1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows 2000 or XP to use IsDebuggerPresent
  26 #define _WIN32_WINNT 0x500
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "prims/jniFastGetField.hpp"
  44 #include "prims/jvm.h"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "services/runtimeService.hpp"
  66 #include "utilities/decoder.hpp"
  67 #include "utilities/defaultStream.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/growableArray.hpp"
  70 #include "utilities/vmError.hpp"
  71 
  72 #ifdef _DEBUG
  73 #include <crtdbg.h>
  74 #endif
  75 
  76 
  77 #include <windows.h>
  78 #include <sys/types.h>
  79 #include <sys/stat.h>
  80 #include <sys/timeb.h>
  81 #include <objidl.h>
  82 #include <shlobj.h>
  83 
  84 #include <malloc.h>
  85 #include <signal.h>
  86 #include <direct.h>
  87 #include <errno.h>
  88 #include <fcntl.h>
  89 #include <io.h>
  90 #include <process.h>              // For _beginthreadex(), _endthreadex()
  91 #include <imagehlp.h>             // For os::dll_address_to_function_name
  92 /* for enumerating dll libraries */
  93 #include <vdmdbg.h>
  94 
  95 // for timer info max values which include all bits
  96 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
  97 
  98 // For DLL loading/load error detection
  99 // Values of PE COFF
 100 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 101 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 102 
 103 static HANDLE main_process;
 104 static HANDLE main_thread;
 105 static int    main_thread_id;
 106 
 107 static FILETIME process_creation_time;
 108 static FILETIME process_exit_time;
 109 static FILETIME process_user_time;
 110 static FILETIME process_kernel_time;
 111 
 112 #ifdef _M_IA64
 113   #define __CPU__ ia64
 114 #else
 115   #ifdef _M_AMD64
 116     #define __CPU__ amd64
 117   #else
 118     #define __CPU__ i486
 119   #endif
 120 #endif
 121 
 122 // save DLL module handle, used by GetModuleFileName
 123 
 124 HINSTANCE vm_lib_handle;
 125 
 126 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 127   switch (reason) {
 128     case DLL_PROCESS_ATTACH:
 129       vm_lib_handle = hinst;
 130       if(ForceTimeHighResolution)
 131         timeBeginPeriod(1L);
 132       break;
 133     case DLL_PROCESS_DETACH:
 134       if(ForceTimeHighResolution)
 135         timeEndPeriod(1L);
 136 
 137       break;
 138     default:
 139       break;
 140   }
 141   return true;
 142 }
 143 
 144 static inline double fileTimeAsDouble(FILETIME* time) {
 145   const double high  = (double) ((unsigned int) ~0);
 146   const double split = 10000000.0;
 147   double result = (time->dwLowDateTime / split) +
 148                    time->dwHighDateTime * (high/split);
 149   return result;
 150 }
 151 
 152 // Implementation of os
 153 
 154 bool os::getenv(const char* name, char* buffer, int len) {
 155  int result = GetEnvironmentVariable(name, buffer, len);
 156  return result > 0 && result < len;
 157 }
 158 
 159 bool os::unsetenv(const char* name) {
 160   assert(name != NULL, "Null pointer");
 161   return (SetEnvironmentVariable(name, NULL) == TRUE);
 162 }
 163 
 164 // No setuid programs under Windows.
 165 bool os::have_special_privileges() {
 166   return false;
 167 }
 168 
 169 
 170 // This method is  a periodic task to check for misbehaving JNI applications
 171 // under CheckJNI, we can add any periodic checks here.
 172 // For Windows at the moment does nothing
 173 void os::run_periodic_checks() {
 174   return;
 175 }
 176 
 177 #ifndef _WIN64
 178 // previous UnhandledExceptionFilter, if there is one
 179 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 180 
 181 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 182 #endif
 183 void os::init_system_properties_values() {
 184   /* sysclasspath, java_home, dll_dir */
 185   {
 186       char *home_path;
 187       char *dll_path;
 188       char *pslash;
 189       char *bin = "\\bin";
 190       char home_dir[MAX_PATH];
 191 
 192       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
 193           os::jvm_path(home_dir, sizeof(home_dir));
 194           // Found the full path to jvm.dll.
 195           // Now cut the path to <java_home>/jre if we can.
 196           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
 197           pslash = strrchr(home_dir, '\\');
 198           if (pslash != NULL) {
 199               *pslash = '\0';                 /* get rid of \{client|server} */
 200               pslash = strrchr(home_dir, '\\');
 201               if (pslash != NULL)
 202                   *pslash = '\0';             /* get rid of \bin */
 203           }
 204       }
 205 
 206       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 207       if (home_path == NULL)
 208           return;
 209       strcpy(home_path, home_dir);
 210       Arguments::set_java_home(home_path);
 211 
 212       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal);
 213       if (dll_path == NULL)
 214           return;
 215       strcpy(dll_path, home_dir);
 216       strcat(dll_path, bin);
 217       Arguments::set_dll_dir(dll_path);
 218 
 219       if (!set_boot_path('\\', ';'))
 220           return;
 221   }
 222 
 223   /* library_path */
 224   #define EXT_DIR "\\lib\\ext"
 225   #define BIN_DIR "\\bin"
 226   #define PACKAGE_DIR "\\Sun\\Java"
 227   {
 228     /* Win32 library search order (See the documentation for LoadLibrary):
 229      *
 230      * 1. The directory from which application is loaded.
 231      * 2. The system wide Java Extensions directory (Java only)
 232      * 3. System directory (GetSystemDirectory)
 233      * 4. Windows directory (GetWindowsDirectory)
 234      * 5. The PATH environment variable
 235      * 6. The current directory
 236      */
 237 
 238     char *library_path;
 239     char tmp[MAX_PATH];
 240     char *path_str = ::getenv("PATH");
 241 
 242     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 243         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 244 
 245     library_path[0] = '\0';
 246 
 247     GetModuleFileName(NULL, tmp, sizeof(tmp));
 248     *(strrchr(tmp, '\\')) = '\0';
 249     strcat(library_path, tmp);
 250 
 251     GetWindowsDirectory(tmp, sizeof(tmp));
 252     strcat(library_path, ";");
 253     strcat(library_path, tmp);
 254     strcat(library_path, PACKAGE_DIR BIN_DIR);
 255 
 256     GetSystemDirectory(tmp, sizeof(tmp));
 257     strcat(library_path, ";");
 258     strcat(library_path, tmp);
 259 
 260     GetWindowsDirectory(tmp, sizeof(tmp));
 261     strcat(library_path, ";");
 262     strcat(library_path, tmp);
 263 
 264     if (path_str) {
 265         strcat(library_path, ";");
 266         strcat(library_path, path_str);
 267     }
 268 
 269     strcat(library_path, ";.");
 270 
 271     Arguments::set_library_path(library_path);
 272     FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
 273   }
 274 
 275   /* Default extensions directory */
 276   {
 277     char path[MAX_PATH];
 278     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 279     GetWindowsDirectory(path, MAX_PATH);
 280     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 281         path, PACKAGE_DIR, EXT_DIR);
 282     Arguments::set_ext_dirs(buf);
 283   }
 284   #undef EXT_DIR
 285   #undef BIN_DIR
 286   #undef PACKAGE_DIR
 287 
 288   /* Default endorsed standards directory. */
 289   {
 290     #define ENDORSED_DIR "\\lib\\endorsed"
 291     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
 292     char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
 293     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
 294     Arguments::set_endorsed_dirs(buf);
 295     #undef ENDORSED_DIR
 296   }
 297 
 298 #ifndef _WIN64
 299   // set our UnhandledExceptionFilter and save any previous one
 300   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 301 #endif
 302 
 303   // Done
 304   return;
 305 }
 306 
 307 void os::breakpoint() {
 308   DebugBreak();
 309 }
 310 
 311 // Invoked from the BREAKPOINT Macro
 312 extern "C" void breakpoint() {
 313   os::breakpoint();
 314 }
 315 
 316 /*
 317  * RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 318  * So far, this method is only used by Native Memory Tracking, which is
 319  * only supported on Windows XP or later.
 320  */
 321 
 322 int os::get_native_stack(address* stack, int frames, int toSkip) {
 323 #ifdef _NMT_NOINLINE_
 324   toSkip ++;
 325 #endif
 326   int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
 327     (PVOID*)stack, NULL);
 328   for (int index = captured; index < frames; index ++) {
 329     stack[index] = NULL;
 330   }
 331   return captured;
 332 }
 333 
 334 
 335 // os::current_stack_base()
 336 //
 337 //   Returns the base of the stack, which is the stack's
 338 //   starting address.  This function must be called
 339 //   while running on the stack of the thread being queried.
 340 
 341 address os::current_stack_base() {
 342   MEMORY_BASIC_INFORMATION minfo;
 343   address stack_bottom;
 344   size_t stack_size;
 345 
 346   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 347   stack_bottom =  (address)minfo.AllocationBase;
 348   stack_size = minfo.RegionSize;
 349 
 350   // Add up the sizes of all the regions with the same
 351   // AllocationBase.
 352   while( 1 )
 353   {
 354     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 355     if ( stack_bottom == (address)minfo.AllocationBase )
 356       stack_size += minfo.RegionSize;
 357     else
 358       break;
 359   }
 360 
 361 #ifdef _M_IA64
 362   // IA64 has memory and register stacks
 363   //
 364   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 365   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 366   // growing downwards, 2MB summed up)
 367   //
 368   // ...
 369   // ------- top of stack (high address) -----
 370   // |
 371   // |      1MB
 372   // |      Backing Store (Register Stack)
 373   // |
 374   // |         / \
 375   // |          |
 376   // |          |
 377   // |          |
 378   // ------------------------ stack base -----
 379   // |      1MB
 380   // |      Memory Stack
 381   // |
 382   // |          |
 383   // |          |
 384   // |          |
 385   // |         \ /
 386   // |
 387   // ----- bottom of stack (low address) -----
 388   // ...
 389 
 390   stack_size = stack_size / 2;
 391 #endif
 392   return stack_bottom + stack_size;
 393 }
 394 
 395 size_t os::current_stack_size() {
 396   size_t sz;
 397   MEMORY_BASIC_INFORMATION minfo;
 398   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 399   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 400   return sz;
 401 }
 402 
 403 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 404   const struct tm* time_struct_ptr = localtime(clock);
 405   if (time_struct_ptr != NULL) {
 406     *res = *time_struct_ptr;
 407     return res;
 408   }
 409   return NULL;
 410 }
 411 
 412 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 413 
 414 // Thread start routine for all new Java threads
 415 static unsigned __stdcall java_start(Thread* thread) {
 416   // Try to randomize the cache line index of hot stack frames.
 417   // This helps when threads of the same stack traces evict each other's
 418   // cache lines. The threads can be either from the same JVM instance, or
 419   // from different JVM instances. The benefit is especially true for
 420   // processors with hyperthreading technology.
 421   static int counter = 0;
 422   int pid = os::current_process_id();
 423   _alloca(((pid ^ counter++) & 7) * 128);
 424 
 425   OSThread* osthr = thread->osthread();
 426   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 427 
 428   if (UseNUMA) {
 429     int lgrp_id = os::numa_get_group_id();
 430     if (lgrp_id != -1) {
 431       thread->set_lgrp_id(lgrp_id);
 432     }
 433   }
 434 
 435 
 436   // Install a win32 structured exception handler around every thread created
 437   // by VM, so VM can genrate error dump when an exception occurred in non-
 438   // Java thread (e.g. VM thread).
 439   __try {
 440      thread->run();
 441   } __except(topLevelExceptionFilter(
 442              (_EXCEPTION_POINTERS*)_exception_info())) {
 443       // Nothing to do.
 444   }
 445 
 446   // One less thread is executing
 447   // When the VMThread gets here, the main thread may have already exited
 448   // which frees the CodeHeap containing the Atomic::add code
 449   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 450     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 451   }
 452 
 453   return 0;
 454 }
 455 
 456 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
 457   // Allocate the OSThread object
 458   OSThread* osthread = new OSThread(NULL, NULL);
 459   if (osthread == NULL) return NULL;
 460 
 461   // Initialize support for Java interrupts
 462   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 463   if (interrupt_event == NULL) {
 464     delete osthread;
 465     return NULL;
 466   }
 467   osthread->set_interrupt_event(interrupt_event);
 468 
 469   // Store info on the Win32 thread into the OSThread
 470   osthread->set_thread_handle(thread_handle);
 471   osthread->set_thread_id(thread_id);
 472 
 473   if (UseNUMA) {
 474     int lgrp_id = os::numa_get_group_id();
 475     if (lgrp_id != -1) {
 476       thread->set_lgrp_id(lgrp_id);
 477     }
 478   }
 479 
 480   // Initial thread state is INITIALIZED, not SUSPENDED
 481   osthread->set_state(INITIALIZED);
 482 
 483   return osthread;
 484 }
 485 
 486 
 487 bool os::create_attached_thread(JavaThread* thread) {
 488 #ifdef ASSERT
 489   thread->verify_not_published();
 490 #endif
 491   HANDLE thread_h;
 492   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 493                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 494     fatal("DuplicateHandle failed\n");
 495   }
 496   OSThread* osthread = create_os_thread(thread, thread_h,
 497                                         (int)current_thread_id());
 498   if (osthread == NULL) {
 499      return false;
 500   }
 501 
 502   // Initial thread state is RUNNABLE
 503   osthread->set_state(RUNNABLE);
 504 
 505   thread->set_osthread(osthread);
 506   return true;
 507 }
 508 
 509 bool os::create_main_thread(JavaThread* thread) {
 510 #ifdef ASSERT
 511   thread->verify_not_published();
 512 #endif
 513   if (_starting_thread == NULL) {
 514     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 515      if (_starting_thread == NULL) {
 516         return false;
 517      }
 518   }
 519 
 520   // The primordial thread is runnable from the start)
 521   _starting_thread->set_state(RUNNABLE);
 522 
 523   thread->set_osthread(_starting_thread);
 524   return true;
 525 }
 526 
 527 // Allocate and initialize a new OSThread
 528 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 529   unsigned thread_id;
 530 
 531   // Allocate the OSThread object
 532   OSThread* osthread = new OSThread(NULL, NULL);
 533   if (osthread == NULL) {
 534     return false;
 535   }
 536 
 537   // Initialize support for Java interrupts
 538   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 539   if (interrupt_event == NULL) {
 540     delete osthread;
 541     return NULL;
 542   }
 543   osthread->set_interrupt_event(interrupt_event);
 544   osthread->set_interrupted(false);
 545 
 546   thread->set_osthread(osthread);
 547 
 548   if (stack_size == 0) {
 549     switch (thr_type) {
 550     case os::java_thread:
 551       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 552       if (JavaThread::stack_size_at_create() > 0)
 553         stack_size = JavaThread::stack_size_at_create();
 554       break;
 555     case os::compiler_thread:
 556       if (CompilerThreadStackSize > 0) {
 557         stack_size = (size_t)(CompilerThreadStackSize * K);
 558         break;
 559       } // else fall through:
 560         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 561     case os::vm_thread:
 562     case os::pgc_thread:
 563     case os::cgc_thread:
 564     case os::watcher_thread:
 565       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 566       break;
 567     }
 568   }
 569 
 570   // Create the Win32 thread
 571   //
 572   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 573   // does not specify stack size. Instead, it specifies the size of
 574   // initially committed space. The stack size is determined by
 575   // PE header in the executable. If the committed "stack_size" is larger
 576   // than default value in the PE header, the stack is rounded up to the
 577   // nearest multiple of 1MB. For example if the launcher has default
 578   // stack size of 320k, specifying any size less than 320k does not
 579   // affect the actual stack size at all, it only affects the initial
 580   // commitment. On the other hand, specifying 'stack_size' larger than
 581   // default value may cause significant increase in memory usage, because
 582   // not only the stack space will be rounded up to MB, but also the
 583   // entire space is committed upfront.
 584   //
 585   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 586   // for CreateThread() that can treat 'stack_size' as stack size. However we
 587   // are not supposed to call CreateThread() directly according to MSDN
 588   // document because JVM uses C runtime library. The good news is that the
 589   // flag appears to work with _beginthredex() as well.
 590 
 591 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 592 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 593 #endif
 594 
 595   HANDLE thread_handle =
 596     (HANDLE)_beginthreadex(NULL,
 597                            (unsigned)stack_size,
 598                            (unsigned (__stdcall *)(void*)) java_start,
 599                            thread,
 600                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 601                            &thread_id);
 602   if (thread_handle == NULL) {
 603     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 604     // without the flag.
 605     thread_handle =
 606     (HANDLE)_beginthreadex(NULL,
 607                            (unsigned)stack_size,
 608                            (unsigned (__stdcall *)(void*)) java_start,
 609                            thread,
 610                            CREATE_SUSPENDED,
 611                            &thread_id);
 612   }
 613   if (thread_handle == NULL) {
 614     // Need to clean up stuff we've allocated so far
 615     CloseHandle(osthread->interrupt_event());
 616     thread->set_osthread(NULL);
 617     delete osthread;
 618     return NULL;
 619   }
 620 
 621   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 622 
 623   // Store info on the Win32 thread into the OSThread
 624   osthread->set_thread_handle(thread_handle);
 625   osthread->set_thread_id(thread_id);
 626 
 627   // Initial thread state is INITIALIZED, not SUSPENDED
 628   osthread->set_state(INITIALIZED);
 629 
 630   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 631   return true;
 632 }
 633 
 634 
 635 // Free Win32 resources related to the OSThread
 636 void os::free_thread(OSThread* osthread) {
 637   assert(osthread != NULL, "osthread not set");
 638   CloseHandle(osthread->thread_handle());
 639   CloseHandle(osthread->interrupt_event());
 640   delete osthread;
 641 }
 642 
 643 
 644 static int    has_performance_count = 0;
 645 static jlong first_filetime;
 646 static jlong initial_performance_count;
 647 static jlong performance_frequency;
 648 
 649 
 650 jlong as_long(LARGE_INTEGER x) {
 651   jlong result = 0; // initialization to avoid warning
 652   set_high(&result, x.HighPart);
 653   set_low(&result,  x.LowPart);
 654   return result;
 655 }
 656 
 657 
 658 jlong os::elapsed_counter() {
 659   LARGE_INTEGER count;
 660   if (has_performance_count) {
 661     QueryPerformanceCounter(&count);
 662     return as_long(count) - initial_performance_count;
 663   } else {
 664     FILETIME wt;
 665     GetSystemTimeAsFileTime(&wt);
 666     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 667   }
 668 }
 669 
 670 
 671 jlong os::elapsed_frequency() {
 672   if (has_performance_count) {
 673     return performance_frequency;
 674   } else {
 675    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 676    return 10000000;
 677   }
 678 }
 679 
 680 
 681 julong os::available_memory() {
 682   return win32::available_memory();
 683 }
 684 
 685 julong os::win32::available_memory() {
 686   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 687   // value if total memory is larger than 4GB
 688   MEMORYSTATUSEX ms;
 689   ms.dwLength = sizeof(ms);
 690   GlobalMemoryStatusEx(&ms);
 691 
 692   return (julong)ms.ullAvailPhys;
 693 }
 694 
 695 julong os::physical_memory() {
 696   return win32::physical_memory();
 697 }
 698 
 699 bool os::has_allocatable_memory_limit(julong* limit) {
 700   MEMORYSTATUSEX ms;
 701   ms.dwLength = sizeof(ms);
 702   GlobalMemoryStatusEx(&ms);
 703 #ifdef _LP64
 704   *limit = (julong)ms.ullAvailVirtual;
 705   return true;
 706 #else
 707   // Limit to 1400m because of the 2gb address space wall
 708   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 709   return true;
 710 #endif
 711 }
 712 
 713 // VC6 lacks DWORD_PTR
 714 #if _MSC_VER < 1300
 715 typedef UINT_PTR DWORD_PTR;
 716 #endif
 717 
 718 int os::active_processor_count() {
 719   DWORD_PTR lpProcessAffinityMask = 0;
 720   DWORD_PTR lpSystemAffinityMask = 0;
 721   int proc_count = processor_count();
 722   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 723       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 724     // Nof active processors is number of bits in process affinity mask
 725     int bitcount = 0;
 726     while (lpProcessAffinityMask != 0) {
 727       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 728       bitcount++;
 729     }
 730     return bitcount;
 731   } else {
 732     return proc_count;
 733   }
 734 }
 735 
 736 void os::set_native_thread_name(const char *name) {
 737   // Not yet implemented.
 738   return;
 739 }
 740 
 741 bool os::distribute_processes(uint length, uint* distribution) {
 742   // Not yet implemented.
 743   return false;
 744 }
 745 
 746 bool os::bind_to_processor(uint processor_id) {
 747   // Not yet implemented.
