes to a GC log record we
1312       // could consider timing and reporting how long we wait in the
1313       // following two methods.
1314       wait_while_free_regions_coming();
1315       // If we start the compaction before the CM threads finish
1316       // scanning the root regions we might trip them over as we'll
1317       // be moving objects / updating references. So let's wait until
1318       // they are done. By telling them to abort, they should complete
1319       // early.
1320       _cm->root_regions()->abort();
1321       _cm->root_regions()->wait_until_scan_finished();
1322       append_secondary_free_list_if_not_empty_with_lock();
1323 
1324       gc_prologue(true);
1325       increment_total_collections(true /* full gc */);
1326       increment_old_marking_cycles_started();
1327 
1328       assert(used() == recalculate_used(), "Should be equal");
1329 
1330       verify_before_gc();
1331 
1332       check_bitmaps("Full GC Start");
1333       pre_full_gc_dump(gc_timer);
1334 
1335       COMPILER2_PRESENT(DerivedPointerTable::clear());
1336 
1337       // Disable discovery and empty the discovered lists
1338       // for the CM ref processor.
1339       ref_processor_cm()->disable_discovery();
1340       ref_processor_cm()->abandon_partial_discovery();
1341       ref_processor_cm()->verify_no_references_recorded();
1342 
1343       // Abandon current iterations of concurrent marking and concurrent
1344       // refinement, if any are in progress. We have to do this before
1345       // wait_until_scan_finished() below.
1346       concurrent_mark()->abort();
1347 
1348       // Make sure we'll choose a new allocation region afterwards.
1349       _allocator->release_mutator_alloc_region();
1350       _allocator->abandon_gc_alloc_regions();
1351       g1_rem_set()->cleanupHRRS();
1352 
1353       // We should call this after we retire any currently active alloc
1354       // regions so that all the ALLOC / RETIRE events are generated
1355       // before the start GC event.
1356       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1357 
1358       // We may have added regions to the current incremental collection
1359       // set between the last GC or pause and now. We need to clear the
1360       // incremental collection set and then start rebuilding it afresh
1361       // after this full GC.
1362       abandon_collection_set(g1_policy()->inc_cset_head());
1363       g1_policy()->clear_incremental_cset();
1364       g1_policy()->stop_incremental_cset_building();
1365 
1366       tear_down_region_sets(false /* free_list_only */);
1367       g1_policy()->set_gcs_are_young(true);
1368 
1369       // See the comments in g1CollectedHeap.hpp and
1370       // G1CollectedHeap::ref_processing_init() about
1371       // how reference processing currently works in G1.
1372 
1373       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1374       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1375 
1376       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1377       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1378 
1379       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1380       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1381 
1382       // Do collection work
1383       {
1384         HandleMark hm;  // Discard invalid handles created during gc
1385         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1386       }
1387 
1388       assert(num_free_regions() == 0, "we should not have added any free regions");
1389       rebuild_region_sets(false /* free_list_only */);
1390 
1391       // Enqueue any discovered reference objects that have
1392       // not been removed from the discovered lists.
1393       ref_processor_stw()->enqueue_discovered_references();
1394 
1395       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1396 
1397       MemoryService::track_memory_usage();
1398 
1399       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1400       ref_processor_stw()->verify_no_references_recorded();
1401 
1402       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1403       ClassLoaderDataGraph::purge();
1404       MetaspaceAux::verify_metrics();
1405 
1406       // Note: since we've just done a full GC, concurrent
1407       // marking is no longer active. Therefore we need not
1408       // re-enable reference discovery for the CM ref processor.
1409       // That will be done at the start of the next marking cycle.
1410       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1411       ref_processor_cm()->verify_no_references_recorded();
1412 
1413       reset_gc_time_stamp();
1414       // Since everything potentially moved, we will clear all remembered
1415       // sets, and clear all cards.  Later we will rebuild remembered
1416       // sets. We will also reset the GC time stamps of the regions.
1417       clear_rsets_post_compaction();
1418       check_gc_time_stamps();
1419 
1420       // Resize the heap if necessary.
1421       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1422 
1423       if (_hr_printer.is_active()) {
1424         // We should do this after we potentially resize the heap so
1425         // that all the COMMIT / UNCOMMIT events are generated before
1426         // the end GC event.
1427 
1428         print_hrm_post_compaction();
1429         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1430       }
1431 
1432       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1433       if (hot_card_cache->use_cache()) {
1434         hot_card_cache->reset_card_counts();
1435         hot_card_cache->reset_hot_cache();
1436       }
1437 
1438       // Rebuild remembered sets of all regions.
1439       if (G1CollectedHeap::use_parallel_gc_threads()) {
1440         uint n_workers =
1441           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1442                                                   workers()->active_workers(),
1443                                                   Threads::number_of_non_daemon_threads());
1444         assert(UseDynamicNumberOfGCThreads ||
1445                n_workers == workers()->total_workers(),
1446                "If not dynamic should be using all the  workers");
1447         workers()->set_active_workers(n_workers);
1448         // Set parallel threads in the heap (_n_par_threads) only
1449         // before a parallel phase and always reset it to 0 after
1450         // the phase so that the number of parallel threads does
1451         // no get carried forward to a serial phase where there
1452         // may be code that is "possibly_parallel".
1453         set_par_threads(n_workers);
1454 
1455         ParRebuildRSTask rebuild_rs_task(this);
1456         assert(UseDynamicNumberOfGCThreads ||
1457                workers()->active_workers() == workers()->total_workers(),
1458                "Unless dynamic should use total workers");
1459         // Use the most recent number of  active workers
1460         assert(workers()->active_workers() > 0,
1461                "Active workers not properly set");
1462         set_par_threads(workers()->active_workers());
1463         workers()->run_task(&rebuild_rs_task);
1464         set_par_threads(0);
1465       } else {
1466         RebuildRSOutOfRegionClosure rebuild_rs(this);
1467         heap_region_iterate(&rebuild_rs);
1468       }
1469 
1470       // Rebuild the strong code root lists for each region
1471       rebuild_strong_code_roots();
1472 
1473       if (true) { // FIXME
1474         MetaspaceGC::compute_new_size();
1475       }
1476 
1477 #ifdef TRACESPINNING
1478       ParallelTaskTerminator::print_termination_counts();
1479 #endif
1480 
1481       // Discard all rset updates
1482       JavaThread::dirty_card_queue_set().abandon_logs();
1483       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1484 
1485       _young_list->reset_sampled_info();
1486       // At this point there should be no regions in the
1487       // entire heap tagged as young.
1488       assert(check_young_list_empty(true /* check_heap */),
1489              "young list should be empty at this point");
1490 
1491       // Update the number of full collections that have been completed.
1492       increment_old_marking_cycles_completed(false /* concurrent */);
1493 
1494       _hrm.verify_optional();
1495       verify_region_sets_optional();
1496 
1497       verify_after_gc();
1498 
1499       // Clear the previous marking bitmap, if needed for bitmap verification.
1500       // Note we cannot do this when we clear the next marking bitmap in
1501       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1502       // objects marked during a full GC against the previous bitmap.
1503       // But we need to clear it before calling check_bitmaps below since
1504       // the full GC has compacted objects and updated TAMS but not updated
1505       // the prev bitmap.
1506       if (G1VerifyBitmaps) {
1507         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1508       }
1509       check_bitmaps("Full GC End");
1510 
1511       // Start a new incremental collection set for the next pause
1512       assert(g1_policy()->collection_set() == NULL, "must be");
1513       g1_policy()->start_incremental_cset_building();
1514 
1515       clear_cset_fast_test();
1516 
1517       _allocator->init_mutator_alloc_region();
1518 
1519       double end = os::elapsedTime();
1520       g1_policy()->record_full_collection_end();
1521 
1522       if (G1Log::fine()) {
1523         g1_policy()->print_heap_transition();
1524       }
1525 
1526       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1527       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1528       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1529       // before any GC notifications are raised.
1530       g1mm()->update_sizes();
1531 
1532       gc_epilogue(true);
1533     }
1534 
1535     if (G1Log::finer()) {
1536       g1_policy()->print_detailed_heap_transition(true /* full */);
1537     }
1538 
1539     print_heap_after_gc();
1540     trace_heap_after_gc(gc_tracer);
1541 
1542     post_full_gc_dump(gc_timer);
1543 
1544     gc_timer->register_gc_end();
1545     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1546   }
1547 
1548   return true;
1549 }
1550 
1551 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1552   // do_collection() will return whether it succeeded in performing
1553   // the GC. Currently, there is no facility on the
1554   // do_full_collection() API to notify the caller than the collection
1555   // did not succeed (e.g., because it was locked out by the GC
1556   // locker). So, right now, we'll ignore the return value.
1557   bool dummy = do_collection(true,                /* explicit_gc */
1558                              clear_all_soft_refs,
1559                              0                    /* word_size */);
1560 }
1561 
1562 // This code is mostly copied from TenuredGeneration.
1563 void
1564 G1CollectedHeap::
1565 resize_if_necessary_after_full_collection(size_t word_size) {
1566   // Include the current allocation, if any, and bytes that will be
1567   // pre-allocated to support collections, as "used".
1568   const size_t used_after_gc = used();
1569   const size_t capacity_after_gc = capacity();
1570   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1571 
1572   // This is enforced in arguments.cpp.
1573   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1574          "otherwise the code below doesn't make sense");
1575 
1576   // We don't have floating point command-line arguments
1577   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1578   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1579   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1580   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1581 
1582   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1583   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1584 
1585   // We have to be careful here as these two calculations can overflow
1586   // 32-bit size_t's.
1587   double used_after_gc_d = (double) used_after_gc;
1588   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1589   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1590 
1591   // Let's make sure that they are both under the max heap size, which
1592   // by default will make them fit into a size_t.
1593   double desired_capacity_upper_bound = (double) max_heap_size;
1594   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1595                                     desired_capacity_upper_bound);
1596   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1597                                     desired_capacity_upper_bound);
1598 
1599   // We can now safely turn them into size_t's.
1600   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1601   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1602 
1603   // This assert only makes sense here, before we adjust them
1604   // with respect to the min and max heap size.
1605   assert(minimum_desired_capacity <= maximum_desired_capacity,
1606          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1607                  "maximum_desired_capacity = "SIZE_FORMAT,
1608                  minimum_desired_capacity, maximum_desired_capacity));
1609 
1610   // Should not be greater than the heap max size. No need to adjust
1611   // it with respect to the heap min size as it's a lower bound (i.e.,
1612   // we'll try to make the capacity larger than it, not smaller).
1613   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1614   // Should not be less than the heap min size. No need to adjust it
1615   // with respect to the heap max size as it's an upper bound (i.e.,
1616   // we'll try to make the capacity smaller than it, not greater).
1617   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1618 
1619   if (capacity_after_gc < minimum_desired_capacity) {
1620     // Don't expand unless it's significant
1621     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1622     ergo_verbose4(ErgoHeapSizing,
1623                   "attempt heap expansion",
1624                   ergo_format_reason("capacity lower than "
1625                                      "min desired capacity after Full GC")
1626                   ergo_format_byte("capacity")
1627                   ergo_format_byte("occupancy")
1628                   ergo_format_byte_perc("min desired capacity"),
1629                   capacity_after_gc, used_after_gc,
1630                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1631     expand(expand_bytes);
1632 
1633     // No expansion, now see if we want to shrink
1634   } else if (capacity_after_gc > maximum_desired_capacity) {
1635     // Capacity too large, compute shrinking size
1636     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1637     ergo_verbose4(ErgoHeapSizing,
1638                   "attempt heap shrinking",
1639                   ergo_format_reason("capacity higher than "
1640                                      "max desired capacity after Full GC")
1641                   ergo_format_byte("capacity")
1642                   ergo_format_byte("occupancy")
1643                   ergo_format_byte_perc("max desired capacity"),
1644                   capacity_after_gc, used_after_gc,
1645                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1646     shrink(shrink_bytes);
1647   }
1648 }
1649 
1650 
1651 HeapWord*
1652 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1653                                            AllocationContext_t context,
1654                                            bool* succeeded) {
1655   assert_at_safepoint(true /* should_be_vm_thread */);
1656 
1657   *succeeded = true;
1658   // Let's attempt the allocation first.
1659   HeapWord* result =
1660     attempt_allocation_at_safepoint(word_size,
1661                                     context,
1662                                     false /* expect_null_mutator_alloc_region */);
1663   if (result != NULL) {
1664     assert(*succeeded, "sanity");
1665     return result;
1666   }
1667 
1668   // In a G1 heap, we're supposed to keep allocation from failing by
1669   // incremental pauses.  Therefore, at least for now, we'll favor
1670   // expansion over collection.  (This might change in the future if we can
1671   // do something smarter than full collection to satisfy a failed alloc.)
1672   result = expand_and_allocate(word_size, context);
1673   if (result != NULL) {
1674     assert(*succeeded, "sanity");
1675     return result;
1676   }
1677 
1678   // Expansion didn't work, we'll try to do a Full GC.
1679   bool gc_succeeded = do_collection(false, /* explicit_gc */
1680                                     false, /* clear_all_soft_refs */
1681                                     word_size);
1682   if (!gc_succeeded) {
1683     *succeeded = false;
1684     return NULL;
1685   }
1686 
1687   // Retry the allocation
1688   result = attempt_allocation_at_safepoint(word_size,
1689                                            context,
1690                                            true /* expect_null_mutator_alloc_region */);
1691   if (result != NULL) {
1692     assert(*succeeded, "sanity");
1693     return result;
1694   }
1695 
1696   // Then, try a Full GC that will collect all soft references.
1697   gc_succeeded = do_collection(false, /* explicit_gc */
1698                                true,  /* clear_all_soft_refs */
1699                                word_size);
1700   if (!gc_succeeded) {
1701     *succeeded = false;
1702     return NULL;
1703   }
1704 
1705   // Retry the allocation once more
1706   result = attempt_allocation_at_safepoint(word_size,
1707                                            context,
1708                                            true /* expect_null_mutator_alloc_region */);
1709   if (result != NULL) {
1710     assert(*succeeded, "sanity");
1711     return result;
1712   }
1713 
1714   assert(!collector_policy()->should_clear_all_soft_refs(),
1715          "Flag should have been handled and cleared prior to this point");
1716 
1717   // What else?  We might try synchronous finalization later.  If the total
1718   // space available is large enough for the allocation, then a more
1719   // complete compaction phase than we've tried so far might be
1720   // appropriate.
1721   assert(*succeeded, "sanity");
1722   return NULL;
1723 }
1724 
1725 // Attempting to expand the heap sufficiently
1726 // to support an allocation of the given "word_size".  If
1727 // successful, perform the allocation and return the address of the
1728 // allocated block, or else "NULL".
1729 
1730 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1731   assert_at_safepoint(true /* should_be_vm_thread */);
1732 
1733   verify_region_sets_optional();
1734 
1735   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1736   ergo_verbose1(ErgoHeapSizing,
1737                 "attempt heap expansion",
1738                 ergo_format_reason("allocation request failed")
1739                 ergo_format_byte("allocation request"),
1740                 word_size * HeapWordSize);
1741   if (expand(expand_bytes)) {
1742     _hrm.verify_optional();
1743     verify_region_sets_optional();
1744     return attempt_allocation_at_safepoint(word_size,
1745                                            context,
1746                                            false /* expect_null_mutator_alloc_region */);
1747   }
1748   return NULL;
1749 }
1750 
1751 bool G1CollectedHeap::expand(size_t expand_bytes) {
1752   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1753   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1754                                        HeapRegion::GrainBytes);
1755   ergo_verbose2(ErgoHeapSizing,
1756                 "expand the heap",
1757                 ergo_format_byte("requested expansion amount")
1758                 ergo_format_byte("attempted expansion amount"),
1759                 expand_bytes, aligned_expand_bytes);
1760 
1761   if (is_maximal_no_gc()) {
1762     ergo_verbose0(ErgoHeapSizing,
1763                       "did not expand the heap",
1764                       ergo_format_reason("heap already fully expanded"));
1765     return false;
1766   }
1767 
1768   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1769   assert(regions_to_expand > 0, "Must expand by at least one region");
1770 
1771   uint expanded_by = _hrm.expand_by(regions_to_expand);
1772 
1773   if (expanded_by > 0) {
1774     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1775     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1776     g1_policy()->record_new_heap_size(num_regions());
1777   } else {
1778     ergo_verbose0(ErgoHeapSizing,
1779                   "did not expand the heap",
1780                   ergo_format_reason("heap expansion operation failed"));
1781     // The expansion of the virtual storage space was unsuccessful.
1782     // Let's see if it was because we ran out of swap.
1783     if (G1ExitOnExpansionFailure &&
1784         _hrm.available() >= regions_to_expand) {
1785       // We had head room...
1786       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1787     }
1788   }
1789   return regions_to_expand > 0;
1790 }
1791 
1792 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1793   size_t aligned_shrink_bytes =
1794     ReservedSpace::page_align_size_down(shrink_bytes);
1795   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1796                                          HeapRegion::GrainBytes);
1797   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1798 
1799   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1800   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1801 
1802   ergo_verbose3(ErgoHeapSizing,
1803                 "shrink the heap",
1804                 ergo_format_byte("requested shrinking amount")
1805                 ergo_format_byte("aligned shrinking amount")
1806                 ergo_format_byte("attempted shrinking amount"),
1807                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1808   if (num_regions_removed > 0) {
1809     g1_policy()->record_new_heap_size(num_regions());
1810   } else {
1811     ergo_verbose0(ErgoHeapSizing,
1812                   "did not shrink the heap",
1813                   ergo_format_reason("heap shrinking operation failed"));
1814   }
1815 }
1816 
1817 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1818   verify_region_sets_optional();
1819 
1820   // We should only reach here at the end of a Full GC which means we
1821   // should not not be holding to any GC alloc regions. The method
1822   // below will make sure of that and do any remaining clean up.
1823   _allocator->abandon_gc_alloc_regions();
1824 
1825   // Instead of tearing down / rebuilding the free lists here, we
1826   // could instead use the remove_all_pending() method on free_list to
1827   // remove only the ones that we need to remove.
1828   tear_down_region_sets(true /* free_list_only */);
1829   shrink_helper(shrink_bytes);
1830   rebuild_region_sets(true /* free_list_only */);
1831 
1832   _hrm.verify_optional();
1833   verify_region_sets_optional();
1834 }
1835 
1836 // Public methods.
1837 
1838 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1839 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1840 #endif // _MSC_VER
1841 
1842 
1843 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1844   SharedHeap(policy_),
1845   _g1_policy(policy_),
1846   _dirty_card_queue_set(false),
1847   _into_cset_dirty_card_queue_set(false),
1848   _is_alive_closure_cm(this),
1849   _is_alive_closure_stw(this),
1850   _ref_processor_cm(NULL),
1851   _ref_processor_stw(NULL),
1852   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1853   _bot_shared(NULL),
1854   _evac_failure_scan_stack(NULL),
1855   _mark_in_progress(false),
1856   _cg1r(NULL),
1857   _g1mm(NULL),
1858   _refine_cte_cl(NULL),
1859   _full_collection(false),
1860   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1861   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1862   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1863   _humongous_is_live(),
1864   _has_humongous_reclaim_candidates(false),
1865   _free_regions_coming(false),
1866   _young_list(new YoungList(this)),
1867   _gc_time_stamp(0),
1868   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1869   _old_plab_stats(OldPLABSize, PLABWeight),
1870   _expand_heap_after_alloc_failure(true),
1871   _surviving_young_words(NULL),
1872   _old_marking_cycles_started(0),
1873   _old_marking_cycles_completed(0),
1874   _concurrent_cycle_started(false),
1875   _heap_summary_sent(false),
1876   _in_cset_fast_test(),
1877   _dirty_cards_region_list(NULL),
1878   _worker_cset_start_region(NULL),
1879   _worker_cset_start_region_time_stamp(NULL),
1880   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1881   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1882   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1883   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1884 
1885   _g1h = this;
1886   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1887     vm_exit_during_initialization("Failed necessary allocation.");
1888   }
1889 
1890   _allocator = G1Allocator::create_allocator(_g1h);
1891   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1892 
1893   int n_queues = MAX2((int)ParallelGCThreads, 1);
1894   _task_queues = new RefToScanQueueSet(n_queues);
1895 
1896   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1897   assert(n_rem_sets > 0, "Invariant.");
1898 
1899   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1900   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1901   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1902 
1903   for (int i = 0; i < n_queues; i++) {
1904     RefToScanQueue* q = new RefToScanQueue();
1905     q->initialize();
1906     _task_queues->register_queue(i, q);
1907     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1908   }
1909   clear_cset_start_regions();
1910 
1911   // Initialize the G1EvacuationFailureALot counters and flags.
1912   NOT_PRODUCT(reset_evacuation_should_fail();)
1913 
1914   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1915 }
1916 
1917 jint G1CollectedHeap::initialize() {
1918   CollectedHeap::pre_initialize();
1919   os::enable_vtime();
1920 
1921   G1Log::init();
1922 
1923   // Necessary to satisfy locking discipline assertions.
1924 
1925   MutexLocker x(Heap_lock);
1926 
1927   // We have to initialize the printer before committing the heap, as
1928   // it will be used then.
1929   _hr_printer.set_active(G1PrintHeapRegions);
1930 
1931   // While there are no constraints in the GC code that HeapWordSize
1932   // be any particular value, there are multiple other areas in the
1933   // system which believe this to be true (e.g. oop->object_size in some
1934   // cases incorrectly returns the size in wordSize units rather than
1935   // HeapWordSize).
1936   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1937 
1938   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1939   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1940   size_t heap_alignment = collector_policy()->heap_alignment();
1941 
1942   // Ensure that the sizes are properly aligned.
1943   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1944   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1945   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1946 
1947   _refine_cte_cl = new RefineCardTableEntryClosure();
1948 
1949   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1950 
1951   // Reserve the maximum.
1952 
1953   // When compressed oops are enabled, the preferred heap base
1954   // is calculated by subtracting the requested size from the
1955   // 32Gb boundary and using the result as the base address for
1956   // heap reservation. If the requested size is not aligned to
1957   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1958   // into the ReservedHeapSpace constructor) then the actual
1959   // base of the reserved heap may end up differing from the
1960   // address that was requested (i.e. the preferred heap base).
1961   // If this happens then we could end up using a non-optimal
1962   // compressed oops mode.
1963 
1964   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1965                                                  heap_alignment);
1966 
1967   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1968 
1969   // Create the gen rem set (and barrier set) for the entire reserved region.
