1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/dictionary.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "memory/heapInspection.hpp"
  32 #include "memory/metadataFactory.hpp"
  33 #include "memory/oopFactory.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/instanceKlass.hpp"
  36 #include "oops/klass.inline.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "runtime/atomic.inline.hpp"
  39 #include "runtime/orderAccess.inline.hpp"
  40 #include "trace/traceMacros.hpp"
  41 #include "utilities/macros.hpp"
  42 #include "utilities/stack.inline.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  45 #endif // INCLUDE_ALL_GCS
  46 
  47 void Klass::set_name(Symbol* n) {
  48   _name = n;
  49   if (_name != NULL) _name->increment_refcount();
  50 }
  51 
  52 bool Klass::is_subclass_of(const Klass* k) const {
  53   // Run up the super chain and check
  54   if (this == k) return true;
  55 
  56   Klass* t = const_cast<Klass*>(this)->super();
  57 
  58   while (t != NULL) {
  59     if (t == k) return true;
  60     t = t->super();
  61   }
  62   return false;
  63 }
  64 
  65 bool Klass::search_secondary_supers(Klass* k) const {
  66   // Put some extra logic here out-of-line, before the search proper.
  67   // This cuts down the size of the inline method.
  68 
  69   // This is necessary, since I am never in my own secondary_super list.
  70   if (this == k)
  71     return true;
  72   // Scan the array-of-objects for a match
  73   int cnt = secondary_supers()->length();
  74   for (int i = 0; i < cnt; i++) {
  75     if (secondary_supers()->at(i) == k) {
  76       ((Klass*)this)->set_secondary_super_cache(k);
  77       return true;
  78     }
  79   }
  80   return false;
  81 }
  82 
  83 // Return self, except for abstract classes with exactly 1
  84 // implementor.  Then return the 1 concrete implementation.
  85 Klass *Klass::up_cast_abstract() {
  86   Klass *r = this;
  87   while( r->is_abstract() ) {   // Receiver is abstract?
  88     Klass *s = r->subklass();   // Check for exactly 1 subklass
  89     if( !s || s->next_sibling() ) // Oops; wrong count; give up
  90       return this;              // Return 'this' as a no-progress flag
  91     r = s;                    // Loop till find concrete class
  92   }
  93   return r;                   // Return the 1 concrete class
  94 }
  95 
  96 // Find LCA in class hierarchy
  97 Klass *Klass::LCA( Klass *k2 ) {
  98   Klass *k1 = this;
  99   while( 1 ) {
 100     if( k1->is_subtype_of(k2) ) return k2;
 101     if( k2->is_subtype_of(k1) ) return k1;
 102     k1 = k1->super();
 103     k2 = k2->super();
 104   }
 105 }
 106 
 107 
 108 void Klass::check_valid_for_instantiation(bool throwError, TRAPS) {
 109   ResourceMark rm(THREAD);
 110   THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError()
 111             : vmSymbols::java_lang_InstantiationException(), external_name());
 112 }
 113 
 114 
 115 void Klass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
 116   THROW(vmSymbols::java_lang_ArrayStoreException());
 117 }
 118 
 119 
 120 void Klass::initialize(TRAPS) {
 121   ShouldNotReachHere();
 122 }
 123 
 124 bool Klass::compute_is_subtype_of(Klass* k) {
 125   assert(k->is_klass(), "argument must be a class");
 126   return is_subclass_of(k);
 127 }
 128 
 129 Klass* Klass::find_field(Symbol* name, Symbol* sig, fieldDescriptor* fd) const {
 130 #ifdef ASSERT
 131   tty->print_cr("Error: find_field called on a klass oop."
 132                 " Likely error: reflection method does not correctly"
 133                 " wrap return value in a mirror object.");
 134 #endif
 135   ShouldNotReachHere();
 136   return NULL;
 137 }
 138 
 139 Method* Klass::uncached_lookup_method(const Symbol* name, const Symbol* signature, OverpassLookupMode overpass_mode) const {
 140 #ifdef ASSERT
 141   tty->print_cr("Error: uncached_lookup_method called on a klass oop."
