1 /*
   2  * Copyright (c) 2018, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 package java.text;
  26 
  27 import java.io.IOException;
  28 import java.io.InvalidObjectException;
  29 import java.io.ObjectInputStream;
  30 import java.math.BigDecimal;
  31 import java.math.BigInteger;
  32 import java.math.RoundingMode;
  33 import java.util.ArrayList;
  34 import java.util.Arrays;
  35 import java.util.HashMap;
  36 import java.util.List;
  37 import java.util.Locale;
  38 import java.util.Map;
  39 import java.util.Objects;
  40 import java.util.concurrent.atomic.AtomicInteger;
  41 import java.util.concurrent.atomic.AtomicLong;
  42 import java.util.regex.Matcher;
  43 import java.util.regex.Pattern;
  44 import java.util.stream.Collectors;
  45 
  46 
  47 /**
  48  * <p>
  49  * {@code CompactNumberFormat} is a concrete subclass of {@code NumberFormat}
  50  * that formats a decimal number in its compact form.
  51  *
  52  * The compact number formatting is designed for the environment where the space
  53  * is limited, and the formatted string can be displayed in that limited space.
  54  * It is defined by LDML's specification for
  55  * <a href = "http://unicode.org/reports/tr35/tr35-numbers.html#Compact_Number_Formats">
  56  * Compact Number Formats</a>. A compact number formatting refers
  57  * to the representation of a number in a shorter form, based on the patterns
  58  * provided for a given locale.
  59  *
  60  * <p>
  61  * For example:
  62  * <br>In the {@link java.util.Locale#US US locale}, {@code 1000} can be formatted
  63  * as {@code "1K"}, and {@code 1000000} as {@code "1M"}, depending upon the
  64  * <a href = "#compact_number_style" >style</a> used.
  65  * <br>In the {@code "hi_IN"} locale, {@code 1000} can be formatted as
  66  * "1 \u0939\u091C\u093C\u093E\u0930", and {@code 50000000} as "5 \u0915.",
  67  * depending upon the <a href = "#compact_number_style" >style</a> used.
  68  *
  69  * <p>
  70  * To obtain a {@code CompactNumberFormat} for a locale, use one
  71  * of the factory methods given by {@code NumberFormat} for compact number
  72  * formatting. For example,
  73  * {@link NumberFormat#getCompactNumberInstance(Locale, Style)}.
  74  *
  75  * <blockquote><pre>
  76  * NumberFormat fmt = NumberFormat.getCompactNumberInstance(
  77  *                             new Locale("hi", "IN"), NumberFormat.Style.SHORT);
  78  * String result = fmt.format(1000);
  79  * </pre></blockquote>
  80  *
  81  * <h2><a id="compact_number_style">Style</a></h2>
  82  * <p>
  83  * A number can be formatted in the compact forms with two different
  84  * styles, {@link NumberFormat.Style#SHORT SHORT}
  85  * and {@link NumberFormat.Style#LONG LONG}. Use
  86  * {@link NumberFormat#getCompactNumberInstance(Locale, Style)} for formatting and
  87  * parsing a number in {@link NumberFormat.Style#SHORT SHORT} or
  88  * {@link NumberFormat.Style#LONG LONG} compact form,
  89  * where the given {@code Style} parameter requests the desired
  90  * format. A {@link NumberFormat.Style#SHORT SHORT} style
  91  * compact number instance in the {@link java.util.Locale#US US locale} formats
  92  * {@code 10000} as {@code "10K"}. However, a
  93  * {@link NumberFormat.Style#LONG LONG} style instance in same locale
  94  * formats {@code 10000} as {@code "10 thousand"}.
  95  *
  96  * <h2><a id="compact_number_patterns">Compact Number Patterns</a></h2>
  97  * <p>
  98  * The compact number patterns are represented in a series of patterns where each
  99  * pattern is used to format a range of numbers. An example of
 100  * {@link NumberFormat.Style#SHORT SHORT} styled compact number patterns
 101  * for the {@link java.util.Locale#US US locale} is {@code {"", "", "", "0K",
 102  * "00K", "000K", "0M", "00M", "000M", "0B", "00B", "000B", "0T", "00T", "000T"}},
 103  * ranging from {@code 10}<sup>{@code 0}</sup> to {@code 10}<sup>{@code 14}</sup>.
 104  * There can be any number of patterns and they are
 105  * strictly index based starting from the range {@code 10}<sup>{@code 0}</sup>.
 106  * For example, in the above patterns, pattern at index 3
 107  * ({@code "0K"}) is used for formatting {@code number >= 1000 and number < 10000},
 108  * pattern at index 4 ({@code "00K"}) is used for formatting
 109  * {@code number >= 10000 and number < 100000} and so on. In most of the locales,
 110  * patterns with the range
 111  * {@code 10}<sup>{@code 0}</sup>-{@code 10}<sup>{@code 2}</sup> are empty
 112  * strings, which implicitly means a special pattern {@code "0"}.
 113  * A special pattern {@code "0"} is used for any range which does not contain
 114  * a compact pattern. This special pattern can appear explicitly for any specific
 115  * range, or considered as a default pattern for an empty string.
 116  *
 117  * <p>
 118  * A compact pattern contains a positive and negative subpattern
 119  * separated by a subpattern boundary character {@code ';' (U+003B)},
 120  * for example, {@code "0K;-0K"}. Each subpattern has a prefix,
 121  * minimum integer digits, and suffix. The negative subpattern
 122  * is optional, if absent, then the positive subpattern prefixed with the
 123  * minus sign ({@code '-' U+002D HYPHEN-MINUS}) is used as the negative
 124  * subpattern. That is, {@code "0K"} alone is equivalent to {@code "0K;-0K"}.
 125  * If there is an explicit negative subpattern, it serves only to specify
 126  * the negative prefix and suffix. The number of minimum integer digits,
 127  * and other characteristics are all the same as the positive pattern.
 128  * That means that {@code "0K;-00K"} produces precisely the same behavior
 129  * as {@code "0K;-0K"}.
 130  *
 131  * <p>
 132  * Many characters in a compact pattern are taken literally, they are matched
 133  * during parsing and output unchanged during formatting.
 134  * <a href = "DecimalFormat.html#special_pattern_character">Special characters</a>,
 135  * on the other hand, stand for other characters, strings, or classes of
 136  * characters. They must be quoted, using single quote {@code ' (U+0027)}
 137  * unless noted otherwise, if they are to appear in the prefix or suffix
 138  * as literals. For example, 0\u0915'.'.
 139  *
 140  * <h3>Plurals</h3>
 141  * <p>
 142  * In case some localization requires compact number patterns to be different for
 143  * plurals, each singular and plural pattern can be enumerated within a pair of
 144  * curly brackets <code>'{' (U+007B)</code> and <code>'}' (U+007D)</code>, separated
 145  * by a space {@code ' ' (U+0020)}. If this format is used, each pattern needs to be
 146  * prepended by its {@code count}, followed by a single colon {@code ':' (U+003A)}.
 147  * If the pattern includes spaces literally, they must be quoted.
 148  * <p>
 149  * For example, the compact number pattern representing millions in German locale can be
 150  * specified as {@code "{one:0' 'Million other:0' 'Millionen}"}. The {@code count}
 151  * follows LDML's
 152  * <a href="https://unicode.org/reports/tr35/tr35-numbers.html#Language_Plural_Rules">
 153  * Language Plural Rules</a>.
 154  * <p>
 155  * A compact pattern has the following syntax:
 156  * <blockquote><pre>
 157  * <i>Pattern:</i>
 158  *         <i>SimplePattern</i>
 159  *         '{' <i>PluralPattern</i> <i>[' ' PluralPattern]<sub>optional</sub></i> '}'
 160  * <i>SimplePattern:</i>
 161  *         <i>PositivePattern</i>
 162  *         <i>PositivePattern</i> <i>[; NegativePattern]<sub>optional</sub></i>
 163  * <i>PluralPattern:</i>
 164  *         <i>Count</i>:<i>SimplePattern</i>
 165  * <i>Count:</i>
 166  *         "zero" / "one" / "two" / "few" / "many" / "other"
 167  * <i>PositivePattern:</i>
 168  *         <i>Prefix<sub>optional</sub></i> <i>MinimumInteger</i> <i>Suffix<sub>optional</sub></i>
 169  * <i>NegativePattern:</i>
 170  *        <i>Prefix<sub>optional</sub></i> <i>MinimumInteger</i> <i>Suffix<sub>optional</sub></i>
 171  * <i>Prefix:</i>
 172  *      Any Unicode characters except \uFFFE, \uFFFF, and
 173  *      <a href = "DecimalFormat.html#special_pattern_character">special characters</a>.
 174  * <i>Suffix:</i>
 175  *      Any Unicode characters except \uFFFE, \uFFFF, and
 176  *      <a href = "DecimalFormat.html#special_pattern_character">special characters</a>.
 177  * <i>MinimumInteger:</i>
 178  *      0
 179  *      0 <i>MinimumInteger</i>
 180  * </pre></blockquote>
 181  *
 182  * <h2>Formatting</h2>
 183  * The default formatting behavior returns a formatted string with no fractional
 184  * digits, however users can use the {@link #setMinimumFractionDigits(int)}
 185  * method to include the fractional part.
 186  * The number {@code 1000.0} or {@code 1000} is formatted as {@code "1K"}
 187  * not {@code "1.00K"} (in the {@link java.util.Locale#US US locale}). For this
 188  * reason, the patterns provided for formatting contain only the minimum
 189  * integer digits, prefix and/or suffix, but no fractional part.
 190  * For example, patterns used are {@code {"", "", "", 0K, 00K, ...}}. If the pattern
 191  * selected for formatting a number is {@code "0"} (special pattern),
 192  * either explicit or defaulted, then the general number formatting provided by
 193  * {@link java.text.DecimalFormat DecimalFormat}
 194  * for the specified locale is used.
 195  *
 196  * <h2>Parsing</h2>
 197  * The default parsing behavior does not allow a grouping separator until
 198  * grouping used is set to {@code true} by using
 199  * {@link #setGroupingUsed(boolean)}. The parsing of the fractional part
 200  * depends on the {@link #isParseIntegerOnly()}. For example, if the
 201  * parse integer only is set to true, then the fractional part is skipped.
 202  *
 203  * <h2>Rounding</h2>
 204  * {@code CompactNumberFormat} provides rounding modes defined in
 205  * {@link java.math.RoundingMode} for formatting.  By default, it uses
 206  * {@link java.math.RoundingMode#HALF_EVEN RoundingMode.HALF_EVEN}.
 207  *
 208  * @see NumberFormat.Style
 209  * @see NumberFormat
 210  * @see DecimalFormat
 211  * @since 12
 212  */
 213 public final class CompactNumberFormat extends NumberFormat {
 214 
 215     @java.io.Serial
 216     private static final long serialVersionUID = 7128367218649234678L;
 217 
 218     /**
 219      * The patterns for compact form of numbers for this
 220      * {@code CompactNumberFormat}. A possible example is
 221      * {@code {"", "", "", "0K", "00K", "000K", "0M", "00M", "000M", "0B",
 222      * "00B", "000B", "0T", "00T", "000T"}} ranging from
 223      * {@code 10}<sup>{@code 0}</sup>-{@code 10}<sup>{@code 14}</sup>,
 224      * where each pattern is used to format a range of numbers.
 225      * For example, {@code "0K"} is used for formatting
 226      * {@code number >= 1000 and number < 10000}, {@code "00K"} is used for
 227      * formatting {@code number >= 10000 and number < 100000} and so on.
 228      * This field must not be {@code null}.
 229      *
 230      * @serial
 231      */
 232     private String[] compactPatterns;
 233 
 234     /**
 235      * List of positive prefix patterns of this formatter's
 236      * compact number patterns.
 237      */
 238     private transient List<Patterns> positivePrefixPatterns;
 239 
 240     /**
 241      * List of negative prefix patterns of this formatter's
 242      * compact number patterns.
 243      */
 244     private transient List<Patterns> negativePrefixPatterns;
 245 
 246     /**
 247      * List of positive suffix patterns of this formatter's
 248      * compact number patterns.
 249      */
 250     private transient List<Patterns> positiveSuffixPatterns;
 251 
 252     /**
 253      * List of negative suffix patterns of this formatter's
 254      * compact number patterns.
 255      */
 256     private transient List<Patterns> negativeSuffixPatterns;
 257 
 258     /**
 259      * List of divisors of this formatter's compact number patterns.
 260      * Divisor can be either Long or BigInteger (if the divisor value goes
 261      * beyond long boundary)
 262      */
 263     private transient List<Number> divisors;
 264 
 265     /**
 266      * The {@code DecimalFormatSymbols} object used by this format.
 267      * It contains the symbols used to format numbers. For example,
 268      * the grouping separator, decimal separator, and so on.
 269      * This field must not be {@code null}.
 270      *
 271      * @serial
 272      * @see DecimalFormatSymbols
 273      */
 274     private DecimalFormatSymbols symbols;
 275 
 276     /**
 277      * The decimal pattern which is used for formatting the numbers
 278      * matching special pattern "0". This field must not be {@code null}.
 279      *
 280      * @serial
 281      * @see DecimalFormat
 282      */
 283     private final String decimalPattern;
 284 
 285     /**
 286      * A {@code DecimalFormat} used by this format for getting corresponding
 287      * general number formatting behavior for compact numbers.
