1 /*
   2  * Copyright (c) 1999, 2003, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 /*
  27  *
  28  * (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved
  29  * (C) Copyright IBM Corp. 1996 - 2002 - All Rights Reserved
  30  *
  31  * The original version of this source code and documentation
  32  * is copyrighted and owned by Taligent, Inc., a wholly-owned
  33  * subsidiary of IBM. These materials are provided under terms
  34  * of a License Agreement between Taligent and Sun. This technology
  35  * is protected by multiple US and International patents.
  36  *
  37  * This notice and attribution to Taligent may not be removed.
  38  * Taligent is a registered trademark of Taligent, Inc.
  39  */
  40 package java.text;
  41 
  42 import java.io.*;
  43 import java.security.AccessController;
  44 import java.security.PrivilegedActionException;
  45 import java.security.PrivilegedExceptionAction;
  46 import java.util.MissingResourceException;
  47 import sun.text.CompactByteArray;
  48 import sun.text.SupplementaryCharacterData;
  49 
  50 /**
  51  * This is the class that represents the list of known words used by
  52  * DictionaryBasedBreakIterator.  The conceptual data structure used
  53  * here is a trie: there is a node hanging off the root node for every
  54  * letter that can start a word.  Each of these nodes has a node hanging
  55  * off of it for every letter that can be the second letter of a word
  56  * if this node is the first letter, and so on.  The trie is represented
  57  * as a two-dimensional array that can be treated as a table of state
  58  * transitions.  Indexes are used to compress this array, taking
  59  * advantage of the fact that this array will always be very sparse.
  60  */
  61 class BreakDictionary {
  62 
  63     //=========================================================================
  64     // data members
  65     //=========================================================================
  66 
  67     /**
  68       * The version of the dictionary that was read in.
  69       */
  70     private static int supportedVersion = 1;
  71 
  72     /**
  73      * Maps from characters to column numbers.  The main use of this is to
  74      * avoid making room in the array for empty columns.
  75      */
  76     private CompactByteArray columnMap = null;
  77     private SupplementaryCharacterData supplementaryCharColumnMap = null;
  78 
  79     /**
  80      * The number of actual columns in the table
  81      */
  82     private int numCols;
  83 
  84     /**
  85      * Columns are organized into groups of 32.  This says how many
  86      * column groups.  (We could calculate this, but we store the
  87      * value to avoid having to repeatedly calculate it.)
  88      */
  89     private int numColGroups;
  90 
  91     /**
  92      * The actual compressed state table.  Each conceptual row represents
  93      * a state, and the cells in it contain the row numbers of the states
  94      * to transition to for each possible letter.  0 is used to indicate
  95      * an illegal combination of letters (i.e., the error state).  The
  96      * table is compressed by eliminating all the unpopulated (i.e., zero)
  97      * cells.  Multiple conceptual rows can then be doubled up in a single
  98      * physical row by sliding them up and possibly shifting them to one
  99      * side or the other so the populated cells don't collide.  Indexes
 100      * are used to identify unpopulated cells and to locate populated cells.
 101      */
 102     private short[] table = null;
 103 
 104     /**
 105      * This index maps logical row numbers to physical row numbers
 106      */
 107     private short[] rowIndex = null;
 108 
 109     /**
 110      * A bitmap is used to tell which cells in the comceptual table are
 111      * populated.  This array contains all the unique bit combinations
 112      * in that bitmap.  If the table is more than 32 columns wide,
 113      * successive entries in this array are used for a single row.
 114      */
 115     private int[] rowIndexFlags = null;
 116 
 117     /**
 118      * This index maps from a logical row number into the bitmap table above.
 119      * (This keeps us from storing duplicate bitmap combinations.)  Since there
 120      * are a lot of rows with only one populated cell, instead of wasting space
 121      * in the bitmap table, we just store a negative number in this index for
 122      * rows with one populated cell.  The absolute value of that number is
 123      * the column number of the populated cell.
