1 /*
   2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.  Oracle designates this
   7  * particular file as subject to the "Classpath" exception as provided
   8  * by Oracle in the LICENSE file that accompanied this code.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  */
  24 
  25 /*
  26  * This file is available under and governed by the GNU General Public
  27  * License version 2 only, as published by the Free Software Foundation.
  28  * However, the following notice accompanied the original version of this
  29  * file:
  30  *
  31  * Written by Doug Lea and Martin Buchholz with assistance from members of
  32  * JCP JSR-166 Expert Group and released to the public domain, as explained
  33  * at http://creativecommons.org/publicdomain/zero/1.0/
  34  */
  35 
  36 package java.util.concurrent;
  37 
  38 import java.lang.invoke.MethodHandles;
  39 import java.lang.invoke.VarHandle;
  40 import java.util.AbstractQueue;
  41 import java.util.Arrays;
  42 import java.util.Collection;
  43 import java.util.Iterator;
  44 import java.util.NoSuchElementException;
  45 import java.util.Objects;
  46 import java.util.Queue;
  47 import java.util.Spliterator;
  48 import java.util.Spliterators;
  49 import java.util.function.Consumer;
  50 import java.util.function.Predicate;
  51 
  52 /**
  53  * An unbounded thread-safe {@linkplain Queue queue} based on linked nodes.
  54  * This queue orders elements FIFO (first-in-first-out).
  55  * The <em>head</em> of the queue is that element that has been on the
  56  * queue the longest time.
  57  * The <em>tail</em> of the queue is that element that has been on the
  58  * queue the shortest time. New elements
  59  * are inserted at the tail of the queue, and the queue retrieval
  60  * operations obtain elements at the head of the queue.
  61  * A {@code ConcurrentLinkedQueue} is an appropriate choice when
  62  * many threads will share access to a common collection.
  63  * Like most other concurrent collection implementations, this class
  64  * does not permit the use of {@code null} elements.
  65  *
  66  * <p>This implementation employs an efficient <em>non-blocking</em>
  67  * algorithm based on one described in
  68  * <a href="http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf">
  69  * Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue
  70  * Algorithms</a> by Maged M. Michael and Michael L. Scott.
  71  *
  72  * <p>Iterators are <i>weakly consistent</i>, returning elements
  73  * reflecting the state of the queue at some point at or since the
  74  * creation of the iterator.  They do <em>not</em> throw {@link
  75  * java.util.ConcurrentModificationException}, and may proceed concurrently
  76  * with other operations.  Elements contained in the queue since the creation
  77  * of the iterator will be returned exactly once.
  78  *
  79  * <p>Beware that, unlike in most collections, the {@code size} method
  80  * is <em>NOT</em> a constant-time operation. Because of the
  81  * asynchronous nature of these queues, determining the current number
  82  * of elements requires a traversal of the elements, and so may report
  83  * inaccurate results if this collection is modified during traversal.
  84  *
  85  * <p>Bulk operations that add, remove, or examine multiple elements,
  86  * such as {@link #addAll}, {@link #removeIf} or {@link #forEach},
  87  * are <em>not</em> guaranteed to be performed atomically.
  88  * For example, a {@code forEach} traversal concurrent with an {@code
  89  * addAll} operation might observe only some of the added elements.
  90  *
  91  * <p>This class and its iterator implement all of the <em>optional</em>
  92  * methods of the {@link Queue} and {@link Iterator} interfaces.
  93  *
  94  * <p>Memory consistency effects: As with other concurrent
  95  * collections, actions in a thread prior to placing an object into a
  96  * {@code ConcurrentLinkedQueue}
  97  * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
  98  * actions subsequent to the access or removal of that element from
  99  * the {@code ConcurrentLinkedQueue} in another thread.
 100  *
 101  * <p>This class is a member of the
 102  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 103  * Java Collections Framework</a>.
 104  *
 105  * @since 1.5
 106  * @author Doug Lea
 107  * @param <E> the type of elements held in this queue
 108  */
 109 public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
 110         implements Queue<E>, java.io.Serializable {
 111     private static final long serialVersionUID = 196745693267521676L;
 112 
 113     /*
 114      * This is a modification of the Michael & Scott algorithm,
 115      * adapted for a garbage-collected environment, with support for
 116      * interior node deletion (to support e.g. remove(Object)).  For
 117      * explanation, read the paper.
 118      *
 119      * Note that like most non-blocking algorithms in this package,
 120      * this implementation relies on the fact that in garbage
 121      * collected systems, there is no possibility of ABA problems due
 122      * to recycled nodes, so there is no need to use "counted
 123      * pointers" or related techniques seen in versions used in
 124      * non-GC'ed settings.
 125      *
 126      * The fundamental invariants are:
 127      * - There is exactly one (last) Node with a null next reference,
 128      *   which is CASed when enqueueing.  This last Node can be
 129      *   reached in O(1) time from tail, but tail is merely an
 130      *   optimization - it can always be reached in O(N) time from
 131      *   head as well.
