1 /*
   2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.  Oracle designates this
   7  * particular file as subject to the "Classpath" exception as provided
   8  * by Oracle in the LICENSE file that accompanied this code.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  */
  24 
  25 /*
  26  * This file is available under and governed by the GNU General Public
  27  * License version 2 only, as published by the Free Software Foundation.
  28  * However, the following notice accompanied the original version of this
  29  * file:
  30  *
  31  * Written by Josh Bloch of Google Inc. and released to the public domain,
  32  * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
  33  */
  34 
  35 package java.util;
  36 
  37 import java.io.Serializable;
  38 import java.util.function.Consumer;
  39 import java.util.function.Predicate;
  40 import java.util.function.UnaryOperator;
  41 
  42 /**
  43  * Resizable-array implementation of the {@link Deque} interface.  Array
  44  * deques have no capacity restrictions; they grow as necessary to support
  45  * usage.  They are not thread-safe; in the absence of external
  46  * synchronization, they do not support concurrent access by multiple threads.
  47  * Null elements are prohibited.  This class is likely to be faster than
  48  * {@link Stack} when used as a stack, and faster than {@link LinkedList}
  49  * when used as a queue.
  50  *
  51  * <p>Most {@code ArrayDeque} operations run in amortized constant time.
  52  * Exceptions include
  53  * {@link #remove(Object) remove},
  54  * {@link #removeFirstOccurrence removeFirstOccurrence},
  55  * {@link #removeLastOccurrence removeLastOccurrence},
  56  * {@link #contains contains},
  57  * {@link #iterator iterator.remove()},
  58  * and the bulk operations, all of which run in linear time.
  59  *
  60  * <p>The iterators returned by this class's {@link #iterator() iterator}
  61  * method are <em>fail-fast</em>: If the deque is modified at any time after
  62  * the iterator is created, in any way except through the iterator's own
  63  * {@code remove} method, the iterator will generally throw a {@link
  64  * ConcurrentModificationException}.  Thus, in the face of concurrent
  65  * modification, the iterator fails quickly and cleanly, rather than risking
  66  * arbitrary, non-deterministic behavior at an undetermined time in the
  67  * future.
  68  *
  69  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
  70  * as it is, generally speaking, impossible to make any hard guarantees in the
  71  * presence of unsynchronized concurrent modification.  Fail-fast iterators
  72  * throw {@code ConcurrentModificationException} on a best-effort basis.
  73  * Therefore, it would be wrong to write a program that depended on this
  74  * exception for its correctness: <i>the fail-fast behavior of iterators
  75  * should be used only to detect bugs.</i>
  76  *
  77  * <p>This class and its iterator implement all of the
  78  * <em>optional</em> methods of the {@link Collection} and {@link
  79  * Iterator} interfaces.
  80  *
  81  * <p>This class is a member of the
  82  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
  83  * Java Collections Framework</a>.
  84  *
  85  * @author  Josh Bloch and Doug Lea
  86  * @param <E> the type of elements held in this deque
  87  * @since   1.6
  88  */
  89 public class ArrayDeque<E> extends AbstractCollection<E>
  90                            implements Deque<E>, Cloneable, Serializable
  91 {
  92     /*
  93      * VMs excel at optimizing simple array loops where indices are
  94      * incrementing or decrementing over a valid slice, e.g.
  95      *
  96      * for (int i = start; i < end; i++) ... elements[i]
  97      *
  98      * Because in a circular array, elements are in general stored in
  99      * two disjoint such slices, we help the VM by writing unusual
 100      * nested loops for all traversals over the elements.  Having only
 101      * one hot inner loop body instead of two or three eases human
 102      * maintenance and encourages VM loop inlining into the caller.
 103      */
 104 
 105     /**
 106      * The array in which the elements of the deque are stored.
 107      * All array cells not holding deque elements are always null.
 108      * The array always has at least one null slot (at tail).
 109      */
 110     transient Object[] elements;
 111 
 112     /**
 113      * The index of the element at the head of the deque (which is the
 114      * element that would be removed by remove() or pop()); or an
 115      * arbitrary number 0 <= head < elements.length equal to tail if
 116      * the deque is empty.
 117      */
 118     transient int head;
 119 
 120     /**
 121      * The index at which the next element would be added to the tail
 122      * of the deque (via addLast(E), add(E), or push(E));
 123      * elements[tail] is always null.
 124      */
 125     transient int tail;
 126 
 127     /**
 128      * The maximum size of array to allocate.
 129      * Some VMs reserve some header words in an array.
 130      * Attempts to allocate larger arrays may result in
 131      * OutOfMemoryError: Requested array size exceeds VM limit
 132      */
 133     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
 134 
 135     /**
 136      * Increases the capacity of this deque by at least the given amount.