 288      *
 289      */
 290     private transient DecimalFormat decimalFormat;
 291 
 292     /**
 293      * A {@code DecimalFormat} used by this format for getting general number
 294      * formatting behavior for the numbers which can't be represented as compact
 295      * numbers. For example, number matching the special pattern "0" are
 296      * formatted through general number format pattern provided by
 297      * {@link java.text.DecimalFormat DecimalFormat}
 298      * for the specified locale.
 299      *
 300      */
 301     private transient DecimalFormat defaultDecimalFormat;
 302 
 303     /**
 304      * The number of digits between grouping separators in the integer portion
 305      * of a compact number. For the grouping to work while formatting, this
 306      * field needs to be greater than 0 with grouping used set as true.
 307      * This field must not be negative.
 308      *
 309      * @serial
 310      */
 311     private byte groupingSize = 0;
 312 
 313     /**
 314      * Returns whether the {@link #parse(String, ParsePosition)}
 315      * method returns {@code BigDecimal}.
 316      *
 317      * @serial
 318      */
 319     private boolean parseBigDecimal = false;
 320 
 321     /**
 322      * The {@code RoundingMode} used in this compact number format.
 323      * This field must not be {@code null}.
 324      *
 325      * @serial
 326      */
 327     private RoundingMode roundingMode = RoundingMode.HALF_EVEN;
 328 
 329     /**
 330      * The {@code pluralRules} used in this compact number format.
 331      * {@code pluralRules} is a String designating plural rules which associate
 332      * the {@code Count} keyword, such as "{@code one}", and the
 333      * actual integer number. Its syntax is defined in Unicode Consortium's
 334      * <a href = "http://unicode.org/reports/tr35/tr35-numbers.html#Plural_rules_syntax">
 335      * Plural rules syntax</a>.
 336      * The default value is an empty string, meaning there is no plural rules.
 337      *
 338      * @serial
 339      * @since 14
 340      */
 341     private String pluralRules = "";
 342 
 343     /**
 344      * The map for plural rules that maps LDML defined tags (e.g. "one") to
 345      * its rule.
 346      */
 347     private transient Map<String, String> rulesMap;
 348 
 349     /**
 350      * Special pattern used for compact numbers
 351      */
 352     private static final String SPECIAL_PATTERN = "0";
 353 
 354     /**
 355      * Multiplier for compact pattern range. In
 356      * the list compact patterns each compact pattern
 357      * specify the range with the multiplication factor of 10
 358      * of its previous compact pattern range.
 359      * For example, 10^0, 10^1, 10^2, 10^3, 10^4...
 360      *
 361      */
 362     private static final int RANGE_MULTIPLIER = 10;
 363 
 364     /**
 365      * Creates a {@code CompactNumberFormat} using the given decimal pattern,
 366      * decimal format symbols and compact patterns.
 367      * To obtain the instance of {@code CompactNumberFormat} with the standard
 368      * compact patterns for a {@code Locale} and {@code Style},
 369      * it is recommended to use the factory methods given by
 370      * {@code NumberFormat} for compact number formatting. For example,
 371      * {@link NumberFormat#getCompactNumberInstance(Locale, Style)}.
 372      *
 373      * @param decimalPattern a decimal pattern for general number formatting
 374      * @param symbols the set of symbols to be used
 375      * @param compactPatterns an array of
 376      *        <a href = "CompactNumberFormat.html#compact_number_patterns">
 377      *        compact number patterns</a>
 378      * @throws NullPointerException if any of the given arguments is
 379      *       {@code null}
 380      * @throws IllegalArgumentException if the given {@code decimalPattern} or the
 381      *       {@code compactPatterns} array contains an invalid pattern
 382      *       or if a {@code null} appears in the array of compact
 383      *       patterns
 384      * @see DecimalFormat#DecimalFormat(java.lang.String, DecimalFormatSymbols)
 385      * @see DecimalFormatSymbols
 386      */
 387     public CompactNumberFormat(String decimalPattern,
 388                                DecimalFormatSymbols symbols, String[] compactPatterns) {
 389         this(decimalPattern, symbols, compactPatterns, "");
 390     }
 391 
 392     /**
 393      * Creates a {@code CompactNumberFormat} using the given decimal pattern,
 394      * decimal format symbols, compact patterns, and plural rules.
 395      * To obtain the instance of {@code CompactNumberFormat} with the standard
 396      * compact patterns for a {@code Locale}, {@code Style}, and {@code pluralRules},
 397      * it is recommended to use the factory methods given by
 398      * {@code NumberFormat} for compact number formatting. For example,
 399      * {@link NumberFormat#getCompactNumberInstance(Locale, Style)}.
 400      *
 401      * @param decimalPattern a decimal pattern for general number formatting
 402      * @param symbols the set of symbols to be used
 403      * @param compactPatterns an array of
 404      *        <a href = "CompactNumberFormat.html#compact_number_patterns">
 405      *        compact number patterns</a>
 406      * @param pluralRules a String designating plural rules which associate
 407      *        the {@code Count} keyword, such as "{@code one}", and the
 408      *        actual integer number. Its syntax is defined in Unicode Consortium's
 409      *        <a href = "http://unicode.org/reports/tr35/tr35-numbers.html#Plural_rules_syntax">
 410      *        Plural rules syntax</a>
 411      * @throws NullPointerException if any of the given arguments is
 412      *        {@code null}
 413      * @throws IllegalArgumentException if the given {@code decimalPattern},
 414      *        the {@code compactPatterns} array contains an invalid pattern,
 415      *        a {@code null} appears in the array of compact patterns,
 416      *        or if the given {@code pluralRules} contains an invalid syntax
 417      * @see DecimalFormat#DecimalFormat(java.lang.String, DecimalFormatSymbols)
 418      * @see DecimalFormatSymbols
 419      * @since 14
 420      */
 421     public CompactNumberFormat(String decimalPattern,
 422             DecimalFormatSymbols symbols, String[] compactPatterns,
 423             String pluralRules) {
 424 
 425         Objects.requireNonNull(decimalPattern, "decimalPattern");
 426         Objects.requireNonNull(symbols, "symbols");
 427         Objects.requireNonNull(compactPatterns, "compactPatterns");
 428         Objects.requireNonNull(pluralRules, "pluralRules");
 429 
 430         this.symbols = symbols;
 431         // Instantiating the DecimalFormat with "0" pattern; this acts just as a
 432         // basic pattern; the properties (For example, prefix/suffix)
 433         // are later computed based on the compact number formatting process.
 434         decimalFormat = new DecimalFormat(SPECIAL_PATTERN, this.symbols);
 435 
 436         // Initializing the super class state with the decimalFormat values
 437         // to represent this CompactNumberFormat.
 438         // For setting the digits counts, use overridden setXXX methods of this
 439         // CompactNumberFormat, as it performs check with the max range allowed
 440         // for compact number formatting
 441         setMaximumIntegerDigits(decimalFormat.getMaximumIntegerDigits());
 442         setMinimumIntegerDigits(decimalFormat.getMinimumIntegerDigits());
 443         setMaximumFractionDigits(decimalFormat.getMaximumFractionDigits());
 444         setMinimumFractionDigits(decimalFormat.getMinimumFractionDigits());
 445 
 446         super.setGroupingUsed(decimalFormat.isGroupingUsed());
 447         super.setParseIntegerOnly(decimalFormat.isParseIntegerOnly());
 448 
 449         this.compactPatterns = compactPatterns;
 450 
 451         // DecimalFormat used for formatting numbers with special pattern "0".
 452         // Formatting is delegated to the DecimalFormat's number formatting
 453         // with no fraction digits
 454         this.decimalPattern = decimalPattern;
 455         defaultDecimalFormat = new DecimalFormat(this.decimalPattern,
 456                 this.symbols);
 457         defaultDecimalFormat.setMaximumFractionDigits(0);
 458 
 459         this.pluralRules = pluralRules;
 460 
 461         // Process compact patterns to extract the prefixes, suffixes and
 462         // divisors
 463         processCompactPatterns();
 464     }
 465 
 466     /**
 467      * Formats a number to produce a string representing its compact form.
 468      * The number can be of any subclass of {@link java.lang.Number}.
 469      * @param number     the number to format
 470      * @param toAppendTo the {@code StringBuffer} to which the formatted
 471      *                   text is to be appended
 472      * @param fieldPosition    keeps track on the position of the field within
 473      *                         the returned string. For example, for formatting
 474      *                         a number {@code 123456789} in the
 475      *                         {@link java.util.Locale#US US locale},
 476      *                         if the given {@code fieldPosition} is
 477      *                         {@link NumberFormat#INTEGER_FIELD}, the begin
 478      *                         index and end index of {@code fieldPosition}
 479      *                         will be set to 0 and 3, respectively for the
 480      *                         output string {@code 123M}. Similarly, positions
 481      *                         of the prefix and the suffix fields can be
 482      *                         obtained using {@link NumberFormat.Field#PREFIX}
 483      *                         and {@link NumberFormat.Field#SUFFIX} respectively.
 484      * @return           the {@code StringBuffer} passed in as {@code toAppendTo}
 485      * @throws           IllegalArgumentException if {@code number} is
 486      *                   {@code null} or not an instance of {@code Number}
 487      * @throws           NullPointerException if {@code toAppendTo} or
 488      *                   {@code fieldPosition} is {@code null}
 489      * @throws           ArithmeticException if rounding is needed with rounding
 490      *                   mode being set to {@code RoundingMode.UNNECESSARY}
 491      * @see              FieldPosition
 492      */
 493     @Override
 494     public final StringBuffer format(Object number,
 495             StringBuffer toAppendTo,
 496             FieldPosition fieldPosition) {
 497 
 498         if (number == null) {
 499             throw new IllegalArgumentException("Cannot format null as a number");
 500         }
 501 
 502         if (number instanceof Long || number instanceof Integer
 503                 || number instanceof Short || number instanceof Byte
 504                 || number instanceof AtomicInteger
 505                 || number instanceof AtomicLong
 506                 || (number instanceof BigInteger
 507                 && ((BigInteger) number).bitLength() < 64)) {
 508             return format(((Number) number).longValue(), toAppendTo,
 509                     fieldPosition);
 510         } else if (number instanceof BigDecimal) {
 511             return format((BigDecimal) number, toAppendTo, fieldPosition);
 512         } else if (number instanceof BigInteger) {
 513             return format((BigInteger) number, toAppendTo, fieldPosition);
 514         } else if (number instanceof Number) {
 515             return format(((Number) number).doubleValue(), toAppendTo, fieldPosition);
 516         } else {
 517             throw new IllegalArgumentException("Cannot format "
 518                     + number.getClass().getName() + " as a number");
 519         }
 520     }
 521 
 522     /**
 523      * Formats a double to produce a string representing its compact form.
 524      * @param number    the double number to format
 525      * @param result    where the text is to be appended
 526      * @param fieldPosition    keeps track on the position of the field within
 527      *                         the returned string. For example, to format
 528      *                         a number {@code 1234567.89} in the
 529      *                         {@link java.util.Locale#US US locale}
 530      *                         if the given {@code fieldPosition} is
 531      *                         {@link NumberFormat#INTEGER_FIELD}, the begin
 532      *                         index and end index of {@code fieldPosition}
 533      *                         will be set to 0 and 1, respectively for the
 534      *                         output string {@code 1M}. Similarly, positions
 535      *                         of the prefix and the suffix fields can be
 536      *                         obtained using {@link NumberFormat.Field#PREFIX}
 537      *                         and {@link NumberFormat.Field#SUFFIX} respectively.
 538      * @return    the {@code StringBuffer} passed in as {@code result}
 539      * @throws NullPointerException if {@code result} or
 540      *            {@code fieldPosition} is {@code null}
 541      * @throws ArithmeticException if rounding is needed with rounding
 542      *            mode being set to {@code RoundingMode.UNNECESSARY}
 543      * @see FieldPosition
 544      */
 545     @Override
 546     public StringBuffer format(double number, StringBuffer result,
 547             FieldPosition fieldPosition) {
 548 
 549         fieldPosition.setBeginIndex(0);
 550         fieldPosition.setEndIndex(0);
 551         return format(number, result, fieldPosition.getFieldDelegate());
 552     }
 553 
 554     private StringBuffer format(double number, StringBuffer result,
 555             FieldDelegate delegate) {
 556 
 557         boolean nanOrInfinity = decimalFormat.handleNaN(number, result, delegate);
 558         if (nanOrInfinity) {
 559             return result;
 560         }
 561 
 562         boolean isNegative = ((number < 0.0)
 563                 || (number == 0.0 && 1 / number < 0.0));
 564 
 565         nanOrInfinity = decimalFormat.handleInfinity(number, result, delegate, isNegative);
 566         if (nanOrInfinity) {
 567             return result;
 568         }
 569 
 570         // Round the double value with min fraction digits, the integer
 571         // part of the rounded value is used for matching the compact
 572         // number pattern
 573         // For example, if roundingMode is HALF_UP with min fraction
 574         // digits = 0, the number 999.6 should round up
 575         // to 1000 and outputs 1K/thousand in "en_US" locale
 576         DigitList dList = new DigitList();
 577         dList.setRoundingMode(getRoundingMode());
 578         number = isNegative ? -number : number;
 579         dList.set(isNegative, number, getMinimumFractionDigits());
 580 
 581         double roundedNumber = dList.getDouble();
 582         int compactDataIndex = selectCompactPattern((long) roundedNumber);
 583         if (compactDataIndex != -1) {
 584             long divisor = (Long) divisors.get(compactDataIndex);
 585             int iPart = getIntegerPart(number, divisor);
 586             String prefix = getAffix(false, true, isNegative, compactDataIndex, iPart);
 587             String suffix = getAffix(false, false, isNegative, compactDataIndex, iPart);
 588 
 589             if (!prefix.isEmpty() || !suffix.isEmpty()) {
 590                 appendPrefix(result, prefix, delegate);
 591                 if (divisor > 0) {
 592                     roundedNumber = roundedNumber / divisor;
 593                     decimalFormat.setDigitList(roundedNumber, isNegative, getMaximumFractionDigits());
 594                     decimalFormat.subformatNumber(result, delegate, isNegative,
 595                             false, getMaximumIntegerDigits(), getMinimumIntegerDigits(),
 596                             getMaximumFractionDigits(), getMinimumFractionDigits());
 597                     appendSuffix(result, suffix, delegate);
 598                 }
 599             } else {
 600                 defaultDecimalFormat.doubleSubformat(number, result, delegate, isNegative);
 601             }
 602         } else {
 603             defaultDecimalFormat.doubleSubformat(number, result, delegate, isNegative);
 604         }
 605         return result;
 606     }
 607 
 608     /**
 609      * Formats a long to produce a string representing its compact form.