 132      * - The elements contained in the queue are the non-null items in
 133      *   Nodes that are reachable from head.  CASing the item
 134      *   reference of a Node to null atomically removes it from the
 135      *   queue.  Reachability of all elements from head must remain
 136      *   true even in the case of concurrent modifications that cause
 137      *   head to advance.  A dequeued Node may remain in use
 138      *   indefinitely due to creation of an Iterator or simply a
 139      *   poll() that has lost its time slice.
 140      *
 141      * The above might appear to imply that all Nodes are GC-reachable
 142      * from a predecessor dequeued Node.  That would cause two problems:
 143      * - allow a rogue Iterator to cause unbounded memory retention
 144      * - cause cross-generational linking of old Nodes to new Nodes if
 145      *   a Node was tenured while live, which generational GCs have a
 146      *   hard time dealing with, causing repeated major collections.
 147      * However, only non-deleted Nodes need to be reachable from
 148      * dequeued Nodes, and reachability does not necessarily have to
 149      * be of the kind understood by the GC.  We use the trick of
 150      * linking a Node that has just been dequeued to itself.  Such a
 151      * self-link implicitly means to advance to head.
 152      *
 153      * Both head and tail are permitted to lag.  In fact, failing to
 154      * update them every time one could is a significant optimization
 155      * (fewer CASes). As with LinkedTransferQueue (see the internal
 156      * documentation for that class), we use a slack threshold of two;
 157      * that is, we update head/tail when the current pointer appears
 158      * to be two or more steps away from the first/last node.
 159      *
 160      * Since head and tail are updated concurrently and independently,
 161      * it is possible for tail to lag behind head (why not)?
 162      *
 163      * CASing a Node's item reference to null atomically removes the
 164      * element from the queue, leaving a "dead" node that should later
 165      * be unlinked (but unlinking is merely an optimization).
 166      * Interior element removal methods (other than Iterator.remove())
 167      * keep track of the predecessor node during traversal so that the
 168      * node can be CAS-unlinked.  Some traversal methods try to unlink
 169      * any deleted nodes encountered during traversal.  See comments
 170      * in bulkRemove.
 171      *
 172      * When constructing a Node (before enqueuing it) we avoid paying
 173      * for a volatile write to item.  This allows the cost of enqueue
 174      * to be "one-and-a-half" CASes.
 175      *
 176      * Both head and tail may or may not point to a Node with a
 177      * non-null item.  If the queue is empty, all items must of course
 178      * be null.  Upon creation, both head and tail refer to a dummy
 179      * Node with null item.  Both head and tail are only updated using
 180      * CAS, so they never regress, although again this is merely an
 181      * optimization.
 182      */
 183 
 184     static final class Node<E> {
 185         volatile E item;
 186         volatile Node<E> next;
 187 
 188         /**
 189          * Constructs a node holding item.  Uses relaxed write because
 190          * item can only be seen after piggy-backing publication via CAS.
 191          */
 192         Node(E item) {
 193             ITEM.set(this, item);
 194         }
 195 
 196         /** Constructs a dead dummy node. */
 197         Node() {}
 198 
 199         void appendRelaxed(Node<E> next) {
 200             // assert next != null;
 201             // assert this.next == null;
 202             NEXT.set(this, next);
 203         }
 204 
 205         boolean casItem(E cmp, E val) {
 206             // assert item == cmp || item == null;
 207             // assert cmp != null;
 208             // assert val == null;
 209             return ITEM.compareAndSet(this, cmp, val);
 210         }
 211     }
 212 
 213     /**
 214      * A node from which the first live (non-deleted) node (if any)
 215      * can be reached in O(1) time.
 216      * Invariants:
 217      * - all live nodes are reachable from head via succ()
 218      * - head != null
 219      * - (tmp = head).next != tmp || tmp != head
 220      * Non-invariants:
 221      * - head.item may or may not be null.
 222      * - it is permitted for tail to lag behind head, that is, for tail
 223      *   to not be reachable from head!
 224      */
 225     transient volatile Node<E> head;
 226 
 227     /**
 228      * A node from which the last node on list (that is, the unique
 229      * node with node.next == null) can be reached in O(1) time.
 230      * Invariants:
 231      * - the last node is always reachable from tail via succ()
 232      * - tail != null
 233      * Non-invariants:
 234      * - tail.item may or may not be null.
 235      * - it is permitted for tail to lag behind head, that is, for tail
 236      *   to not be reachable from head!
 237      * - tail.next may or may not be self-linked.
 238      */
 239     private transient volatile Node<E> tail;
 240 
 241     /**
 242      * Creates a {@code ConcurrentLinkedQueue} that is initially empty.