 748   return false;
 749 }
 750 
 751 static void initialize_performance_counter() {
 752   LARGE_INTEGER count;
 753   if (QueryPerformanceFrequency(&count)) {
 754     has_performance_count = 1;
 755     performance_frequency = as_long(count);
 756     QueryPerformanceCounter(&count);
 757     initial_performance_count = as_long(count);
 758   } else {
 759     has_performance_count = 0;
 760     FILETIME wt;
 761     GetSystemTimeAsFileTime(&wt);
 762     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 763   }
 764 }
 765 
 766 
 767 double os::elapsedTime() {
 768   return (double) elapsed_counter() / (double) elapsed_frequency();
 769 }
 770 
 771 
 772 // Windows format:
 773 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 774 // Java format:
 775 //   Java standards require the number of milliseconds since 1/1/1970
 776 
 777 // Constant offset - calculated using offset()
 778 static jlong  _offset   = 116444736000000000;
 779 // Fake time counter for reproducible results when debugging
 780 static jlong  fake_time = 0;
 781 
 782 #ifdef ASSERT
 783 // Just to be safe, recalculate the offset in debug mode
 784 static jlong _calculated_offset = 0;
 785 static int   _has_calculated_offset = 0;
 786 
 787 jlong offset() {
 788   if (_has_calculated_offset) return _calculated_offset;
 789   SYSTEMTIME java_origin;
 790   java_origin.wYear          = 1970;
 791   java_origin.wMonth         = 1;
 792   java_origin.wDayOfWeek     = 0; // ignored
 793   java_origin.wDay           = 1;
 794   java_origin.wHour          = 0;
 795   java_origin.wMinute        = 0;
 796   java_origin.wSecond        = 0;
 797   java_origin.wMilliseconds  = 0;
 798   FILETIME jot;
 799   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 800     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 801   }
 802   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 803   _has_calculated_offset = 1;
 804   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 805   return _calculated_offset;
 806 }
 807 #else
 808 jlong offset() {
 809   return _offset;
 810 }
 811 #endif
 812 
 813 jlong windows_to_java_time(FILETIME wt) {
 814   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 815   return (a - offset()) / 10000;
 816 }
 817 
 818 FILETIME java_to_windows_time(jlong l) {
 819   jlong a = (l * 10000) + offset();
 820   FILETIME result;
 821   result.dwHighDateTime = high(a);
 822   result.dwLowDateTime  = low(a);
 823   return result;
 824 }
 825 
 826 bool os::supports_vtime() { return true; }
 827 bool os::enable_vtime() { return false; }
 828 bool os::vtime_enabled() { return false; }
 829 
 830 double os::elapsedVTime() {
 831   FILETIME created;
 832   FILETIME exited;
 833   FILETIME kernel;
 834   FILETIME user;
 835   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 836     // the resolution of windows_to_java_time() should be sufficient (ms)
 837     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 838   } else {
 839     return elapsedTime();
 840   }
 841 }
 842 
 843 jlong os::javaTimeMillis() {
 844   if (UseFakeTimers) {
 845     return fake_time++;
 846   } else {
 847     FILETIME wt;
 848     GetSystemTimeAsFileTime(&wt);
 849     return windows_to_java_time(wt);
 850   }
 851 }
 852 
 853 jlong os::javaTimeNanos() {
 854   if (!has_performance_count) {
 855     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 856   } else {
 857     LARGE_INTEGER current_count;
 858     QueryPerformanceCounter(&current_count);
 859     double current = as_long(current_count);
 860     double freq = performance_frequency;
 861     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 862     return time;
 863   }
 864 }
 865 
 866 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 867   if (!has_performance_count) {
 868     // javaTimeMillis() doesn't have much percision,
 869     // but it is not going to wrap -- so all 64 bits
 870     info_ptr->max_value = ALL_64_BITS;
 871 
 872     // this is a wall clock timer, so may skip
 873     info_ptr->may_skip_backward = true;
 874     info_ptr->may_skip_forward = true;
 875   } else {
 876     jlong freq = performance_frequency;
 877     if (freq < NANOSECS_PER_SEC) {
 878       // the performance counter is 64 bits and we will
 879       // be multiplying it -- so no wrap in 64 bits
 880       info_ptr->max_value = ALL_64_BITS;
 881     } else if (freq > NANOSECS_PER_SEC) {
 882       // use the max value the counter can reach to
 883       // determine the max value which could be returned
 884       julong max_counter = (julong)ALL_64_BITS;
 885       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 886     } else {
 887       // the performance counter is 64 bits and we will
 888       // be using it directly -- so no wrap in 64 bits
 889       info_ptr->max_value = ALL_64_BITS;
 890     }
 891 
 892     // using a counter, so no skipping
 893     info_ptr->may_skip_backward = false;
 894     info_ptr->may_skip_forward = false;
 895   }
 896   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 897 }
 898 
 899 char* os::local_time_string(char *buf, size_t buflen) {
 900   SYSTEMTIME st;
 901   GetLocalTime(&st);
 902   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 903                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 904   return buf;
 905 }
 906 
 907 bool os::getTimesSecs(double* process_real_time,
 908                      double* process_user_time,
 909                      double* process_system_time) {
 910   HANDLE h_process = GetCurrentProcess();
 911   FILETIME create_time, exit_time, kernel_time, user_time;
 912   BOOL result = GetProcessTimes(h_process,
 913                                &create_time,
 914                                &exit_time,
 915                                &kernel_time,
 916                                &user_time);
 917   if (result != 0) {
 918     FILETIME wt;
 919     GetSystemTimeAsFileTime(&wt);
 920     jlong rtc_millis = windows_to_java_time(wt);
 921     jlong user_millis = windows_to_java_time(user_time);
 922     jlong system_millis = windows_to_java_time(kernel_time);
 923     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 924     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 925     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 926     return true;
 927   } else {
 928     return false;
 929   }
 930 }
 931 
 932 void os::shutdown() {
 933 
 934   // allow PerfMemory to attempt cleanup of any persistent resources
 935   perfMemory_exit();
 936 
 937   // flush buffered output, finish log files
 938   ostream_abort();
 939 
 940   // Check for abort hook
 941   abort_hook_t abort_hook = Arguments::abort_hook();
 942   if (abort_hook != NULL) {
 943     abort_hook();
 944   }
 945 }
 946 
 947 
 948 static BOOL  (WINAPI *_MiniDumpWriteDump)  ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 949                                             PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
 950 
 951 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
 952   HINSTANCE dbghelp;
 953   EXCEPTION_POINTERS ep;
 954   MINIDUMP_EXCEPTION_INFORMATION mei;
 955   MINIDUMP_EXCEPTION_INFORMATION* pmei;
 956 
 957   HANDLE hProcess = GetCurrentProcess();
 958   DWORD processId = GetCurrentProcessId();
 959   HANDLE dumpFile;
 960   MINIDUMP_TYPE dumpType;
 961   static const char* cwd;
 962 
 963 // Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
 964 #ifndef ASSERT
 965   // If running on a client version of Windows and user has not explicitly enabled dumping
 966   if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
 967     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
 968     return;
 969     // If running on a server version of Windows and user has explictly disabled dumping
 970   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
 971     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
 972     return;
 973   }
 974 #else
 975   if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
 976     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
 977     return;
 978   }
 979 #endif
 980 
 981   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
 982 
 983   if (dbghelp == NULL) {
 984     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
 985     return;
 986   }
 987 
 988   _MiniDumpWriteDump = CAST_TO_FN_PTR(
 989     BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 990     PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
 991     GetProcAddress(dbghelp, "MiniDumpWriteDump"));
 992 
 993   if (_MiniDumpWriteDump == NULL) {
 994     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
 995     return;
 996   }
 997 
 998   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
 999 
1000 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
1001 // API_VERSION_NUMBER 11 or higher contains the ones we want though
1002 #if API_VERSION_NUMBER >= 11
1003   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1004     MiniDumpWithUnloadedModules);
1005 #endif
1006 
1007   cwd = get_current_directory(NULL, 0);
1008   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
1009   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
1010 
1011   if (dumpFile == INVALID_HANDLE_VALUE) {
1012     VMError::report_coredump_status("Failed to create file for dumping", false);
1013     return;
1014   }
1015   if (exceptionRecord != NULL && contextRecord != NULL) {
1016     ep.ContextRecord = (PCONTEXT) contextRecord;
1017     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
1018 
1019     mei.ThreadId = GetCurrentThreadId();
1020     mei.ExceptionPointers = &ep;
1021     pmei = &mei;
1022   } else {
1023     pmei = NULL;
1024   }
1025 
1026 
1027   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1028   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1029   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1030       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1031         DWORD error = GetLastError();
1032         LPTSTR msgbuf = NULL;
1033 
1034         if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
1035                       FORMAT_MESSAGE_FROM_SYSTEM |
1036                       FORMAT_MESSAGE_IGNORE_INSERTS,
1037                       NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
1038 
1039           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
1040           LocalFree(msgbuf);
1041         } else {
1042           // Call to FormatMessage failed, just include the result from GetLastError
1043           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
1044         }
1045         VMError::report_coredump_status(buffer, false);
1046   } else {
1047     VMError::report_coredump_status(buffer, true);
1048   }
1049 
1050   CloseHandle(dumpFile);
1051 }
1052 
1053 
1054 
1055 void os::abort(bool dump_core)
1056 {
1057   os::shutdown();
1058   // no core dump on Windows
1059   ::exit(1);
1060 }
1061 
1062 // Die immediately, no exit hook, no abort hook, no cleanup.
1063 void os::die() {
1064   _exit(-1);
1065 }
1066 
1067 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1068 //  * dirent_md.c       1.15 00/02/02
1069 //
1070 // The declarations for DIR and struct dirent are in jvm_win32.h.
1071 
1072 /* Caller must have already run dirname through JVM_NativePath, which removes
1073    duplicate slashes and converts all instances of '/' into '\\'. */
1074 
1075 DIR *
1076 os::opendir(const char *dirname)
1077 {
1078     assert(dirname != NULL, "just checking");   // hotspot change
1079     DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1080     DWORD fattr;                                // hotspot change
1081     char alt_dirname[4] = { 0, 0, 0, 0 };
1082 
1083     if (dirp == 0) {
1084         errno = ENOMEM;
1085         return 0;
1086     }
1087 
1088     /*
1089      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1090      * as a directory in FindFirstFile().  We detect this case here and
1091      * prepend the current drive name.
1092      */
1093     if (dirname[1] == '\0' && dirname[0] == '\\') {
1094         alt_dirname[0] = _getdrive() + 'A' - 1;
1095         alt_dirname[1] = ':';
1096         alt_dirname[2] = '\\';
1097         alt_dirname[3] = '\0';
1098         dirname = alt_dirname;
1099     }
1100 
1101     dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1102     if (dirp->path == 0) {
1103         free(dirp, mtInternal);
1104         errno = ENOMEM;
1105         return 0;
1106     }
1107     strcpy(dirp->path, dirname);
1108 
1109     fattr = GetFileAttributes(dirp->path);
1110     if (fattr == 0xffffffff) {
1111         free(dirp->path, mtInternal);
1112         free(dirp, mtInternal);
1113         errno = ENOENT;
1114         return 0;
1115     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1116         free(dirp->path, mtInternal);
1117         free(dirp, mtInternal);
1118         errno = ENOTDIR;
1119         return 0;
1120     }
1121 
1122     /* Append "*.*", or possibly "\\*.*", to path */
1123     if (dirp->path[1] == ':'
1124         && (dirp->path[2] == '\0'
1125             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1126         /* No '\\' needed for cases like "Z:" or "Z:\" */
1127         strcat(dirp->path, "*.*");
1128     } else {
1129         strcat(dirp->path, "\\*.*");
1130     }
1131 
1132     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1133     if (dirp->handle == INVALID_HANDLE_VALUE) {
1134         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1135             free(dirp->path, mtInternal);
1136             free(dirp, mtInternal);
1137             errno = EACCES;
1138             return 0;
1139         }
1140     }
1141     return dirp;
1142 }
1143 
1144 /* parameter dbuf unused on Windows */
1145 
1146 struct dirent *
1147 os::readdir(DIR *dirp, dirent *dbuf)
1148 {
1149     assert(dirp != NULL, "just checking");      // hotspot change
1150     if (dirp->handle == INVALID_HANDLE_VALUE) {
1151         return 0;
1152     }
1153 
1154     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1155 
1156     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1157         if (GetLastError() == ERROR_INVALID_HANDLE) {
1158             errno = EBADF;
1159             return 0;
1160         }
1161         FindClose(dirp->handle);
1162         dirp->handle = INVALID_HANDLE_VALUE;
1163     }
1164 
1165     return &dirp->dirent;
1166 }
1167 
1168 int
1169 os::closedir(DIR *dirp)
1170 {
1171     assert(dirp != NULL, "just checking");      // hotspot change
1172     if (dirp->handle != INVALID_HANDLE_VALUE) {
1173         if (!FindClose(dirp->handle)) {
1174             errno = EBADF;
1175             return -1;
1176         }
1177         dirp->handle = INVALID_HANDLE_VALUE;
1178     }
1179     free(dirp->path, mtInternal);
1180     free(dirp, mtInternal);
1181     return 0;
1182 }
1183 
1184 // This must be hard coded because it's the system's temporary
1185 // directory not the java application's temp directory, ala java.io.tmpdir.
1186 const char* os::get_temp_directory() {
1187   static char path_buf[MAX_PATH];
1188   if (GetTempPath(MAX_PATH, path_buf)>0)
1189     return path_buf;
1190   else{
1191     path_buf[0]='\0';
1192     return path_buf;
1193   }
1194 }
1195 
1196 static bool file_exists(const char* filename) {
1197   if (filename == NULL || strlen(filename) == 0) {
1198     return false;
1199   }
1200   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1201 }
1202 
1203 bool os::dll_build_name(char *buffer, size_t buflen,
1204                         const char* pname, const char* fname) {
1205   bool retval = false;
1206   const size_t pnamelen = pname ? strlen(pname) : 0;
1207   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1208 
1209   // Return error on buffer overflow.
1210   if (pnamelen + strlen(fname) + 10 > buflen) {
1211     return retval;
1212   }
1213 
1214   if (pnamelen == 0) {
1215     jio_snprintf(buffer, buflen, "%s.dll", fname);
1216     retval = true;
1217   } else if (c == ':' || c == '\\') {
1218     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1219     retval = true;
1220   } else if (strchr(pname, *os::path_separator()) != NULL) {
1221     int n;
1222     char** pelements = split_path(pname, &n);
1223     if (pelements == NULL) {
1224       return false;
1225     }
1226     for (int i = 0 ; i < n ; i++) {
1227       char* path = pelements[i];
1228       // Really shouldn't be NULL, but check can't hurt
1229       size_t plen = (path == NULL) ? 0 : strlen(path);
1230       if (plen == 0) {
1231         continue; // skip the empty path values
1232       }
1233       const char lastchar = path[plen - 1];
1234       if (lastchar == ':' || lastchar == '\\') {
1235         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1236       } else {
1237         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1238       }
1239       if (file_exists(buffer)) {
1240         retval = true;
1241         break;
1242       }
1243     }
1244     // release the storage
1245     for (int i = 0 ; i < n ; i++) {
1246       if (pelements[i] != NULL) {
1247         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1248       }
1249     }
1250     if (pelements != NULL) {
1251       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1252     }
1253   } else {
1254     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1255     retval = true;
1256   }
1257   return retval;
1258 }
1259 
1260 // Needs to be in os specific directory because windows requires another
1261 // header file <direct.h>
1262 const char* os::get_current_directory(char *buf, size_t buflen) {
1263   int n = static_cast<int>(buflen);
1264   if (buflen > INT_MAX)  n = INT_MAX;
1265   return _getcwd(buf, n);
1266 }
1267 
1268 //-----------------------------------------------------------
1269 // Helper functions for fatal error handler
1270 #ifdef _WIN64
1271 // Helper routine which returns true if address in
1272 // within the NTDLL address space.
1273 //
1274 static bool _addr_in_ntdll( address addr )
1275 {
1276   HMODULE hmod;
1277   MODULEINFO minfo;
1278 
1279   hmod = GetModuleHandle("NTDLL.DLL");
1280   if ( hmod == NULL ) return false;
1281   if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
1282                                &minfo, sizeof(MODULEINFO)) )
1283     return false;
1284 
1285   if ( (addr >= minfo.lpBaseOfDll) &&
1286        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1287     return true;
1288   else
1289     return false;
1290 }
1291 #endif
1292 
1293 
1294 // Enumerate all modules for a given process ID
1295 //
1296 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
1297 // different API for doing this. We use PSAPI.DLL on NT based
1298 // Windows and ToolHelp on 95/98/Me.
1299 
1300 // Callback function that is called by enumerate_modules() on
1301 // every DLL module.
1302 // Input parameters:
1303 //    int       pid,
1304 //    char*     module_file_name,
1305 //    address   module_base_addr,
1306 //    unsigned  module_size,
1307 //    void*     param
1308 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1309 
1310 // enumerate_modules for Windows NT, using PSAPI
1311 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1312 {
1313   HANDLE   hProcess ;
1314 
1315 # define MAX_NUM_MODULES 128
1316   HMODULE     modules[MAX_NUM_MODULES];
1317   static char filename[ MAX_PATH ];
1318   int         result = 0;
1319 
1320   if (!os::PSApiDll::PSApiAvailable()) {
1321     return 0;
1322   }
1323 
1324   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1325                          FALSE, pid ) ;
1326   if (hProcess == NULL) return 0;
1327 
1328   DWORD size_needed;
1329   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1330                            sizeof(modules), &size_needed)) {
1331       CloseHandle( hProcess );
1332       return 0;
1333   }
1334 
1335   // number of modules that are currently loaded
1336   int num_modules = size_needed / sizeof(HMODULE);
1337 
1338   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1339     // Get Full pathname:
1340     if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1341                              filename, sizeof(filename))) {
1342         filename[0] = '\0';
1343     }
1344 
1345     MODULEINFO modinfo;
1346     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1347                                &modinfo, sizeof(modinfo))) {
1348         modinfo.lpBaseOfDll = NULL;
1349         modinfo.SizeOfImage = 0;
1350     }
1351 
1352     // Invoke callback function
1353     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1354                   modinfo.SizeOfImage, param);
1355     if (result) break;
1356   }
1357 
1358   CloseHandle( hProcess ) ;
1359   return result;
1360 }
1361 
1362 
1363 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
1364 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1365 {
1366   HANDLE                hSnapShot ;
1367   static MODULEENTRY32  modentry ;
1368   int                   result = 0;
1369 
1370   if (!os::Kernel32Dll::HelpToolsAvailable()) {
1371     return 0;
1372   }
1373 
1374   // Get a handle to a Toolhelp snapshot of the system
1375   hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1376   if( hSnapShot == INVALID_HANDLE_VALUE ) {
1377       return FALSE ;
1378   }
1379 
1380   // iterate through all modules
1381   modentry.dwSize = sizeof(MODULEENTRY32) ;
1382   bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
1383 
1384   while( not_done ) {
1385     // invoke the callback
1386     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1387                 modentry.modBaseSize, param);
1388     if (result) break;
1389 
1390     modentry.dwSize = sizeof(MODULEENTRY32) ;
1391     not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
1392   }
1393 
1394   CloseHandle(hSnapShot);
1395   return result;
1396 }
1397 
1398 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1399 {
1400   // Get current process ID if caller doesn't provide it.
1401   if (!pid) pid = os::current_process_id();
1402 
1403   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1404   else                    return _enumerate_modules_windows(pid, func, param);
1405 }
1406 
1407 struct _modinfo {
1408    address addr;
1409    char*   full_path;   // point to a char buffer
1410    int     buflen;      // size of the buffer
1411    address base_addr;
1412 };
1413 
1414 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1415                                   unsigned size, void * param) {
1416    struct _modinfo *pmod = (struct _modinfo *)param;
1417    if (!pmod) return -1;
1418 
1419    if (base_addr     <= pmod->addr &&
1420        base_addr+size > pmod->addr) {
1421      // if a buffer is provided, copy path name to the buffer
1422      if (pmod->full_path) {
1423        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1424      }
1425      pmod->base_addr = base_addr;
1426      return 1;
1427    }
1428    return 0;
1429 }
1430 
1431 bool os::dll_address_to_library_name(address addr, char* buf,
1432                                      int buflen, int* offset) {
1433   // buf is not optional, but offset is optional
1434   assert(buf != NULL, "sanity check");
1435 
1436 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1437 //       return the full path to the DLL file, sometimes it returns path
1438 //       to the corresponding PDB file (debug info); sometimes it only
1439 //       returns partial path, which makes life painful.
