1 /*
   2  * Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "interp_masm_aarch64.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterRuntime.hpp"
  30 #include "logging/log.hpp"
  31 #include "oops/arrayOop.hpp"
  32 #include "oops/markOop.hpp"
  33 #include "oops/methodData.hpp"
  34 #include "oops/method.hpp"
  35 #include "prims/jvmtiExport.hpp"
  36 #include "prims/jvmtiThreadState.hpp"
  37 #include "runtime/basicLock.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 
  42 
  43 void InterpreterMacroAssembler::narrow(Register result) {
  44 
  45   // Get method->_constMethod->_result_type
  46   ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
  47   ldr(rscratch1, Address(rscratch1, Method::const_offset()));
  48   ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset()));
  49 
  50   Label done, notBool, notByte, notChar;
  51 
  52   // common case first
  53   cmpw(rscratch1, T_INT);
  54   br(Assembler::EQ, done);
  55 
  56   // mask integer result to narrower return type.
  57   cmpw(rscratch1, T_BOOLEAN);
  58   br(Assembler::NE, notBool);
  59   andw(result, result, 0x1);
  60   b(done);
  61 
  62   bind(notBool);
  63   cmpw(rscratch1, T_BYTE);
  64   br(Assembler::NE, notByte);
  65   sbfx(result, result, 0, 8);
  66   b(done);
  67 
  68   bind(notByte);
  69   cmpw(rscratch1, T_CHAR);
  70   br(Assembler::NE, notChar);
  71   ubfx(result, result, 0, 16);  // truncate upper 16 bits
  72   b(done);
  73 
  74   bind(notChar);
  75   sbfx(result, result, 0, 16);     // sign-extend short
  76 
  77   // Nothing to do for T_INT
  78   bind(done);
  79 }
  80 
  81 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  82   assert(entry, "Entry must have been generated by now");
  83   b(entry);
  84 }
  85 
  86 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
  87   if (JvmtiExport::can_pop_frame()) {
  88     Label L;
  89     // Initiate popframe handling only if it is not already being
  90     // processed.  If the flag has the popframe_processing bit set, it
  91     // means that this code is called *during* popframe handling - we
  92     // don't want to reenter.
  93     // This method is only called just after the call into the vm in
  94     // call_VM_base, so the arg registers are available.
  95     ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
  96     tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L);
  97     tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L);
  98     // Call Interpreter::remove_activation_preserving_args_entry() to get the
  99     // address of the same-named entrypoint in the generated interpreter code.
 100     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 101     br(r0);
 102     bind(L);
 103   }
 104 }
 105 
 106 
 107 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 108   ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 109   const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset());
 110   const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset());
 111   const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset());
 112   switch (state) {
 113     case atos: ldr(r0, oop_addr);
 114                str(zr, oop_addr);
 115                verify_oop(r0, state);               break;
 116     case ltos: ldr(r0, val_addr);                   break;
 117     case btos:                                   // fall through
 118     case ztos:                                   // fall through
 119     case ctos:                                   // fall through
 120     case stos:                                   // fall through
 121     case itos: ldrw(r0, val_addr);                  break;
 122     case ftos: ldrs(v0, val_addr);                  break;
 123     case dtos: ldrd(v0, val_addr);                  break;
 124     case vtos: /* nothing to do */                  break;
 125     default  : ShouldNotReachHere();
 126   }
 127   // Clean up tos value in the thread object
 128   movw(rscratch1, (int) ilgl);
 129   strw(rscratch1, tos_addr);
 130   strw(zr, val_addr);
 131 }
 132 
 133 
 134 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 135   if (JvmtiExport::can_force_early_return()) {
 136     Label L;
 137     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 138     cbz(rscratch1, L); // if (thread->jvmti_thread_state() == NULL) exit;
 139 
 140     // Initiate earlyret handling only if it is not already being processed.
 141     // If the flag has the earlyret_processing bit set, it means that this code
 142     // is called *during* earlyret handling - we don't want to reenter.
 143     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset()));
 144     cmpw(rscratch1, JvmtiThreadState::earlyret_pending);
 145     br(Assembler::NE, L);
 146 
 147     // Call Interpreter::remove_activation_early_entry() to get the address of the
 148     // same-named entrypoint in the generated interpreter code.
 149     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 150     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset()));
 151     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1);
 152     br(r0);
 153     bind(L);
 154   }
 155 }
 156 
 157 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
 158   Register reg,
 159   int bcp_offset) {
 160   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 161   ldrh(reg, Address(rbcp, bcp_offset));
 162   rev16(reg, reg);
 163 }
 164 
 165 void InterpreterMacroAssembler::get_dispatch() {
 166   unsigned long offset;
 167   adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
 168   lea(rdispatch, Address(rdispatch, offset));
 169 }
 170 
 171 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 172                                                        int bcp_offset,
 173                                                        size_t index_size) {
 174   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 175   if (index_size == sizeof(u2)) {
 176     load_unsigned_short(index, Address(rbcp, bcp_offset));
 177   } else if (index_size == sizeof(u4)) {
 178     // assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 179     ldrw(index, Address(rbcp, bcp_offset));
 180     // Check if the secondary index definition is still ~x, otherwise
 181     // we have to change the following assembler code to calculate the
 182     // plain index.
 183     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 184     eonw(index, index, zr);  // convert to plain index
 185   } else if (index_size == sizeof(u1)) {
 186     load_unsigned_byte(index, Address(rbcp, bcp_offset));
 187   } else {
 188     ShouldNotReachHere();
 189   }
 190 }
 191 
 192 // Return
 193 // Rindex: index into constant pool
 194 // Rcache: address of cache entry - ConstantPoolCache::base_offset()
 195 //
 196 // A caller must add ConstantPoolCache::base_offset() to Rcache to get
 197 // the true address of the cache entry.
 198 //
 199 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
 200                                                            Register index,
 201                                                            int bcp_offset,
 202                                                            size_t index_size) {
 203   assert_different_registers(cache, index);
 204   assert_different_registers(cache, rcpool);
 205   get_cache_index_at_bcp(index, bcp_offset, index_size);
 206   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 207   // convert from field index to ConstantPoolCacheEntry
 208   // aarch64 already has the cache in rcpool so there is no need to
 209   // install it in cache. instead we pre-add the indexed offset to
 210   // rcpool and return it in cache. All clients of this method need to
 211   // be modified accordingly.
 212   add(cache, rcpool, index, Assembler::LSL, 5);
 213 }
 214 
 215 
 216 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 217                                                                         Register index,
 218                                                                         Register bytecode,
 219                                                                         int byte_no,
 220                                                                         int bcp_offset,
 221                                                                         size_t index_size) {
 222   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
 223   // We use a 32-bit load here since the layout of 64-bit words on
 224   // little-endian machines allow us that.
