1 /*
   2  * Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "interp_masm_aarch64.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterRuntime.hpp"
  30 #include "logging/log.hpp"
  31 #include "oops/arrayOop.hpp"
  32 #include "oops/markOop.hpp"
  33 #include "oops/methodData.hpp"
  34 #include "oops/method.hpp"
  35 #include "prims/jvmtiExport.hpp"
  36 #include "prims/jvmtiThreadState.hpp"
  37 #include "runtime/basicLock.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 
  42 
  43 void InterpreterMacroAssembler::narrow(Register result) {
  44 
  45   // Get method->_constMethod->_result_type
  46   ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
  47   ldr(rscratch1, Address(rscratch1, Method::const_offset()));
  48   ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset()));
  49 
  50   Label done, notBool, notByte, notChar;
  51 
  52   // common case first
  53   cmpw(rscratch1, T_INT);
  54   br(Assembler::EQ, done);
  55 
  56   // mask integer result to narrower return type.
  57   cmpw(rscratch1, T_BOOLEAN);
  58   br(Assembler::NE, notBool);
  59   andw(result, result, 0x1);
  60   b(done);
  61 
  62   bind(notBool);
  63   cmpw(rscratch1, T_BYTE);
  64   br(Assembler::NE, notByte);
  65   sbfx(result, result, 0, 8);
  66   b(done);
  67 
  68   bind(notByte);
  69   cmpw(rscratch1, T_CHAR);
  70   br(Assembler::NE, notChar);
  71   ubfx(result, result, 0, 16);  // truncate upper 16 bits
  72   b(done);
  73 
  74   bind(notChar);
  75   sbfx(result, result, 0, 16);     // sign-extend short
  76 
  77   // Nothing to do for T_INT
  78   bind(done);
  79 }
  80 
  81 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  82   assert(entry, "Entry must have been generated by now");
  83   b(entry);
  84 }
  85 
  86 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
  87   if (JvmtiExport::can_pop_frame()) {
  88     Label L;
  89     // Initiate popframe handling only if it is not already being
  90     // processed.  If the flag has the popframe_processing bit set, it
  91     // means that this code is called *during* popframe handling - we
  92     // don't want to reenter.
  93     // This method is only called just after the call into the vm in
  94     // call_VM_base, so the arg registers are available.
  95     ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
  96     tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L);
  97     tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L);
  98     // Call Interpreter::remove_activation_preserving_args_entry() to get the
  99     // address of the same-named entrypoint in the generated interpreter code.
 100     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 101     br(r0);
 102     bind(L);
 103   }
 104 }
 105 
 106 
 107 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 108   ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 109   const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset());
 110   const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset());
 111   const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset());
 112   switch (state) {
 113     case atos: ldr(r0, oop_addr);
 114                str(zr, oop_addr);
 115                verify_oop(r0, state);               break;
 116     case ltos: ldr(r0, val_addr);                   break;
 117     case btos:                                   // fall through
 118     case ztos:                                   // fall through
 119     case ctos:                                   // fall through
 120     case stos:                                   // fall through
 121     case itos: ldrw(r0, val_addr);                  break;
 122     case ftos: ldrs(v0, val_addr);                  break;
 123     case dtos: ldrd(v0, val_addr);                  break;
 124     case vtos: /* nothing to do */                  break;
 125     default  : ShouldNotReachHere();
 126   }
 127   // Clean up tos value in the thread object
 128   movw(rscratch1, (int) ilgl);
 129   strw(rscratch1, tos_addr);
 130   strw(zr, val_addr);
 131 }
 132 
 133 
 134 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 135   if (JvmtiExport::can_force_early_return()) {
 136     Label L;
 137     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 138     cbz(rscratch1, L); // if (thread->jvmti_thread_state() == NULL) exit;
 139 
 140     // Initiate earlyret handling only if it is not already being processed.
 141     // If the flag has the earlyret_processing bit set, it means that this code
 142     // is called *during* earlyret handling - we don't want to reenter.
 143     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset()));
 144     cmpw(rscratch1, JvmtiThreadState::earlyret_pending);
 145     br(Assembler::NE, L);
 146 
 147     // Call Interpreter::remove_activation_early_entry() to get the address of the
 148     // same-named entrypoint in the generated interpreter code.
 149     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 150     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset()));
 151     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1);
 152     br(r0);
 153     bind(L);
 154   }
 155 }
 156 
 157 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
 158   Register reg,
 159   int bcp_offset) {
 160   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 161   ldrh(reg, Address(rbcp, bcp_offset));
 162   rev16(reg, reg);
 163 }
 164 
 165 void InterpreterMacroAssembler::get_dispatch() {
 166   unsigned long offset;
 167   adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
 168   lea(rdispatch, Address(rdispatch, offset));
 169 }
 170 
 171 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 172                                                        int bcp_offset,
 173                                                        size_t index_size) {
 174   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 175   if (index_size == sizeof(u2)) {
 176     load_unsigned_short(index, Address(rbcp, bcp_offset));
 177   } else if (index_size == sizeof(u4)) {
 178     // assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 179     ldrw(index, Address(rbcp, bcp_offset));
 180     // Check if the secondary index definition is still ~x, otherwise
 181     // we have to change the following assembler code to calculate the
 182     // plain index.
 183     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 184     eonw(index, index, zr);  // convert to plain index
 185   } else if (index_size == sizeof(u1)) {
 186     load_unsigned_byte(index, Address(rbcp, bcp_offset));
 187   } else {
 188     ShouldNotReachHere();
 189   }
 190 }
 191 
 192 // Return
 193 // Rindex: index into constant pool
 194 // Rcache: address of cache entry - ConstantPoolCache::base_offset()
 195 //
 196 // A caller must add ConstantPoolCache::base_offset() to Rcache to get
 197 // the true address of the cache entry.
 198 //
 199 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
 200                                                            Register index,
 201                                                            int bcp_offset,
 202                                                            size_t index_size) {
 203   assert_different_registers(cache, index);
 204   assert_different_registers(cache, rcpool);
 205   get_cache_index_at_bcp(index, bcp_offset, index_size);
 206   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 207   // convert from field index to ConstantPoolCacheEntry
 208   // aarch64 already has the cache in rcpool so there is no need to
 209   // install it in cache. instead we pre-add the indexed offset to
 210   // rcpool and return it in cache. All clients of this method need to
 211   // be modified accordingly.
 212   add(cache, rcpool, index, Assembler::LSL, 5);
 213 }
 214 
 215 
 216 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 217                                                                         Register index,
 218                                                                         Register bytecode,
 219                                                                         int byte_no,
 220                                                                         int bcp_offset,
 221                                                                         size_t index_size) {
 222   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
 223   // We use a 32-bit load here since the layout of 64-bit words on
 224   // little-endian machines allow us that.