 243      */
 244     public ConcurrentLinkedQueue() {
 245         head = tail = new Node<E>();
 246     }
 247 
 248     /**
 249      * Creates a {@code ConcurrentLinkedQueue}
 250      * initially containing the elements of the given collection,
 251      * added in traversal order of the collection's iterator.
 252      *
 253      * @param c the collection of elements to initially contain
 254      * @throws NullPointerException if the specified collection or any
 255      *         of its elements are null
 256      */
 257     public ConcurrentLinkedQueue(Collection<? extends E> c) {
 258         Node<E> h = null, t = null;
 259         for (E e : c) {
 260             Node<E> newNode = new Node<E>(Objects.requireNonNull(e));
 261             if (h == null)
 262                 h = t = newNode;
 263             else
 264                 t.appendRelaxed(t = newNode);
 265         }
 266         if (h == null)
 267             h = t = new Node<E>();
 268         head = h;
 269         tail = t;
 270     }
 271 
 272     // Have to override just to update the javadoc
 273 
 274     /**
 275      * Inserts the specified element at the tail of this queue.
 276      * As the queue is unbounded, this method will never throw
 277      * {@link IllegalStateException} or return {@code false}.
 278      *
 279      * @return {@code true} (as specified by {@link Collection#add})
 280      * @throws NullPointerException if the specified element is null
 281      */
 282     public boolean add(E e) {
 283         return offer(e);
 284     }
 285 
 286     /**
 287      * Tries to CAS head to p. If successful, repoint old head to itself
 288      * as sentinel for succ(), below.
 289      */
 290     final void updateHead(Node<E> h, Node<E> p) {
 291         // assert h != null && p != null && (h == p || h.item == null);
 292         if (h != p && HEAD.compareAndSet(this, h, p))
 293             NEXT.setRelease(h, h);
 294     }
 295 
 296     /**
 297      * Returns the successor of p, or the head node if p.next has been
 298      * linked to self, which will only be true if traversing with a
 299      * stale pointer that is now off the list.
 300      */
 301     final Node<E> succ(Node<E> p) {
 302         if (p == (p = p.next))
 303             p = head;
 304         return p;
 305     }
 306 
 307     /**
 308      * Tries to CAS pred.next (or head, if pred is null) from c to p.
 309      * Caller must ensure that we're not unlinking the trailing node.
 310      */
 311     private boolean tryCasSuccessor(Node<E> pred, Node<E> c, Node<E> p) {
 312         // assert p != null;
 313         // assert c.item == null;
 314         // assert c != p;
 315         if (pred != null)
 316             return NEXT.compareAndSet(pred, c, p);
 317         if (HEAD.compareAndSet(this, c, p)) {
 318             NEXT.setRelease(c, c);
 319             return true;
 320         }
 321         return false;
 322     }
 323 
 324     /**
 325      * Collapse dead nodes between pred and q.
 326      * @param pred the last known live node, or null if none
 327      * @param c the first dead node
 328      * @param p the last dead node
 329      * @param q p.next: the next live node, or null if at end
 330      * @return either old pred or p if pred dead or CAS failed
 331      */
 332     private Node<E> skipDeadNodes(Node<E> pred, Node<E> c, Node<E> p, Node<E> q) {
 333         // assert pred != c;
 334         // assert p != q;
 335         // assert c.item == null;
 336         // assert p.item == null;
 337         if (q == null) {
 338             // Never unlink trailing node.
 339             if (c == p) return pred;
 340             q = p;
 341         }
 342         return (tryCasSuccessor(pred, c, q)
 343                 && (pred == null || ITEM.get(pred) != null))
 344             ? pred : p;
 345     }
 346 
 347     /**
 348      * Inserts the specified element at the tail of this queue.
 349      * As the queue is unbounded, this method will never return {@code false}.
 350      *
 351      * @return {@code true} (as specified by {@link Queue#offer})
 352      * @throws NullPointerException if the specified element is null
 353      */
 354     public boolean offer(E e) {
 355         final Node<E> newNode = new Node<E>(Objects.requireNonNull(e));
 356 
 357         for (Node<E> t = tail, p = t;;) {
 358             Node<E> q = p.next;
 359             if (q == null) {
 360                 // p is last node
 361                 if (NEXT.compareAndSet(p, null, newNode)) {
 362                     // Successful CAS is the linearization point
 363                     // for e to become an element of this queue,
 364                     // and for newNode to become "live".
 365                     if (p != t) // hop two nodes at a time; failure is OK
 366                         TAIL.weakCompareAndSet(this, t, newNode);
 367                     return true;
 368                 }
 369                 // Lost CAS race to another thread; re-read next
 370             }
 371             else if (p == q)
 372                 // We have fallen off list.  If tail is unchanged, it
 373                 // will also be off-list, in which case we need to
 374                 // jump to head, from which all live nodes are always
 375                 // reachable.  Else the new tail is a better bet.