 225   // n.b. unlike x86 cache already includes the index offset
 226   lea(bytecode, Address(cache,
 227                          ConstantPoolCache::base_offset()
 228                          + ConstantPoolCacheEntry::indices_offset()));
 229   ldarw(bytecode, bytecode);
 230   const int shift_count = (1 + byte_no) * BitsPerByte;
 231   ubfx(bytecode, bytecode, shift_count, BitsPerByte);
 232 }
 233 
 234 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
 235                                                                Register tmp,
 236                                                                int bcp_offset,
 237                                                                size_t index_size) {
 238   assert(cache != tmp, "must use different register");
 239   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
 240   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 241   // convert from field index to ConstantPoolCacheEntry index
 242   // and from word offset to byte offset
 243   assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
 244   ldr(cache, Address(rfp, frame::interpreter_frame_cache_offset * wordSize));
 245   // skip past the header
 246   add(cache, cache, in_bytes(ConstantPoolCache::base_offset()));
 247   add(cache, cache, tmp, Assembler::LSL, 2 + LogBytesPerWord);  // construct pointer to cache entry
 248 }
 249 
 250 void InterpreterMacroAssembler::get_method_counters(Register method,
 251                                                     Register mcs, Label& skip) {
 252   Label has_counters;
 253   ldr(mcs, Address(method, Method::method_counters_offset()));
 254   cbnz(mcs, has_counters);
 255   call_VM(noreg, CAST_FROM_FN_PTR(address,
 256           InterpreterRuntime::build_method_counters), method);
 257   ldr(mcs, Address(method, Method::method_counters_offset()));
 258   cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory
 259   bind(has_counters);
 260 }
 261 
 262 // Load object from cpool->resolved_references(index)
 263 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 264                                            Register result, Register index) {
 265   assert_different_registers(result, index);
 266   // convert from field index to resolved_references() index and from
 267   // word index to byte offset. Since this is a java object, it can be compressed
 268   Register tmp = index;  // reuse
 269   lslw(tmp, tmp, LogBytesPerHeapOop);
 270 
 271   get_constant_pool(result);
 272   // load pointer for resolved_references[] objArray
 273   ldr(result, Address(result, ConstantPool::resolved_references_offset_in_bytes()));
 274   // JNIHandles::resolve(obj);
 275   ldr(result, Address(result, 0));
 276   // Add in the index
 277   add(result, result, tmp);
 278   load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 279 }
 280 
 281 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 282 // subtype of super_klass.
 283 //
 284 // Args:
 285 //      r0: superklass
 286 //      Rsub_klass: subklass
 287 //
 288 // Kills:
 289 //      r2, r5
 290 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 291                                                   Label& ok_is_subtype) {
 292   assert(Rsub_klass != r0, "r0 holds superklass");
 293   assert(Rsub_klass != r2, "r2 holds 2ndary super array length");
 294   assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr");
 295 
 296   // Profile the not-null value's klass.
 297   profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5
 298 
 299   // Do the check.
 300   check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2
 301 
 302   // Profile the failure of the check.
 303   profile_typecheck_failed(r2); // blows r2
 304 }
 305 
 306 // Java Expression Stack
 307 
 308 void InterpreterMacroAssembler::pop_ptr(Register r) {
 309   ldr(r, post(esp, wordSize));
 310 }
 311 
 312 void InterpreterMacroAssembler::pop_i(Register r) {
 313   ldrw(r, post(esp, wordSize));
 314 }
 315 
 316 void InterpreterMacroAssembler::pop_l(Register r) {
 317   ldr(r, post(esp, 2 * Interpreter::stackElementSize));
 318 }
 319 
 320 void InterpreterMacroAssembler::push_ptr(Register r) {
 321   str(r, pre(esp, -wordSize));
 322  }
 323 
 324 void InterpreterMacroAssembler::push_i(Register r) {
 325   str(r, pre(esp, -wordSize));
 326 }
 327 
 328 void InterpreterMacroAssembler::push_l(Register r) {
 329   str(r, pre(esp, 2 * -wordSize));
 330 }
 331 
 332 void InterpreterMacroAssembler::pop_f(FloatRegister r) {
 333   ldrs(r, post(esp, wordSize));
 334 }
 335 
 336 void InterpreterMacroAssembler::pop_d(FloatRegister r) {
 337   ldrd(r, post(esp, 2 * Interpreter::stackElementSize));
 338 }
 339 
 340 void InterpreterMacroAssembler::push_f(FloatRegister r) {
 341   strs(r, pre(esp, -wordSize));
 342 }
 343 
 344 void InterpreterMacroAssembler::push_d(FloatRegister r) {
 345   strd(r, pre(esp, 2* -wordSize));
 346 }
 347 
 348 void InterpreterMacroAssembler::pop(TosState state) {
 349   switch (state) {
 350   case atos: pop_ptr();                 break;
 351   case btos:
 352   case ztos:
 353   case ctos:
 354   case stos:
 355   case itos: pop_i();                   break;
 356   case ltos: pop_l();                   break;
 357   case ftos: pop_f();                   break;
 358   case dtos: pop_d();                   break;
 359   case vtos: /* nothing to do */        break;
 360   default:   ShouldNotReachHere();
 361   }
 362   verify_oop(r0, state);
 363 }
 364 
 365 void InterpreterMacroAssembler::push(TosState state) {
 366   verify_oop(r0, state);
 367   switch (state) {
 368   case atos: push_ptr();                break;
 369   case btos:
 370   case ztos:
 371   case ctos:
 372   case stos:
 373   case itos: push_i();                  break;
 374   case ltos: push_l();                  break;
 375   case ftos: push_f();                  break;
 376   case dtos: push_d();                  break;
 377   case vtos: /* nothing to do */        break;
 378   default  : ShouldNotReachHere();
 379   }
 380 }
 381 
 382 // Helpers for swap and dup
 383 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 384   ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 385 }
 386 
 387 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 388   str(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 389 }
 390 
 391 
 392 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 393   // set sender sp
 394   mov(r13, sp);
 395   // record last_sp
 396   str(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 397 }
 398 
 399 // Jump to from_interpreted entry of a call unless single stepping is possible
 400 // in this thread in which case we must call the i2i entry
 401 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 402   prepare_to_jump_from_interpreted();
 403 
 404   if (JvmtiExport::can_post_interpreter_events()) {
 405     Label run_compiled_code;
 406     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 407     // compiled code in threads for which the event is enabled.  Check here for
 408     // interp_only_mode if these events CAN be enabled.
 409     // interp_only is an int, on little endian it is sufficient to test the byte only
 410     // Is a cmpl faster?
 411     ldr(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
 412     cbz(rscratch1, run_compiled_code);
 413     ldr(rscratch1, Address(method, Method::interpreter_entry_offset()));
 414     br(rscratch1);
 415     bind(run_compiled_code);
 416   }
 417 
 418   ldr(rscratch1, Address(method, Method::from_interpreted_offset()));
 419   br(rscratch1);
 420 }
 421 
 422 // The following two routines provide a hook so that an implementation
 423 // can schedule the dispatch in two parts.  amd64 does not do this.