 142                 " Likely error: reflection method does not correctly"
 143                 " wrap return value in a mirror object.");
 144 #endif
 145   ShouldNotReachHere();
 146   return NULL;
 147 }
 148 
 149 void* Klass::operator new(size_t size, ClassLoaderData* loader_data, size_t word_size, TRAPS) throw() {
 150   return Metaspace::allocate(loader_data, word_size, /*read_only*/false,
 151                              MetaspaceObj::ClassType, THREAD);
 152 }
 153 
 154 // "Normal" instantiation is preceeded by a MetaspaceObj allocation
 155 // which zeros out memory - calloc equivalent.
 156 // The constructor is also used from init_self_patching_vtbl_list,
 157 // which doesn't zero out the memory before calling the constructor.
 158 // Need to set the _java_mirror field explicitly to not hit an assert that the field
 159 // should be NULL before setting it.
 160 Klass::Klass() : _prototype_header(markOopDesc::prototype()),
 161                  _shared_class_path_index(-1),
 162                  _java_mirror(NULL) {
 163 
 164   _primary_supers[0] = this;
 165   set_super_check_offset(in_bytes(primary_supers_offset()));
 166 }
 167 
 168 jint Klass::array_layout_helper(BasicType etype) {
 169   assert(etype >= T_BOOLEAN && etype <= T_OBJECT, "valid etype");
 170   // Note that T_ARRAY is not allowed here.
 171   int  hsize = arrayOopDesc::base_offset_in_bytes(etype);
 172   int  esize = type2aelembytes(etype);
 173   bool isobj = (etype == T_OBJECT);
 174   int  tag   =  isobj ? _lh_array_tag_obj_value : _lh_array_tag_type_value;
 175   int lh = array_layout_helper(tag, hsize, etype, exact_log2(esize));
 176 
 177   assert(lh < (int)_lh_neutral_value, "must look like an array layout");
 178   assert(layout_helper_is_array(lh), "correct kind");
 179   assert(layout_helper_is_objArray(lh) == isobj, "correct kind");
 180   assert(layout_helper_is_typeArray(lh) == !isobj, "correct kind");
 181   assert(layout_helper_header_size(lh) == hsize, "correct decode");
 182   assert(layout_helper_element_type(lh) == etype, "correct decode");
 183   assert(1 << layout_helper_log2_element_size(lh) == esize, "correct decode");
 184 
 185   return lh;
 186 }
 187 
 188 bool Klass::can_be_primary_super_slow() const {
 189   if (super() == NULL)
 190     return true;
 191   else if (super()->super_depth() >= primary_super_limit()-1)
 192     return false;
 193   else
 194     return true;
 195 }
 196 
 197 void Klass::initialize_supers(Klass* k, TRAPS) {
 198   if (FastSuperclassLimit == 0) {
 199     // None of the other machinery matters.
 200     set_super(k);
 201     return;
 202   }
 203   if (k == NULL) {
 204     set_super(NULL);
 205     _primary_supers[0] = this;
 206     assert(super_depth() == 0, "Object must already be initialized properly");
 207   } else if (k != super() || k == SystemDictionary::Object_klass()) {
 208     assert(super() == NULL || super() == SystemDictionary::Object_klass(),
 209            "initialize this only once to a non-trivial value");
 210     set_super(k);
 211     Klass* sup = k;
 212     int sup_depth = sup->super_depth();
 213     juint my_depth  = MIN2(sup_depth + 1, (int)primary_super_limit());
 214     if (!can_be_primary_super_slow())
 215       my_depth = primary_super_limit();
 216     for (juint i = 0; i < my_depth; i++) {
 217       _primary_supers[i] = sup->_primary_supers[i];
 218     }
 219     Klass* *super_check_cell;
 220     if (my_depth < primary_super_limit()) {
 221       _primary_supers[my_depth] = this;
 222       super_check_cell = &_primary_supers[my_depth];
 223     } else {
 224       // Overflow of the primary_supers array forces me to be secondary.