1970   _rem_set = collector_policy()->create_rem_set(reserved_region(), 2);
1971   set_barrier_set(rem_set()->bs());
1972   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
1973     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
1974     return JNI_ENOMEM;
1975   }
1976 
1977   // Also create a G1 rem set.
1978   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1979 
1980   // Carve out the G1 part of the heap.
1981 
1982   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1983   G1RegionToSpaceMapper* heap_storage =
1984     G1RegionToSpaceMapper::create_mapper(g1_rs,
1985                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
1986                                          HeapRegion::GrainBytes,
1987                                          1,
1988                                          mtJavaHeap);
1989   heap_storage->set_mapping_changed_listener(&_listener);
1990 
1991   // Reserve space for the block offset table. We do not support automatic uncommit
1992   // for the card table at this time. BOT only.
1993   ReservedSpace bot_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
1994   G1RegionToSpaceMapper* bot_storage =
1995     G1RegionToSpaceMapper::create_mapper(bot_rs,
1996                                          os::vm_page_size(),
1997                                          HeapRegion::GrainBytes,
1998                                          G1BlockOffsetSharedArray::N_bytes,
1999                                          mtGC);
2000 
2001   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
2002   G1RegionToSpaceMapper* cardtable_storage =
2003     G1RegionToSpaceMapper::create_mapper(cardtable_rs,
2004                                          os::vm_page_size(),
2005                                          HeapRegion::GrainBytes,
2006                                          G1BlockOffsetSharedArray::N_bytes,
2007                                          mtGC);
2008 
2009   // Reserve space for the card counts table.
2010   ReservedSpace card_counts_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
2011   G1RegionToSpaceMapper* card_counts_storage =
2012     G1RegionToSpaceMapper::create_mapper(card_counts_rs,
2013                                          os::vm_page_size(),
2014                                          HeapRegion::GrainBytes,
2015                                          G1BlockOffsetSharedArray::N_bytes,
2016                                          mtGC);
2017 
2018   // Reserve space for prev and next bitmap.
2019   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
2020 
2021   ReservedSpace prev_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
2022   G1RegionToSpaceMapper* prev_bitmap_storage =
2023     G1RegionToSpaceMapper::create_mapper(prev_bitmap_rs,
2024                                          os::vm_page_size(),
2025                                          HeapRegion::GrainBytes,
2026                                          CMBitMap::mark_distance(),
2027                                          mtGC);
2028 
2029   ReservedSpace next_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
2030   G1RegionToSpaceMapper* next_bitmap_storage =
2031     G1RegionToSpaceMapper::create_mapper(next_bitmap_rs,
2032                                          os::vm_page_size(),
2033                                          HeapRegion::GrainBytes,
2034                                          CMBitMap::mark_distance(),
2035                                          mtGC);
2036 
2037   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2038   g1_barrier_set()->initialize(cardtable_storage);
2039    // Do later initialization work for concurrent refinement.
2040   _cg1r->init(card_counts_storage);
2041 
2042   // 6843694 - ensure that the maximum region index can fit
2043   // in the remembered set structures.
2044   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2045   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2046 
2047   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2048   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2049   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2050             "too many cards per region");
2051 
2052   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2053 
2054   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
2055 
2056   _g1h = this;
2057 
2058   _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
2059   _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
2060 
2061   // Create the ConcurrentMark data structure and thread.
2062   // (Must do this late, so that "max_regions" is defined.)
2063   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2064   if (_cm == NULL || !_cm->completed_initialization()) {
2065     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2066     return JNI_ENOMEM;
2067   }
2068   _cmThread = _cm->cmThread();
2069 
2070   // Initialize the from_card cache structure of HeapRegionRemSet.
2071   HeapRegionRemSet::init_heap(max_regions());
2072 
2073   // Now expand into the initial heap size.
2074   if (!expand(init_byte_size)) {
2075     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2076     return JNI_ENOMEM;
2077   }
2078 
2079   // Perform any initialization actions delegated to the policy.
2080   g1_policy()->init();
2081 
2082   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2083                                                SATB_Q_FL_lock,
2084                                                G1SATBProcessCompletedThreshold,
2085                                                Shared_SATB_Q_lock);
2086 
2087   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2088                                                 DirtyCardQ_CBL_mon,
2089                                                 DirtyCardQ_FL_lock,
2090                                                 concurrent_g1_refine()->yellow_zone(),
2091                                                 concurrent_g1_refine()->red_zone(),
2092                                                 Shared_DirtyCardQ_lock);
2093 
2094   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2095                                     DirtyCardQ_CBL_mon,
2096                                     DirtyCardQ_FL_lock,
2097                                     -1, // never trigger processing
2098                                     -1, // no limit on length
2099                                     Shared_DirtyCardQ_lock,
2100                                     &JavaThread::dirty_card_queue_set());
2101 
2102   // Initialize the card queue set used to hold cards containing
2103   // references into the collection set.
2104   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2105                                              DirtyCardQ_CBL_mon,
2106                                              DirtyCardQ_FL_lock,
2107                                              -1, // never trigger processing
2108                                              -1, // no limit on length
2109                                              Shared_DirtyCardQ_lock,
2110                                              &JavaThread::dirty_card_queue_set());
2111 
2112   // In case we're keeping closure specialization stats, initialize those
2113   // counts and that mechanism.
2114   SpecializationStats::clear();
2115 
2116   // Here we allocate the dummy HeapRegion that is required by the
2117   // G1AllocRegion class.
2118   HeapRegion* dummy_region = _hrm.get_dummy_region();
2119 
2120   // We'll re-use the same region whether the alloc region will
2121   // require BOT updates or not and, if it doesn't, then a non-young
2122   // region will complain that it cannot support allocations without
2123   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2124   dummy_region->set_eden();
2125   // Make sure it's full.
2126   dummy_region->set_top(dummy_region->end());
2127   G1AllocRegion::setup(this, dummy_region);
2128 
2129   _allocator->init_mutator_alloc_region();
2130 
2131   // Do create of the monitoring and management support so that
2132   // values in the heap have been properly initialized.
2133   _g1mm = new G1MonitoringSupport(this);
2134 
2135   G1StringDedup::initialize();
2136 
2137   return JNI_OK;
2138 }
2139 
2140 void G1CollectedHeap::stop() {
2141   // Stop all concurrent threads. We do this to make sure these threads
2142   // do not continue to execute and access resources (e.g. gclog_or_tty)
2143   // that are destroyed during shutdown.
2144   _cg1r->stop();
2145   _cmThread->stop();
2146   if (G1StringDedup::is_enabled()) {
2147     G1StringDedup::stop();
2148   }
2149 }
2150 
2151 void G1CollectedHeap::clear_humongous_is_live_table() {
2152   guarantee(G1ReclaimDeadHumongousObjectsAtYoungGC, "Should only be called if true");
2153   _humongous_is_live.clear();
2154 }
2155 
2156 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2157   return HeapRegion::max_region_size();
2158 }
2159 
2160 void G1CollectedHeap::ref_processing_init() {
2161   // Reference processing in G1 currently works as follows:
2162   //
2163   // * There are two reference processor instances. One is
2164   //   used to record and process discovered references
2165   //   during concurrent marking; the other is used to
2166   //   record and process references during STW pauses
2167   //   (both full and incremental).
2168   // * Both ref processors need to 'span' the entire heap as
2169   //   the regions in the collection set may be dotted around.
2170   //
2171   // * For the concurrent marking ref processor:
2172   //   * Reference discovery is enabled at initial marking.
2173   //   * Reference discovery is disabled and the discovered
2174   //     references processed etc during remarking.
2175   //   * Reference discovery is MT (see below).
2176   //   * Reference discovery requires a barrier (see below).
2177   //   * Reference processing may or may not be MT
2178   //     (depending on the value of ParallelRefProcEnabled
2179   //     and ParallelGCThreads).
2180   //   * A full GC disables reference discovery by the CM
2181   //     ref processor and abandons any entries on it's
2182   //     discovered lists.
2183   //
2184   // * For the STW processor:
2185   //   * Non MT discovery is enabled at the start of a full GC.
2186   //   * Processing and enqueueing during a full GC is non-MT.
2187   //   * During a full GC, references are processed after marking.
2188   //
2189   //   * Discovery (may or may not be MT) is enabled at the start
2190   //     of an incremental evacuation pause.
2191   //   * References are processed near the end of a STW evacuation pause.
2192   //   * For both types of GC:
2193   //     * Discovery is atomic - i.e. not concurrent.
2194   //     * Reference discovery will not need a barrier.
2195 
2196   SharedHeap::ref_processing_init();
2197   MemRegion mr = reserved_region();
2198 
2199   // Concurrent Mark ref processor
2200   _ref_processor_cm =
2201     new ReferenceProcessor(mr,    // span
2202                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2203                                 // mt processing
2204                            (int) ParallelGCThreads,
2205                                 // degree of mt processing
2206                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2207                                 // mt discovery
2208                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2209                                 // degree of mt discovery
2210                            false,
2211                                 // Reference discovery is not atomic
2212                            &_is_alive_closure_cm);
2213                                 // is alive closure
2214                                 // (for efficiency/performance)
2215 
2216   // STW ref processor
2217   _ref_processor_stw =
2218     new ReferenceProcessor(mr,    // span
2219                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2220                                 // mt processing
2221                            MAX2((int)ParallelGCThreads, 1),
2222                                 // degree of mt processing
2223                            (ParallelGCThreads > 1),
2224                                 // mt discovery
2225                            MAX2((int)ParallelGCThreads, 1),
2226                                 // degree of mt discovery
2227                            true,
2228                                 // Reference discovery is atomic
2229                            &_is_alive_closure_stw);
2230                                 // is alive closure
2231                                 // (for efficiency/performance)
2232 }
2233 
2234 size_t G1CollectedHeap::capacity() const {
2235   return _hrm.length() * HeapRegion::GrainBytes;
2236 }
2237 
2238 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2239   assert(!hr->is_continues_humongous(), "pre-condition");
2240   hr->reset_gc_time_stamp();
2241   if (hr->is_starts_humongous()) {
2242     uint first_index = hr->hrm_index() + 1;
2243     uint last_index = hr->last_hc_index();
2244     for (uint i = first_index; i < last_index; i += 1) {
2245       HeapRegion* chr = region_at(i);
2246       assert(chr->is_continues_humongous(), "sanity");
2247       chr->reset_gc_time_stamp();
2248     }
2249   }
2250 }
2251 
2252 #ifndef PRODUCT
2253 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2254 private:
2255   unsigned _gc_time_stamp;
2256   bool _failures;
2257 
2258 public:
2259   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2260     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2261 
2262   virtual bool doHeapRegion(HeapRegion* hr) {
2263     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2264     if (_gc_time_stamp != region_gc_time_stamp) {
2265       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2266                              "expected %d", HR_FORMAT_PARAMS(hr),
2267                              region_gc_time_stamp, _gc_time_stamp);
2268       _failures = true;
2269     }
2270     return false;
2271   }
2272 
2273   bool failures() { return _failures; }
2274 };
2275 
2276 void G1CollectedHeap::check_gc_time_stamps() {
2277   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2278   heap_region_iterate(&cl);
2279   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2280 }
2281 #endif // PRODUCT
2282 
2283 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2284                                                  DirtyCardQueue* into_cset_dcq,
2285                                                  bool concurrent,
2286                                                  uint worker_i) {
2287   // Clean cards in the hot card cache
2288   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2289   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2290 
2291   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2292   int n_completed_buffers = 0;
2293   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2294     n_completed_buffers++;
2295   }
2296   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2297   dcqs.clear_n_completed_buffers();
2298   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2299 }
2300 
2301 
2302 // Computes the sum of the storage used by the various regions.
2303 size_t G1CollectedHeap::used() const {
2304   return _allocator->used();
2305 }
2306 
2307 size_t G1CollectedHeap::used_unlocked() const {
2308   return _allocator->used_unlocked();
2309 }
2310 
2311 class SumUsedClosure: public HeapRegionClosure {
2312   size_t _used;
2313 public:
2314   SumUsedClosure() : _used(0) {}
2315   bool doHeapRegion(HeapRegion* r) {
2316     if (!r->is_continues_humongous()) {
2317       _used += r->used();
2318     }
2319     return false;
2320   }
2321   size_t result() { return _used; }
2322 };
2323 
2324 size_t G1CollectedHeap::recalculate_used() const {
2325   double recalculate_used_start = os::elapsedTime();
2326 
2327   SumUsedClosure blk;
2328   heap_region_iterate(&blk);
2329 
2330   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2331   return blk.result();
2332 }
2333 
2334 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2335   switch (cause) {
2336     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2337     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2338     case GCCause::_g1_humongous_allocation: return true;
2339     default:                                return false;
2340   }
2341 }
2342 
2343 #ifndef PRODUCT
2344 void G1CollectedHeap::allocate_dummy_regions() {
2345   // Let's fill up most of the region
2346   size_t word_size = HeapRegion::GrainWords - 1024;
2347   // And as a result the region we'll allocate will be humongous.
2348   guarantee(is_humongous(word_size), "sanity");
2349 
2350   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2351     // Let's use the existing mechanism for the allocation
2352     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2353                                                  AllocationContext::system());
2354     if (dummy_obj != NULL) {
2355       MemRegion mr(dummy_obj, word_size);
2356       CollectedHeap::fill_with_object(mr);
2357     } else {
2358       // If we can't allocate once, we probably cannot allocate
2359       // again. Let's get out of the loop.
2360       break;
2361     }
2362   }
2363 }
2364 #endif // !PRODUCT
2365 
2366 void G1CollectedHeap::increment_old_marking_cycles_started() {
2367   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2368     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2369     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2370     _old_marking_cycles_started, _old_marking_cycles_completed));
2371 
2372   _old_marking_cycles_started++;
2373 }
2374 
2375 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2376   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2377 
2378   // We assume that if concurrent == true, then the caller is a
2379   // concurrent thread that was joined the Suspendible Thread
2380   // Set. If there's ever a cheap way to check this, we should add an
2381   // assert here.
2382 
2383   // Given that this method is called at the end of a Full GC or of a
2384   // concurrent cycle, and those can be nested (i.e., a Full GC can
2385   // interrupt a concurrent cycle), the number of full collections
2386   // completed should be either one (in the case where there was no
2387   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2388   // behind the number of full collections started.
2389 
2390   // This is the case for the inner caller, i.e. a Full GC.
2391   assert(concurrent ||
2392          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2393          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2394          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2395                  "is inconsistent with _old_marking_cycles_completed = %u",
2396                  _old_marking_cycles_started, _old_marking_cycles_completed));
2397 
2398   // This is the case for the outer caller, i.e. the concurrent cycle.
2399   assert(!concurrent ||
2400          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2401          err_msg("for outer caller (concurrent cycle): "
2402                  "_old_marking_cycles_started = %u "
2403                  "is inconsistent with _old_marking_cycles_completed = %u",
2404                  _old_marking_cycles_started, _old_marking_cycles_completed));
2405 
2406   _old_marking_cycles_completed += 1;
2407 
2408   // We need to clear the "in_progress" flag in the CM thread before
2409   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2410   // is set) so that if a waiter requests another System.gc() it doesn't
2411   // incorrectly see that a marking cycle is still in progress.
2412   if (concurrent) {
2413     _cmThread->clear_in_progress();
2414   }
2415 
2416   // This notify_all() will ensure that a thread that called
2417   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2418   // and it's waiting for a full GC to finish will be woken up. It is
2419   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2420   FullGCCount_lock->notify_all();
2421 }
2422 
2423 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2424   _concurrent_cycle_started = true;
2425   _gc_timer_cm->register_gc_start(start_time);
2426 
2427   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2428   trace_heap_before_gc(_gc_tracer_cm);
2429 }
2430 
2431 void G1CollectedHeap::register_concurrent_cycle_end() {
2432   if (_concurrent_cycle_started) {
2433     if (_cm->has_aborted()) {
2434       _gc_tracer_cm->report_concurrent_mode_failure();
2435     }
2436 
2437     _gc_timer_cm->register_gc_end();
2438     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2439 
2440     // Clear state variables to prepare for the next concurrent cycle.
2441     _concurrent_cycle_started = false;
2442     _heap_summary_sent = false;
2443   }
2444 }
2445 
2446 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2447   if (_concurrent_cycle_started) {
2448     // This function can be called when:
2449     //  the cleanup pause is run
2450     //  the concurrent cycle is aborted before the cleanup pause.
2451     //  the concurrent cycle is aborted after the cleanup pause,
2452     //   but before the concurrent cycle end has been registered.
2453     // Make sure that we only send the heap information once.
2454     if (!_heap_summary_sent) {
2455       trace_heap_after_gc(_gc_tracer_cm);
2456       _heap_summary_sent = true;
2457     }
2458   }
2459 }
2460 
2461 G1YCType G1CollectedHeap::yc_type() {
2462   bool is_young = g1_policy()->gcs_are_young();
2463   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2464   bool is_during_mark = mark_in_progress();
2465 
2466   if (is_initial_mark) {
2467     return InitialMark;
2468   } else if (is_during_mark) {
2469     return DuringMark;
2470   } else if (is_young) {
2471     return Normal;
2472   } else {
2473     return Mixed;
2474   }
2475 }
2476 
2477 void G1CollectedHeap::collect(GCCause::Cause cause) {
2478   assert_heap_not_locked();
2479 
2480   unsigned int gc_count_before;
2481   unsigned int old_marking_count_before;
2482   bool retry_gc;
2483 
2484   do {
2485     retry_gc = false;
2486 
2487     {
2488       MutexLocker ml(Heap_lock);
2489 
2490       // Read the GC count while holding the Heap_lock
2491       gc_count_before = total_collections();
2492       old_marking_count_before = _old_marking_cycles_started;
2493     }
2494 
2495     if (should_do_concurrent_full_gc(cause)) {
2496       // Schedule an initial-mark evacuation pause that will start a
2497       // concurrent cycle. We're setting word_size to 0 which means that
2498       // we are not requesting a post-GC allocation.
2499       VM_G1IncCollectionPause op(gc_count_before,
2500                                  0,     /* word_size */
2501                                  true,  /* should_initiate_conc_mark */
2502                                  g1_policy()->max_pause_time_ms(),
2503                                  cause);
2504       op.set_allocation_context(AllocationContext::current());
2505 
2506       VMThread::execute(&op);
2507       if (!op.pause_succeeded()) {
2508         if (old_marking_count_before == _old_marking_cycles_started) {
2509           retry_gc = op.should_retry_gc();
2510         } else {
2511           // A Full GC happened while we were trying to schedule the
2512           // initial-mark GC. No point in starting a new cycle given
2513           // that the whole heap was collected anyway.
2514         }
2515 
2516         if (retry_gc) {
2517           if (GC_locker::is_active_and_needs_gc()) {
2518             GC_locker::stall_until_clear();
2519           }
2520         }
2521       }
2522     } else {
2523       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2524           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2525 
2526         // Schedule a standard evacuation pause. We're setting word_size
2527         // to 0 which means that we are not requesting a post-GC allocation.
2528         VM_G1IncCollectionPause op(gc_count_before,
2529                                    0,     /* word_size */
2530                                    false, /* should_initiate_conc_mark */
2531                                    g1_policy()->max_pause_time_ms(),
2532                                    cause);
2533         VMThread::execute(&op);
2534       } else {
2535         // Schedule a Full GC.
2536         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2537         VMThread::execute(&op);
2538       }
2539     }
2540   } while (retry_gc);
2541 }
2542 
2543 bool G1CollectedHeap::is_in(const void* p) const {
2544   if (_hrm.reserved().contains(p)) {
2545     // Given that we know that p is in the reserved space,
2546     // heap_region_containing_raw() should successfully
2547     // return the containing region.
2548     HeapRegion* hr = heap_region_containing_raw(p);
2549     return hr->is_in(p);
2550   } else {
2551     return false;
2552   }
2553 }
2554 
2555 #ifdef ASSERT
2556 bool G1CollectedHeap::is_in_exact(const void* p) const {
2557   bool contains = reserved_region().contains(p);
2558   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2559   if (contains && available) {
2560     return true;
2561   } else {
2562     return false;
2563   }
2564 }
2565 #endif
2566 
2567 // Iteration functions.
2568 
2569 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2570 
2571 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2572   ExtendedOopClosure* _cl;
2573 public:
2574   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2575   bool doHeapRegion(HeapRegion* r) {
2576     if (!r->is_continues_humongous()) {
2577       r->oop_iterate(_cl);
2578     }
2579     return false;
2580   }
2581 };
2582 
2583 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2584   IterateOopClosureRegionClosure blk(cl);
2585   heap_region_iterate(&blk);
2586 }
2587 
2588 // Iterates an ObjectClosure over all objects within a HeapRegion.
2589 
2590 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2591   ObjectClosure* _cl;
2592 public:
2593   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2594   bool doHeapRegion(HeapRegion* r) {
2595     if (!r->is_continues_humongous()) {
2596       r->object_iterate(_cl);
2597     }
2598     return false;
2599   }
2600 };
2601 
2602 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2603   IterateObjectClosureRegionClosure blk(cl);
2604   heap_region_iterate(&blk);
2605 }
2606 
2607 // Calls a SpaceClosure on a HeapRegion.
2608 
2609 class SpaceClosureRegionClosure: public HeapRegionClosure {
2610   SpaceClosure* _cl;
2611 public:
2612   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2613   bool doHeapRegion(HeapRegion* r) {
2614     _cl->do_space(r);
2615     return false;
2616   }
2617 };
2618 
2619 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2620   SpaceClosureRegionClosure blk(cl);
2621   heap_region_iterate(&blk);
2622 }
2623 
2624 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2625   _hrm.iterate(cl);
2626 }
2627 
2628 void
2629 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2630                                          uint worker_id,
2631                                          HeapRegionClaimer *hrclaimer) const {
2632   _hrm.par_iterate(cl, worker_id, hrclaimer);
2633 }
2634 
2635 // Clear the cached CSet starting regions and (more importantly)
2636 // the time stamps. Called when we reset the GC time stamp.
2637 void G1CollectedHeap::clear_cset_start_regions() {
2638   assert(_worker_cset_start_region != NULL, "sanity");
2639   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2640 
2641   int n_queues = MAX2((int)ParallelGCThreads, 1);
2642   for (int i = 0; i < n_queues; i++) {
2643     _worker_cset_start_region[i] = NULL;
2644     _worker_cset_start_region_time_stamp[i] = 0;
2645   }
2646 }
2647 
2648 // Given the id of a worker, obtain or calculate a suitable
2649 // starting region for iterating over the current collection set.