 137      *
 138      * @param needed the required minimum extra capacity; must be positive
 139      */
 140     private void grow(int needed) {
 141         // overflow-conscious code
 142         final int oldCapacity = elements.length;
 143         int newCapacity;
 144         // Double capacity if small; else grow by 50%
 145         int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
 146         if (jump < needed
 147             || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
 148             newCapacity = newCapacity(needed, jump);
 149         final Object[] es = elements = Arrays.copyOf(elements, newCapacity);
 150         // Exceptionally, here tail == head needs to be disambiguated
 151         if (tail < head || (tail == head && es[head] != null)) {
 152             // wrap around; slide first leg forward to end of array
 153             int newSpace = newCapacity - oldCapacity;
 154             System.arraycopy(es, head,
 155                              es, head + newSpace,
 156                              oldCapacity - head);
 157             for (int i = head, to = (head += newSpace); i < to; i++)
 158                 es[i] = null;
 159         }
 160     }
 161 
 162     /** Capacity calculation for edge conditions, especially overflow. */
 163     private int newCapacity(int needed, int jump) {
 164         final int oldCapacity = elements.length, minCapacity;
 165         if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
 166             if (minCapacity < 0)
 167                 throw new IllegalStateException("Sorry, deque too big");
 168             return Integer.MAX_VALUE;
 169         }
 170         if (needed > jump)
 171             return minCapacity;
 172         return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
 173             ? oldCapacity + jump
 174             : MAX_ARRAY_SIZE;
 175     }
 176 
 177     /**
 178      * Constructs an empty array deque with an initial capacity
 179      * sufficient to hold 16 elements.
 180      */
 181     public ArrayDeque() {
 182         elements = new Object[16];
 183     }
 184 
 185     /**
 186      * Constructs an empty array deque with an initial capacity
 187      * sufficient to hold the specified number of elements.
 188      *
 189      * @param numElements lower bound on initial capacity of the deque
 190      */
 191     public ArrayDeque(int numElements) {
 192         elements =
 193             new Object[(numElements < 1) ? 1 :
 194                        (numElements == Integer.MAX_VALUE) ? Integer.MAX_VALUE :
 195                        numElements + 1];
 196     }
 197 
 198     /**
 199      * Constructs a deque containing the elements of the specified
 200      * collection, in the order they are returned by the collection's
 201      * iterator.  (The first element returned by the collection's
 202      * iterator becomes the first element, or <i>front</i> of the
 203      * deque.)
 204      *
 205      * @param c the collection whose elements are to be placed into the deque
 206      * @throws NullPointerException if the specified collection is null
 207      */
 208     public ArrayDeque(Collection<? extends E> c) {
 209         this(c.size());
 210         addAll(c);
 211     }
 212 
 213     /**
 214      * Increments i, mod modulus.
 215      * Precondition and postcondition: 0 <= i < modulus.
 216      */
 217     static final int inc(int i, int modulus) {
 218         if (++i >= modulus) i = 0;
 219         return i;
 220     }
 221 
 222     /**
 223      * Decrements i, mod modulus.
 224      * Precondition and postcondition: 0 <= i < modulus.
 225      */
 226     static final int dec(int i, int modulus) {
 227         if (--i < 0) i = modulus - 1;
 228         return i;
 229     }
 230 
 231     /**
 232      * Circularly adds the given distance to index i, mod modulus.
 233      * Precondition: 0 <= i < modulus, 0 <= distance <= modulus.
 234      * @return index 0 <= i < modulus
 235      */
 236     static final int add(int i, int distance, int modulus) {
 237         if ((i += distance) - modulus >= 0) i -= modulus;
 238         return i;
 239     }
 240 
 241     /**
 242      * Subtracts j from i, mod modulus.
 243      * Index i must be logically ahead of index j.
 244      * Precondition: 0 <= i < modulus, 0 <= j < modulus.
 245      * @return the "circular distance" from j to i; corner case i == j
 246      * is diambiguated to "empty", returning 0.
 247      */
 248     static final int sub(int i, int j, int modulus) {
 249         if ((i -= j) < 0) i += modulus;
 250         return i;
 251     }
 252 
 253     /**
 254      * Returns element at array index i.
 255      * This is a slight abuse of generics, accepted by javac.
 256      */
 257     @SuppressWarnings("unchecked")
 258     static final <E> E elementAt(Object[] es, int i) {
 259         return (E) es[i];
 260     }
 261 
 262     /**
 263      * A version of elementAt that checks for null elements.
 264      * This check doesn't catch all possible comodifications,
 265      * but does catch ones that corrupt traversal.
 266      */
 267     static final <E> E nonNullElementAt(Object[] es, int i) {
 268         @SuppressWarnings("unchecked") E e = (E) es[i];
 269         if (e == null)
 270             throw new ConcurrentModificationException();
 271         return e;
 272     }
 273 
 274     // The main insertion and extraction methods are addFirst,
 275     // addLast, pollFirst, pollLast. The other methods are defined in
 276     // terms of these.
 277 
 278     /**
 279      * Inserts the specified element at the front of this deque.
 280      *
 281      * @param e the element to add
 282      * @throws NullPointerException if the specified element is null
 283      */
 284     public void addFirst(E e) {
 285         if (e == null)
 286             throw new NullPointerException();
 287         final Object[] es = elements;
 288         es[head = dec(head, es.length)] = e;
 289         if (head == tail)
 290             grow(1);
 291     }
 292 
 293     /**
 294      * Inserts the specified element at the end of this deque.
 295      *
 296      * <p>This method is equivalent to {@link #add}.
