1 /*
   2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 /*
  27  *
  28  * (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved
  29  * (C) Copyright IBM Corp. 1996 - 2002 - All Rights Reserved
  30  *
  31  * The original version of this source code and documentation
  32  * is copyrighted and owned by Taligent, Inc., a wholly-owned
  33  * subsidiary of IBM. These materials are provided under terms
  34  * of a License Agreement between Taligent and Sun. This technology
  35  * is protected by multiple US and International patents.
  36  *
  37  * This notice and attribution to Taligent may not be removed.
  38  * Taligent is a registered trademark of Taligent, Inc.
  39  */
  40 package sun.util.locale.provider;
  41 
  42 import java.io.BufferedInputStream;
  43 import java.io.IOException;
  44 import java.security.AccessController;
  45 import java.security.PrivilegedActionException;
  46 import java.security.PrivilegedExceptionAction;
  47 import java.util.MissingResourceException;
  48 import sun.text.CompactByteArray;
  49 import sun.text.SupplementaryCharacterData;
  50 
  51 /**
  52  * This is the class that represents the list of known words used by
  53  * DictionaryBasedBreakIterator.  The conceptual data structure used
  54  * here is a trie: there is a node hanging off the root node for every
  55  * letter that can start a word.  Each of these nodes has a node hanging
  56  * off of it for every letter that can be the second letter of a word
  57  * if this node is the first letter, and so on.  The trie is represented
  58  * as a two-dimensional array that can be treated as a table of state
  59  * transitions.  Indexes are used to compress this array, taking
  60  * advantage of the fact that this array will always be very sparse.
  61  */
  62 class BreakDictionary {
  63 
  64     //=========================================================================
  65     // data members
  66     //=========================================================================
  67 
  68     /**
  69       * The version of the dictionary that was read in.
  70       */
  71     private static int supportedVersion = 1;
  72 
  73     /**
  74      * Maps from characters to column numbers.  The main use of this is to
  75      * avoid making room in the array for empty columns.
  76      */
  77     private CompactByteArray columnMap = null;
  78     private SupplementaryCharacterData supplementaryCharColumnMap = null;
  79 
  80     /**
  81      * The number of actual columns in the table
  82      */
  83     private int numCols;
  84 
  85     /**
  86      * Columns are organized into groups of 32.  This says how many
  87      * column groups.  (We could calculate this, but we store the
  88      * value to avoid having to repeatedly calculate it.)
  89      */
  90     private int numColGroups;
  91 
  92     /**
  93      * The actual compressed state table.  Each conceptual row represents
  94      * a state, and the cells in it contain the row numbers of the states
  95      * to transition to for each possible letter.  0 is used to indicate
  96      * an illegal combination of letters (i.e., the error state).  The
  97      * table is compressed by eliminating all the unpopulated (i.e., zero)
  98      * cells.  Multiple conceptual rows can then be doubled up in a single
  99      * physical row by sliding them up and possibly shifting them to one
 100      * side or the other so the populated cells don't collide.  Indexes
 101      * are used to identify unpopulated cells and to locate populated cells.
 102      */
 103     private short[] table = null;
 104 
 105     /**
 106      * This index maps logical row numbers to physical row numbers
 107      */
 108     private short[] rowIndex = null;
 109 
 110     /**
 111      * A bitmap is used to tell which cells in the comceptual table are
 112      * populated.  This array contains all the unique bit combinations
 113      * in that bitmap.  If the table is more than 32 columns wide,
 114      * successive entries in this array are used for a single row.
 115      */
 116     private int[] rowIndexFlags = null;
 117 
 118     /**
 119      * This index maps from a logical row number into the bitmap table above.
 120      * (This keeps us from storing duplicate bitmap combinations.)  Since there
 121      * are a lot of rows with only one populated cell, instead of wasting space
 122      * in the bitmap table, we just store a negative number in this index for
 123      * rows with one populated cell.  The absolute value of that number is
 124      * the column number of the populated cell.