2650 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2651   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2652 
2653   HeapRegion* result = NULL;
2654   unsigned gc_time_stamp = get_gc_time_stamp();
2655 
2656   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2657     // Cached starting region for current worker was set
2658     // during the current pause - so it's valid.
2659     // Note: the cached starting heap region may be NULL
2660     // (when the collection set is empty).
2661     result = _worker_cset_start_region[worker_i];
2662     assert(result == NULL || result->in_collection_set(), "sanity");
2663     return result;
2664   }
2665 
2666   // The cached entry was not valid so let's calculate
2667   // a suitable starting heap region for this worker.
2668 
2669   // We want the parallel threads to start their collection
2670   // set iteration at different collection set regions to
2671   // avoid contention.
2672   // If we have:
2673   //          n collection set regions
2674   //          p threads
2675   // Then thread t will start at region floor ((t * n) / p)
2676 
2677   result = g1_policy()->collection_set();
2678   if (G1CollectedHeap::use_parallel_gc_threads()) {
2679     uint cs_size = g1_policy()->cset_region_length();
2680     uint active_workers = workers()->active_workers();
2681     assert(UseDynamicNumberOfGCThreads ||
2682              active_workers == workers()->total_workers(),
2683              "Unless dynamic should use total workers");
2684 
2685     uint end_ind   = (cs_size * worker_i) / active_workers;
2686     uint start_ind = 0;
2687 
2688     if (worker_i > 0 &&
2689         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2690       // Previous workers starting region is valid
2691       // so let's iterate from there
2692       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2693       result = _worker_cset_start_region[worker_i - 1];
2694     }
2695 
2696     for (uint i = start_ind; i < end_ind; i++) {
2697       result = result->next_in_collection_set();
2698     }
2699   }
2700 
2701   // Note: the calculated starting heap region may be NULL
2702   // (when the collection set is empty).
2703   assert(result == NULL || result->in_collection_set(), "sanity");
2704   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2705          "should be updated only once per pause");
2706   _worker_cset_start_region[worker_i] = result;
2707   OrderAccess::storestore();
2708   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2709   return result;
2710 }
2711 
2712 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2713   HeapRegion* r = g1_policy()->collection_set();
2714   while (r != NULL) {
2715     HeapRegion* next = r->next_in_collection_set();
2716     if (cl->doHeapRegion(r)) {
2717       cl->incomplete();
2718       return;
2719     }
2720     r = next;
2721   }
2722 }
2723 
2724 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2725                                                   HeapRegionClosure *cl) {
2726   if (r == NULL) {
2727     // The CSet is empty so there's nothing to do.
2728     return;
2729   }
2730 
2731   assert(r->in_collection_set(),
2732          "Start region must be a member of the collection set.");
2733   HeapRegion* cur = r;
2734   while (cur != NULL) {
2735     HeapRegion* next = cur->next_in_collection_set();
2736     if (cl->doHeapRegion(cur) && false) {
2737       cl->incomplete();
2738       return;
2739     }
2740     cur = next;
2741   }
2742   cur = g1_policy()->collection_set();
2743   while (cur != r) {
2744     HeapRegion* next = cur->next_in_collection_set();
2745     if (cl->doHeapRegion(cur) && false) {
2746       cl->incomplete();
2747       return;
2748     }
2749     cur = next;
2750   }
2751 }
2752 
2753 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2754   HeapRegion* result = _hrm.next_region_in_heap(from);
2755   while (result != NULL && result->is_humongous()) {
2756     result = _hrm.next_region_in_heap(result);
2757   }
2758   return result;
2759 }
2760 
2761 Space* G1CollectedHeap::space_containing(const void* addr) const {
2762   return heap_region_containing(addr);
2763 }
2764 
2765 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2766   Space* sp = space_containing(addr);
2767   return sp->block_start(addr);
2768 }
2769 
2770 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2771   Space* sp = space_containing(addr);
2772   return sp->block_size(addr);
2773 }
2774 
2775 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2776   Space* sp = space_containing(addr);
2777   return sp->block_is_obj(addr);
2778 }
2779 
2780 bool G1CollectedHeap::supports_tlab_allocation() const {
2781   return true;
2782 }
2783 
2784 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2785   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2786 }
2787 
2788 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2789   return young_list()->eden_used_bytes();
2790 }
2791 
2792 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2793 // must be smaller than the humongous object limit.
2794 size_t G1CollectedHeap::max_tlab_size() const {
2795   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2796 }
2797 
2798 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2799   // Return the remaining space in the cur alloc region, but not less than
2800   // the min TLAB size.
2801 
2802   // Also, this value can be at most the humongous object threshold,
2803   // since we can't allow tlabs to grow big enough to accommodate
2804   // humongous objects.
2805 
2806   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2807   size_t max_tlab = max_tlab_size() * wordSize;
2808   if (hr == NULL) {
2809     return max_tlab;
2810   } else {
2811     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2812   }
2813 }
2814 
2815 size_t G1CollectedHeap::max_capacity() const {
2816   return _hrm.reserved().byte_size();
2817 }
2818 
2819 jlong G1CollectedHeap::millis_since_last_gc() {
2820   // assert(false, "NYI");
2821   return 0;
2822 }
2823 
2824 void G1CollectedHeap::prepare_for_verify() {
2825   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2826     ensure_parsability(false);
2827   }
2828   g1_rem_set()->prepare_for_verify();
2829 }
2830 
2831 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2832                                               VerifyOption vo) {
2833   switch (vo) {
2834   case VerifyOption_G1UsePrevMarking:
2835     return hr->obj_allocated_since_prev_marking(obj);
2836   case VerifyOption_G1UseNextMarking:
2837     return hr->obj_allocated_since_next_marking(obj);
2838   case VerifyOption_G1UseMarkWord:
2839     return false;
2840   default:
2841     ShouldNotReachHere();
2842   }
2843   return false; // keep some compilers happy
2844 }
2845 
2846 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2847   switch (vo) {
2848   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2849   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2850   case VerifyOption_G1UseMarkWord:    return NULL;
2851   default:                            ShouldNotReachHere();
2852   }
2853   return NULL; // keep some compilers happy
2854 }
2855 
2856 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2857   switch (vo) {
2858   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2859   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2860   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2861   default:                            ShouldNotReachHere();
2862   }
2863   return false; // keep some compilers happy
2864 }
2865 
2866 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2867   switch (vo) {
2868   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2869   case VerifyOption_G1UseNextMarking: return "NTAMS";
2870   case VerifyOption_G1UseMarkWord:    return "NONE";
2871   default:                            ShouldNotReachHere();
2872   }
2873   return NULL; // keep some compilers happy
2874 }
2875 
2876 class VerifyRootsClosure: public OopClosure {
2877 private:
2878   G1CollectedHeap* _g1h;
2879   VerifyOption     _vo;
2880   bool             _failures;
2881 public:
2882   // _vo == UsePrevMarking -> use "prev" marking information,
2883   // _vo == UseNextMarking -> use "next" marking information,
2884   // _vo == UseMarkWord    -> use mark word from object header.
2885   VerifyRootsClosure(VerifyOption vo) :
2886     _g1h(G1CollectedHeap::heap()),
2887     _vo(vo),
2888     _failures(false) { }
2889 
2890   bool failures() { return _failures; }
2891 
2892   template <class T> void do_oop_nv(T* p) {
2893     T heap_oop = oopDesc::load_heap_oop(p);
2894     if (!oopDesc::is_null(heap_oop)) {
2895       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2896       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2897         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2898                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2899         if (_vo == VerifyOption_G1UseMarkWord) {
2900           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
2901         }
2902         obj->print_on(gclog_or_tty);
2903         _failures = true;
2904       }
2905     }
2906   }
2907 
2908   void do_oop(oop* p)       { do_oop_nv(p); }
2909   void do_oop(narrowOop* p) { do_oop_nv(p); }
2910 };
2911 
2912 class G1VerifyCodeRootOopClosure: public OopClosure {
2913   G1CollectedHeap* _g1h;
2914   OopClosure* _root_cl;
2915   nmethod* _nm;
2916   VerifyOption _vo;
2917   bool _failures;
2918 
2919   template <class T> void do_oop_work(T* p) {
2920     // First verify that this root is live
2921     _root_cl->do_oop(p);
2922 
2923     if (!G1VerifyHeapRegionCodeRoots) {
2924       // We're not verifying the code roots attached to heap region.
2925       return;
2926     }
2927 
2928     // Don't check the code roots during marking verification in a full GC
2929     if (_vo == VerifyOption_G1UseMarkWord) {
2930       return;
2931     }
2932 
2933     // Now verify that the current nmethod (which contains p) is
2934     // in the code root list of the heap region containing the
2935     // object referenced by p.
2936 
2937     T heap_oop = oopDesc::load_heap_oop(p);
2938     if (!oopDesc::is_null(heap_oop)) {
2939       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2940 
2941       // Now fetch the region containing the object
2942       HeapRegion* hr = _g1h->heap_region_containing(obj);
2943       HeapRegionRemSet* hrrs = hr->rem_set();
2944       // Verify that the strong code root list for this region
2945       // contains the nmethod
2946       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2947         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2948                               "from nmethod "PTR_FORMAT" not in strong "
2949                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
2950                               p, _nm, hr->bottom(), hr->end());
2951         _failures = true;
2952       }
2953     }
2954   }
2955 
2956 public:
2957   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2958     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2959 
2960   void do_oop(oop* p) { do_oop_work(p); }
2961   void do_oop(narrowOop* p) { do_oop_work(p); }
2962 
2963   void set_nmethod(nmethod* nm) { _nm = nm; }
2964   bool failures() { return _failures; }
2965 };
2966 
2967 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2968   G1VerifyCodeRootOopClosure* _oop_cl;
2969 
2970 public:
2971   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2972     _oop_cl(oop_cl) {}
2973 
2974   void do_code_blob(CodeBlob* cb) {
2975     nmethod* nm = cb->as_nmethod_or_null();
2976     if (nm != NULL) {
2977       _oop_cl->set_nmethod(nm);
2978       nm->oops_do(_oop_cl);
2979     }
2980   }
2981 };
2982 
2983 class YoungRefCounterClosure : public OopClosure {
2984   G1CollectedHeap* _g1h;
2985   int              _count;
2986  public:
2987   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2988   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2989   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2990 
2991   int count() { return _count; }
2992   void reset_count() { _count = 0; };
2993 };
2994 
2995 class VerifyKlassClosure: public KlassClosure {
2996   YoungRefCounterClosure _young_ref_counter_closure;
2997   OopClosure *_oop_closure;
2998  public:
2999   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3000   void do_klass(Klass* k) {
3001     k->oops_do(_oop_closure);
3002 
3003     _young_ref_counter_closure.reset_count();
3004     k->oops_do(&_young_ref_counter_closure);
3005     if (_young_ref_counter_closure.count() > 0) {
3006       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k));
3007     }
3008   }
3009 };
3010 
3011 class VerifyLivenessOopClosure: public OopClosure {
3012   G1CollectedHeap* _g1h;
3013   VerifyOption _vo;
3014 public:
3015   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3016     _g1h(g1h), _vo(vo)
3017   { }
3018   void do_oop(narrowOop *p) { do_oop_work(p); }
3019   void do_oop(      oop *p) { do_oop_work(p); }
3020 
3021   template <class T> void do_oop_work(T *p) {
3022     oop obj = oopDesc::load_decode_heap_oop(p);
3023     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3024               "Dead object referenced by a not dead object");
3025   }
3026 };
3027 
3028 class VerifyObjsInRegionClosure: public ObjectClosure {
3029 private:
3030   G1CollectedHeap* _g1h;
3031   size_t _live_bytes;
3032   HeapRegion *_hr;
3033   VerifyOption _vo;
3034 public:
3035   // _vo == UsePrevMarking -> use "prev" marking information,
3036   // _vo == UseNextMarking -> use "next" marking information,
3037   // _vo == UseMarkWord    -> use mark word from object header.
3038   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3039     : _live_bytes(0), _hr(hr), _vo(vo) {
3040     _g1h = G1CollectedHeap::heap();
3041   }
3042   void do_object(oop o) {
3043     VerifyLivenessOopClosure isLive(_g1h, _vo);
3044     assert(o != NULL, "Huh?");
3045     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3046       // If the object is alive according to the mark word,
3047       // then verify that the marking information agrees.
3048       // Note we can't verify the contra-positive of the
3049       // above: if the object is dead (according to the mark
3050       // word), it may not be marked, or may have been marked
3051       // but has since became dead, or may have been allocated
3052       // since the last marking.
3053       if (_vo == VerifyOption_G1UseMarkWord) {
3054         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3055       }
3056 
3057       o->oop_iterate_no_header(&isLive);
3058       if (!_hr->obj_allocated_since_prev_marking(o)) {
3059         size_t obj_size = o->size();    // Make sure we don't overflow
3060         _live_bytes += (obj_size * HeapWordSize);
3061       }
3062     }
3063   }
3064   size_t live_bytes() { return _live_bytes; }
3065 };
3066 
3067 class PrintObjsInRegionClosure : public ObjectClosure {
3068   HeapRegion *_hr;
3069   G1CollectedHeap *_g1;
3070 public:
3071   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3072     _g1 = G1CollectedHeap::heap();
3073   };
3074 
3075   void do_object(oop o) {
3076     if (o != NULL) {
3077       HeapWord *start = (HeapWord *) o;
3078       size_t word_sz = o->size();
3079       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3080                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3081                           (void*) o, word_sz,
3082                           _g1->isMarkedPrev(o),
3083                           _g1->isMarkedNext(o),
3084                           _hr->obj_allocated_since_prev_marking(o));
3085       HeapWord *end = start + word_sz;
3086       HeapWord *cur;
3087       int *val;
3088       for (cur = start; cur < end; cur++) {
3089         val = (int *) cur;
3090         gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val);
3091       }
3092     }
3093   }
3094 };
3095 
3096 class VerifyRegionClosure: public HeapRegionClosure {
3097 private:
3098   bool             _par;
3099   VerifyOption     _vo;
3100   bool             _failures;
3101 public:
3102   // _vo == UsePrevMarking -> use "prev" marking information,
3103   // _vo == UseNextMarking -> use "next" marking information,
3104   // _vo == UseMarkWord    -> use mark word from object header.
3105   VerifyRegionClosure(bool par, VerifyOption vo)
3106     : _par(par),
3107       _vo(vo),
3108       _failures(false) {}
3109 
3110   bool failures() {
3111     return _failures;
3112   }
3113 
3114   bool doHeapRegion(HeapRegion* r) {
3115     if (!r->is_continues_humongous()) {
3116       bool failures = false;
3117       r->verify(_vo, &failures);
3118       if (failures) {
3119         _failures = true;
3120       } else {
3121         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3122         r->object_iterate(&not_dead_yet_cl);
3123         if (_vo != VerifyOption_G1UseNextMarking) {
3124           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3125             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3126                                    "max_live_bytes "SIZE_FORMAT" "
3127                                    "< calculated "SIZE_FORMAT,
3128                                    r->bottom(), r->end(),
3129                                    r->max_live_bytes(),
3130                                  not_dead_yet_cl.live_bytes());
3131             _failures = true;
3132           }
3133         } else {
3134           // When vo == UseNextMarking we cannot currently do a sanity
3135           // check on the live bytes as the calculation has not been
3136           // finalized yet.
3137         }
3138       }
3139     }
3140     return false; // stop the region iteration if we hit a failure
3141   }
3142 };
3143 
3144 // This is the task used for parallel verification of the heap regions
3145 
3146 class G1ParVerifyTask: public AbstractGangTask {
3147 private:
3148   G1CollectedHeap*  _g1h;
3149   VerifyOption      _vo;
3150   bool              _failures;
3151   HeapRegionClaimer _hrclaimer;
3152 
3153 public:
3154   // _vo == UsePrevMarking -> use "prev" marking information,
3155   // _vo == UseNextMarking -> use "next" marking information,
3156   // _vo == UseMarkWord    -> use mark word from object header.
3157   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3158       AbstractGangTask("Parallel verify task"),
3159       _g1h(g1h),
3160       _vo(vo),
3161       _failures(false),
3162       _hrclaimer(g1h->workers()->active_workers()) {}
3163 
3164   bool failures() {
3165     return _failures;
3166   }
3167 
3168   void work(uint worker_id) {
3169     HandleMark hm;
3170     VerifyRegionClosure blk(true, _vo);
3171     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3172     if (blk.failures()) {
3173       _failures = true;
3174     }
3175   }
3176 };
3177 
3178 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3179   if (SafepointSynchronize::is_at_safepoint()) {
3180     assert(Thread::current()->is_VM_thread(),
3181            "Expected to be executed serially by the VM thread at this point");
3182 
3183     if (!silent) { gclog_or_tty->print("Roots "); }
3184     VerifyRootsClosure rootsCl(vo);
3185     VerifyKlassClosure klassCl(this, &rootsCl);
3186     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3187 
3188     // We apply the relevant closures to all the oops in the
3189     // system dictionary, class loader data graph, the string table
3190     // and the nmethods in the code cache.
3191     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3192     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3193 
3194     process_all_roots(true,            // activate StrongRootsScope
3195                       SO_AllCodeCache, // roots scanning options
3196                       &rootsCl,
3197                       &cldCl,
3198                       &blobsCl);
3199 
3200     bool failures = rootsCl.failures() || codeRootsCl.failures();
3201 
3202     if (vo != VerifyOption_G1UseMarkWord) {
3203       // If we're verifying during a full GC then the region sets
3204       // will have been torn down at the start of the GC. Therefore
3205       // verifying the region sets will fail. So we only verify
3206       // the region sets when not in a full GC.
3207       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3208       verify_region_sets();
3209     }
3210 
3211     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3212     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3213 
3214       G1ParVerifyTask task(this, vo);
3215       assert(UseDynamicNumberOfGCThreads ||
3216         workers()->active_workers() == workers()->total_workers(),
3217         "If not dynamic should be using all the workers");
3218       int n_workers = workers()->active_workers();
3219       set_par_threads(n_workers);
3220       workers()->run_task(&task);
3221       set_par_threads(0);
3222       if (task.failures()) {
3223         failures = true;
3224       }
3225 
3226     } else {
3227       VerifyRegionClosure blk(false, vo);
3228       heap_region_iterate(&blk);
3229       if (blk.failures()) {
3230         failures = true;
3231       }
3232     }
3233     if (!silent) gclog_or_tty->print("RemSet ");
3234     rem_set()->verify();
3235 
3236     if (G1StringDedup::is_enabled()) {
3237       if (!silent) gclog_or_tty->print("StrDedup ");
3238       G1StringDedup::verify();
3239     }
3240 
3241     if (failures) {
3242       gclog_or_tty->print_cr("Heap:");
3243       // It helps to have the per-region information in the output to
3244       // help us track down what went wrong. This is why we call
3245       // print_extended_on() instead of print_on().
3246       print_extended_on(gclog_or_tty);
3247       gclog_or_tty->cr();
3248 #ifndef PRODUCT
3249       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3250         concurrent_mark()->print_reachable("at-verification-failure",
3251                                            vo, false /* all */);
3252       }
3253 #endif
3254       gclog_or_tty->flush();
3255     }
3256     guarantee(!failures, "there should not have been any failures");
3257   } else {
3258     if (!silent) {
3259       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3260       if (G1StringDedup::is_enabled()) {
3261         gclog_or_tty->print(", StrDedup");
3262       }
3263       gclog_or_tty->print(") ");
3264     }
3265   }
3266 }
3267 
3268 void G1CollectedHeap::verify(bool silent) {
3269   verify(silent, VerifyOption_G1UsePrevMarking);
3270 }
3271 
3272 double G1CollectedHeap::verify(bool guard, const char* msg) {
3273   double verify_time_ms = 0.0;
3274 
3275   if (guard && total_collections() >= VerifyGCStartAt) {
3276     double verify_start = os::elapsedTime();
3277     HandleMark hm;  // Discard invalid handles created during verification
3278     prepare_for_verify();
3279     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3280     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3281   }
3282 
3283   return verify_time_ms;
3284 }
3285 
3286 void G1CollectedHeap::verify_before_gc() {
3287   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3288   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3289 }
3290 
3291 void G1CollectedHeap::verify_after_gc() {
3292   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3293   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3294 }
3295 
3296 class PrintRegionClosure: public HeapRegionClosure {
3297   outputStream* _st;
3298 public:
3299   PrintRegionClosure(outputStream* st) : _st(st) {}
3300   bool doHeapRegion(HeapRegion* r) {
3301     r->print_on(_st);
3302     return false;
3303   }
3304 };
3305 
3306 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3307                                        const HeapRegion* hr,
3308                                        const VerifyOption vo) const {
3309   switch (vo) {
3310   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3311   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3312   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3313   default:                            ShouldNotReachHere();
3314   }
3315   return false; // keep some compilers happy
3316 }
3317 
3318 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3319                                        const VerifyOption vo) const {
3320   switch (vo) {
3321   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3322   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3323   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3324   default:                            ShouldNotReachHere();
3325   }
3326   return false; // keep some compilers happy
3327 }
3328 
3329 void G1CollectedHeap::print_on(outputStream* st) const {
3330   st->print(" %-20s", "garbage-first heap");
3331   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3332             capacity()/K, used_unlocked()/K);
3333   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3334             _hrm.reserved().start(),
3335             _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
3336             _hrm.reserved().end());
3337   st->cr();
3338   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3339   uint young_regions = _young_list->length();
3340   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3341             (size_t) young_regions * HeapRegion::GrainBytes / K);
3342   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3343   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3344             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3345   st->cr();
3346   MetaspaceAux::print_on(st);
3347 }
3348 
3349 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3350   print_on(st);
3351 
3352   // Print the per-region information.
3353   st->cr();
3354   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3355                "HS=humongous(starts), HC=humongous(continues), "
3356                "CS=collection set, F=free, TS=gc time stamp, "
3357                "PTAMS=previous top-at-mark-start, "
3358                "NTAMS=next top-at-mark-start)");
3359   PrintRegionClosure blk(st);
3360   heap_region_iterate(&blk);
3361 }
3362 
3363 void G1CollectedHeap::print_on_error(outputStream* st) const {
3364   this->CollectedHeap::print_on_error(st);
3365 
3366   if (_cm != NULL) {
3367     st->cr();
3368     _cm->print_on_error(st);
3369   }
3370 }
3371 
3372 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3373   if (G1CollectedHeap::use_parallel_gc_threads()) {
3374     workers()->print_worker_threads_on(st);
3375   }
3376   _cmThread->print_on(st);
3377   st->cr();
3378   _cm->print_worker_threads_on(st);
3379   _cg1r->print_worker_threads_on(st);
3380   if (G1StringDedup::is_enabled()) {
3381     G1StringDedup::print_worker_threads_on(st);
3382   }
3383 }
3384 
3385 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3386   if (G1CollectedHeap::use_parallel_gc_threads()) {
3387     workers()->threads_do(tc);
3388   }
3389   tc->do_thread(_cmThread);
3390   _cg1r->threads_do(tc);
3391   if (G1StringDedup::is_enabled()) {
3392     G1StringDedup::threads_do(tc);
3393   }
3394 }
3395 
3396 void G1CollectedHeap::print_tracing_info() const {
3397   // We'll overload this to mean "trace GC pause statistics."