1440 
1441   struct _modinfo mi;
1442   mi.addr      = addr;
1443   mi.full_path = buf;
1444   mi.buflen    = buflen;
1445   int pid = os::current_process_id();
1446   if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1447     // buf already contains path name
1448     if (offset) *offset = addr - mi.base_addr;
1449     return true;
1450   }
1451 
1452   buf[0] = '\0';
1453   if (offset) *offset = -1;
1454   return false;
1455 }
1456 
1457 bool os::dll_address_to_function_name(address addr, char *buf,
1458                                       int buflen, int *offset) {
1459   // buf is not optional, but offset is optional
1460   assert(buf != NULL, "sanity check");
1461 
1462   if (Decoder::decode(addr, buf, buflen, offset)) {
1463     return true;
1464   }
1465   if (offset != NULL)  *offset  = -1;
1466   buf[0] = '\0';
1467   return false;
1468 }
1469 
1470 // save the start and end address of jvm.dll into param[0] and param[1]
1471 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1472                     unsigned size, void * param) {
1473    if (!param) return -1;
1474 
1475    if (base_addr     <= (address)_locate_jvm_dll &&
1476        base_addr+size > (address)_locate_jvm_dll) {
1477          ((address*)param)[0] = base_addr;
1478          ((address*)param)[1] = base_addr + size;
1479          return 1;
1480    }
1481    return 0;
1482 }
1483 
1484 address vm_lib_location[2];    // start and end address of jvm.dll
1485 
1486 // check if addr is inside jvm.dll
1487 bool os::address_is_in_vm(address addr) {
1488   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1489     int pid = os::current_process_id();
1490     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1491       assert(false, "Can't find jvm module.");
1492       return false;
1493     }
1494   }
1495 
1496   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1497 }
1498 
1499 // print module info; param is outputStream*
1500 static int _print_module(int pid, char* fname, address base,
1501                          unsigned size, void* param) {
1502    if (!param) return -1;
1503 
1504    outputStream* st = (outputStream*)param;
1505 
1506    address end_addr = base + size;
1507    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1508    return 0;
1509 }
1510 
1511 // Loads .dll/.so and
1512 // in case of error it checks if .dll/.so was built for the
1513 // same architecture as Hotspot is running on
1514 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1515 {
1516   void * result = LoadLibrary(name);
1517   if (result != NULL)
1518   {
1519     return result;
1520   }
1521 
1522   DWORD errcode = GetLastError();
1523   if (errcode == ERROR_MOD_NOT_FOUND) {
1524     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1525     ebuf[ebuflen-1]='\0';
1526     return NULL;
1527   }
1528 
1529   // Parsing dll below
1530   // If we can read dll-info and find that dll was built
1531   // for an architecture other than Hotspot is running in
1532   // - then print to buffer "DLL was built for a different architecture"
1533   // else call os::lasterror to obtain system error message
1534 
1535   // Read system error message into ebuf
1536   // It may or may not be overwritten below (in the for loop and just above)
1537   lasterror(ebuf, (size_t) ebuflen);
1538   ebuf[ebuflen-1]='\0';
1539   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1540   if (file_descriptor<0)
1541   {
1542     return NULL;
1543   }
1544 
1545   uint32_t signature_offset;
1546   uint16_t lib_arch=0;
1547   bool failed_to_get_lib_arch=
1548   (
1549     //Go to position 3c in the dll
1550     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1551     ||
1552     // Read loacation of signature
1553     (sizeof(signature_offset)!=
1554       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1555     ||
1556     //Go to COFF File Header in dll
1557     //that is located after"signature" (4 bytes long)
1558     (os::seek_to_file_offset(file_descriptor,
1559       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1560     ||
1561     //Read field that contains code of architecture
1562     // that dll was build for
1563     (sizeof(lib_arch)!=
1564       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1565   );
1566 
1567   ::close(file_descriptor);
1568   if (failed_to_get_lib_arch)
1569   {
1570     // file i/o error - report os::lasterror(...) msg
1571     return NULL;
1572   }
1573 
1574   typedef struct
1575   {
1576     uint16_t arch_code;
1577     char* arch_name;
1578   } arch_t;
1579 
1580   static const arch_t arch_array[]={
1581     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1582     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1583     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1584   };
1585   #if   (defined _M_IA64)
1586     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1587   #elif (defined _M_AMD64)
1588     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1589   #elif (defined _M_IX86)
1590     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1591   #else
1592     #error Method os::dll_load requires that one of following \
1593            is defined :_M_IA64,_M_AMD64 or _M_IX86
1594   #endif
1595 
1596 
1597   // Obtain a string for printf operation
1598   // lib_arch_str shall contain string what platform this .dll was built for
1599   // running_arch_str shall string contain what platform Hotspot was built for
1600   char *running_arch_str=NULL,*lib_arch_str=NULL;
1601   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1602   {
1603     if (lib_arch==arch_array[i].arch_code)
1604       lib_arch_str=arch_array[i].arch_name;
1605     if (running_arch==arch_array[i].arch_code)
1606       running_arch_str=arch_array[i].arch_name;
1607   }
1608 
1609   assert(running_arch_str,
1610     "Didn't find runing architecture code in arch_array");
1611 
1612   // If the architure is right
1613   // but some other error took place - report os::lasterror(...) msg
1614   if (lib_arch == running_arch)
1615   {
1616     return NULL;
1617   }
1618 
1619   if (lib_arch_str!=NULL)
1620   {
1621     ::_snprintf(ebuf, ebuflen-1,
1622       "Can't load %s-bit .dll on a %s-bit platform",
1623       lib_arch_str,running_arch_str);
1624   }
1625   else
1626   {
1627     // don't know what architecture this dll was build for
1628     ::_snprintf(ebuf, ebuflen-1,
1629       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1630       lib_arch,running_arch_str);
1631   }
1632 
1633   return NULL;
1634 }
1635 
1636 
1637 void os::print_dll_info(outputStream *st) {
1638    int pid = os::current_process_id();
1639    st->print_cr("Dynamic libraries:");
1640    enumerate_modules(pid, _print_module, (void *)st);
1641 }
1642 
1643 void os::print_os_info_brief(outputStream* st) {
1644   os::print_os_info(st);
1645 }
1646 
1647 void os::print_os_info(outputStream* st) {
1648   st->print("OS:");
1649 
1650   os::win32::print_windows_version(st);
1651 }
1652 
1653 void os::win32::print_windows_version(outputStream* st) {
1654   OSVERSIONINFOEX osvi;
1655   VS_FIXEDFILEINFO *file_info;
1656   TCHAR kernel32_path[MAX_PATH];
1657   UINT len, ret;
1658 
1659   // Use the GetVersionEx information to see if we're on a server or
1660   // workstation edition of Windows. Starting with Windows 8.1 we can't
1661   // trust the OS version information returned by this API.
1662   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1663   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1664   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1665     st->print_cr("Call to GetVersionEx failed");
1666     return;
1667   }
1668   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1669 
1670   // Get the full path to \Windows\System32\kernel32.dll and use that for
1671   // determining what version of Windows we're running on.
1672   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1673   ret = GetSystemDirectory(kernel32_path, len);
1674   if (ret == 0 || ret > len) {
1675     st->print_cr("Call to GetSystemDirectory failed");
1676     return;
1677   }
1678   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1679 
1680   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1681   if (version_size == 0) {
1682     st->print_cr("Call to GetFileVersionInfoSize failed");
1683     return;
1684   }
1685 
1686   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1687   if (version_info == NULL) {
1688     st->print_cr("Failed to allocate version_info");
1689     return;
1690   }
1691 
1692   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1693     os::free(version_info);
1694     st->print_cr("Call to GetFileVersionInfo failed");
1695     return;
1696   }
1697 
1698   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1699     os::free(version_info);
1700     st->print_cr("Call to VerQueryValue failed");
1701     return;
1702   }
1703 
1704   int major_version = HIWORD(file_info->dwProductVersionMS);
1705   int minor_version = LOWORD(file_info->dwProductVersionMS);
1706   int build_number = HIWORD(file_info->dwProductVersionLS);
1707   int build_minor = LOWORD(file_info->dwProductVersionLS);
1708   int os_vers = major_version * 1000 + minor_version;
1709   os::free(version_info);
1710 
1711   st->print(" Windows ");
1712   switch (os_vers) {
1713 
1714   case 6000:
1715     if (is_workstation) {
1716       st->print("Vista");
1717     } else {
1718       st->print("Server 2008");
1719     }
1720     break;
1721 
1722   case 6001:
1723     if (is_workstation) {
1724       st->print("7");
1725     } else {
1726       st->print("Server 2008 R2");
1727     }
1728     break;
1729 
1730   case 6002:
1731     if (is_workstation) {
1732       st->print("8");
1733     } else {
1734       st->print("Server 2012");
1735     }
1736     break;
1737 
1738   case 6003:
1739     if (is_workstation) {
1740       st->print("8.1");
1741     } else {
1742       st->print("Server 2012 R2");
1743     }
1744     break;
1745 
1746   case 6004:
1747     if (is_workstation) {
1748       st->print("10");
1749     } else {
1750       st->print("Server 2016");
1751     }
1752     break;
1753 
1754   default:
1755     // Unrecognized windows, print out its major and minor versions
1756     st->print("%d.%d", major_version, minor_version);
1757     break;
1758   }
1759 
1760   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1761   // find out whether we are running on 64 bit processor or not
1762   SYSTEM_INFO si;
1763   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1764   os::Kernel32Dll::GetNativeSystemInfo(&si);
1765   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1766     st->print(" , 64 bit");
1767   }
1768 
1769   st->print(" Build %d", build_number);
1770   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1771   st->cr();
1772 }
1773 
1774 void os::pd_print_cpu_info(outputStream* st) {
1775   // Nothing to do for now.
1776 }
1777 
1778 void os::print_memory_info(outputStream* st) {
1779   st->print("Memory:");
1780   st->print(" %dk page", os::vm_page_size()>>10);
1781 
1782   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1783   // value if total memory is larger than 4GB
1784   MEMORYSTATUSEX ms;
1785   ms.dwLength = sizeof(ms);
1786   GlobalMemoryStatusEx(&ms);
1787 
1788   st->print(", physical %uk", os::physical_memory() >> 10);
1789   st->print("(%uk free)", os::available_memory() >> 10);
1790 
1791   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1792   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1793   st->cr();
1794 }
1795 
1796 void os::print_siginfo(outputStream *st, void *siginfo) {
1797   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1798   st->print("siginfo:");
1799   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1800 
1801   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1802       er->NumberParameters >= 2) {
1803       switch (er->ExceptionInformation[0]) {
1804       case 0: st->print(", reading address"); break;
1805       case 1: st->print(", writing address"); break;
1806       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1807                             er->ExceptionInformation[0]);
1808       }
1809       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1810   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1811              er->NumberParameters >= 2 && UseSharedSpaces) {
1812     FileMapInfo* mapinfo = FileMapInfo::current_info();
1813     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1814       st->print("\n\nError accessing class data sharing archive."       \
1815                 " Mapped file inaccessible during execution, "          \
1816                 " possible disk/network problem.");
1817     }
1818   } else {
1819     int num = er->NumberParameters;
1820     if (num > 0) {
1821       st->print(", ExceptionInformation=");
1822       for (int i = 0; i < num; i++) {
1823         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1824       }
1825     }
1826   }
1827   st->cr();
1828 }
1829 
1830 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1831   // do nothing
1832 }
1833 
1834 static char saved_jvm_path[MAX_PATH] = {0};
1835 
1836 // Find the full path to the current module, jvm.dll
1837 void os::jvm_path(char *buf, jint buflen) {
1838   // Error checking.
1839   if (buflen < MAX_PATH) {
1840     assert(false, "must use a large-enough buffer");
1841     buf[0] = '\0';
1842     return;
1843   }
1844   // Lazy resolve the path to current module.
1845   if (saved_jvm_path[0] != 0) {
1846     strcpy(buf, saved_jvm_path);
1847     return;
1848   }
1849 
1850   buf[0] = '\0';
1851   if (Arguments::created_by_gamma_launcher()) {
1852      // Support for the gamma launcher. Check for an
1853      // JAVA_HOME environment variable
1854      // and fix up the path so it looks like
1855      // libjvm.so is installed there (append a fake suffix
1856      // hotspot/libjvm.so).
1857      char* java_home_var = ::getenv("JAVA_HOME");
1858      if (java_home_var != NULL && java_home_var[0] != 0 &&
1859          strlen(java_home_var) < (size_t)buflen) {
1860 
1861         strncpy(buf, java_home_var, buflen);
1862 
1863         // determine if this is a legacy image or modules image
1864         // modules image doesn't have "jre" subdirectory
1865         size_t len = strlen(buf);
1866         char* jrebin_p = buf + len;
1867         jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1868         if (0 != _access(buf, 0)) {
1869           jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1870         }
1871         len = strlen(buf);
1872         jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1873      }
1874   }
1875 
1876   if(buf[0] == '\0') {
1877     GetModuleFileName(vm_lib_handle, buf, buflen);
1878   }
1879   strncpy(saved_jvm_path, buf, MAX_PATH);
1880 }
1881 
1882 
1883 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1884 #ifndef _WIN64
1885   st->print("_");
1886 #endif
1887 }
1888 
1889 
1890 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1891 #ifndef _WIN64
1892   st->print("@%d", args_size  * sizeof(int));
1893 #endif
1894 }
1895 
1896 // This method is a copy of JDK's sysGetLastErrorString
1897 // from src/windows/hpi/src/system_md.c
1898 
1899 size_t os::lasterror(char* buf, size_t len) {
1900   DWORD errval;
1901 
1902   if ((errval = GetLastError()) != 0) {
1903     // DOS error
1904     size_t n = (size_t)FormatMessage(
1905           FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1906           NULL,
1907           errval,
1908           0,
1909           buf,
1910           (DWORD)len,
1911           NULL);
1912     if (n > 3) {
1913       // Drop final '.', CR, LF
1914       if (buf[n - 1] == '\n') n--;
1915       if (buf[n - 1] == '\r') n--;
1916       if (buf[n - 1] == '.') n--;
1917       buf[n] = '\0';
1918     }
1919     return n;
1920   }
1921 
1922   if (errno != 0) {
1923     // C runtime error that has no corresponding DOS error code
1924     const char* s = strerror(errno);
1925     size_t n = strlen(s);
1926     if (n >= len) n = len - 1;
1927     strncpy(buf, s, n);
1928     buf[n] = '\0';
1929     return n;
1930   }
1931 
1932   return 0;
1933 }
1934 
1935 int os::get_last_error() {
1936   DWORD error = GetLastError();
1937   if (error == 0)
1938     error = errno;
1939   return (int)error;
1940 }
1941 
1942 // sun.misc.Signal
1943 // NOTE that this is a workaround for an apparent kernel bug where if
1944 // a signal handler for SIGBREAK is installed then that signal handler
1945 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1946 // See bug 4416763.
1947 static void (*sigbreakHandler)(int) = NULL;
1948 
1949 static void UserHandler(int sig, void *siginfo, void *context) {
1950   os::signal_notify(sig);
1951   // We need to reinstate the signal handler each time...
1952   os::signal(sig, (void*)UserHandler);
1953 }
1954 
1955 void* os::user_handler() {
1956   return (void*) UserHandler;
1957 }
1958 
1959 void* os::signal(int signal_number, void* handler) {
1960   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1961     void (*oldHandler)(int) = sigbreakHandler;
1962     sigbreakHandler = (void (*)(int)) handler;
1963     return (void*) oldHandler;
1964   } else {
1965     return (void*)::signal(signal_number, (void (*)(int))handler);
1966   }
1967 }
1968 
1969 void os::signal_raise(int signal_number) {
1970   raise(signal_number);
1971 }
1972 
1973 // The Win32 C runtime library maps all console control events other than ^C
1974 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1975 // logoff, and shutdown events.  We therefore install our own console handler
1976 // that raises SIGTERM for the latter cases.
1977 //
1978 static BOOL WINAPI consoleHandler(DWORD event) {
1979   switch(event) {
1980     case CTRL_C_EVENT:
1981       if (is_error_reported()) {
1982         // Ctrl-C is pressed during error reporting, likely because the error
1983         // handler fails to abort. Let VM die immediately.
1984         os::die();
1985       }
1986 
1987       os::signal_raise(SIGINT);
1988       return TRUE;
1989       break;
1990     case CTRL_BREAK_EVENT:
1991       if (sigbreakHandler != NULL) {
1992         (*sigbreakHandler)(SIGBREAK);
1993       }
1994       return TRUE;
1995       break;
1996     case CTRL_LOGOFF_EVENT: {
1997       // Don't terminate JVM if it is running in a non-interactive session,
1998       // such as a service process.
1999       USEROBJECTFLAGS flags;
2000       HANDLE handle = GetProcessWindowStation();
2001       if (handle != NULL &&
2002           GetUserObjectInformation(handle, UOI_FLAGS, &flags,
2003             sizeof( USEROBJECTFLAGS), NULL)) {
2004         // If it is a non-interactive session, let next handler to deal
2005         // with it.
2006         if ((flags.dwFlags & WSF_VISIBLE) == 0) {
2007           return FALSE;
2008         }
2009       }
2010     }
2011     case CTRL_CLOSE_EVENT:
2012     case CTRL_SHUTDOWN_EVENT:
2013       os::signal_raise(SIGTERM);
2014       return TRUE;
2015       break;
2016     default:
2017       break;
2018   }
2019   return FALSE;
2020 }
2021 
2022 /*
2023  * The following code is moved from os.cpp for making this
2024  * code platform specific, which it is by its very nature.
2025  */
2026 
2027 // Return maximum OS signal used + 1 for internal use only
2028 // Used as exit signal for signal_thread
2029 int os::sigexitnum_pd(){
2030   return NSIG;
2031 }
2032 
2033 // a counter for each possible signal value, including signal_thread exit signal
2034 static volatile jint pending_signals[NSIG+1] = { 0 };
2035 static HANDLE sig_sem = NULL;
2036 
2037 void os::signal_init_pd() {
2038   // Initialize signal structures
2039   memset((void*)pending_signals, 0, sizeof(pending_signals));
2040 
2041   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2042 
2043   // Programs embedding the VM do not want it to attempt to receive
2044   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2045   // shutdown hooks mechanism introduced in 1.3.  For example, when
2046   // the VM is run as part of a Windows NT service (i.e., a servlet
2047   // engine in a web server), the correct behavior is for any console
2048   // control handler to return FALSE, not TRUE, because the OS's
2049   // "final" handler for such events allows the process to continue if
2050   // it is a service (while terminating it if it is not a service).
2051   // To make this behavior uniform and the mechanism simpler, we
2052   // completely disable the VM's usage of these console events if -Xrs
2053   // (=ReduceSignalUsage) is specified.  This means, for example, that
2054   // the CTRL-BREAK thread dump mechanism is also disabled in this
2055   // case.  See bugs 4323062, 4345157, and related bugs.
2056 
2057   if (!ReduceSignalUsage) {
2058     // Add a CTRL-C handler
2059     SetConsoleCtrlHandler(consoleHandler, TRUE);
2060   }
2061 }
2062 
2063 void os::signal_notify(int signal_number) {
2064   BOOL ret;
2065   if (sig_sem != NULL) {
2066     Atomic::inc(&pending_signals[signal_number]);
2067     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2068     assert(ret != 0, "ReleaseSemaphore() failed");
2069   }
2070 }
2071 
2072 static int check_pending_signals(bool wait_for_signal) {
2073   DWORD ret;
2074   while (true) {
2075     for (int i = 0; i < NSIG + 1; i++) {
2076       jint n = pending_signals[i];
2077       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2078         return i;
2079       }
2080     }
2081     if (!wait_for_signal) {
2082       return -1;
2083     }
2084 
2085     JavaThread *thread = JavaThread::current();
2086 
2087     ThreadBlockInVM tbivm(thread);
2088 
2089     bool threadIsSuspended;
2090     do {
2091       thread->set_suspend_equivalent();
2092       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2093       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2094       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2095 
2096       // were we externally suspended while we were waiting?
2097       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2098       if (threadIsSuspended) {
2099         //
2100         // The semaphore has been incremented, but while we were waiting
2101         // another thread suspended us. We don't want to continue running
2102         // while suspended because that would surprise the thread that
2103         // suspended us.
2104         //
2105         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2106         assert(ret != 0, "ReleaseSemaphore() failed");
2107 
2108         thread->java_suspend_self();
2109       }
2110     } while (threadIsSuspended);
2111   }
2112 }
2113 
2114 int os::signal_lookup() {
2115   return check_pending_signals(false);
2116 }
2117 
2118 int os::signal_wait() {
2119   return check_pending_signals(true);
2120 }
2121 
2122 // Implicit OS exception handling
2123 
2124 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
2125   JavaThread* thread = JavaThread::current();
2126   // Save pc in thread
2127 #ifdef _M_IA64
2128   // Do not blow up if no thread info available.
2129   if (thread) {
2130     // Saving PRECISE pc (with slot information) in thread.
2131     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2132     // Convert precise PC into "Unix" format
2133     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2134     thread->set_saved_exception_pc((address)precise_pc);
2135   }
2136   // Set pc to handler
2137   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2138   // Clear out psr.ri (= Restart Instruction) in order to continue
2139   // at the beginning of the target bundle.
2140   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2141   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2142 #else
2143   #ifdef _M_AMD64
2144   // Do not blow up if no thread info available.
2145   if (thread) {
2146     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2147   }
2148   // Set pc to handler
2149   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2150   #else
2151   // Do not blow up if no thread info available.
2152   if (thread) {
2153     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2154   }
2155   // Set pc to handler
2156   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2157   #endif
2158 #endif
2159 
2160   // Continue the execution
2161   return EXCEPTION_CONTINUE_EXECUTION;
2162 }
2163 
2164 
2165 // Used for PostMortemDump
2166 extern "C" void safepoints();
2167 extern "C" void find(int x);
2168 extern "C" void events();
2169 
2170 // According to Windows API documentation, an illegal instruction sequence should generate
2171 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2172 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2173 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2174 
2175 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2176 
2177 // From "Execution Protection in the Windows Operating System" draft 0.35
2178 // Once a system header becomes available, the "real" define should be
2179 // included or copied here.
2180 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2181 
2182 // Handle NAT Bit consumption on IA64.
2183 #ifdef _M_IA64
2184 #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2185 #endif
2186 
2187 // Windows Vista/2008 heap corruption check
2188 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2189 
2190 #define def_excpt(val) #val, val
2191 
2192 struct siglabel {
2193   char *name;
2194   int   number;
2195 };
2196 
2197 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2198 // C++ compiler contain this error code. Because this is a compiler-generated
2199 // error, the code is not listed in the Win32 API header files.
2200 // The code is actually a cryptic mnemonic device, with the initial "E"
2201 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2202 // ASCII values of "msc".