 125      */
 126     private short[] rowIndexFlagsIndex = null;
 127 
 128     /**
 129      * For each logical row, this index contains a constant that is added to
 130      * the logical column number to get the physical column number
 131      */
 132     private byte[] rowIndexShifts = null;
 133 
 134     //=========================================================================
 135     // deserialization
 136     //=========================================================================
 137 
 138     BreakDictionary(String dictionaryName)
 139         throws IOException, MissingResourceException {
 140 
 141         readDictionaryFile(dictionaryName);
 142     }
 143 
 144     private void readDictionaryFile(final String dictionaryName)
 145         throws IOException, MissingResourceException {
 146 
 147         BufferedInputStream in;
 148         try {
 149             in = AccessController.doPrivileged(
 150                 new PrivilegedExceptionAction<BufferedInputStream>() {
 151                     @Override
 152                     public BufferedInputStream run() throws Exception {
 153                         return new BufferedInputStream(getClass().getResourceAsStream("/sun/text/resources/" + dictionaryName));
 154                     }
 155                 }
 156             );
 157         }
 158         catch (PrivilegedActionException e) {
 159             throw new InternalError(e.toString(), e);
 160         }
 161 
 162         byte[] buf = new byte[8];
 163         if (in.read(buf) != 8) {
 164             throw new MissingResourceException("Wrong data length",
 165                                                dictionaryName, "");
 166         }
 167 
 168         // check version
 169         int version = RuleBasedBreakIterator.getInt(buf, 0);
 170         if (version != supportedVersion) {
 171             throw new MissingResourceException("Dictionary version(" + version + ") is unsupported",
 172                                                            dictionaryName, "");
 173         }
 174 
 175         // get data size
 176         int len = RuleBasedBreakIterator.getInt(buf, 4);
 177         buf = new byte[len];
 178         if (in.read(buf) != len) {
 179             throw new MissingResourceException("Wrong data length",
 180                                                dictionaryName, "");
 181         }
 182 
 183         // close the stream
 184         in.close();
 185 
 186         int l;
 187         int offset = 0;
 188 
 189         // read in the column map for BMP characteres (this is serialized in
 190         // its internal form: an index array followed by a data array)
 191         l = RuleBasedBreakIterator.getInt(buf, offset);
 192         offset += 4;
 193         short[] temp = new short[l];
 194         for (int i = 0; i < l; i++, offset+=2) {
 195             temp[i] = RuleBasedBreakIterator.getShort(buf, offset);
 196         }
 197         l = RuleBasedBreakIterator.getInt(buf, offset);
 198         offset += 4;
 199         byte[] temp2 = new byte[l];
 200         for (int i = 0; i < l; i++, offset++) {
 201             temp2[i] = buf[offset];
 202         }
 203         columnMap = new CompactByteArray(temp, temp2);
 204 
 205         // read in numCols and numColGroups
 206         numCols = RuleBasedBreakIterator.getInt(buf, offset);
 207         offset += 4;
 208         numColGroups = RuleBasedBreakIterator.getInt(buf, offset);
 209         offset += 4;
 210 
 211         // read in the row-number index
 212         l = RuleBasedBreakIterator.getInt(buf, offset);
 213         offset += 4;
 214         rowIndex = new short[l];
 215         for (int i = 0; i < l; i++, offset+=2) {
 216             rowIndex[i] = RuleBasedBreakIterator.getShort(buf, offset);
 217         }
 218 
 219         // load in the populated-cells bitmap: index first, then bitmap list
 220         l = RuleBasedBreakIterator.getInt(buf, offset);
 221         offset += 4;
 222         rowIndexFlagsIndex = new short[l];
 223         for (int i = 0; i < l; i++, offset+=2) {
 224             rowIndexFlagsIndex[i] = RuleBasedBreakIterator.getShort(buf, offset);
 225         }
 226         l = RuleBasedBreakIterator.getInt(buf, offset);
 227         offset += 4;
 228         rowIndexFlags = new int[l];
 229         for (int i = 0; i < l; i++, offset+=4) {
 230             rowIndexFlags[i] = RuleBasedBreakIterator.getInt(buf, offset);
 231         }
 232 
 233         // load in the row-shift index
 234         l = RuleBasedBreakIterator.getInt(buf, offset);
 235         offset += 4;
 236         rowIndexShifts = new byte[l];
 237         for (int i = 0; i < l; i++, offset++) {
 238             rowIndexShifts[i] = buf[offset];
 239         }
 240 
 241         // load in the actual state table
 242         l = RuleBasedBreakIterator.getInt(buf, offset);