3398   if (TraceYoungGenTime || TraceOldGenTime) {
3399     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3400     // to that.
3401     g1_policy()->print_tracing_info();
3402   }
3403   if (G1SummarizeRSetStats) {
3404     g1_rem_set()->print_summary_info();
3405   }
3406   if (G1SummarizeConcMark) {
3407     concurrent_mark()->print_summary_info();
3408   }
3409   g1_policy()->print_yg_surv_rate_info();
3410   SpecializationStats::print();
3411 }
3412 
3413 #ifndef PRODUCT
3414 // Helpful for debugging RSet issues.
3415 
3416 class PrintRSetsClosure : public HeapRegionClosure {
3417 private:
3418   const char* _msg;
3419   size_t _occupied_sum;
3420 
3421 public:
3422   bool doHeapRegion(HeapRegion* r) {
3423     HeapRegionRemSet* hrrs = r->rem_set();
3424     size_t occupied = hrrs->occupied();
3425     _occupied_sum += occupied;
3426 
3427     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3428                            HR_FORMAT_PARAMS(r));
3429     if (occupied == 0) {
3430       gclog_or_tty->print_cr("  RSet is empty");
3431     } else {
3432       hrrs->print();
3433     }
3434     gclog_or_tty->print_cr("----------");
3435     return false;
3436   }
3437 
3438   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3439     gclog_or_tty->cr();
3440     gclog_or_tty->print_cr("========================================");
3441     gclog_or_tty->print_cr("%s", msg);
3442     gclog_or_tty->cr();
3443   }
3444 
3445   ~PrintRSetsClosure() {
3446     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3447     gclog_or_tty->print_cr("========================================");
3448     gclog_or_tty->cr();
3449   }
3450 };
3451 
3452 void G1CollectedHeap::print_cset_rsets() {
3453   PrintRSetsClosure cl("Printing CSet RSets");
3454   collection_set_iterate(&cl);
3455 }
3456 
3457 void G1CollectedHeap::print_all_rsets() {
3458   PrintRSetsClosure cl("Printing All RSets");;
3459   heap_region_iterate(&cl);
3460 }
3461 #endif // PRODUCT
3462 
3463 G1CollectedHeap* G1CollectedHeap::heap() {
3464   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3465          "not a garbage-first heap");
3466   return _g1h;
3467 }
3468 
3469 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3470   // always_do_update_barrier = false;
3471   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3472   // Fill TLAB's and such
3473   accumulate_statistics_all_tlabs();
3474   ensure_parsability(true);
3475 
3476   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3477       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3478     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3479   }
3480 }
3481 
3482 void G1CollectedHeap::gc_epilogue(bool full) {
3483 
3484   if (G1SummarizeRSetStats &&
3485       (G1SummarizeRSetStatsPeriod > 0) &&
3486       // we are at the end of the GC. Total collections has already been increased.
3487       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3488     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3489   }
3490 
3491   // FIXME: what is this about?
3492   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3493   // is set.
3494   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3495                         "derived pointer present"));
3496   // always_do_update_barrier = true;
3497 
3498   resize_all_tlabs();
3499   allocation_context_stats().update(full);
3500 
3501   // We have just completed a GC. Update the soft reference
3502   // policy with the new heap occupancy
3503   Universe::update_heap_info_at_gc();
3504 }
3505 
3506 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3507                                                unsigned int gc_count_before,
3508                                                bool* succeeded,
3509                                                GCCause::Cause gc_cause) {
3510   assert_heap_not_locked_and_not_at_safepoint();
3511   g1_policy()->record_stop_world_start();
3512   VM_G1IncCollectionPause op(gc_count_before,
3513                              word_size,
3514                              false, /* should_initiate_conc_mark */
3515                              g1_policy()->max_pause_time_ms(),
3516                              gc_cause);
3517 
3518   op.set_allocation_context(AllocationContext::current());
3519   VMThread::execute(&op);
3520 
3521   HeapWord* result = op.result();
3522   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3523   assert(result == NULL || ret_succeeded,
3524          "the result should be NULL if the VM did not succeed");
3525   *succeeded = ret_succeeded;
3526 
3527   assert_heap_not_locked();
3528   return result;
3529 }
3530 
3531 void
3532 G1CollectedHeap::doConcurrentMark() {
3533   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3534   if (!_cmThread->in_progress()) {
3535     _cmThread->set_started();
3536     CGC_lock->notify();
3537   }
3538 }
3539 
3540 size_t G1CollectedHeap::pending_card_num() {
3541   size_t extra_cards = 0;
3542   JavaThread *curr = Threads::first();
3543   while (curr != NULL) {
3544     DirtyCardQueue& dcq = curr->dirty_card_queue();
3545     extra_cards += dcq.size();
3546     curr = curr->next();
3547   }
3548   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3549   size_t buffer_size = dcqs.buffer_size();
3550   size_t buffer_num = dcqs.completed_buffers_num();
3551 
3552   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3553   // in bytes - not the number of 'entries'. We need to convert
3554   // into a number of cards.
3555   return (buffer_size * buffer_num + extra_cards) / oopSize;
3556 }
3557 
3558 size_t G1CollectedHeap::cards_scanned() {
3559   return g1_rem_set()->cardsScanned();
3560 }
3561 
3562 bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
3563   HeapRegion* region = region_at(index);
3564   assert(region->is_starts_humongous(), "Must start a humongous object");
3565   return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
3566 }
3567 
3568 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3569  private:
3570   size_t _total_humongous;
3571   size_t _candidate_humongous;
3572  public:
3573   RegisterHumongousWithInCSetFastTestClosure() : _total_humongous(0), _candidate_humongous(0) {
3574   }
3575 
3576   virtual bool doHeapRegion(HeapRegion* r) {
3577     if (!r->is_starts_humongous()) {
3578       return false;
3579     }
3580     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3581 
3582     uint region_idx = r->hrm_index();
3583     bool is_candidate = !g1h->humongous_region_is_always_live(region_idx);
3584     // Is_candidate already filters out humongous regions with some remembered set.
3585     // This will not lead to humongous object that we mistakenly keep alive because
3586     // during young collection the remembered sets will only be added to.
3587     if (is_candidate) {
3588       g1h->register_humongous_region_with_in_cset_fast_test(region_idx);
3589       _candidate_humongous++;
3590     }
3591     _total_humongous++;
3592 
3593     return false;
3594   }
3595 
3596   size_t total_humongous() const { return _total_humongous; }
3597   size_t candidate_humongous() const { return _candidate_humongous; }
3598 };
3599 
3600 void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() {
3601   if (!G1ReclaimDeadHumongousObjectsAtYoungGC) {
3602     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0, 0);
3603     return;
3604   }
3605 
3606   RegisterHumongousWithInCSetFastTestClosure cl;
3607   heap_region_iterate(&cl);
3608   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(cl.total_humongous(),
3609                                                                   cl.candidate_humongous());
3610   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3611 
3612   if (_has_humongous_reclaim_candidates) {
3613     clear_humongous_is_live_table();
3614   }
3615 }
3616 
3617 void
3618 G1CollectedHeap::setup_surviving_young_words() {
3619   assert(_surviving_young_words == NULL, "pre-condition");
3620   uint array_length = g1_policy()->young_cset_region_length();
3621   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3622   if (_surviving_young_words == NULL) {
3623     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3624                           "Not enough space for young surv words summary.");
3625   }
3626   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3627 #ifdef ASSERT
3628   for (uint i = 0;  i < array_length; ++i) {
3629     assert( _surviving_young_words[i] == 0, "memset above" );
3630   }
3631 #endif // !ASSERT
3632 }
3633 
3634 void
3635 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3636   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3637   uint array_length = g1_policy()->young_cset_region_length();
3638   for (uint i = 0; i < array_length; ++i) {
3639     _surviving_young_words[i] += surv_young_words[i];
3640   }
3641 }
3642 
3643 void
3644 G1CollectedHeap::cleanup_surviving_young_words() {
3645   guarantee( _surviving_young_words != NULL, "pre-condition" );
3646   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3647   _surviving_young_words = NULL;
3648 }
3649 
3650 #ifdef ASSERT
3651 class VerifyCSetClosure: public HeapRegionClosure {
3652 public:
3653   bool doHeapRegion(HeapRegion* hr) {
3654     // Here we check that the CSet region's RSet is ready for parallel
3655     // iteration. The fields that we'll verify are only manipulated
3656     // when the region is part of a CSet and is collected. Afterwards,
3657     // we reset these fields when we clear the region's RSet (when the
3658     // region is freed) so they are ready when the region is
3659     // re-allocated. The only exception to this is if there's an
3660     // evacuation failure and instead of freeing the region we leave
3661     // it in the heap. In that case, we reset these fields during
3662     // evacuation failure handling.
3663     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3664 
3665     // Here's a good place to add any other checks we'd like to
3666     // perform on CSet regions.
3667     return false;
3668   }
3669 };
3670 #endif // ASSERT
3671 
3672 #if TASKQUEUE_STATS
3673 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3674   st->print_raw_cr("GC Task Stats");
3675   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3676   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3677 }
3678 
3679 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3680   print_taskqueue_stats_hdr(st);
3681 
3682   TaskQueueStats totals;
3683   const int n = workers() != NULL ? workers()->total_workers() : 1;
3684   for (int i = 0; i < n; ++i) {
3685     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3686     totals += task_queue(i)->stats;
3687   }
3688   st->print_raw("tot "); totals.print(st); st->cr();
3689 
3690   DEBUG_ONLY(totals.verify());
3691 }
3692 
3693 void G1CollectedHeap::reset_taskqueue_stats() {
3694   const int n = workers() != NULL ? workers()->total_workers() : 1;
3695   for (int i = 0; i < n; ++i) {
3696     task_queue(i)->stats.reset();
3697   }
3698 }
3699 #endif // TASKQUEUE_STATS
3700 
3701 void G1CollectedHeap::log_gc_header() {
3702   if (!G1Log::fine()) {
3703     return;
3704   }
3705 
3706   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3707 
3708   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3709     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3710     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3711 
3712   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3713 }
3714 
3715 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3716   if (!G1Log::fine()) {
3717     return;
3718   }
3719 
3720   if (G1Log::finer()) {
3721     if (evacuation_failed()) {
3722       gclog_or_tty->print(" (to-space exhausted)");
3723     }
3724     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3725     g1_policy()->phase_times()->note_gc_end();
3726     g1_policy()->phase_times()->print(pause_time_sec);
3727     g1_policy()->print_detailed_heap_transition();
3728   } else {
3729     if (evacuation_failed()) {
3730       gclog_or_tty->print("--");
3731     }
3732     g1_policy()->print_heap_transition();
3733     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3734   }
3735   gclog_or_tty->flush();
3736 }
3737 
3738 bool
3739 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3740   assert_at_safepoint(true /* should_be_vm_thread */);
3741   guarantee(!is_gc_active(), "collection is not reentrant");
3742 
3743   if (GC_locker::check_active_before_gc()) {
3744     return false;
3745   }
3746 
3747   _gc_timer_stw->register_gc_start();
3748 
3749   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3750 
3751   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3752   ResourceMark rm;
3753 
3754   print_heap_before_gc();
3755   trace_heap_before_gc(_gc_tracer_stw);
3756 
3757   verify_region_sets_optional();
3758   verify_dirty_young_regions();
3759 
3760   // This call will decide whether this pause is an initial-mark
3761   // pause. If it is, during_initial_mark_pause() will return true
3762   // for the duration of this pause.
3763   g1_policy()->decide_on_conc_mark_initiation();
3764 
3765   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3766   assert(!g1_policy()->during_initial_mark_pause() ||
3767           g1_policy()->gcs_are_young(), "sanity");
3768 
3769   // We also do not allow mixed GCs during marking.
3770   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3771 
3772   // Record whether this pause is an initial mark. When the current
3773   // thread has completed its logging output and it's safe to signal
3774   // the CM thread, the flag's value in the policy has been reset.
3775   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3776 
3777   // Inner scope for scope based logging, timers, and stats collection
3778   {
3779     EvacuationInfo evacuation_info;
3780 
3781     if (g1_policy()->during_initial_mark_pause()) {
3782       // We are about to start a marking cycle, so we increment the
3783       // full collection counter.
3784       increment_old_marking_cycles_started();
3785       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3786     }
3787 
3788     _gc_tracer_stw->report_yc_type(yc_type());
3789 
3790     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3791 
3792     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3793                                 workers()->active_workers() : 1);
3794     double pause_start_sec = os::elapsedTime();
3795     g1_policy()->phase_times()->note_gc_start(active_workers);
3796     log_gc_header();
3797 
3798     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3799     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3800 
3801     // If the secondary_free_list is not empty, append it to the
3802     // free_list. No need to wait for the cleanup operation to finish;
3803     // the region allocation code will check the secondary_free_list
3804     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3805     // set, skip this step so that the region allocation code has to
3806     // get entries from the secondary_free_list.
3807     if (!G1StressConcRegionFreeing) {
3808       append_secondary_free_list_if_not_empty_with_lock();
3809     }
3810 
3811     assert(check_young_list_well_formed(), "young list should be well formed");
3812 
3813     // Don't dynamically change the number of GC threads this early.  A value of
3814     // 0 is used to indicate serial work.  When parallel work is done,
3815     // it will be set.
3816 
3817     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3818       IsGCActiveMark x;
3819 
3820       gc_prologue(false);
3821       increment_total_collections(false /* full gc */);
3822       increment_gc_time_stamp();
3823 
3824       verify_before_gc();
3825 
3826       check_bitmaps("GC Start");
3827 
3828       COMPILER2_PRESENT(DerivedPointerTable::clear());
3829 
3830       // Please see comment in g1CollectedHeap.hpp and
3831       // G1CollectedHeap::ref_processing_init() to see how
3832       // reference processing currently works in G1.
3833 
3834       // Enable discovery in the STW reference processor
3835       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3836                                             true /*verify_no_refs*/);
3837 
3838       {
3839         // We want to temporarily turn off discovery by the
3840         // CM ref processor, if necessary, and turn it back on
3841         // on again later if we do. Using a scoped
3842         // NoRefDiscovery object will do this.
3843         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3844 
3845         // Forget the current alloc region (we might even choose it to be part
3846         // of the collection set!).
3847         _allocator->release_mutator_alloc_region();
3848 
3849         // We should call this after we retire the mutator alloc
3850         // region(s) so that all the ALLOC / RETIRE events are generated
3851         // before the start GC event.
3852         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3853 
3854         // This timing is only used by the ergonomics to handle our pause target.
3855         // It is unclear why this should not include the full pause. We will
3856         // investigate this in CR 7178365.
3857         //
3858         // Preserving the old comment here if that helps the investigation:
3859         //
3860         // The elapsed time induced by the start time below deliberately elides
3861         // the possible verification above.
3862         double sample_start_time_sec = os::elapsedTime();
3863 
3864 #if YOUNG_LIST_VERBOSE
3865         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3866         _young_list->print();
3867         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3868 #endif // YOUNG_LIST_VERBOSE
3869 
3870         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3871 
3872         double scan_wait_start = os::elapsedTime();
3873         // We have to wait until the CM threads finish scanning the
3874         // root regions as it's the only way to ensure that all the
3875         // objects on them have been correctly scanned before we start
3876         // moving them during the GC.
3877         bool waited = _cm->root_regions()->wait_until_scan_finished();
3878         double wait_time_ms = 0.0;
3879         if (waited) {
3880           double scan_wait_end = os::elapsedTime();
3881           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3882         }
3883         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3884 
3885 #if YOUNG_LIST_VERBOSE
3886         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3887         _young_list->print();
3888 #endif // YOUNG_LIST_VERBOSE
3889 
3890         if (g1_policy()->during_initial_mark_pause()) {
3891           concurrent_mark()->checkpointRootsInitialPre();
3892         }
3893 
3894 #if YOUNG_LIST_VERBOSE
3895         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3896         _young_list->print();
3897         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3898 #endif // YOUNG_LIST_VERBOSE
3899 
3900         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3901 
3902         register_humongous_regions_with_in_cset_fast_test();
3903 
3904         _cm->note_start_of_gc();
3905         // We should not verify the per-thread SATB buffers given that
3906         // we have not filtered them yet (we'll do so during the
3907         // GC). We also call this after finalize_cset() to
3908         // ensure that the CSet has been finalized.
3909         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3910                                  true  /* verify_enqueued_buffers */,
3911                                  false /* verify_thread_buffers */,
3912                                  true  /* verify_fingers */);
3913 
3914         if (_hr_printer.is_active()) {
3915           HeapRegion* hr = g1_policy()->collection_set();
3916           while (hr != NULL) {
3917             _hr_printer.cset(hr);
3918             hr = hr->next_in_collection_set();
3919           }
3920         }
3921 
3922 #ifdef ASSERT
3923         VerifyCSetClosure cl;
3924         collection_set_iterate(&cl);
3925 #endif // ASSERT
3926 
3927         setup_surviving_young_words();
3928 
3929         // Initialize the GC alloc regions.
3930         _allocator->init_gc_alloc_regions(evacuation_info);
3931 
3932         // Actually do the work...
3933         evacuate_collection_set(evacuation_info);
3934 
3935         // We do this to mainly verify the per-thread SATB buffers
3936         // (which have been filtered by now) since we didn't verify
3937         // them earlier. No point in re-checking the stacks / enqueued
3938         // buffers given that the CSet has not changed since last time
3939         // we checked.
3940         _cm->verify_no_cset_oops(false /* verify_stacks */,
3941                                  false /* verify_enqueued_buffers */,
3942                                  true  /* verify_thread_buffers */,
3943                                  true  /* verify_fingers */);
3944 
3945         free_collection_set(g1_policy()->collection_set(), evacuation_info);
3946 
3947         eagerly_reclaim_humongous_regions();
3948 
3949         g1_policy()->clear_collection_set();
3950 
3951         cleanup_surviving_young_words();
3952 
3953         // Start a new incremental collection set for the next pause.
3954         g1_policy()->start_incremental_cset_building();
3955 
3956         clear_cset_fast_test();
3957 
3958         _young_list->reset_sampled_info();
3959 
3960         // Don't check the whole heap at this point as the
3961         // GC alloc regions from this pause have been tagged
3962         // as survivors and moved on to the survivor list.
3963         // Survivor regions will fail the !is_young() check.
3964         assert(check_young_list_empty(false /* check_heap */),
3965           "young list should be empty");
3966 
3967 #if YOUNG_LIST_VERBOSE
3968         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3969         _young_list->print();
3970 #endif // YOUNG_LIST_VERBOSE
3971 
3972         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3973                                              _young_list->first_survivor_region(),
3974                                              _young_list->last_survivor_region());
3975 
3976         _young_list->reset_auxilary_lists();
3977 
3978         if (evacuation_failed()) {
3979           _allocator->set_used(recalculate_used());
3980           uint n_queues = MAX2((int)ParallelGCThreads, 1);
3981           for (uint i = 0; i < n_queues; i++) {
3982             if (_evacuation_failed_info_array[i].has_failed()) {
3983               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3984             }
3985           }
3986         } else {
3987           // The "used" of the the collection set have already been subtracted
3988           // when they were freed.  Add in the bytes evacuated.
3989           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
3990         }
3991 
3992         if (g1_policy()->during_initial_mark_pause()) {
3993           // We have to do this before we notify the CM threads that
3994           // they can start working to make sure that all the
3995           // appropriate initialization is done on the CM object.
3996           concurrent_mark()->checkpointRootsInitialPost();
3997           set_marking_started();
3998           // Note that we don't actually trigger the CM thread at
3999           // this point. We do that later when we're sure that
4000           // the current thread has completed its logging output.
4001         }
4002 
4003         allocate_dummy_regions();
4004 
4005 #if YOUNG_LIST_VERBOSE
4006         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4007         _young_list->print();
4008         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4009 #endif // YOUNG_LIST_VERBOSE
4010 
4011         _allocator->init_mutator_alloc_region();
4012 
4013         {
4014           size_t expand_bytes = g1_policy()->expansion_amount();
4015           if (expand_bytes > 0) {
4016             size_t bytes_before = capacity();
4017             // No need for an ergo verbose message here,
4018             // expansion_amount() does this when it returns a value > 0.
4019             if (!expand(expand_bytes)) {
4020               // We failed to expand the heap. Cannot do anything about it.
4021             }
4022           }
4023         }
4024 
4025         // We redo the verification but now wrt to the new CSet which
4026         // has just got initialized after the previous CSet was freed.
4027         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4028                                  true  /* verify_enqueued_buffers */,
4029                                  true  /* verify_thread_buffers */,
4030                                  true  /* verify_fingers */);
4031         _cm->note_end_of_gc();
4032 
4033         // This timing is only used by the ergonomics to handle our pause target.
4034         // It is unclear why this should not include the full pause. We will
4035         // investigate this in CR 7178365.
4036         double sample_end_time_sec = os::elapsedTime();
4037         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4038         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4039 
4040         MemoryService::track_memory_usage();
4041 
4042         // In prepare_for_verify() below we'll need to scan the deferred
4043         // update buffers to bring the RSets up-to-date if
4044         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4045         // the update buffers we'll probably need to scan cards on the
4046         // regions we just allocated to (i.e., the GC alloc
4047         // regions). However, during the last GC we called
4048         // set_saved_mark() on all the GC alloc regions, so card
4049         // scanning might skip the [saved_mark_word()...top()] area of
4050         // those regions (i.e., the area we allocated objects into
4051         // during the last GC). But it shouldn't. Given that
4052         // saved_mark_word() is conditional on whether the GC time stamp
4053         // on the region is current or not, by incrementing the GC time
4054         // stamp here we invalidate all the GC time stamps on all the
4055         // regions and saved_mark_word() will simply return top() for
4056         // all the regions. This is a nicer way of ensuring this rather
4057         // than iterating over the regions and fixing them. In fact, the
4058         // GC time stamp increment here also ensures that
4059         // saved_mark_word() will return top() between pauses, i.e.,
4060         // during concurrent refinement. So we don't need the
4061         // is_gc_active() check to decided which top to use when
4062         // scanning cards (see CR 7039627).