 424 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 425 }
 426 
 427 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 428     dispatch_next(state, step);
 429 }
 430 
 431 void InterpreterMacroAssembler::dispatch_base(TosState state,
 432                                               address* table,
 433                                               bool verifyoop) {
 434   if (VerifyActivationFrameSize) {
 435     Unimplemented();
 436   }
 437   if (verifyoop) {
 438     verify_oop(r0, state);
 439   }
 440   if (table == Interpreter::dispatch_table(state)) {
 441     addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state));
 442     ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3)));
 443   } else {
 444     mov(rscratch2, (address)table);
 445     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 446   }
 447   br(rscratch2);
 448 }
 449 
 450 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 451   dispatch_base(state, Interpreter::dispatch_table(state));
 452 }
 453 
 454 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 455   dispatch_base(state, Interpreter::normal_table(state));
 456 }
 457 
 458 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 459   dispatch_base(state, Interpreter::normal_table(state), false);
 460 }
 461 
 462 
 463 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
 464   // load next bytecode
 465   ldrb(rscratch1, Address(pre(rbcp, step)));
 466   dispatch_base(state, Interpreter::dispatch_table(state));
 467 }
 468 
 469 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 470   // load current bytecode
 471   ldrb(rscratch1, Address(rbcp, 0));
 472   dispatch_base(state, table);
 473 }
 474 
 475 // remove activation
 476 //
 477 // Unlock the receiver if this is a synchronized method.
 478 // Unlock any Java monitors from syncronized blocks.
 479 // Remove the activation from the stack.
 480 //
 481 // If there are locked Java monitors
 482 //    If throw_monitor_exception
 483 //       throws IllegalMonitorStateException
 484 //    Else if install_monitor_exception
 485 //       installs IllegalMonitorStateException
 486 //    Else
 487 //       no error processing
 488 void InterpreterMacroAssembler::remove_activation(
 489         TosState state,
 490         bool throw_monitor_exception,
 491         bool install_monitor_exception,
 492         bool notify_jvmdi) {
 493   // Note: Registers r3 xmm0 may be in use for the
 494   // result check if synchronized method
 495   Label unlocked, unlock, no_unlock;
 496 
 497   // get the value of _do_not_unlock_if_synchronized into r3
 498   const Address do_not_unlock_if_synchronized(rthread,
 499     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 500   ldrb(r3, do_not_unlock_if_synchronized);
 501   strb(zr, do_not_unlock_if_synchronized); // reset the flag
 502 
 503  // get method access flags
 504   ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
 505   ldr(r2, Address(r1, Method::access_flags_offset()));
 506   tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked);
 507 
 508   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 509   // is set.
 510   cbnz(r3, no_unlock);
 511 
 512   // unlock monitor
 513   push(state); // save result
 514 
 515   // BasicObjectLock will be first in list, since this is a
 516   // synchronized method. However, need to check that the object has
 517   // not been unlocked by an explicit monitorexit bytecode.
 518   const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset *
 519                         wordSize - (int) sizeof(BasicObjectLock));
 520   // We use c_rarg1 so that if we go slow path it will be the correct
 521   // register for unlock_object to pass to VM directly
 522   lea(c_rarg1, monitor); // address of first monitor
 523 
 524   ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
 525   cbnz(r0, unlock);
 526 
 527   pop(state);
 528   if (throw_monitor_exception) {
 529     // Entry already unlocked, need to throw exception
 530     call_VM(noreg, CAST_FROM_FN_PTR(address,
 531                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 532     should_not_reach_here();
 533   } else {
 534     // Monitor already unlocked during a stack unroll. If requested,
 535     // install an illegal_monitor_state_exception.  Continue with
 536     // stack unrolling.
 537     if (install_monitor_exception) {
 538       call_VM(noreg, CAST_FROM_FN_PTR(address,
 539                      InterpreterRuntime::new_illegal_monitor_state_exception));
 540     }
 541     b(unlocked);
 542   }
 543 
 544   bind(unlock);
 545   unlock_object(c_rarg1);
 546   pop(state);
 547 
 548   // Check that for block-structured locking (i.e., that all locked
 549   // objects has been unlocked)
 550   bind(unlocked);
 551 
 552   // r0: Might contain return value
 553 
 554   // Check that all monitors are unlocked
 555   {
 556     Label loop, exception, entry, restart;
 557     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 558     const Address monitor_block_top(
 559         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 560     const Address monitor_block_bot(
 561         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
 562 
 563     bind(restart);
 564     // We use c_rarg1 so that if we go slow path it will be the correct
 565     // register for unlock_object to pass to VM directly
 566     ldr(c_rarg1, monitor_block_top); // points to current entry, starting
 567                                      // with top-most entry
 568     lea(r19, monitor_block_bot);  // points to word before bottom of
 569                                   // monitor block
 570     b(entry);
 571 
 572     // Entry already locked, need to throw exception
 573     bind(exception);
 574 
 575     if (throw_monitor_exception) {
 576       // Throw exception
 577       MacroAssembler::call_VM(noreg,
 578                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 579                                    throw_illegal_monitor_state_exception));
 580       should_not_reach_here();
 581     } else {
 582       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 583       // Unlock does not block, so don't have to worry about the frame.
 584       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 585 
 586       push(state);
 587       unlock_object(c_rarg1);
 588       pop(state);
 589 
 590       if (install_monitor_exception) {
 591         call_VM(noreg, CAST_FROM_FN_PTR(address,
 592                                         InterpreterRuntime::
 593                                         new_illegal_monitor_state_exception));
 594       }
 595 
 596       b(restart);
 597     }
 598 
 599     bind(loop);
 600     // check if current entry is used
 601     ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
 602     cbnz(rscratch1, exception);
 603 
 604     add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
 605     bind(entry);
 606     cmp(c_rarg1, r19); // check if bottom reached
 607     br(Assembler::NE, loop); // if not at bottom then check this entry
 608   }
 609 
 610   bind(no_unlock);
 611 
 612   // jvmti support
 613   if (notify_jvmdi) {
 614     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
 615   } else {
 616     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 617   }
 618 
 619   // remove activation
 620   // get sender esp
 621   ldr(esp,
 622       Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
 623   // remove frame anchor
 624   leave();
 625   // If we're returning to interpreted code we will shortly be
 626   // adjusting SP to allow some space for ESP.  If we're returning to
 627   // compiled code the saved sender SP was saved in sender_sp, so this
 628   // restores it.
 629   andr(sp, esp, -16);
 630 }
 631 
 632 // Lock object
 633 //
 634 // Args:
 635 //      c_rarg1: BasicObjectLock to be used for locking
 636 //
 637 // Kills:
 638 //      r0
 639 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
 640 //      rscratch1, rscratch2 (scratch regs)
 641 void InterpreterMacroAssembler::lock_object(Register lock_reg)
 642 {
 643   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
 644   if (UseHeavyMonitors) {
 645     call_VM(noreg,
 646             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 647             lock_reg);
 648   } else {
 649     Label done;
 650 
 651     const Register swap_reg = r0;
 652     const Register tmp = c_rarg2;
 653     const Register obj_reg = c_rarg3; // Will contain the oop
 654 
 655     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
 656     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
 657     const int mark_offset = lock_offset +
 658                             BasicLock::displaced_header_offset_in_bytes();
 659 
 660     Label slow_case;
 661 
 662     // Load object pointer into obj_reg %c_rarg3
 663     ldr(obj_reg, Address(lock_reg, obj_offset));
 664 
 665     if (UseBiasedLocking) {
 666       biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp, false, done, &slow_case);
 667     }
 668 
 669     // Load (object->mark() | 1) into swap_reg
 670     ldr(rscratch1, Address(obj_reg, 0));
 671     orr(swap_reg, rscratch1, 1);
 672 
 673     // Save (object->mark() | 1) into BasicLock's displaced header
 674     str(swap_reg, Address(lock_reg, mark_offset));
 675 
 676     assert(lock_offset == 0,
 677            "displached header must be first word in BasicObjectLock");
 678 
 679     Label fail;
 680     if (PrintBiasedLockingStatistics) {
 681       Label fast;
 682       cmpxchgptr(swap_reg, lock_reg, obj_reg, rscratch1, fast, &fail);
 683       bind(fast);
 684       atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()),
 685                   rscratch2, rscratch1, tmp);
 686       b(done);
 687       bind(fail);
 688     } else {
 689       cmpxchgptr(swap_reg, lock_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
 690     }
 691 
 692     // Test if the oopMark is an obvious stack pointer, i.e.,
 693     //  1) (mark & 7) == 0, and
 694     //  2) rsp <= mark < mark + os::pagesize()
 695     //
 696     // These 3 tests can be done by evaluating the following
 697     // expression: ((mark - rsp) & (7 - os::vm_page_size())),
 698     // assuming both stack pointer and pagesize have their
 699     // least significant 3 bits clear.