2203 
2204 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2205 
2206 
2207 struct siglabel exceptlabels[] = {
2208     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2209     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2210     def_excpt(EXCEPTION_BREAKPOINT),
2211     def_excpt(EXCEPTION_SINGLE_STEP),
2212     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2213     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2214     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2215     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2216     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2217     def_excpt(EXCEPTION_FLT_OVERFLOW),
2218     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2219     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2220     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2221     def_excpt(EXCEPTION_INT_OVERFLOW),
2222     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2223     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2224     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2225     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2226     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2227     def_excpt(EXCEPTION_STACK_OVERFLOW),
2228     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2229     def_excpt(EXCEPTION_GUARD_PAGE),
2230     def_excpt(EXCEPTION_INVALID_HANDLE),
2231     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2232     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2233 #ifdef _M_IA64
2234     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2235 #endif
2236     NULL, 0
2237 };
2238 
2239 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2240   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2241     if (exceptlabels[i].number == exception_code) {
2242        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2243        return buf;
2244     }
2245   }
2246 
2247   return NULL;
2248 }
2249 
2250 //-----------------------------------------------------------------------------
2251 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2252   // handle exception caused by idiv; should only happen for -MinInt/-1
2253   // (division by zero is handled explicitly)
2254 #ifdef _M_IA64
2255   assert(0, "Fix Handle_IDiv_Exception");
2256 #else
2257   #ifdef  _M_AMD64
2258   PCONTEXT ctx = exceptionInfo->ContextRecord;
2259   address pc = (address)ctx->Rip;
2260   assert(pc[0] == 0xF7, "not an idiv opcode");
2261   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2262   assert(ctx->Rax == min_jint, "unexpected idiv exception");
2263   // set correct result values and continue after idiv instruction
2264   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2265   ctx->Rax = (DWORD)min_jint;      // result
2266   ctx->Rdx = (DWORD)0;             // remainder
2267   // Continue the execution
2268   #else
2269   PCONTEXT ctx = exceptionInfo->ContextRecord;
2270   address pc = (address)ctx->Eip;
2271   assert(pc[0] == 0xF7, "not an idiv opcode");
2272   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2273   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2274   // set correct result values and continue after idiv instruction
2275   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2276   ctx->Eax = (DWORD)min_jint;      // result
2277   ctx->Edx = (DWORD)0;             // remainder
2278   // Continue the execution
2279   #endif
2280 #endif
2281   return EXCEPTION_CONTINUE_EXECUTION;
2282 }
2283 
2284 #ifndef  _WIN64
2285 //-----------------------------------------------------------------------------
2286 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2287   // handle exception caused by native method modifying control word
2288   PCONTEXT ctx = exceptionInfo->ContextRecord;
2289   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2290 
2291   switch (exception_code) {
2292     case EXCEPTION_FLT_DENORMAL_OPERAND:
2293     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2294     case EXCEPTION_FLT_INEXACT_RESULT:
2295     case EXCEPTION_FLT_INVALID_OPERATION:
2296     case EXCEPTION_FLT_OVERFLOW:
2297     case EXCEPTION_FLT_STACK_CHECK:
2298     case EXCEPTION_FLT_UNDERFLOW:
2299       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2300       if (fp_control_word != ctx->FloatSave.ControlWord) {
2301         // Restore FPCW and mask out FLT exceptions
2302         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2303         // Mask out pending FLT exceptions
2304         ctx->FloatSave.StatusWord &=  0xffffff00;
2305         return EXCEPTION_CONTINUE_EXECUTION;
2306       }
2307   }
2308 
2309   if (prev_uef_handler != NULL) {
2310     // We didn't handle this exception so pass it to the previous
2311     // UnhandledExceptionFilter.
2312     return (prev_uef_handler)(exceptionInfo);
2313   }
2314 
2315   return EXCEPTION_CONTINUE_SEARCH;
2316 }
2317 #else //_WIN64
2318 /*
2319   On Windows, the mxcsr control bits are non-volatile across calls
2320   See also CR 6192333
2321   If EXCEPTION_FLT_* happened after some native method modified
2322   mxcsr - it is not a jvm fault.
2323   However should we decide to restore of mxcsr after a faulty
2324   native method we can uncomment following code
2325       jint MxCsr = INITIAL_MXCSR;
2326         // we can't use StubRoutines::addr_mxcsr_std()
2327         // because in Win64 mxcsr is not saved there
2328       if (MxCsr != ctx->MxCsr) {
2329         ctx->MxCsr = MxCsr;
2330         return EXCEPTION_CONTINUE_EXECUTION;
2331       }
2332 
2333 */
2334 #endif // _WIN64
2335 
2336 
2337 static inline void report_error(Thread* t, DWORD exception_code,
2338                                 address addr, void* siginfo, void* context) {
2339   VMError err(t, exception_code, addr, siginfo, context);
2340   err.report_and_die();
2341 
2342   // If UseOsErrorReporting, this will return here and save the error file
2343   // somewhere where we can find it in the minidump.
2344 }
2345 
2346 //-----------------------------------------------------------------------------
2347 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2348   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2349   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2350 #ifdef _M_IA64
2351   // On Itanium, we need the "precise pc", which has the slot number coded
2352   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2353   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2354   // Convert the pc to "Unix format", which has the slot number coded
2355   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2356   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2357   // information is saved in the Unix format.
2358   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2359 #else
2360   #ifdef _M_AMD64
2361   address pc = (address) exceptionInfo->ContextRecord->Rip;
2362   #else
2363   address pc = (address) exceptionInfo->ContextRecord->Eip;
2364   #endif
2365 #endif
2366   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2367 
2368   // Handle SafeFetch32 and SafeFetchN exceptions.
2369   if (StubRoutines::is_safefetch_fault(pc)) {
2370     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2371   }
2372 
2373 #ifndef _WIN64
2374   // Execution protection violation - win32 running on AMD64 only
2375   // Handled first to avoid misdiagnosis as a "normal" access violation;
2376   // This is safe to do because we have a new/unique ExceptionInformation
2377   // code for this condition.
2378   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2379     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2380     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2381     address addr = (address) exceptionRecord->ExceptionInformation[1];
2382 
2383     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2384       int page_size = os::vm_page_size();
2385 
2386       // Make sure the pc and the faulting address are sane.
2387       //
2388       // If an instruction spans a page boundary, and the page containing
2389       // the beginning of the instruction is executable but the following
2390       // page is not, the pc and the faulting address might be slightly
2391       // different - we still want to unguard the 2nd page in this case.
2392       //
2393       // 15 bytes seems to be a (very) safe value for max instruction size.
2394       bool pc_is_near_addr =
2395         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2396       bool instr_spans_page_boundary =
2397         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2398                          (intptr_t) page_size) > 0);
2399 
2400       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2401         static volatile address last_addr =
2402           (address) os::non_memory_address_word();
2403 
2404         // In conservative mode, don't unguard unless the address is in the VM
2405         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2406             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2407 
2408           // Set memory to RWX and retry
2409           address page_start =
2410             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2411           bool res = os::protect_memory((char*) page_start, page_size,
2412                                         os::MEM_PROT_RWX);
2413 
2414           if (PrintMiscellaneous && Verbose) {
2415             char buf[256];
2416             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2417                          "at " INTPTR_FORMAT
2418                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2419                          page_start, (res ? "success" : strerror(errno)));
2420             tty->print_raw_cr(buf);
2421           }
2422 
2423           // Set last_addr so if we fault again at the same address, we don't
2424           // end up in an endless loop.
2425           //
2426           // There are two potential complications here.  Two threads trapping
2427           // at the same address at the same time could cause one of the
2428           // threads to think it already unguarded, and abort the VM.  Likely
2429           // very rare.
2430           //
2431           // The other race involves two threads alternately trapping at
2432           // different addresses and failing to unguard the page, resulting in
2433           // an endless loop.  This condition is probably even more unlikely
2434           // than the first.
2435           //
2436           // Although both cases could be avoided by using locks or thread
2437           // local last_addr, these solutions are unnecessary complication:
2438           // this handler is a best-effort safety net, not a complete solution.
2439           // It is disabled by default and should only be used as a workaround
2440           // in case we missed any no-execute-unsafe VM code.
2441 
2442           last_addr = addr;
2443 
2444           return EXCEPTION_CONTINUE_EXECUTION;
2445         }
2446       }
2447 
2448       // Last unguard failed or not unguarding
2449       tty->print_raw_cr("Execution protection violation");
2450       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2451                    exceptionInfo->ContextRecord);
2452       return EXCEPTION_CONTINUE_SEARCH;
2453     }
2454   }
2455 #endif // _WIN64
2456 
2457   // Check to see if we caught the safepoint code in the
2458   // process of write protecting the memory serialization page.
2459   // It write enables the page immediately after protecting it
2460   // so just return.
2461   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2462     JavaThread* thread = (JavaThread*) t;
2463     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2464     address addr = (address) exceptionRecord->ExceptionInformation[1];
2465     if ( os::is_memory_serialize_page(thread, addr) ) {
2466       // Block current thread until the memory serialize page permission restored.
2467       os::block_on_serialize_page_trap();
2468       return EXCEPTION_CONTINUE_EXECUTION;
2469     }
2470   }
2471 
2472   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2473       VM_Version::is_cpuinfo_segv_addr(pc)) {
2474     // Verify that OS save/restore AVX registers.
2475     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2476   }
2477 
2478   if (t != NULL && t->is_Java_thread()) {
2479     JavaThread* thread = (JavaThread*) t;
2480     bool in_java = thread->thread_state() == _thread_in_Java;
2481 
2482     // Handle potential stack overflows up front.
2483     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2484       if (os::uses_stack_guard_pages()) {
2485 #ifdef _M_IA64
2486         // Use guard page for register stack.
2487         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2488         address addr = (address) exceptionRecord->ExceptionInformation[1];
2489         // Check for a register stack overflow on Itanium
2490         if (thread->addr_inside_register_stack_red_zone(addr)) {
2491           // Fatal red zone violation happens if the Java program
2492           // catches a StackOverflow error and does so much processing
2493           // that it runs beyond the unprotected yellow guard zone. As
2494           // a result, we are out of here.
2495           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2496         } else if(thread->addr_inside_register_stack(addr)) {
2497           // Disable the yellow zone which sets the state that
2498           // we've got a stack overflow problem.
2499           if (thread->stack_yellow_zone_enabled()) {
2500             thread->disable_stack_yellow_zone();
2501           }
2502           // Give us some room to process the exception.
2503           thread->disable_register_stack_guard();
2504           // Tracing with +Verbose.
2505           if (Verbose) {
2506             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2507             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2508             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2509             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2510                           thread->register_stack_base(),
2511                           thread->register_stack_base() + thread->stack_size());
2512           }
2513 
2514           // Reguard the permanent register stack red zone just to be sure.
2515           // We saw Windows silently disabling this without telling us.
2516           thread->enable_register_stack_red_zone();
2517 
2518           return Handle_Exception(exceptionInfo,
2519             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2520         }
2521 #endif
2522         if (thread->stack_yellow_zone_enabled()) {
2523           // Yellow zone violation.  The o/s has unprotected the first yellow
2524           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2525           // update the enabled status, even if the zone contains only one page.
2526           thread->disable_stack_yellow_zone();
2527           // If not in java code, return and hope for the best.
2528           return in_java ? Handle_Exception(exceptionInfo,
2529             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2530             :  EXCEPTION_CONTINUE_EXECUTION;
2531         } else {
2532           // Fatal red zone violation.
2533           thread->disable_stack_red_zone();
2534           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2535           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2536                        exceptionInfo->ContextRecord);
2537           return EXCEPTION_CONTINUE_SEARCH;
2538         }
2539       } else if (in_java) {
2540         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2541         // a one-time-only guard page, which it has released to us.  The next
2542         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2543         return Handle_Exception(exceptionInfo,
2544           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2545       } else {
2546         // Can only return and hope for the best.  Further stack growth will
2547         // result in an ACCESS_VIOLATION.
2548         return EXCEPTION_CONTINUE_EXECUTION;
2549       }
2550     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2551       // Either stack overflow or null pointer exception.
2552       if (in_java) {
2553         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2554         address addr = (address) exceptionRecord->ExceptionInformation[1];
2555         address stack_end = thread->stack_base() - thread->stack_size();
2556         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2557           // Stack overflow.
2558           assert(!os::uses_stack_guard_pages(),
2559             "should be caught by red zone code above.");
2560           return Handle_Exception(exceptionInfo,
2561             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2562         }
2563         //
2564         // Check for safepoint polling and implicit null
2565         // We only expect null pointers in the stubs (vtable)
2566         // the rest are checked explicitly now.
2567         //
2568         CodeBlob* cb = CodeCache::find_blob(pc);
2569         if (cb != NULL) {
2570           if (os::is_poll_address(addr)) {
2571             address stub = SharedRuntime::get_poll_stub(pc);
2572             return Handle_Exception(exceptionInfo, stub);
2573           }
2574         }
2575         {
2576 #ifdef _WIN64
2577           //
2578           // If it's a legal stack address map the entire region in
2579           //
2580           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2581           address addr = (address) exceptionRecord->ExceptionInformation[1];
2582           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2583                   addr = (address)((uintptr_t)addr &
2584                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2585                   os::commit_memory((char *)addr, thread->stack_base() - addr,
2586                                     !ExecMem);
2587                   return EXCEPTION_CONTINUE_EXECUTION;
2588           }
2589           else
2590 #endif
2591           {
2592             // Null pointer exception.
2593 #ifdef _M_IA64
2594             // Process implicit null checks in compiled code. Note: Implicit null checks
2595             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2596             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2597               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2598               // Handle implicit null check in UEP method entry
2599               if (cb && (cb->is_frame_complete_at(pc) ||
2600                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2601                 if (Verbose) {
2602                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2603                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2604                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2605                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2606                                 *(bundle_start + 1), *bundle_start);
2607                 }
2608                 return Handle_Exception(exceptionInfo,
2609                   SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2610               }
2611             }
2612 
2613             // Implicit null checks were processed above.  Hence, we should not reach
2614             // here in the usual case => die!
2615             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2616             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2617                          exceptionInfo->ContextRecord);
2618             return EXCEPTION_CONTINUE_SEARCH;
2619 
2620 #else // !IA64
2621 
2622             // Windows 98 reports faulting addresses incorrectly
2623             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2624                 !os::win32::is_nt()) {
2625               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2626               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2627             }
2628             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2629                          exceptionInfo->ContextRecord);
2630             return EXCEPTION_CONTINUE_SEARCH;
2631 #endif
2632           }
2633         }
2634       }
2635 
2636 #ifdef _WIN64
2637       // Special care for fast JNI field accessors.
2638       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2639       // in and the heap gets shrunk before the field access.
2640       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2641         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2642         if (addr != (address)-1) {
2643           return Handle_Exception(exceptionInfo, addr);
2644         }
2645       }
2646 #endif
2647 
2648       // Stack overflow or null pointer exception in native code.
2649       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2650                    exceptionInfo->ContextRecord);
2651       return EXCEPTION_CONTINUE_SEARCH;
2652     } // /EXCEPTION_ACCESS_VIOLATION
2653     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2654 #if defined _M_IA64
2655     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2656               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2657       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2658 
2659       // Compiled method patched to be non entrant? Following conditions must apply:
2660       // 1. must be first instruction in bundle
2661       // 2. must be a break instruction with appropriate code
2662       if((((uint64_t) pc & 0x0F) == 0) &&
2663          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2664         return Handle_Exception(exceptionInfo,
2665                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2666       }
2667     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2668 #endif
2669 
2670 
2671     if (in_java) {
2672       switch (exception_code) {
2673       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2674         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2675 
2676       case EXCEPTION_INT_OVERFLOW:
2677         return Handle_IDiv_Exception(exceptionInfo);
2678 
2679       } // switch
2680     }
2681 #ifndef _WIN64
2682     if (((thread->thread_state() == _thread_in_Java) ||
2683         (thread->thread_state() == _thread_in_native)) &&
2684         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
2685     {
2686       LONG result=Handle_FLT_Exception(exceptionInfo);
2687       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2688     }
2689 #endif //_WIN64
2690   }
2691 
2692   if (exception_code != EXCEPTION_BREAKPOINT) {
2693     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2694                  exceptionInfo->ContextRecord);
2695   }
2696   return EXCEPTION_CONTINUE_SEARCH;
2697 }
2698 
2699 #ifndef _WIN64
2700 // Special care for fast JNI accessors.
2701 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2702 // the heap gets shrunk before the field access.
2703 // Need to install our own structured exception handler since native code may
2704 // install its own.
2705 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2706   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2707   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2708     address pc = (address) exceptionInfo->ContextRecord->Eip;
2709     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2710     if (addr != (address)-1) {
2711       return Handle_Exception(exceptionInfo, addr);
2712     }
2713   }
2714   return EXCEPTION_CONTINUE_SEARCH;
2715 }
2716 
2717 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2718 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2719   __try { \
2720     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2721   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2722   } \
2723   return 0; \
2724 }
2725 
2726 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2727 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2728 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2729 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2730 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2731 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2732 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2733 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2734 
2735 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2736   switch (type) {
2737     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2738     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2739     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2740     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2741     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2742     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2743     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2744     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2745     default:        ShouldNotReachHere();
2746   }
2747   return (address)-1;
2748 }
2749 #endif
2750 
2751 void os::win32::call_test_func_with_wrapper(void (*funcPtr)(void)) {
2752   // Install a win32 structured exception handler around the test
2753   // function call so the VM can generate an error dump if needed.
2754   __try {
2755     (*funcPtr)();
2756   } __except(topLevelExceptionFilter(
2757              (_EXCEPTION_POINTERS*)_exception_info())) {
2758     // Nothing to do.
2759   }
2760 }
2761 
2762 // Virtual Memory
2763 
2764 int os::vm_page_size() { return os::win32::vm_page_size(); }
2765 int os::vm_allocation_granularity() {
2766   return os::win32::vm_allocation_granularity();
2767 }
2768 
2769 // Windows large page support is available on Windows 2003. In order to use
2770 // large page memory, the administrator must first assign additional privilege
2771 // to the user:
2772 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2773 //   + select Local Policies -> User Rights Assignment
2774 //   + double click "Lock pages in memory", add users and/or groups
2775 //   + reboot
2776 // Note the above steps are needed for administrator as well, as administrators
2777 // by default do not have the privilege to lock pages in memory.
2778 //
2779 // Note about Windows 2003: although the API supports committing large page
2780 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2781 // scenario, I found through experiment it only uses large page if the entire
2782 // memory region is reserved and committed in a single VirtualAlloc() call.
2783 // This makes Windows large page support more or less like Solaris ISM, in
2784 // that the entire heap must be committed upfront. This probably will change
2785 // in the future, if so the code below needs to be revisited.
2786 
2787 #ifndef MEM_LARGE_PAGES
2788 #define MEM_LARGE_PAGES 0x20000000
2789 #endif
2790 
2791 static HANDLE    _hProcess;
2792 static HANDLE    _hToken;
2793 
2794 // Container for NUMA node list info
2795 class NUMANodeListHolder {
2796 private:
2797   int *_numa_used_node_list;  // allocated below
2798   int _numa_used_node_count;
2799 
2800   void free_node_list() {
2801     if (_numa_used_node_list != NULL) {
2802       FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
2803     }
2804   }
2805 
2806 public:
2807   NUMANodeListHolder() {
2808     _numa_used_node_count = 0;
2809     _numa_used_node_list = NULL;
2810     // do rest of initialization in build routine (after function pointers are set up)
2811   }
2812 
2813   ~NUMANodeListHolder() {
2814     free_node_list();
2815   }
2816 
2817   bool build() {
2818     DWORD_PTR proc_aff_mask;
2819     DWORD_PTR sys_aff_mask;
2820     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2821     ULONG highest_node_number;
2822     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2823     free_node_list();
2824     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2825     for (unsigned int i = 0; i <= highest_node_number; i++) {
2826       ULONGLONG proc_mask_numa_node;
2827       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2828       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2829         _numa_used_node_list[_numa_used_node_count++] = i;
2830       }
2831     }
2832     return (_numa_used_node_count > 1);
2833   }
2834 
2835   int get_count() {return _numa_used_node_count;}
2836   int get_node_list_entry(int n) {
2837     // for indexes out of range, returns -1
2838     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2839   }
2840 
2841 } numa_node_list_holder;
2842 
2843 
2844 
2845 static size_t _large_page_size = 0;
2846 
2847 static bool resolve_functions_for_large_page_init() {
2848   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2849     os::Advapi32Dll::AdvapiAvailable();
2850 }
2851 
2852 static bool request_lock_memory_privilege() {
2853   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2854                                 os::current_process_id());
2855 
2856   LUID luid;
2857   if (_hProcess != NULL &&
2858       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2859       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2860 
2861     TOKEN_PRIVILEGES tp;
2862     tp.PrivilegeCount = 1;
2863     tp.Privileges[0].Luid = luid;
2864     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2865 
2866     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2867     // privilege. Check GetLastError() too. See MSDN document.