4063         increment_gc_time_stamp();
4064 
4065         verify_after_gc();
4066         check_bitmaps("GC End");
4067 
4068         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4069         ref_processor_stw()->verify_no_references_recorded();
4070 
4071         // CM reference discovery will be re-enabled if necessary.
4072       }
4073 
4074       // We should do this after we potentially expand the heap so
4075       // that all the COMMIT events are generated before the end GC
4076       // event, and after we retire the GC alloc regions so that all
4077       // RETIRE events are generated before the end GC event.
4078       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4079 
4080 #ifdef TRACESPINNING
4081       ParallelTaskTerminator::print_termination_counts();
4082 #endif
4083 
4084       gc_epilogue(false);
4085     }
4086 
4087     // Print the remainder of the GC log output.
4088     log_gc_footer(os::elapsedTime() - pause_start_sec);
4089 
4090     // It is not yet to safe to tell the concurrent mark to
4091     // start as we have some optional output below. We don't want the
4092     // output from the concurrent mark thread interfering with this
4093     // logging output either.
4094 
4095     _hrm.verify_optional();
4096     verify_region_sets_optional();
4097 
4098     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4099     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4100 
4101     print_heap_after_gc();
4102     trace_heap_after_gc(_gc_tracer_stw);
4103 
4104     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4105     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4106     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4107     // before any GC notifications are raised.
4108     g1mm()->update_sizes();
4109 
4110     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4111     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4112     _gc_timer_stw->register_gc_end();
4113     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4114   }
4115   // It should now be safe to tell the concurrent mark thread to start
4116   // without its logging output interfering with the logging output
4117   // that came from the pause.
4118 
4119   if (should_start_conc_mark) {
4120     // CAUTION: after the doConcurrentMark() call below,
4121     // the concurrent marking thread(s) could be running
4122     // concurrently with us. Make sure that anything after
4123     // this point does not assume that we are the only GC thread
4124     // running. Note: of course, the actual marking work will
4125     // not start until the safepoint itself is released in
4126     // SuspendibleThreadSet::desynchronize().
4127     doConcurrentMark();
4128   }
4129 
4130   return true;
4131 }
4132 
4133 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4134 {
4135   size_t gclab_word_size;
4136   switch (purpose) {
4137     case GCAllocForSurvived:
4138       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4139       break;
4140     case GCAllocForTenured:
4141       gclab_word_size = _old_plab_stats.desired_plab_sz();
4142       break;
4143     default:
4144       assert(false, "unknown GCAllocPurpose");
4145       gclab_word_size = _old_plab_stats.desired_plab_sz();
4146       break;
4147   }
4148 
4149   // Prevent humongous PLAB sizes for two reasons:
4150   // * PLABs are allocated using a similar paths as oops, but should
4151   //   never be in a humongous region
4152   // * Allowing humongous PLABs needlessly churns the region free lists
4153   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4154 }
4155 
4156 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4157   _drain_in_progress = false;
4158   set_evac_failure_closure(cl);
4159   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4160 }
4161 
4162 void G1CollectedHeap::finalize_for_evac_failure() {
4163   assert(_evac_failure_scan_stack != NULL &&
4164          _evac_failure_scan_stack->length() == 0,
4165          "Postcondition");
4166   assert(!_drain_in_progress, "Postcondition");
4167   delete _evac_failure_scan_stack;
4168   _evac_failure_scan_stack = NULL;
4169 }
4170 
4171 void G1CollectedHeap::remove_self_forwarding_pointers() {
4172   double remove_self_forwards_start = os::elapsedTime();
4173 
4174   HeapRegionClaimer hrclaimer;
4175   G1ParRemoveSelfForwardPtrsTask rsfp_task(this, &hrclaimer);
4176 
4177   if (G1CollectedHeap::use_parallel_gc_threads()) {
4178     set_par_threads();
4179     hrclaimer.initialize(workers()->active_workers());
4180     workers()->run_task(&rsfp_task);
4181     set_par_threads(0);
4182   } else {
4183     rsfp_task.work(0);
4184   }
4185 
4186   // Now restore saved marks, if any.
4187   assert(_objs_with_preserved_marks.size() ==
4188             _preserved_marks_of_objs.size(), "Both or none.");
4189   while (!_objs_with_preserved_marks.is_empty()) {
4190     oop obj = _objs_with_preserved_marks.pop();
4191     markOop m = _preserved_marks_of_objs.pop();
4192     obj->set_mark(m);
4193   }
4194   _objs_with_preserved_marks.clear(true);
4195   _preserved_marks_of_objs.clear(true);
4196 
4197   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4198 }
4199 
4200 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4201   _evac_failure_scan_stack->push(obj);
4202 }
4203 
4204 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4205   assert(_evac_failure_scan_stack != NULL, "precondition");
4206 
4207   while (_evac_failure_scan_stack->length() > 0) {
4208      oop obj = _evac_failure_scan_stack->pop();
4209      _evac_failure_closure->set_region(heap_region_containing(obj));
4210      obj->oop_iterate_backwards(_evac_failure_closure);
4211   }
4212 }
4213 
4214 oop
4215 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4216                                                oop old) {
4217   assert(obj_in_cs(old),
4218          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4219                  (HeapWord*) old));
4220   markOop m = old->mark();
4221   oop forward_ptr = old->forward_to_atomic(old);
4222   if (forward_ptr == NULL) {
4223     // Forward-to-self succeeded.
4224     assert(_par_scan_state != NULL, "par scan state");
4225     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4226     uint queue_num = _par_scan_state->queue_num();
4227 
4228     _evacuation_failed = true;
4229     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4230     if (_evac_failure_closure != cl) {
4231       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4232       assert(!_drain_in_progress,
4233              "Should only be true while someone holds the lock.");
4234       // Set the global evac-failure closure to the current thread's.
4235       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4236       set_evac_failure_closure(cl);
4237       // Now do the common part.
4238       handle_evacuation_failure_common(old, m);
4239       // Reset to NULL.
4240       set_evac_failure_closure(NULL);
4241     } else {
4242       // The lock is already held, and this is recursive.
4243       assert(_drain_in_progress, "This should only be the recursive case.");
4244       handle_evacuation_failure_common(old, m);
4245     }
4246     return old;
4247   } else {
4248     // Forward-to-self failed. Either someone else managed to allocate
4249     // space for this object (old != forward_ptr) or they beat us in
4250     // self-forwarding it (old == forward_ptr).
4251     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4252            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4253                    "should not be in the CSet",
4254                    (HeapWord*) old, (HeapWord*) forward_ptr));
4255     return forward_ptr;
4256   }
4257 }
4258 
4259 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4260   preserve_mark_if_necessary(old, m);
4261 
4262   HeapRegion* r = heap_region_containing(old);
4263   if (!r->evacuation_failed()) {
4264     r->set_evacuation_failed(true);
4265     _hr_printer.evac_failure(r);
4266   }
4267 
4268   push_on_evac_failure_scan_stack(old);
4269 
4270   if (!_drain_in_progress) {
4271     // prevent recursion in copy_to_survivor_space()
4272     _drain_in_progress = true;
4273     drain_evac_failure_scan_stack();
4274     _drain_in_progress = false;
4275   }
4276 }
4277 
4278 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4279   assert(evacuation_failed(), "Oversaving!");
4280   // We want to call the "for_promotion_failure" version only in the
4281   // case of a promotion failure.
4282   if (m->must_be_preserved_for_promotion_failure(obj)) {
4283     _objs_with_preserved_marks.push(obj);
4284     _preserved_marks_of_objs.push(m);
4285   }
4286 }
4287 
4288 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4289                                                   size_t word_size,
4290                                                   AllocationContext_t context) {
4291   if (purpose == GCAllocForSurvived) {
4292     HeapWord* result = survivor_attempt_allocation(word_size, context);
4293     if (result != NULL) {
4294       return result;
4295     } else {
4296       // Let's try to allocate in the old gen in case we can fit the
4297       // object there.
4298       return old_attempt_allocation(word_size, context);
4299     }
4300   } else {
4301     assert(purpose ==  GCAllocForTenured, "sanity");
4302     HeapWord* result = old_attempt_allocation(word_size, context);
4303     if (result != NULL) {
4304       return result;
4305     } else {
4306       // Let's try to allocate in the survivors in case we can fit the
4307       // object there.
4308       return survivor_attempt_allocation(word_size, context);
4309     }
4310   }
4311 
4312   ShouldNotReachHere();
4313   // Trying to keep some compilers happy.
4314   return NULL;
4315 }
4316 
4317 void G1ParCopyHelper::mark_object(oop obj) {
4318   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4319 
4320   // We know that the object is not moving so it's safe to read its size.
4321   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4322 }
4323 
4324 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4325   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4326   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4327   assert(from_obj != to_obj, "should not be self-forwarded");
4328 
4329   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4330   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4331 
4332   // The object might be in the process of being copied by another
4333   // worker so we cannot trust that its to-space image is
4334   // well-formed. So we have to read its size from its from-space
4335   // image which we know should not be changing.
4336   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4337 }
4338 
4339 template <class T>
4340 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4341   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4342     _scanned_klass->record_modified_oops();
4343   }
4344 }
4345 
4346 template <G1Barrier barrier, G1Mark do_mark_object>
4347 template <class T>
4348 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4349   T heap_oop = oopDesc::load_heap_oop(p);
4350 
4351   if (oopDesc::is_null(heap_oop)) {
4352     return;
4353   }
4354 
4355   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4356 
4357   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4358 
4359   G1CollectedHeap::in_cset_state_t state = _g1->in_cset_state(obj);
4360 
4361   if (state == G1CollectedHeap::InCSet) {
4362     oop forwardee;
4363     if (obj->is_forwarded()) {
4364       forwardee = obj->forwardee();
4365     } else {
4366       forwardee = _par_scan_state->copy_to_survivor_space(obj);
4367     }
4368     assert(forwardee != NULL, "forwardee should not be NULL");
4369     oopDesc::encode_store_heap_oop(p, forwardee);
4370     if (do_mark_object != G1MarkNone && forwardee != obj) {
4371       // If the object is self-forwarded we don't need to explicitly
4372       // mark it, the evacuation failure protocol will do so.
4373       mark_forwarded_object(obj, forwardee);
4374     }
4375 
4376     if (barrier == G1BarrierKlass) {
4377       do_klass_barrier(p, forwardee);
4378     }
4379   } else {
4380     if (state == G1CollectedHeap::IsHumongous) {
4381       _g1->set_humongous_is_live(obj);
4382     }
4383     // The object is not in collection set. If we're a root scanning
4384     // closure during an initial mark pause then attempt to mark the object.
4385     if (do_mark_object == G1MarkFromRoot) {
4386       mark_object(obj);
4387     }
4388   }
4389 
4390   if (barrier == G1BarrierEvac) {
4391     _par_scan_state->update_rs(_from, p, _worker_id);
4392   }
4393 }
4394 
4395 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4396 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4397 
4398 class G1ParEvacuateFollowersClosure : public VoidClosure {
4399 protected:
4400   G1CollectedHeap*              _g1h;
4401   G1ParScanThreadState*         _par_scan_state;
4402   RefToScanQueueSet*            _queues;
4403   ParallelTaskTerminator*       _terminator;
4404 
4405   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4406   RefToScanQueueSet*      queues()         { return _queues; }
4407   ParallelTaskTerminator* terminator()     { return _terminator; }
4408 
4409 public:
4410   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4411                                 G1ParScanThreadState* par_scan_state,
4412                                 RefToScanQueueSet* queues,
4413                                 ParallelTaskTerminator* terminator)
4414     : _g1h(g1h), _par_scan_state(par_scan_state),
4415       _queues(queues), _terminator(terminator) {}
4416 
4417   void do_void();
4418 
4419 private:
4420   inline bool offer_termination();
4421 };
4422 
4423 bool G1ParEvacuateFollowersClosure::offer_termination() {
4424   G1ParScanThreadState* const pss = par_scan_state();
4425   pss->start_term_time();
4426   const bool res = terminator()->offer_termination();
4427   pss->end_term_time();
4428   return res;
4429 }
4430 
4431 void G1ParEvacuateFollowersClosure::do_void() {
4432   G1ParScanThreadState* const pss = par_scan_state();
4433   pss->trim_queue();
4434   do {
4435     pss->steal_and_trim_queue(queues());
4436   } while (!offer_termination());
4437 }
4438 
4439 class G1KlassScanClosure : public KlassClosure {
4440  G1ParCopyHelper* _closure;
4441  bool             _process_only_dirty;
4442  int              _count;
4443  public:
4444   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4445       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4446   void do_klass(Klass* klass) {
4447     // If the klass has not been dirtied we know that there's
4448     // no references into  the young gen and we can skip it.
4449    if (!_process_only_dirty || klass->has_modified_oops()) {
4450       // Clean the klass since we're going to scavenge all the metadata.
4451       klass->clear_modified_oops();
4452 
4453       // Tell the closure that this klass is the Klass to scavenge
4454       // and is the one to dirty if oops are left pointing into the young gen.
4455       _closure->set_scanned_klass(klass);
4456 
4457       klass->oops_do(_closure);
4458 
4459       _closure->set_scanned_klass(NULL);
4460     }
4461     _count++;
4462   }
4463 };
4464 
4465 class G1CodeBlobClosure : public CodeBlobClosure {
4466   class HeapRegionGatheringOopClosure : public OopClosure {
4467     G1CollectedHeap* _g1h;
4468     OopClosure* _work;
4469     nmethod* _nm;
4470 
4471     template <typename T>
4472     void do_oop_work(T* p) {
4473       _work->do_oop(p);
4474       T oop_or_narrowoop = oopDesc::load_heap_oop(p);
4475       if (!oopDesc::is_null(oop_or_narrowoop)) {
4476         oop o = oopDesc::decode_heap_oop_not_null(oop_or_narrowoop);
4477         HeapRegion* hr = _g1h->heap_region_containing_raw(o);
4478         assert(!_g1h->obj_in_cs(o) || hr->rem_set()->strong_code_roots_list_contains(_nm), "if o still in CS then evacuation failed and nm must already be in the remset");
4479         hr->add_strong_code_root(_nm);
4480       }
4481     }
4482 
4483   public:
4484     HeapRegionGatheringOopClosure(OopClosure* oc) : _g1h(G1CollectedHeap::heap()), _work(oc), _nm(NULL) {}
4485 
4486     void do_oop(oop* o) {
4487       do_oop_work(o);
4488     }
4489 
4490     void do_oop(narrowOop* o) {
4491       do_oop_work(o);
4492     }
4493 
4494     void set_nm(nmethod* nm) {
4495       _nm = nm;
4496     }
4497   };
4498 
4499   HeapRegionGatheringOopClosure _oc;
4500 public:
4501   G1CodeBlobClosure(OopClosure* oc) : _oc(oc) {}
4502 
4503   void do_code_blob(CodeBlob* cb) {
4504     nmethod* nm = cb->as_nmethod_or_null();
4505     if (nm != NULL) {
4506       if (!nm->test_set_oops_do_mark()) {
4507         _oc.set_nm(nm);
4508         nm->oops_do(&_oc);
4509         nm->fix_oop_relocations();
4510       }
4511     }
4512   }
4513 };
4514 
4515 class G1ParTask : public AbstractGangTask {
4516 protected:
4517   G1CollectedHeap*       _g1h;
4518   RefToScanQueueSet      *_queues;
4519   ParallelTaskTerminator _terminator;
4520   uint _n_workers;
4521 
4522   Mutex _stats_lock;
4523   Mutex* stats_lock() { return &_stats_lock; }
4524 
4525 public:
4526   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues)
4527     : AbstractGangTask("G1 collection"),
4528       _g1h(g1h),
4529       _queues(task_queues),
4530       _terminator(0, _queues),
4531       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4532   {}
4533 
4534   RefToScanQueueSet* queues() { return _queues; }
4535 
4536   RefToScanQueue *work_queue(int i) {
4537     return queues()->queue(i);
4538   }
4539 
4540   ParallelTaskTerminator* terminator() { return &_terminator; }
4541 
4542   virtual void set_for_termination(int active_workers) {
4543     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4544     // in the young space (_par_seq_tasks) in the G1 heap
4545     // for SequentialSubTasksDone.
4546     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4547     // both of which need setting by set_n_termination().
4548     _g1h->SharedHeap::set_n_termination(active_workers);
4549     _g1h->set_n_termination(active_workers);
4550     terminator()->reset_for_reuse(active_workers);
4551     _n_workers = active_workers;
4552   }
4553 
4554   // Helps out with CLD processing.
4555   //
4556   // During InitialMark we need to:
4557   // 1) Scavenge all CLDs for the young GC.
4558   // 2) Mark all objects directly reachable from strong CLDs.
4559   template <G1Mark do_mark_object>
4560   class G1CLDClosure : public CLDClosure {
4561     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4562     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4563     G1KlassScanClosure                                _klass_in_cld_closure;
4564     bool                                              _claim;
4565 
4566    public:
4567     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4568                  bool only_young, bool claim)
4569         : _oop_closure(oop_closure),
4570           _oop_in_klass_closure(oop_closure->g1(),
4571                                 oop_closure->pss(),
4572                                 oop_closure->rp()),
4573           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4574           _claim(claim) {
4575 
4576     }
4577 
4578     void do_cld(ClassLoaderData* cld) {
4579       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4580     }
4581   };
4582 
4583   void work(uint worker_id) {
4584     if (worker_id >= _n_workers) return;  // no work needed this round
4585 
4586     double start_time_ms = os::elapsedTime() * 1000.0;
4587     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4588 
4589     {
4590       ResourceMark rm;
4591       HandleMark   hm;
4592 
4593       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4594 
4595       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4596       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4597 
4598       pss.set_evac_failure_closure(&evac_failure_cl);
4599 
4600       bool only_young = _g1h->g1_policy()->gcs_are_young();
4601 
4602       // Non-IM young GC.
4603       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4604       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4605                                                                                only_young, // Only process dirty klasses.
4606                                                                                false);     // No need to claim CLDs.
4607       // IM young GC.
4608       //    Strong roots closures.
4609       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4610       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4611                                                                                false, // Process all klasses.
4612                                                                                true); // Need to claim CLDs.
4613       //    Weak roots closures.
4614       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4615       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4616                                                                                     false, // Process all klasses.
4617                                                                                     true); // Need to claim CLDs.
4618 
4619       G1CodeBlobClosure scan_only_code_cl(&scan_only_root_cl);
4620       G1CodeBlobClosure scan_mark_code_cl(&scan_mark_root_cl);
4621       // IM Weak code roots are handled later.
4622 
4623       OopClosure* strong_root_cl;
4624       OopClosure* weak_root_cl;
4625       CLDClosure* strong_cld_cl;
4626       CLDClosure* weak_cld_cl;
4627       CodeBlobClosure* strong_code_cl;
4628 
4629       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4630         // We also need to mark copied objects.
4631         strong_root_cl = &scan_mark_root_cl;
4632         strong_cld_cl  = &scan_mark_cld_cl;
4633         strong_code_cl = &scan_mark_code_cl;
4634         if (ClassUnloadingWithConcurrentMark) {
4635           weak_root_cl = &scan_mark_weak_root_cl;
4636           weak_cld_cl  = &scan_mark_weak_cld_cl;
4637         } else {
4638           weak_root_cl = &scan_mark_root_cl;
4639           weak_cld_cl  = &scan_mark_cld_cl;
4640         }
4641       } else {
4642         strong_root_cl = &scan_only_root_cl;
4643         weak_root_cl   = &scan_only_root_cl;
4644         strong_cld_cl  = &scan_only_cld_cl;
4645         weak_cld_cl    = &scan_only_cld_cl;
4646         strong_code_cl = &scan_only_code_cl;
4647       }
4648 
4649 
4650       G1ParPushHeapRSClosure  push_heap_rs_cl(_g1h, &pss);
4651 
4652       pss.start_strong_roots();
4653       _g1h->g1_process_roots(strong_root_cl,
4654                              weak_root_cl,
4655                              &push_heap_rs_cl,
4656                              strong_cld_cl,
4657                              weak_cld_cl,
4658                              strong_code_cl,
4659                              worker_id);
4660 
4661       pss.end_strong_roots();
4662 
4663       {
4664         double start = os::elapsedTime();
4665         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4666         evac.do_void();
4667         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4668         double term_ms = pss.term_time()*1000.0;
4669         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4670         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4671       }
4672       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4673       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4674 
4675       if (ParallelGCVerbose) {
4676         MutexLocker x(stats_lock());
4677         pss.print_termination_stats(worker_id);
4678       }
4679 
4680       assert(pss.queue_is_empty(), "should be empty");
4681 
4682       // Close the inner scope so that the ResourceMark and HandleMark
4683       // destructors are executed here and are included as part of the
4684       // "GC Worker Time".
4685     }
4686 
4687     double end_time_ms = os::elapsedTime() * 1000.0;
4688     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
4689   }
4690 };
4691 
4692 // *** Common G1 Evacuation Stuff
4693 
4694 // This method is run in a GC worker.
4695 
4696 void
4697 G1CollectedHeap::
4698 g1_process_roots(OopClosure* scan_non_heap_roots,
4699                  OopClosure* scan_non_heap_weak_roots,
4700                  OopsInHeapRegionClosure* scan_rs,
4701                  CLDClosure* scan_strong_clds,
4702                  CLDClosure* scan_weak_clds,
4703                  CodeBlobClosure* scan_strong_code,
4704                  uint worker_i) {
4705 
4706   // First scan the shared roots.
4707   double ext_roots_start = os::elapsedTime();
4708   double closure_app_time_sec = 0.0;
4709 
4710   bool during_im = _g1h->g1_policy()->during_initial_mark_pause();
4711   bool trace_metadata = during_im && ClassUnloadingWithConcurrentMark;
4712 
4713   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4714   BufferingOopClosure buf_scan_non_heap_weak_roots(scan_non_heap_weak_roots);
4715 
4716   process_roots(false, // no scoping; this is parallel code
4717                 SharedHeap::SO_None,
4718                 &buf_scan_non_heap_roots,
4719                 &buf_scan_non_heap_weak_roots,
4720                 scan_strong_clds,
4721                 // Unloading Initial Marks handle the weak CLDs separately.
4722                 (trace_metadata ? NULL : scan_weak_clds),
4723                 scan_strong_code);
4724 
4725   // Now the CM ref_processor roots.