 700     // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg
 701     // NOTE2: aarch64 does not like to subtract sp from rn so take a
 702     // copy
 703     mov(rscratch1, sp);
 704     sub(swap_reg, swap_reg, rscratch1);
 705     ands(swap_reg, swap_reg, (unsigned long)(7 - os::vm_page_size()));
 706 
 707     // Save the test result, for recursive case, the result is zero
 708     str(swap_reg, Address(lock_reg, mark_offset));
 709 
 710     if (PrintBiasedLockingStatistics) {
 711       br(Assembler::NE, slow_case);
 712       atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()),
 713                   rscratch2, rscratch1, tmp);
 714     }
 715     br(Assembler::EQ, done);
 716 
 717     bind(slow_case);
 718 
 719     // Call the runtime routine for slow case
 720     call_VM(noreg,
 721             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 722             lock_reg);
 723 
 724     bind(done);
 725   }
 726 }
 727 
 728 
 729 // Unlocks an object. Used in monitorexit bytecode and
 730 // remove_activation.  Throws an IllegalMonitorException if object is
 731 // not locked by current thread.
 732 //
 733 // Args:
 734 //      c_rarg1: BasicObjectLock for lock
 735 //
 736 // Kills:
 737 //      r0
 738 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
 739 //      rscratch1, rscratch2 (scratch regs)
 740 void InterpreterMacroAssembler::unlock_object(Register lock_reg)
 741 {
 742   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
 743 
 744   if (UseHeavyMonitors) {
 745     call_VM(noreg,
 746             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 747             lock_reg);
 748   } else {
 749     Label done;
 750 
 751     const Register swap_reg   = r0;
 752     const Register header_reg = c_rarg2;  // Will contain the old oopMark
 753     const Register obj_reg    = c_rarg3;  // Will contain the oop
 754 
 755     save_bcp(); // Save in case of exception
 756 
 757     // Convert from BasicObjectLock structure to object and BasicLock
 758     // structure Store the BasicLock address into %r0
 759     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
 760 
 761     // Load oop into obj_reg(%c_rarg3)
 762     ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
 763 
 764     // Free entry
 765     str(zr, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
 766 
 767     if (UseBiasedLocking) {
 768       biased_locking_exit(obj_reg, header_reg, done);
 769     }
 770 
 771     // Load the old header from BasicLock structure
 772     ldr(header_reg, Address(swap_reg,
 773                             BasicLock::displaced_header_offset_in_bytes()));
 774 
 775     // Test for recursion
 776     cbz(header_reg, done);
 777 
 778     // Atomic swap back the old header
 779     cmpxchgptr(swap_reg, header_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
 780 
 781     // Call the runtime routine for slow case.
 782     str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // restore obj
 783     call_VM(noreg,
 784             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 785             lock_reg);
 786 
 787     bind(done);
 788 
 789     restore_bcp();
 790   }
 791 }
 792 
 793 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
 794                                                          Label& zero_continue) {
 795   assert(ProfileInterpreter, "must be profiling interpreter");
 796   ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 797   cbz(mdp, zero_continue);
 798 }
 799 
 800 // Set the method data pointer for the current bcp.
 801 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
 802   assert(ProfileInterpreter, "must be profiling interpreter");
 803   Label set_mdp;
 804   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 805 
 806   // Test MDO to avoid the call if it is NULL.
 807   ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset())));
 808   cbz(r0, set_mdp);
 809   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp);
 810   // r0: mdi
 811   // mdo is guaranteed to be non-zero here, we checked for it before the call.
 812   ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
 813   lea(r1, Address(r1, in_bytes(MethodData::data_offset())));
 814   add(r0, r1, r0);
 815   str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 816   bind(set_mdp);
 817   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 818 }
 819 
 820 void InterpreterMacroAssembler::verify_method_data_pointer() {
 821   assert(ProfileInterpreter, "must be profiling interpreter");
 822 #ifdef ASSERT
 823   Label verify_continue;
 824   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 825   stp(r2, r3, Address(pre(sp, -2 * wordSize)));
 826   test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue
 827   get_method(r1);
 828 
 829   // If the mdp is valid, it will point to a DataLayout header which is
 830   // consistent with the bcp.  The converse is highly probable also.
 831   ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset())));
 832   ldr(rscratch1, Address(r1, Method::const_offset()));
 833   add(r2, r2, rscratch1, Assembler::LSL);
 834   lea(r2, Address(r2, ConstMethod::codes_offset()));
 835   cmp(r2, rbcp);
 836   br(Assembler::EQ, verify_continue);
 837   // r1: method
 838   // rbcp: bcp // rbcp == 22
 839   // r3: mdp
 840   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
 841                r1, rbcp, r3);
 842   bind(verify_continue);
 843   ldp(r2, r3, Address(post(sp, 2 * wordSize)));
 844   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 845 #endif // ASSERT
 846 }
 847 
 848 
 849 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
 850                                                 int constant,
 851                                                 Register value) {
 852   assert(ProfileInterpreter, "must be profiling interpreter");
 853   Address data(mdp_in, constant);
 854   str(value, data);
 855 }
 856 
 857 
 858 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 859                                                       int constant,
 860                                                       bool decrement) {
 861   increment_mdp_data_at(mdp_in, noreg, constant, decrement);
 862 }
 863 
 864 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 865                                                       Register reg,
 866                                                       int constant,
 867                                                       bool decrement) {
 868   assert(ProfileInterpreter, "must be profiling interpreter");
 869   // %%% this does 64bit counters at best it is wasting space
 870   // at worst it is a rare bug when counters overflow
 871 
 872   assert_different_registers(rscratch2, rscratch1, mdp_in, reg);
 873 
 874   Address addr1(mdp_in, constant);
 875   Address addr2(rscratch2, reg, Address::lsl(0));
 876   Address &addr = addr1;
 877   if (reg != noreg) {
 878     lea(rscratch2, addr1);
 879     addr = addr2;
 880   }
 881 
 882   if (decrement) {
 883     // Decrement the register.  Set condition codes.