 225       super_check_cell = &_secondary_super_cache;
 226     }
 227     set_super_check_offset((address)super_check_cell - (address) this);
 228 
 229 #ifdef ASSERT
 230     {
 231       juint j = super_depth();
 232       assert(j == my_depth, "computed accessor gets right answer");
 233       Klass* t = this;
 234       while (!t->can_be_primary_super()) {
 235         t = t->super();
 236         j = t->super_depth();
 237       }
 238       for (juint j1 = j+1; j1 < primary_super_limit(); j1++) {
 239         assert(primary_super_of_depth(j1) == NULL, "super list padding");
 240       }
 241       while (t != NULL) {
 242         assert(primary_super_of_depth(j) == t, "super list initialization");
 243         t = t->super();
 244         --j;
 245       }
 246       assert(j == (juint)-1, "correct depth count");
 247     }
 248 #endif
 249   }
 250 
 251   if (secondary_supers() == NULL) {
 252     KlassHandle this_kh (THREAD, this);
 253 
 254     // Now compute the list of secondary supertypes.
 255     // Secondaries can occasionally be on the super chain,
 256     // if the inline "_primary_supers" array overflows.
 257     int extras = 0;
 258     Klass* p;
 259     for (p = super(); !(p == NULL || p->can_be_primary_super()); p = p->super()) {
 260       ++extras;
 261     }
 262 
 263     ResourceMark rm(THREAD);  // need to reclaim GrowableArrays allocated below
 264 
 265     // Compute the "real" non-extra secondaries.
 266     GrowableArray<Klass*>* secondaries = compute_secondary_supers(extras);
 267     if (secondaries == NULL) {
 268       // secondary_supers set by compute_secondary_supers
 269       return;
 270     }
 271 
 272     GrowableArray<Klass*>* primaries = new GrowableArray<Klass*>(extras);
 273 
 274     for (p = this_kh->super(); !(p == NULL || p->can_be_primary_super()); p = p->super()) {
 275       int i;                    // Scan for overflow primaries being duplicates of 2nd'arys
 276 
 277       // This happens frequently for very deeply nested arrays: the
 278       // primary superclass chain overflows into the secondary.  The
 279       // secondary list contains the element_klass's secondaries with
 280       // an extra array dimension added.  If the element_klass's
 281       // secondary list already contains some primary overflows, they
 282       // (with the extra level of array-ness) will collide with the
 283       // normal primary superclass overflows.
 284       for( i = 0; i < secondaries->length(); i++ ) {
 285         if( secondaries->at(i) == p )
 286           break;
 287       }
 288       if( i < secondaries->length() )
 289         continue;               // It's a dup, don't put it in
 290       primaries->push(p);
 291     }
 292     // Combine the two arrays into a metadata object to pack the array.
 293     // The primaries are added in the reverse order, then the secondaries.
 294     int new_length = primaries->length() + secondaries->length();
 295     Array<Klass*>* s2 = MetadataFactory::new_array<Klass*>(
 296                                        class_loader_data(), new_length, CHECK);
 297     int fill_p = primaries->length();
 298     for (int j = 0; j < fill_p; j++) {
 299       s2->at_put(j, primaries->pop());  // add primaries in reverse order.
 300     }
 301     for( int j = 0; j < secondaries->length(); j++ ) {
 302       s2->at_put(j+fill_p, secondaries->at(j));  // add secondaries on the end.
 303     }
 304 
 305   #ifdef ASSERT
 306       // We must not copy any NULL placeholders left over from bootstrap.