 376                 p = (t != (t = tail)) ? t : head;
 377             else
 378                 // Check for tail updates after two hops.
 379                 p = (p != t && t != (t = tail)) ? t : q;
 380         }
 381     }
 382 
 383     public E poll() {
 384         restartFromHead: for (;;) {
 385             for (Node<E> h = head, p = h, q;; p = q) {
 386                 final E item;
 387                 if ((item = p.item) != null && p.casItem(item, null)) {
 388                     // Successful CAS is the linearization point
 389                     // for item to be removed from this queue.
 390                     if (p != h) // hop two nodes at a time
 391                         updateHead(h, ((q = p.next) != null) ? q : p);
 392                     return item;
 393                 }
 394                 else if ((q = p.next) == null) {
 395                     updateHead(h, p);
 396                     return null;
 397                 }
 398                 else if (p == q)
 399                     continue restartFromHead;
 400             }
 401         }
 402     }
 403 
 404     public E peek() {
 405         restartFromHead: for (;;) {
 406             for (Node<E> h = head, p = h, q;; p = q) {
 407                 final E item;
 408                 if ((item = p.item) != null
 409                     || (q = p.next) == null) {
 410                     updateHead(h, p);
 411                     return item;
 412                 }
 413                 else if (p == q)
 414                     continue restartFromHead;
 415             }
 416         }
 417     }
 418 
 419     /**
 420      * Returns the first live (non-deleted) node on list, or null if none.
 421      * This is yet another variant of poll/peek; here returning the
 422      * first node, not element.  We could make peek() a wrapper around
 423      * first(), but that would cost an extra volatile read of item,
 424      * and the need to add a retry loop to deal with the possibility
 425      * of losing a race to a concurrent poll().
 426      */
 427     Node<E> first() {
 428         restartFromHead: for (;;) {
 429             for (Node<E> h = head, p = h, q;; p = q) {
 430                 boolean hasItem = (p.item != null);
 431                 if (hasItem || (q = p.next) == null) {
 432                     updateHead(h, p);
 433                     return hasItem ? p : null;
 434                 }
 435                 else if (p == q)
 436                     continue restartFromHead;
 437             }
 438         }
 439     }
 440 
 441     /**
 442      * Returns {@code true} if this queue contains no elements.
 443      *
 444      * @return {@code true} if this queue contains no elements
 445      */
 446     public boolean isEmpty() {
 447         return first() == null;
 448     }
 449 
 450     /**
 451      * Returns the number of elements in this queue.  If this queue
 452      * contains more than {@code Integer.MAX_VALUE} elements, returns
 453      * {@code Integer.MAX_VALUE}.
 454      *
 455      * <p>Beware that, unlike in most collections, this method is
 456      * <em>NOT</em> a constant-time operation. Because of the
 457      * asynchronous nature of these queues, determining the current
 458      * number of elements requires an O(n) traversal.
 459      * Additionally, if elements are added or removed during execution
 460      * of this method, the returned result may be inaccurate.  Thus,
 461      * this method is typically not very useful in concurrent
 462      * applications.
 463      *
 464      * @return the number of elements in this queue
 465      */
 466     public int size() {
 467         restartFromHead: for (;;) {
 468             int count = 0;
 469             for (Node<E> p = first(); p != null;) {
 470                 if (p.item != null)
 471                     if (++count == Integer.MAX_VALUE)
 472                         break;  // @see Collection.size()
 473                 if (p == (p = p.next))
 474                     continue restartFromHead;
 475             }
 476             return count;
 477         }
 478     }
 479 
 480     /**
 481      * Returns {@code true} if this queue contains the specified element.
 482      * More formally, returns {@code true} if and only if this queue contains
 483      * at least one element {@code e} such that {@code o.equals(e)}.
 484      *
 485      * @param o object to be checked for containment in this queue
 486      * @return {@code true} if this queue contains the specified element
 487      */
 488     public boolean contains(Object o) {
 489         if (o == null) return false;
 490         restartFromHead: for (;;) {
 491             for (Node<E> p = head, pred = null; p != null; ) {
 492                 Node<E> q = p.next;
 493                 final E item;
 494                 if ((item = p.item) != null) {
 495                     if (o.equals(item))
 496                         return true;
 497                     pred = p; p = q; continue;
 498                 }
 499                 for (Node<E> c = p;; q = p.next) {
 500                     if (q == null || q.item != null) {
 501                         pred = skipDeadNodes(pred, c, p, q); p = q; break;
 502                     }
 503                     if (p == (p = q)) continue restartFromHead;
 504                 }
 505             }
 506             return false;
 507         }
 508     }
 509 
 510     /**
 511      * Removes a single instance of the specified element from this queue,
 512      * if it is present.  More formally, removes an element {@code e} such
 513      * that {@code o.equals(e)}, if this queue contains one or more such
 514      * elements.