 225   // n.b. unlike x86 cache already includes the index offset
 226   lea(bytecode, Address(cache,
 227                          ConstantPoolCache::base_offset()
 228                          + ConstantPoolCacheEntry::indices_offset()));
 229   ldarw(bytecode, bytecode);
 230   const int shift_count = (1 + byte_no) * BitsPerByte;
 231   ubfx(bytecode, bytecode, shift_count, BitsPerByte);
 232 }
 233 
 234 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
 235                                                                Register tmp,
 236                                                                int bcp_offset,
 237                                                                size_t index_size) {
 238   assert(cache != tmp, "must use different register");
 239   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
 240   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 241   // convert from field index to ConstantPoolCacheEntry index
 242   // and from word offset to byte offset
 243   assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
 244   ldr(cache, Address(rfp, frame::interpreter_frame_cache_offset * wordSize));
 245   // skip past the header
 246   add(cache, cache, in_bytes(ConstantPoolCache::base_offset()));
 247   add(cache, cache, tmp, Assembler::LSL, 2 + LogBytesPerWord);  // construct pointer to cache entry
 248 }
 249 
 250 void InterpreterMacroAssembler::get_method_counters(Register method,
 251                                                     Register mcs, Label& skip) {
 252   Label has_counters;
 253   ldr(mcs, Address(method, Method::method_counters_offset()));
 254   cbnz(mcs, has_counters);
 255   call_VM(noreg, CAST_FROM_FN_PTR(address,
 256           InterpreterRuntime::build_method_counters), method);
 257   ldr(mcs, Address(method, Method::method_counters_offset()));
 258   cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory
 259   bind(has_counters);
 260 }
 261 
 262 // Load object from cpool->resolved_references(index)
 263 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 264                                            Register result, Register index) {
 265   assert_different_registers(result, index);
 266   // convert from field index to resolved_references() index and from
 267   // word index to byte offset. Since this is a java object, it can be compressed
 268   Register tmp = index;  // reuse
 269   lslw(tmp, tmp, LogBytesPerHeapOop);
 270 
 271   get_constant_pool(result);
 272   // load pointer for resolved_references[] objArray
 273   ldr(result, Address(result, ConstantPool::resolved_references_offset_in_bytes()));
 274   // JNIHandles::resolve(obj);
 275   ldr(result, Address(result, 0));
 276   // Add in the index
 277   add(result, result, tmp);
 278   load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 279 }
 280 
 281 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 282 // subtype of super_klass.
 283 //
 284 // Args:
 285 //      r0: superklass
 286 //      Rsub_klass: subklass
 287 //
 288 // Kills:
 289 //      r2, r5
 290 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 291                                                   Label& ok_is_subtype) {
 292   assert(Rsub_klass != r0, "r0 holds superklass");
 293   assert(Rsub_klass != r2, "r2 holds 2ndary super array length");
 294   assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr");
 295 
 296   // Profile the not-null value's klass.
 297   profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5
 298 
 299   // Do the check.
 300   check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2
 301 
 302   // Profile the failure of the check.
 303   profile_typecheck_failed(r2); // blows r2
 304 }
 305 
 306 // Java Expression Stack
 307 
 308 void InterpreterMacroAssembler::pop_ptr(Register r) {
 309   ldr(r, post(esp, wordSize));
 310 }
 311 
 312 void InterpreterMacroAssembler::pop_i(Register r) {
 313   ldrw(r, post(esp, wordSize));
 314 }
 315 
 316 void InterpreterMacroAssembler::pop_l(Register r) {
 317   ldr(r, post(esp, 2 * Interpreter::stackElementSize));
 318 }
 319 
 320 void InterpreterMacroAssembler::push_ptr(Register r) {
 321   str(r, pre(esp, -wordSize));
 322  }
 323 
 324 void InterpreterMacroAssembler::push_i(Register r) {
 325   str(r, pre(esp, -wordSize));
 326 }
 327 
 328 void InterpreterMacroAssembler::push_l(Register r) {
 329   str(zr, pre(esp, -wordSize));
 330   str(r, pre(esp, -wordsize));
 331 }
 332 
 333 void InterpreterMacroAssembler::pop_f(FloatRegister r) {
 334   ldrs(r, post(esp, wordSize));
 335 }
 336 
 337 void InterpreterMacroAssembler::pop_d(FloatRegister r) {
 338   ldrd(r, post(esp, 2 * Interpreter::stackElementSize));
 339 }
 340 
 341 void InterpreterMacroAssembler::push_f(FloatRegister r) {
 342   strs(r, pre(esp, -wordSize));
 343 }
 344 
 345 void InterpreterMacroAssembler::push_d(FloatRegister r) {
 346   strd(r, pre(esp, 2* -wordSize));
 347 }
 348 
 349 void InterpreterMacroAssembler::pop(TosState state) {
 350   switch (state) {
 351   case atos: pop_ptr();                 break;
 352   case btos:
 353   case ztos:
 354   case ctos:
 355   case stos:
 356   case itos: pop_i();                   break;
 357   case ltos: pop_l();                   break;
 358   case ftos: pop_f();                   break;
 359   case dtos: pop_d();                   break;
 360   case vtos: /* nothing to do */        break;
 361   default:   ShouldNotReachHere();
 362   }
 363   verify_oop(r0, state);
 364 }
 365 
 366 void InterpreterMacroAssembler::push(TosState state) {
 367   verify_oop(r0, state);
 368   switch (state) {
 369   case atos: push_ptr();                break;
 370   case btos:
 371   case ztos:
 372   case ctos:
 373   case stos:
 374   case itos: push_i();                  break;
 375   case ltos: push_l();                  break;
 376   case ftos: push_f();                  break;
 377   case dtos: push_d();                  break;
 378   case vtos: /* nothing to do */        break;
 379   default  : ShouldNotReachHere();
 380   }
 381 }
 382 
 383 // Helpers for swap and dup
 384 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 385   ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 386 }
 387 
 388 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 389   str(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 390 }
 391 
 392 
 393 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 394   // set sender sp
 395   mov(r13, sp);
 396   // record last_sp
 397   str(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 398 }
 399 
 400 // Jump to from_interpreted entry of a call unless single stepping is possible
 401 // in this thread in which case we must call the i2i entry
 402 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 403   prepare_to_jump_from_interpreted();
 404 
 405   if (JvmtiExport::can_post_interpreter_events()) {
 406     Label run_compiled_code;
 407     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 408     // compiled code in threads for which the event is enabled.  Check here for
 409     // interp_only_mode if these events CAN be enabled.
 410     // interp_only is an int, on little endian it is sufficient to test the byte only
 411     // Is a cmpl faster?
 412     ldr(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
 413     cbz(rscratch1, run_compiled_code);
 414     ldr(rscratch1, Address(method, Method::interpreter_entry_offset()));
 415     br(rscratch1);
 416     bind(run_compiled_code);
 417   }
 418 
 419   ldr(rscratch1, Address(method, Method::from_interpreted_offset()));
 420   br(rscratch1);
 421 }
 422 
 423 // The following two routines provide a hook so that an implementation
 424 // can schedule the dispatch in two parts.  amd64 does not do this.