 297      *
 298      * @param e the element to add
 299      * @throws NullPointerException if the specified element is null
 300      */
 301     public void addLast(E e) {
 302         if (e == null)
 303             throw new NullPointerException();
 304         final Object[] es = elements;
 305         es[tail] = e;
 306         if (head == (tail = inc(tail, es.length)))
 307             grow(1);
 308     }
 309 
 310     /**
 311      * Adds all of the elements in the specified collection at the end
 312      * of this deque, as if by calling {@link #addLast} on each one,
 313      * in the order that they are returned by the collection's
 314      * iterator.
 315      *
 316      * @param c the elements to be inserted into this deque
 317      * @return {@code true} if this deque changed as a result of the call
 318      * @throws NullPointerException if the specified collection or any
 319      *         of its elements are null
 320      */
 321     public boolean addAll(Collection<? extends E> c) {
 322         final int s, needed;
 323         if ((needed = (s = size()) + c.size() + 1 - elements.length) > 0)
 324             grow(needed);
 325         c.forEach(this::addLast);
 326         return size() > s;
 327     }
 328 
 329     /**
 330      * Inserts the specified element at the front of this deque.
 331      *
 332      * @param e the element to add
 333      * @return {@code true} (as specified by {@link Deque#offerFirst})
 334      * @throws NullPointerException if the specified element is null
 335      */
 336     public boolean offerFirst(E e) {
 337         addFirst(e);
 338         return true;
 339     }
 340 
 341     /**
 342      * Inserts the specified element at the end of this deque.
 343      *
 344      * @param e the element to add
 345      * @return {@code true} (as specified by {@link Deque#offerLast})
 346      * @throws NullPointerException if the specified element is null
 347      */
 348     public boolean offerLast(E e) {
 349         addLast(e);
 350         return true;
 351     }
 352 
 353     /**
 354      * @throws NoSuchElementException {@inheritDoc}
 355      */
 356     public E removeFirst() {
 357         E e = pollFirst();
 358         if (e == null)
 359             throw new NoSuchElementException();
 360         return e;
 361     }
 362 
 363     /**
 364      * @throws NoSuchElementException {@inheritDoc}
 365      */
 366     public E removeLast() {
 367         E e = pollLast();
 368         if (e == null)
 369             throw new NoSuchElementException();
 370         return e;
 371     }
 372 
 373     public E pollFirst() {
 374         final Object[] es;
 375         final int h;
 376         E e = elementAt(es = elements, h = head);
 377         if (e != null) {
 378             es[h] = null;
 379             head = inc(h, es.length);
 380         }
 381         return e;
 382     }
 383 
 384     public E pollLast() {
 385         final Object[] es;
 386         final int t;
 387         E e = elementAt(es = elements, t = dec(tail, es.length));
 388         if (e != null)
 389             es[tail = t] = null;
 390         return e;
 391     }
 392 
 393     /**
 394      * @throws NoSuchElementException {@inheritDoc}
 395      */
 396     public E getFirst() {
 397         E e = elementAt(elements, head);
 398         if (e == null)
 399             throw new NoSuchElementException();
 400         return e;
 401     }
 402 
 403     /**
 404      * @throws NoSuchElementException {@inheritDoc}
 405      */
 406     public E getLast() {
 407         final Object[] es = elements;
 408         E e = elementAt(es, dec(tail, es.length));
 409         if (e == null)
 410             throw new NoSuchElementException();
 411         return e;
 412     }
 413 
 414     public E peekFirst() {
 415         return elementAt(elements, head);
 416     }
 417 
 418     public E peekLast() {
 419         final Object[] es;
 420         return elementAt(es = elements, dec(tail, es.length));
 421     }
 422 
 423     /**
 424      * Removes the first occurrence of the specified element in this
 425      * deque (when traversing the deque from head to tail).
 426      * If the deque does not contain the element, it is unchanged.
 427      * More formally, removes the first element {@code e} such that
 428      * {@code o.equals(e)} (if such an element exists).
 429      * Returns {@code true} if this deque contained the specified element
 430      * (or equivalently, if this deque changed as a result of the call).
 431      *
 432      * @param o element to be removed from this deque, if present
 433      * @return {@code true} if the deque contained the specified element
 434      */
 435     public boolean removeFirstOccurrence(Object o) {
 436         if (o != null) {
 437             final Object[] es = elements;
 438             for (int i = head, end = tail, to = (i <= end) ? end : es.length;
 439                  ; i = 0, to = end) {
 440                 for (; i < to; i++)
 441                     if (o.equals(es[i])) {
 442                         delete(i);
 443                         return true;
 444                     }
 445                 if (to == end) break;
 446             }
 447         }
 448         return false;
 449     }
 450 
 451     /**
 452      * Removes the last occurrence of the specified element in this
 453      * deque (when traversing the deque from head to tail).
 454      * If the deque does not contain the element, it is unchanged.
 455      * More formally, removes the last element {@code e} such that
 456      * {@code o.equals(e)} (if such an element exists).
 457      * Returns {@code true} if this deque contained the specified element
 458      * (or equivalently, if this deque changed as a result of the call).