 515      * Returns {@code true} if this queue contained the specified element
 516      * (or equivalently, if this queue changed as a result of the call).
 517      *
 518      * @param o element to be removed from this queue, if present
 519      * @return {@code true} if this queue changed as a result of the call
 520      */
 521     public boolean remove(Object o) {
 522         if (o == null) return false;
 523         restartFromHead: for (;;) {
 524             for (Node<E> p = head, pred = null; p != null; ) {
 525                 Node<E> q = p.next;
 526                 final E item;
 527                 if ((item = p.item) != null) {
 528                     if (o.equals(item) && p.casItem(item, null)) {
 529                         skipDeadNodes(pred, p, p, q);
 530                         return true;
 531                     }
 532                     pred = p; p = q; continue;
 533                 }
 534                 for (Node<E> c = p;; q = p.next) {
 535                     if (q == null || q.item != null) {
 536                         pred = skipDeadNodes(pred, c, p, q); p = q; break;
 537                     }
 538                     if (p == (p = q)) continue restartFromHead;
 539                 }
 540             }
 541             return false;
 542         }
 543     }
 544 
 545     /**
 546      * Appends all of the elements in the specified collection to the end of
 547      * this queue, in the order that they are returned by the specified
 548      * collection's iterator.  Attempts to {@code addAll} of a queue to
 549      * itself result in {@code IllegalArgumentException}.
 550      *
 551      * @param c the elements to be inserted into this queue
 552      * @return {@code true} if this queue changed as a result of the call
 553      * @throws NullPointerException if the specified collection or any
 554      *         of its elements are null
 555      * @throws IllegalArgumentException if the collection is this queue
 556      */
 557     public boolean addAll(Collection<? extends E> c) {
 558         if (c == this)
 559             // As historically specified in AbstractQueue#addAll
 560             throw new IllegalArgumentException();
 561 
 562         // Copy c into a private chain of Nodes
 563         Node<E> beginningOfTheEnd = null, last = null;
 564         for (E e : c) {
 565             Node<E> newNode = new Node<E>(Objects.requireNonNull(e));
 566             if (beginningOfTheEnd == null)
 567                 beginningOfTheEnd = last = newNode;
 568             else
 569                 last.appendRelaxed(last = newNode);
 570         }
 571         if (beginningOfTheEnd == null)
 572             return false;
 573 
 574         // Atomically append the chain at the tail of this collection
 575         for (Node<E> t = tail, p = t;;) {
 576             Node<E> q = p.next;
 577             if (q == null) {
 578                 // p is last node
 579                 if (NEXT.compareAndSet(p, null, beginningOfTheEnd)) {
 580                     // Successful CAS is the linearization point
 581                     // for all elements to be added to this queue.
 582                     if (!TAIL.weakCompareAndSet(this, t, last)) {
 583                         // Try a little harder to update tail,
 584                         // since we may be adding many elements.
 585                         t = tail;
 586                         if (last.next == null)
 587                             TAIL.weakCompareAndSet(this, t, last);
 588                     }
 589                     return true;
 590                 }
 591                 // Lost CAS race to another thread; re-read next
 592             }
 593             else if (p == q)
 594                 // We have fallen off list.  If tail is unchanged, it
 595                 // will also be off-list, in which case we need to
 596                 // jump to head, from which all live nodes are always
 597                 // reachable.  Else the new tail is a better bet.
 598                 p = (t != (t = tail)) ? t : head;
 599             else
 600                 // Check for tail updates after two hops.
 601                 p = (p != t && t != (t = tail)) ? t : q;
 602         }
 603     }
 604 
 605     public String toString() {
 606         String[] a = null;
 607         restartFromHead: for (;;) {
 608             int charLength = 0;
 609             int size = 0;
 610             for (Node<E> p = first(); p != null;) {
 611                 final E item;
 612                 if ((item = p.item) != null) {
 613                     if (a == null)
 614                         a = new String[4];
 615                     else if (size == a.length)
 616                         a = Arrays.copyOf(a, 2 * size);
 617                     String s = item.toString();
 618                     a[size++] = s;
 619                     charLength += s.length();
 620                 }
 621                 if (p == (p = p.next))
 622                     continue restartFromHead;
 623             }
 624 
 625             if (size == 0)
 626                 return "[]";
 627 
 628             return Helpers.toString(a, size, charLength);
 629         }
 630     }
 631 
 632     private Object[] toArrayInternal(Object[] a) {
 633         Object[] x = a;
 634         restartFromHead: for (;;) {
 635             int size = 0;
 636             for (Node<E> p = first(); p != null;) {
 637                 final E item;
 638                 if ((item = p.item) != null) {
 639                     if (x == null)
 640                         x = new Object[4];
 641                     else if (size == x.length)
 642                         x = Arrays.copyOf(x, 2 * (size + 4));
 643                     x[size++] = item;
 644                 }
 645                 if (p == (p = p.next))
 646                     continue restartFromHead;
 647             }
 648             if (x == null)
 649                 return new Object[0];
 650             else if (a != null && size <= a.length) {
 651                 if (a != x)
 652                     System.arraycopy(x, 0, a, 0, size);
 653                 if (size < a.length)
 654                     a[size] = null;
 655                 return a;
 656             }
 657             return (size == x.length) ? x : Arrays.copyOf(x, size);
 658         }
 659     }
 660 
 661     /**
 662      * Returns an array containing all of the elements in this queue, in
 663      * proper sequence.