 425 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 426 }
 427 
 428 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 429     dispatch_next(state, step);
 430 }
 431 
 432 void InterpreterMacroAssembler::dispatch_base(TosState state,
 433                                               address* table,
 434                                               bool verifyoop) {
 435   if (VerifyActivationFrameSize) {
 436     Unimplemented();
 437   }
 438   if (verifyoop) {
 439     verify_oop(r0, state);
 440   }
 441   if (table == Interpreter::dispatch_table(state)) {
 442     addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state));
 443     ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3)));
 444   } else {
 445     mov(rscratch2, (address)table);
 446     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 447   }
 448   br(rscratch2);
 449 }
 450 
 451 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 452   dispatch_base(state, Interpreter::dispatch_table(state));
 453 }
 454 
 455 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 456   dispatch_base(state, Interpreter::normal_table(state));
 457 }
 458 
 459 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 460   dispatch_base(state, Interpreter::normal_table(state), false);
 461 }
 462 
 463 
 464 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
 465   // load next bytecode
 466   ldrb(rscratch1, Address(pre(rbcp, step)));
 467   dispatch_base(state, Interpreter::dispatch_table(state));
 468 }
 469 
 470 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 471   // load current bytecode
 472   ldrb(rscratch1, Address(rbcp, 0));
 473   dispatch_base(state, table);
 474 }
 475 
 476 // remove activation
 477 //
 478 // Unlock the receiver if this is a synchronized method.
 479 // Unlock any Java monitors from syncronized blocks.
 480 // Remove the activation from the stack.
 481 //
 482 // If there are locked Java monitors
 483 //    If throw_monitor_exception
 484 //       throws IllegalMonitorStateException
 485 //    Else if install_monitor_exception
 486 //       installs IllegalMonitorStateException
 487 //    Else
 488 //       no error processing
 489 void InterpreterMacroAssembler::remove_activation(
 490         TosState state,
 491         bool throw_monitor_exception,
 492         bool install_monitor_exception,
 493         bool notify_jvmdi) {
 494   // Note: Registers r3 xmm0 may be in use for the
 495   // result check if synchronized method
 496   Label unlocked, unlock, no_unlock;
 497 
 498   // get the value of _do_not_unlock_if_synchronized into r3
 499   const Address do_not_unlock_if_synchronized(rthread,
 500     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 501   ldrb(r3, do_not_unlock_if_synchronized);
 502   strb(zr, do_not_unlock_if_synchronized); // reset the flag
 503 
 504  // get method access flags
 505   ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
 506   ldr(r2, Address(r1, Method::access_flags_offset()));
 507   tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked);
 508 
 509   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 510   // is set.
 511   cbnz(r3, no_unlock);
 512 
 513   // unlock monitor
 514   push(state); // save result
 515 
 516   // BasicObjectLock will be first in list, since this is a
 517   // synchronized method. However, need to check that the object has
 518   // not been unlocked by an explicit monitorexit bytecode.
 519   const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset *
 520                         wordSize - (int) sizeof(BasicObjectLock));
 521   // We use c_rarg1 so that if we go slow path it will be the correct
 522   // register for unlock_object to pass to VM directly
 523   lea(c_rarg1, monitor); // address of first monitor
 524 
 525   ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
 526   cbnz(r0, unlock);
 527 
 528   pop(state);
 529   if (throw_monitor_exception) {
 530     // Entry already unlocked, need to throw exception
 531     call_VM(noreg, CAST_FROM_FN_PTR(address,
 532                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 533     should_not_reach_here();
 534   } else {
 535     // Monitor already unlocked during a stack unroll. If requested,
 536     // install an illegal_monitor_state_exception.  Continue with
 537     // stack unrolling.
 538     if (install_monitor_exception) {
 539       call_VM(noreg, CAST_FROM_FN_PTR(address,
 540                      InterpreterRuntime::new_illegal_monitor_state_exception));
 541     }
 542     b(unlocked);
 543   }
 544 
 545   bind(unlock);
 546   unlock_object(c_rarg1);
 547   pop(state);
 548 
 549   // Check that for block-structured locking (i.e., that all locked
 550   // objects has been unlocked)
 551   bind(unlocked);
 552 
 553   // r0: Might contain return value
 554 
 555   // Check that all monitors are unlocked
 556   {
 557     Label loop, exception, entry, restart;
 558     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 559     const Address monitor_block_top(
 560         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 561     const Address monitor_block_bot(
 562         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
 563 
 564     bind(restart);
 565     // We use c_rarg1 so that if we go slow path it will be the correct
 566     // register for unlock_object to pass to VM directly
 567     ldr(c_rarg1, monitor_block_top); // points to current entry, starting
 568                                      // with top-most entry
 569     lea(r19, monitor_block_bot);  // points to word before bottom of
 570                                   // monitor block
 571     b(entry);
 572 
 573     // Entry already locked, need to throw exception
 574     bind(exception);
 575 
 576     if (throw_monitor_exception) {
 577       // Throw exception
 578       MacroAssembler::call_VM(noreg,
 579                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 580                                    throw_illegal_monitor_state_exception));
 581       should_not_reach_here();
 582     } else {
 583       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 584       // Unlock does not block, so don't have to worry about the frame.
 585       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 586 
 587       push(state);
 588       unlock_object(c_rarg1);
 589       pop(state);
 590 
 591       if (install_monitor_exception) {
 592         call_VM(noreg, CAST_FROM_FN_PTR(address,
 593                                         InterpreterRuntime::
 594                                         new_illegal_monitor_state_exception));
 595       }
 596 
 597       b(restart);
 598     }
 599 
 600     bind(loop);
 601     // check if current entry is used
 602     ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
 603     cbnz(rscratch1, exception);
 604 
 605     add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
 606     bind(entry);
 607     cmp(c_rarg1, r19); // check if bottom reached
 608     br(Assembler::NE, loop); // if not at bottom then check this entry
 609   }
 610 
 611   bind(no_unlock);
 612 
 613   // jvmti support
 614   if (notify_jvmdi) {
 615     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
 616   } else {
 617     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 618   }
 619 
 620   // remove activation
 621   // get sender esp
 622   ldr(esp,
 623       Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
 624   // remove frame anchor
 625   leave();
 626   // If we're returning to interpreted code we will shortly be
 627   // adjusting SP to allow some space for ESP.  If we're returning to
 628   // compiled code the saved sender SP was saved in sender_sp, so this
 629   // restores it.
 630   andr(sp, esp, -16);
 631 }
 632 
 633 // Lock object
 634 //
 635 // Args:
 636 //      c_rarg1: BasicObjectLock to be used for locking
 637 //
 638 // Kills:
 639 //      r0
 640 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
 641 //      rscratch1, rscratch2 (scratch regs)
 642 void InterpreterMacroAssembler::lock_object(Register lock_reg)
 643 {
 644   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
 645   if (UseHeavyMonitors) {
 646     call_VM(noreg,
 647             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 648             lock_reg);
 649   } else {
 650     Label done;
 651 
 652     const Register swap_reg = r0;
 653     const Register tmp = c_rarg2;
 654     const Register obj_reg = c_rarg3; // Will contain the oop
 655 
 656     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
 657     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
 658     const int mark_offset = lock_offset +
 659                             BasicLock::displaced_header_offset_in_bytes();
 660 
 661     Label slow_case;
 662 
 663     // Load object pointer into obj_reg %c_rarg3
 664     ldr(obj_reg, Address(lock_reg, obj_offset));
 665 
 666     if (UseBiasedLocking) {
 667       biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp, false, done, &slow_case);
 668     }
 669 
 670     // Load (object->mark() | 1) into swap_reg
 671     ldr(rscratch1, Address(obj_reg, 0));
 672     orr(swap_reg, rscratch1, 1);
 673 
 674     // Save (object->mark() | 1) into BasicLock's displaced header
 675     str(swap_reg, Address(lock_reg, mark_offset));
 676 
 677     assert(lock_offset == 0,
 678            "displached header must be first word in BasicObjectLock");
 679 
 680     Label fail;
 681     if (PrintBiasedLockingStatistics) {
 682       Label fast;
 683       cmpxchgptr(swap_reg, lock_reg, obj_reg, rscratch1, fast, &fail);
 684       bind(fast);
 685       atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()),
 686                   rscratch2, rscratch1, tmp);
 687       b(done);
 688       bind(fail);
 689     } else {
 690       cmpxchgptr(swap_reg, lock_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
 691     }
 692 
 693     // Test if the oopMark is an obvious stack pointer, i.e.,
 694     //  1) (mark & 7) == 0, and
 695     //  2) rsp <= mark < mark + os::pagesize()
 696     //
 697     // These 3 tests can be done by evaluating the following
 698     // expression: ((mark - rsp) & (7 - os::vm_page_size())),
 699     // assuming both stack pointer and pagesize have their
 700     // least significant 3 bits clear.