 610      * @param number    the long number to format
 611      * @param result    where the text is to be appended
 612      * @param fieldPosition    keeps track on the position of the field within
 613      *                         the returned string. For example, to format
 614      *                         a number {@code 123456789} in the
 615      *                         {@link java.util.Locale#US US locale},
 616      *                         if the given {@code fieldPosition} is
 617      *                         {@link NumberFormat#INTEGER_FIELD}, the begin
 618      *                         index and end index of {@code fieldPosition}
 619      *                         will be set to 0 and 3, respectively for the
 620      *                         output string {@code 123M}. Similarly, positions
 621      *                         of the prefix and the suffix fields can be
 622      *                         obtained using {@link NumberFormat.Field#PREFIX}
 623      *                         and {@link NumberFormat.Field#SUFFIX} respectively.
 624      * @return       the {@code StringBuffer} passed in as {@code result}
 625      * @throws       NullPointerException if {@code result} or
 626      *               {@code fieldPosition} is {@code null}
 627      * @throws       ArithmeticException if rounding is needed with rounding
 628      *               mode being set to {@code RoundingMode.UNNECESSARY}
 629      * @see FieldPosition
 630      */
 631     @Override
 632     public StringBuffer format(long number, StringBuffer result,
 633             FieldPosition fieldPosition) {
 634 
 635         fieldPosition.setBeginIndex(0);
 636         fieldPosition.setEndIndex(0);
 637         return format(number, result, fieldPosition.getFieldDelegate());
 638     }
 639 
 640     private StringBuffer format(long number, StringBuffer result, FieldDelegate delegate) {
 641         boolean isNegative = (number < 0);
 642         if (isNegative) {
 643             number = -number;
 644         }
 645 
 646         if (number < 0) { // LONG_MIN
 647             BigInteger bigIntegerValue = BigInteger.valueOf(number);
 648             return format(bigIntegerValue, result, delegate, true);
 649         }
 650 
 651         int compactDataIndex = selectCompactPattern(number);
 652         if (compactDataIndex != -1) {
 653             long divisor = (Long) divisors.get(compactDataIndex);
 654             int iPart = getIntegerPart(number, divisor);
 655             String prefix = getAffix(false, true, isNegative, compactDataIndex, iPart);
 656             String suffix = getAffix(false, false, isNegative, compactDataIndex, iPart);
 657             if (!prefix.isEmpty() || !suffix.isEmpty()) {
 658                 appendPrefix(result, prefix, delegate);
 659                 if (divisor > 0) {
 660                     if ((number % divisor == 0)) {
 661                         number = number / divisor;
 662                         decimalFormat.setDigitList(number, isNegative, 0);
 663                         decimalFormat.subformatNumber(result, delegate,
 664                                 isNegative, true, getMaximumIntegerDigits(),
 665                                 getMinimumIntegerDigits(), getMaximumFractionDigits(),
 666                                 getMinimumFractionDigits());
 667                     } else {
 668                         // To avoid truncation of fractional part store
 669                         // the value in double and follow double path instead of
 670                         // long path
 671                         double dNumber = (double) number / divisor;
 672                         decimalFormat.setDigitList(dNumber, isNegative, getMaximumFractionDigits());
 673                         decimalFormat.subformatNumber(result, delegate,
 674                                 isNegative, false, getMaximumIntegerDigits(),
 675                                 getMinimumIntegerDigits(), getMaximumFractionDigits(),
 676                                 getMinimumFractionDigits());
 677                     }
 678                     appendSuffix(result, suffix, delegate);
 679                 }
 680             } else {
 681                 number = isNegative ? -number : number;
 682                 defaultDecimalFormat.format(number, result, delegate);
 683             }
 684         } else {
 685             number = isNegative ? -number : number;
 686             defaultDecimalFormat.format(number, result, delegate);
 687         }
 688         return result;
 689     }
 690 
 691     /**
 692      * Formats a BigDecimal to produce a string representing its compact form.
 693      * @param number    the BigDecimal number to format
 694      * @param result    where the text is to be appended
 695      * @param fieldPosition    keeps track on the position of the field within
 696      *                         the returned string. For example, to format
 697      *                         a number {@code 1234567.89} in the
 698      *                         {@link java.util.Locale#US US locale},
 699      *                         if the given {@code fieldPosition} is
 700      *                         {@link NumberFormat#INTEGER_FIELD}, the begin
 701      *                         index and end index of {@code fieldPosition}
 702      *                         will be set to 0 and 1, respectively for the
 703      *                         output string {@code 1M}. Similarly, positions
 704      *                         of the prefix and the suffix fields can be
 705      *                         obtained using {@link NumberFormat.Field#PREFIX}
 706      *                         and {@link NumberFormat.Field#SUFFIX} respectively.
 707      * @return        the {@code StringBuffer} passed in as {@code result}
 708      * @throws        ArithmeticException if rounding is needed with rounding
 709      *                mode being set to {@code RoundingMode.UNNECESSARY}
 710      * @throws        NullPointerException if any of the given parameter
 711      *                is {@code null}
 712      * @see FieldPosition
 713      */
 714     private StringBuffer format(BigDecimal number, StringBuffer result,
 715             FieldPosition fieldPosition) {
 716 
 717         Objects.requireNonNull(number);
 718         fieldPosition.setBeginIndex(0);
 719         fieldPosition.setEndIndex(0);
 720         return format(number, result, fieldPosition.getFieldDelegate());
 721     }
 722 
 723     private StringBuffer format(BigDecimal number, StringBuffer result,
 724             FieldDelegate delegate) {
 725 
 726         boolean isNegative = number.signum() == -1;
 727         if (isNegative) {
 728             number = number.negate();
 729         }
 730 
 731         // Round the value with min fraction digits, the integer
 732         // part of the rounded value is used for matching the compact
 733         // number pattern
 734         // For example, If roundingMode is HALF_UP with min fraction digits = 0,
 735         // the number 999.6 should round up
 736         // to 1000 and outputs 1K/thousand in "en_US" locale
 737         number = number.setScale(getMinimumFractionDigits(), getRoundingMode());
 738 
 739         int compactDataIndex;
 740         if (number.toBigInteger().bitLength() < 64) {
 741             long longNumber = number.toBigInteger().longValue();
 742             compactDataIndex = selectCompactPattern(longNumber);
 743         } else {
 744             compactDataIndex = selectCompactPattern(number.toBigInteger());
 745         }
 746 
 747         if (compactDataIndex != -1) {
 748             Number divisor = divisors.get(compactDataIndex);
 749             int iPart = getIntegerPart(number.doubleValue(), divisor.doubleValue());
 750             String prefix = getAffix(false, true, isNegative, compactDataIndex, iPart);
 751             String suffix = getAffix(false, false, isNegative, compactDataIndex, iPart);
 752             if (!prefix.isEmpty() || !suffix.isEmpty()) {
 753                 appendPrefix(result, prefix, delegate);
 754                 if (divisor.doubleValue() > 0) {
 755                     number = number.divide(new BigDecimal(divisor.toString()), getRoundingMode());
 756                     decimalFormat.setDigitList(number, isNegative, getMaximumFractionDigits());
 757                     decimalFormat.subformatNumber(result, delegate, isNegative,
 758                             false, getMaximumIntegerDigits(), getMinimumIntegerDigits(),
 759                             getMaximumFractionDigits(), getMinimumFractionDigits());
 760                     appendSuffix(result, suffix, delegate);
 761                 }
 762             } else {
 763                 number = isNegative ? number.negate() : number;
 764                 defaultDecimalFormat.format(number, result, delegate);
 765             }
 766         } else {
 767             number = isNegative ? number.negate() : number;
 768             defaultDecimalFormat.format(number, result, delegate);
 769         }
 770         return result;
 771     }
 772 
 773     /**
 774      * Formats a BigInteger to produce a string representing its compact form.
 775      * @param number    the BigInteger number to format
 776      * @param result    where the text is to be appended
 777      * @param fieldPosition    keeps track on the position of the field within
 778      *                         the returned string. For example, to format
 779      *                         a number {@code 123456789} in the
 780      *                         {@link java.util.Locale#US US locale},
 781      *                         if the given {@code fieldPosition} is
 782      *                         {@link NumberFormat#INTEGER_FIELD}, the begin index
 783      *                         and end index of {@code fieldPosition} will be set
 784      *                         to 0 and 3, respectively for the output string
 785      *                         {@code 123M}. Similarly, positions of the
 786      *                         prefix and the suffix fields can be obtained
 787      *                         using {@link NumberFormat.Field#PREFIX} and
 788      *                         {@link NumberFormat.Field#SUFFIX} respectively.
 789      * @return        the {@code StringBuffer} passed in as {@code result}
 790      * @throws        ArithmeticException if rounding is needed with rounding
 791      *                mode being set to {@code RoundingMode.UNNECESSARY}
 792      * @throws        NullPointerException if any of the given parameter
 793      *                is {@code null}
 794      * @see FieldPosition
 795      */
 796     private StringBuffer format(BigInteger number, StringBuffer result,
 797             FieldPosition fieldPosition) {
 798 
 799         Objects.requireNonNull(number);
 800         fieldPosition.setBeginIndex(0);
 801         fieldPosition.setEndIndex(0);
 802         return format(number, result, fieldPosition.getFieldDelegate(), false);
 803     }
 804 
 805     private StringBuffer format(BigInteger number, StringBuffer result,
 806             FieldDelegate delegate, boolean formatLong) {
 807 
 808         boolean isNegative = number.signum() == -1;
 809         if (isNegative) {
 810             number = number.negate();
 811         }
 812 
 813         int compactDataIndex = selectCompactPattern(number);
 814         if (compactDataIndex != -1) {
 815             Number divisor = divisors.get(compactDataIndex);
 816             int iPart = getIntegerPart(number.doubleValue(), divisor.doubleValue());
 817             String prefix = getAffix(false, true, isNegative, compactDataIndex, iPart);
 818             String suffix = getAffix(false, false, isNegative, compactDataIndex, iPart);
 819             if (!prefix.isEmpty() || !suffix.isEmpty()) {
 820                 appendPrefix(result, prefix, delegate);
 821                 if (divisor.doubleValue() > 0) {
 822                     if (number.mod(new BigInteger(divisor.toString()))
 823                             .compareTo(BigInteger.ZERO) == 0) {
 824                         number = number.divide(new BigInteger(divisor.toString()));
 825 
 826                         decimalFormat.setDigitList(number, isNegative, 0);
 827                         decimalFormat.subformatNumber(result, delegate,
 828                                 isNegative, true, getMaximumIntegerDigits(),
 829                                 getMinimumIntegerDigits(), getMaximumFractionDigits(),
 830                                 getMinimumFractionDigits());
 831                     } else {
 832                         // To avoid truncation of fractional part store the value in
 833                         // BigDecimal and follow BigDecimal path instead of
 834                         // BigInteger path
 835                         BigDecimal nDecimal = new BigDecimal(number)
 836                                 .divide(new BigDecimal(divisor.toString()), getRoundingMode());
 837                         decimalFormat.setDigitList(nDecimal, isNegative, getMaximumFractionDigits());
 838                         decimalFormat.subformatNumber(result, delegate,
 839                                 isNegative, false, getMaximumIntegerDigits(),
 840                                 getMinimumIntegerDigits(), getMaximumFractionDigits(),
 841                                 getMinimumFractionDigits());
 842                     }
 843                     appendSuffix(result, suffix, delegate);
 844                 }
 845             } else {
 846                 number = isNegative ? number.negate() : number;
 847                 defaultDecimalFormat.format(number, result, delegate, formatLong);
 848             }
 849         } else {
 850             number = isNegative ? number.negate() : number;
 851             defaultDecimalFormat.format(number, result, delegate, formatLong);
 852         }
 853         return result;
 854     }
 855 
 856     /**
 857      * Obtain the designated affix from the appropriate list of affixes,
 858      * based on the given arguments.