2868     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2869         (GetLastError() == ERROR_SUCCESS)) {
2870       return true;
2871     }
2872   }
2873 
2874   return false;
2875 }
2876 
2877 static void cleanup_after_large_page_init() {
2878   if (_hProcess) CloseHandle(_hProcess);
2879   _hProcess = NULL;
2880   if (_hToken) CloseHandle(_hToken);
2881   _hToken = NULL;
2882 }
2883 
2884 static bool numa_interleaving_init() {
2885   bool success = false;
2886   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2887 
2888   // print a warning if UseNUMAInterleaving flag is specified on command line
2889   bool warn_on_failure = use_numa_interleaving_specified;
2890 # define WARN(msg) if (warn_on_failure) { warning(msg); }
2891 
2892   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2893   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2894   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2895 
2896   if (os::Kernel32Dll::NumaCallsAvailable()) {
2897     if (numa_node_list_holder.build()) {
2898       if (PrintMiscellaneous && Verbose) {
2899         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2900         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2901           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2902         }
2903         tty->print("\n");
2904       }
2905       success = true;
2906     } else {
2907       WARN("Process does not cover multiple NUMA nodes.");
2908     }
2909   } else {
2910     WARN("NUMA Interleaving is not supported by the operating system.");
2911   }
2912   if (!success) {
2913     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2914   }
2915   return success;
2916 #undef WARN
2917 }
2918 
2919 // this routine is used whenever we need to reserve a contiguous VA range
2920 // but we need to make separate VirtualAlloc calls for each piece of the range
2921 // Reasons for doing this:
2922 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2923 //  * UseNUMAInterleaving requires a separate node for each piece
2924 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
2925                                          bool should_inject_error=false) {
2926   char * p_buf;
2927   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2928   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2929   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2930 
2931   // first reserve enough address space in advance since we want to be
2932   // able to break a single contiguous virtual address range into multiple
2933   // large page commits but WS2003 does not allow reserving large page space
2934   // so we just use 4K pages for reserve, this gives us a legal contiguous
2935   // address space. then we will deallocate that reservation, and re alloc
2936   // using large pages
2937   const size_t size_of_reserve = bytes + chunk_size;
2938   if (bytes > size_of_reserve) {
2939     // Overflowed.
2940     return NULL;
2941   }
2942   p_buf = (char *) VirtualAlloc(addr,
2943                                 size_of_reserve,  // size of Reserve
2944                                 MEM_RESERVE,
2945                                 PAGE_READWRITE);
2946   // If reservation failed, return NULL
2947   if (p_buf == NULL) return NULL;
2948   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2949   os::release_memory(p_buf, bytes + chunk_size);
2950 
2951   // we still need to round up to a page boundary (in case we are using large pages)
2952   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2953   // instead we handle this in the bytes_to_rq computation below
2954   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2955 
2956   // now go through and allocate one chunk at a time until all bytes are
2957   // allocated
2958   size_t  bytes_remaining = bytes;
2959   // An overflow of align_size_up() would have been caught above
2960   // in the calculation of size_of_reserve.
2961   char * next_alloc_addr = p_buf;
2962   HANDLE hProc = GetCurrentProcess();
2963 
2964 #ifdef ASSERT
2965   // Variable for the failure injection
2966   long ran_num = os::random();
2967   size_t fail_after = ran_num % bytes;
2968 #endif
2969 
2970   int count=0;
2971   while (bytes_remaining) {
2972     // select bytes_to_rq to get to the next chunk_size boundary
2973 
2974     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2975     // Note allocate and commit
2976     char * p_new;
2977 
2978 #ifdef ASSERT
2979     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2980 #else
2981     const bool inject_error_now = false;
2982 #endif
2983 
2984     if (inject_error_now) {
2985       p_new = NULL;
2986     } else {
2987       if (!UseNUMAInterleaving) {
2988         p_new = (char *) VirtualAlloc(next_alloc_addr,
2989                                       bytes_to_rq,
2990                                       flags,
2991                                       prot);
2992       } else {
2993         // get the next node to use from the used_node_list
2994         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2995         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2996         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2997                                                             next_alloc_addr,
2998                                                             bytes_to_rq,
2999                                                             flags,
3000                                                             prot,
3001                                                             node);
3002       }
3003     }
3004 
3005     if (p_new == NULL) {
3006       // Free any allocated pages
3007       if (next_alloc_addr > p_buf) {
3008         // Some memory was committed so release it.
3009         size_t bytes_to_release = bytes - bytes_remaining;
3010         // NMT has yet to record any individual blocks, so it
3011         // need to create a dummy 'reserve' record to match
3012         // the release.
3013         MemTracker::record_virtual_memory_reserve((address)p_buf,
3014           bytes_to_release, CALLER_PC);
3015         os::release_memory(p_buf, bytes_to_release);
3016       }
3017 #ifdef ASSERT
3018       if (should_inject_error) {
3019         if (TracePageSizes && Verbose) {
3020           tty->print_cr("Reserving pages individually failed.");
3021         }
3022       }
3023 #endif
3024       return NULL;
3025     }
3026 
3027     bytes_remaining -= bytes_to_rq;
3028     next_alloc_addr += bytes_to_rq;
3029     count++;
3030   }
3031   // Although the memory is allocated individually, it is returned as one.
3032   // NMT records it as one block.
3033   if ((flags & MEM_COMMIT) != 0) {
3034     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
3035   } else {
3036     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
3037   }
3038 
3039   // made it this far, success
3040   return p_buf;
3041 }
3042 
3043 
3044 
3045 void os::large_page_init() {
3046   if (!UseLargePages) return;
3047 
3048   // print a warning if any large page related flag is specified on command line
3049   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3050                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3051   bool success = false;
3052 
3053 # define WARN(msg) if (warn_on_failure) { warning(msg); }
3054   if (resolve_functions_for_large_page_init()) {
3055     if (request_lock_memory_privilege()) {
3056       size_t s = os::Kernel32Dll::GetLargePageMinimum();
3057       if (s) {
3058 #if defined(IA32) || defined(AMD64)
3059         if (s > 4*M || LargePageSizeInBytes > 4*M) {
3060           WARN("JVM cannot use large pages bigger than 4mb.");
3061         } else {
3062 #endif
3063           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3064             _large_page_size = LargePageSizeInBytes;
3065           } else {
3066             _large_page_size = s;
3067           }
3068           success = true;
3069 #if defined(IA32) || defined(AMD64)
3070         }
3071 #endif
3072       } else {
3073         WARN("Large page is not supported by the processor.");
3074       }
3075     } else {
3076       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3077     }
3078   } else {
3079     WARN("Large page is not supported by the operating system.");
3080   }
3081 #undef WARN
3082 
3083   const size_t default_page_size = (size_t) vm_page_size();
3084   if (success && _large_page_size > default_page_size) {
3085     _page_sizes[0] = _large_page_size;
3086     _page_sizes[1] = default_page_size;
3087     _page_sizes[2] = 0;
3088   }
3089 
3090   cleanup_after_large_page_init();
3091   UseLargePages = success;
3092 }
3093 
3094 // On win32, one cannot release just a part of reserved memory, it's an
3095 // all or nothing deal.  When we split a reservation, we must break the
3096 // reservation into two reservations.
3097 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3098                               bool realloc) {
3099   if (size > 0) {
3100     release_memory(base, size);
3101     if (realloc) {
3102       reserve_memory(split, base);
3103     }
3104     if (size != split) {
3105       reserve_memory(size - split, base + split);
3106     }
3107   }
3108 }
3109 
3110 // Multiple threads can race in this code but it's not possible to unmap small sections of
3111 // virtual space to get requested alignment, like posix-like os's.
3112 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3113 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3114   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3115       "Alignment must be a multiple of allocation granularity (page size)");
3116   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3117 
3118   size_t extra_size = size + alignment;
3119   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3120 
3121   char* aligned_base = NULL;
3122 
3123   do {
3124     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3125     if (extra_base == NULL) {
3126       return NULL;
3127     }
3128     // Do manual alignment
3129     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3130 
3131     os::release_memory(extra_base, extra_size);
3132 
3133     aligned_base = os::reserve_memory(size, aligned_base);
3134 
3135   } while (aligned_base == NULL);
3136 
3137   return aligned_base;
3138 }
3139 
3140 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3141   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3142          "reserve alignment");
3143   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
3144   char* res;
3145   // note that if UseLargePages is on, all the areas that require interleaving
3146   // will go thru reserve_memory_special rather than thru here.
3147   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3148   if (!use_individual) {
3149     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3150   } else {
3151     elapsedTimer reserveTimer;
3152     if( Verbose && PrintMiscellaneous ) reserveTimer.start();
3153     // in numa interleaving, we have to allocate pages individually
3154     // (well really chunks of NUMAInterleaveGranularity size)
3155     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3156     if (res == NULL) {
3157       warning("NUMA page allocation failed");
3158     }
3159     if( Verbose && PrintMiscellaneous ) {
3160       reserveTimer.stop();
3161       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3162                     reserveTimer.milliseconds(), reserveTimer.ticks());
3163     }
3164   }
3165   assert(res == NULL || addr == NULL || addr == res,
3166          "Unexpected address from reserve.");
3167 
3168   return res;
3169 }
3170 
3171 // Reserve memory at an arbitrary address, only if that area is
3172 // available (and not reserved for something else).
3173 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3174   // Windows os::reserve_memory() fails of the requested address range is
3175   // not avilable.
3176   return reserve_memory(bytes, requested_addr);
3177 }
3178 
3179 size_t os::large_page_size() {
3180   return _large_page_size;
3181 }
3182 
3183 bool os::can_commit_large_page_memory() {
3184   // Windows only uses large page memory when the entire region is reserved
3185   // and committed in a single VirtualAlloc() call. This may change in the
3186   // future, but with Windows 2003 it's not possible to commit on demand.
3187   return false;
3188 }
3189 
3190 bool os::can_execute_large_page_memory() {
3191   return true;
3192 }
3193 
3194 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr, bool exec) {
3195   assert(UseLargePages, "only for large pages");
3196 
3197   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3198     return NULL; // Fallback to small pages.
3199   }
3200 
3201   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3202   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3203 
3204   // with large pages, there are two cases where we need to use Individual Allocation
3205   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3206   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3207   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3208     if (TracePageSizes && Verbose) {
3209        tty->print_cr("Reserving large pages individually.");
3210     }
3211     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3212     if (p_buf == NULL) {
3213       // give an appropriate warning message
3214       if (UseNUMAInterleaving) {
3215         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3216       }
3217       if (UseLargePagesIndividualAllocation) {
3218         warning("Individually allocated large pages failed, "
3219                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3220       }
3221       return NULL;
3222     }
3223 
3224     return p_buf;
3225 
3226   } else {
3227     if (TracePageSizes && Verbose) {
3228        tty->print_cr("Reserving large pages in a single large chunk.");
3229     }
3230     // normal policy just allocate it all at once
3231     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3232     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3233     if (res != NULL) {
3234       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3235     }
3236 
3237     return res;
3238   }
3239 }
3240 
3241 bool os::release_memory_special(char* base, size_t bytes) {
3242   assert(base != NULL, "Sanity check");
3243   return release_memory(base, bytes);
3244 }
3245 
3246 void os::print_statistics() {
3247 }
3248 
3249 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3250   int err = os::get_last_error();
3251   char buf[256];
3252   size_t buf_len = os::lasterror(buf, sizeof(buf));
3253   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3254           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3255           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3256 }
3257 
3258 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3259   if (bytes == 0) {
3260     // Don't bother the OS with noops.
3261     return true;
3262   }
3263   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3264   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3265   // Don't attempt to print anything if the OS call fails. We're
3266   // probably low on resources, so the print itself may cause crashes.
3267 
3268   // unless we have NUMAInterleaving enabled, the range of a commit
3269   // is always within a reserve covered by a single VirtualAlloc
3270   // in that case we can just do a single commit for the requested size
3271   if (!UseNUMAInterleaving) {
3272     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3273       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3274       return false;
3275     }
3276     if (exec) {
3277       DWORD oldprot;
3278       // Windows doc says to use VirtualProtect to get execute permissions
3279       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3280         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3281         return false;
3282       }
3283     }
3284     return true;
3285   } else {
3286 
3287     // when NUMAInterleaving is enabled, the commit might cover a range that
3288     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3289     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3290     // returns represents the number of bytes that can be committed in one step.
3291     size_t bytes_remaining = bytes;
3292     char * next_alloc_addr = addr;
3293     while (bytes_remaining > 0) {
3294       MEMORY_BASIC_INFORMATION alloc_info;
3295       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3296       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3297       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3298                        PAGE_READWRITE) == NULL) {
3299         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3300                                             exec);)
3301         return false;
3302       }
3303       if (exec) {
3304         DWORD oldprot;
3305         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3306                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3307           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3308                                               exec);)
3309           return false;
3310         }
3311       }
3312       bytes_remaining -= bytes_to_rq;
3313       next_alloc_addr += bytes_to_rq;
3314     }
3315   }
3316   // if we made it this far, return true
3317   return true;
3318 }
3319 
3320 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3321                        bool exec) {
3322   // alignment_hint is ignored on this OS
3323   return pd_commit_memory(addr, size, exec);
3324 }
3325 
3326 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3327                                   const char* mesg) {
3328   assert(mesg != NULL, "mesg must be specified");
3329   if (!pd_commit_memory(addr, size, exec)) {
3330     warn_fail_commit_memory(addr, size, exec);
3331     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3332   }
3333 }
3334 
3335 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3336                                   size_t alignment_hint, bool exec,
3337                                   const char* mesg) {
3338   // alignment_hint is ignored on this OS
3339   pd_commit_memory_or_exit(addr, size, exec, mesg);
3340 }
3341 
3342 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3343   if (bytes == 0) {
3344     // Don't bother the OS with noops.
3345     return true;
3346   }
3347   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3348   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3349   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3350 }
3351 
3352 bool os::pd_release_memory(char* addr, size_t bytes) {
3353   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3354 }
3355 
3356 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3357   return os::commit_memory(addr, size, !ExecMem);
3358 }
3359 
3360 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3361   return os::uncommit_memory(addr, size);
3362 }
3363 
3364 // Set protections specified
3365 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3366                         bool is_committed) {
3367   unsigned int p = 0;
3368   switch (prot) {
3369   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3370   case MEM_PROT_READ: p = PAGE_READONLY; break;
3371   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3372   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3373   default:
3374     ShouldNotReachHere();
3375   }
3376 
3377   DWORD old_status;
3378 
3379   // Strange enough, but on Win32 one can change protection only for committed
3380   // memory, not a big deal anyway, as bytes less or equal than 64K
3381   if (!is_committed) {
3382     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3383                           "cannot commit protection page");
3384   }
3385   // One cannot use os::guard_memory() here, as on Win32 guard page
3386   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3387   //
3388   // Pages in the region become guard pages. Any attempt to access a guard page
3389   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3390   // the guard page status. Guard pages thus act as a one-time access alarm.
3391   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3392 }
3393 
3394 bool os::guard_memory(char* addr, size_t bytes) {
3395   DWORD old_status;
3396   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3397 }
3398 
3399 bool os::unguard_memory(char* addr, size_t bytes) {
3400   DWORD old_status;
3401   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3402 }
3403 
3404 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3405 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3406 void os::numa_make_global(char *addr, size_t bytes)    { }
3407 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3408 bool os::numa_topology_changed()                       { return false; }
3409 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3410 int os::numa_get_group_id()                            { return 0; }
3411 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3412   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3413     // Provide an answer for UMA systems
3414     ids[0] = 0;
3415     return 1;
3416   } else {
3417     // check for size bigger than actual groups_num
3418     size = MIN2(size, numa_get_groups_num());
3419     for (int i = 0; i < (int)size; i++) {
3420       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3421     }
3422     return size;
3423   }
3424 }
3425 
3426 bool os::get_page_info(char *start, page_info* info) {
3427   return false;
3428 }
3429 
3430 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
3431   return end;
3432 }
3433 
3434 char* os::non_memory_address_word() {
3435   // Must never look like an address returned by reserve_memory,
3436   // even in its subfields (as defined by the CPU immediate fields,
3437   // if the CPU splits constants across multiple instructions).
3438   return (char*)-1;
3439 }
3440 
3441 #define MAX_ERROR_COUNT 100
3442 #define SYS_THREAD_ERROR 0xffffffffUL
3443 
3444 void os::pd_start_thread(Thread* thread) {
3445   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3446   // Returns previous suspend state:
3447   // 0:  Thread was not suspended
3448   // 1:  Thread is running now
3449   // >1: Thread is still suspended.
3450   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3451 }
3452 
3453 class HighResolutionInterval : public CHeapObj<mtThread> {
3454   // The default timer resolution seems to be 10 milliseconds.
3455   // (Where is this written down?)
3456   // If someone wants to sleep for only a fraction of the default,
3457   // then we set the timer resolution down to 1 millisecond for
3458   // the duration of their interval.
3459   // We carefully set the resolution back, since otherwise we
3460   // seem to incur an overhead (3%?) that we don't need.
3461   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3462   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3463   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3464   // timeBeginPeriod() if the relative error exceeded some threshold.
3465   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3466   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3467   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3468   // resolution timers running.
3469 private:
3470     jlong resolution;
3471 public:
3472   HighResolutionInterval(jlong ms) {
3473     resolution = ms % 10L;
3474     if (resolution != 0) {
3475       MMRESULT result = timeBeginPeriod(1L);
3476     }
3477   }
3478   ~HighResolutionInterval() {
3479     if (resolution != 0) {
3480       MMRESULT result = timeEndPeriod(1L);
3481     }
3482     resolution = 0L;
3483   }
3484 };
3485 
3486 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3487   jlong limit = (jlong) MAXDWORD;
3488 
3489   while(ms > limit) {
3490     int res;
3491     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
3492       return res;
3493     ms -= limit;
3494   }
3495 
3496   assert(thread == Thread::current(),  "thread consistency check");
3497   OSThread* osthread = thread->osthread();
3498   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3499   int result;
3500   if (interruptable) {
3501     assert(thread->is_Java_thread(), "must be java thread");
3502     JavaThread *jt = (JavaThread *) thread;
3503     ThreadBlockInVM tbivm(jt);
3504 
3505     jt->set_suspend_equivalent();
3506     // cleared by handle_special_suspend_equivalent_condition() or
3507     // java_suspend_self() via check_and_wait_while_suspended()
3508 
3509     HANDLE events[1];
3510     events[0] = osthread->interrupt_event();
3511     HighResolutionInterval *phri=NULL;
3512     if(!ForceTimeHighResolution)
3513       phri = new HighResolutionInterval( ms );
3514     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3515       result = OS_TIMEOUT;
3516     } else {
3517       ResetEvent(osthread->interrupt_event());
3518       osthread->set_interrupted(false);
3519       result = OS_INTRPT;
3520     }
3521     delete phri; //if it is NULL, harmless
3522 
3523     // were we externally suspended while we were waiting?
3524     jt->check_and_wait_while_suspended();
3525   } else {
3526     assert(!thread->is_Java_thread(), "must not be java thread");
3527     Sleep((long) ms);
3528     result = OS_TIMEOUT;
3529   }
3530   return result;
3531 }
3532 
3533 //
3534 // Short sleep, direct OS call.
3535 //
3536 // ms = 0, means allow others (if any) to run.
3537 //
3538 void os::naked_short_sleep(jlong ms) {
3539   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3540   Sleep(ms);
3541 }
3542 
3543 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3544 void os::infinite_sleep() {
3545   while (true) {    // sleep forever ...
3546     Sleep(100000);  // ... 100 seconds at a time
3547   }
3548 }
3549 
3550 typedef BOOL (WINAPI * STTSignature)(void) ;
3551 
3552 os::YieldResult os::NakedYield() {
3553   // Use either SwitchToThread() or Sleep(0)
3554   // Consider passing back the return value from SwitchToThread().
3555   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3556     return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
3557   } else {
3558     Sleep(0);
3559   }
3560   return os::YIELD_UNKNOWN ;
3561 }
3562 
3563 void os::yield() {  os::NakedYield(); }
3564 
3565 void os::yield_all(int attempts) {
3566   // Yields to all threads, including threads with lower priorities
3567   Sleep(1);
3568 }
3569 
3570 // Win32 only gives you access to seven real priorities at a time,
3571 // so we compress Java's ten down to seven.  It would be better
3572 // if we dynamically adjusted relative priorities.
3573 
3574 int os::java_to_os_priority[CriticalPriority + 1] = {
3575   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3576   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3577   THREAD_PRIORITY_LOWEST,                       // 2
3578   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3579   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3580   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3581   THREAD_PRIORITY_NORMAL,                       // 6
3582   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3583   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3584   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3585   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3586   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3587 };
3588 
3589 int prio_policy1[CriticalPriority + 1] = {
3590   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3591   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3592   THREAD_PRIORITY_LOWEST,                       // 2
3593   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3594   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3595   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3596   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3597   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3598   THREAD_PRIORITY_HIGHEST,                      // 8
3599   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3600   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3601   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3602 };
3603 
3604 static int prio_init() {
3605   // If ThreadPriorityPolicy is 1, switch tables
3606   if (ThreadPriorityPolicy == 1) {
3607     int i;
3608     for (i = 0; i < CriticalPriority + 1; i++) {
3609       os::java_to_os_priority[i] = prio_policy1[i];
3610     }
3611   }
3612   if (UseCriticalJavaThreadPriority) {
3613     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
3614   }
3615   return 0;
3616 }
3617 
3618 OSReturn os::set_native_priority(Thread* thread, int priority) {
3619   if (!UseThreadPriorities) return OS_OK;
3620   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3621   return ret ? OS_OK : OS_ERR;
3622 }
3623 
3624 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
3625   if ( !UseThreadPriorities ) {
3626     *priority_ptr = java_to_os_priority[NormPriority];
3627     return OS_OK;
3628   }
3629   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3630   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3631     assert(false, "GetThreadPriority failed");
3632     return OS_ERR;
3633   }
3634   *priority_ptr = os_prio;
3635   return OS_OK;
3636 }
3637 
3638 
3639 // Hint to the underlying OS that a task switch would not be good.