 459      *
 460      * @param o element to be removed from this deque, if present
 461      * @return {@code true} if the deque contained the specified element
 462      */
 463     public boolean removeLastOccurrence(Object o) {
 464         if (o != null) {
 465             final Object[] es = elements;
 466             for (int i = tail, end = head, to = (i >= end) ? end : 0;
 467                  ; i = es.length, to = end) {
 468                 for (i--; i > to - 1; i--)
 469                     if (o.equals(es[i])) {
 470                         delete(i);
 471                         return true;
 472                     }
 473                 if (to == end) break;
 474             }
 475         }
 476         return false;
 477     }
 478 
 479     // *** Queue methods ***
 480 
 481     /**
 482      * Inserts the specified element at the end of this deque.
 483      *
 484      * <p>This method is equivalent to {@link #addLast}.
 485      *
 486      * @param e the element to add
 487      * @return {@code true} (as specified by {@link Collection#add})
 488      * @throws NullPointerException if the specified element is null
 489      */
 490     public boolean add(E e) {
 491         addLast(e);
 492         return true;
 493     }
 494 
 495     /**
 496      * Inserts the specified element at the end of this deque.
 497      *
 498      * <p>This method is equivalent to {@link #offerLast}.
 499      *
 500      * @param e the element to add
 501      * @return {@code true} (as specified by {@link Queue#offer})
 502      * @throws NullPointerException if the specified element is null
 503      */
 504     public boolean offer(E e) {
 505         return offerLast(e);
 506     }
 507 
 508     /**
 509      * Retrieves and removes the head of the queue represented by this deque.
 510      *
 511      * This method differs from {@link #poll poll} only in that it throws an
 512      * exception if this deque is empty.
 513      *
 514      * <p>This method is equivalent to {@link #removeFirst}.
 515      *
 516      * @return the head of the queue represented by this deque
 517      * @throws NoSuchElementException {@inheritDoc}
 518      */
 519     public E remove() {
 520         return removeFirst();
 521     }
 522 
 523     /**
 524      * Retrieves and removes the head of the queue represented by this deque
 525      * (in other words, the first element of this deque), or returns
 526      * {@code null} if this deque is empty.
 527      *
 528      * <p>This method is equivalent to {@link #pollFirst}.
 529      *
 530      * @return the head of the queue represented by this deque, or
 531      *         {@code null} if this deque is empty
 532      */
 533     public E poll() {
 534         return pollFirst();
 535     }
 536 
 537     /**
 538      * Retrieves, but does not remove, the head of the queue represented by
 539      * this deque.  This method differs from {@link #peek peek} only in
 540      * that it throws an exception if this deque is empty.
 541      *
 542      * <p>This method is equivalent to {@link #getFirst}.
 543      *
 544      * @return the head of the queue represented by this deque
 545      * @throws NoSuchElementException {@inheritDoc}
 546      */
 547     public E element() {
 548         return getFirst();
 549     }
 550 
 551     /**
 552      * Retrieves, but does not remove, the head of the queue represented by
 553      * this deque, or returns {@code null} if this deque is empty.
 554      *
 555      * <p>This method is equivalent to {@link #peekFirst}.
 556      *
 557      * @return the head of the queue represented by this deque, or
 558      *         {@code null} if this deque is empty
 559      */
 560     public E peek() {
 561         return peekFirst();
 562     }
 563 
 564     // *** Stack methods ***
 565 
 566     /**
 567      * Pushes an element onto the stack represented by this deque.  In other
 568      * words, inserts the element at the front of this deque.
 569      *
 570      * <p>This method is equivalent to {@link #addFirst}.
 571      *
 572      * @param e the element to push
 573      * @throws NullPointerException if the specified element is null
 574      */
 575     public void push(E e) {
 576         addFirst(e);
 577     }
 578 
 579     /**
 580      * Pops an element from the stack represented by this deque.  In other
 581      * words, removes and returns the first element of this deque.
 582      *
 583      * <p>This method is equivalent to {@link #removeFirst()}.
 584      *
 585      * @return the element at the front of this deque (which is the top
 586      *         of the stack represented by this deque)
 587      * @throws NoSuchElementException {@inheritDoc}
 588      */
 589     public E pop() {
 590         return removeFirst();
 591     }
 592 
 593     /**
 594      * Removes the element at the specified position in the elements array.
 595      * This can result in forward or backwards motion of array elements.
 596      * We optimize for least element motion.
 597      *
 598      * <p>This method is called delete rather than remove to emphasize
 599      * that its semantics differ from those of {@link List#remove(int)}.
 600      *
 601      * @return true if elements near tail moved backwards
 602      */
 603     boolean delete(int i) {
 604         final Object[] es = elements;
 605         final int capacity = es.length;
 606         final int h, t;
 607         // number of elements before to-be-deleted elt
 608         final int front = sub(i, h = head, capacity);
 609         // number of elements after to-be-deleted elt
 610         final int back = sub(t = tail, i, capacity) - 1;
 611         if (front < back) {
 612             // move front elements forwards
 613             if (h <= i) {
 614                 System.arraycopy(es, h, es, h + 1, front);
 615             } else { // Wrap around
 616                 System.arraycopy(es, 0, es, 1, i);
 617                 es[0] = es[capacity - 1];
 618                 System.arraycopy(es, h, es, h + 1, front - (i + 1));
 619             }
 620             es[h] = null;
 621             head = inc(h, capacity);
 622             return false;
 623         } else {
 624             // move back elements backwards
 625             tail = dec(t, capacity);
 626             if (i <= tail) {
 627                 System.arraycopy(es, i + 1, es, i, back);
 628             } else { // Wrap around
 629                 System.arraycopy(es, i + 1, es, i, capacity - (i + 1));
 630                 es[capacity - 1] = es[0];
 631                 System.arraycopy(es, 1, es, 0, t - 1);
 632             }
 633             es[tail] = null;
 634             return true;
 635         }
 636     }
 637 
 638     // *** Collection Methods ***
 639 
 640     /**
 641      * Returns the number of elements in this deque.