 859      */
 860     private String getAffix(boolean isExpanded, boolean isPrefix, boolean isNegative, int compactDataIndex, int iPart) {
 861         return (isExpanded ? (isPrefix ? (isNegative ? negativePrefixes : positivePrefixes) :
 862                                          (isNegative ? negativeSuffixes : positiveSuffixes)) :
 863                              (isPrefix ? (isNegative ? negativePrefixPatterns : positivePrefixPatterns) :
 864                                          (isNegative ? negativeSuffixPatterns : positiveSuffixPatterns)))
 865                 .get(compactDataIndex).get(iPart);
 866     }
 867 
 868     /**
 869      * Appends the {@code prefix} to the {@code result} and also set the
 870      * {@code NumberFormat.Field.SIGN} and {@code NumberFormat.Field.PREFIX}
 871      * field positions.
 872      * @param result the resulting string, where the pefix is to be appended
 873      * @param prefix prefix to append
 874      * @param delegate notified of the locations of
 875      *                 {@code NumberFormat.Field.SIGN} and
 876      *                 {@code NumberFormat.Field.PREFIX} fields
 877      */
 878     private void appendPrefix(StringBuffer result, String prefix,
 879             FieldDelegate delegate) {
 880         append(result, expandAffix(prefix), delegate,
 881                 getFieldPositions(prefix, NumberFormat.Field.PREFIX));
 882     }
 883 
 884     /**
 885      * Appends {@code suffix} to the {@code result} and also set the
 886      * {@code NumberFormat.Field.SIGN} and {@code NumberFormat.Field.SUFFIX}
 887      * field positions.
 888      * @param result the resulting string, where the suffix is to be appended
 889      * @param suffix suffix to append
 890      * @param delegate notified of the locations of
 891      *                 {@code NumberFormat.Field.SIGN} and
 892      *                 {@code NumberFormat.Field.SUFFIX} fields
 893      */
 894     private void appendSuffix(StringBuffer result, String suffix,
 895             FieldDelegate delegate) {
 896         append(result, expandAffix(suffix), delegate,
 897                 getFieldPositions(suffix, NumberFormat.Field.SUFFIX));
 898     }
 899 
 900     /**
 901      * Appends the {@code string} to the {@code result}.
 902      * {@code delegate} is notified of SIGN, PREFIX and/or SUFFIX
 903      * field positions.
 904      * @param result the resulting string, where the text is to be appended
 905      * @param string the text to append
 906      * @param delegate notified of the locations of sub fields
 907      * @param positions a list of {@code FieldPostion} in the given
 908      *                  string
 909      */
 910     private void append(StringBuffer result, String string,
 911             FieldDelegate delegate, List<FieldPosition> positions) {
 912         if (!string.isEmpty()) {
 913             int start = result.length();
 914             result.append(string);
 915             for (FieldPosition fp : positions) {
 916                 Format.Field attribute = fp.getFieldAttribute();
 917                 delegate.formatted(attribute, attribute,
 918                         start + fp.getBeginIndex(),
 919                         start + fp.getEndIndex(), result);
 920             }
 921         }
 922     }
 923 
 924     /**
 925      * Expands an affix {@code pattern} into a string of literals.
 926      * All characters in the pattern are literals unless prefixed by QUOTE.
 927      * The character prefixed by QUOTE is replaced with its respective
 928      * localized literal.
 929      * @param pattern a compact number pattern affix
 930      * @return an expanded affix
 931      */
 932     private String expandAffix(String pattern) {
 933         // Return if no quoted character exists
 934         if (pattern.indexOf(QUOTE) < 0) {
 935             return pattern;
 936         }
 937         StringBuilder sb = new StringBuilder();
 938         for (int index = 0; index < pattern.length();) {
 939             char ch = pattern.charAt(index++);
 940             if (ch == QUOTE) {
 941                 ch = pattern.charAt(index++);
 942                 if (ch == MINUS_SIGN) {
 943                     sb.append(symbols.getMinusSignText());
 944                     continue;
 945                 }
 946             }
 947             sb.append(ch);
 948         }
 949         return sb.toString();
 950     }
 951 
 952     /**
 953      * Returns a list of {@code FieldPostion} in the given {@code pattern}.
 954      * @param pattern the pattern to be parsed for {@code FieldPosition}
 955      * @param field whether a PREFIX or SUFFIX field
 956      * @return a list of {@code FieldPostion}
 957      */
 958     private List<FieldPosition> getFieldPositions(String pattern, Field field) {
 959         List<FieldPosition> positions = new ArrayList<>();
 960         StringBuilder affix = new StringBuilder();
 961         int stringIndex = 0;
 962         for (int index = 0; index < pattern.length();) {
 963             char ch = pattern.charAt(index++);
 964             if (ch == QUOTE) {
 965                 ch = pattern.charAt(index++);
 966                 if (ch == MINUS_SIGN) {
 967                     String minusText = symbols.getMinusSignText();
 968                     FieldPosition fp = new FieldPosition(NumberFormat.Field.SIGN);
 969                     fp.setBeginIndex(stringIndex);
 970                     fp.setEndIndex(stringIndex + minusText.length());
 971                     positions.add(fp);
 972                     stringIndex += minusText.length();
 973                     affix.append(minusText);
 974                     continue;
 975                 }
 976             }
 977             stringIndex++;
 978             affix.append(ch);
 979         }
 980         if (affix.length() != 0) {
 981             FieldPosition fp = new FieldPosition(field);
 982             fp.setBeginIndex(0);
 983             fp.setEndIndex(affix.length());
 984             positions.add(fp);
 985         }
 986         return positions;
 987     }
 988 
 989     /**
 990      * Select the index of the matched compact number pattern for
 991      * the given {@code long} {@code number}.
 992      *
 993      * @param number number to be formatted
 994      * @return index of matched compact pattern;
 995      *         -1 if no compact patterns specified
 996      */
 997     private int selectCompactPattern(long number) {
 998 
 999         if (compactPatterns.length == 0) {
1000             return -1;
1001         }
1002 
1003         // Minimum index can be "0", max index can be "size - 1"
1004         int dataIndex = number <= 1 ? 0 : (int) Math.log10(number);
1005         dataIndex = Math.min(dataIndex, compactPatterns.length - 1);
1006         return dataIndex;
1007     }
1008 
1009     /**
1010      * Select the index of the matched compact number
1011      * pattern for the given {@code BigInteger} {@code number}.
1012      *
1013      * @param number number to be formatted
1014      * @return index of matched compact pattern;
1015      *         -1 if no compact patterns specified
1016      */
1017     private int selectCompactPattern(BigInteger number) {
1018 
1019         int matchedIndex = -1;
1020         if (compactPatterns.length == 0) {
1021             return matchedIndex;
1022         }
1023 
1024         BigInteger currentValue = BigInteger.ONE;
1025 
1026         // For formatting a number, the greatest type less than
1027         // or equal to number is used
1028         for (int index = 0; index < compactPatterns.length; index++) {
1029             if (number.compareTo(currentValue) > 0) {
1030                 // Input number is greater than current type; try matching with
1031                 // the next
1032                 matchedIndex = index;
1033                 currentValue = currentValue.multiply(BigInteger.valueOf(RANGE_MULTIPLIER));
1034                 continue;
1035             }
1036             if (number.compareTo(currentValue) < 0) {
1037                 // Current type is greater than the input number;
1038                 // take the previous pattern
1039                 break;
1040             } else {
1041                 // Equal
1042                 matchedIndex = index;
1043                 break;
1044             }
1045         }
1046         return matchedIndex;
1047     }
1048 
1049     /**
1050      * Formats an Object producing an {@code AttributedCharacterIterator}.
1051      * The returned {@code AttributedCharacterIterator} can be used
1052      * to build the resulting string, as well as to determine information
1053      * about the resulting string.
1054      * <p>
1055      * Each attribute key of the {@code AttributedCharacterIterator} will
1056      * be of type {@code NumberFormat.Field}, with the attribute value
1057      * being the same as the attribute key. The prefix and the suffix
1058      * parts of the returned iterator (if present) are represented by
1059      * the attributes {@link NumberFormat.Field#PREFIX} and
1060      * {@link NumberFormat.Field#SUFFIX} respectively.
1061      *
1062      *
1063      * @throws NullPointerException if obj is null
1064      * @throws IllegalArgumentException when the Format cannot format the
1065      *         given object
1066      * @throws ArithmeticException if rounding is needed with rounding
1067      *         mode being set to {@code RoundingMode.UNNECESSARY}
1068      * @param obj The object to format
1069      * @return an {@code AttributedCharacterIterator} describing the
1070      *         formatted value
1071      */
1072     @Override
1073     public AttributedCharacterIterator formatToCharacterIterator(Object obj) {
1074         CharacterIteratorFieldDelegate delegate
1075                 = new CharacterIteratorFieldDelegate();
1076         StringBuffer sb = new StringBuffer();
1077 
1078         if (obj instanceof Double || obj instanceof Float) {
1079             format(((Number) obj).doubleValue(), sb, delegate);
1080         } else if (obj instanceof Long || obj instanceof Integer
1081                 || obj instanceof Short || obj instanceof Byte
1082                 || obj instanceof AtomicInteger || obj instanceof AtomicLong) {
1083             format(((Number) obj).longValue(), sb, delegate);
1084         } else if (obj instanceof BigDecimal) {
1085             format((BigDecimal) obj, sb, delegate);
1086         } else if (obj instanceof BigInteger) {
1087             format((BigInteger) obj, sb, delegate, false);
1088         } else if (obj == null) {
1089             throw new NullPointerException(
1090                     "formatToCharacterIterator must be passed non-null object");
1091         } else {
1092             throw new IllegalArgumentException(
1093                     "Cannot format given Object as a Number");
1094         }
1095         return delegate.getIterator(sb.toString());
1096     }
1097 
1098     /**
1099      * Computes the divisor using minimum integer digits and
1100      * matched pattern index. If minIntDigits is empty, the divisor
1101      * will be negated.
1102      * @param minIntDigits string of 0s in compact pattern
1103      * @param patternIndex index of matched compact pattern
1104      * @return divisor value for the number matching the compact
1105      *         pattern at given {@code patternIndex}
1106      */
1107     private Number computeDivisor(String minIntDigits, int patternIndex) {
1108         int count = minIntDigits.length();
1109         Number matchedValue;
1110         // The divisor value can go above long range, if the compact patterns
1111         // goes above index 18, divisor may need to be stored as BigInteger,
1112         // since long can't store numbers >= 10^19,
1113         if (patternIndex < 19) {
1114             matchedValue = (long) Math.pow(RANGE_MULTIPLIER, patternIndex);
1115         } else {
1116             matchedValue = BigInteger.valueOf(RANGE_MULTIPLIER).pow(patternIndex);
1117         }
1118         Number divisor = matchedValue;
1119         if (count > 0) {
1120             if (matchedValue instanceof BigInteger) {
1121                 BigInteger bigValue = (BigInteger) matchedValue;
1122                 if (bigValue.compareTo(BigInteger.valueOf((long) Math.pow(RANGE_MULTIPLIER, count - 1))) < 0) {
1123                     throw new IllegalArgumentException("Invalid Pattern"
1124                             + " [" + compactPatterns[patternIndex]
1125                             + "]: min integer digits specified exceeds the limit"
1126                             + " for the index " + patternIndex);
1127                 }
1128                 divisor = bigValue.divide(BigInteger.valueOf((long) Math.pow(RANGE_MULTIPLIER, count - 1)));
1129             } else {
1130                 long longValue = (long) matchedValue;
1131                 if (longValue < (long) Math.pow(RANGE_MULTIPLIER, count - 1)) {
1132                     throw new IllegalArgumentException("Invalid Pattern"
1133                             + " [" + compactPatterns[patternIndex]
1134                             + "]: min integer digits specified exceeds the limit"
1135                             + " for the index " + patternIndex);
1136                 }
1137                 divisor = longValue / (long) Math.pow(RANGE_MULTIPLIER, count - 1);
1138             }
1139         } else {
1140             // no '0's. Indicate it by negating the divisor
1141             if (divisor instanceof BigInteger) {
1142                 divisor = ((BigInteger) divisor).negate();
1143             } else {
1144                 divisor = - divisor.longValue();
1145             }
1146         }
1147         return divisor;
1148     }
1149 
1150     /**
1151      * Process the series of compact patterns to compute the
1152      * series of prefixes, suffixes and their respective divisor
1153      * value.
1154      *
1155      */
1156     private static final Pattern PLURALS =
1157             Pattern.compile("^\\{(?<plurals>.*)}$");
1158     private static final Pattern COUNT_PATTERN =
1159             Pattern.compile("(zero|one|two|few|many|other):((' '|[^ ])+)[ ]*");
1160     private void processCompactPatterns() {
1161         int size = compactPatterns.length;
1162         positivePrefixPatterns = new ArrayList<>(size);
1163         negativePrefixPatterns = new ArrayList<>(size);
1164         positiveSuffixPatterns = new ArrayList<>(size);
1165         negativeSuffixPatterns = new ArrayList<>(size);
1166         divisors = new ArrayList<>(size);
1167 
1168         for (int index = 0; index < size; index++) {
1169             String text = compactPatterns[index];
1170             positivePrefixPatterns.add(new Patterns());
1171             negativePrefixPatterns.add(new Patterns());
1172             positiveSuffixPatterns.add(new Patterns());
1173             negativeSuffixPatterns.add(new Patterns());
1174 
1175             // check if it is the old style
1176             Matcher m = text != null ? PLURALS.matcher(text) : null;
1177             if (m != null && m.matches()) {
1178                 final int idx = index;
1179                 String plurals = m.group("plurals");
1180                 COUNT_PATTERN.matcher(plurals).results()
1181                         .forEach(mr -> applyPattern(mr.group(1), mr.group(2), idx));
1182             } else {
1183                 applyPattern("other", text, index);
1184             }
1185         }
1186 
1187         rulesMap = buildPluralRulesMap();
1188     }
1189 
1190     /**
1191      * Build the plural rules map.