 664      *
 665      * <p>The returned array will be "safe" in that no references to it are
 666      * maintained by this queue.  (In other words, this method must allocate
 667      * a new array).  The caller is thus free to modify the returned array.
 668      *
 669      * <p>This method acts as bridge between array-based and collection-based
 670      * APIs.
 671      *
 672      * @return an array containing all of the elements in this queue
 673      */
 674     public Object[] toArray() {
 675         return toArrayInternal(null);
 676     }
 677 
 678     /**
 679      * Returns an array containing all of the elements in this queue, in
 680      * proper sequence; the runtime type of the returned array is that of
 681      * the specified array.  If the queue fits in the specified array, it
 682      * is returned therein.  Otherwise, a new array is allocated with the
 683      * runtime type of the specified array and the size of this queue.
 684      *
 685      * <p>If this queue fits in the specified array with room to spare
 686      * (i.e., the array has more elements than this queue), the element in
 687      * the array immediately following the end of the queue is set to
 688      * {@code null}.
 689      *
 690      * <p>Like the {@link #toArray()} method, this method acts as bridge between
 691      * array-based and collection-based APIs.  Further, this method allows
 692      * precise control over the runtime type of the output array, and may,
 693      * under certain circumstances, be used to save allocation costs.
 694      *
 695      * <p>Suppose {@code x} is a queue known to contain only strings.
 696      * The following code can be used to dump the queue into a newly
 697      * allocated array of {@code String}:
 698      *
 699      * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
 700      *
 701      * Note that {@code toArray(new Object[0])} is identical in function to
 702      * {@code toArray()}.
 703      *
 704      * @param a the array into which the elements of the queue are to
 705      *          be stored, if it is big enough; otherwise, a new array of the
 706      *          same runtime type is allocated for this purpose
 707      * @return an array containing all of the elements in this queue
 708      * @throws ArrayStoreException if the runtime type of the specified array
 709      *         is not a supertype of the runtime type of every element in
 710      *         this queue
 711      * @throws NullPointerException if the specified array is null
 712      */
 713     @SuppressWarnings("unchecked")
 714     public <T> T[] toArray(T[] a) {
 715         Objects.requireNonNull(a);
 716         return (T[]) toArrayInternal(a);
 717     }
 718 
 719     /**
 720      * Returns an iterator over the elements in this queue in proper sequence.
 721      * The elements will be returned in order from first (head) to last (tail).
 722      *
 723      * <p>The returned iterator is
 724      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
 725      *
 726      * @return an iterator over the elements in this queue in proper sequence
 727      */
 728     public Iterator<E> iterator() {
 729         return new Itr();
 730     }
 731 
 732     private class Itr implements Iterator<E> {
 733         /**
 734          * Next node to return item for.
 735          */
 736         private Node<E> nextNode;
 737 
 738         /**
 739          * nextItem holds on to item fields because once we claim
 740          * that an element exists in hasNext(), we must return it in
 741          * the following next() call even if it was in the process of
 742          * being removed when hasNext() was called.
 743          */
 744         private E nextItem;
 745 
 746         /**
 747          * Node of the last returned item, to support remove.
 748          */
 749         private Node<E> lastRet;
 750 
 751         Itr() {
 752             restartFromHead: for (;;) {
 753                 Node<E> h, p, q;
 754                 for (p = h = head;; p = q) {
 755                     final E item;
 756                     if ((item = p.item) != null) {
 757                         nextNode = p;
 758                         nextItem = item;
 759                         break;
 760                     }
 761                     else if ((q = p.next) == null)
 762                         break;
 763                     else if (p == q)
 764                         continue restartFromHead;
 765                 }
 766                 updateHead(h, p);
 767                 return;
 768             }
 769         }
 770 
 771         public boolean hasNext() {
 772             return nextItem != null;
 773         }
 774 
 775         public E next() {
 776             final Node<E> pred = nextNode;
 777             if (pred == null) throw new NoSuchElementException();
 778             // assert nextItem != null;
 779             lastRet = pred;
 780             E item = null;
 781 
 782             for (Node<E> p = succ(pred), q;; p = q) {
 783                 if (p == null || (item = p.item) != null) {
 784                     nextNode = p;
 785                     E x = nextItem;
 786                     nextItem = item;
 787                     return x;
 788                 }
 789                 // unlink deleted nodes
 790                 if ((q = succ(p)) != null)
 791                     NEXT.compareAndSet(pred, p, q);
 792             }
 793         }
 794 
 795         // Default implementation of forEachRemaining is "good enough".