 642      *
 643      * @return the number of elements in this deque
 644      */
 645     public int size() {
 646         return sub(tail, head, elements.length);
 647     }
 648 
 649     /**
 650      * Returns {@code true} if this deque contains no elements.
 651      *
 652      * @return {@code true} if this deque contains no elements
 653      */
 654     public boolean isEmpty() {
 655         return head == tail;
 656     }
 657 
 658     /**
 659      * Returns an iterator over the elements in this deque.  The elements
 660      * will be ordered from first (head) to last (tail).  This is the same
 661      * order that elements would be dequeued (via successive calls to
 662      * {@link #remove} or popped (via successive calls to {@link #pop}).
 663      *
 664      * @return an iterator over the elements in this deque
 665      */
 666     public Iterator<E> iterator() {
 667         return new DeqIterator();
 668     }
 669 
 670     public Iterator<E> descendingIterator() {
 671         return new DescendingIterator();
 672     }
 673 
 674     private class DeqIterator implements Iterator<E> {
 675         /** Index of element to be returned by subsequent call to next. */
 676         int cursor;
 677 
 678         /** Number of elements yet to be returned. */
 679         int remaining = size();
 680 
 681         /**
 682          * Index of element returned by most recent call to next.
 683          * Reset to -1 if element is deleted by a call to remove.
 684          */
 685         int lastRet = -1;
 686 
 687         DeqIterator() { cursor = head; }
 688 
 689         public final boolean hasNext() {
 690             return remaining > 0;
 691         }
 692 
 693         public E next() {
 694             if (remaining <= 0)
 695                 throw new NoSuchElementException();
 696             final Object[] es = elements;
 697             E e = nonNullElementAt(es, cursor);
 698             cursor = inc(lastRet = cursor, es.length);
 699             remaining--;
 700             return e;
 701         }
 702 
 703         void postDelete(boolean leftShifted) {
 704             if (leftShifted)
 705                 cursor = dec(cursor, elements.length);
 706         }
 707 
 708         public final void remove() {
 709             if (lastRet < 0)
 710                 throw new IllegalStateException();
 711             postDelete(delete(lastRet));
 712             lastRet = -1;
 713         }
 714 
 715         public void forEachRemaining(Consumer<? super E> action) {
 716             Objects.requireNonNull(action);
 717             int r;
 718             if ((r = remaining) <= 0)
 719                 return;
 720             remaining = 0;
 721             final Object[] es = elements;
 722             if (es[cursor] == null || sub(tail, cursor, es.length) != r)
 723                 throw new ConcurrentModificationException();
 724             for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
 725                  ; i = 0, to = end) {
 726                 for (; i < to; i++)
 727                     action.accept(elementAt(es, i));
 728                 if (to == end) {
 729                     if (end != tail)
 730                         throw new ConcurrentModificationException();
 731                     lastRet = dec(end, es.length);
 732                     break;
 733                 }
 734             }
 735         }
 736     }
 737 
 738     private class DescendingIterator extends DeqIterator {
 739         DescendingIterator() { cursor = dec(tail, elements.length); }
 740 
 741         public final E next() {
 742             if (remaining <= 0)
 743                 throw new NoSuchElementException();
 744             final Object[] es = elements;
 745             E e = nonNullElementAt(es, cursor);
 746             cursor = dec(lastRet = cursor, es.length);
 747             remaining--;
 748             return e;
 749         }
 750 
 751         void postDelete(boolean leftShifted) {
 752             if (!leftShifted)
 753                 cursor = inc(cursor, elements.length);
 754         }
 755 
 756         public final void forEachRemaining(Consumer<? super E> action) {
 757             Objects.requireNonNull(action);
 758             int r;
 759             if ((r = remaining) <= 0)
 760                 return;
 761             remaining = 0;
 762             final Object[] es = elements;
 763             if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
 764                 throw new ConcurrentModificationException();
 765             for (int i = cursor, end = head, to = (i >= end) ? end : 0;
 766                  ; i = es.length - 1, to = end) {
 767                 // hotspot generates faster code than for: i >= to !
 768                 for (; i > to - 1; i--)
 769                     action.accept(elementAt(es, i));
 770                 if (to == end) {
 771                     if (end != head)
 772                         throw new ConcurrentModificationException();
 773                     lastRet = end;
 774                     break;
 775                 }
 776             }
 777         }
 778     }
 779 
 780     /**
 781      * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
 782      * and <em>fail-fast</em> {@link Spliterator} over the elements in this
 783      * deque.
 784      *
 785      * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
 786      * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
 787      * {@link Spliterator#NONNULL}.  Overriding implementations should document
 788      * the reporting of additional characteristic values.