1192      *
1193      * @throws IllegalArgumentException if the {@code pluralRules} has invalid syntax,
1194      *      or its length exceeds 2,048 chars
1195      */
1196     private Map<String, String> buildPluralRulesMap() {
1197         // length limitation check. 2K for now.
1198         if (pluralRules.length() > 2_048) {
1199             throw new IllegalArgumentException("plural rules is too long (> 2,048)");
1200         }
1201 
1202         try {
1203             return Arrays.stream(pluralRules.split(";"))
1204                 .map(this::validateRule)
1205                 .collect(Collectors.toMap(
1206                         r -> r.replaceFirst(":.*", ""),
1207                         r -> r.replaceFirst("[^:]+:", "")
1208                 ));
1209         } catch (IllegalStateException ise) {
1210             throw new IllegalArgumentException(ise);
1211         }
1212     }
1213 
1214     // Patterns for plurals syntax validation
1215     private final static String EXPR = "([niftvw])\\s*(([/%])\\s*(\\d+))*";
1216     private final static String RELATION = "(!?=)";
1217     private final static String VALUE_RANGE = "((\\d+)\\.\\.(\\d+)|\\d+)";
1218     private final static String CONDITION = EXPR + "\\s*" +
1219                                              RELATION + "\\s*" +
1220                                              VALUE_RANGE + "\\s*" +
1221                                              "(,\\s*" + VALUE_RANGE + ")*";
1222     private final static Pattern PLURALRULES_PATTERN =
1223             Pattern.compile("(zero|one|two|few|many):\\s*" +
1224                             CONDITION +
1225                             "(\\s*(and|or)\\s*" + CONDITION + ")*");
1226 
1227     /**
1228      * Validates a plural rule.
1229      * @param rule rule to validate
1230      * @throws IllegalArgumentException if the {@code rule} has invalid syntax
1231      * @return the input rule (trimmed)
1232      */
1233     private String validateRule(String rule) {
1234         rule = rule.trim();
1235         if (!rule.isEmpty() && !rule.equals("other:")) {
1236             Matcher validator = PLURALRULES_PATTERN.matcher(rule);
1237             if (!validator.matches()) {
1238                 throw new IllegalArgumentException("Invalid plural rules syntax: " + rule);
1239             }
1240         }
1241 
1242         return rule;
1243     }
1244 
1245     /**
1246      * Process a compact pattern at a specific {@code index}
1247      * @param pattern the compact pattern to be processed
1248      * @param index index in the array of compact patterns
1249      *
1250      */
1251     private void applyPattern(String count, String pattern, int index) {
1252 
1253         if (pattern == null) {
1254             throw new IllegalArgumentException("A null compact pattern" +
1255                     " encountered at index: " + index);
1256         }
1257 
1258         int start = 0;
1259         boolean gotNegative = false;
1260 
1261         String positivePrefix = "";
1262         String positiveSuffix = "";
1263         String negativePrefix = "";
1264         String negativeSuffix = "";
1265         String zeros = "";
1266         for (int j = 1; j >= 0 && start < pattern.length(); --j) {
1267 
1268             StringBuffer prefix = new StringBuffer();
1269             StringBuffer suffix = new StringBuffer();
1270             boolean inQuote = false;
1271             // The phase ranges from 0 to 2.  Phase 0 is the prefix.  Phase 1 is
1272             // the section of the pattern with digits. Phase 2 is the suffix.
1273             // The separation of the characters into phases is
1274             // strictly enforced; if phase 1 characters are to appear in the
1275             // suffix, for example, they must be quoted.
1276             int phase = 0;
1277 
1278             // The affix is either the prefix or the suffix.
1279             StringBuffer affix = prefix;
1280 
1281             for (int pos = start; pos < pattern.length(); ++pos) {
1282                 char ch = pattern.charAt(pos);
1283                 switch (phase) {
1284                     case 0:
1285                     case 2:
1286                         // Process the prefix / suffix characters
1287                         if (inQuote) {
1288                             // A quote within quotes indicates either the closing
1289                             // quote or two quotes, which is a quote literal. That
1290                             // is, we have the second quote in 'do' or 'don''t'.
1291                             if (ch == QUOTE) {
1292                                 if ((pos + 1) < pattern.length()
1293                                         && pattern.charAt(pos + 1) == QUOTE) {
1294                                     ++pos;
1295                                     affix.append("''"); // 'don''t'
1296                                 } else {
1297                                     inQuote = false; // 'do'
1298                                 }
1299                                 continue;
1300                             }
1301                         } else {
1302                             // Process unquoted characters seen in prefix or suffix
1303                             // phase.
1304                             switch (ch) {
1305                                 case ZERO_DIGIT:
1306                                     phase = 1;
1307                                     --pos; // Reprocess this character
1308                                     continue;
1309                                 case QUOTE:
1310                                     // A quote outside quotes indicates either the
1311                                     // opening quote or two quotes, which is a quote
1312                                     // literal. That is, we have the first quote in 'do'
1313                                     // or o''clock.
1314                                     if ((pos + 1) < pattern.length()
1315                                             && pattern.charAt(pos + 1) == QUOTE) {
1316                                         ++pos;
1317                                         affix.append("''"); // o''clock
1318                                     } else {
1319                                         inQuote = true; // 'do'
1320                                     }
1321                                     continue;
1322                                 case SEPARATOR:
1323                                     // Don't allow separators before we see digit
1324                                     // characters of phase 1, and don't allow separators
1325                                     // in the second pattern (j == 0).
1326                                     if (phase == 0 || j == 0) {
1327                                         throw new IllegalArgumentException(
1328                                                 "Unquoted special character '"
1329                                                 + ch + "' in pattern \"" + pattern + "\"");
1330                                     }
1331                                     start = pos + 1;
1332                                     pos = pattern.length();
1333                                     continue;
1334                                 case MINUS_SIGN:
1335                                     affix.append("'-");
1336                                     continue;
1337                                 case DECIMAL_SEPARATOR:
1338                                 case GROUPING_SEPARATOR:
1339                                 case DIGIT:
1340                                 case PERCENT:
1341                                 case PER_MILLE:
1342                                 case CURRENCY_SIGN:
1343                                     throw new IllegalArgumentException(
1344                                             "Unquoted special character '" + ch
1345                                             + "' in pattern \"" + pattern + "\"");
1346                                 default:
1347                                     break;
1348                             }
1349                         }
1350                         // Note that if we are within quotes, or if this is an
1351                         // unquoted, non-special character, then we usually fall
1352                         // through to here.
1353                         affix.append(ch);
1354                         break;
1355 
1356                     case 1:
1357                         // The negative subpattern (j = 0) serves only to specify the
1358                         // negative prefix and suffix, so all the phase 1 characters,
1359                         // for example, digits, zeroDigit, groupingSeparator,
1360                         // decimalSeparator, exponent are ignored
1361                         if (j == 0) {
1362                             while (pos < pattern.length()) {
1363                                 char negPatternChar = pattern.charAt(pos);
1364                                 if (negPatternChar == ZERO_DIGIT) {
1365                                     ++pos;
1366                                 } else {
1367                                     // Not a phase 1 character, consider it as
1368                                     // suffix and parse it in phase 2
1369                                     --pos; //process it again in outer loop
1370                                     phase = 2;
1371                                     affix = suffix;
1372                                     break;
1373                                 }
1374                             }
1375                             continue;
1376                         }
1377                         // Consider only '0' as valid pattern char which can appear
1378                         // in number part, rest can be either suffix or prefix
1379                         if (ch == ZERO_DIGIT) {
1380                             zeros = zeros + "0";
1381                         } else {
1382                             phase = 2;
1383                             affix = suffix;
1384                             --pos;
1385                         }
1386                         break;
1387                 }
1388             }
1389 
1390             if (inQuote) {
1391                 throw new IllegalArgumentException("Invalid single quote"
1392                         + " in pattern \"" + pattern + "\"");
1393             }
1394 
1395             if (j == 1) {
1396                 positivePrefix = prefix.toString();
1397                 positiveSuffix = suffix.toString();
1398                 negativePrefix = positivePrefix;
1399                 negativeSuffix = positiveSuffix;
1400             } else {
1401                 negativePrefix = prefix.toString();
1402                 negativeSuffix = suffix.toString();
1403                 gotNegative = true;
1404             }
1405 
1406             // If there is no negative pattern, or if the negative pattern is
1407             // identical to the positive pattern, then prepend the minus sign to
1408             // the positive pattern to form the negative pattern.
1409             if (!gotNegative
1410                     || (negativePrefix.equals(positivePrefix)
1411                     && negativeSuffix.equals(positiveSuffix))) {
1412                 negativeSuffix = positiveSuffix;
1413                 negativePrefix = "'-" + positivePrefix;
1414             }
1415         }
1416 
1417         // Only if positive affix exists; else put empty strings
1418         if (!positivePrefix.isEmpty() || !positiveSuffix.isEmpty()) {
1419             positivePrefixPatterns.get(index).put(count, positivePrefix);
1420             negativePrefixPatterns.get(index).put(count, negativePrefix);
1421             positiveSuffixPatterns.get(index).put(count, positiveSuffix);
1422             negativeSuffixPatterns.get(index).put(count, negativeSuffix);
1423             if (divisors.size() <= index) {
1424                 divisors.add(computeDivisor(zeros, index));
1425             }
1426         } else {
1427             positivePrefixPatterns.get(index).put(count, "");
1428             negativePrefixPatterns.get(index).put(count, "");
1429             positiveSuffixPatterns.get(index).put(count, "");
1430             negativeSuffixPatterns.get(index).put(count, "");
1431             if (divisors.size() <= index) {
1432                 divisors.add(1L);
1433             }
1434         }
1435     }
1436 
1437     private final transient DigitList digitList = new DigitList();
1438     private static final int STATUS_INFINITE = 0;
1439     private static final int STATUS_POSITIVE = 1;
1440     private static final int STATUS_LENGTH   = 2;
1441 
1442     private static final char ZERO_DIGIT = '0';
1443     private static final char DIGIT = '#';
1444     private static final char DECIMAL_SEPARATOR = '.';
1445     private static final char GROUPING_SEPARATOR = ',';
1446     private static final char MINUS_SIGN = '-';
1447     private static final char PERCENT = '%';
1448     private static final char PER_MILLE = '\u2030';
1449     private static final char SEPARATOR = ';';
1450     private static final char CURRENCY_SIGN = '\u00A4';
1451     private static final char QUOTE = '\'';
1452 
1453     // Expanded form of positive/negative prefix/suffix,
1454     // the expanded form contains special characters in
1455     // its localized form, which are used for matching
1456     // while parsing a string to number
1457     private transient List<Patterns> positivePrefixes;
1458     private transient List<Patterns> negativePrefixes;
1459     private transient List<Patterns> positiveSuffixes;
1460     private transient List<Patterns> negativeSuffixes;
1461 
1462     private void expandAffixPatterns() {
1463         positivePrefixes = new ArrayList<>(compactPatterns.length);
1464         negativePrefixes = new ArrayList<>(compactPatterns.length);
1465         positiveSuffixes = new ArrayList<>(compactPatterns.length);
1466         negativeSuffixes = new ArrayList<>(compactPatterns.length);
1467         for (int index = 0; index < compactPatterns.length; index++) {
1468             positivePrefixes.add(positivePrefixPatterns.get(index).expandAffix());
1469             negativePrefixes.add(negativePrefixPatterns.get(index).expandAffix());
1470             positiveSuffixes.add(positiveSuffixPatterns.get(index).expandAffix());
1471             negativeSuffixes.add(negativeSuffixPatterns.get(index).expandAffix());
1472         }
1473     }
1474 
1475     /**
1476      * Parses a compact number from a string to produce a {@code Number}.
1477      * <p>
1478      * The method attempts to parse text starting at the index given by
1479      * {@code pos}.
1480      * If parsing succeeds, then the index of {@code pos} is updated
1481      * to the index after the last character used (parsing does not necessarily
1482      * use all characters up to the end of the string), and the parsed
1483      * number is returned. The updated {@code pos} can be used to
1484      * indicate the starting point for the next call to this method.
1485      * If an error occurs, then the index of {@code pos} is not
1486      * changed, the error index of {@code pos} is set to the index of
1487      * the character where the error occurred, and {@code null} is returned.
1488      * <p>
1489      * The value is the numeric part in the given text multiplied
1490      * by the numeric equivalent of the affix attached
1491      * (For example, "K" = 1000 in {@link java.util.Locale#US US locale}).
1492      * The subclass returned depends on the value of
1493      * {@link #isParseBigDecimal}.
1494      * <ul>
1495      * <li>If {@link #isParseBigDecimal()} is false (the default),
1496      *     most integer values are returned as {@code Long}
1497      *     objects, no matter how they are written: {@code "17K"} and
1498      *     {@code "17.000K"} both parse to {@code Long.valueOf(17000)}.
1499      *     If the value cannot fit into {@code Long}, then the result is
1500      *     returned as {@code Double}. This includes values with a
1501      *     fractional part, infinite values, {@code NaN},
1502      *     and the value -0.0.
1503      *     <p>
1504      *     Callers may use the {@code Number} methods {@code doubleValue},
1505      *     {@code longValue}, etc., to obtain the type they want.