3640 // Void return because it's a hint and can fail.
3641 void os::hint_no_preempt() {}
3642 
3643 void os::interrupt(Thread* thread) {
3644   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3645          "possibility of dangling Thread pointer");
3646 
3647   OSThread* osthread = thread->osthread();
3648   osthread->set_interrupted(true);
3649   // More than one thread can get here with the same value of osthread,
3650   // resulting in multiple notifications.  We do, however, want the store
3651   // to interrupted() to be visible to other threads before we post
3652   // the interrupt event.
3653   OrderAccess::release();
3654   SetEvent(osthread->interrupt_event());
3655   // For JSR166:  unpark after setting status
3656   if (thread->is_Java_thread())
3657     ((JavaThread*)thread)->parker()->unpark();
3658 
3659   ParkEvent * ev = thread->_ParkEvent ;
3660   if (ev != NULL) ev->unpark() ;
3661 
3662 }
3663 
3664 
3665 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3666   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3667          "possibility of dangling Thread pointer");
3668 
3669   OSThread* osthread = thread->osthread();
3670   // There is no synchronization between the setting of the interrupt
3671   // and it being cleared here. It is critical - see 6535709 - that
3672   // we only clear the interrupt state, and reset the interrupt event,
3673   // if we are going to report that we were indeed interrupted - else
3674   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3675   // depending on the timing. By checking thread interrupt event to see
3676   // if the thread gets real interrupt thus prevent spurious wakeup.
3677   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3678   if (interrupted && clear_interrupted) {
3679     osthread->set_interrupted(false);
3680     ResetEvent(osthread->interrupt_event());
3681   } // Otherwise leave the interrupted state alone
3682 
3683   return interrupted;
3684 }
3685 
3686 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3687 ExtendedPC os::get_thread_pc(Thread* thread) {
3688   CONTEXT context;
3689   context.ContextFlags = CONTEXT_CONTROL;
3690   HANDLE handle = thread->osthread()->thread_handle();
3691 #ifdef _M_IA64
3692   assert(0, "Fix get_thread_pc");
3693   return ExtendedPC(NULL);
3694 #else
3695   if (GetThreadContext(handle, &context)) {
3696 #ifdef _M_AMD64
3697     return ExtendedPC((address) context.Rip);
3698 #else
3699     return ExtendedPC((address) context.Eip);
3700 #endif
3701   } else {
3702     return ExtendedPC(NULL);
3703   }
3704 #endif
3705 }
3706 
3707 // GetCurrentThreadId() returns DWORD
3708 intx os::current_thread_id()          { return GetCurrentThreadId(); }
3709 
3710 static int _initial_pid = 0;
3711 
3712 int os::current_process_id()
3713 {
3714   return (_initial_pid ? _initial_pid : _getpid());
3715 }
3716 
3717 int    os::win32::_vm_page_size       = 0;
3718 int    os::win32::_vm_allocation_granularity = 0;
3719 int    os::win32::_processor_type     = 0;
3720 // Processor level is not available on non-NT systems, use vm_version instead
3721 int    os::win32::_processor_level    = 0;
3722 julong os::win32::_physical_memory    = 0;
3723 size_t os::win32::_default_stack_size = 0;
3724 
3725          intx os::win32::_os_thread_limit    = 0;
3726 volatile intx os::win32::_os_thread_count    = 0;
3727 
3728 bool   os::win32::_is_nt              = false;
3729 bool   os::win32::_is_windows_2003    = false;
3730 bool   os::win32::_is_windows_server  = false;
3731 
3732 void os::win32::initialize_system_info() {
3733   SYSTEM_INFO si;
3734   GetSystemInfo(&si);
3735   _vm_page_size    = si.dwPageSize;
3736   _vm_allocation_granularity = si.dwAllocationGranularity;
3737   _processor_type  = si.dwProcessorType;
3738   _processor_level = si.wProcessorLevel;
3739   set_processor_count(si.dwNumberOfProcessors);
3740 
3741   MEMORYSTATUSEX ms;
3742   ms.dwLength = sizeof(ms);
3743 
3744   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3745   // dwMemoryLoad (% of memory in use)
3746   GlobalMemoryStatusEx(&ms);
3747   _physical_memory = ms.ullTotalPhys;
3748 
3749   OSVERSIONINFOEX oi;
3750   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3751   GetVersionEx((OSVERSIONINFO*)&oi);
3752   switch(oi.dwPlatformId) {
3753     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3754     case VER_PLATFORM_WIN32_NT:
3755       _is_nt = true;
3756       {
3757         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3758         if (os_vers == 5002) {
3759           _is_windows_2003 = true;
3760         }
3761         if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3762           oi.wProductType == VER_NT_SERVER) {
3763             _is_windows_server = true;
3764         }
3765       }
3766       break;
3767     default: fatal("Unknown platform");
3768   }
3769 
3770   _default_stack_size = os::current_stack_size();
3771   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3772   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3773     "stack size not a multiple of page size");
3774 
3775   initialize_performance_counter();
3776 
3777   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3778   // known to deadlock the system, if the VM issues to thread operations with
3779   // a too high frequency, e.g., such as changing the priorities.
3780   // The 6000 seems to work well - no deadlocks has been notices on the test
3781   // programs that we have seen experience this problem.
3782   if (!os::win32::is_nt()) {
3783     StarvationMonitorInterval = 6000;
3784   }
3785 }
3786 
3787 
3788 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
3789   char path[MAX_PATH];
3790   DWORD size;
3791   DWORD pathLen = (DWORD)sizeof(path);
3792   HINSTANCE result = NULL;
3793 
3794   // only allow library name without path component
3795   assert(strchr(name, '\\') == NULL, "path not allowed");
3796   assert(strchr(name, ':') == NULL, "path not allowed");
3797   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3798     jio_snprintf(ebuf, ebuflen,
3799       "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3800     return NULL;
3801   }
3802 
3803   // search system directory
3804   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3805     strcat(path, "\\");
3806     strcat(path, name);
3807     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3808       return result;
3809     }
3810   }
3811 
3812   // try Windows directory
3813   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3814     strcat(path, "\\");
3815     strcat(path, name);
3816     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3817       return result;
3818     }
3819   }
3820 
3821   jio_snprintf(ebuf, ebuflen,
3822     "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3823   return NULL;
3824 }
3825 
3826 void os::win32::setmode_streams() {
3827   _setmode(_fileno(stdin), _O_BINARY);
3828   _setmode(_fileno(stdout), _O_BINARY);
3829   _setmode(_fileno(stderr), _O_BINARY);
3830 }
3831 
3832 
3833 bool os::is_debugger_attached() {
3834   return IsDebuggerPresent() ? true : false;
3835 }
3836 
3837 
3838 void os::wait_for_keypress_at_exit(void) {
3839   if (PauseAtExit) {
3840     fprintf(stderr, "Press any key to continue...\n");
3841     fgetc(stdin);
3842   }
3843 }
3844 
3845 
3846 int os::message_box(const char* title, const char* message) {
3847   int result = MessageBox(NULL, message, title,
3848                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3849   return result == IDYES;
3850 }
3851 
3852 int os::allocate_thread_local_storage() {
3853   return TlsAlloc();
3854 }
3855 
3856 
3857 void os::free_thread_local_storage(int index) {
3858   TlsFree(index);
3859 }
3860 
3861 
3862 void os::thread_local_storage_at_put(int index, void* value) {
3863   TlsSetValue(index, value);
3864   assert(thread_local_storage_at(index) == value, "Just checking");
3865 }
3866 
3867 
3868 void* os::thread_local_storage_at(int index) {
3869   return TlsGetValue(index);
3870 }
3871 
3872 
3873 #ifndef PRODUCT
3874 #ifndef _WIN64
3875 // Helpers to check whether NX protection is enabled
3876 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3877   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3878       pex->ExceptionRecord->NumberParameters > 0 &&
3879       pex->ExceptionRecord->ExceptionInformation[0] ==
3880       EXCEPTION_INFO_EXEC_VIOLATION) {
3881     return EXCEPTION_EXECUTE_HANDLER;
3882   }
3883   return EXCEPTION_CONTINUE_SEARCH;
3884 }
3885 
3886 void nx_check_protection() {
3887   // If NX is enabled we'll get an exception calling into code on the stack
3888   char code[] = { (char)0xC3 }; // ret
3889   void *code_ptr = (void *)code;
3890   __try {
3891     __asm call code_ptr
3892   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3893     tty->print_raw_cr("NX protection detected.");
3894   }
3895 }
3896 #endif // _WIN64
3897 #endif // PRODUCT
3898 
3899 // this is called _before_ the global arguments have been parsed
3900 void os::init(void) {
3901   _initial_pid = _getpid();
3902 
3903   init_random(1234567);
3904 
3905   win32::initialize_system_info();
3906   win32::setmode_streams();
3907   init_page_sizes((size_t) win32::vm_page_size());
3908 
3909   // For better scalability on MP systems (must be called after initialize_system_info)
3910 #ifndef PRODUCT
3911   if (is_MP()) {
3912     NoYieldsInMicrolock = true;
3913   }
3914 #endif
3915   // This may be overridden later when argument processing is done.
3916   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3917     os::win32::is_windows_2003());
3918 
3919   // Initialize main_process and main_thread
3920   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3921  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3922                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3923     fatal("DuplicateHandle failed\n");
3924   }
3925   main_thread_id = (int) GetCurrentThreadId();
3926 }
3927 
3928 // To install functions for atexit processing
3929 extern "C" {
3930   static void perfMemory_exit_helper() {
3931     perfMemory_exit();
3932   }
3933 }
3934 
3935 static jint initSock();
3936 
3937 // this is called _after_ the global arguments have been parsed
3938 jint os::init_2(void) {
3939   // Allocate a single page and mark it as readable for safepoint polling
3940   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3941   guarantee( polling_page != NULL, "Reserve Failed for polling page");
3942 
3943   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3944   guarantee( return_page != NULL, "Commit Failed for polling page");
3945 
3946   os::set_polling_page( polling_page );
3947 
3948 #ifndef PRODUCT
3949   if( Verbose && PrintMiscellaneous )
3950     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3951 #endif
3952 
3953   if (!UseMembar) {
3954     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3955     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3956 
3957     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3958     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3959 
3960     os::set_memory_serialize_page( mem_serialize_page );
3961 
3962 #ifndef PRODUCT
3963     if(Verbose && PrintMiscellaneous)
3964       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3965 #endif
3966   }
3967 
3968   // Setup Windows Exceptions
3969 
3970   // for debugging float code generation bugs
3971   if (ForceFloatExceptions) {
3972 #ifndef  _WIN64
3973     static long fp_control_word = 0;
3974     __asm { fstcw fp_control_word }
3975     // see Intel PPro Manual, Vol. 2, p 7-16
3976     const long precision = 0x20;
3977     const long underflow = 0x10;
3978     const long overflow  = 0x08;
3979     const long zero_div  = 0x04;
3980     const long denorm    = 0x02;
3981     const long invalid   = 0x01;
3982     fp_control_word |= invalid;
3983     __asm { fldcw fp_control_word }
3984 #endif
3985   }
3986 
3987   // If stack_commit_size is 0, windows will reserve the default size,
3988   // but only commit a small portion of it.
3989   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3990   size_t default_reserve_size = os::win32::default_stack_size();
3991   size_t actual_reserve_size = stack_commit_size;
3992   if (stack_commit_size < default_reserve_size) {
3993     // If stack_commit_size == 0, we want this too
3994     actual_reserve_size = default_reserve_size;
3995   }
3996 
3997   // Check minimum allowable stack size for thread creation and to initialize
3998   // the java system classes, including StackOverflowError - depends on page
3999   // size.  Add a page for compiler2 recursion in main thread.
4000   // Add in 2*BytesPerWord times page size to account for VM stack during
4001   // class initialization depending on 32 or 64 bit VM.
4002   size_t min_stack_allowed =
4003             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4004             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4005   if (actual_reserve_size < min_stack_allowed) {
4006     tty->print_cr("\nThe stack size specified is too small, "
4007                   "Specify at least %dk",
4008                   min_stack_allowed / K);
4009     return JNI_ERR;
4010   }
4011 
4012   JavaThread::set_stack_size_at_create(stack_commit_size);
4013 
4014   // Calculate theoretical max. size of Threads to guard gainst artifical
4015   // out-of-memory situations, where all available address-space has been
4016   // reserved by thread stacks.
4017   assert(actual_reserve_size != 0, "Must have a stack");
4018 
4019   // Calculate the thread limit when we should start doing Virtual Memory
4020   // banging. Currently when the threads will have used all but 200Mb of space.
4021   //
4022   // TODO: consider performing a similar calculation for commit size instead
4023   // as reserve size, since on a 64-bit platform we'll run into that more
4024   // often than running out of virtual memory space.  We can use the
4025   // lower value of the two calculations as the os_thread_limit.
4026   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4027   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4028 
4029   // at exit methods are called in the reverse order of their registration.
4030   // there is no limit to the number of functions registered. atexit does
4031   // not set errno.
4032 
4033   if (PerfAllowAtExitRegistration) {
4034     // only register atexit functions if PerfAllowAtExitRegistration is set.
4035     // atexit functions can be delayed until process exit time, which
4036     // can be problematic for embedded VM situations. Embedded VMs should
4037     // call DestroyJavaVM() to assure that VM resources are released.
4038 
4039     // note: perfMemory_exit_helper atexit function may be removed in
4040     // the future if the appropriate cleanup code can be added to the
4041     // VM_Exit VMOperation's doit method.
4042     if (atexit(perfMemory_exit_helper) != 0) {
4043       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4044     }
4045   }
4046 
4047 #ifndef _WIN64
4048   // Print something if NX is enabled (win32 on AMD64)
4049   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4050 #endif
4051 
4052   // initialize thread priority policy
4053   prio_init();
4054 
4055   if (UseNUMA && !ForceNUMA) {
4056     UseNUMA = false; // We don't fully support this yet
4057   }
4058 
4059   if (UseNUMAInterleaving) {
4060     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4061     bool success = numa_interleaving_init();
4062     if (!success) UseNUMAInterleaving = false;
4063   }
4064 
4065   if (initSock() != JNI_OK) {
4066     return JNI_ERR;
4067   }
4068 
4069   return JNI_OK;
4070 }
4071 
4072 // Mark the polling page as unreadable
4073 void os::make_polling_page_unreadable(void) {
4074   DWORD old_status;
4075   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
4076     fatal("Could not disable polling page");
4077 };
4078 
4079 // Mark the polling page as readable
4080 void os::make_polling_page_readable(void) {
4081   DWORD old_status;
4082   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
4083     fatal("Could not enable polling page");
4084 };
4085 
4086 
4087 int os::stat(const char *path, struct stat *sbuf) {
4088   char pathbuf[MAX_PATH];
4089   if (strlen(path) > MAX_PATH - 1) {
4090     errno = ENAMETOOLONG;
4091     return -1;
4092   }
4093   os::native_path(strcpy(pathbuf, path));
4094   int ret = ::stat(pathbuf, sbuf);
4095   if (sbuf != NULL && UseUTCFileTimestamp) {
4096     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4097     // the system timezone and so can return different values for the
4098     // same file if/when daylight savings time changes.  This adjustment
4099     // makes sure the same timestamp is returned regardless of the TZ.
4100     //
4101     // See:
4102     // http://msdn.microsoft.com/library/
4103     //   default.asp?url=/library/en-us/sysinfo/base/
4104     //   time_zone_information_str.asp
4105     // and
4106     // http://msdn.microsoft.com/library/default.asp?url=
4107     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4108     //
4109     // NOTE: there is a insidious bug here:  If the timezone is changed
4110     // after the call to stat() but before 'GetTimeZoneInformation()', then
4111     // the adjustment we do here will be wrong and we'll return the wrong
4112     // value (which will likely end up creating an invalid class data
4113     // archive).  Absent a better API for this, or some time zone locking
4114     // mechanism, we'll have to live with this risk.
4115     TIME_ZONE_INFORMATION tz;
4116     DWORD tzid = GetTimeZoneInformation(&tz);
4117     int daylightBias =
4118       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4119     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4120   }
4121   return ret;
4122 }
4123 
4124 
4125 #define FT2INT64(ft) \
4126   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4127 
4128 
4129 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4130 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4131 // of a thread.
4132 //
4133 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4134 // the fast estimate available on the platform.
4135 
4136 // current_thread_cpu_time() is not optimized for Windows yet
4137 jlong os::current_thread_cpu_time() {
4138   // return user + sys since the cost is the same
4139   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4140 }
4141 
4142 jlong os::thread_cpu_time(Thread* thread) {
4143   // consistent with what current_thread_cpu_time() returns.
4144   return os::thread_cpu_time(thread, true /* user+sys */);
4145 }
4146 
4147 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4148   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4149 }
4150 
4151 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4152   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4153   // If this function changes, os::is_thread_cpu_time_supported() should too
4154   if (os::win32::is_nt()) {
4155     FILETIME CreationTime;
4156     FILETIME ExitTime;
4157     FILETIME KernelTime;
4158     FILETIME UserTime;
4159 
4160     if ( GetThreadTimes(thread->osthread()->thread_handle(),
4161                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
4162       return -1;
4163     else
4164       if (user_sys_cpu_time) {
4165         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4166       } else {
4167         return FT2INT64(UserTime) * 100;
4168       }
4169   } else {
4170     return (jlong) timeGetTime() * 1000000;
4171   }
4172 }
4173 
4174 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4175   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4176   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4177   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4178   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4179 }
4180 
4181 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4182   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4183   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4184   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4185   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4186 }
4187 
4188 bool os::is_thread_cpu_time_supported() {
4189   // see os::thread_cpu_time
4190   if (os::win32::is_nt()) {
4191     FILETIME CreationTime;
4192     FILETIME ExitTime;
4193     FILETIME KernelTime;
4194     FILETIME UserTime;
4195 
4196     if ( GetThreadTimes(GetCurrentThread(),
4197                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
4198       return false;
4199     else
4200       return true;
4201   } else {
4202     return false;
4203   }
4204 }
4205 
4206 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4207 // It does have primitives (PDH API) to get CPU usage and run queue length.
4208 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4209 // If we wanted to implement loadavg on Windows, we have a few options:
4210 //
4211 // a) Query CPU usage and run queue length and "fake" an answer by
4212 //    returning the CPU usage if it's under 100%, and the run queue
4213 //    length otherwise.  It turns out that querying is pretty slow
4214 //    on Windows, on the order of 200 microseconds on a fast machine.
4215 //    Note that on the Windows the CPU usage value is the % usage
4216 //    since the last time the API was called (and the first call
4217 //    returns 100%), so we'd have to deal with that as well.
4218 //
4219 // b) Sample the "fake" answer using a sampling thread and store
4220 //    the answer in a global variable.  The call to loadavg would
4221 //    just return the value of the global, avoiding the slow query.
4222 //
4223 // c) Sample a better answer using exponential decay to smooth the
4224 //    value.  This is basically the algorithm used by UNIX kernels.
4225 //
4226 // Note that sampling thread starvation could affect both (b) and (c).
4227 int os::loadavg(double loadavg[], int nelem) {
4228   return -1;
4229 }
4230 
4231 
4232 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4233 bool os::dont_yield() {
4234   return DontYieldALot;
4235 }
4236 
4237 // This method is a slightly reworked copy of JDK's sysOpen
4238 // from src/windows/hpi/src/sys_api_md.c
4239 
4240 int os::open(const char *path, int oflag, int mode) {
4241   char pathbuf[MAX_PATH];
4242 
4243   if (strlen(path) > MAX_PATH - 1) {
4244     errno = ENAMETOOLONG;
4245           return -1;
4246   }
4247   os::native_path(strcpy(pathbuf, path));
4248   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4249 }
4250 
4251 FILE* os::open(int fd, const char* mode) {
4252   return ::_fdopen(fd, mode);
4253 }
4254 
4255 // Is a (classpath) directory empty?
4256 bool os::dir_is_empty(const char* path) {
4257   WIN32_FIND_DATA fd;
4258   HANDLE f = FindFirstFile(path, &fd);
4259   if (f == INVALID_HANDLE_VALUE) {
4260     return true;
4261   }
4262   FindClose(f);
4263   return false;
4264 }
4265 
4266 // create binary file, rewriting existing file if required
4267 int os::create_binary_file(const char* path, bool rewrite_existing) {
4268   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4269   if (!rewrite_existing) {
4270     oflags |= _O_EXCL;
4271   }
4272   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4273 }
4274 
4275 // return current position of file pointer
4276 jlong os::current_file_offset(int fd) {
4277   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4278 }
4279 
4280 // move file pointer to the specified offset
4281 jlong os::seek_to_file_offset(int fd, jlong offset) {
4282   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4283 }
4284 
4285 
4286 jlong os::lseek(int fd, jlong offset, int whence) {
4287   return (jlong) ::_lseeki64(fd, offset, whence);
4288 }
4289 
4290 // This method is a slightly reworked copy of JDK's sysNativePath
4291 // from src/windows/hpi/src/path_md.c
4292 
4293 /* Convert a pathname to native format.  On win32, this involves forcing all
4294    separators to be '\\' rather than '/' (both are legal inputs, but Win95
4295    sometimes rejects '/') and removing redundant separators.  The input path is
4296    assumed to have been converted into the character encoding used by the local
4297    system.  Because this might be a double-byte encoding, care is taken to
4298    treat double-byte lead characters correctly.