 307     for (int j = 0; j < s2->length(); j++) {
 308       assert(s2->at(j) != NULL, "correct bootstrapping order");
 309     }
 310   #endif
 311 
 312     this_kh->set_secondary_supers(s2);
 313   }
 314 }
 315 
 316 GrowableArray<Klass*>* Klass::compute_secondary_supers(int num_extra_slots) {
 317   assert(num_extra_slots == 0, "override for complex klasses");
 318   set_secondary_supers(Universe::the_empty_klass_array());
 319   return NULL;
 320 }
 321 
 322 
 323 InstanceKlass* Klass::superklass() const {
 324   assert(super() == NULL || super()->is_instance_klass(), "must be instance klass");
 325   return _super == NULL ? NULL : InstanceKlass::cast(_super);
 326 }
 327 
 328 void Klass::set_subklass(Klass* s) {
 329   assert(s != this, "sanity check");
 330   _subklass = s;
 331 }
 332 
 333 void Klass::set_next_sibling(Klass* s) {
 334   assert(s != this, "sanity check");
 335   _next_sibling = s;
 336 }
 337 
 338 void Klass::append_to_sibling_list() {
 339   debug_only(verify();)
 340   // add ourselves to superklass' subklass list
 341   InstanceKlass* super = superklass();
 342   if (super == NULL) return;        // special case: class Object
 343   assert((!super->is_interface()    // interfaces cannot be supers
 344           && (super->superklass() == NULL || !is_interface())),
 345          "an interface can only be a subklass of Object");
 346   Klass* prev_first_subklass = super->subklass();
 347   if (prev_first_subklass != NULL) {
 348     // set our sibling to be the superklass' previous first subklass
 349     set_next_sibling(prev_first_subklass);
 350   }
 351   // make ourselves the superklass' first subklass
 352   super->set_subklass(this);
 353   debug_only(verify();)
 354 }
 355 
 356 bool Klass::is_loader_alive(BoolObjectClosure* is_alive) {
 357 #ifdef ASSERT
 358   // The class is alive iff the class loader is alive.
 359   oop loader = class_loader();
 360   bool loader_alive = (loader == NULL) || is_alive->do_object_b(loader);
 361 #endif // ASSERT
 362 
 363   // The class is alive if it's mirror is alive (which should be marked if the
 364   // loader is alive) unless it's an anoymous class.
 365   bool mirror_alive = is_alive->do_object_b(java_mirror());
 366   assert(!mirror_alive || loader_alive, "loader must be alive if the mirror is"
 367                         " but not the other way around with anonymous classes");
 368   return mirror_alive;
 369 }
 370 
 371 void Klass::clean_weak_klass_links(BoolObjectClosure* is_alive, bool clean_alive_klasses) {
 372   if (!ClassUnloading) {
 373     return;
 374   }
 375 
 376   Klass* root = SystemDictionary::Object_klass();
 377   Stack<Klass*, mtGC> stack;
 378 
 379   stack.push(root);
 380   while (!stack.is_empty()) {
 381     Klass* current = stack.pop();
 382 
 383     assert(current->is_loader_alive(is_alive), "just checking, this should be live");
 384 
 385     // Find and set the first alive subklass
 386     Klass* sub = current->subklass();
 387     while (sub != NULL && !sub->is_loader_alive(is_alive)) {
 388 #ifndef PRODUCT
 389       if (TraceClassUnloading && WizardMode) {
 390         ResourceMark rm;
 391         tty->print_cr("[Unlinking class (subclass) %s]", sub->external_name());
 392       }
 393 #endif
 394       sub = sub->next_sibling();
 395     }
 396     current->set_subklass(sub);
 397     if (sub != NULL) {
 398       stack.push(sub);
 399     }
 400 
 401     // Find and set the first alive sibling
 402     Klass* sibling = current->next_sibling();
 403     while (sibling != NULL && !sibling->is_loader_alive(is_alive)) {
 404       if (TraceClassUnloading && WizardMode) {
 405         ResourceMark rm;
 406         tty->print_cr("[Unlinking class (sibling) %s]", sibling->external_name());
 407       }
 408       sibling = sibling->next_sibling();
 409     }
 410     current->set_next_sibling(sibling);
 411     if (sibling != NULL) {
 412       stack.push(sibling);
 413     }
 414 
 415     // Clean the implementors list and method data.