1506      *
1507      * <li>If {@link #isParseBigDecimal()} is true, values are returned
1508      *     as {@code BigDecimal} objects. The special cases negative
1509      *     and positive infinity and NaN are returned as {@code Double}
1510      *     instances holding the values of the corresponding
1511      *     {@code Double} constants.
1512      * </ul>
1513      * <p>
1514      * {@code CompactNumberFormat} parses all Unicode characters that represent
1515      * decimal digits, as defined by {@code Character.digit()}. In
1516      * addition, {@code CompactNumberFormat} also recognizes as digits the ten
1517      * consecutive characters starting with the localized zero digit defined in
1518      * the {@code DecimalFormatSymbols} object.
1519      * <p>
1520      * {@code CompactNumberFormat} parse does not allow parsing scientific
1521      * notations. For example, parsing a string {@code "1.05E4K"} in
1522      * {@link java.util.Locale#US US locale} breaks at character 'E'
1523      * and returns 1.05.
1524      *
1525      * @param text the string to be parsed
1526      * @param pos  a {@code ParsePosition} object with index and error
1527      *             index information as described above
1528      * @return the parsed value, or {@code null} if the parse fails
1529      * @throws     NullPointerException if {@code text} or
1530      *             {@code pos} is null
1531      *
1532      */
1533     @Override
1534     public Number parse(String text, ParsePosition pos) {
1535 
1536         Objects.requireNonNull(text);
1537         Objects.requireNonNull(pos);
1538 
1539         // Lazily expanding the affix patterns, on the first parse
1540         // call on this instance
1541         // If not initialized, expand and load all affixes
1542         if (positivePrefixes == null) {
1543             expandAffixPatterns();
1544         }
1545 
1546         // The compact number multiplier for parsed string.
1547         // Its value is set on parsing prefix and suffix. For example,
1548         // in the {@link java.util.Locale#US US locale} parsing {@code "1K"}
1549         // sets its value to 1000, as K (thousand) is abbreviated form of 1000.
1550         Number cnfMultiplier = 1L;
1551 
1552         // Special case NaN
1553         if (text.regionMatches(pos.index, symbols.getNaN(),
1554                 0, symbols.getNaN().length())) {
1555             pos.index = pos.index + symbols.getNaN().length();
1556             return Double.NaN;
1557         }
1558 
1559         int position = pos.index;
1560         int oldStart = pos.index;
1561         boolean gotPositive = false;
1562         boolean gotNegative = false;
1563         int matchedPosIndex = -1;
1564         int matchedNegIndex = -1;
1565         String matchedPosPrefix = "";
1566         String matchedNegPrefix = "";
1567         String defaultPosPrefix = defaultDecimalFormat.getPositivePrefix();
1568         String defaultNegPrefix = defaultDecimalFormat.getNegativePrefix();
1569         double num = parseNumberPart(text, position);
1570 
1571         // Prefix matching
1572         for (int compactIndex = 0; compactIndex < compactPatterns.length; compactIndex++) {
1573             String positivePrefix = getAffix(true, true, false, compactIndex, (int)num);
1574             String negativePrefix = getAffix(true, true, true, compactIndex, (int)num);
1575 
1576             // Do not break if a match occur; there is a possibility that the
1577             // subsequent affixes may match the longer subsequence in the given
1578             // string.
1579             // For example, matching "Mdx 3" with "M", "Md" as prefix should
1580             // match with "Md"
1581             boolean match = matchAffix(text, position, positivePrefix,
1582                     defaultPosPrefix, matchedPosPrefix);
1583             if (match) {
1584                 matchedPosIndex = compactIndex;
1585                 matchedPosPrefix = positivePrefix;
1586                 gotPositive = true;
1587             }
1588 
1589             match = matchAffix(text, position, negativePrefix,
1590                     defaultNegPrefix, matchedNegPrefix);
1591             if (match) {
1592                 matchedNegIndex = compactIndex;
1593                 matchedNegPrefix = negativePrefix;
1594                 gotNegative = true;
1595             }
1596         }
1597 
1598         // Given text does not match the non empty valid compact prefixes
1599         // check with the default prefixes
1600         if (!gotPositive && !gotNegative) {
1601             if (text.regionMatches(pos.index, defaultPosPrefix, 0,
1602                     defaultPosPrefix.length())) {
1603                 // Matches the default positive prefix
1604                 matchedPosPrefix = defaultPosPrefix;
1605                 gotPositive = true;
1606             }
1607             if (text.regionMatches(pos.index, defaultNegPrefix, 0,
1608                     defaultNegPrefix.length())) {
1609                 // Matches the default negative prefix
1610                 matchedNegPrefix = defaultNegPrefix;
1611                 gotNegative = true;
1612             }
1613         }
1614 
1615         // If both match, take the longest one
1616         if (gotPositive && gotNegative) {
1617             if (matchedPosPrefix.length() > matchedNegPrefix.length()) {
1618                 gotNegative = false;
1619             } else if (matchedPosPrefix.length() < matchedNegPrefix.length()) {
1620                 gotPositive = false;
1621             }
1622         }
1623 
1624         // Update the position and take compact multiplier
1625         // only if it matches the compact prefix, not the default
1626         // prefix; else multiplier should be 1
1627         if (gotPositive) {
1628             position += matchedPosPrefix.length();
1629             cnfMultiplier = matchedPosIndex != -1
1630                     ? divisors.get(matchedPosIndex) : 1L;
1631         } else if (gotNegative) {
1632             position += matchedNegPrefix.length();
1633             cnfMultiplier = matchedNegIndex != -1
1634                     ? divisors.get(matchedNegIndex) : 1L;
1635         }
1636 
1637         // If the divisor is negative, no number or suffix exists.
1638         // Return the absolute divisor value as the parse result.
1639         if (cnfMultiplier instanceof BigInteger) {
1640             BigInteger biMultiplier = (BigInteger)cnfMultiplier;
1641             if (biMultiplier.signum() == -1) {
1642                 pos.index = position;
1643                 return biMultiplier.negate();
1644             }
1645         } else {
1646             if (cnfMultiplier.longValue() < 0) {
1647                 pos.index = position;
1648                 return Math.abs(cnfMultiplier.longValue());
1649             }
1650         }
1651 
1652         digitList.setRoundingMode(getRoundingMode());
1653         boolean[] status = new boolean[STATUS_LENGTH];
1654 
1655         // Call DecimalFormat.subparseNumber() method to parse the
1656         // number part of the input text
1657         position = decimalFormat.subparseNumber(text, position,
1658                 digitList, false, false, status);
1659 
1660         if (position == -1) {
1661             // Unable to parse the number successfully
1662             pos.index = oldStart;
1663             pos.errorIndex = oldStart;
1664             return null;
1665         }
1666 
1667         // If parse integer only is true and the parsing is broken at
1668         // decimal point, then pass/ignore all digits and move pointer
1669         // at the start of suffix, to process the suffix part
1670         if (isParseIntegerOnly()
1671                 && text.charAt(position) == symbols.getDecimalSeparator()) {
1672             position++; // Pass decimal character
1673             for (; position < text.length(); ++position) {
1674                 char ch = text.charAt(position);
1675                 int digit = ch - symbols.getZeroDigit();
1676                 if (digit < 0 || digit > 9) {
1677                     digit = Character.digit(ch, 10);
1678                     // Parse all digit characters
1679                     if (!(digit >= 0 && digit <= 9)) {
1680                         break;
1681                     }
1682                 }
1683             }
1684         }
1685 
1686         // Number parsed successfully; match prefix and
1687         // suffix to obtain multiplier
1688         pos.index = position;
1689         Number multiplier = computeParseMultiplier(text, pos,
1690                 gotPositive ? matchedPosPrefix : matchedNegPrefix,
1691                 status, gotPositive, gotNegative, num);
1692 
1693         if (multiplier.longValue() == -1L) {
1694             return null;
1695         } else if (multiplier.longValue() != 1L) {
1696             cnfMultiplier = multiplier;
1697         }
1698 
1699         // Special case INFINITY
1700         if (status[STATUS_INFINITE]) {
1701             if (status[STATUS_POSITIVE]) {
1702                 return Double.POSITIVE_INFINITY;
1703             } else {
1704                 return Double.NEGATIVE_INFINITY;
1705             }
1706         }
1707 
1708         if (isParseBigDecimal()) {
1709             BigDecimal bigDecimalResult = digitList.getBigDecimal();
1710 
1711             if (cnfMultiplier.longValue() != 1) {
1712                 bigDecimalResult = bigDecimalResult
1713                         .multiply(new BigDecimal(cnfMultiplier.toString()));
1714             }
1715             if (!status[STATUS_POSITIVE]) {
1716                 bigDecimalResult = bigDecimalResult.negate();
1717             }
1718             return bigDecimalResult;
1719         } else {
1720             Number cnfResult;
1721             if (digitList.fitsIntoLong(status[STATUS_POSITIVE], isParseIntegerOnly())) {
1722                 long longResult = digitList.getLong();
1723                 cnfResult = generateParseResult(longResult, false,
1724                         longResult < 0, status, cnfMultiplier);
1725             } else {
1726                 cnfResult = generateParseResult(digitList.getDouble(),
1727                         true, false, status, cnfMultiplier);
1728             }
1729             return cnfResult;
1730         }
1731     }
1732 
1733     private static final Pattern DIGITS = Pattern.compile("\\p{Nd}+");
1734     /**
1735      * Parse the number part in the input text into a number
1736      *
1737      * @param text input text to be parsed
1738      * @param position starting position
1739      * @return the number
1740      */
1741     private double parseNumberPart(String text, int position) {
1742         if (text.startsWith(symbols.getInfinity(), position)) {
1743             return Double.POSITIVE_INFINITY;
1744         } else if (!text.startsWith(symbols.getNaN(), position)) {
1745             Matcher m = DIGITS.matcher(text);
1746             if (m.find(position)) {
1747                 String digits = m.group();
1748                 int cp = digits.codePointAt(0);
1749                 if (Character.isDigit(cp)) {
1750                     return Double.parseDouble(digits.codePoints()
1751                         .map(Character::getNumericValue)
1752                         .mapToObj(Integer::toString)
1753                         .collect(Collectors.joining()));
1754                 }
1755             }
1756         }
1757         return Double.NaN;
1758     }
1759 
1760     /**
1761      * Returns the parsed result by multiplying the parsed number
1762      * with the multiplier representing the prefix and suffix.
1763      *
1764      * @param number parsed number component
1765      * @param gotDouble whether the parsed number contains decimal
1766      * @param gotLongMin whether the parsed number is Long.MIN
1767      * @param status boolean status flags indicating whether the
1768      *               value is infinite and whether it is positive
1769      * @param cnfMultiplier compact number multiplier
1770      * @return parsed result
1771      */
1772     private Number generateParseResult(Number number, boolean gotDouble,
1773             boolean gotLongMin, boolean[] status, Number cnfMultiplier) {
1774 
1775         if (gotDouble) {
1776             if (cnfMultiplier.longValue() != 1L) {
1777                 double doubleResult = number.doubleValue() * cnfMultiplier.doubleValue();
1778                 doubleResult = (double) convertIfNegative(doubleResult, status, gotLongMin);
1779                 // Check if a double can be represeneted as a long
1780                 long longResult = (long) doubleResult;
1781                 gotDouble = ((doubleResult != (double) longResult)
1782                         || (doubleResult == 0.0 && 1 / doubleResult < 0.0));
1783                 return gotDouble ? (Number) doubleResult : (Number) longResult;
1784             }
1785         } else {
1786             if (cnfMultiplier.longValue() != 1L) {
1787                 Number result;
1788                 if ((cnfMultiplier instanceof Long) && !gotLongMin) {
1789                     long longMultiplier = (long) cnfMultiplier;
1790                     try {
1791                         result = Math.multiplyExact(number.longValue(),
1792                                 longMultiplier);
1793                     } catch (ArithmeticException ex) {
1794                         // If number * longMultiplier can not be represented
1795                         // as long return as double
1796                         result = number.doubleValue() * cnfMultiplier.doubleValue();
1797                     }
1798                 } else {
1799                     // cnfMultiplier can not be stored into long or the number
1800                     // part is Long.MIN, return as double
1801                     result = number.doubleValue() * cnfMultiplier.doubleValue();
1802                 }
1803                 return convertIfNegative(result, status, gotLongMin);
1804             }
1805         }
1806 
1807         // Default number
1808         return convertIfNegative(number, status, gotLongMin);
1809     }
1810 
1811     /**
1812      * Negate the parsed value if the positive status flag is false
1813      * and the value is not a Long.MIN
1814      * @param number parsed value
1815      * @param status boolean status flags indicating whether the
1816      *               value is infinite and whether it is positive
1817      * @param gotLongMin whether the parsed number is Long.MIN
1818      * @return the resulting value
1819      */
1820     private Number convertIfNegative(Number number, boolean[] status,
1821             boolean gotLongMin) {
1822 
1823         if (!status[STATUS_POSITIVE] && !gotLongMin) {
1824             if (number instanceof Long) {
1825                 return -(long) number;
1826             } else {
1827                 return -(double) number;
1828             }
1829         } else {
1830             return number;
1831         }
1832     }
1833 
1834     /**
1835      * Attempts to match the given {@code affix} in the
1836      * specified {@code text}.