 796 
 797         public void remove() {
 798             Node<E> l = lastRet;
 799             if (l == null) throw new IllegalStateException();
 800             // rely on a future traversal to relink.
 801             l.item = null;
 802             lastRet = null;
 803         }
 804     }
 805 
 806     /**
 807      * Saves this queue to a stream (that is, serializes it).
 808      *
 809      * @param s the stream
 810      * @throws java.io.IOException if an I/O error occurs
 811      * @serialData All of the elements (each an {@code E}) in
 812      * the proper order, followed by a null
 813      */
 814     private void writeObject(java.io.ObjectOutputStream s)
 815         throws java.io.IOException {
 816 
 817         // Write out any hidden stuff
 818         s.defaultWriteObject();
 819 
 820         // Write out all elements in the proper order.
 821         for (Node<E> p = first(); p != null; p = succ(p)) {
 822             final E item;
 823             if ((item = p.item) != null)
 824                 s.writeObject(item);
 825         }
 826 
 827         // Use trailing null as sentinel
 828         s.writeObject(null);
 829     }
 830 
 831     /**
 832      * Reconstitutes this queue from a stream (that is, deserializes it).
 833      * @param s the stream
 834      * @throws ClassNotFoundException if the class of a serialized object
 835      *         could not be found
 836      * @throws java.io.IOException if an I/O error occurs
 837      */
 838     private void readObject(java.io.ObjectInputStream s)
 839         throws java.io.IOException, ClassNotFoundException {
 840         s.defaultReadObject();
 841 
 842         // Read in elements until trailing null sentinel found
 843         Node<E> h = null, t = null;
 844         for (Object item; (item = s.readObject()) != null; ) {
 845             @SuppressWarnings("unchecked")
 846             Node<E> newNode = new Node<E>((E) item);
 847             if (h == null)
 848                 h = t = newNode;
 849             else
 850                 t.appendRelaxed(t = newNode);
 851         }
 852         if (h == null)
 853             h = t = new Node<E>();
 854         head = h;
 855         tail = t;
 856     }
 857 
 858     /** A customized variant of Spliterators.IteratorSpliterator */
 859     final class CLQSpliterator implements Spliterator<E> {
 860         static final int MAX_BATCH = 1 << 25;  // max batch array size;
 861         Node<E> current;    // current node; null until initialized
 862         int batch;          // batch size for splits
 863         boolean exhausted;  // true when no more nodes
 864 
 865         public Spliterator<E> trySplit() {
 866             Node<E> p, q;
 867             if ((p = current()) == null || (q = p.next) == null)
 868                 return null;
 869             int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
 870             Object[] a = null;
 871             do {
 872                 final E e;
 873                 if ((e = p.item) != null) {
 874                     if (a == null)
 875                         a = new Object[n];
 876                     a[i++] = e;
 877                 }
 878                 if (p == (p = q))
 879                     p = first();
 880             } while (p != null && (q = p.next) != null && i < n);
 881             setCurrent(p);
 882             return (i == 0) ? null :
 883                 Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
 884                                                    Spliterator.NONNULL |
 885                                                    Spliterator.CONCURRENT));
 886         }
 887 
 888         public void forEachRemaining(Consumer<? super E> action) {
 889             Objects.requireNonNull(action);
 890             final Node<E> p;
 891             if ((p = current()) != null) {
 892                 current = null;
 893                 exhausted = true;
 894                 forEachFrom(action, p);
 895             }
 896         }
 897 
 898         public boolean tryAdvance(Consumer<? super E> action) {
 899             Objects.requireNonNull(action);
 900             Node<E> p;
 901             if ((p = current()) != null) {
 902                 E e;
 903                 do {
 904                     e = p.item;
 905                     if (p == (p = p.next))
 906                         p = first();
 907                 } while (e == null && p != null);
 908                 setCurrent(p);
 909                 if (e != null) {
 910                     action.accept(e);
 911                     return true;
 912                 }
 913             }
 914             return false;
 915         }
 916 
 917         private void setCurrent(Node<E> p) {
 918             if ((current = p) == null)
 919                 exhausted = true;
 920         }
 921 
 922         private Node<E> current() {
 923             Node<E> p;
 924             if ((p = current) == null && !exhausted)
 925                 setCurrent(p = first());
 926             return p;
 927         }
 928 
 929         public long estimateSize() { return Long.MAX_VALUE; }
 930 
 931         public int characteristics() {
 932             return (Spliterator.ORDERED |
 933                     Spliterator.NONNULL |
 934                     Spliterator.CONCURRENT);
 935         }
 936     }
 937 
 938     /**
 939      * Returns a {@link Spliterator} over the elements in this queue.