 884     // Intel does this
 885     // addptr(data, (int32_t) -DataLayout::counter_increment);
 886     // If the decrement causes the counter to overflow, stay negative
 887     // Label L;
 888     // jcc(Assembler::negative, L);
 889     // addptr(data, (int32_t) DataLayout::counter_increment);
 890     // so we do this
 891     ldr(rscratch1, addr);
 892     subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment);
 893     Label L;
 894     br(Assembler::LO, L);       // skip store if counter underflow
 895     str(rscratch1, addr);
 896     bind(L);
 897   } else {
 898     assert(DataLayout::counter_increment == 1,
 899            "flow-free idiom only works with 1");
 900     // Intel does this
 901     // Increment the register.  Set carry flag.
 902     // addptr(data, DataLayout::counter_increment);
 903     // If the increment causes the counter to overflow, pull back by 1.
 904     // sbbptr(data, (int32_t)0);
 905     // so we do this
 906     ldr(rscratch1, addr);
 907     adds(rscratch1, rscratch1, DataLayout::counter_increment);
 908     Label L;
 909     br(Assembler::CS, L);       // skip store if counter overflow
 910     str(rscratch1, addr);
 911     bind(L);
 912   }
 913 }
 914 
 915 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
 916                                                 int flag_byte_constant) {
 917   assert(ProfileInterpreter, "must be profiling interpreter");
 918   int header_offset = in_bytes(DataLayout::header_offset());
 919   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
 920   // Set the flag
 921   ldr(rscratch1, Address(mdp_in, header_offset));
 922   orr(rscratch1, rscratch1, header_bits);
 923   str(rscratch1, Address(mdp_in, header_offset));
 924 }
 925 
 926 
 927 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
 928                                                  int offset,
 929                                                  Register value,
 930                                                  Register test_value_out,
 931                                                  Label& not_equal_continue) {
 932   assert(ProfileInterpreter, "must be profiling interpreter");
 933   if (test_value_out == noreg) {
 934     ldr(rscratch1, Address(mdp_in, offset));
 935     cmp(value, rscratch1);
 936   } else {
 937     // Put the test value into a register, so caller can use it:
 938     ldr(test_value_out, Address(mdp_in, offset));
 939     cmp(value, test_value_out);
 940   }
 941   br(Assembler::NE, not_equal_continue);
 942 }
 943 
 944 
 945 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 946                                                      int offset_of_disp) {
 947   assert(ProfileInterpreter, "must be profiling interpreter");
 948   ldr(rscratch1, Address(mdp_in, offset_of_disp));
 949   add(mdp_in, mdp_in, rscratch1, LSL);
 950   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 951 }
 952 
 953 
 954 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 955                                                      Register reg,
 956                                                      int offset_of_disp) {
 957   assert(ProfileInterpreter, "must be profiling interpreter");
 958   lea(rscratch1, Address(mdp_in, offset_of_disp));
 959   ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0)));
 960   add(mdp_in, mdp_in, rscratch1, LSL);
 961   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 962 }
 963 
 964 
 965 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
 966                                                        int constant) {
 967   assert(ProfileInterpreter, "must be profiling interpreter");
 968   add(mdp_in, mdp_in, (unsigned)constant);
 969   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 970 }
 971 
 972 
 973 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
 974   assert(ProfileInterpreter, "must be profiling interpreter");
 975   // save/restore across call_VM
 976   stp(zr, return_bci, Address(pre(sp, -2 * wordSize)));
 977   call_VM(noreg,
 978           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
 979           return_bci);
 980   ldp(zr, return_bci, Address(post(sp, 2 * wordSize)));
 981 }
 982 
 983 
 984 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
 985                                                      Register bumped_count) {
 986   if (ProfileInterpreter) {
 987     Label profile_continue;
 988 
 989     // If no method data exists, go to profile_continue.
 990     // Otherwise, assign to mdp
 991     test_method_data_pointer(mdp, profile_continue);
 992 
 993     // We are taking a branch.  Increment the taken count.
 994     // We inline increment_mdp_data_at to return bumped_count in a register
 995     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
 996     Address data(mdp, in_bytes(JumpData::taken_offset()));
 997     ldr(bumped_count, data);
 998     assert(DataLayout::counter_increment == 1,
 999             "flow-free idiom only works with 1");
1000     // Intel does this to catch overflow
1001     // addptr(bumped_count, DataLayout::counter_increment);
1002     // sbbptr(bumped_count, 0);
1003     // so we do this
1004     adds(bumped_count, bumped_count, DataLayout::counter_increment);
1005     Label L;
1006     br(Assembler::CS, L);       // skip store if counter overflow
1007     str(bumped_count, data);
1008     bind(L);
1009     // The method data pointer needs to be updated to reflect the new target.
1010     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1011     bind(profile_continue);
1012   }
1013 }
1014 
1015 
1016 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1017   if (ProfileInterpreter) {
1018     Label profile_continue;
1019 
1020     // If no method data exists, go to profile_continue.
1021     test_method_data_pointer(mdp, profile_continue);
1022 
1023     // We are taking a branch.  Increment the not taken count.
1024     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1025 
1026     // The method data pointer needs to be updated to correspond to
1027     // the next bytecode
1028     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1029     bind(profile_continue);
1030   }
1031 }
1032 
1033 
1034 void InterpreterMacroAssembler::profile_call(Register mdp) {
1035   if (ProfileInterpreter) {
1036     Label profile_continue;
1037 
1038     // If no method data exists, go to profile_continue.
1039     test_method_data_pointer(mdp, profile_continue);
1040 
1041     // We are making a call.  Increment the count.
1042     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1043 
1044     // The method data pointer needs to be updated to reflect the new target.
1045     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1046     bind(profile_continue);
1047   }
1048 }
1049 
1050 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1051   if (ProfileInterpreter) {
1052     Label profile_continue;
1053 
1054     // If no method data exists, go to profile_continue.
1055     test_method_data_pointer(mdp, profile_continue);
1056 
1057     // We are making a call.  Increment the count.
1058     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1059 
1060     // The method data pointer needs to be updated to reflect the new target.
1061     update_mdp_by_constant(mdp,
1062                            in_bytes(VirtualCallData::
1063                                     virtual_call_data_size()));
1064     bind(profile_continue);
1065   }
1066 }
1067 
1068 
1069 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1070                                                      Register mdp,
1071                                                      Register reg2,
1072                                                      bool receiver_can_be_null) {
1073   if (ProfileInterpreter) {
1074     Label profile_continue;
1075 
1076     // If no method data exists, go to profile_continue.
1077     test_method_data_pointer(mdp, profile_continue);
1078 
1079     Label skip_receiver_profile;
1080     if (receiver_can_be_null) {
1081       Label not_null;
1082       // We are making a call.  Increment the count for null receiver.
1083       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1084       b(skip_receiver_profile);
1085       bind(not_null);
1086     }
1087 
1088     // Record the receiver type.
1089     record_klass_in_profile(receiver, mdp, reg2, true);
1090     bind(skip_receiver_profile);
1091 
1092     // The method data pointer needs to be updated to reflect the new target.