1837      */
1838     private boolean matchAffix(String text, int position, String affix,
1839             String defaultAffix, String matchedAffix) {
1840 
1841         // Check with the compact affixes which are non empty and
1842         // do not match with default affix
1843         if (!affix.isEmpty() && !affix.equals(defaultAffix)) {
1844             // Look ahead only for the longer match than the previous match
1845             if (matchedAffix.length() < affix.length()) {
1846                 return text.regionMatches(position, affix, 0, affix.length());
1847             }
1848         }
1849         return false;
1850     }
1851 
1852     /**
1853      * Attempts to match given {@code prefix} and {@code suffix} in
1854      * the specified {@code text}.
1855      */
1856     private boolean matchPrefixAndSuffix(String text, int position, String prefix,
1857             String matchedPrefix, String defaultPrefix, String suffix,
1858             String matchedSuffix, String defaultSuffix) {
1859 
1860         // Check the compact pattern suffix only if there is a
1861         // compact prefix match or a default prefix match
1862         // because the compact prefix and suffix should match at the same
1863         // index to obtain the multiplier.
1864         // The prefix match is required because of the possibility of
1865         // same prefix at multiple index, in which case matching the suffix
1866         // is used to obtain the single match
1867 
1868         if (prefix.equals(matchedPrefix)
1869                 || matchedPrefix.equals(defaultPrefix)) {
1870             return matchAffix(text, position, suffix, defaultSuffix, matchedSuffix);
1871         }
1872         return false;
1873     }
1874 
1875     /**
1876      * Computes multiplier by matching the given {@code matchedPrefix}
1877      * and suffix in the specified {@code text} from the lists of
1878      * prefixes and suffixes extracted from compact patterns.
1879      *
1880      * @param text the string to parse
1881      * @param parsePosition the {@code ParsePosition} object representing the
1882      *                      index and error index of the parse string
1883      * @param matchedPrefix prefix extracted which needs to be matched to
1884      *                      obtain the multiplier
1885      * @param status upon return contains boolean status flags indicating
1886      *               whether the value is positive
1887      * @param gotPositive based on the prefix parsed; whether the number is positive
1888      * @param gotNegative based on the prefix parsed; whether the number is negative
1889      * @return the multiplier matching the prefix and suffix; -1 otherwise
1890      */
1891     private Number computeParseMultiplier(String text, ParsePosition parsePosition,
1892             String matchedPrefix, boolean[] status, boolean gotPositive,
1893             boolean gotNegative, double num) {
1894 
1895         int position = parsePosition.index;
1896         boolean gotPos = false;
1897         boolean gotNeg = false;
1898         int matchedPosIndex = -1;
1899         int matchedNegIndex = -1;
1900         String matchedPosSuffix = "";
1901         String matchedNegSuffix = "";
1902         for (int compactIndex = 0; compactIndex < compactPatterns.length; compactIndex++) {
1903             String positivePrefix = getAffix(true, true, false, compactIndex, (int)num);
1904             String negativePrefix = getAffix(true, true, true, compactIndex, (int)num);
1905             String positiveSuffix = getAffix(true, false, false, compactIndex, (int)num);
1906             String negativeSuffix = getAffix(true, false, true, compactIndex, (int)num);
1907 
1908             // Do not break if a match occur; there is a possibility that the
1909             // subsequent affixes may match the longer subsequence in the given
1910             // string.
1911             // For example, matching "3Mdx" with "M", "Md" should match with "Md"
1912             boolean match = matchPrefixAndSuffix(text, position, positivePrefix, matchedPrefix,
1913                     defaultDecimalFormat.getPositivePrefix(), positiveSuffix,
1914                     matchedPosSuffix, defaultDecimalFormat.getPositiveSuffix());
1915             if (match) {
1916                 matchedPosIndex = compactIndex;
1917                 matchedPosSuffix = positiveSuffix;
1918                 gotPos = true;
1919             }
1920 
1921             match = matchPrefixAndSuffix(text, position, negativePrefix, matchedPrefix,
1922                     defaultDecimalFormat.getNegativePrefix(), negativeSuffix,
1923                     matchedNegSuffix, defaultDecimalFormat.getNegativeSuffix());
1924             if (match) {
1925                 matchedNegIndex = compactIndex;
1926                 matchedNegSuffix = negativeSuffix;
1927                 gotNeg = true;
1928             }
1929         }
1930 
1931         // Suffix in the given text does not match with the compact
1932         // patterns suffixes; match with the default suffix
1933         if (!gotPos && !gotNeg) {
1934             String positiveSuffix = defaultDecimalFormat.getPositiveSuffix();
1935             String negativeSuffix = defaultDecimalFormat.getNegativeSuffix();
1936             if (text.regionMatches(position, positiveSuffix, 0,
1937                     positiveSuffix.length())) {
1938                 // Matches the default positive prefix
1939                 matchedPosSuffix = positiveSuffix;
1940                 gotPos = true;
1941             }
1942             if (text.regionMatches(position, negativeSuffix, 0,
1943                     negativeSuffix.length())) {
1944                 // Matches the default negative suffix
1945                 matchedNegSuffix = negativeSuffix;
1946                 gotNeg = true;
1947             }
1948         }
1949 
1950         // If both matches, take the longest one
1951         if (gotPos && gotNeg) {
1952             if (matchedPosSuffix.length() > matchedNegSuffix.length()) {
1953                 gotNeg = false;
1954             } else if (matchedPosSuffix.length() < matchedNegSuffix.length()) {
1955                 gotPos = false;
1956             } else {
1957                 // If longest comparison fails; take the positive and negative
1958                 // sign of matching prefix
1959                 gotPos = gotPositive;
1960                 gotNeg = gotNegative;
1961             }
1962         }
1963 
1964         // Fail if neither or both
1965         if (gotPos == gotNeg) {
1966             parsePosition.errorIndex = position;
1967             return -1L;
1968         }
1969 
1970         Number cnfMultiplier;
1971         // Update the parse position index and take compact multiplier
1972         // only if it matches the compact suffix, not the default
1973         // suffix; else multiplier should be 1
1974         if (gotPos) {
1975             parsePosition.index = position + matchedPosSuffix.length();
1976             cnfMultiplier = matchedPosIndex != -1
1977                     ? divisors.get(matchedPosIndex) : 1L;
1978         } else {
1979             parsePosition.index = position + matchedNegSuffix.length();
1980             cnfMultiplier = matchedNegIndex != -1
1981                     ? divisors.get(matchedNegIndex) : 1L;
1982         }
1983         status[STATUS_POSITIVE] = gotPos;
1984         return cnfMultiplier;
1985     }
1986 
1987     /**
1988      * Reconstitutes this {@code CompactNumberFormat} from a stream
1989      * (that is, deserializes it) after performing some validations.
1990      * This method throws InvalidObjectException, if the stream data is invalid
1991      * because of the following reasons,
1992      * <ul>
1993      * <li> If any of the {@code decimalPattern}, {@code compactPatterns},
1994      * {@code symbols} or {@code roundingMode} is {@code null}.
1995      * <li> If the {@code decimalPattern} or the {@code compactPatterns} array
1996      * contains an invalid pattern or if a {@code null} appears in the array of
1997      * compact patterns.
1998      * <li> If the {@code minimumIntegerDigits} is greater than the
1999      * {@code maximumIntegerDigits} or the {@code minimumFractionDigits} is
2000      * greater than the {@code maximumFractionDigits}. This check is performed
2001      * by superclass's Object.
2002      * <li> If any of the minimum/maximum integer/fraction digit count is
2003      * negative. This check is performed by superclass's readObject.
2004      * <li> If the minimum or maximum integer digit count is larger than 309 or
2005      * if the minimum or maximum fraction digit count is larger than 340.
2006      * <li> If the grouping size is negative or larger than 127.
2007      * </ul>
2008      * If the {@code pluralRules} field is not deserialized from the stream, it
2009      * will be set to an empty string.
2010      *
2011      * @param inStream the stream
2012      * @throws IOException if an I/O error occurs
2013      * @throws ClassNotFoundException if the class of a serialized object
2014      *         could not be found
2015      */
2016     @java.io.Serial
2017     private void readObject(ObjectInputStream inStream) throws IOException,
2018             ClassNotFoundException {
2019 
2020         inStream.defaultReadObject();
2021         if (decimalPattern == null || compactPatterns == null
2022                 || symbols == null || roundingMode == null) {
2023             throw new InvalidObjectException("One of the 'decimalPattern',"
2024                     + " 'compactPatterns', 'symbols' or 'roundingMode'"
2025                     + " is null");
2026         }
2027 
2028         // Check only the maximum counts because NumberFormat.readObject has
2029         // already ensured that the maximum is greater than the minimum count.
2030         if (getMaximumIntegerDigits() > DecimalFormat.DOUBLE_INTEGER_DIGITS
2031                 || getMaximumFractionDigits() > DecimalFormat.DOUBLE_FRACTION_DIGITS) {
2032             throw new InvalidObjectException("Digit count out of range");
2033         }
2034 
2035         // Check if the grouping size is negative, on an attempt to
2036         // put value > 127, it wraps around, so check just negative value
2037         if (groupingSize < 0) {
2038             throw new InvalidObjectException("Grouping size is negative");
2039         }
2040 
2041         // pluralRules is since 14. Fill in empty string if it is null
2042         if (pluralRules == null) {
2043             pluralRules = "";
2044         }
2045 
2046         try {
2047             processCompactPatterns();
2048         } catch (IllegalArgumentException ex) {
2049             throw new InvalidObjectException(ex.getMessage());
2050         }
2051 
2052         decimalFormat = new DecimalFormat(SPECIAL_PATTERN, symbols);
2053         decimalFormat.setMaximumFractionDigits(getMaximumFractionDigits());
2054         decimalFormat.setMinimumFractionDigits(getMinimumFractionDigits());
2055         decimalFormat.setMaximumIntegerDigits(getMaximumIntegerDigits());
2056         decimalFormat.setMinimumIntegerDigits(getMinimumIntegerDigits());
2057         decimalFormat.setRoundingMode(getRoundingMode());
2058         decimalFormat.setGroupingSize(getGroupingSize());
2059         decimalFormat.setGroupingUsed(isGroupingUsed());
2060         decimalFormat.setParseIntegerOnly(isParseIntegerOnly());
2061 
2062         try {
2063             defaultDecimalFormat = new DecimalFormat(decimalPattern, symbols);
2064             defaultDecimalFormat.setMaximumFractionDigits(0);
2065         } catch (IllegalArgumentException ex) {
2066             throw new InvalidObjectException(ex.getMessage());
2067         }
2068 
2069     }
2070 
2071     /**
2072      * Sets the maximum number of digits allowed in the integer portion of a
2073      * number.
2074      * The maximum allowed integer range is 309, if the {@code newValue} &gt; 309,
2075      * then the maximum integer digits count is set to 309. Negative input
2076      * values are replaced with 0.
2077      *
2078      * @param newValue the maximum number of integer digits to be shown
2079      * @see #getMaximumIntegerDigits()
2080      */
2081     @Override
2082     public void setMaximumIntegerDigits(int newValue) {
2083         // The maximum integer digits is checked with the allowed range before calling
2084         // the DecimalFormat.setMaximumIntegerDigits, which performs the negative check
2085         // on the given newValue while setting it as max integer digits.
2086         // For example, if a negative value is specified, it is replaced with 0
2087         decimalFormat.setMaximumIntegerDigits(Math.min(newValue,
2088                 DecimalFormat.DOUBLE_INTEGER_DIGITS));
2089         super.setMaximumIntegerDigits(decimalFormat.getMaximumIntegerDigits());
2090         if (decimalFormat.getMinimumIntegerDigits() > decimalFormat.getMaximumIntegerDigits()) {
2091             decimalFormat.setMinimumIntegerDigits(decimalFormat.getMaximumIntegerDigits());
2092             super.setMinimumIntegerDigits(decimalFormat.getMinimumIntegerDigits());
2093         }
2094     }
2095 
2096     /**
2097      * Sets the minimum number of digits allowed in the integer portion of a
2098      * number.
2099      * The maximum allowed integer range is 309, if the {@code newValue} &gt; 309,
2100      * then the minimum integer digits count is set to 309. Negative input
2101      * values are replaced with 0.
2102      *
2103      * @param newValue the minimum number of integer digits to be shown
2104      * @see #getMinimumIntegerDigits()
2105      */
2106     @Override
2107     public void setMinimumIntegerDigits(int newValue) {
2108         // The minimum integer digits is checked with the allowed range before calling
2109         // the DecimalFormat.setMinimumIntegerDigits, which performs check on the given
2110         // newValue while setting it as min integer digits. For example, if a negative
2111         // value is specified, it is replaced with 0
2112         decimalFormat.setMinimumIntegerDigits(Math.min(newValue,
2113                 DecimalFormat.DOUBLE_INTEGER_DIGITS));
2114         super.setMinimumIntegerDigits(decimalFormat.getMinimumIntegerDigits());
2115         if (decimalFormat.getMinimumIntegerDigits() > decimalFormat.getMaximumIntegerDigits()) {
2116             decimalFormat.setMaximumIntegerDigits(decimalFormat.getMinimumIntegerDigits());
2117             super.setMaximumIntegerDigits(decimalFormat.getMaximumIntegerDigits());
2118         }
2119     }
2120 
2121     /**
2122      * Sets the minimum number of digits allowed in the fraction portion of a
2123      * number.
2124      * The maximum allowed fraction range is 340, if the {@code newValue} &gt; 340,
2125      * then the minimum fraction digits count is set to 340. Negative input
2126      * values are replaced with 0.