 701     // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg
 702     // NOTE2: aarch64 does not like to subtract sp from rn so take a
 703     // copy
 704     mov(rscratch1, sp);
 705     sub(swap_reg, swap_reg, rscratch1);
 706     ands(swap_reg, swap_reg, (unsigned long)(7 - os::vm_page_size()));
 707 
 708     // Save the test result, for recursive case, the result is zero
 709     str(swap_reg, Address(lock_reg, mark_offset));
 710 
 711     if (PrintBiasedLockingStatistics) {
 712       br(Assembler::NE, slow_case);
 713       atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()),
 714                   rscratch2, rscratch1, tmp);
 715     }
 716     br(Assembler::EQ, done);
 717 
 718     bind(slow_case);
 719 
 720     // Call the runtime routine for slow case
 721     call_VM(noreg,
 722             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 723             lock_reg);
 724 
 725     bind(done);
 726   }
 727 }
 728 
 729 
 730 // Unlocks an object. Used in monitorexit bytecode and
 731 // remove_activation.  Throws an IllegalMonitorException if object is
 732 // not locked by current thread.
 733 //
 734 // Args:
 735 //      c_rarg1: BasicObjectLock for lock
 736 //
 737 // Kills:
 738 //      r0
 739 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
 740 //      rscratch1, rscratch2 (scratch regs)
 741 void InterpreterMacroAssembler::unlock_object(Register lock_reg)
 742 {
 743   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
 744 
 745   if (UseHeavyMonitors) {
 746     call_VM(noreg,
 747             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 748             lock_reg);
 749   } else {
 750     Label done;
 751 
 752     const Register swap_reg   = r0;
 753     const Register header_reg = c_rarg2;  // Will contain the old oopMark
 754     const Register obj_reg    = c_rarg3;  // Will contain the oop
 755 
 756     save_bcp(); // Save in case of exception
 757 
 758     // Convert from BasicObjectLock structure to object and BasicLock
 759     // structure Store the BasicLock address into %r0
 760     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
 761 
 762     // Load oop into obj_reg(%c_rarg3)
 763     ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
 764 
 765     // Free entry
 766     str(zr, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
 767 
 768     if (UseBiasedLocking) {
 769       biased_locking_exit(obj_reg, header_reg, done);
 770     }
 771 
 772     // Load the old header from BasicLock structure
 773     ldr(header_reg, Address(swap_reg,
 774                             BasicLock::displaced_header_offset_in_bytes()));
 775 
 776     // Test for recursion
 777     cbz(header_reg, done);
 778 
 779     // Atomic swap back the old header
 780     cmpxchgptr(swap_reg, header_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
 781 
 782     // Call the runtime routine for slow case.
 783     str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // restore obj
 784     call_VM(noreg,
 785             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 786             lock_reg);
 787 
 788     bind(done);
 789 
 790     restore_bcp();
 791   }
 792 }
 793 
 794 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
 795                                                          Label& zero_continue) {
 796   assert(ProfileInterpreter, "must be profiling interpreter");
 797   ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 798   cbz(mdp, zero_continue);
 799 }
 800 
 801 // Set the method data pointer for the current bcp.
 802 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
 803   assert(ProfileInterpreter, "must be profiling interpreter");
 804   Label set_mdp;
 805   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 806 
 807   // Test MDO to avoid the call if it is NULL.
 808   ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset())));
 809   cbz(r0, set_mdp);
 810   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp);
 811   // r0: mdi
 812   // mdo is guaranteed to be non-zero here, we checked for it before the call.
 813   ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
 814   lea(r1, Address(r1, in_bytes(MethodData::data_offset())));
 815   add(r0, r1, r0);
 816   str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 817   bind(set_mdp);
 818   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 819 }
 820 
 821 void InterpreterMacroAssembler::verify_method_data_pointer() {
 822   assert(ProfileInterpreter, "must be profiling interpreter");
 823 #ifdef ASSERT
 824   Label verify_continue;
 825   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 826   stp(r2, r3, Address(pre(sp, -2 * wordSize)));
 827   test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue
 828   get_method(r1);
 829 
 830   // If the mdp is valid, it will point to a DataLayout header which is
 831   // consistent with the bcp.  The converse is highly probable also.
 832   ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset())));
 833   ldr(rscratch1, Address(r1, Method::const_offset()));
 834   add(r2, r2, rscratch1, Assembler::LSL);
 835   lea(r2, Address(r2, ConstMethod::codes_offset()));
 836   cmp(r2, rbcp);
 837   br(Assembler::EQ, verify_continue);
 838   // r1: method
 839   // rbcp: bcp // rbcp == 22
 840   // r3: mdp
 841   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
 842                r1, rbcp, r3);
 843   bind(verify_continue);
 844   ldp(r2, r3, Address(post(sp, 2 * wordSize)));
 845   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 846 #endif // ASSERT
 847 }
 848 
 849 
 850 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
 851                                                 int constant,
 852                                                 Register value) {
 853   assert(ProfileInterpreter, "must be profiling interpreter");
 854   Address data(mdp_in, constant);
 855   str(value, data);
 856 }
 857 
 858 
 859 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 860                                                       int constant,
 861                                                       bool decrement) {
 862   increment_mdp_data_at(mdp_in, noreg, constant, decrement);
 863 }
 864 
 865 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 866                                                       Register reg,
 867                                                       int constant,
 868                                                       bool decrement) {
 869   assert(ProfileInterpreter, "must be profiling interpreter");
 870   // %%% this does 64bit counters at best it is wasting space
 871   // at worst it is a rare bug when counters overflow
 872 
 873   assert_different_registers(rscratch2, rscratch1, mdp_in, reg);
 874 
 875   Address addr1(mdp_in, constant);
 876   Address addr2(rscratch2, reg, Address::lsl(0));
 877   Address &addr = addr1;
 878   if (reg != noreg) {
 879     lea(rscratch2, addr1);
 880     addr = addr2;
 881   }
 882 
 883   if (decrement) {
 884     // Decrement the register.  Set condition codes.