4299 
4300    This procedure modifies the given path in place, as the result is never
4301    longer than the original.  There is no error return; this operation always
4302    succeeds. */
4303 char * os::native_path(char *path) {
4304   char *src = path, *dst = path, *end = path;
4305   char *colon = NULL;           /* If a drive specifier is found, this will
4306                                         point to the colon following the drive
4307                                         letter */
4308 
4309   /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
4310   assert(((!::IsDBCSLeadByte('/'))
4311     && (!::IsDBCSLeadByte('\\'))
4312     && (!::IsDBCSLeadByte(':'))),
4313     "Illegal lead byte");
4314 
4315   /* Check for leading separators */
4316 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4317   while (isfilesep(*src)) {
4318     src++;
4319   }
4320 
4321   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4322     /* Remove leading separators if followed by drive specifier.  This
4323       hack is necessary to support file URLs containing drive
4324       specifiers (e.g., "file://c:/path").  As a side effect,
4325       "/c:/path" can be used as an alternative to "c:/path". */
4326     *dst++ = *src++;
4327     colon = dst;
4328     *dst++ = ':';
4329     src++;
4330   } else {
4331     src = path;
4332     if (isfilesep(src[0]) && isfilesep(src[1])) {
4333       /* UNC pathname: Retain first separator; leave src pointed at
4334          second separator so that further separators will be collapsed
4335          into the second separator.  The result will be a pathname
4336          beginning with "\\\\" followed (most likely) by a host name. */
4337       src = dst = path + 1;
4338       path[0] = '\\';     /* Force first separator to '\\' */
4339     }
4340   }
4341 
4342   end = dst;
4343 
4344   /* Remove redundant separators from remainder of path, forcing all
4345       separators to be '\\' rather than '/'. Also, single byte space
4346       characters are removed from the end of the path because those
4347       are not legal ending characters on this operating system.
4348   */
4349   while (*src != '\0') {
4350     if (isfilesep(*src)) {
4351       *dst++ = '\\'; src++;
4352       while (isfilesep(*src)) src++;
4353       if (*src == '\0') {
4354         /* Check for trailing separator */
4355         end = dst;
4356         if (colon == dst - 2) break;                      /* "z:\\" */
4357         if (dst == path + 1) break;                       /* "\\" */
4358         if (dst == path + 2 && isfilesep(path[0])) {
4359           /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
4360             beginning of a UNC pathname.  Even though it is not, by
4361             itself, a valid UNC pathname, we leave it as is in order
4362             to be consistent with the path canonicalizer as well
4363             as the win32 APIs, which treat this case as an invalid
4364             UNC pathname rather than as an alias for the root
4365             directory of the current drive. */
4366           break;
4367         }
4368         end = --dst;  /* Path does not denote a root directory, so
4369                                     remove trailing separator */
4370         break;
4371       }
4372       end = dst;
4373     } else {
4374       if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
4375         *dst++ = *src++;
4376         if (*src) *dst++ = *src++;
4377         end = dst;
4378       } else {         /* Copy a single-byte character */
4379         char c = *src++;
4380         *dst++ = c;
4381         /* Space is not a legal ending character */
4382         if (c != ' ') end = dst;
4383       }
4384     }
4385   }
4386 
4387   *end = '\0';
4388 
4389   /* For "z:", add "." to work around a bug in the C runtime library */
4390   if (colon == dst - 1) {
4391           path[2] = '.';
4392           path[3] = '\0';
4393   }
4394 
4395   return path;
4396 }
4397 
4398 // This code is a copy of JDK's sysSetLength
4399 // from src/windows/hpi/src/sys_api_md.c
4400 
4401 int os::ftruncate(int fd, jlong length) {
4402   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4403   long high = (long)(length >> 32);
4404   DWORD ret;
4405 
4406   if (h == (HANDLE)(-1)) {
4407     return -1;
4408   }
4409 
4410   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4411   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4412       return -1;
4413   }
4414 
4415   if (::SetEndOfFile(h) == FALSE) {
4416     return -1;
4417   }
4418 
4419   return 0;
4420 }
4421 
4422 
4423 // This code is a copy of JDK's sysSync
4424 // from src/windows/hpi/src/sys_api_md.c
4425 // except for the legacy workaround for a bug in Win 98
4426 
4427 int os::fsync(int fd) {
4428   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4429 
4430   if ( (!::FlushFileBuffers(handle)) &&
4431          (GetLastError() != ERROR_ACCESS_DENIED) ) {
4432     /* from winerror.h */
4433     return -1;
4434   }
4435   return 0;
4436 }
4437 
4438 static int nonSeekAvailable(int, long *);
4439 static int stdinAvailable(int, long *);
4440 
4441 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4442 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4443 
4444 // This code is a copy of JDK's sysAvailable
4445 // from src/windows/hpi/src/sys_api_md.c
4446 
4447 int os::available(int fd, jlong *bytes) {
4448   jlong cur, end;
4449   struct _stati64 stbuf64;
4450 
4451   if (::_fstati64(fd, &stbuf64) >= 0) {
4452     int mode = stbuf64.st_mode;
4453     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4454       int ret;
4455       long lpbytes;
4456       if (fd == 0) {
4457         ret = stdinAvailable(fd, &lpbytes);
4458       } else {
4459         ret = nonSeekAvailable(fd, &lpbytes);
4460       }
4461       (*bytes) = (jlong)(lpbytes);
4462       return ret;
4463     }
4464     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4465       return FALSE;
4466     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4467       return FALSE;
4468     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4469       return FALSE;
4470     }
4471     *bytes = end - cur;
4472     return TRUE;
4473   } else {
4474     return FALSE;
4475   }
4476 }
4477 
4478 // This code is a copy of JDK's nonSeekAvailable
4479 // from src/windows/hpi/src/sys_api_md.c
4480 
4481 static int nonSeekAvailable(int fd, long *pbytes) {
4482   /* This is used for available on non-seekable devices
4483     * (like both named and anonymous pipes, such as pipes
4484     *  connected to an exec'd process).
4485     * Standard Input is a special case.
4486     *
4487     */
4488   HANDLE han;
4489 
4490   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4491     return FALSE;
4492   }
4493 
4494   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4495         /* PeekNamedPipe fails when at EOF.  In that case we
4496          * simply make *pbytes = 0 which is consistent with the
4497          * behavior we get on Solaris when an fd is at EOF.
4498          * The only alternative is to raise an Exception,
4499          * which isn't really warranted.
4500          */
4501     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4502       return FALSE;
4503     }
4504     *pbytes = 0;
4505   }
4506   return TRUE;
4507 }
4508 
4509 #define MAX_INPUT_EVENTS 2000
4510 
4511 // This code is a copy of JDK's stdinAvailable
4512 // from src/windows/hpi/src/sys_api_md.c
4513 
4514 static int stdinAvailable(int fd, long *pbytes) {
4515   HANDLE han;
4516   DWORD numEventsRead = 0;      /* Number of events read from buffer */
4517   DWORD numEvents = 0;  /* Number of events in buffer */
4518   DWORD i = 0;          /* Loop index */
4519   DWORD curLength = 0;  /* Position marker */
4520   DWORD actualLength = 0;       /* Number of bytes readable */
4521   BOOL error = FALSE;         /* Error holder */
4522   INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
4523 
4524   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4525         return FALSE;
4526   }
4527 
4528   /* Construct an array of input records in the console buffer */
4529   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4530   if (error == 0) {
4531     return nonSeekAvailable(fd, pbytes);
4532   }
4533 
4534   /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
4535   if (numEvents > MAX_INPUT_EVENTS) {
4536     numEvents = MAX_INPUT_EVENTS;
4537   }
4538 
4539   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4540   if (lpBuffer == NULL) {
4541     return FALSE;
4542   }
4543 
4544   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4545   if (error == 0) {
4546     os::free(lpBuffer, mtInternal);
4547     return FALSE;
4548   }
4549 
4550   /* Examine input records for the number of bytes available */
4551   for(i=0; i<numEvents; i++) {
4552     if (lpBuffer[i].EventType == KEY_EVENT) {
4553 
4554       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4555                                       &(lpBuffer[i].Event);
4556       if (keyRecord->bKeyDown == TRUE) {
4557         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4558         curLength++;
4559         if (*keyPressed == '\r') {
4560           actualLength = curLength;
4561         }
4562       }
4563     }
4564   }
4565 
4566   if(lpBuffer != NULL) {
4567     os::free(lpBuffer, mtInternal);
4568   }
4569 
4570   *pbytes = (long) actualLength;
4571   return TRUE;
4572 }
4573 
4574 // Map a block of memory.
4575 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4576                      char *addr, size_t bytes, bool read_only,
4577                      bool allow_exec) {
4578   HANDLE hFile;
4579   char* base;
4580 
4581   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4582                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4583   if (hFile == NULL) {
4584     if (PrintMiscellaneous && Verbose) {
4585       DWORD err = GetLastError();
4586       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4587     }
4588     return NULL;
4589   }
4590 
4591   if (allow_exec) {
4592     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4593     // unless it comes from a PE image (which the shared archive is not.)
4594     // Even VirtualProtect refuses to give execute access to mapped memory
4595     // that was not previously executable.
4596     //
4597     // Instead, stick the executable region in anonymous memory.  Yuck.
4598     // Penalty is that ~4 pages will not be shareable - in the future
4599     // we might consider DLLizing the shared archive with a proper PE
4600     // header so that mapping executable + sharing is possible.
4601 
4602     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4603                                 PAGE_READWRITE);
4604     if (base == NULL) {
4605       if (PrintMiscellaneous && Verbose) {
4606         DWORD err = GetLastError();
4607         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4608       }
4609       CloseHandle(hFile);
4610       return NULL;
4611     }
4612 
4613     DWORD bytes_read;
4614     OVERLAPPED overlapped;
4615     overlapped.Offset = (DWORD)file_offset;
4616     overlapped.OffsetHigh = 0;
4617     overlapped.hEvent = NULL;
4618     // ReadFile guarantees that if the return value is true, the requested
4619     // number of bytes were read before returning.
4620     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4621     if (!res) {
4622       if (PrintMiscellaneous && Verbose) {
4623         DWORD err = GetLastError();
4624         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4625       }
4626       release_memory(base, bytes);
4627       CloseHandle(hFile);
4628       return NULL;
4629     }
4630   } else {
4631     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4632                                     NULL /*file_name*/);
4633     if (hMap == NULL) {
4634       if (PrintMiscellaneous && Verbose) {
4635         DWORD err = GetLastError();
4636         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4637       }
4638       CloseHandle(hFile);
4639       return NULL;
4640     }
4641 
4642     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4643     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4644                                   (DWORD)bytes, addr);
4645     if (base == NULL) {
4646       if (PrintMiscellaneous && Verbose) {
4647         DWORD err = GetLastError();
4648         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4649       }
4650       CloseHandle(hMap);
4651       CloseHandle(hFile);
4652       return NULL;
4653     }
4654 
4655     if (CloseHandle(hMap) == 0) {
4656       if (PrintMiscellaneous && Verbose) {
4657         DWORD err = GetLastError();
4658         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4659       }
4660       CloseHandle(hFile);
4661       return base;
4662     }
4663   }
4664 
4665   if (allow_exec) {
4666     DWORD old_protect;
4667     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4668     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4669 
4670     if (!res) {
4671       if (PrintMiscellaneous && Verbose) {
4672         DWORD err = GetLastError();
4673         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4674       }
4675       // Don't consider this a hard error, on IA32 even if the
4676       // VirtualProtect fails, we should still be able to execute
4677       CloseHandle(hFile);
4678       return base;
4679     }
4680   }
4681 
4682   if (CloseHandle(hFile) == 0) {
4683     if (PrintMiscellaneous && Verbose) {
4684       DWORD err = GetLastError();
4685       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4686     }
4687     return base;
4688   }
4689 
4690   return base;
4691 }
4692 
4693 
4694 // Remap a block of memory.
4695 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4696                        char *addr, size_t bytes, bool read_only,
4697                        bool allow_exec) {
4698   // This OS does not allow existing memory maps to be remapped so we
4699   // have to unmap the memory before we remap it.
4700   if (!os::unmap_memory(addr, bytes)) {
4701     return NULL;
4702   }
4703 
4704   // There is a very small theoretical window between the unmap_memory()
4705   // call above and the map_memory() call below where a thread in native
4706   // code may be able to access an address that is no longer mapped.
4707 
4708   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4709            read_only, allow_exec);
4710 }
4711 
4712 
4713 // Unmap a block of memory.
4714 // Returns true=success, otherwise false.
4715 
4716 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4717   BOOL result = UnmapViewOfFile(addr);
4718   if (result == 0) {
4719     if (PrintMiscellaneous && Verbose) {
4720       DWORD err = GetLastError();
4721       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4722     }
4723     return false;
4724   }
4725   return true;
4726 }
4727 
4728 void os::pause() {
4729   char filename[MAX_PATH];
4730   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4731     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4732   } else {
4733     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4734   }
4735 
4736   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4737   if (fd != -1) {
4738     struct stat buf;
4739     ::close(fd);
4740     while (::stat(filename, &buf) == 0) {
4741       Sleep(100);
4742     }
4743   } else {
4744     jio_fprintf(stderr,
4745       "Could not open pause file '%s', continuing immediately.\n", filename);
4746   }
4747 }
4748 
4749 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4750   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4751 }
4752 
4753 /*
4754  * See the caveats for this class in os_windows.hpp
4755  * Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4756  * into this method and returns false. If no OS EXCEPTION was raised, returns
4757  * true.
4758  * The callback is supposed to provide the method that should be protected.
4759  */
4760 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4761   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4762   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4763       "crash_protection already set?");
4764 
4765   bool success = true;
4766   __try {
4767     WatcherThread::watcher_thread()->set_crash_protection(this);
4768     cb.call();
4769   } __except(EXCEPTION_EXECUTE_HANDLER) {
4770     // only for protection, nothing to do
4771     success = false;
4772   }
4773   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4774   return success;
4775 }
4776 
4777 // An Event wraps a win32 "CreateEvent" kernel handle.
4778 //
4779 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4780 //
4781 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4782 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4783 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4784 //     In addition, an unpark() operation might fetch the handle field, but the
4785 //     event could recycle between the fetch and the SetEvent() operation.
4786 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4787 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4788 //     on an stale but recycled handle would be harmless, but in practice this might
4789 //     confuse other non-Sun code, so it's not a viable approach.
4790 //
4791 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4792 //     with the Event.  The event handle is never closed.  This could be construed
4793 //     as handle leakage, but only up to the maximum # of threads that have been extant
4794 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4795 //     permit a process to have hundreds of thousands of open handles.
4796 //
4797 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4798 //     and release unused handles.
4799 //
4800 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4801 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4802 //
4803 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4804 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4805 //
4806 // We use (2).
4807 //
4808 // TODO-FIXME:
4809 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4810 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4811 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4812 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4813 //     into a single win32 CreateEvent() handle.
4814 //
4815 // _Event transitions in park()
4816 //   -1 => -1 : illegal
4817 //    1 =>  0 : pass - return immediately
4818 //    0 => -1 : block
4819 //
4820 // _Event serves as a restricted-range semaphore :
4821 //    -1 : thread is blocked
4822 //     0 : neutral  - thread is running or ready
4823 //     1 : signaled - thread is running or ready
4824 //
4825 // Another possible encoding of _Event would be
4826 // with explicit "PARKED" and "SIGNALED" bits.
4827 
4828 int os::PlatformEvent::park (jlong Millis) {
4829     guarantee (_ParkHandle != NULL , "Invariant") ;
4830     guarantee (Millis > 0          , "Invariant") ;
4831     int v ;
4832 
4833     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4834     // the initial park() operation.
4835 
4836     for (;;) {
4837         v = _Event ;
4838         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4839     }
4840     guarantee ((v == 0) || (v == 1), "invariant") ;
4841     if (v != 0) return OS_OK ;
4842 
4843     // Do this the hard way by blocking ...
4844     // TODO: consider a brief spin here, gated on the success of recent
4845     // spin attempts by this thread.
4846     //
4847     // We decompose long timeouts into series of shorter timed waits.
4848     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4849     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4850     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4851     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4852     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4853     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4854     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4855     // for the already waited time.  This policy does not admit any new outcomes.
4856     // In the future, however, we might want to track the accumulated wait time and
4857     // adjust Millis accordingly if we encounter a spurious wakeup.
4858 
4859     const int MAXTIMEOUT = 0x10000000 ;
4860     DWORD rv = WAIT_TIMEOUT ;
4861     while (_Event < 0 && Millis > 0) {
4862        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
4863        if (Millis > MAXTIMEOUT) {
4864           prd = MAXTIMEOUT ;
4865        }
4866        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
4867        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
4868        if (rv == WAIT_TIMEOUT) {
4869            Millis -= prd ;
4870        }
4871     }
4872     v = _Event ;
4873     _Event = 0 ;
4874     // see comment at end of os::PlatformEvent::park() below:
4875     OrderAccess::fence() ;
4876     // If we encounter a nearly simultanous timeout expiry and unpark()
4877     // we return OS_OK indicating we awoke via unpark().
4878     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
4879     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
4880 }
4881 
4882 void os::PlatformEvent::park () {
4883     guarantee (_ParkHandle != NULL, "Invariant") ;
4884     // Invariant: Only the thread associated with the Event/PlatformEvent
4885     // may call park().
4886     int v ;
4887     for (;;) {
4888         v = _Event ;
4889         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4890     }
4891     guarantee ((v == 0) || (v == 1), "invariant") ;
4892     if (v != 0) return ;
4893 
4894     // Do this the hard way by blocking ...
4895     // TODO: consider a brief spin here, gated on the success of recent
4896     // spin attempts by this thread.
4897     while (_Event < 0) {
4898        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
4899        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
4900     }
4901 
4902     // Usually we'll find _Event == 0 at this point, but as
4903     // an optional optimization we clear it, just in case can
4904     // multiple unpark() operations drove _Event up to 1.
4905     _Event = 0 ;
4906     OrderAccess::fence() ;
4907     guarantee (_Event >= 0, "invariant") ;
4908 }
4909 
4910 void os::PlatformEvent::unpark() {
4911   guarantee (_ParkHandle != NULL, "Invariant") ;
4912 
4913   // Transitions for _Event:
4914   //    0 :=> 1
4915   //    1 :=> 1
4916   //   -1 :=> either 0 or 1; must signal target thread
4917   //          That is, we can safely transition _Event from -1 to either
4918   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4919   //          unpark() calls.
4920   // See also: "Semaphores in Plan 9" by Mullender & Cox
4921   //
4922   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4923   // that it will take two back-to-back park() calls for the owning
4924   // thread to block. This has the benefit of forcing a spurious return
4925   // from the first park() call after an unpark() call which will help
4926   // shake out uses of park() and unpark() without condition variables.
4927 
4928   if (Atomic::xchg(1, &_Event) >= 0) return;
4929 
4930   ::SetEvent(_ParkHandle);
4931 }
4932 
4933 
4934 // JSR166
4935 // -------------------------------------------------------
4936 
4937 /*
4938  * The Windows implementation of Park is very straightforward: Basic
4939  * operations on Win32 Events turn out to have the right semantics to
4940  * use them directly. We opportunistically resuse the event inherited
4941  * from Monitor.
4942  */
4943 
4944 
4945 void Parker::park(bool isAbsolute, jlong time) {
4946   guarantee (_ParkEvent != NULL, "invariant") ;
4947   // First, demultiplex/decode time arguments
4948   if (time < 0) { // don't wait
4949     return;
4950   }
4951   else if (time == 0 && !isAbsolute) {
4952     time = INFINITE;
4953   }
4954   else if  (isAbsolute) {
4955     time -= os::javaTimeMillis(); // convert to relative time
4956     if (time <= 0) // already elapsed
4957       return;
4958   }
4959   else { // relative
4960     time /= 1000000; // Must coarsen from nanos to millis
4961     if (time == 0)   // Wait for the minimal time unit if zero
4962       time = 1;
4963   }
4964 
4965   JavaThread* thread = (JavaThread*)(Thread::current());
4966   assert(thread->is_Java_thread(), "Must be JavaThread");
4967   JavaThread *jt = (JavaThread *)thread;
4968 
4969   // Don't wait if interrupted or already triggered
4970   if (Thread::is_interrupted(thread, false) ||
4971     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4972     ResetEvent(_ParkEvent);
4973     return;
4974   }
4975   else {
4976     ThreadBlockInVM tbivm(jt);
4977     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4978     jt->set_suspend_equivalent();
4979 
4980     WaitForSingleObject(_ParkEvent,  time);
4981     ResetEvent(_ParkEvent);
4982 
4983     // If externally suspended while waiting, re-suspend
4984     if (jt->handle_special_suspend_equivalent_condition()) {
4985       jt->java_suspend_self();
4986     }
4987   }
4988 }
4989 
4990 void Parker::unpark() {
4991   guarantee (_ParkEvent != NULL, "invariant") ;
4992   SetEvent(_ParkEvent);
4993 }
4994 
4995 // Run the specified command in a separate process. Return its exit value,
4996 // or -1 on failure (e.g. can't create a new process).