4726   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4727     // We need to treat the discovered reference lists of the
4728     // concurrent mark ref processor as roots and keep entries
4729     // (which are added by the marking threads) on them live
4730     // until they can be processed at the end of marking.
4731     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4732   }
4733 
4734   if (trace_metadata) {
4735     // Barrier to make sure all workers passed
4736     // the strong CLD and strong nmethods phases.
4737     active_strong_roots_scope()->wait_until_all_workers_done_with_threads(n_par_threads());
4738 
4739     // Now take the complement of the strong CLDs.
4740     ClassLoaderDataGraph::roots_cld_do(NULL, scan_weak_clds);
4741   }
4742 
4743   // Finish up any enqueued closure apps (attributed as object copy time).
4744   buf_scan_non_heap_roots.done();
4745   buf_scan_non_heap_weak_roots.done();
4746 
4747   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds()
4748       + buf_scan_non_heap_weak_roots.closure_app_seconds();
4749 
4750   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4751 
4752   double ext_root_time_ms =
4753     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4754 
4755   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4756 
4757   // During conc marking we have to filter the per-thread SATB buffers
4758   // to make sure we remove any oops into the CSet (which will show up
4759   // as implicitly live).
4760   double satb_filtering_ms = 0.0;
4761   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
4762     if (mark_in_progress()) {
4763       double satb_filter_start = os::elapsedTime();
4764 
4765       JavaThread::satb_mark_queue_set().filter_thread_buffers();
4766 
4767       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
4768     }
4769   }
4770   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
4771 
4772   // Now scan the complement of the collection set.
4773   G1CodeBlobClosure scavenge_cs_nmethods(scan_non_heap_weak_roots);
4774 
4775   g1_rem_set()->oops_into_collection_set_do(scan_rs, &scavenge_cs_nmethods, worker_i);
4776 
4777   _process_strong_tasks->all_tasks_completed();
4778 }
4779 
4780 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4781 private:
4782   BoolObjectClosure* _is_alive;
4783   int _initial_string_table_size;
4784   int _initial_symbol_table_size;
4785 
4786   bool  _process_strings;
4787   int _strings_processed;
4788   int _strings_removed;
4789 
4790   bool  _process_symbols;
4791   int _symbols_processed;
4792   int _symbols_removed;
4793 
4794   bool _do_in_parallel;
4795 public:
4796   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4797     AbstractGangTask("String/Symbol Unlinking"),
4798     _is_alive(is_alive),
4799     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
4800     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4801     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4802 
4803     _initial_string_table_size = StringTable::the_table()->table_size();
4804     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4805     if (process_strings) {
4806       StringTable::clear_parallel_claimed_index();
4807     }
4808     if (process_symbols) {
4809       SymbolTable::clear_parallel_claimed_index();
4810     }
4811   }
4812 
4813   ~G1StringSymbolTableUnlinkTask() {
4814     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4815               err_msg("claim value %d after unlink less than initial string table size %d",
4816                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4817     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4818               err_msg("claim value %d after unlink less than initial symbol table size %d",
4819                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4820 
4821     if (G1TraceStringSymbolTableScrubbing) {
4822       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4823                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4824                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4825                              strings_processed(), strings_removed(),
4826                              symbols_processed(), symbols_removed());
4827     }
4828   }
4829 
4830   void work(uint worker_id) {
4831     if (_do_in_parallel) {
4832       int strings_processed = 0;
4833       int strings_removed = 0;
4834       int symbols_processed = 0;
4835       int symbols_removed = 0;
4836       if (_process_strings) {
4837         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4838         Atomic::add(strings_processed, &_strings_processed);
4839         Atomic::add(strings_removed, &_strings_removed);
4840       }
4841       if (_process_symbols) {
4842         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4843         Atomic::add(symbols_processed, &_symbols_processed);
4844         Atomic::add(symbols_removed, &_symbols_removed);
4845       }
4846     } else {
4847       if (_process_strings) {
4848         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
4849       }
4850       if (_process_symbols) {
4851         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
4852       }
4853     }
4854   }
4855 
4856   size_t strings_processed() const { return (size_t)_strings_processed; }
4857   size_t strings_removed()   const { return (size_t)_strings_removed; }
4858 
4859   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4860   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4861 };
4862 
4863 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4864 private:
4865   static Monitor* _lock;
4866 
4867   BoolObjectClosure* const _is_alive;
4868   const bool               _unloading_occurred;
4869   const uint               _num_workers;
4870 
4871   // Variables used to claim nmethods.
4872   nmethod* _first_nmethod;
4873   volatile nmethod* _claimed_nmethod;
4874 
4875   // The list of nmethods that need to be processed by the second pass.
4876   volatile nmethod* _postponed_list;
4877   volatile uint     _num_entered_barrier;
4878 
4879  public:
4880   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4881       _is_alive(is_alive),
4882       _unloading_occurred(unloading_occurred),
4883       _num_workers(num_workers),
4884       _first_nmethod(NULL),
4885       _claimed_nmethod(NULL),
4886       _postponed_list(NULL),
4887       _num_entered_barrier(0)
4888   {
4889     nmethod::increase_unloading_clock();
4890     _first_nmethod = CodeCache::alive_nmethod(CodeCache::first());
4891     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4892   }
4893 
4894   ~G1CodeCacheUnloadingTask() {
4895     CodeCache::verify_clean_inline_caches();
4896 
4897     CodeCache::set_needs_cache_clean(false);
4898     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4899 
4900     CodeCache::verify_icholder_relocations();
4901   }
4902 
4903  private:
4904   void add_to_postponed_list(nmethod* nm) {
4905       nmethod* old;
4906       do {
4907         old = (nmethod*)_postponed_list;
4908         nm->set_unloading_next(old);
4909       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4910   }
4911 
4912   void clean_nmethod(nmethod* nm) {
4913     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4914 
4915     if (postponed) {
4916       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4917       add_to_postponed_list(nm);
4918     }
4919 
4920     // Mark that this thread has been cleaned/unloaded.
4921     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4922     nm->set_unloading_clock(nmethod::global_unloading_clock());
4923   }
4924 
4925   void clean_nmethod_postponed(nmethod* nm) {
4926     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4927   }
4928 
4929   static const int MaxClaimNmethods = 16;
4930 
4931   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4932     nmethod* first;
4933     nmethod* last;
4934 
4935     do {
4936       *num_claimed_nmethods = 0;
4937 
4938       first = last = (nmethod*)_claimed_nmethod;
4939 
4940       if (first != NULL) {
4941         for (int i = 0; i < MaxClaimNmethods; i++) {
4942           last = CodeCache::alive_nmethod(CodeCache::next(last));
4943 
4944           if (last == NULL) {
4945             break;
4946           }
4947 
4948           claimed_nmethods[i] = last;
4949           (*num_claimed_nmethods)++;
4950         }
4951       }
4952 
4953     } while ((nmethod*)Atomic::cmpxchg_ptr(last, &_claimed_nmethod, first) != first);
4954   }
4955 
4956   nmethod* claim_postponed_nmethod() {
4957     nmethod* claim;
4958     nmethod* next;
4959 
4960     do {
4961       claim = (nmethod*)_postponed_list;
4962       if (claim == NULL) {
4963         return NULL;
4964       }
4965 
4966       next = claim->unloading_next();
4967 
4968     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4969 
4970     return claim;
4971   }
4972 
4973  public:
4974   // Mark that we're done with the first pass of nmethod cleaning.
4975   void barrier_mark(uint worker_id) {
4976     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4977     _num_entered_barrier++;
4978     if (_num_entered_barrier == _num_workers) {
4979       ml.notify_all();
4980     }
4981   }
4982 
4983   // See if we have to wait for the other workers to
4984   // finish their first-pass nmethod cleaning work.
4985   void barrier_wait(uint worker_id) {
4986     if (_num_entered_barrier < _num_workers) {
4987       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4988       while (_num_entered_barrier < _num_workers) {
4989           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4990       }
4991     }
4992   }
4993 
4994   // Cleaning and unloading of nmethods. Some work has to be postponed
4995   // to the second pass, when we know which nmethods survive.
4996   void work_first_pass(uint worker_id) {
4997     // The first nmethods is claimed by the first worker.
4998     if (worker_id == 0 && _first_nmethod != NULL) {
4999       clean_nmethod(_first_nmethod);
5000       _first_nmethod = NULL;
5001     }
5002 
5003     int num_claimed_nmethods;
5004     nmethod* claimed_nmethods[MaxClaimNmethods];
5005 
5006     while (true) {
5007       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
5008 
5009       if (num_claimed_nmethods == 0) {
5010         break;
5011       }
5012 
5013       for (int i = 0; i < num_claimed_nmethods; i++) {
5014         clean_nmethod(claimed_nmethods[i]);
5015       }
5016     }
5017   }
5018 
5019   void work_second_pass(uint worker_id) {
5020     nmethod* nm;
5021     // Take care of postponed nmethods.
5022     while ((nm = claim_postponed_nmethod()) != NULL) {
5023       clean_nmethod_postponed(nm);
5024     }
5025   }
5026 };
5027 
5028 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock");
5029 
5030 class G1KlassCleaningTask : public StackObj {
5031   BoolObjectClosure*                      _is_alive;
5032   volatile jint                           _clean_klass_tree_claimed;
5033   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
5034 
5035  public:
5036   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
5037       _is_alive(is_alive),
5038       _clean_klass_tree_claimed(0),
5039       _klass_iterator() {
5040   }
5041 
5042  private:
5043   bool claim_clean_klass_tree_task() {
5044     if (_clean_klass_tree_claimed) {
5045       return false;
5046     }
5047 
5048     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
5049   }
5050 
5051   InstanceKlass* claim_next_klass() {
5052     Klass* klass;
5053     do {
5054       klass =_klass_iterator.next_klass();
5055     } while (klass != NULL && !klass->oop_is_instance());
5056 
5057     return (InstanceKlass*)klass;
5058   }
5059 
5060 public:
5061 
5062   void clean_klass(InstanceKlass* ik) {
5063     ik->clean_implementors_list(_is_alive);
5064     ik->clean_method_data(_is_alive);
5065 
5066     // G1 specific cleanup work that has
5067     // been moved here to be done in parallel.
5068     ik->clean_dependent_nmethods();
5069   }
5070 
5071   void work() {
5072     ResourceMark rm;
5073 
5074     // One worker will clean the subklass/sibling klass tree.
5075     if (claim_clean_klass_tree_task()) {
5076       Klass::clean_subklass_tree(_is_alive);
5077     }
5078 
5079     // All workers will help cleaning the classes,
5080     InstanceKlass* klass;
5081     while ((klass = claim_next_klass()) != NULL) {
5082       clean_klass(klass);
5083     }
5084   }
5085 };
5086 
5087 // To minimize the remark pause times, the tasks below are done in parallel.
5088 class G1ParallelCleaningTask : public AbstractGangTask {
5089 private:
5090   G1StringSymbolTableUnlinkTask _string_symbol_task;
5091   G1CodeCacheUnloadingTask      _code_cache_task;
5092   G1KlassCleaningTask           _klass_cleaning_task;
5093 
5094 public:
5095   // The constructor is run in the VMThread.
5096   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
5097       AbstractGangTask("Parallel Cleaning"),
5098       _string_symbol_task(is_alive, process_strings, process_symbols),
5099       _code_cache_task(num_workers, is_alive, unloading_occurred),
5100       _klass_cleaning_task(is_alive) {
5101   }
5102 
5103   // The parallel work done by all worker threads.
5104   void work(uint worker_id) {
5105     // Do first pass of code cache cleaning.
5106     _code_cache_task.work_first_pass(worker_id);
5107 
5108     // Let the threads mark that the first pass is done.
5109     _code_cache_task.barrier_mark(worker_id);
5110 
5111     // Clean the Strings and Symbols.
5112     _string_symbol_task.work(worker_id);
5113 
5114     // Wait for all workers to finish the first code cache cleaning pass.
5115     _code_cache_task.barrier_wait(worker_id);
5116 
5117     // Do the second code cache cleaning work, which realize on
5118     // the liveness information gathered during the first pass.
5119     _code_cache_task.work_second_pass(worker_id);
5120 
5121     // Clean all klasses that were not unloaded.
5122     _klass_cleaning_task.work();
5123   }
5124 };
5125 
5126 
5127 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
5128                                         bool process_strings,
5129                                         bool process_symbols,
5130                                         bool class_unloading_occurred) {
5131   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5132                     workers()->active_workers() : 1);
5133 
5134   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
5135                                         n_workers, class_unloading_occurred);
5136   if (G1CollectedHeap::use_parallel_gc_threads()) {
5137     set_par_threads(n_workers);
5138     workers()->run_task(&g1_unlink_task);
5139     set_par_threads(0);
5140   } else {
5141     g1_unlink_task.work(0);
5142   }
5143 }
5144 
5145 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5146                                                      bool process_strings, bool process_symbols) {
5147   {
5148     uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5149                      _g1h->workers()->active_workers() : 1);
5150     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5151     if (G1CollectedHeap::use_parallel_gc_threads()) {
5152       set_par_threads(n_workers);
5153       workers()->run_task(&g1_unlink_task);
5154       set_par_threads(0);
5155     } else {
5156       g1_unlink_task.work(0);
5157     }
5158   }
5159 
5160   if (G1StringDedup::is_enabled()) {
5161     G1StringDedup::unlink(is_alive);
5162   }
5163 }
5164 
5165 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5166  private:
5167   DirtyCardQueueSet* _queue;
5168  public:
5169   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5170 
5171   virtual void work(uint worker_id) {
5172     double start_time = os::elapsedTime();
5173 
5174     RedirtyLoggedCardTableEntryClosure cl;
5175     if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
5176       _queue->par_apply_closure_to_all_completed_buffers(&cl);
5177     } else {
5178       _queue->apply_closure_to_all_completed_buffers(&cl);
5179     }
5180 
5181     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
5182     timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
5183     timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
5184   }
5185 };
5186 
5187 void G1CollectedHeap::redirty_logged_cards() {
5188   double redirty_logged_cards_start = os::elapsedTime();
5189 
5190   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5191                    _g1h->workers()->active_workers() : 1);
5192 
5193   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5194   dirty_card_queue_set().reset_for_par_iteration();
5195   if (use_parallel_gc_threads()) {
5196     set_par_threads(n_workers);
5197     workers()->run_task(&redirty_task);
5198     set_par_threads(0);
5199   } else {
5200     redirty_task.work(0);
5201   }
5202 
5203   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5204   dcq.merge_bufferlists(&dirty_card_queue_set());
5205   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5206 
5207   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5208 }
5209 
5210 // Weak Reference Processing support
5211 
5212 // An always "is_alive" closure that is used to preserve referents.
5213 // If the object is non-null then it's alive.  Used in the preservation
5214 // of referent objects that are pointed to by reference objects
5215 // discovered by the CM ref processor.
5216 class G1AlwaysAliveClosure: public BoolObjectClosure {
5217   G1CollectedHeap* _g1;
5218 public:
5219   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5220   bool do_object_b(oop p) {
5221     if (p != NULL) {
5222       return true;
5223     }
5224     return false;
5225   }
5226 };
5227 
5228 bool G1STWIsAliveClosure::do_object_b(oop p) {
5229   // An object is reachable if it is outside the collection set,
5230   // or is inside and copied.
5231   return !_g1->obj_in_cs(p) || p->is_forwarded();
5232 }
5233 
5234 // Non Copying Keep Alive closure
5235 class G1KeepAliveClosure: public OopClosure {
5236   G1CollectedHeap* _g1;
5237 public:
5238   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5239   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5240   void do_oop(oop* p) {
5241     oop obj = *p;
5242     assert(obj != NULL, "the caller should have filtered out NULL values");
5243 
5244     G1CollectedHeap::in_cset_state_t cset_state = _g1->in_cset_state(obj);
5245     if (cset_state == G1CollectedHeap::InNeither) {
5246       return;
5247     }
5248     if (cset_state == G1CollectedHeap::InCSet) {
5249       assert( obj->is_forwarded(), "invariant" );
5250       *p = obj->forwardee();
5251     } else {
5252       assert(!obj->is_forwarded(), "invariant" );
5253       assert(cset_state == G1CollectedHeap::IsHumongous,
5254              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state));
5255       _g1->set_humongous_is_live(obj);
5256     }
5257   }
5258 };
5259 
5260 // Copying Keep Alive closure - can be called from both
5261 // serial and parallel code as long as different worker
5262 // threads utilize different G1ParScanThreadState instances
5263 // and different queues.
5264 
5265 class G1CopyingKeepAliveClosure: public OopClosure {
5266   G1CollectedHeap*         _g1h;
5267   OopClosure*              _copy_non_heap_obj_cl;
5268   G1ParScanThreadState*    _par_scan_state;
5269 
5270 public:
5271   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5272                             OopClosure* non_heap_obj_cl,
5273                             G1ParScanThreadState* pss):
5274     _g1h(g1h),
5275     _copy_non_heap_obj_cl(non_heap_obj_cl),
5276     _par_scan_state(pss)
5277   {}
5278 
5279   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5280   virtual void do_oop(      oop* p) { do_oop_work(p); }
5281 
5282   template <class T> void do_oop_work(T* p) {
5283     oop obj = oopDesc::load_decode_heap_oop(p);
5284 
5285     if (_g1h->is_in_cset_or_humongous(obj)) {
5286       // If the referent object has been forwarded (either copied
5287       // to a new location or to itself in the event of an
5288       // evacuation failure) then we need to update the reference
5289       // field and, if both reference and referent are in the G1
5290       // heap, update the RSet for the referent.
5291       //
5292       // If the referent has not been forwarded then we have to keep
5293       // it alive by policy. Therefore we have copy the referent.
5294       //
5295       // If the reference field is in the G1 heap then we can push
5296       // on the PSS queue. When the queue is drained (after each
5297       // phase of reference processing) the object and it's followers
5298       // will be copied, the reference field set to point to the
5299       // new location, and the RSet updated. Otherwise we need to
5300       // use the the non-heap or metadata closures directly to copy
5301       // the referent object and update the pointer, while avoiding
5302       // updating the RSet.
5303 
5304       if (_g1h->is_in_g1_reserved(p)) {
5305         _par_scan_state->push_on_queue(p);
5306       } else {
5307         assert(!Metaspace::contains((const void*)p),
5308                err_msg("Unexpectedly found a pointer from metadata: "
5309                               PTR_FORMAT, p));
5310         _copy_non_heap_obj_cl->do_oop(p);
5311       }
5312     }
5313   }
5314 };
5315 
5316 // Serial drain queue closure. Called as the 'complete_gc'
5317 // closure for each discovered list in some of the
5318 // reference processing phases.
5319 
5320 class G1STWDrainQueueClosure: public VoidClosure {
5321 protected:
5322   G1CollectedHeap* _g1h;
5323   G1ParScanThreadState* _par_scan_state;
5324 
5325   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5326 
5327 public:
5328   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5329     _g1h(g1h),
5330     _par_scan_state(pss)
5331   { }
5332 
5333   void do_void() {
5334     G1ParScanThreadState* const pss = par_scan_state();
5335     pss->trim_queue();
5336   }
5337 };
5338 
5339 // Parallel Reference Processing closures
5340 
5341 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5342 // processing during G1 evacuation pauses.
5343 
5344 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5345 private:
5346   G1CollectedHeap*   _g1h;
5347   RefToScanQueueSet* _queues;
5348   FlexibleWorkGang*  _workers;
5349   int                _active_workers;
5350 
5351 public:
5352   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5353                         FlexibleWorkGang* workers,
5354                         RefToScanQueueSet *task_queues,
5355                         int n_workers) :
5356     _g1h(g1h),
5357     _queues(task_queues),
5358     _workers(workers),
5359     _active_workers(n_workers)
5360   {
5361     assert(n_workers > 0, "shouldn't call this otherwise");
5362   }
5363 
5364   // Executes the given task using concurrent marking worker threads.
5365   virtual void execute(ProcessTask& task);
5366   virtual void execute(EnqueueTask& task);
5367 };
5368 
5369 // Gang task for possibly parallel reference processing
5370 
5371 class G1STWRefProcTaskProxy: public AbstractGangTask {
5372   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5373   ProcessTask&     _proc_task;
5374   G1CollectedHeap* _g1h;
5375   RefToScanQueueSet *_task_queues;
5376   ParallelTaskTerminator* _terminator;
5377 
5378 public:
5379   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5380                      G1CollectedHeap* g1h,
5381                      RefToScanQueueSet *task_queues,
5382                      ParallelTaskTerminator* terminator) :
5383     AbstractGangTask("Process reference objects in parallel"),
5384     _proc_task(proc_task),
5385     _g1h(g1h),
5386     _task_queues(task_queues),
5387     _terminator(terminator)
5388   {}
5389 
5390   virtual void work(uint worker_id) {
5391     // The reference processing task executed by a single worker.
5392     ResourceMark rm;
5393     HandleMark   hm;
5394 
5395     G1STWIsAliveClosure is_alive(_g1h);
5396 
5397     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5398     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5399 
5400     pss.set_evac_failure_closure(&evac_failure_cl);
5401 
5402     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5403 
5404     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5405 
5406     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5407 
5408     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5409       // We also need to mark copied objects.
5410       copy_non_heap_cl = &copy_mark_non_heap_cl;
5411     }
5412 
5413     // Keep alive closure.
5414     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5415 
5416     // Complete GC closure
5417     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5418 
5419     // Call the reference processing task's work routine.
5420     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5421 
5422     // Note we cannot assert that the refs array is empty here as not all
5423     // of the processing tasks (specifically phase2 - pp2_work) execute
5424     // the complete_gc closure (which ordinarily would drain the queue) so
5425     // the queue may not be empty.
5426   }
5427 };
5428 
5429 // Driver routine for parallel reference processing.
5430 // Creates an instance of the ref processing gang
5431 // task and has the worker threads execute it.
5432 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5433   assert(_workers != NULL, "Need parallel worker threads.");
5434 
5435   ParallelTaskTerminator terminator(_active_workers, _queues);
5436   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5437 
5438   _g1h->set_par_threads(_active_workers);
5439   _workers->run_task(&proc_task_proxy);
5440   _g1h->set_par_threads(0);
5441 }
5442 
5443 // Gang task for parallel reference enqueueing.
5444 
5445 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5446   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5447   EnqueueTask& _enq_task;
5448 
5449 public:
5450   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5451     AbstractGangTask("Enqueue reference objects in parallel"),
5452     _enq_task(enq_task)
5453   { }
5454 
5455   virtual void work(uint worker_id) {
5456     _enq_task.work(worker_id);
5457   }
5458 };
5459 
5460 // Driver routine for parallel reference enqueueing.