 243         offset += 4;
 244         table = new short[l];
 245         for (int i = 0; i < l; i++, offset+=2) {
 246             table[i] = RuleBasedBreakIterator.getShort(buf, offset);
 247         }
 248 
 249         // finally, prepare the column map for supplementary characters
 250         l = RuleBasedBreakIterator.getInt(buf, offset);
 251         offset += 4;
 252         int[] temp3 = new int[l];
 253         for (int i = 0; i < l; i++, offset+=4) {
 254             temp3[i] = RuleBasedBreakIterator.getInt(buf, offset);
 255         }
 256         supplementaryCharColumnMap = new SupplementaryCharacterData(temp3);
 257     }
 258 
 259     //=========================================================================
 260     // access to the words
 261     //=========================================================================
 262 
 263     /**
 264      * Uses the column map to map the character to a column number, then
 265      * passes the row and column number to getNextState()
 266      * @param row The current state
 267      * @param ch The character whose column we're interested in
 268      * @return The new state to transition to
 269      */
 270     public final short getNextStateFromCharacter(int row, int ch) {
 271         int col;
 272         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
 273             col = columnMap.elementAt((char)ch);
 274         } else {
 275             col = supplementaryCharColumnMap.getValue(ch);
 276         }
 277         return getNextState(row, col);
 278     }
 279 
 280     /**
 281      * Returns the value in the cell with the specified (logical) row and
 282      * column numbers.  In DictionaryBasedBreakIterator, the row number is
 283      * a state number, the column number is an input, and the return value
 284      * is the row number of the new state to transition to.  (0 is the
 285      * "error" state, and -1 is the "end of word" state in a dictionary)
 286      * @param row The row number of the current state
 287      * @param col The column number of the input character (0 means "not a
 288      * dictionary character")
 289      * @return The row number of the new state to transition to
 290      */
 291     public final short getNextState(int row, int col) {
 292         if (cellIsPopulated(row, col)) {
 293             // we map from logical to physical row number by looking up the
 294             // mapping in rowIndex; we map from logical column number to
 295             // physical column number by looking up a shift value for this
 296             // logical row and offsetting the logical column number by
 297             // the shift amount.  Then we can use internalAt() to actually
 298             // get the value out of the table.
 299             return internalAt(rowIndex[row], col + rowIndexShifts[row]);
 300         }
 301         else {
 302             return 0;
 303         }
 304     }
 305 
 306     /**
 307      * Given (logical) row and column numbers, returns true if the
 308      * cell in that position is populated
 309      */
 310     private boolean cellIsPopulated(int row, int col) {
 311         // look up the entry in the bitmap index for the specified row.
 312         // If it's a negative number, it's the column number of the only
 313         // populated cell in the row
 314         if (rowIndexFlagsIndex[row] < 0) {
 315             return col == -rowIndexFlagsIndex[row];
 316         }
 317 
 318         // if it's a positive number, it's the offset of an entry in the bitmap
 319         // list.  If the table is more than 32 columns wide, the bitmap is stored
 320         // successive entries in the bitmap list, so we have to divide the column
 321         // number by 32 and offset the number we got out of the index by the result.
 322         // Once we have the appropriate piece of the bitmap, test the appropriate
 323         // bit and return the result.
 324         else {
 325             int flags = rowIndexFlags[rowIndexFlagsIndex[row] + (col >> 5)];
 326             return (flags & (1 << (col & 0x1f))) != 0;
 327         }
 328     }
 329 
 330     /**
 331      * Implementation of getNextState() when we know the specified cell is
 332      * populated.
 333      * @param row The PHYSICAL row number of the cell
 334      * @param col The PHYSICAL column number of the cell
 335      * @return The value stored in the cell
 336      */
 337     private short internalAt(int row, int col) {
 338         // the table is a one-dimensional array, so this just does the math necessary
 339         // to treat it as a two-dimensional array (we don't just use a two-dimensional
 340         // array because two-dimensional arrays are inefficient in Java)
 341         return table[row * numCols + col];
 342     }
 343 }