 940      *
 941      * <p>The returned spliterator is
 942      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
 943      *
 944      * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
 945      * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
 946      *
 947      * @implNote
 948      * The {@code Spliterator} implements {@code trySplit} to permit limited
 949      * parallelism.
 950      *
 951      * @return a {@code Spliterator} over the elements in this queue
 952      * @since 1.8
 953      */
 954     @Override
 955     public Spliterator<E> spliterator() {
 956         return new CLQSpliterator();
 957     }
 958 
 959     /**
 960      * @throws NullPointerException {@inheritDoc}
 961      */
 962     public boolean removeIf(Predicate<? super E> filter) {
 963         Objects.requireNonNull(filter);
 964         return bulkRemove(filter);
 965     }
 966 
 967     /**
 968      * @throws NullPointerException {@inheritDoc}
 969      */
 970     public boolean removeAll(Collection<?> c) {
 971         Objects.requireNonNull(c);
 972         return bulkRemove(e -> c.contains(e));
 973     }
 974 
 975     /**
 976      * @throws NullPointerException {@inheritDoc}
 977      */
 978     public boolean retainAll(Collection<?> c) {
 979         Objects.requireNonNull(c);
 980         return bulkRemove(e -> !c.contains(e));
 981     }
 982 
 983     public void clear() {
 984         bulkRemove(e -> true);
 985     }
 986 
 987     /**
 988      * Tolerate this many consecutive dead nodes before CAS-collapsing.
 989      * Amortized cost of clear() is (1 + 1/MAX_HOPS) CASes per element.
 990      */
 991     private static final int MAX_HOPS = 8;
 992 
 993     /** Implementation of bulk remove methods. */
 994     private boolean bulkRemove(Predicate<? super E> filter) {
 995         boolean removed = false;
 996         restartFromHead: for (;;) {
 997             int hops = MAX_HOPS;
 998             // c will be CASed to collapse intervening dead nodes between
 999             // pred (or head if null) and p.
1000             for (Node<E> p = head, c = p, pred = null, q; p != null; p = q) {
1001                 q = p.next;
1002                 final E item; boolean pAlive;
1003                 if (pAlive = ((item = p.item) != null)) {
1004                     if (filter.test(item)) {
1005                         if (p.casItem(item, null))
1006                             removed = true;
1007                         pAlive = false;
1008                     }
1009                 }
1010                 if (pAlive || q == null || --hops == 0) {
1011                     // p might already be self-linked here, but if so:
1012                     // - CASing head will surely fail
1013                     // - CASing pred's next will be useless but harmless.
1014                     if ((c != p && !tryCasSuccessor(pred, c, c = p))
1015                         || pAlive) {
1016                         // if CAS failed or alive, abandon old pred
1017                         hops = MAX_HOPS;
1018                         pred = p;
1019                         c = q;
1020                     }
1021                 } else if (p == q)
1022                     continue restartFromHead;
1023             }
1024             return removed;
1025         }
1026     }
1027 
1028     /**
1029      * Runs action on each element found during a traversal starting at p.
1030      * If p is null, the action is not run.
1031      */
1032     void forEachFrom(Consumer<? super E> action, Node<E> p) {
1033         for (Node<E> pred = null; p != null; ) {
1034             Node<E> q = p.next;
1035             final E item;
1036             if ((item = p.item) != null) {
1037                 action.accept(item);
1038                 pred = p; p = q; continue;
1039             }
1040             for (Node<E> c = p;; q = p.next) {
1041                 if (q == null || q.item != null) {
1042                     pred = skipDeadNodes(pred, c, p, q); p = q; break;
1043                 }
1044                 if (p == (p = q)) { pred = null; p = head; break; }
1045             }
1046         }
1047     }
1048 
1049     /**
1050      * @throws NullPointerException {@inheritDoc}
1051      */
1052     public void forEach(Consumer<? super E> action) {
1053         Objects.requireNonNull(action);
1054         forEachFrom(action, head);
1055     }
1056 
1057     // VarHandle mechanics
1058     private static final VarHandle HEAD;
1059     private static final VarHandle TAIL;
1060     static final VarHandle ITEM;
1061     static final VarHandle NEXT;
1062     static {
1063         try {
1064             MethodHandles.Lookup l = MethodHandles.lookup();
1065             HEAD = l.findVarHandle(ConcurrentLinkedQueue.class, "head",
1066                                    Node.class);
1067             TAIL = l.findVarHandle(ConcurrentLinkedQueue.class, "tail",
1068                                    Node.class);
1069             ITEM = l.findVarHandle(Node.class, "item", Object.class);
1070             NEXT = l.findVarHandle(Node.class, "next", Node.class);
1071         } catch (ReflectiveOperationException e) {
1072             throw new Error(e);
1073         }
1074     }
1075 }