 789      *
 790      * @return a {@code Spliterator} over the elements in this deque
 791      * @since 1.8
 792      */
 793     public Spliterator<E> spliterator() {
 794         return new DeqSpliterator();
 795     }
 796 
 797     final class DeqSpliterator implements Spliterator<E> {
 798         private int fence;      // -1 until first use
 799         private int cursor;     // current index, modified on traverse/split
 800 
 801         /** Constructs late-binding spliterator over all elements. */
 802         DeqSpliterator() {
 803             this.fence = -1;
 804         }
 805 
 806         /** Constructs spliterator over the given range. */
 807         DeqSpliterator(int origin, int fence) {
 808             // assert 0 <= origin && origin < elements.length;
 809             // assert 0 <= fence && fence < elements.length;
 810             this.cursor = origin;
 811             this.fence = fence;
 812         }
 813 
 814         /** Ensures late-binding initialization; then returns fence. */
 815         private int getFence() { // force initialization
 816             int t;
 817             if ((t = fence) < 0) {
 818                 t = fence = tail;
 819                 cursor = head;
 820             }
 821             return t;
 822         }
 823 
 824         public DeqSpliterator trySplit() {
 825             final Object[] es = elements;
 826             final int i, n;
 827             return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
 828                 ? null
 829                 : new DeqSpliterator(i, cursor = add(i, n, es.length));
 830         }
 831 
 832         public void forEachRemaining(Consumer<? super E> action) {
 833             if (action == null)
 834                 throw new NullPointerException();
 835             final int end = getFence(), cursor = this.cursor;
 836             final Object[] es = elements;
 837             if (cursor != end) {
 838                 this.cursor = end;
 839                 // null check at both ends of range is sufficient
 840                 if (es[cursor] == null || es[dec(end, es.length)] == null)
 841                     throw new ConcurrentModificationException();
 842                 for (int i = cursor, to = (i <= end) ? end : es.length;
 843                      ; i = 0, to = end) {
 844                     for (; i < to; i++)
 845                         action.accept(elementAt(es, i));
 846                     if (to == end) break;
 847                 }
 848             }
 849         }
 850 
 851         public boolean tryAdvance(Consumer<? super E> action) {
 852             Objects.requireNonNull(action);
 853             final Object[] es = elements;
 854             if (fence < 0) { fence = tail; cursor = head; } // late-binding
 855             final int i;
 856             if ((i = cursor) == fence)
 857                 return false;
 858             E e = nonNullElementAt(es, i);
 859             cursor = inc(i, es.length);
 860             action.accept(e);
 861             return true;
 862         }
 863 
 864         public long estimateSize() {
 865             return sub(getFence(), cursor, elements.length);
 866         }
 867 
 868         public int characteristics() {
 869             return Spliterator.NONNULL
 870                 | Spliterator.ORDERED
 871                 | Spliterator.SIZED
 872                 | Spliterator.SUBSIZED;
 873         }
 874     }
 875 
 876     /**
 877      * @throws NullPointerException {@inheritDoc}
 878      */
 879     public void forEach(Consumer<? super E> action) {
 880         Objects.requireNonNull(action);
 881         final Object[] es = elements;
 882         for (int i = head, end = tail, to = (i <= end) ? end : es.length;
 883              ; i = 0, to = end) {
 884             for (; i < to; i++)
 885                 action.accept(elementAt(es, i));
 886             if (to == end) {
 887                 if (end != tail) throw new ConcurrentModificationException();
 888                 break;
 889             }
 890         }
 891     }
 892 
 893     /**
 894      * @throws NullPointerException {@inheritDoc}
 895      */
 896     public boolean removeIf(Predicate<? super E> filter) {
 897         Objects.requireNonNull(filter);
 898         return bulkRemove(filter);
 899     }
 900 
 901     /**
 902      * @throws NullPointerException {@inheritDoc}
 903      */
 904     public boolean removeAll(Collection<?> c) {
 905         Objects.requireNonNull(c);
 906         return bulkRemove(e -> c.contains(e));
 907     }
 908 
 909     /**
 910      * @throws NullPointerException {@inheritDoc}
 911      */
 912     public boolean retainAll(Collection<?> c) {
 913         Objects.requireNonNull(c);
 914         return bulkRemove(e -> !c.contains(e));
 915     }
 916 
 917     /** Implementation of bulk remove methods. */
 918     private boolean bulkRemove(Predicate<? super E> filter) {
 919         final Object[] es = elements;
 920         // Optimize for initial run of survivors
 921         for (int i = head, end = tail, to = (i <= end) ? end : es.length;
 922              ; i = 0, to = end) {
 923             for (; i < to; i++)
 924                 if (filter.test(elementAt(es, i)))
 925                     return bulkRemoveModified(filter, i);
 926             if (to == end) {
 927                 if (end != tail) throw new ConcurrentModificationException();
 928                 break;
 929             }
 930         }
 931         return false;
 932     }
 933 
 934     // A tiny bit set implementation
 935 
 936     private static long[] nBits(int n) {
 937         return new long[((n - 1) >> 6) + 1];
 938     }
 939     private static void setBit(long[] bits, int i) {
 940         bits[i >> 6] |= 1L << i;
 941     }
 942     private static boolean isClear(long[] bits, int i) {
 943         return (bits[i >> 6] & (1L << i)) == 0;
 944     }
 945 
 946     /**
 947      * Helper for bulkRemove, in case of at least one deletion.