1093 #if INCLUDE_JVMCI
1094     if (MethodProfileWidth == 0) {
1095       update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1096     }
1097 #else // INCLUDE_JVMCI
1098     update_mdp_by_constant(mdp,
1099                            in_bytes(VirtualCallData::
1100                                     virtual_call_data_size()));
1101 #endif // INCLUDE_JVMCI
1102     bind(profile_continue);
1103   }
1104 }
1105 
1106 #if INCLUDE_JVMCI
1107 void InterpreterMacroAssembler::profile_called_method(Register method, Register mdp, Register reg2) {
1108   assert_different_registers(method, mdp, reg2);
1109   if (ProfileInterpreter && MethodProfileWidth > 0) {
1110     Label profile_continue;
1111 
1112     // If no method data exists, go to profile_continue.
1113     test_method_data_pointer(mdp, profile_continue);
1114 
1115     Label done;
1116     record_item_in_profile_helper(method, mdp, reg2, 0, done, MethodProfileWidth,
1117       &VirtualCallData::method_offset, &VirtualCallData::method_count_offset, in_bytes(VirtualCallData::nonprofiled_receiver_count_offset()));
1118     bind(done);
1119 
1120     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1121     bind(profile_continue);
1122   }
1123 }
1124 #endif // INCLUDE_JVMCI
1125 
1126 // This routine creates a state machine for updating the multi-row
1127 // type profile at a virtual call site (or other type-sensitive bytecode).
1128 // The machine visits each row (of receiver/count) until the receiver type
1129 // is found, or until it runs out of rows.  At the same time, it remembers
1130 // the location of the first empty row.  (An empty row records null for its
1131 // receiver, and can be allocated for a newly-observed receiver type.)
1132 // Because there are two degrees of freedom in the state, a simple linear
1133 // search will not work; it must be a decision tree.  Hence this helper
1134 // function is recursive, to generate the required tree structured code.
1135 // It's the interpreter, so we are trading off code space for speed.
1136 // See below for example code.
1137 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1138                                         Register receiver, Register mdp,
1139                                         Register reg2, int start_row,
1140                                         Label& done, bool is_virtual_call) {
1141   if (TypeProfileWidth == 0) {
1142     if (is_virtual_call) {
1143       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1144     }
1145 #if INCLUDE_JVMCI
1146     else if (EnableJVMCI) {
1147       increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()));
1148     }
1149 #endif // INCLUDE_JVMCI
1150   } else {
1151     int non_profiled_offset = -1;
1152     if (is_virtual_call) {
1153       non_profiled_offset = in_bytes(CounterData::count_offset());
1154     }
1155 #if INCLUDE_JVMCI
1156     else if (EnableJVMCI) {
1157       non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
1158     }
1159 #endif // INCLUDE_JVMCI
1160 
1161     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1162         &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
1163   }
1164 }
1165 
1166 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1167                                         Register reg2, int start_row, Label& done, int total_rows,
1168                                         OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
1169                                         int non_profiled_offset) {
1170   int last_row = total_rows - 1;
1171   assert(start_row <= last_row, "must be work left to do");
1172   // Test this row for both the item and for null.
1173   // Take any of three different outcomes:
1174   //   1. found item => increment count and goto done
1175   //   2. found null => keep looking for case 1, maybe allocate this cell
1176   //   3. found something else => keep looking for cases 1 and 2
1177   // Case 3 is handled by a recursive call.
1178   for (int row = start_row; row <= last_row; row++) {
1179     Label next_test;
1180     bool test_for_null_also = (row == start_row);
1181 
1182     // See if the item is item[n].
1183     int item_offset = in_bytes(item_offset_fn(row));
1184     test_mdp_data_at(mdp, item_offset, item,
1185                      (test_for_null_also ? reg2 : noreg),
1186                      next_test);
1187     // (Reg2 now contains the item from the CallData.)
1188 
1189     // The item is item[n].  Increment count[n].
1190     int count_offset = in_bytes(item_count_offset_fn(row));
1191     increment_mdp_data_at(mdp, count_offset);
1192     b(done);
1193     bind(next_test);
1194 
1195     if (test_for_null_also) {
1196       Label found_null;
1197       // Failed the equality check on item[n]...  Test for null.
1198       if (start_row == last_row) {
1199         // The only thing left to do is handle the null case.
1200         if (non_profiled_offset >= 0) {
1201           cbz(reg2, found_null);
1202           // Item did not match any saved item and there is no empty row for it.
1203           // Increment total counter to indicate polymorphic case.
1204           increment_mdp_data_at(mdp, non_profiled_offset);
1205           b(done);
1206           bind(found_null);
1207         } else {
1208           cbnz(reg2, done);
1209         }
1210         break;
1211       }
1212       // Since null is rare, make it be the branch-taken case.
1213       cbz(reg2, found_null);
1214 
1215       // Put all the "Case 3" tests here.
1216       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1217         item_offset_fn, item_count_offset_fn, non_profiled_offset);
1218 
1219       // Found a null.  Keep searching for a matching item,
1220       // but remember that this is an empty (unused) slot.
1221       bind(found_null);
1222     }
1223   }
1224 
1225   // In the fall-through case, we found no matching item, but we
1226   // observed the item[start_row] is NULL.
1227 
1228   // Fill in the item field and increment the count.
1229   int item_offset = in_bytes(item_offset_fn(start_row));
1230   set_mdp_data_at(mdp, item_offset, item);
1231   int count_offset = in_bytes(item_count_offset_fn(start_row));
1232   mov(reg2, DataLayout::counter_increment);
1233   set_mdp_data_at(mdp, count_offset, reg2);
1234   if (start_row > 0) {
1235     b(done);
1236   }
1237 }
1238 
1239 // Example state machine code for three profile rows:
1240 //   // main copy of decision tree, rooted at row[1]
1241 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1242 //   if (row[0].rec != NULL) {
1243 //     // inner copy of decision tree, rooted at row[1]
1244 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1245 //     if (row[1].rec != NULL) {
1246 //       // degenerate decision tree, rooted at row[2]
1247 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1248 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1249 //       row[2].init(rec); goto done;
1250 //     } else {
1251 //       // remember row[1] is empty
1252 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1253 //       row[1].init(rec); goto done;
1254 //     }
1255 //   } else {
1256 //     // remember row[0] is empty
1257 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1258 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1259 //     row[0].init(rec); goto done;
1260 //   }
1261 //   done:
1262 
1263 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1264                                                         Register mdp, Register reg2,
1265                                                         bool is_virtual_call) {
1266   assert(ProfileInterpreter, "must be profiling");
1267   Label done;
1268 
1269   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1270 
1271   bind (done);
1272 }
1273 
1274 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1275                                             Register mdp) {
1276   if (ProfileInterpreter) {
1277     Label profile_continue;
1278     uint row;
1279 
1280     // If no method data exists, go to profile_continue.
1281     test_method_data_pointer(mdp, profile_continue);
1282 
1283     // Update the total ret count.
1284     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1285 
1286     for (row = 0; row < RetData::row_limit(); row++) {
1287       Label next_test;
1288 
1289       // See if return_bci is equal to bci[n]:
1290       test_mdp_data_at(mdp,
1291                        in_bytes(RetData::bci_offset(row)),
1292                        return_bci, noreg,
1293                        next_test);
1294 
1295       // return_bci is equal to bci[n].  Increment the count.
1296       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1297 
1298       // The method data pointer needs to be updated to reflect the new target.