5461 // Creates an instance of the ref enqueueing gang
5462 // task and has the worker threads execute it.
5463 
5464 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5465   assert(_workers != NULL, "Need parallel worker threads.");
5466 
5467   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5468 
5469   _g1h->set_par_threads(_active_workers);
5470   _workers->run_task(&enq_task_proxy);
5471   _g1h->set_par_threads(0);
5472 }
5473 
5474 // End of weak reference support closures
5475 
5476 // Abstract task used to preserve (i.e. copy) any referent objects
5477 // that are in the collection set and are pointed to by reference
5478 // objects discovered by the CM ref processor.
5479 
5480 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5481 protected:
5482   G1CollectedHeap* _g1h;
5483   RefToScanQueueSet      *_queues;
5484   ParallelTaskTerminator _terminator;
5485   uint _n_workers;
5486 
5487 public:
5488   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5489     AbstractGangTask("ParPreserveCMReferents"),
5490     _g1h(g1h),
5491     _queues(task_queues),
5492     _terminator(workers, _queues),
5493     _n_workers(workers)
5494   { }
5495 
5496   void work(uint worker_id) {
5497     ResourceMark rm;
5498     HandleMark   hm;
5499 
5500     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5501     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5502 
5503     pss.set_evac_failure_closure(&evac_failure_cl);
5504 
5505     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5506 
5507     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5508 
5509     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5510 
5511     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5512 
5513     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5514       // We also need to mark copied objects.
5515       copy_non_heap_cl = &copy_mark_non_heap_cl;
5516     }
5517 
5518     // Is alive closure
5519     G1AlwaysAliveClosure always_alive(_g1h);
5520 
5521     // Copying keep alive closure. Applied to referent objects that need
5522     // to be copied.
5523     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5524 
5525     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5526 
5527     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5528     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5529 
5530     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5531     // So this must be true - but assert just in case someone decides to
5532     // change the worker ids.
5533     assert(0 <= worker_id && worker_id < limit, "sanity");
5534     assert(!rp->discovery_is_atomic(), "check this code");
5535 
5536     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5537     for (uint idx = worker_id; idx < limit; idx += stride) {
5538       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5539 
5540       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5541       while (iter.has_next()) {
5542         // Since discovery is not atomic for the CM ref processor, we
5543         // can see some null referent objects.
5544         iter.load_ptrs(DEBUG_ONLY(true));
5545         oop ref = iter.obj();
5546 
5547         // This will filter nulls.
5548         if (iter.is_referent_alive()) {
5549           iter.make_referent_alive();
5550         }
5551         iter.move_to_next();
5552       }
5553     }
5554 
5555     // Drain the queue - which may cause stealing
5556     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5557     drain_queue.do_void();
5558     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5559     assert(pss.queue_is_empty(), "should be");
5560   }
5561 };
5562 
5563 // Weak Reference processing during an evacuation pause (part 1).
5564 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5565   double ref_proc_start = os::elapsedTime();
5566 
5567   ReferenceProcessor* rp = _ref_processor_stw;
5568   assert(rp->discovery_enabled(), "should have been enabled");
5569 
5570   // Any reference objects, in the collection set, that were 'discovered'
5571   // by the CM ref processor should have already been copied (either by
5572   // applying the external root copy closure to the discovered lists, or
5573   // by following an RSet entry).
5574   //
5575   // But some of the referents, that are in the collection set, that these
5576   // reference objects point to may not have been copied: the STW ref
5577   // processor would have seen that the reference object had already
5578   // been 'discovered' and would have skipped discovering the reference,
5579   // but would not have treated the reference object as a regular oop.
5580   // As a result the copy closure would not have been applied to the
5581   // referent object.
5582   //
5583   // We need to explicitly copy these referent objects - the references
5584   // will be processed at the end of remarking.
5585   //
5586   // We also need to do this copying before we process the reference
5587   // objects discovered by the STW ref processor in case one of these
5588   // referents points to another object which is also referenced by an
5589   // object discovered by the STW ref processor.
5590 
5591   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5592            no_of_gc_workers == workers()->active_workers(),
5593            "Need to reset active GC workers");
5594 
5595   set_par_threads(no_of_gc_workers);
5596   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5597                                                  no_of_gc_workers,
5598                                                  _task_queues);
5599 
5600   if (G1CollectedHeap::use_parallel_gc_threads()) {
5601     workers()->run_task(&keep_cm_referents);
5602   } else {
5603     keep_cm_referents.work(0);
5604   }
5605 
5606   set_par_threads(0);
5607 
5608   // Closure to test whether a referent is alive.
5609   G1STWIsAliveClosure is_alive(this);
5610 
5611   // Even when parallel reference processing is enabled, the processing
5612   // of JNI refs is serial and performed serially by the current thread
5613   // rather than by a worker. The following PSS will be used for processing
5614   // JNI refs.
5615 
5616   // Use only a single queue for this PSS.
5617   G1ParScanThreadState            pss(this, 0, NULL);
5618 
5619   // We do not embed a reference processor in the copying/scanning
5620   // closures while we're actually processing the discovered
5621   // reference objects.
5622   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5623 
5624   pss.set_evac_failure_closure(&evac_failure_cl);
5625 
5626   assert(pss.queue_is_empty(), "pre-condition");
5627 
5628   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5629 
5630   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5631 
5632   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5633 
5634   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5635     // We also need to mark copied objects.
5636     copy_non_heap_cl = &copy_mark_non_heap_cl;
5637   }
5638 
5639   // Keep alive closure.
5640   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5641 
5642   // Serial Complete GC closure
5643   G1STWDrainQueueClosure drain_queue(this, &pss);
5644 
5645   // Setup the soft refs policy...
5646   rp->setup_policy(false);
5647 
5648   ReferenceProcessorStats stats;
5649   if (!rp->processing_is_mt()) {
5650     // Serial reference processing...
5651     stats = rp->process_discovered_references(&is_alive,
5652                                               &keep_alive,
5653                                               &drain_queue,
5654                                               NULL,
5655                                               _gc_timer_stw,
5656                                               _gc_tracer_stw->gc_id());
5657   } else {
5658     // Parallel reference processing
5659     assert(rp->num_q() == no_of_gc_workers, "sanity");
5660     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5661 
5662     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5663     stats = rp->process_discovered_references(&is_alive,
5664                                               &keep_alive,
5665                                               &drain_queue,
5666                                               &par_task_executor,
5667                                               _gc_timer_stw,
5668                                               _gc_tracer_stw->gc_id());
5669   }
5670 
5671   _gc_tracer_stw->report_gc_reference_stats(stats);
5672 
5673   // We have completed copying any necessary live referent objects.
5674   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5675 
5676   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5677   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5678 }
5679 
5680 // Weak Reference processing during an evacuation pause (part 2).
5681 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5682   double ref_enq_start = os::elapsedTime();
5683 
5684   ReferenceProcessor* rp = _ref_processor_stw;
5685   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5686 
5687   // Now enqueue any remaining on the discovered lists on to
5688   // the pending list.
5689   if (!rp->processing_is_mt()) {
5690     // Serial reference processing...
5691     rp->enqueue_discovered_references();
5692   } else {
5693     // Parallel reference enqueueing
5694 
5695     assert(no_of_gc_workers == workers()->active_workers(),
5696            "Need to reset active workers");
5697     assert(rp->num_q() == no_of_gc_workers, "sanity");
5698     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5699 
5700     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5701     rp->enqueue_discovered_references(&par_task_executor);
5702   }
5703 
5704   rp->verify_no_references_recorded();
5705   assert(!rp->discovery_enabled(), "should have been disabled");
5706 
5707   // FIXME
5708   // CM's reference processing also cleans up the string and symbol tables.
5709   // Should we do that here also? We could, but it is a serial operation
5710   // and could significantly increase the pause time.
5711 
5712   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5713   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5714 }
5715 
5716 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5717   _expand_heap_after_alloc_failure = true;
5718   _evacuation_failed = false;
5719 
5720   // Should G1EvacuationFailureALot be in effect for this GC?
5721   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5722 
5723   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5724 
5725   // Disable the hot card cache.
5726   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5727   hot_card_cache->reset_hot_cache_claimed_index();
5728   hot_card_cache->set_use_cache(false);
5729 
5730   uint n_workers;
5731   if (G1CollectedHeap::use_parallel_gc_threads()) {
5732     n_workers =
5733       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5734                                      workers()->active_workers(),
5735                                      Threads::number_of_non_daemon_threads());
5736     assert(UseDynamicNumberOfGCThreads ||
5737            n_workers == workers()->total_workers(),
5738            "If not dynamic should be using all the  workers");
5739     workers()->set_active_workers(n_workers);
5740     set_par_threads(n_workers);
5741   } else {
5742     assert(n_par_threads() == 0,
5743            "Should be the original non-parallel value");
5744     n_workers = 1;
5745   }
5746 
5747   G1ParTask g1_par_task(this, _task_queues);
5748 
5749   init_for_evac_failure(NULL);
5750 
5751   rem_set()->prepare_for_younger_refs_iterate(true);
5752 
5753   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5754   double start_par_time_sec = os::elapsedTime();
5755   double end_par_time_sec;
5756 
5757   {
5758     StrongRootsScope srs(this);
5759     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5760     if (g1_policy()->during_initial_mark_pause()) {
5761       ClassLoaderDataGraph::clear_claimed_marks();
5762     }
5763 
5764     if (G1CollectedHeap::use_parallel_gc_threads()) {
5765       // The individual threads will set their evac-failure closures.
5766       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5767       // These tasks use ShareHeap::_process_strong_tasks
5768       assert(UseDynamicNumberOfGCThreads ||
5769              workers()->active_workers() == workers()->total_workers(),
5770              "If not dynamic should be using all the  workers");
5771       workers()->run_task(&g1_par_task);
5772     } else {
5773       g1_par_task.set_for_termination(n_workers);
5774       g1_par_task.work(0);
5775     }
5776     end_par_time_sec = os::elapsedTime();
5777 
5778     // Closing the inner scope will execute the destructor
5779     // for the StrongRootsScope object. We record the current
5780     // elapsed time before closing the scope so that time
5781     // taken for the SRS destructor is NOT included in the
5782     // reported parallel time.
5783   }
5784 
5785   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5786   g1_policy()->phase_times()->record_par_time(par_time_ms);
5787 
5788   double code_root_fixup_time_ms =
5789         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5790   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5791 
5792   set_par_threads(0);
5793 
5794   // Process any discovered reference objects - we have
5795   // to do this _before_ we retire the GC alloc regions
5796   // as we may have to copy some 'reachable' referent
5797   // objects (and their reachable sub-graphs) that were
5798   // not copied during the pause.
5799   process_discovered_references(n_workers);
5800 
5801   // Weak root processing.
5802   {
5803     G1STWIsAliveClosure is_alive(this);
5804     G1KeepAliveClosure keep_alive(this);
5805     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5806     if (G1StringDedup::is_enabled()) {
5807       G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
5808     }
5809   }
5810 
5811   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5812   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5813 
5814   // Reset and re-enable the hot card cache.
5815   // Note the counts for the cards in the regions in the
5816   // collection set are reset when the collection set is freed.
5817   hot_card_cache->reset_hot_cache();
5818   hot_card_cache->set_use_cache(true);
5819 
5820   purge_code_root_memory();
5821 
5822   finalize_for_evac_failure();
5823 
5824   if (evacuation_failed()) {
5825     remove_self_forwarding_pointers();
5826 
5827     // Reset the G1EvacuationFailureALot counters and flags
5828     // Note: the values are reset only when an actual
5829     // evacuation failure occurs.
5830     NOT_PRODUCT(reset_evacuation_should_fail();)
5831   }
5832 
5833   // Enqueue any remaining references remaining on the STW
5834   // reference processor's discovered lists. We need to do
5835   // this after the card table is cleaned (and verified) as
5836   // the act of enqueueing entries on to the pending list
5837   // will log these updates (and dirty their associated
5838   // cards). We need these updates logged to update any
5839   // RSets.
5840   enqueue_discovered_references(n_workers);
5841 
5842   redirty_logged_cards();
5843   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5844 }
5845 
5846 void G1CollectedHeap::free_region(HeapRegion* hr,
5847                                   FreeRegionList* free_list,
5848                                   bool par,
5849                                   bool locked) {
5850   assert(!hr->is_free(), "the region should not be free");
5851   assert(!hr->is_empty(), "the region should not be empty");
5852   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5853   assert(free_list != NULL, "pre-condition");
5854 
5855   if (G1VerifyBitmaps) {
5856     MemRegion mr(hr->bottom(), hr->end());
5857     concurrent_mark()->clearRangePrevBitmap(mr);
5858   }
5859 
5860   // Clear the card counts for this region.
5861   // Note: we only need to do this if the region is not young
5862   // (since we don't refine cards in young regions).
5863   if (!hr->is_young()) {
5864     _cg1r->hot_card_cache()->reset_card_counts(hr);
5865   }
5866   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5867   free_list->add_ordered(hr);
5868 }
5869 
5870 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5871                                      FreeRegionList* free_list,
5872                                      bool par) {
5873   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5874   assert(free_list != NULL, "pre-condition");
5875 
5876   size_t hr_capacity = hr->capacity();
5877   // We need to read this before we make the region non-humongous,
5878   // otherwise the information will be gone.
5879   uint last_index = hr->last_hc_index();
5880   hr->clear_humongous();
5881   free_region(hr, free_list, par);
5882 
5883   uint i = hr->hrm_index() + 1;
5884   while (i < last_index) {
5885     HeapRegion* curr_hr = region_at(i);
5886     assert(curr_hr->is_continues_humongous(), "invariant");
5887     curr_hr->clear_humongous();
5888     free_region(curr_hr, free_list, par);
5889     i += 1;
5890   }
5891 }
5892 
5893 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5894                                        const HeapRegionSetCount& humongous_regions_removed) {
5895   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5896     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5897     _old_set.bulk_remove(old_regions_removed);
5898     _humongous_set.bulk_remove(humongous_regions_removed);
5899   }
5900 
5901 }
5902 
5903 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5904   assert(list != NULL, "list can't be null");
5905   if (!list->is_empty()) {
5906     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5907     _hrm.insert_list_into_free_list(list);
5908   }
5909 }
5910 
5911 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5912   _allocator->decrease_used(bytes);
5913 }
5914 
5915 class G1ParCleanupCTTask : public AbstractGangTask {
5916   G1SATBCardTableModRefBS* _ct_bs;
5917   G1CollectedHeap* _g1h;
5918   HeapRegion* volatile _su_head;
5919 public:
5920   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5921                      G1CollectedHeap* g1h) :
5922     AbstractGangTask("G1 Par Cleanup CT Task"),
5923     _ct_bs(ct_bs), _g1h(g1h) { }
5924 
5925   void work(uint worker_id) {
5926     HeapRegion* r;
5927     while (r = _g1h->pop_dirty_cards_region()) {
5928       clear_cards(r);
5929     }
5930   }
5931 
5932   void clear_cards(HeapRegion* r) {
5933     // Cards of the survivors should have already been dirtied.
5934     if (!r->is_survivor()) {
5935       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5936     }
5937   }
5938 };
5939 
5940 #ifndef PRODUCT
5941 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5942   G1CollectedHeap* _g1h;
5943   G1SATBCardTableModRefBS* _ct_bs;
5944 public:
5945   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5946     : _g1h(g1h), _ct_bs(ct_bs) { }
5947   virtual bool doHeapRegion(HeapRegion* r) {
5948     if (r->is_survivor()) {
5949       _g1h->verify_dirty_region(r);
5950     } else {
5951       _g1h->verify_not_dirty_region(r);
5952     }
5953     return false;
5954   }
5955 };
5956 
5957 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5958   // All of the region should be clean.
5959   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5960   MemRegion mr(hr->bottom(), hr->end());
5961   ct_bs->verify_not_dirty_region(mr);
5962 }
5963 
5964 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5965   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5966   // dirty allocated blocks as they allocate them. The thread that
5967   // retires each region and replaces it with a new one will do a
5968   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5969   // not dirty that area (one less thing to have to do while holding
5970   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5971   // is dirty.
5972   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5973   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5974   if (hr->is_young()) {
5975     ct_bs->verify_g1_young_region(mr);
5976   } else {
5977     ct_bs->verify_dirty_region(mr);
5978   }
5979 }
5980 
5981 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5982   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5983   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5984     verify_dirty_region(hr);
5985   }
5986 }
5987 
5988 void G1CollectedHeap::verify_dirty_young_regions() {
5989   verify_dirty_young_list(_young_list->first_region());
5990 }
5991 
5992 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5993                                                HeapWord* tams, HeapWord* end) {
5994   guarantee(tams <= end,
5995             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
5996   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5997   if (result < end) {
5998     gclog_or_tty->cr();
5999     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
6000                            bitmap_name, result);
6001     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
6002                            bitmap_name, tams, end);
6003     return false;
6004   }
6005   return true;
6006 }
6007 
6008 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
6009   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
6010   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
6011 
6012   HeapWord* bottom = hr->bottom();
6013   HeapWord* ptams  = hr->prev_top_at_mark_start();
6014   HeapWord* ntams  = hr->next_top_at_mark_start();
6015   HeapWord* end    = hr->end();
6016 
6017   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
6018 
6019   bool res_n = true;
6020   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
6021   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
6022   // if we happen to be in that state.
6023   if (mark_in_progress() || !_cmThread->in_progress()) {
6024     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
6025   }
6026   if (!res_p || !res_n) {
6027     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
6028                            HR_FORMAT_PARAMS(hr));
6029     gclog_or_tty->print_cr("#### Caller: %s", caller);
6030     return false;
6031   }
6032   return true;
6033 }
6034 
6035 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
6036   if (!G1VerifyBitmaps) return;
6037 
6038   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
6039 }
6040 
6041 class G1VerifyBitmapClosure : public HeapRegionClosure {
6042 private:
6043   const char* _caller;
6044   G1CollectedHeap* _g1h;
6045   bool _failures;
6046 
6047 public:
6048   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
6049     _caller(caller), _g1h(g1h), _failures(false) { }
6050 
6051   bool failures() { return _failures; }
6052 
6053   virtual bool doHeapRegion(HeapRegion* hr) {
6054     if (hr->is_continues_humongous()) return false;
6055 
6056     bool result = _g1h->verify_bitmaps(_caller, hr);
6057     if (!result) {
6058       _failures = true;
6059     }
6060     return false;
6061   }
6062 };
6063 
6064 void G1CollectedHeap::check_bitmaps(const char* caller) {
6065   if (!G1VerifyBitmaps) return;
6066 
6067   G1VerifyBitmapClosure cl(caller, this);
6068   heap_region_iterate(&cl);
6069   guarantee(!cl.failures(), "bitmap verification");
6070 }
6071 #endif // PRODUCT
6072 
6073 void G1CollectedHeap::cleanUpCardTable() {
6074   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6075   double start = os::elapsedTime();
6076 
6077   {
6078     // Iterate over the dirty cards region list.
6079     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6080 
6081     if (G1CollectedHeap::use_parallel_gc_threads()) {
6082       set_par_threads();
6083       workers()->run_task(&cleanup_task);
6084       set_par_threads(0);
6085     } else {
6086       while (_dirty_cards_region_list) {
6087         HeapRegion* r = _dirty_cards_region_list;
6088         cleanup_task.clear_cards(r);
6089         _dirty_cards_region_list = r->get_next_dirty_cards_region();
6090         if (_dirty_cards_region_list == r) {
6091           // The last region.
6092           _dirty_cards_region_list = NULL;
6093         }
6094         r->set_next_dirty_cards_region(NULL);
6095       }
6096     }
6097 #ifndef PRODUCT
6098     if (G1VerifyCTCleanup || VerifyAfterGC) {
6099       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6100       heap_region_iterate(&cleanup_verifier);
6101     }
6102 #endif
6103   }
6104 
6105   double elapsed = os::elapsedTime() - start;
6106   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6107 }
6108 
6109 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6110   size_t pre_used = 0;
6111   FreeRegionList local_free_list("Local List for CSet Freeing");
6112 
6113   double young_time_ms     = 0.0;
6114   double non_young_time_ms = 0.0;
6115 
6116   // Since the collection set is a superset of the the young list,
6117   // all we need to do to clear the young list is clear its
6118   // head and length, and unlink any young regions in the code below
6119   _young_list->clear();
6120 
6121   G1CollectorPolicy* policy = g1_policy();
6122 
6123   double start_sec = os::elapsedTime();
6124   bool non_young = true;
6125 
6126   HeapRegion* cur = cs_head;
6127   int age_bound = -1;
6128   size_t rs_lengths = 0;
6129 
6130   while (cur != NULL) {
6131     assert(!is_on_master_free_list(cur), "sanity");
6132     if (non_young) {
6133       if (cur->is_young()) {
6134         double end_sec = os::elapsedTime();
6135         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6136         non_young_time_ms += elapsed_ms;
6137 
6138         start_sec = os::elapsedTime();
6139         non_young = false;
6140       }
6141     } else {
6142       if (!cur->is_young()) {
6143         double end_sec = os::elapsedTime();
6144         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6145         young_time_ms += elapsed_ms;
6146 
6147         start_sec = os::elapsedTime();
6148         non_young = true;
6149       }
6150     }
6151 
6152     rs_lengths += cur->rem_set()->occupied_locked();
6153 
6154     HeapRegion* next = cur->next_in_collection_set();
6155     assert(cur->in_collection_set(), "bad CS");
6156     cur->set_next_in_collection_set(NULL);
6157     cur->set_in_collection_set(false);
6158 
6159     if (cur->is_young()) {
6160       int index = cur->young_index_in_cset();
6161       assert(index != -1, "invariant");
6162       assert((uint) index < policy->young_cset_region_length(), "invariant");
6163       size_t words_survived = _surviving_young_words[index];
6164       cur->record_surv_words_in_group(words_survived);
6165 
6166       // At this point the we have 'popped' cur from the collection set
6167       // (linked via next_in_collection_set()) but it is still in the
6168       // young list (linked via next_young_region()). Clear the
6169       // _next_young_region field.
6170       cur->set_next_young_region(NULL);
6171     } else {
6172       int index = cur->young_index_in_cset();
6173       assert(index == -1, "invariant");
6174     }
6175 
6176     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6177             (!cur->is_young() && cur->young_index_in_cset() == -1),
6178             "invariant" );
6179 
6180     if (!cur->evacuation_failed()) {
6181       MemRegion used_mr = cur->used_region();
6182 
6183       // And the region is empty.