 948      * Tolerate predicates that reentrantly access the collection for
 949      * read (but writers still get CME), so traverse once to find
 950      * elements to delete, a second pass to physically expunge.
 951      *
 952      * @param beg valid index of first element to be deleted
 953      */
 954     private boolean bulkRemoveModified(
 955         Predicate<? super E> filter, final int beg) {
 956         final Object[] es = elements;
 957         final int capacity = es.length;
 958         final int end = tail;
 959         final long[] deathRow = nBits(sub(end, beg, capacity));
 960         deathRow[0] = 1L;   // set bit 0
 961         for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
 962              ; i = 0, to = end, k -= capacity) {
 963             for (; i < to; i++)
 964                 if (filter.test(elementAt(es, i)))
 965                     setBit(deathRow, i - k);
 966             if (to == end) break;
 967         }
 968         // a two-finger traversal, with hare i reading, tortoise w writing
 969         int w = beg;
 970         for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
 971              ; w = 0) { // w rejoins i on second leg
 972             // In this loop, i and w are on the same leg, with i > w
 973             for (; i < to; i++)
 974                 if (isClear(deathRow, i - k))
 975                     es[w++] = es[i];
 976             if (to == end) break;
 977             // In this loop, w is on the first leg, i on the second
 978             for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++)
 979                 if (isClear(deathRow, i - k))
 980                     es[w++] = es[i];
 981             if (i >= to) {
 982                 if (w == capacity) w = 0; // "corner" case
 983                 break;
 984             }
 985         }
 986         if (end != tail) throw new ConcurrentModificationException();
 987         circularClear(es, tail = w, end);
 988         return true;
 989     }
 990 
 991     /**
 992      * Returns {@code true} if this deque contains the specified element.
 993      * More formally, returns {@code true} if and only if this deque contains
 994      * at least one element {@code e} such that {@code o.equals(e)}.
 995      *
 996      * @param o object to be checked for containment in this deque
 997      * @return {@code true} if this deque contains the specified element
 998      */
 999     public boolean contains(Object o) {
1000         if (o != null) {
1001             final Object[] es = elements;
1002             for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1003                  ; i = 0, to = end) {
1004                 for (; i < to; i++)
1005                     if (o.equals(es[i]))
1006                         return true;
1007                 if (to == end) break;
1008             }
1009         }
1010         return false;
1011     }
1012 
1013     /**
1014      * Removes a single instance of the specified element from this deque.
1015      * If the deque does not contain the element, it is unchanged.
1016      * More formally, removes the first element {@code e} such that
1017      * {@code o.equals(e)} (if such an element exists).
1018      * Returns {@code true} if this deque contained the specified element
1019      * (or equivalently, if this deque changed as a result of the call).
1020      *
1021      * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1022      *
1023      * @param o element to be removed from this deque, if present
1024      * @return {@code true} if this deque contained the specified element
1025      */
1026     public boolean remove(Object o) {
1027         return removeFirstOccurrence(o);
1028     }
1029 
1030     /**
1031      * Removes all of the elements from this deque.
1032      * The deque will be empty after this call returns.
1033      */
1034     public void clear() {
1035         circularClear(elements, head, tail);
1036         head = tail = 0;
1037     }
1038 
1039     /**
1040      * Nulls out slots starting at array index i, upto index end.
1041      * Condition i == end means "empty" - nothing to do.
1042      */
1043     private static void circularClear(Object[] es, int i, int end) {
1044         // assert 0 <= i && i < es.length;
1045         // assert 0 <= end && end < es.length;
1046         for (int to = (i <= end) ? end : es.length;
1047              ; i = 0, to = end) {
1048             for (; i < to; i++) es[i] = null;
1049             if (to == end) break;
1050         }
1051     }
1052 
1053     /**
1054      * Returns an array containing all of the elements in this deque
1055      * in proper sequence (from first to last element).
1056      *
1057      * <p>The returned array will be "safe" in that no references to it are
1058      * maintained by this deque.  (In other words, this method must allocate
1059      * a new array).  The caller is thus free to modify the returned array.
1060      *
1061      * <p>This method acts as bridge between array-based and collection-based
1062      * APIs.
1063      *
1064      * @return an array containing all of the elements in this deque
1065      */
1066     public Object[] toArray() {
1067         return toArray(Object[].class);
1068     }
1069 
1070     private <T> T[] toArray(Class<T[]> klazz) {
1071         final Object[] es = elements;
1072         final T[] a;
1073         final int head = this.head, tail = this.tail, end;
1074         if ((end = tail + ((head <= tail) ? 0 : es.length)) >= 0) {
1075             // Uses null extension feature of copyOfRange
1076             a = Arrays.copyOfRange(es, head, end, klazz);
1077         } else {
1078             // integer overflow!