1299       update_mdp_by_offset(mdp,
1300                            in_bytes(RetData::bci_displacement_offset(row)));
1301       b(profile_continue);
1302       bind(next_test);
1303     }
1304 
1305     update_mdp_for_ret(return_bci);
1306 
1307     bind(profile_continue);
1308   }
1309 }
1310 
1311 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1312   if (ProfileInterpreter) {
1313     Label profile_continue;
1314 
1315     // If no method data exists, go to profile_continue.
1316     test_method_data_pointer(mdp, profile_continue);
1317 
1318     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1319 
1320     // The method data pointer needs to be updated.
1321     int mdp_delta = in_bytes(BitData::bit_data_size());
1322     if (TypeProfileCasts) {
1323       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1324     }
1325     update_mdp_by_constant(mdp, mdp_delta);
1326 
1327     bind(profile_continue);
1328   }
1329 }
1330 
1331 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1332   if (ProfileInterpreter && TypeProfileCasts) {
1333     Label profile_continue;
1334 
1335     // If no method data exists, go to profile_continue.
1336     test_method_data_pointer(mdp, profile_continue);
1337 
1338     int count_offset = in_bytes(CounterData::count_offset());
1339     // Back up the address, since we have already bumped the mdp.
1340     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1341 
1342     // *Decrement* the counter.  We expect to see zero or small negatives.
1343     increment_mdp_data_at(mdp, count_offset, true);
1344 
1345     bind (profile_continue);
1346   }
1347 }
1348 
1349 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1350   if (ProfileInterpreter) {
1351     Label profile_continue;
1352 
1353     // If no method data exists, go to profile_continue.
1354     test_method_data_pointer(mdp, profile_continue);
1355 
1356     // The method data pointer needs to be updated.
1357     int mdp_delta = in_bytes(BitData::bit_data_size());
1358     if (TypeProfileCasts) {
1359       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1360 
1361       // Record the object type.
1362       record_klass_in_profile(klass, mdp, reg2, false);
1363     }
1364     update_mdp_by_constant(mdp, mdp_delta);
1365 
1366     bind(profile_continue);
1367   }
1368 }
1369 
1370 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1371   if (ProfileInterpreter) {
1372     Label profile_continue;
1373 
1374     // If no method data exists, go to profile_continue.
1375     test_method_data_pointer(mdp, profile_continue);
1376 
1377     // Update the default case count
1378     increment_mdp_data_at(mdp,
1379                           in_bytes(MultiBranchData::default_count_offset()));
1380 
1381     // The method data pointer needs to be updated.
1382     update_mdp_by_offset(mdp,
1383                          in_bytes(MultiBranchData::
1384                                   default_displacement_offset()));
1385 
1386     bind(profile_continue);
1387   }
1388 }
1389 
1390 void InterpreterMacroAssembler::profile_switch_case(Register index,
1391                                                     Register mdp,
1392                                                     Register reg2) {
1393   if (ProfileInterpreter) {
1394     Label profile_continue;
1395 
1396     // If no method data exists, go to profile_continue.
1397     test_method_data_pointer(mdp, profile_continue);
1398 
1399     // Build the base (index * per_case_size_in_bytes()) +
1400     // case_array_offset_in_bytes()
1401     movw(reg2, in_bytes(MultiBranchData::per_case_size()));
1402     movw(rscratch1, in_bytes(MultiBranchData::case_array_offset()));
1403     Assembler::maddw(index, index, reg2, rscratch1);
1404 
1405     // Update the case count
1406     increment_mdp_data_at(mdp,
1407                           index,
1408                           in_bytes(MultiBranchData::relative_count_offset()));
1409 
1410     // The method data pointer needs to be updated.
1411     update_mdp_by_offset(mdp,
1412                          index,
1413                          in_bytes(MultiBranchData::
1414                                   relative_displacement_offset()));
1415 
1416     bind(profile_continue);
1417   }
1418 }
1419 
1420 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1421   if (state == atos) {
1422     MacroAssembler::verify_oop(reg);
1423   }
1424 }
1425 
1426 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; }
1427 
1428 
1429 void InterpreterMacroAssembler::notify_method_entry() {
1430   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1431   // track stack depth.  If it is possible to enter interp_only_mode we add
1432   // the code to check if the event should be sent.
1433   if (JvmtiExport::can_post_interpreter_events()) {
1434     Label L;
1435     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1436     cbzw(r3, L);
1437     call_VM(noreg, CAST_FROM_FN_PTR(address,
1438                                     InterpreterRuntime::post_method_entry));
1439     bind(L);
1440   }
1441 
1442   {
1443     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1444     get_method(c_rarg1);
1445     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1446                  rthread, c_rarg1);
1447   }
1448 
1449   // RedefineClasses() tracing support for obsolete method entry
1450   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1451     get_method(c_rarg1);
1452     call_VM_leaf(
1453       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1454       rthread, c_rarg1);
1455   }
1456 
1457  }
1458 
1459 
1460 void InterpreterMacroAssembler::notify_method_exit(
1461     TosState state, NotifyMethodExitMode mode) {
1462   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1463   // track stack depth.  If it is possible to enter interp_only_mode we add
1464   // the code to check if the event should be sent.
1465   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1466     Label L;
1467     // Note: frame::interpreter_frame_result has a dependency on how the
1468     // method result is saved across the call to post_method_exit. If this
1469     // is changed then the interpreter_frame_result implementation will
1470     // need to be updated too.
1471 
1472     // template interpreter will leave the result on the top of the stack.
1473     push(state);
1474     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1475     cbz(r3, L);
1476     call_VM(noreg,
1477             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1478     bind(L);
1479     pop(state);
1480   }
1481 
1482   {
1483     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1484     push(state);
1485     get_method(c_rarg1);
1486     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1487                  rthread, c_rarg1);
1488     pop(state);
1489   }
1490 }
1491 
1492 
1493 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1494 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1495                                                         int increment, Address mask,
1496                                                         Register scratch, Register scratch2,
1497                                                         bool preloaded, Condition cond,
1498                                                         Label* where) {
1499   if (!preloaded) {
1500     ldrw(scratch, counter_addr);
1501   }
1502   add(scratch, scratch, increment);
1503   strw(scratch, counter_addr);
1504   ldrw(scratch2, mask);
1505   ands(scratch, scratch, scratch2);
1506   br(cond, *where);
1507 }
1508 
1509 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
1510                                                   int number_of_arguments) {
1511   // interpreter specific
1512   //
1513   // Note: No need to save/restore rbcp & rlocals pointer since these
1514   //       are callee saved registers and no blocking/ GC can happen
1515   //       in leaf calls.
1516 #ifdef ASSERT
1517   {
1518     Label L;
1519     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1520     cbz(rscratch1, L);
1521     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1522          " last_sp != NULL");
1523     bind(L);
1524   }
1525 #endif /* ASSERT */
1526   // super call
1527   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1528 }
1529 
1530 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
1531                                              Register java_thread,
1532                                              Register last_java_sp,
1533                                              address  entry_point,
1534                                              int      number_of_arguments,
1535                                              bool     check_exceptions) {
1536   // interpreter specific
1537   //
1538   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
1539   //       really make a difference for these runtime calls, since they are
1540   //       slow anyway. Btw., bcp must be saved/restored since it may change
1541   //       due to GC.