4997 int os::fork_and_exec(char* cmd) {
4998   STARTUPINFO si;
4999   PROCESS_INFORMATION pi;
5000 
5001   memset(&si, 0, sizeof(si));
5002   si.cb = sizeof(si);
5003   memset(&pi, 0, sizeof(pi));
5004   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5005                             cmd,    // command line
5006                             NULL,   // process security attribute
5007                             NULL,   // thread security attribute
5008                             TRUE,   // inherits system handles
5009                             0,      // no creation flags
5010                             NULL,   // use parent's environment block
5011                             NULL,   // use parent's starting directory
5012                             &si,    // (in) startup information
5013                             &pi);   // (out) process information
5014 
5015   if (rslt) {
5016     // Wait until child process exits.
5017     WaitForSingleObject(pi.hProcess, INFINITE);
5018 
5019     DWORD exit_code;
5020     GetExitCodeProcess(pi.hProcess, &exit_code);
5021 
5022     // Close process and thread handles.
5023     CloseHandle(pi.hProcess);
5024     CloseHandle(pi.hThread);
5025 
5026     return (int)exit_code;
5027   } else {
5028     return -1;
5029   }
5030 }
5031 
5032 //--------------------------------------------------------------------------------------------------
5033 // Non-product code
5034 
5035 static int mallocDebugIntervalCounter = 0;
5036 static int mallocDebugCounter = 0;
5037 bool os::check_heap(bool force) {
5038   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5039   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5040     // Note: HeapValidate executes two hardware breakpoints when it finds something
5041     // wrong; at these points, eax contains the address of the offending block (I think).
5042     // To get to the exlicit error message(s) below, just continue twice.
5043     HANDLE heap = GetProcessHeap();
5044     { HeapLock(heap);
5045       PROCESS_HEAP_ENTRY phe;
5046       phe.lpData = NULL;
5047       while (HeapWalk(heap, &phe) != 0) {
5048         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5049             !HeapValidate(heap, 0, phe.lpData)) {
5050           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5051           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5052           fatal("corrupted C heap");
5053         }
5054       }
5055       DWORD err = GetLastError();
5056       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5057         fatal(err_msg("heap walk aborted with error %d", err));
5058       }
5059       HeapUnlock(heap);
5060     }
5061     mallocDebugIntervalCounter = 0;
5062   }
5063   return true;
5064 }
5065 
5066 
5067 bool os::find(address addr, outputStream* st) {
5068   // Nothing yet
5069   return false;
5070 }
5071 
5072 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5073   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5074 
5075   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
5076     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5077     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5078     address addr = (address) exceptionRecord->ExceptionInformation[1];
5079 
5080     if (os::is_memory_serialize_page(thread, addr))
5081       return EXCEPTION_CONTINUE_EXECUTION;
5082   }
5083 
5084   return EXCEPTION_CONTINUE_SEARCH;
5085 }
5086 
5087 // We don't build a headless jre for Windows
5088 bool os::is_headless_jre() { return false; }
5089 
5090 static jint initSock() {
5091   WSADATA wsadata;
5092 
5093   if (!os::WinSock2Dll::WinSock2Available()) {
5094     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5095       ::GetLastError());
5096     return JNI_ERR;
5097   }
5098 
5099   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5100     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5101       ::GetLastError());
5102     return JNI_ERR;
5103   }
5104   return JNI_OK;
5105 }
5106 
5107 struct hostent* os::get_host_by_name(char* name) {
5108   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5109 }
5110 
5111 int os::socket_close(int fd) {
5112   return ::closesocket(fd);
5113 }
5114 
5115 int os::socket_available(int fd, jint *pbytes) {
5116   int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
5117   return (ret < 0) ? 0 : 1;
5118 }
5119 
5120 int os::socket(int domain, int type, int protocol) {
5121   return ::socket(domain, type, protocol);
5122 }
5123 
5124 int os::listen(int fd, int count) {
5125   return ::listen(fd, count);
5126 }
5127 
5128 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5129   return ::connect(fd, him, len);
5130 }
5131 
5132 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
5133   return ::accept(fd, him, len);
5134 }
5135 
5136 int os::sendto(int fd, char* buf, size_t len, uint flags,
5137                struct sockaddr* to, socklen_t tolen) {
5138 
5139   return ::sendto(fd, buf, (int)len, flags, to, tolen);
5140 }
5141 
5142 int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
5143                  sockaddr* from, socklen_t* fromlen) {
5144 
5145   return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
5146 }
5147 
5148 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5149   return ::recv(fd, buf, (int)nBytes, flags);
5150 }
5151 
5152 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5153   return ::send(fd, buf, (int)nBytes, flags);
5154 }
5155 
5156 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5157   return ::send(fd, buf, (int)nBytes, flags);
5158 }
5159 
5160 int os::timeout(int fd, long timeout) {
5161   fd_set tbl;
5162   struct timeval t;
5163 
5164   t.tv_sec  = timeout / 1000;
5165   t.tv_usec = (timeout % 1000) * 1000;
5166 
5167   tbl.fd_count    = 1;
5168   tbl.fd_array[0] = fd;
5169 
5170   return ::select(1, &tbl, 0, 0, &t);
5171 }
5172 
5173 int os::get_host_name(char* name, int namelen) {
5174   return ::gethostname(name, namelen);
5175 }
5176 
5177 int os::socket_shutdown(int fd, int howto) {
5178   return ::shutdown(fd, howto);
5179 }
5180 
5181 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
5182   return ::bind(fd, him, len);
5183 }
5184 
5185 int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
5186   return ::getsockname(fd, him, len);
5187 }
5188 
5189 int os::get_sock_opt(int fd, int level, int optname,
5190                      char* optval, socklen_t* optlen) {
5191   return ::getsockopt(fd, level, optname, optval, optlen);
5192 }
5193 
5194 int os::set_sock_opt(int fd, int level, int optname,
5195                      const char* optval, socklen_t optlen) {
5196   return ::setsockopt(fd, level, optname, optval, optlen);
5197 }
5198 
5199 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5200 #if defined(IA32)
5201 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5202 #elif defined (AMD64)
5203 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5204 #endif
5205 
5206 // returns true if thread could be suspended,
5207 // false otherwise
5208 static bool do_suspend(HANDLE* h) {
5209   if (h != NULL) {
5210     if (SuspendThread(*h) != ~0) {
5211       return true;
5212     }
5213   }
5214   return false;
5215 }
5216 
5217 // resume the thread
5218 // calling resume on an active thread is a no-op
5219 static void do_resume(HANDLE* h) {
5220   if (h != NULL) {
5221     ResumeThread(*h);
5222   }
5223 }
5224 
5225 // retrieve a suspend/resume context capable handle
5226 // from the tid. Caller validates handle return value.
5227 void get_thread_handle_for_extended_context(HANDLE* h, OSThread::thread_id_t tid) {
5228   if (h != NULL) {
5229     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5230   }
5231 }
5232 
5233 //
5234 // Thread sampling implementation
5235 //
5236 void os::SuspendedThreadTask::internal_do_task() {
5237   CONTEXT    ctxt;
5238   HANDLE     h = NULL;
5239 
5240   // get context capable handle for thread
5241   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5242 
5243   // sanity
5244   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5245     return;
5246   }
5247 
5248   // suspend the thread
5249   if (do_suspend(&h)) {
5250     ctxt.ContextFlags = sampling_context_flags;
5251     // get thread context
5252     GetThreadContext(h, &ctxt);
5253     SuspendedThreadTaskContext context(_thread, &ctxt);
5254     // pass context to Thread Sampling impl
5255     do_task(context);
5256     // resume thread
5257     do_resume(&h);
5258   }
5259 
5260   // close handle
5261   CloseHandle(h);
5262 }
5263 
5264 
5265 // Kernel32 API
5266 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5267 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5268 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
5269 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
5270 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5271 
5272 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5273 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5274 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5275 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5276 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5277 
5278 
5279 BOOL                        os::Kernel32Dll::initialized = FALSE;
5280 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5281   assert(initialized && _GetLargePageMinimum != NULL,
5282     "GetLargePageMinimumAvailable() not yet called");
5283   return _GetLargePageMinimum();
5284 }
5285 
5286 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5287   if (!initialized) {
5288     initialize();
5289   }
5290   return _GetLargePageMinimum != NULL;
5291 }
5292 
5293 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5294   if (!initialized) {
5295     initialize();
5296   }
5297   return _VirtualAllocExNuma != NULL;
5298 }
5299 
5300 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
5301   assert(initialized && _VirtualAllocExNuma != NULL,
5302     "NUMACallsAvailable() not yet called");
5303 
5304   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5305 }
5306 
5307 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5308   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5309     "NUMACallsAvailable() not yet called");
5310 
5311   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5312 }
5313 
5314 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
5315   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5316     "NUMACallsAvailable() not yet called");
5317 
5318   return _GetNumaNodeProcessorMask(node, proc_mask);
5319 }
5320 
5321 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5322   ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) {
5323     if (!initialized) {
5324       initialize();
5325     }
5326 
5327     if (_RtlCaptureStackBackTrace != NULL) {
5328       return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5329         BackTrace, BackTraceHash);
5330     } else {
5331       return 0;
5332     }
5333 }
5334 
5335 void os::Kernel32Dll::initializeCommon() {
5336   if (!initialized) {
5337     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5338     assert(handle != NULL, "Just check");
5339     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5340     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5341     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5342     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5343     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5344     initialized = TRUE;
5345   }
5346 }
5347 
5348 
5349 
5350 #ifndef JDK6_OR_EARLIER
5351 
5352 void os::Kernel32Dll::initialize() {
5353   initializeCommon();
5354 }
5355 
5356 
5357 // Kernel32 API
5358 inline BOOL os::Kernel32Dll::SwitchToThread() {
5359   return ::SwitchToThread();
5360 }
5361 
5362 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5363   return true;
5364 }
5365 
5366   // Help tools
5367 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5368   return true;
5369 }
5370 
5371 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5372   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5373 }
5374 
5375 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5376   return ::Module32First(hSnapshot, lpme);
5377 }
5378 
5379 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5380   return ::Module32Next(hSnapshot, lpme);
5381 }
5382 
5383 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5384   ::GetNativeSystemInfo(lpSystemInfo);
5385 }
5386 
5387 // PSAPI API
5388 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5389   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5390 }
5391 
5392 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5393   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5394 }
5395 
5396 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5397   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5398 }
5399 
5400 inline BOOL os::PSApiDll::PSApiAvailable() {
5401   return true;
5402 }
5403 
5404 
5405 // WinSock2 API
5406 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5407   return ::WSAStartup(wVersionRequested, lpWSAData);
5408 }
5409 
5410 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5411   return ::gethostbyname(name);
5412 }
5413 
5414 inline BOOL os::WinSock2Dll::WinSock2Available() {
5415   return true;
5416 }
5417 
5418 // Advapi API
5419 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5420    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5421    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5422      return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5423        BufferLength, PreviousState, ReturnLength);
5424 }
5425 
5426 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5427   PHANDLE TokenHandle) {
5428     return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5429 }
5430 
5431 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5432   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5433 }
5434 
5435 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5436   return true;
5437 }
5438 
5439 void* os::get_default_process_handle() {
5440   return (void*)GetModuleHandle(NULL);
5441 }
5442 
5443 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5444 // which is used to find statically linked in agents.
5445 // Additionally for windows, takes into account __stdcall names.
5446 // Parameters:
5447 //            sym_name: Symbol in library we are looking for
5448 //            lib_name: Name of library to look in, NULL for shared libs.
5449 //            is_absolute_path == true if lib_name is absolute path to agent
5450 //                                     such as "C:/a/b/L.dll"
5451 //            == false if only the base name of the library is passed in
5452 //               such as "L"
5453 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5454                                     bool is_absolute_path) {
5455   char *agent_entry_name;
5456   size_t len;
5457   size_t name_len;
5458   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5459   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5460   const char *start;
5461 
5462   if (lib_name != NULL) {
5463     len = name_len = strlen(lib_name);
5464     if (is_absolute_path) {
5465       // Need to strip path, prefix and suffix
5466       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5467         lib_name = ++start;
5468       } else {
5469         // Need to check for drive prefix
5470         if ((start = strchr(lib_name, ':')) != NULL) {
5471           lib_name = ++start;
5472         }
5473       }
5474       if (len <= (prefix_len + suffix_len)) {
5475         return NULL;
5476       }
5477       lib_name += prefix_len;
5478       name_len = strlen(lib_name) - suffix_len;
5479     }
5480   }
5481   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5482   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5483   if (agent_entry_name == NULL) {
5484     return NULL;
5485   }
5486   if (lib_name != NULL) {
5487     const char *p = strrchr(sym_name, '@');
5488     if (p != NULL && p != sym_name) {
5489       // sym_name == _Agent_OnLoad@XX
5490       strncpy(agent_entry_name, sym_name, (p - sym_name));
5491       agent_entry_name[(p-sym_name)] = '\0';
5492       // agent_entry_name == _Agent_OnLoad
5493       strcat(agent_entry_name, "_");
5494       strncat(agent_entry_name, lib_name, name_len);
5495       strcat(agent_entry_name, p);
5496       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5497     } else {
5498       strcpy(agent_entry_name, sym_name);
5499       strcat(agent_entry_name, "_");
5500       strncat(agent_entry_name, lib_name, name_len);
5501     }
5502   } else {
5503     strcpy(agent_entry_name, sym_name);
5504   }
5505   return agent_entry_name;
5506 }
5507 
5508 #else
5509 // Kernel32 API
5510 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5511 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
5512 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
5513 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
5514 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5515 
5516 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5517 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5518 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5519 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5520 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5521 
5522 void os::Kernel32Dll::initialize() {
5523   if (!initialized) {
5524     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5525     assert(handle != NULL, "Just check");
5526 
5527     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5528     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5529       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5530     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5531     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5532     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5533     initializeCommon();  // resolve the functions that always need resolving
5534 
5535     initialized = TRUE;
5536   }
5537 }
5538 
5539 BOOL os::Kernel32Dll::SwitchToThread() {
5540   assert(initialized && _SwitchToThread != NULL,
5541     "SwitchToThreadAvailable() not yet called");
5542   return _SwitchToThread();
5543 }
5544 
5545 
5546 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5547   if (!initialized) {
5548     initialize();
5549   }
5550   return _SwitchToThread != NULL;
5551 }
5552 
5553 // Help tools
5554 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5555   if (!initialized) {
5556     initialize();
5557   }
5558   return _CreateToolhelp32Snapshot != NULL &&
5559          _Module32First != NULL &&
5560          _Module32Next != NULL;
5561 }
5562 
5563 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5564   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5565     "HelpToolsAvailable() not yet called");
5566 
5567   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5568 }
5569 
5570 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5571   assert(initialized && _Module32First != NULL,
5572     "HelpToolsAvailable() not yet called");
5573 
5574   return _Module32First(hSnapshot, lpme);
5575 }
5576 
5577 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5578   assert(initialized && _Module32Next != NULL,
5579     "HelpToolsAvailable() not yet called");
5580 
5581   return _Module32Next(hSnapshot, lpme);
5582 }
5583 
5584 
5585 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5586   if (!initialized) {
5587     initialize();
5588   }
5589   return _GetNativeSystemInfo != NULL;
5590 }
5591 
5592 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5593   assert(initialized && _GetNativeSystemInfo != NULL,
5594     "GetNativeSystemInfoAvailable() not yet called");
5595 
5596   _GetNativeSystemInfo(lpSystemInfo);
5597 }
5598 
5599 // PSAPI API
5600 
5601 
5602 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5603 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
5604 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5605 
5606 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5607 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5608 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5609 BOOL                    os::PSApiDll::initialized = FALSE;
5610 
5611 void os::PSApiDll::initialize() {
5612   if (!initialized) {
5613     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5614     if (handle != NULL) {
5615       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5616         "EnumProcessModules");
5617       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5618         "GetModuleFileNameExA");
5619       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5620         "GetModuleInformation");
5621     }
5622     initialized = TRUE;
5623   }
5624 }
5625 
5626 
5627 
5628 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5629   assert(initialized && _EnumProcessModules != NULL,
5630     "PSApiAvailable() not yet called");
5631   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5632 }
5633 
5634 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5635   assert(initialized && _GetModuleFileNameEx != NULL,
5636     "PSApiAvailable() not yet called");
5637   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5638 }
5639 
5640 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5641   assert(initialized && _GetModuleInformation != NULL,
5642     "PSApiAvailable() not yet called");
5643   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5644 }
5645 
5646 BOOL os::PSApiDll::PSApiAvailable() {
5647   if (!initialized) {
5648     initialize();
5649   }
5650   return _EnumProcessModules != NULL &&
5651     _GetModuleFileNameEx != NULL &&
5652     _GetModuleInformation != NULL;
5653 }
5654 
5655 
5656 // WinSock2 API
5657 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5658 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5659 
5660 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5661 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5662 BOOL             os::WinSock2Dll::initialized = FALSE;
5663 
5664 void os::WinSock2Dll::initialize() {
5665   if (!initialized) {
5666     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5667     if (handle != NULL) {
5668       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5669       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5670     }
5671     initialized = TRUE;
5672   }
5673 }
5674 
5675 
5676 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5677   assert(initialized && _WSAStartup != NULL,
5678     "WinSock2Available() not yet called");
5679   return _WSAStartup(wVersionRequested, lpWSAData);
5680 }
5681 
5682 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5683   assert(initialized && _gethostbyname != NULL,
5684     "WinSock2Available() not yet called");
5685   return _gethostbyname(name);
5686 }
5687 
5688 BOOL os::WinSock2Dll::WinSock2Available() {
5689   if (!initialized) {
5690     initialize();
5691   }
5692   return _WSAStartup != NULL &&
5693     _gethostbyname != NULL;
5694 }
5695 
5696 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5697 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5698 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5699 
5700 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5701 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5702 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5703 BOOL                     os::Advapi32Dll::initialized = FALSE;
5704 
5705 void os::Advapi32Dll::initialize() {
5706   if (!initialized) {
5707     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5708     if (handle != NULL) {
5709       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5710         "AdjustTokenPrivileges");
5711       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5712         "OpenProcessToken");
5713       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5714         "LookupPrivilegeValueA");
5715     }
5716     initialized = TRUE;
5717   }
5718 }
5719 
5720 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5721    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5722    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5723    assert(initialized && _AdjustTokenPrivileges != NULL,
5724      "AdvapiAvailable() not yet called");
5725    return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5726        BufferLength, PreviousState, ReturnLength);
5727 }
5728 
5729 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5730   PHANDLE TokenHandle) {
5731    assert(initialized && _OpenProcessToken != NULL,
5732      "AdvapiAvailable() not yet called");
5733     return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5734 }
5735 
5736 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5737    assert(initialized && _LookupPrivilegeValue != NULL,
5738      "AdvapiAvailable() not yet called");
5739   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5740 }
5741 
5742 BOOL os::Advapi32Dll::AdvapiAvailable() {
5743   if (!initialized) {
5744     initialize();
5745   }
5746   return _AdjustTokenPrivileges != NULL &&
5747     _OpenProcessToken != NULL &&
5748     _LookupPrivilegeValue != NULL;
5749 }
5750 
5751 #endif
5752 
5753 #ifndef PRODUCT
5754 
5755 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5756 // contiguous memory block at a particular address.
5757 // The test first tries to find a good approximate address to allocate at by using the same
5758 // method to allocate some memory at any address. The test then tries to allocate memory in
5759 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5760 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5761 // the previously allocated memory is available for allocation. The only actual failure
5762 // that is reported is when the test tries to allocate at a particular location but gets a
5763 // different valid one. A NULL return value at this point is not considered an error but may
5764 // be legitimate.
5765 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5766 void TestReserveMemorySpecial_test() {
5767   if (!UseLargePages) {
5768     if (VerboseInternalVMTests) {
5769       gclog_or_tty->print("Skipping test because large pages are disabled");
5770     }
5771     return;
5772   }
5773   // save current value of globals
5774   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5775   bool old_use_numa_interleaving = UseNUMAInterleaving;
5776 
5777   // set globals to make sure we hit the correct code path
5778   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5779 
5780   // do an allocation at an address selected by the OS to get a good one.
5781   const size_t large_allocation_size = os::large_page_size() * 4;
5782   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5783   if (result == NULL) {
5784     if (VerboseInternalVMTests) {
5785       gclog_or_tty->print("Failed to allocate control block with size "SIZE_FORMAT". Skipping remainder of test.",
5786         large_allocation_size);
5787     }
5788   } else {
5789     os::release_memory_special(result, large_allocation_size);
5790 
5791     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5792     // we managed to get it once.
5793     const size_t expected_allocation_size = os::large_page_size();
5794     char* expected_location = result + os::large_page_size();
5795     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5796     if (actual_location == NULL) {
5797       if (VerboseInternalVMTests) {
5798         gclog_or_tty->print("Failed to allocate any memory at "PTR_FORMAT" size "SIZE_FORMAT". Skipping remainder of test.",
5799           expected_location, large_allocation_size);
5800       }
5801     } else {
5802       // release memory
5803       os::release_memory_special(actual_location, expected_allocation_size);
5804       // only now check, after releasing any memory to avoid any leaks.
5805       assert(actual_location == expected_location,
5806         err_msg("Failed to allocate memory at requested location "PTR_FORMAT" of size "SIZE_FORMAT", is "PTR_FORMAT" instead",
5807           expected_location, expected_allocation_size, actual_location));
5808     }
5809   }
5810 
5811   // restore globals
5812   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5813   UseNUMAInterleaving = old_use_numa_interleaving;
5814 }
5815 #endif // PRODUCT
5816