 885     // Intel does this
 886     // addptr(data, (int32_t) -DataLayout::counter_increment);
 887     // If the decrement causes the counter to overflow, stay negative
 888     // Label L;
 889     // jcc(Assembler::negative, L);
 890     // addptr(data, (int32_t) DataLayout::counter_increment);
 891     // so we do this
 892     ldr(rscratch1, addr);
 893     subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment);
 894     Label L;
 895     br(Assembler::LO, L);       // skip store if counter underflow
 896     str(rscratch1, addr);
 897     bind(L);
 898   } else {
 899     assert(DataLayout::counter_increment == 1,
 900            "flow-free idiom only works with 1");
 901     // Intel does this
 902     // Increment the register.  Set carry flag.
 903     // addptr(data, DataLayout::counter_increment);
 904     // If the increment causes the counter to overflow, pull back by 1.
 905     // sbbptr(data, (int32_t)0);
 906     // so we do this
 907     ldr(rscratch1, addr);
 908     adds(rscratch1, rscratch1, DataLayout::counter_increment);
 909     Label L;
 910     br(Assembler::CS, L);       // skip store if counter overflow
 911     str(rscratch1, addr);
 912     bind(L);
 913   }
 914 }
 915 
 916 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
 917                                                 int flag_byte_constant) {
 918   assert(ProfileInterpreter, "must be profiling interpreter");
 919   int header_offset = in_bytes(DataLayout::header_offset());
 920   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
 921   // Set the flag
 922   ldr(rscratch1, Address(mdp_in, header_offset));
 923   orr(rscratch1, rscratch1, header_bits);
 924   str(rscratch1, Address(mdp_in, header_offset));
 925 }
 926 
 927 
 928 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
 929                                                  int offset,
 930                                                  Register value,
 931                                                  Register test_value_out,
 932                                                  Label& not_equal_continue) {
 933   assert(ProfileInterpreter, "must be profiling interpreter");
 934   if (test_value_out == noreg) {
 935     ldr(rscratch1, Address(mdp_in, offset));
 936     cmp(value, rscratch1);
 937   } else {
 938     // Put the test value into a register, so caller can use it:
 939     ldr(test_value_out, Address(mdp_in, offset));
 940     cmp(value, test_value_out);
 941   }
 942   br(Assembler::NE, not_equal_continue);
 943 }
 944 
 945 
 946 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 947                                                      int offset_of_disp) {
 948   assert(ProfileInterpreter, "must be profiling interpreter");
 949   ldr(rscratch1, Address(mdp_in, offset_of_disp));
 950   add(mdp_in, mdp_in, rscratch1, LSL);
 951   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 952 }
 953 
 954 
 955 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 956                                                      Register reg,
 957                                                      int offset_of_disp) {
 958   assert(ProfileInterpreter, "must be profiling interpreter");
 959   lea(rscratch1, Address(mdp_in, offset_of_disp));
 960   ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0)));
 961   add(mdp_in, mdp_in, rscratch1, LSL);
 962   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 963 }
 964 
 965 
 966 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
 967                                                        int constant) {
 968   assert(ProfileInterpreter, "must be profiling interpreter");
 969   add(mdp_in, mdp_in, (unsigned)constant);
 970   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 971 }
 972 
 973 
 974 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
 975   assert(ProfileInterpreter, "must be profiling interpreter");
 976   // save/restore across call_VM
 977   stp(zr, return_bci, Address(pre(sp, -2 * wordSize)));
 978   call_VM(noreg,
 979           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
 980           return_bci);
 981   ldp(zr, return_bci, Address(post(sp, 2 * wordSize)));
 982 }
 983 
 984 
 985 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
 986                                                      Register bumped_count) {
 987   if (ProfileInterpreter) {
 988     Label profile_continue;
 989 
 990     // If no method data exists, go to profile_continue.
 991     // Otherwise, assign to mdp
 992     test_method_data_pointer(mdp, profile_continue);
 993 
 994     // We are taking a branch.  Increment the taken count.
 995     // We inline increment_mdp_data_at to return bumped_count in a register
 996     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
 997     Address data(mdp, in_bytes(JumpData::taken_offset()));
 998     ldr(bumped_count, data);
 999     assert(DataLayout::counter_increment == 1,
1000             "flow-free idiom only works with 1");
1001     // Intel does this to catch overflow
1002     // addptr(bumped_count, DataLayout::counter_increment);
1003     // sbbptr(bumped_count, 0);
1004     // so we do this
1005     adds(bumped_count, bumped_count, DataLayout::counter_increment);
1006     Label L;
1007     br(Assembler::CS, L);       // skip store if counter overflow
1008     str(bumped_count, data);
1009     bind(L);
1010     // The method data pointer needs to be updated to reflect the new target.
1011     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1012     bind(profile_continue);
1013   }
1014 }
1015 
1016 
1017 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1018   if (ProfileInterpreter) {
1019     Label profile_continue;
1020 
1021     // If no method data exists, go to profile_continue.
1022     test_method_data_pointer(mdp, profile_continue);
1023 
1024     // We are taking a branch.  Increment the not taken count.
1025     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1026 
1027     // The method data pointer needs to be updated to correspond to
1028     // the next bytecode
1029     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1030     bind(profile_continue);
1031   }
1032 }
1033 
1034 
1035 void InterpreterMacroAssembler::profile_call(Register mdp) {
1036   if (ProfileInterpreter) {
1037     Label profile_continue;
1038 
1039     // If no method data exists, go to profile_continue.
1040     test_method_data_pointer(mdp, profile_continue);
1041 
1042     // We are making a call.  Increment the count.
1043     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1044 
1045     // The method data pointer needs to be updated to reflect the new target.
1046     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1047     bind(profile_continue);
1048   }
1049 }
1050 
1051 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1052   if (ProfileInterpreter) {
1053     Label profile_continue;
1054 
1055     // If no method data exists, go to profile_continue.
1056     test_method_data_pointer(mdp, profile_continue);
1057 
1058     // We are making a call.  Increment the count.
1059     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1060 
1061     // The method data pointer needs to be updated to reflect the new target.
1062     update_mdp_by_constant(mdp,
1063                            in_bytes(VirtualCallData::
1064                                     virtual_call_data_size()));
1065     bind(profile_continue);
1066   }
1067 }
1068 
1069 
1070 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1071                                                      Register mdp,
1072                                                      Register reg2,
1073                                                      bool receiver_can_be_null) {
1074   if (ProfileInterpreter) {
1075     Label profile_continue;
1076 
1077     // If no method data exists, go to profile_continue.
1078     test_method_data_pointer(mdp, profile_continue);
1079 
1080     Label skip_receiver_profile;
1081     if (receiver_can_be_null) {
1082       Label not_null;
1083       // We are making a call.  Increment the count for null receiver.
1084       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1085       b(skip_receiver_profile);
1086       bind(not_null);
1087     }
1088 
1089     // Record the receiver type.
1090     record_klass_in_profile(receiver, mdp, reg2, true);
1091     bind(skip_receiver_profile);
1092 
1093     // The method data pointer needs to be updated to reflect the new target.