 416     if (clean_alive_klasses && current->is_instance_klass()) {
 417       InstanceKlass* ik = InstanceKlass::cast(current);
 418       ik->clean_weak_instanceklass_links(is_alive);
 419     }
 420   }
 421 }
 422 
 423 void Klass::klass_update_barrier_set(oop v) {
 424   record_modified_oops();
 425 }
 426 
 427 // This barrier is used by G1 to remember the old oop values, so
 428 // that we don't forget any objects that were live at the snapshot at
 429 // the beginning. This function is only used when we write oops into Klasses.
 430 void Klass::klass_update_barrier_set_pre(oop* p, oop v) {
 431 #if INCLUDE_ALL_GCS
 432   if (UseG1GC) {
 433     oop obj = *p;
 434     if (obj != NULL) {
 435       G1SATBCardTableModRefBS::enqueue(obj);
 436     }
 437   }
 438 #endif
 439 }
 440 
 441 void Klass::klass_oop_store(oop* p, oop v) {
 442   assert(!Universe::heap()->is_in_reserved((void*)p), "Should store pointer into metadata");
 443   assert(v == NULL || Universe::heap()->is_in_reserved((void*)v), "Should store pointer to an object");
 444 
 445   // do the store
 446   if (always_do_update_barrier) {
 447     klass_oop_store((volatile oop*)p, v);
 448   } else {
 449     klass_update_barrier_set_pre(p, v);
 450     *p = v;
 451     klass_update_barrier_set(v);
 452   }
 453 }
 454 
 455 void Klass::klass_oop_store(volatile oop* p, oop v) {
 456   assert(!Universe::heap()->is_in_reserved((void*)p), "Should store pointer into metadata");
 457   assert(v == NULL || Universe::heap()->is_in_reserved((void*)v), "Should store pointer to an object");
 458 
 459   klass_update_barrier_set_pre((oop*)p, v); // Cast away volatile.
 460   OrderAccess::release_store_ptr(p, v);
 461   klass_update_barrier_set(v);
 462 }
 463 
 464 void Klass::oops_do(OopClosure* cl) {
 465   cl->do_oop(&_java_mirror);
 466 }
 467 
 468 void Klass::remove_unshareable_info() {
 469   assert (DumpSharedSpaces, "only called for DumpSharedSpaces");
 470 
 471   set_subklass(NULL);
 472   set_next_sibling(NULL);
 473   // Clear the java mirror
 474   set_java_mirror(NULL);
 475   set_next_link(NULL);
 476 
 477   // Null out class_loader_data because we don't share that yet.
 478   set_class_loader_data(NULL);
 479 }
 480 
 481 void Klass::restore_unshareable_info(ClassLoaderData* loader_data, Handle protection_domain, TRAPS) {
 482   TRACE_INIT_ID(this);
 483   // If an exception happened during CDS restore, some of these fields may already be
 484   // set.  We leave the class on the CLD list, even if incomplete so that we don't
 485   // modify the CLD list outside a safepoint.
 486   if (class_loader_data() == NULL) {
 487     // Restore class_loader_data to the null class loader data
 488     set_class_loader_data(loader_data);
 489 
 490     // Add to null class loader list first before creating the mirror
 491     // (same order as class file parsing)
 492     loader_data->add_class(this);
 493   }
 494 
 495   // Recreate the class mirror.
 496   // Only recreate it if not present.  A previous attempt to restore may have
 497   // gotten an OOM later but keep the mirror if it was created.