 124      */
 125     private short[] rowIndexFlagsIndex = null;
 126 
 127     /**
 128      * For each logical row, this index contains a constant that is added to
 129      * the logical column number to get the physical column number
 130      */
 131     private byte[] rowIndexShifts = null;
 132 
 133     //=========================================================================
 134     // deserialization
 135     //=========================================================================
 136 
 137     public BreakDictionary(String dictionaryName)
 138         throws IOException, MissingResourceException {
 139 
 140         readDictionaryFile(dictionaryName);
 141     }
 142 
 143     private void readDictionaryFile(final String dictionaryName)
 144         throws IOException, MissingResourceException {
 145 
 146         BufferedInputStream in;
 147         try {
 148             in = AccessController.doPrivileged(
 149                 new PrivilegedExceptionAction<BufferedInputStream>() {
 150                     public BufferedInputStream run() throws Exception {
 151                         return new BufferedInputStream(getClass().getResourceAsStream("/sun/text/resources/" + dictionaryName));
 152                     }
 153                 }
 154             );
 155         }
 156         catch (PrivilegedActionException e) {
 157             throw new InternalError(e.toString(), e);
 158         }
 159 
 160         byte[] buf = new byte[8];
 161         if (in.read(buf) != 8) {
 162             throw new MissingResourceException("Wrong data length",
 163                                                dictionaryName, "");
 164         }
 165 
 166         // check vesion
 167         int version = BreakIterator.getInt(buf, 0);
 168         if (version != supportedVersion) {
 169             throw new MissingResourceException("Dictionary version(" + version + ") is unsupported",
 170                                                            dictionaryName, "");
 171         }
 172 
 173         // get data size
 174         int len = BreakIterator.getInt(buf, 4);
 175         buf = new byte[len];
 176         if (in.read(buf) != len) {
 177             throw new MissingResourceException("Wrong data length",
 178                                                dictionaryName, "");
 179         }
 180 
 181         // close the stream
 182         in.close();
 183 
 184         int l;
 185         int offset = 0;
 186 
 187         // read in the column map for BMP characteres (this is serialized in
 188         // its internal form: an index array followed by a data array)
 189         l = BreakIterator.getInt(buf, offset);
 190         offset += 4;
 191         short[] temp = new short[l];
 192         for (int i = 0; i < l; i++, offset+=2) {
 193             temp[i] = BreakIterator.getShort(buf, offset);
 194         }
 195         l = BreakIterator.getInt(buf, offset);
 196         offset += 4;
 197         byte[] temp2 = new byte[l];
 198         for (int i = 0; i < l; i++, offset++) {
 199             temp2[i] = buf[offset];
 200         }
 201         columnMap = new CompactByteArray(temp, temp2);
 202 
 203         // read in numCols and numColGroups
 204         numCols = BreakIterator.getInt(buf, offset);
 205         offset += 4;
 206         numColGroups = BreakIterator.getInt(buf, offset);
 207         offset += 4;
 208 
 209         // read in the row-number index
 210         l = BreakIterator.getInt(buf, offset);
 211         offset += 4;
 212         rowIndex = new short[l];
 213         for (int i = 0; i < l; i++, offset+=2) {
 214             rowIndex[i] = BreakIterator.getShort(buf, offset);
 215         }
 216 
 217         // load in the populated-cells bitmap: index first, then bitmap list
 218         l = BreakIterator.getInt(buf, offset);
 219         offset += 4;
 220         rowIndexFlagsIndex = new short[l];
 221         for (int i = 0; i < l; i++, offset+=2) {
 222             rowIndexFlagsIndex[i] = BreakIterator.getShort(buf, offset);
 223         }
 224         l = BreakIterator.getInt(buf, offset);
 225         offset += 4;
 226         rowIndexFlags = new int[l];
 227         for (int i = 0; i < l; i++, offset+=4) {
 228             rowIndexFlags[i] = BreakIterator.getInt(buf, offset);
 229         }
 230 
 231         // load in the row-shift index
 232         l = BreakIterator.getInt(buf, offset);
 233         offset += 4;
 234         rowIndexShifts = new byte[l];
 235         for (int i = 0; i < l; i++, offset++) {
 236             rowIndexShifts[i] = buf[offset];
 237         }
 238 
 239         // load in the actual state table
 240         l = BreakIterator.getInt(buf, offset);
 241         offset += 4;
 242         table = new short[l];