1094 #if INCLUDE_JVMCI
1095     if (MethodProfileWidth == 0) {
1096       update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1097     }
1098 #else // INCLUDE_JVMCI
1099     update_mdp_by_constant(mdp,
1100                            in_bytes(VirtualCallData::
1101                                     virtual_call_data_size()));
1102 #endif // INCLUDE_JVMCI
1103     bind(profile_continue);
1104   }
1105 }
1106 
1107 #if INCLUDE_JVMCI
1108 void InterpreterMacroAssembler::profile_called_method(Register method, Register mdp, Register reg2) {
1109   assert_different_registers(method, mdp, reg2);
1110   if (ProfileInterpreter && MethodProfileWidth > 0) {
1111     Label profile_continue;
1112 
1113     // If no method data exists, go to profile_continue.
1114     test_method_data_pointer(mdp, profile_continue);
1115 
1116     Label done;
1117     record_item_in_profile_helper(method, mdp, reg2, 0, done, MethodProfileWidth,
1118       &VirtualCallData::method_offset, &VirtualCallData::method_count_offset, in_bytes(VirtualCallData::nonprofiled_receiver_count_offset()));
1119     bind(done);
1120 
1121     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1122     bind(profile_continue);
1123   }
1124 }
1125 #endif // INCLUDE_JVMCI
1126 
1127 // This routine creates a state machine for updating the multi-row
1128 // type profile at a virtual call site (or other type-sensitive bytecode).
1129 // The machine visits each row (of receiver/count) until the receiver type
1130 // is found, or until it runs out of rows.  At the same time, it remembers
1131 // the location of the first empty row.  (An empty row records null for its
1132 // receiver, and can be allocated for a newly-observed receiver type.)
1133 // Because there are two degrees of freedom in the state, a simple linear
1134 // search will not work; it must be a decision tree.  Hence this helper
1135 // function is recursive, to generate the required tree structured code.
1136 // It's the interpreter, so we are trading off code space for speed.
1137 // See below for example code.
1138 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1139                                         Register receiver, Register mdp,
1140                                         Register reg2, int start_row,
1141                                         Label& done, bool is_virtual_call) {
1142   if (TypeProfileWidth == 0) {
1143     if (is_virtual_call) {
1144       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1145     }
1146 #if INCLUDE_JVMCI
1147     else if (EnableJVMCI) {
1148       increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()));
1149     }
1150 #endif // INCLUDE_JVMCI
1151   } else {
1152     int non_profiled_offset = -1;
1153     if (is_virtual_call) {
1154       non_profiled_offset = in_bytes(CounterData::count_offset());
1155     }
1156 #if INCLUDE_JVMCI
1157     else if (EnableJVMCI) {
1158       non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
1159     }
1160 #endif // INCLUDE_JVMCI
1161 
1162     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1163         &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
1164   }
1165 }
1166 
1167 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1168                                         Register reg2, int start_row, Label& done, int total_rows,
1169                                         OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
1170                                         int non_profiled_offset) {
1171   int last_row = total_rows - 1;
1172   assert(start_row <= last_row, "must be work left to do");
1173   // Test this row for both the item and for null.
1174   // Take any of three different outcomes:
1175   //   1. found item => increment count and goto done
1176   //   2. found null => keep looking for case 1, maybe allocate this cell
1177   //   3. found something else => keep looking for cases 1 and 2
1178   // Case 3 is handled by a recursive call.
1179   for (int row = start_row; row <= last_row; row++) {
1180     Label next_test;
1181     bool test_for_null_also = (row == start_row);
1182 
1183     // See if the item is item[n].
1184     int item_offset = in_bytes(item_offset_fn(row));
1185     test_mdp_data_at(mdp, item_offset, item,
1186                      (test_for_null_also ? reg2 : noreg),
1187                      next_test);
1188     // (Reg2 now contains the item from the CallData.)
1189 
1190     // The item is item[n].  Increment count[n].
1191     int count_offset = in_bytes(item_count_offset_fn(row));
1192     increment_mdp_data_at(mdp, count_offset);
1193     b(done);
1194     bind(next_test);
1195 
1196     if (test_for_null_also) {
1197       Label found_null;
1198       // Failed the equality check on item[n]...  Test for null.
1199       if (start_row == last_row) {
1200         // The only thing left to do is handle the null case.
1201         if (non_profiled_offset >= 0) {
1202           cbz(reg2, found_null);
1203           // Item did not match any saved item and there is no empty row for it.
1204           // Increment total counter to indicate polymorphic case.
1205           increment_mdp_data_at(mdp, non_profiled_offset);
1206           b(done);
1207           bind(found_null);
1208         } else {
1209           cbnz(reg2, done);
1210         }
1211         break;
1212       }
1213       // Since null is rare, make it be the branch-taken case.
1214       cbz(reg2, found_null);
1215 
1216       // Put all the "Case 3" tests here.
1217       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1218         item_offset_fn, item_count_offset_fn, non_profiled_offset);
1219 
1220       // Found a null.  Keep searching for a matching item,
1221       // but remember that this is an empty (unused) slot.
1222       bind(found_null);
1223     }
1224   }
1225 
1226   // In the fall-through case, we found no matching item, but we
1227   // observed the item[start_row] is NULL.
1228 
1229   // Fill in the item field and increment the count.
1230   int item_offset = in_bytes(item_offset_fn(start_row));
1231   set_mdp_data_at(mdp, item_offset, item);
1232   int count_offset = in_bytes(item_count_offset_fn(start_row));
1233   mov(reg2, DataLayout::counter_increment);
1234   set_mdp_data_at(mdp, count_offset, reg2);
1235   if (start_row > 0) {
1236     b(done);
1237   }
1238 }
1239 
1240 // Example state machine code for three profile rows:
1241 //   // main copy of decision tree, rooted at row[1]
1242 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1243 //   if (row[0].rec != NULL) {
1244 //     // inner copy of decision tree, rooted at row[1]
1245 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1246 //     if (row[1].rec != NULL) {
1247 //       // degenerate decision tree, rooted at row[2]
1248 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1249 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1250 //       row[2].init(rec); goto done;
1251 //     } else {
1252 //       // remember row[1] is empty
1253 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1254 //       row[1].init(rec); goto done;
1255 //     }
1256 //   } else {
1257 //     // remember row[0] is empty
1258 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1259 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1260 //     row[0].init(rec); goto done;
1261 //   }
1262 //   done:
1263 
1264 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1265                                                         Register mdp, Register reg2,
1266                                                         bool is_virtual_call) {
1267   assert(ProfileInterpreter, "must be profiling");
1268   Label done;
1269 
1270   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1271 
1272   bind (done);
1273 }
1274 
1275 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1276                                             Register mdp) {
1277   if (ProfileInterpreter) {
1278     Label profile_continue;
1279     uint row;
1280 
1281     // If no method data exists, go to profile_continue.
1282     test_method_data_pointer(mdp, profile_continue);
1283 
1284     // Update the total ret count.
1285     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1286 
1287     for (row = 0; row < RetData::row_limit(); row++) {
1288       Label next_test;
1289 
1290       // See if return_bci is equal to bci[n]:
1291       test_mdp_data_at(mdp,
1292                        in_bytes(RetData::bci_offset(row)),
1293                        return_bci, noreg,
1294                        next_test);
1295 
1296       // return_bci is equal to bci[n].  Increment the count.
1297       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1298 
1299       // The method data pointer needs to be updated to reflect the new target.