 498   if (java_mirror() == NULL) {
 499     Handle loader = loader_data->class_loader();
 500     java_lang_Class::create_mirror(this, loader, protection_domain, CHECK);
 501   }
 502 }
 503 
 504 Klass* Klass::array_klass_or_null(int rank) {
 505   EXCEPTION_MARK;
 506   // No exception can be thrown by array_klass_impl when called with or_null == true.
 507   // (In anycase, the execption mark will fail if it do so)
 508   return array_klass_impl(true, rank, THREAD);
 509 }
 510 
 511 
 512 Klass* Klass::array_klass_or_null() {
 513   EXCEPTION_MARK;
 514   // No exception can be thrown by array_klass_impl when called with or_null == true.
 515   // (In anycase, the execption mark will fail if it do so)
 516   return array_klass_impl(true, THREAD);
 517 }
 518 
 519 
 520 Klass* Klass::array_klass_impl(bool or_null, int rank, TRAPS) {
 521   fatal("array_klass should be dispatched to InstanceKlass, ObjArrayKlass or TypeArrayKlass");
 522   return NULL;
 523 }
 524 
 525 
 526 Klass* Klass::array_klass_impl(bool or_null, TRAPS) {
 527   fatal("array_klass should be dispatched to InstanceKlass, ObjArrayKlass or TypeArrayKlass");
 528   return NULL;
 529 }
 530 
 531 oop Klass::class_loader() const { return class_loader_data()->class_loader(); }
 532 
 533 // In product mode, this function doesn't have virtual function calls so
 534 // there might be some performance advantage to handling InstanceKlass here.
 535 const char* Klass::external_name() const {
 536   if (is_instance_klass()) {
 537     const InstanceKlass* ik = static_cast<const InstanceKlass*>(this);
 538     if (ik->is_anonymous()) {
 539       intptr_t hash = 0;
 540       if (ik->java_mirror() != NULL) {
 541         // java_mirror might not be created yet, return 0 as hash.
 542         hash = ik->java_mirror()->identity_hash();
 543       }
 544       char     hash_buf[40];
 545       sprintf(hash_buf, "/" UINTX_FORMAT, (uintx)hash);
 546       size_t   hash_len = strlen(hash_buf);
 547 
 548       size_t result_len = name()->utf8_length();
 549       char*  result     = NEW_RESOURCE_ARRAY(char, result_len + hash_len + 1);
 550       name()->as_klass_external_name(result, (int) result_len + 1);
 551       assert(strlen(result) == result_len, "");
 552       strcpy(result + result_len, hash_buf);
 553       assert(strlen(result) == result_len + hash_len, "");
 554       return result;
 555     }
 556   }
 557   if (name() == NULL)  return "<unknown>";
 558   return name()->as_klass_external_name();
 559 }
 560 
 561 
 562 const char* Klass::signature_name() const {
 563   if (name() == NULL)  return "<unknown>";
 564   return name()->as_C_string();
 565 }
 566 
 567 // Unless overridden, modifier_flags is 0.
 568 jint Klass::compute_modifier_flags(TRAPS) const {
 569   return 0;
 570 }
 571 
 572 int Klass::atomic_incr_biased_lock_revocation_count() {
 573   return (int) Atomic::add(1, &_biased_lock_revocation_count);
 574 }
 575 
 576 // Unless overridden, jvmti_class_status has no flags set.