1079             a = Arrays.copyOfRange(es, 0, end - head, klazz);
1080             System.arraycopy(es, head, a, 0, es.length - head);
1081         }
1082         if (end != tail)
1083             System.arraycopy(es, 0, a, es.length - head, tail);
1084         return a;
1085     }
1086 
1087     /**
1088      * Returns an array containing all of the elements in this deque in
1089      * proper sequence (from first to last element); the runtime type of the
1090      * returned array is that of the specified array.  If the deque fits in
1091      * the specified array, it is returned therein.  Otherwise, a new array
1092      * is allocated with the runtime type of the specified array and the
1093      * size of this deque.
1094      *
1095      * <p>If this deque fits in the specified array with room to spare
1096      * (i.e., the array has more elements than this deque), the element in
1097      * the array immediately following the end of the deque is set to
1098      * {@code null}.
1099      *
1100      * <p>Like the {@link #toArray()} method, this method acts as bridge between
1101      * array-based and collection-based APIs.  Further, this method allows
1102      * precise control over the runtime type of the output array, and may,
1103      * under certain circumstances, be used to save allocation costs.
1104      *
1105      * <p>Suppose {@code x} is a deque known to contain only strings.
1106      * The following code can be used to dump the deque into a newly
1107      * allocated array of {@code String}:
1108      *
1109      * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1110      *
1111      * Note that {@code toArray(new Object[0])} is identical in function to
1112      * {@code toArray()}.
1113      *
1114      * @param a the array into which the elements of the deque are to
1115      *          be stored, if it is big enough; otherwise, a new array of the
1116      *          same runtime type is allocated for this purpose
1117      * @return an array containing all of the elements in this deque
1118      * @throws ArrayStoreException if the runtime type of the specified array
1119      *         is not a supertype of the runtime type of every element in
1120      *         this deque
1121      * @throws NullPointerException if the specified array is null
1122      */
1123     @SuppressWarnings("unchecked")
1124     public <T> T[] toArray(T[] a) {
1125         final int size;
1126         if ((size = size()) > a.length)
1127             return toArray((Class<T[]>) a.getClass());
1128         final Object[] es = elements;
1129         for (int i = head, j = 0, len = Math.min(size, es.length - i);
1130              ; i = 0, len = tail) {
1131             System.arraycopy(es, i, a, j, len);
1132             if ((j += len) == size) break;
1133         }
1134         if (size < a.length)
1135             a[size] = null;
1136         return a;
1137     }
1138 
1139     // *** Object methods ***
1140 
1141     /**
1142      * Returns a copy of this deque.
1143      *
1144      * @return a copy of this deque
1145      */
1146     public ArrayDeque<E> clone() {
1147         try {
1148             @SuppressWarnings("unchecked")
1149             ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1150             result.elements = Arrays.copyOf(elements, elements.length);
1151             return result;
1152         } catch (CloneNotSupportedException e) {
1153             throw new AssertionError();
1154         }
1155     }
1156 
1157     private static final long serialVersionUID = 2340985798034038923L;
1158 
1159     /**
1160      * Saves this deque to a stream (that is, serializes it).
1161      *
1162      * @param s the stream
1163      * @throws java.io.IOException if an I/O error occurs
1164      * @serialData The current size ({@code int}) of the deque,
1165      * followed by all of its elements (each an object reference) in
1166      * first-to-last order.
1167      */
1168     private void writeObject(java.io.ObjectOutputStream s)
1169             throws java.io.IOException {
1170         s.defaultWriteObject();
1171 
1172         // Write out size
1173         s.writeInt(size());
1174 
1175         // Write out elements in order.
1176         final Object[] es = elements;
1177         for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1178              ; i = 0, to = end) {
1179             for (; i < to; i++)
1180                 s.writeObject(es[i]);
1181             if (to == end) break;
1182         }
1183     }
1184 
1185     /**
1186      * Reconstitutes this deque from a stream (that is, deserializes it).
1187      * @param s the stream
1188      * @throws ClassNotFoundException if the class of a serialized object
1189      *         could not be found
1190      * @throws java.io.IOException if an I/O error occurs
1191      */
1192     private void readObject(java.io.ObjectInputStream s)
1193             throws java.io.IOException, ClassNotFoundException {
1194         s.defaultReadObject();
1195 
1196         // Read in size and allocate array
1197         int size = s.readInt();
1198         elements = new Object[size + 1];
1199         this.tail = size;
1200 
1201         // Read in all elements in the proper order.
1202         for (int i = 0; i < size; i++)
1203             elements[i] = s.readObject();
1204     }
1205 
1206     /** debugging */
1207     void checkInvariants() {
1208         // Use head and tail fields with empty slot at tail strategy.
1209         // head == tail disambiguates to "empty".
1210         try {
1211             int capacity = elements.length;
1212             // assert 0 <= head && head < capacity;
1213             // assert 0 <= tail && tail < capacity;
1214             // assert capacity > 0;
1215             // assert size() < capacity;
1216             // assert head == tail || elements[head] != null;
1217             // assert elements[tail] == null;
1218             // assert head == tail || elements[dec(tail, capacity)] != null;
1219         } catch (Throwable t) {
1220             System.err.printf("head=%d tail=%d capacity=%d%n",
1221                               head, tail, elements.length);
1222             System.err.printf("elements=%s%n",
1223                               Arrays.toString(elements));
1224             throw t;
1225         }
1226     }
1227 
1228 }