1300       update_mdp_by_offset(mdp,
1301                            in_bytes(RetData::bci_displacement_offset(row)));
1302       b(profile_continue);
1303       bind(next_test);
1304     }
1305 
1306     update_mdp_for_ret(return_bci);
1307 
1308     bind(profile_continue);
1309   }
1310 }
1311 
1312 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1313   if (ProfileInterpreter) {
1314     Label profile_continue;
1315 
1316     // If no method data exists, go to profile_continue.
1317     test_method_data_pointer(mdp, profile_continue);
1318 
1319     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1320 
1321     // The method data pointer needs to be updated.
1322     int mdp_delta = in_bytes(BitData::bit_data_size());
1323     if (TypeProfileCasts) {
1324       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1325     }
1326     update_mdp_by_constant(mdp, mdp_delta);
1327 
1328     bind(profile_continue);
1329   }
1330 }
1331 
1332 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1333   if (ProfileInterpreter && TypeProfileCasts) {
1334     Label profile_continue;
1335 
1336     // If no method data exists, go to profile_continue.
1337     test_method_data_pointer(mdp, profile_continue);
1338 
1339     int count_offset = in_bytes(CounterData::count_offset());
1340     // Back up the address, since we have already bumped the mdp.
1341     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1342 
1343     // *Decrement* the counter.  We expect to see zero or small negatives.
1344     increment_mdp_data_at(mdp, count_offset, true);
1345 
1346     bind (profile_continue);
1347   }
1348 }
1349 
1350 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1351   if (ProfileInterpreter) {
1352     Label profile_continue;
1353 
1354     // If no method data exists, go to profile_continue.
1355     test_method_data_pointer(mdp, profile_continue);
1356 
1357     // The method data pointer needs to be updated.
1358     int mdp_delta = in_bytes(BitData::bit_data_size());
1359     if (TypeProfileCasts) {
1360       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1361 
1362       // Record the object type.
1363       record_klass_in_profile(klass, mdp, reg2, false);
1364     }
1365     update_mdp_by_constant(mdp, mdp_delta);
1366 
1367     bind(profile_continue);
1368   }
1369 }
1370 
1371 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1372   if (ProfileInterpreter) {
1373     Label profile_continue;
1374 
1375     // If no method data exists, go to profile_continue.
1376     test_method_data_pointer(mdp, profile_continue);
1377 
1378     // Update the default case count
1379     increment_mdp_data_at(mdp,
1380                           in_bytes(MultiBranchData::default_count_offset()));
1381 
1382     // The method data pointer needs to be updated.
1383     update_mdp_by_offset(mdp,
1384                          in_bytes(MultiBranchData::
1385                                   default_displacement_offset()));
1386 
1387     bind(profile_continue);
1388   }
1389 }
1390 
1391 void InterpreterMacroAssembler::profile_switch_case(Register index,
1392                                                     Register mdp,
1393                                                     Register reg2) {
1394   if (ProfileInterpreter) {
1395     Label profile_continue;
1396 
1397     // If no method data exists, go to profile_continue.
1398     test_method_data_pointer(mdp, profile_continue);
1399 
1400     // Build the base (index * per_case_size_in_bytes()) +
1401     // case_array_offset_in_bytes()
1402     movw(reg2, in_bytes(MultiBranchData::per_case_size()));
1403     movw(rscratch1, in_bytes(MultiBranchData::case_array_offset()));
1404     Assembler::maddw(index, index, reg2, rscratch1);
1405 
1406     // Update the case count
1407     increment_mdp_data_at(mdp,
1408                           index,
1409                           in_bytes(MultiBranchData::relative_count_offset()));
1410 
1411     // The method data pointer needs to be updated.
1412     update_mdp_by_offset(mdp,
1413                          index,
1414                          in_bytes(MultiBranchData::
1415                                   relative_displacement_offset()));
1416 
1417     bind(profile_continue);
1418   }
1419 }
1420 
1421 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1422   if (state == atos) {
1423     MacroAssembler::verify_oop(reg);
1424   }
1425 }
1426 
1427 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; }
1428 
1429 
1430 void InterpreterMacroAssembler::notify_method_entry() {
1431   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1432   // track stack depth.  If it is possible to enter interp_only_mode we add
1433   // the code to check if the event should be sent.
1434   if (JvmtiExport::can_post_interpreter_events()) {
1435     Label L;
1436     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1437     cbzw(r3, L);
1438     call_VM(noreg, CAST_FROM_FN_PTR(address,
1439                                     InterpreterRuntime::post_method_entry));
1440     bind(L);
1441   }
1442 
1443   {
1444     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1445     get_method(c_rarg1);
1446     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1447                  rthread, c_rarg1);
1448   }
1449 
1450   // RedefineClasses() tracing support for obsolete method entry
1451   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1452     get_method(c_rarg1);
1453     call_VM_leaf(
1454       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1455       rthread, c_rarg1);
1456   }
1457 
1458  }
1459 
1460 
1461 void InterpreterMacroAssembler::notify_method_exit(
1462     TosState state, NotifyMethodExitMode mode) {
1463   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1464   // track stack depth.  If it is possible to enter interp_only_mode we add
1465   // the code to check if the event should be sent.
1466   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1467     Label L;
1468     // Note: frame::interpreter_frame_result has a dependency on how the
1469     // method result is saved across the call to post_method_exit. If this
1470     // is changed then the interpreter_frame_result implementation will
1471     // need to be updated too.
1472 
1473     // template interpreter will leave the result on the top of the stack.
1474     push(state);
1475     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1476     cbz(r3, L);
1477     call_VM(noreg,
1478             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1479     bind(L);
1480     pop(state);
1481   }
1482 
1483   {
1484     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1485     push(state);
1486     get_method(c_rarg1);
1487     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1488                  rthread, c_rarg1);
1489     pop(state);
1490   }
1491 }
1492 
1493 
1494 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1495 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1496                                                         int increment, Address mask,
1497                                                         Register scratch, Register scratch2,
1498                                                         bool preloaded, Condition cond,
1499                                                         Label* where) {
1500   if (!preloaded) {
1501     ldrw(scratch, counter_addr);
1502   }
1503   add(scratch, scratch, increment);
1504   strw(scratch, counter_addr);
1505   ldrw(scratch2, mask);
1506   ands(scratch, scratch, scratch2);
1507   br(cond, *where);
1508 }
1509 
1510 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
1511                                                   int number_of_arguments) {
1512   // interpreter specific
1513   //
1514   // Note: No need to save/restore rbcp & rlocals pointer since these
1515   //       are callee saved registers and no blocking/ GC can happen
1516   //       in leaf calls.
1517 #ifdef ASSERT
1518   {
1519     Label L;
1520     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1521     cbz(rscratch1, L);
1522     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1523          " last_sp != NULL");
1524     bind(L);
1525   }
1526 #endif /* ASSERT */
1527   // super call
1528   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1529 }
1530 
1531 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
1532                                              Register java_thread,
1533                                              Register last_java_sp,
1534                                              address  entry_point,
1535                                              int      number_of_arguments,
1536                                              bool     check_exceptions) {
1537   // interpreter specific
1538   //
1539   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
1540   //       really make a difference for these runtime calls, since they are
1541   //       slow anyway. Btw., bcp must be saved/restored since it may change
1542   //       due to GC.