 577 jint Klass::jvmti_class_status() const {
 578   return 0;
 579 }
 580 
 581 
 582 // Printing
 583 
 584 void Klass::print_on(outputStream* st) const {
 585   ResourceMark rm;
 586   // print title
 587   st->print("%s", internal_name());
 588   print_address_on(st);
 589   st->cr();
 590 }
 591 
 592 void Klass::oop_print_on(oop obj, outputStream* st) {
 593   ResourceMark rm;
 594   // print title
 595   st->print_cr("%s ", internal_name());
 596   obj->print_address_on(st);
 597 
 598   if (WizardMode) {
 599      // print header
 600      obj->mark()->print_on(st);
 601   }
 602 
 603   // print class
 604   st->print(" - klass: ");
 605   obj->klass()->print_value_on(st);
 606   st->cr();
 607 }
 608 
 609 void Klass::oop_print_value_on(oop obj, outputStream* st) {
 610   // print title
 611   ResourceMark rm;              // Cannot print in debug mode without this
 612   st->print("%s", internal_name());
 613   obj->print_address_on(st);
 614 }
 615 
 616 #if INCLUDE_SERVICES
 617 // Size Statistics
 618 void Klass::collect_statistics(KlassSizeStats *sz) const {
 619   sz->_klass_bytes = sz->count(this);
 620   sz->_mirror_bytes = sz->count(java_mirror());
 621   sz->_secondary_supers_bytes = sz->count_array(secondary_supers());
 622 
 623   sz->_ro_bytes += sz->_secondary_supers_bytes;
 624   sz->_rw_bytes += sz->_klass_bytes + sz->_mirror_bytes;
 625 }
 626 #endif // INCLUDE_SERVICES
 627 
 628 // Verification
 629 
 630 void Klass::verify_on(outputStream* st) {
 631 
 632   // This can be expensive, but it is worth checking that this klass is actually
 633   // in the CLD graph but not in production.
 634   assert(Metaspace::contains((address)this), "Should be");
 635 
 636   guarantee(this->is_klass(),"should be klass");
 637 
 638   if (super() != NULL) {
 639     guarantee(super()->is_klass(), "should be klass");
 640   }
 641   if (secondary_super_cache() != NULL) {
 642     Klass* ko = secondary_super_cache();
 643     guarantee(ko->is_klass(), "should be klass");
 644   }
 645   for ( uint i = 0; i < primary_super_limit(); i++ ) {
 646     Klass* ko = _primary_supers[i];
 647     if (ko != NULL) {
 648       guarantee(ko->is_klass(), "should be klass");
 649     }
 650   }
 651 
 652   if (java_mirror() != NULL) {
 653     guarantee(java_mirror()->is_oop(), "should be instance");
 654   }
 655 }
 656 
 657 void Klass::oop_verify_on(oop obj, outputStream* st) {
 658   guarantee(obj->is_oop(),  "should be oop");
 659   guarantee(obj->klass()->is_klass(), "klass field is not a klass");
 660 }
 661 
 662 #ifndef PRODUCT
 663 
 664 bool Klass::verify_vtable_index(int i) {
 665   int limit = vtable_length()/vtableEntry::size();
 666   assert(i >= 0 && i < limit, "index %d out of bounds %d", i, limit);
 667   return true;
 668 }
 669 
 670 bool Klass::verify_itable_index(int i) {
 671   assert(is_instance_klass(), "");
 672   int method_count = klassItable::method_count_for_interface(this);
 673   assert(i >= 0 && i < method_count, "index out of bounds");
 674   return true;
 675 }
 676 
 677 #endif
 678 
 679 /////////////// Unit tests ///////////////
 680 
 681 #ifndef PRODUCT
 682 
 683 class TestKlass {
 684  public:
 685   static void test_oop_is_instanceClassLoader() {
 686     Klass* klass = SystemDictionary::ClassLoader_klass();
 687     guarantee(klass->is_instance_klass(), "assert");
 688     guarantee(InstanceKlass::cast(klass)->is_class_loader_instance_klass(), "test failed");
 689 
 690     klass = SystemDictionary::String_klass();
 691     guarantee(!klass->is_instance_klass() ||
 692               !InstanceKlass::cast(klass)->is_class_loader_instance_klass(),
 693               "test failed");
 694   }
 695 };
 696 
 697 void TestKlass_test() {
 698   TestKlass::test_oop_is_instanceClassLoader();
 699 }
 700 
 701 #endif  // PRODUCT