1542   // assert(java_thread == noreg , "not expecting a precomputed java thread");
1543   save_bcp();
1544 #ifdef ASSERT
1545   {
1546     Label L;
1547     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1548     cbz(rscratch1, L);
1549     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1550          " last_sp != NULL");
1551     bind(L);
1552   }
1553 #endif /* ASSERT */
1554   // super call
1555   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
1556                                entry_point, number_of_arguments,
1557                      check_exceptions);
1558 // interpreter specific
1559   restore_bcp();
1560   restore_locals();
1561 }
1562 
1563 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
1564   Label update, next, none;
1565 
1566   verify_oop(obj);
1567 
1568   cbnz(obj, update);
1569   orptr(mdo_addr, TypeEntries::null_seen);
1570   b(next);
1571 
1572   bind(update);
1573   load_klass(obj, obj);
1574 
1575   ldr(rscratch1, mdo_addr);
1576   eor(obj, obj, rscratch1);
1577   tst(obj, TypeEntries::type_klass_mask);
1578   br(Assembler::EQ, next); // klass seen before, nothing to
1579                            // do. The unknown bit may have been
1580                            // set already but no need to check.
1581 
1582   tbnz(obj, exact_log2(TypeEntries::type_unknown), next);
1583   // already unknown. Nothing to do anymore.
1584 
1585   ldr(rscratch1, mdo_addr);
1586   cbz(rscratch1, none);
1587   cmp(rscratch1, TypeEntries::null_seen);
1588   br(Assembler::EQ, none);
1589   // There is a chance that the checks above (re-reading profiling
1590   // data from memory) fail if another thread has just set the
1591   // profiling to this obj's klass
1592   ldr(rscratch1, mdo_addr);
1593   eor(obj, obj, rscratch1);
1594   tst(obj, TypeEntries::type_klass_mask);
1595   br(Assembler::EQ, next);
1596 
1597   // different than before. Cannot keep accurate profile.
1598   orptr(mdo_addr, TypeEntries::type_unknown);
1599   b(next);
1600 
1601   bind(none);
1602   // first time here. Set profile type.
1603   str(obj, mdo_addr);
1604 
1605   bind(next);
1606 }
1607 
1608 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1609   if (!ProfileInterpreter) {
1610     return;
1611   }
1612 
1613   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1614     Label profile_continue;
1615 
1616     test_method_data_pointer(mdp, profile_continue);
1617 
1618     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1619 
1620     ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
1621     cmp(rscratch1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
1622     br(Assembler::NE, profile_continue);
1623 
1624     if (MethodData::profile_arguments()) {
1625       Label done;
1626       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1627 
1628       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1629         if (i > 0 || MethodData::profile_return()) {
1630           // If return value type is profiled we may have no argument to profile
1631           ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1632           sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count());
1633           cmp(tmp, TypeStackSlotEntries::per_arg_count());
1634           add(rscratch1, mdp, off_to_args);
1635           br(Assembler::LT, done);
1636         }
1637         ldr(tmp, Address(callee, Method::const_offset()));
1638         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1639         // stack offset o (zero based) from the start of the argument
1640         // list, for n arguments translates into offset n - o - 1 from
1641         // the end of the argument list
1642         ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))));
1643         sub(tmp, tmp, rscratch1);
1644         sub(tmp, tmp, 1);
1645         Address arg_addr = argument_address(tmp);
1646         ldr(tmp, arg_addr);
1647 
1648         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i)));
1649         profile_obj_type(tmp, mdo_arg_addr);
1650 
1651         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1652         off_to_args += to_add;
1653       }
1654 
1655       if (MethodData::profile_return()) {
1656         ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1657         sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1658       }
1659 
1660       add(rscratch1, mdp, off_to_args);
1661       bind(done);
1662       mov(mdp, rscratch1);
1663 
1664       if (MethodData::profile_return()) {
1665         // We're right after the type profile for the last
1666         // argument. tmp is the number of cells left in the
1667         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1668         // if there's a return to profile.
1669         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1670         add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size));
1671       }
1672       str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1673     } else {
1674       assert(MethodData::profile_return(), "either profile call args or call ret");
1675       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1676     }
1677 
1678     // mdp points right after the end of the
1679     // CallTypeData/VirtualCallTypeData, right after the cells for the
1680     // return value type if there's one
1681 
1682     bind(profile_continue);
1683   }
1684 }
1685 
1686 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1687   assert_different_registers(mdp, ret, tmp, rbcp);
1688   if (ProfileInterpreter && MethodData::profile_return()) {
1689     Label profile_continue, done;
1690 
1691     test_method_data_pointer(mdp, profile_continue);
1692 
1693     if (MethodData::profile_return_jsr292_only()) {
1694       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
1695 
1696       // If we don't profile all invoke bytecodes we must make sure
1697       // it's a bytecode we indeed profile. We can't go back to the
1698       // begining of the ProfileData we intend to update to check its
1699       // type because we're right after it and we don't known its
1700       // length
1701       Label do_profile;
1702       ldrb(rscratch1, Address(rbcp, 0));
1703       cmp(rscratch1, Bytecodes::_invokedynamic);
1704       br(Assembler::EQ, do_profile);
1705       cmp(rscratch1, Bytecodes::_invokehandle);
1706       br(Assembler::EQ, do_profile);
1707       get_method(tmp);
1708       ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset_in_bytes()));
1709       cmp(rscratch1, vmIntrinsics::_compiledLambdaForm);
1710       br(Assembler::NE, profile_continue);
1711 
1712       bind(do_profile);
1713     }
1714 
1715     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1716     mov(tmp, ret);
1717     profile_obj_type(tmp, mdo_ret_addr);
1718 
1719     bind(profile_continue);
1720   }
1721 }
1722 
1723 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1724   if (ProfileInterpreter && MethodData::profile_parameters()) {
1725     Label profile_continue, done;
1726 
1727     test_method_data_pointer(mdp, profile_continue);
1728 
1729     // Load the offset of the area within the MDO used for
1730     // parameters. If it's negative we're not profiling any parameters
1731     ldr(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1732     cmp(tmp1, 0u);
1733     br(Assembler::LT, profile_continue);
1734 
1735     // Compute a pointer to the area for parameters from the offset
1736     // and move the pointer to the slot for the last
1737     // parameters. Collect profiling from last parameter down.
1738     // mdo start + parameters offset + array length - 1
1739     add(mdp, mdp, tmp1);
1740     ldr(tmp1, Address(mdp, ArrayData::array_len_offset()));
1741     sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1742 
1743     Label loop;
1744     bind(loop);
1745 
1746     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1747     int type_base = in_bytes(ParametersTypeData::type_offset(0));
1748     int per_arg_scale = exact_log2(DataLayout::cell_size);
1749     add(rscratch1, mdp, off_base);
1750     add(rscratch2, mdp, type_base);
1751 
1752     Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale));
1753     Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale));
1754 
1755     // load offset on the stack from the slot for this parameter
1756     ldr(tmp2, arg_off);
1757     neg(tmp2, tmp2);
1758     // read the parameter from the local area
1759     ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize)));
1760 
1761     // profile the parameter
1762     profile_obj_type(tmp2, arg_type);
1763 
1764     // go to next parameter
1765     subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1766     br(Assembler::GE, loop);
1767 
1768     bind(profile_continue);
1769   }
1770 }