1543   // assert(java_thread == noreg , "not expecting a precomputed java thread");
1544   save_bcp();
1545 #ifdef ASSERT
1546   {
1547     Label L;
1548     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1549     cbz(rscratch1, L);
1550     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1551          " last_sp != NULL");
1552     bind(L);
1553   }
1554 #endif /* ASSERT */
1555   // super call
1556   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
1557                                entry_point, number_of_arguments,
1558                      check_exceptions);
1559 // interpreter specific
1560   restore_bcp();
1561   restore_locals();
1562 }
1563 
1564 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
1565   Label update, next, none;
1566 
1567   verify_oop(obj);
1568 
1569   cbnz(obj, update);
1570   orptr(mdo_addr, TypeEntries::null_seen);
1571   b(next);
1572 
1573   bind(update);
1574   load_klass(obj, obj);
1575 
1576   ldr(rscratch1, mdo_addr);
1577   eor(obj, obj, rscratch1);
1578   tst(obj, TypeEntries::type_klass_mask);
1579   br(Assembler::EQ, next); // klass seen before, nothing to
1580                            // do. The unknown bit may have been
1581                            // set already but no need to check.
1582 
1583   tbnz(obj, exact_log2(TypeEntries::type_unknown), next);
1584   // already unknown. Nothing to do anymore.
1585 
1586   ldr(rscratch1, mdo_addr);
1587   cbz(rscratch1, none);
1588   cmp(rscratch1, TypeEntries::null_seen);
1589   br(Assembler::EQ, none);
1590   // There is a chance that the checks above (re-reading profiling
1591   // data from memory) fail if another thread has just set the
1592   // profiling to this obj's klass
1593   ldr(rscratch1, mdo_addr);
1594   eor(obj, obj, rscratch1);
1595   tst(obj, TypeEntries::type_klass_mask);
1596   br(Assembler::EQ, next);
1597 
1598   // different than before. Cannot keep accurate profile.
1599   orptr(mdo_addr, TypeEntries::type_unknown);
1600   b(next);
1601 
1602   bind(none);
1603   // first time here. Set profile type.
1604   str(obj, mdo_addr);
1605 
1606   bind(next);
1607 }
1608 
1609 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1610   if (!ProfileInterpreter) {
1611     return;
1612   }
1613 
1614   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1615     Label profile_continue;
1616 
1617     test_method_data_pointer(mdp, profile_continue);
1618 
1619     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1620 
1621     ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
1622     cmp(rscratch1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
1623     br(Assembler::NE, profile_continue);
1624 
1625     if (MethodData::profile_arguments()) {
1626       Label done;
1627       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1628 
1629       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1630         if (i > 0 || MethodData::profile_return()) {
1631           // If return value type is profiled we may have no argument to profile
1632           ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1633           sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count());
1634           cmp(tmp, TypeStackSlotEntries::per_arg_count());
1635           add(rscratch1, mdp, off_to_args);
1636           br(Assembler::LT, done);
1637         }
1638         ldr(tmp, Address(callee, Method::const_offset()));
1639         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1640         // stack offset o (zero based) from the start of the argument
1641         // list, for n arguments translates into offset n - o - 1 from
1642         // the end of the argument list
1643         ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))));
1644         sub(tmp, tmp, rscratch1);
1645         sub(tmp, tmp, 1);
1646         Address arg_addr = argument_address(tmp);
1647         ldr(tmp, arg_addr);
1648 
1649         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i)));
1650         profile_obj_type(tmp, mdo_arg_addr);
1651 
1652         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1653         off_to_args += to_add;
1654       }
1655 
1656       if (MethodData::profile_return()) {
1657         ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1658         sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1659       }
1660 
1661       add(rscratch1, mdp, off_to_args);
1662       bind(done);
1663       mov(mdp, rscratch1);
1664 
1665       if (MethodData::profile_return()) {
1666         // We're right after the type profile for the last
1667         // argument. tmp is the number of cells left in the
1668         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1669         // if there's a return to profile.
1670         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1671         add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size));
1672       }
1673       str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1674     } else {
1675       assert(MethodData::profile_return(), "either profile call args or call ret");
1676       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1677     }
1678 
1679     // mdp points right after the end of the
1680     // CallTypeData/VirtualCallTypeData, right after the cells for the
1681     // return value type if there's one
1682 
1683     bind(profile_continue);
1684   }
1685 }
1686 
1687 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1688   assert_different_registers(mdp, ret, tmp, rbcp);
1689   if (ProfileInterpreter && MethodData::profile_return()) {
1690     Label profile_continue, done;
1691 
1692     test_method_data_pointer(mdp, profile_continue);
1693 
1694     if (MethodData::profile_return_jsr292_only()) {
1695       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
1696 
1697       // If we don't profile all invoke bytecodes we must make sure
1698       // it's a bytecode we indeed profile. We can't go back to the
1699       // begining of the ProfileData we intend to update to check its
1700       // type because we're right after it and we don't known its
1701       // length
1702       Label do_profile;
1703       ldrb(rscratch1, Address(rbcp, 0));
1704       cmp(rscratch1, Bytecodes::_invokedynamic);
1705       br(Assembler::EQ, do_profile);
1706       cmp(rscratch1, Bytecodes::_invokehandle);
1707       br(Assembler::EQ, do_profile);
1708       get_method(tmp);
1709       ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset_in_bytes()));
1710       cmp(rscratch1, vmIntrinsics::_compiledLambdaForm);
1711       br(Assembler::NE, profile_continue);
1712 
1713       bind(do_profile);
1714     }
1715 
1716     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1717     mov(tmp, ret);
1718     profile_obj_type(tmp, mdo_ret_addr);
1719 
1720     bind(profile_continue);
1721   }
1722 }
1723 
1724 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1725   if (ProfileInterpreter && MethodData::profile_parameters()) {
1726     Label profile_continue, done;
1727 
1728     test_method_data_pointer(mdp, profile_continue);
1729 
1730     // Load the offset of the area within the MDO used for
1731     // parameters. If it's negative we're not profiling any parameters
1732     ldr(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1733     cmp(tmp1, 0u);
1734     br(Assembler::LT, profile_continue);
1735 
1736     // Compute a pointer to the area for parameters from the offset
1737     // and move the pointer to the slot for the last
1738     // parameters. Collect profiling from last parameter down.
1739     // mdo start + parameters offset + array length - 1
1740     add(mdp, mdp, tmp1);
1741     ldr(tmp1, Address(mdp, ArrayData::array_len_offset()));
1742     sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1743 
1744     Label loop;
1745     bind(loop);
1746 
1747     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1748     int type_base = in_bytes(ParametersTypeData::type_offset(0));
1749     int per_arg_scale = exact_log2(DataLayout::cell_size);
1750     add(rscratch1, mdp, off_base);
1751     add(rscratch2, mdp, type_base);
1752 
1753     Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale));
1754     Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale));
1755 
1756     // load offset on the stack from the slot for this parameter
1757     ldr(tmp2, arg_off);
1758     neg(tmp2, tmp2);
1759     // read the parameter from the local area
1760     ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize)));
1761 
1762     // profile the parameter
1763     profile_obj_type(tmp2, arg_type);
1764 
1765     // go to next parameter
1766     subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1767     br(Assembler::GE, loop);
1768 
1769     bind(profile_continue);
1770   }
1771 }