 243         for (int i = 0; i < l; i++, offset+=2) {
 244             table[i] = BreakIterator.getShort(buf, offset);
 245         }
 246 
 247         // finally, prepare the column map for supplementary characters
 248         l = BreakIterator.getInt(buf, offset);
 249         offset += 4;
 250         int[] temp3 = new int[l];
 251         for (int i = 0; i < l; i++, offset+=4) {
 252             temp3[i] = BreakIterator.getInt(buf, offset);
 253         }
 254         supplementaryCharColumnMap = new SupplementaryCharacterData(temp3);
 255     }
 256 
 257     //=========================================================================
 258     // access to the words
 259     //=========================================================================
 260 
 261     /**
 262      * Uses the column map to map the character to a column number, then
 263      * passes the row and column number to getNextState()
 264      * @param row The current state
 265      * @param ch The character whose column we're interested in
 266      * @return The new state to transition to
 267      */
 268     public final short getNextStateFromCharacter(int row, int ch) {
 269         int col;
 270         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
 271             col = columnMap.elementAt((char)ch);
 272         } else {
 273             col = supplementaryCharColumnMap.getValue(ch);
 274         }
 275         return getNextState(row, col);
 276     }
 277 
 278     /**
 279      * Returns the value in the cell with the specified (logical) row and
 280      * column numbers.  In DictionaryBasedBreakIterator, the row number is
 281      * a state number, the column number is an input, and the return value
 282      * is the row number of the new state to transition to.  (0 is the
 283      * "error" state, and -1 is the "end of word" state in a dictionary)
 284      * @param row The row number of the current state
 285      * @param col The column number of the input character (0 means "not a
 286      * dictionary character")
 287      * @return The row number of the new state to transition to
 288      */
 289     public final short getNextState(int row, int col) {
 290         if (cellIsPopulated(row, col)) {
 291             // we map from logical to physical row number by looking up the
 292             // mapping in rowIndex; we map from logical column number to
 293             // physical column number by looking up a shift value for this
 294             // logical row and offsetting the logical column number by
 295             // the shift amount.  Then we can use internalAt() to actually
 296             // get the value out of the table.
 297             return internalAt(rowIndex[row], col + rowIndexShifts[row]);
 298         }
 299         else {
 300             return 0;
 301         }
 302     }
 303 
 304     /**
 305      * Given (logical) row and column numbers, returns true if the
 306      * cell in that position is populated
 307      */
 308     private final boolean cellIsPopulated(int row, int col) {
 309         // look up the entry in the bitmap index for the specified row.
 310         // If it's a negative number, it's the column number of the only
 311         // populated cell in the row
 312         if (rowIndexFlagsIndex[row] < 0) {
 313             return col == -rowIndexFlagsIndex[row];
 314         }
 315 
 316         // if it's a positive number, it's the offset of an entry in the bitmap
 317         // list.  If the table is more than 32 columns wide, the bitmap is stored
 318         // successive entries in the bitmap list, so we have to divide the column
 319         // number by 32 and offset the number we got out of the index by the result.
 320         // Once we have the appropriate piece of the bitmap, test the appropriate
 321         // bit and return the result.
 322         else {
 323             int flags = rowIndexFlags[rowIndexFlagsIndex[row] + (col >> 5)];
 324             return (flags & (1 << (col & 0x1f))) != 0;
 325         }
 326     }
 327 
 328     /**
 329      * Implementation of getNextState() when we know the specified cell is
 330      * populated.
 331      * @param row The PHYSICAL row number of the cell
 332      * @param col The PHYSICAL column number of the cell
 333      * @return The value stored in the cell
 334      */
 335     private final short internalAt(int row, int col) {
 336         // the table is a one-dimensional array, so this just does the math necessary
 337         // to treat it as a two-dimensional array (we don't just use a two-dimensional
 338         // array because two-dimensional arrays are inefficient in Java)
 339         return table[row * numCols + col];
 340     }
 341 }