6184       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6185       pre_used += cur->used();
6186       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6187     } else {
6188       cur->uninstall_surv_rate_group();
6189       if (cur->is_young()) {
6190         cur->set_young_index_in_cset(-1);
6191       }
6192       cur->set_evacuation_failed(false);
6193       // The region is now considered to be old.
6194       cur->set_old();
6195       _old_set.add(cur);
6196       evacuation_info.increment_collectionset_used_after(cur->used());
6197     }
6198     cur = next;
6199   }
6200 
6201   evacuation_info.set_regions_freed(local_free_list.length());
6202   policy->record_max_rs_lengths(rs_lengths);
6203   policy->cset_regions_freed();
6204 
6205   double end_sec = os::elapsedTime();
6206   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6207 
6208   if (non_young) {
6209     non_young_time_ms += elapsed_ms;
6210   } else {
6211     young_time_ms += elapsed_ms;
6212   }
6213 
6214   prepend_to_freelist(&local_free_list);
6215   decrement_summary_bytes(pre_used);
6216   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6217   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6218 }
6219 
6220 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
6221  private:
6222   FreeRegionList* _free_region_list;
6223   HeapRegionSet* _proxy_set;
6224   HeapRegionSetCount _humongous_regions_removed;
6225   size_t _freed_bytes;
6226  public:
6227 
6228   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6229     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6230   }
6231 
6232   virtual bool doHeapRegion(HeapRegion* r) {
6233     if (!r->is_starts_humongous()) {
6234       return false;
6235     }
6236 
6237     G1CollectedHeap* g1h = G1CollectedHeap::heap();
6238 
6239     oop obj = (oop)r->bottom();
6240     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6241 
6242     // The following checks whether the humongous object is live are sufficient.
6243     // The main additional check (in addition to having a reference from the roots
6244     // or the young gen) is whether the humongous object has a remembered set entry.
6245     //
6246     // A humongous object cannot be live if there is no remembered set for it
6247     // because:
6248     // - there can be no references from within humongous starts regions referencing
6249     // the object because we never allocate other objects into them.
6250     // (I.e. there are no intra-region references that may be missed by the
6251     // remembered set)
6252     // - as soon there is a remembered set entry to the humongous starts region
6253     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6254     // until the end of a concurrent mark.
6255     //
6256     // It is not required to check whether the object has been found dead by marking
6257     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6258     // all objects allocated during that time are considered live.
6259     // SATB marking is even more conservative than the remembered set.
6260     // So if at this point in the collection there is no remembered set entry,
6261     // nobody has a reference to it.
6262     // At the start of collection we flush all refinement logs, and remembered sets
6263     // are completely up-to-date wrt to references to the humongous object.
6264     //
6265     // Other implementation considerations:
6266     // - never consider object arrays: while they are a valid target, they have not
6267     // been observed to be used as temporary objects.
6268     // - they would also pose considerable effort for cleaning up the the remembered
6269     // sets.
6270     // While this cleanup is not strictly necessary to be done (or done instantly),
6271     // given that their occurrence is very low, this saves us this additional
6272     // complexity.
6273     uint region_idx = r->hrm_index();
6274     if (g1h->humongous_is_live(region_idx) ||
6275         g1h->humongous_region_is_always_live(region_idx)) {
6276 
6277       if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
6278         gclog_or_tty->print_cr("Live humongous %d region %d with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6279                                r->is_humongous(),
6280                                region_idx,
6281                                r->rem_set()->occupied(),
6282                                r->rem_set()->strong_code_roots_list_length(),
6283                                next_bitmap->isMarked(r->bottom()),
6284                                g1h->humongous_is_live(region_idx),
6285                                obj->is_objArray()
6286                               );
6287       }
6288 
6289       return false;
6290     }
6291 
6292     guarantee(!obj->is_objArray(),
6293               err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
6294                       r->bottom()));
6295 
6296     if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
6297       gclog_or_tty->print_cr("Reclaim humongous region %d start "PTR_FORMAT" region %d length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6298                              r->is_humongous(),
6299                              r->bottom(),
6300                              region_idx,
6301                              r->region_num(),
6302                              r->rem_set()->occupied(),
6303                              r->rem_set()->strong_code_roots_list_length(),
6304                              next_bitmap->isMarked(r->bottom()),
6305                              g1h->humongous_is_live(region_idx),
6306                              obj->is_objArray()
6307                             );
6308     }
6309     // Need to clear mark bit of the humongous object if already set.
6310     if (next_bitmap->isMarked(r->bottom())) {
6311       next_bitmap->clear(r->bottom());
6312     }
6313     _freed_bytes += r->used();
6314     r->set_containing_set(NULL);
6315     _humongous_regions_removed.increment(1u, r->capacity());
6316     g1h->free_humongous_region(r, _free_region_list, false);
6317 
6318     return false;
6319   }
6320 
6321   HeapRegionSetCount& humongous_free_count() {
6322     return _humongous_regions_removed;
6323   }
6324 
6325   size_t bytes_freed() const {
6326     return _freed_bytes;
6327   }
6328 
6329   size_t humongous_reclaimed() const {
6330     return _humongous_regions_removed.length();
6331   }
6332 };
6333 
6334 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6335   assert_at_safepoint(true);
6336 
6337   if (!G1ReclaimDeadHumongousObjectsAtYoungGC || !_has_humongous_reclaim_candidates) {
6338     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6339     return;
6340   }
6341 
6342   double start_time = os::elapsedTime();
6343 
6344   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6345 
6346   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6347   heap_region_iterate(&cl);
6348 
6349   HeapRegionSetCount empty_set;
6350   remove_from_old_sets(empty_set, cl.humongous_free_count());
6351 
6352   G1HRPrinter* hr_printer = _g1h->hr_printer();
6353   if (hr_printer->is_active()) {
6354     FreeRegionListIterator iter(&local_cleanup_list);
6355     while (iter.more_available()) {
6356       HeapRegion* hr = iter.get_next();
6357       hr_printer->cleanup(hr);
6358     }
6359   }
6360 
6361   prepend_to_freelist(&local_cleanup_list);
6362   decrement_summary_bytes(cl.bytes_freed());
6363 
6364   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6365                                                                     cl.humongous_reclaimed());
6366 }
6367 
6368 // This routine is similar to the above but does not record
6369 // any policy statistics or update free lists; we are abandoning
6370 // the current incremental collection set in preparation of a
6371 // full collection. After the full GC we will start to build up
6372 // the incremental collection set again.
6373 // This is only called when we're doing a full collection
6374 // and is immediately followed by the tearing down of the young list.
6375 
6376 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6377   HeapRegion* cur = cs_head;
6378 
6379   while (cur != NULL) {
6380     HeapRegion* next = cur->next_in_collection_set();
6381     assert(cur->in_collection_set(), "bad CS");
6382     cur->set_next_in_collection_set(NULL);
6383     cur->set_in_collection_set(false);
6384     cur->set_young_index_in_cset(-1);
6385     cur = next;
6386   }
6387 }
6388 
6389 void G1CollectedHeap::set_free_regions_coming() {
6390   if (G1ConcRegionFreeingVerbose) {
6391     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6392                            "setting free regions coming");
6393   }
6394 
6395   assert(!free_regions_coming(), "pre-condition");
6396   _free_regions_coming = true;
6397 }
6398 
6399 void G1CollectedHeap::reset_free_regions_coming() {
6400   assert(free_regions_coming(), "pre-condition");
6401 
6402   {
6403     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6404     _free_regions_coming = false;
6405     SecondaryFreeList_lock->notify_all();
6406   }
6407 
6408   if (G1ConcRegionFreeingVerbose) {
6409     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6410                            "reset free regions coming");
6411   }
6412 }
6413 
6414 void G1CollectedHeap::wait_while_free_regions_coming() {
6415   // Most of the time we won't have to wait, so let's do a quick test
6416   // first before we take the lock.
6417   if (!free_regions_coming()) {
6418     return;
6419   }
6420 
6421   if (G1ConcRegionFreeingVerbose) {
6422     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6423                            "waiting for free regions");
6424   }
6425 
6426   {
6427     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6428     while (free_regions_coming()) {
6429       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6430     }
6431   }
6432 
6433   if (G1ConcRegionFreeingVerbose) {
6434     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6435                            "done waiting for free regions");
6436   }
6437 }
6438 
6439 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6440   assert(heap_lock_held_for_gc(),
6441               "the heap lock should already be held by or for this thread");
6442   _young_list->push_region(hr);
6443 }
6444 
6445 class NoYoungRegionsClosure: public HeapRegionClosure {
6446 private:
6447   bool _success;
6448 public:
6449   NoYoungRegionsClosure() : _success(true) { }
6450   bool doHeapRegion(HeapRegion* r) {
6451     if (r->is_young()) {
6452       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6453                              r->bottom(), r->end());
6454       _success = false;
6455     }
6456     return false;
6457   }
6458   bool success() { return _success; }
6459 };
6460 
6461 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6462   bool ret = _young_list->check_list_empty(check_sample);
6463 
6464   if (check_heap) {
6465     NoYoungRegionsClosure closure;
6466     heap_region_iterate(&closure);
6467     ret = ret && closure.success();
6468   }
6469 
6470   return ret;
6471 }
6472 
6473 class TearDownRegionSetsClosure : public HeapRegionClosure {
6474 private:
6475   HeapRegionSet *_old_set;
6476 
6477 public:
6478   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6479 
6480   bool doHeapRegion(HeapRegion* r) {
6481     if (r->is_old()) {
6482       _old_set->remove(r);
6483     } else {
6484       // We ignore free regions, we'll empty the free list afterwards.
6485       // We ignore young regions, we'll empty the young list afterwards.
6486       // We ignore humongous regions, we're not tearing down the
6487       // humongous regions set.
6488       assert(r->is_free() || r->is_young() || r->is_humongous(),
6489              "it cannot be another type");
6490     }
6491     return false;
6492   }
6493 
6494   ~TearDownRegionSetsClosure() {
6495     assert(_old_set->is_empty(), "post-condition");
6496   }
6497 };
6498 
6499 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6500   assert_at_safepoint(true /* should_be_vm_thread */);
6501 
6502   if (!free_list_only) {
6503     TearDownRegionSetsClosure cl(&_old_set);
6504     heap_region_iterate(&cl);
6505 
6506     // Note that emptying the _young_list is postponed and instead done as
6507     // the first step when rebuilding the regions sets again. The reason for
6508     // this is that during a full GC string deduplication needs to know if
6509     // a collected region was young or old when the full GC was initiated.
6510   }
6511   _hrm.remove_all_free_regions();
6512 }
6513 
6514 class RebuildRegionSetsClosure : public HeapRegionClosure {
6515 private:
6516   bool            _free_list_only;
6517   HeapRegionSet*   _old_set;
6518   HeapRegionManager*   _hrm;
6519   size_t          _total_used;
6520 
6521 public:
6522   RebuildRegionSetsClosure(bool free_list_only,
6523                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6524     _free_list_only(free_list_only),
6525     _old_set(old_set), _hrm(hrm), _total_used(0) {
6526     assert(_hrm->num_free_regions() == 0, "pre-condition");
6527     if (!free_list_only) {
6528       assert(_old_set->is_empty(), "pre-condition");
6529     }
6530   }
6531 
6532   bool doHeapRegion(HeapRegion* r) {
6533     if (r->is_continues_humongous()) {
6534       return false;
6535     }
6536 
6537     if (r->is_empty()) {
6538       // Add free regions to the free list
6539       r->set_free();
6540       r->set_allocation_context(AllocationContext::system());
6541       _hrm->insert_into_free_list(r);
6542     } else if (!_free_list_only) {
6543       assert(!r->is_young(), "we should not come across young regions");
6544 
6545       if (r->is_humongous()) {
6546         // We ignore humongous regions, we left the humongous set unchanged
6547       } else {
6548         // Objects that were compacted would have ended up on regions
6549         // that were previously old or free.
6550         assert(r->is_free() || r->is_old(), "invariant");
6551         // We now consider them old, so register as such.
6552         r->set_old();
6553         _old_set->add(r);
6554       }
6555       _total_used += r->used();
6556     }
6557 
6558     return false;
6559   }
6560 
6561   size_t total_used() {
6562     return _total_used;
6563   }
6564 };
6565 
6566 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6567   assert_at_safepoint(true /* should_be_vm_thread */);
6568 
6569   if (!free_list_only) {
6570     _young_list->empty_list();
6571   }
6572 
6573   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6574   heap_region_iterate(&cl);
6575 
6576   if (!free_list_only) {
6577     _allocator->set_used(cl.total_used());
6578   }
6579   assert(_allocator->used_unlocked() == recalculate_used(),
6580          err_msg("inconsistent _allocator->used_unlocked(), "
6581                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6582                  _allocator->used_unlocked(), recalculate_used()));
6583 }
6584 
6585 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6586   _refine_cte_cl->set_concurrent(concurrent);
6587 }
6588 
6589 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6590   HeapRegion* hr = heap_region_containing(p);
6591   return hr->is_in(p);
6592 }
6593 
6594 // Methods for the mutator alloc region
6595 
6596 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6597                                                       bool force) {
6598   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6599   assert(!force || g1_policy()->can_expand_young_list(),
6600          "if force is true we should be able to expand the young list");
6601   bool young_list_full = g1_policy()->is_young_list_full();
6602   if (force || !young_list_full) {
6603     HeapRegion* new_alloc_region = new_region(word_size,
6604                                               false /* is_old */,
6605                                               false /* do_expand */);
6606     if (new_alloc_region != NULL) {
6607       set_region_short_lived_locked(new_alloc_region);
6608       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6609       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6610       return new_alloc_region;
6611     }
6612   }
6613   return NULL;
6614 }
6615 
6616 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6617                                                   size_t allocated_bytes) {
6618   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6619   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6620 
6621   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6622   _allocator->increase_used(allocated_bytes);
6623   _hr_printer.retire(alloc_region);
6624   // We update the eden sizes here, when the region is retired,
6625   // instead of when it's allocated, since this is the point that its
6626   // used space has been recored in _summary_bytes_used.
6627   g1mm()->update_eden_size();
6628 }
6629 
6630 void G1CollectedHeap::set_par_threads() {
6631   // Don't change the number of workers.  Use the value previously set
6632   // in the workgroup.
6633   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6634   uint n_workers = workers()->active_workers();
6635   assert(UseDynamicNumberOfGCThreads ||
6636            n_workers == workers()->total_workers(),
6637       "Otherwise should be using the total number of workers");
6638   if (n_workers == 0) {
6639     assert(false, "Should have been set in prior evacuation pause.");
6640     n_workers = ParallelGCThreads;
6641     workers()->set_active_workers(n_workers);
6642   }
6643   set_par_threads(n_workers);
6644 }
6645 
6646 // Methods for the GC alloc regions
6647 
6648 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6649                                                  uint count,
6650                                                  GCAllocPurpose ap) {
6651   assert(FreeList_lock->owned_by_self(), "pre-condition");
6652 
6653   if (count < g1_policy()->max_regions(ap)) {
6654     bool survivor = (ap == GCAllocForSurvived);
6655     HeapRegion* new_alloc_region = new_region(word_size,
6656                                               !survivor,
6657                                               true /* do_expand */);
6658     if (new_alloc_region != NULL) {
6659       // We really only need to do this for old regions given that we
6660       // should never scan survivors. But it doesn't hurt to do it
6661       // for survivors too.
6662       new_alloc_region->record_top_and_timestamp();
6663       if (survivor) {
6664         new_alloc_region->set_survivor();
6665         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6666         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6667       } else {
6668         new_alloc_region->set_old();
6669         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6670         check_bitmaps("Old Region Allocation", new_alloc_region);
6671       }
6672       bool during_im = g1_policy()->during_initial_mark_pause();
6673       new_alloc_region->note_start_of_copying(during_im);
6674       return new_alloc_region;
6675     } else {
6676       g1_policy()->note_alloc_region_limit_reached(ap);
6677     }
6678   }
6679   return NULL;
6680 }
6681 
6682 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6683                                              size_t allocated_bytes,
6684                                              GCAllocPurpose ap) {
6685   bool during_im = g1_policy()->during_initial_mark_pause();
6686   alloc_region->note_end_of_copying(during_im);
6687   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6688   if (ap == GCAllocForSurvived) {
6689     young_list()->add_survivor_region(alloc_region);
6690   } else {
6691     _old_set.add(alloc_region);
6692   }
6693   _hr_printer.retire(alloc_region);
6694 }
6695 
6696 // Heap region set verification
6697 
6698 class VerifyRegionListsClosure : public HeapRegionClosure {
6699 private:
6700   HeapRegionSet*   _old_set;
6701   HeapRegionSet*   _humongous_set;
6702   HeapRegionManager*   _hrm;
6703 
6704 public:
6705   HeapRegionSetCount _old_count;
6706   HeapRegionSetCount _humongous_count;
6707   HeapRegionSetCount _free_count;
6708 
6709   VerifyRegionListsClosure(HeapRegionSet* old_set,
6710                            HeapRegionSet* humongous_set,
6711                            HeapRegionManager* hrm) :
6712     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6713     _old_count(), _humongous_count(), _free_count(){ }
6714 
6715   bool doHeapRegion(HeapRegion* hr) {
6716     if (hr->is_continues_humongous()) {
6717       return false;
6718     }
6719 
6720     if (hr->is_young()) {
6721       // TODO
6722     } else if (hr->is_starts_humongous()) {
6723       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6724       _humongous_count.increment(1u, hr->capacity());
6725     } else if (hr->is_empty()) {
6726       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6727       _free_count.increment(1u, hr->capacity());
6728     } else if (hr->is_old()) {
6729       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6730       _old_count.increment(1u, hr->capacity());
6731     } else {
6732       ShouldNotReachHere();
6733     }
6734     return false;
6735   }
6736 
6737   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6738     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6739     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6740         old_set->total_capacity_bytes(), _old_count.capacity()));
6741 
6742     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6743     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6744         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6745 
6746     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6747     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6748         free_list->total_capacity_bytes(), _free_count.capacity()));
6749   }
6750 };
6751 
6752 void G1CollectedHeap::verify_region_sets() {
6753   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6754 
6755   // First, check the explicit lists.
6756   _hrm.verify();
6757   {
6758     // Given that a concurrent operation might be adding regions to
6759     // the secondary free list we have to take the lock before
6760     // verifying it.
6761     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6762     _secondary_free_list.verify_list();
6763   }
6764 
6765   // If a concurrent region freeing operation is in progress it will
6766   // be difficult to correctly attributed any free regions we come
6767   // across to the correct free list given that they might belong to
6768   // one of several (free_list, secondary_free_list, any local lists,
6769   // etc.). So, if that's the case we will skip the rest of the
6770   // verification operation. Alternatively, waiting for the concurrent
6771   // operation to complete will have a non-trivial effect on the GC's
6772   // operation (no concurrent operation will last longer than the
6773   // interval between two calls to verification) and it might hide
6774   // any issues that we would like to catch during testing.
6775   if (free_regions_coming()) {
6776     return;
6777   }
6778 
6779   // Make sure we append the secondary_free_list on the free_list so
6780   // that all free regions we will come across can be safely
6781   // attributed to the free_list.
6782   append_secondary_free_list_if_not_empty_with_lock();
6783 
6784   // Finally, make sure that the region accounting in the lists is
6785   // consistent with what we see in the heap.
6786 
6787   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6788   heap_region_iterate(&cl);
6789   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6790 }
6791 
6792 // Optimized nmethod scanning
6793 
6794 class RegisterNMethodOopClosure: public OopClosure {
6795   G1CollectedHeap* _g1h;
6796   nmethod* _nm;
6797 
6798   template <class T> void do_oop_work(T* p) {
6799     T heap_oop = oopDesc::load_heap_oop(p);
6800     if (!oopDesc::is_null(heap_oop)) {
6801       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6802       HeapRegion* hr = _g1h->heap_region_containing(obj);
6803       assert(!hr->is_continues_humongous(),
6804              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6805                      " starting at "HR_FORMAT,
6806                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6807 
6808       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6809       hr->add_strong_code_root_locked(_nm);
6810     }
6811   }
6812 
6813 public:
6814   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6815     _g1h(g1h), _nm(nm) {}
6816 
6817   void do_oop(oop* p)       { do_oop_work(p); }
6818   void do_oop(narrowOop* p) { do_oop_work(p); }
6819 };
6820 
6821 class UnregisterNMethodOopClosure: public OopClosure {
6822   G1CollectedHeap* _g1h;
6823   nmethod* _nm;
6824 
6825   template <class T> void do_oop_work(T* p) {
6826     T heap_oop = oopDesc::load_heap_oop(p);
6827     if (!oopDesc::is_null(heap_oop)) {
6828       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6829       HeapRegion* hr = _g1h->heap_region_containing(obj);
6830       assert(!hr->is_continues_humongous(),
6831              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6832                      " starting at "HR_FORMAT,
6833                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6834 
6835       hr->remove_strong_code_root(_nm);
6836     }
6837   }
6838 
6839 public:
6840   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6841     _g1h(g1h), _nm(nm) {}
6842 
6843   void do_oop(oop* p)       { do_oop_work(p); }
6844   void do_oop(narrowOop* p) { do_oop_work(p); }
6845 };
6846 
6847 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6848   CollectedHeap::register_nmethod(nm);
6849 
6850   guarantee(nm != NULL, "sanity");
6851   RegisterNMethodOopClosure reg_cl(this, nm);
6852   nm->oops_do(&reg_cl);
6853 }
6854 
6855 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6856   CollectedHeap::unregister_nmethod(nm);
6857 
6858   guarantee(nm != NULL, "sanity");
6859   UnregisterNMethodOopClosure reg_cl(this, nm);
6860   nm->oops_do(&reg_cl, true);
6861 }
6862 
6863 void G1CollectedHeap::purge_code_root_memory() {
6864   double purge_start = os::elapsedTime();
6865   G1CodeRootSet::purge();
6866   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6867   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6868 }
6869 
6870 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6871   G1CollectedHeap* _g1h;
6872 
6873 public:
6874   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6875     _g1h(g1h) {}
6876 
6877   void do_code_blob(CodeBlob* cb) {
6878     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6879     if (nm == NULL) {
6880       return;
6881     }
6882 
6883     if (ScavengeRootsInCode) {
6884       _g1h->register_nmethod(nm);
6885     }
6886   }
6887 };
6888 
6889 void G1CollectedHeap::rebuild_strong_code_roots() {
6890   RebuildStrongCodeRootClosure blob_cl(this);
6891   CodeCache::blobs_do(&blob_cl);
6892 }