2127      *
2128      * @param newValue the minimum number of fraction digits to be shown
2129      * @see #getMinimumFractionDigits()
2130      */
2131     @Override
2132     public void setMinimumFractionDigits(int newValue) {
2133         // The minimum fraction digits is checked with the allowed range before
2134         // calling the DecimalFormat.setMinimumFractionDigits, which performs
2135         // check on the given newValue while setting it as min fraction
2136         // digits. For example, if a negative value is specified, it is
2137         // replaced with 0
2138         decimalFormat.setMinimumFractionDigits(Math.min(newValue,
2139                 DecimalFormat.DOUBLE_FRACTION_DIGITS));
2140         super.setMinimumFractionDigits(decimalFormat.getMinimumFractionDigits());
2141         if (decimalFormat.getMinimumFractionDigits() > decimalFormat.getMaximumFractionDigits()) {
2142             decimalFormat.setMaximumFractionDigits(decimalFormat.getMinimumFractionDigits());
2143             super.setMaximumFractionDigits(decimalFormat.getMaximumFractionDigits());
2144         }
2145     }
2146 
2147     /**
2148      * Sets the maximum number of digits allowed in the fraction portion of a
2149      * number.
2150      * The maximum allowed fraction range is 340, if the {@code newValue} &gt; 340,
2151      * then the maximum fraction digits count is set to 340. Negative input
2152      * values are replaced with 0.
2153      *
2154      * @param newValue the maximum number of fraction digits to be shown
2155      * @see #getMaximumFractionDigits()
2156      */
2157     @Override
2158     public void setMaximumFractionDigits(int newValue) {
2159         // The maximum fraction digits is checked with the allowed range before
2160         // calling the DecimalFormat.setMaximumFractionDigits, which performs
2161         // check on the given newValue while setting it as max fraction digits.
2162         // For example, if a negative value is specified, it is replaced with 0
2163         decimalFormat.setMaximumFractionDigits(Math.min(newValue,
2164                 DecimalFormat.DOUBLE_FRACTION_DIGITS));
2165         super.setMaximumFractionDigits(decimalFormat.getMaximumFractionDigits());
2166         if (decimalFormat.getMinimumFractionDigits() > decimalFormat.getMaximumFractionDigits()) {
2167             decimalFormat.setMinimumFractionDigits(decimalFormat.getMaximumFractionDigits());
2168             super.setMinimumFractionDigits(decimalFormat.getMinimumFractionDigits());
2169         }
2170     }
2171 
2172     /**
2173      * Gets the {@link java.math.RoundingMode} used in this
2174      * {@code CompactNumberFormat}.
2175      *
2176      * @return the {@code RoundingMode} used for this
2177      *         {@code CompactNumberFormat}
2178      * @see #setRoundingMode(RoundingMode)
2179      */
2180     @Override
2181     public RoundingMode getRoundingMode() {
2182         return roundingMode;
2183     }
2184 
2185     /**
2186      * Sets the {@link java.math.RoundingMode} used in this
2187      * {@code CompactNumberFormat}.
2188      *
2189      * @param roundingMode the {@code RoundingMode} to be used
2190      * @see #getRoundingMode()
2191      * @throws NullPointerException if {@code roundingMode} is {@code null}
2192      */
2193     @Override
2194     public void setRoundingMode(RoundingMode roundingMode) {
2195         decimalFormat.setRoundingMode(roundingMode);
2196         this.roundingMode = roundingMode;
2197     }
2198 
2199     /**
2200      * Returns the grouping size. Grouping size is the number of digits between
2201      * grouping separators in the integer portion of a number. For example,
2202      * in the compact number {@code "12,347 trillion"} for the
2203      * {@link java.util.Locale#US US locale}, the grouping size is 3.
2204      *
2205      * @return the grouping size
2206      * @see #setGroupingSize
2207      * @see java.text.NumberFormat#isGroupingUsed
2208      * @see java.text.DecimalFormatSymbols#getGroupingSeparator
2209      */
2210     public int getGroupingSize() {
2211         return groupingSize;
2212     }
2213 
2214     /**
2215      * Sets the grouping size. Grouping size is the number of digits between
2216      * grouping separators in the integer portion of a number. For example,
2217      * in the compact number {@code "12,347 trillion"} for the
2218      * {@link java.util.Locale#US US locale}, the grouping size is 3. The grouping
2219      * size must be greater than or equal to zero and less than or equal to 127.
2220      *
2221      * @param newValue the new grouping size
2222      * @see #getGroupingSize
2223      * @see java.text.NumberFormat#setGroupingUsed
2224      * @see java.text.DecimalFormatSymbols#setGroupingSeparator
2225      * @throws IllegalArgumentException if {@code newValue} is negative or
2226      * larger than 127
2227      */
2228     public void setGroupingSize(int newValue) {
2229         if (newValue < 0 || newValue > 127) {
2230             throw new IllegalArgumentException(
2231                     "The value passed is negative or larger than 127");
2232         }
2233         groupingSize = (byte) newValue;
2234         decimalFormat.setGroupingSize(groupingSize);
2235     }
2236 
2237     /**
2238      * Returns true if grouping is used in this format. For example, with
2239      * grouping on and grouping size set to 3, the number {@code 12346567890987654}
2240      * can be formatted as {@code "12,347 trillion"} in the
2241      * {@link java.util.Locale#US US locale}.
2242      * The grouping separator is locale dependent.
2243      *
2244      * @return {@code true} if grouping is used;
2245      *         {@code false} otherwise
2246      * @see #setGroupingUsed
2247      */
2248     @Override
2249     public boolean isGroupingUsed() {
2250         return super.isGroupingUsed();
2251     }
2252 
2253     /**
2254      * Sets whether or not grouping will be used in this format.
2255      *
2256      * @param newValue {@code true} if grouping is used;
2257      *                 {@code false} otherwise
2258      * @see #isGroupingUsed
2259      */
2260     @Override
2261     public void setGroupingUsed(boolean newValue) {
2262         decimalFormat.setGroupingUsed(newValue);
2263         super.setGroupingUsed(newValue);
2264     }
2265 
2266     /**
2267      * Returns true if this format parses only an integer from the number
2268      * component of a compact number.
2269      * Parsing an integer means that only an integer is considered from the
2270      * number component, prefix/suffix is still considered to compute the
2271      * resulting output.
2272      * For example, in the {@link java.util.Locale#US US locale}, if this method
2273      * returns {@code true}, the string {@code "1234.78 thousand"} would be
2274      * parsed as the value {@code 1234000} (1234 (integer part) * 1000
2275      * (thousand)) and the fractional part would be skipped.
2276      * The exact format accepted by the parse operation is locale dependent.
2277      *
2278      * @return {@code true} if compact numbers should be parsed as integers
2279      *         only; {@code false} otherwise
2280      */
2281     @Override
2282     public boolean isParseIntegerOnly() {
2283         return super.isParseIntegerOnly();
2284     }
2285 
2286     /**
2287      * Sets whether or not this format parses only an integer from the number
2288      * component of a compact number.
2289      *
2290      * @param value {@code true} if compact numbers should be parsed as
2291      *              integers only; {@code false} otherwise
2292      * @see #isParseIntegerOnly
2293      */
2294     @Override
2295     public void setParseIntegerOnly(boolean value) {
2296         decimalFormat.setParseIntegerOnly(value);
2297         super.setParseIntegerOnly(value);
2298     }
2299 
2300     /**
2301      * Returns whether the {@link #parse(String, ParsePosition)}
2302      * method returns {@code BigDecimal}. The default value is false.
2303      *
2304      * @return {@code true} if the parse method returns BigDecimal;
2305      *         {@code false} otherwise
2306      * @see #setParseBigDecimal
2307      *
2308      */
2309     public boolean isParseBigDecimal() {
2310         return parseBigDecimal;
2311     }
2312 
2313     /**
2314      * Sets whether the {@link #parse(String, ParsePosition)}
2315      * method returns {@code BigDecimal}.
2316      *
2317      * @param newValue {@code true} if the parse method returns BigDecimal;
2318      *                 {@code false} otherwise
2319      * @see #isParseBigDecimal
2320      *
2321      */
2322     public void setParseBigDecimal(boolean newValue) {
2323         parseBigDecimal = newValue;
2324     }
2325 
2326     /**
2327      * Checks if this {@code CompactNumberFormat} is equal to the
2328      * specified {@code obj}. The objects of type {@code CompactNumberFormat}
2329      * are compared, other types return false; obeys the general contract of
2330      * {@link java.lang.Object#equals(java.lang.Object) Object.equals}.
2331      *
2332      * @param obj the object to compare with
2333      * @return true if this is equal to the other {@code CompactNumberFormat}
2334      */
2335     @Override
2336     public boolean equals(Object obj) {
2337 
2338         if (!super.equals(obj)) {
2339             return false;
2340         }
2341 
2342         CompactNumberFormat other = (CompactNumberFormat) obj;
2343         return decimalPattern.equals(other.decimalPattern)
2344                 && symbols.equals(other.symbols)
2345                 && Arrays.equals(compactPatterns, other.compactPatterns)
2346                 && roundingMode.equals(other.roundingMode)
2347                 && pluralRules.equals(other.pluralRules)
2348                 && groupingSize == other.groupingSize
2349                 && parseBigDecimal == other.parseBigDecimal;
2350     }
2351 
2352     /**
2353      * Returns the hash code for this {@code CompactNumberFormat} instance.
2354      *
2355      * @return hash code for this {@code CompactNumberFormat}
2356      */
2357     @Override
2358     public int hashCode() {
2359         return 31 * super.hashCode() +
2360                 Objects.hash(decimalPattern, symbols, roundingMode, pluralRules)
2361                 + Arrays.hashCode(compactPatterns) + groupingSize
2362                 + Boolean.hashCode(parseBigDecimal);
2363     }
2364 
2365     /**
2366      * Creates and returns a copy of this {@code CompactNumberFormat}
2367      * instance.
2368      *
2369      * @return a clone of this instance
2370      */
2371     @Override
2372     public CompactNumberFormat clone() {
2373         CompactNumberFormat other = (CompactNumberFormat) super.clone();
2374         other.compactPatterns = compactPatterns.clone();
2375         other.symbols = (DecimalFormatSymbols) symbols.clone();
2376         return other;
2377     }
2378 
2379     /**
2380      * Abstraction of affix patterns for each "count" tag.
2381      */
2382     private final class Patterns {
2383         private final Map<String, String> patternsMap = new HashMap<>();
2384 
2385         void put(String count, String pattern) {
2386             patternsMap.put(count, pattern);
2387         }
2388 
2389         String get(double num) {
2390             return patternsMap.getOrDefault(getPluralCategory(num),
2391                     patternsMap.getOrDefault("other", ""));
2392         }
2393 
2394         Patterns expandAffix() {
2395             Patterns ret = new Patterns();
2396             patternsMap.forEach((key, value) -> ret.put(key, CompactNumberFormat.this.expandAffix(value)));
2397             return ret;
2398         }
2399     }
2400 
2401     private int getIntegerPart(double number, double divisor) {
2402         return BigDecimal.valueOf(number)
2403                 .divide(BigDecimal.valueOf(divisor), roundingMode).intValue();
2404     }
2405 
2406     /**
2407      * Returns LDML's tag from the plurals rules
2408      *
2409      * @param input input number in double type
2410      * @return LDML "count" tag
2411      */
2412     private String getPluralCategory(double input) {
2413         if (rulesMap != null) {
2414             return rulesMap.entrySet().stream()
2415                     .filter(e -> matchPluralRule(e.getValue(), input))
2416                     .map(Map.Entry::getKey)
2417                     .findFirst()
2418                     .orElse("other");
2419         }
2420 
2421         // defaults to "other"
2422         return "other";
2423     }
2424 
2425     private static boolean matchPluralRule(String condition, double input) {
2426         return Arrays.stream(condition.split("or"))
2427             .anyMatch(and_condition -> Arrays.stream(and_condition.split("and"))
2428                 .allMatch(r -> relationCheck(r, input)));
2429     }
2430 
2431     private final static String NAMED_EXPR = "(?<op>[niftvw])\\s*((?<div>[/%])\\s*(?<val>\\d+))*";
2432     private final static String NAMED_RELATION = "(?<rel>!?=)";
2433     private final static String NAMED_VALUE_RANGE = "(?<start>\\d+)\\.\\.(?<end>\\d+)|(?<value>\\d+)";
2434     private final static Pattern EXPR_PATTERN = Pattern.compile(NAMED_EXPR);
2435     private final static Pattern RELATION_PATTERN = Pattern.compile(NAMED_RELATION);
2436     private final static Pattern VALUE_RANGE_PATTERN = Pattern.compile(NAMED_VALUE_RANGE);
2437 
2438     /**
2439      * Checks if the 'input' equals the value, or within the range.
2440      *
2441      * @param valueOrRange A string representing either a single value or a range
2442      * @param input to examine in double
2443      * @return match indicator
2444      */
2445     private static boolean valOrRangeMatches(String valueOrRange, double input) {
2446         Matcher m = VALUE_RANGE_PATTERN.matcher(valueOrRange);
2447 
2448         if (m.find()) {
2449             String value = m.group("value");
2450             if (value != null) {
2451                 return input == Double.parseDouble(value);
2452             } else {
2453                 return input >= Double.parseDouble(m.group("start")) &&
2454                        input <= Double.parseDouble(m.group("end"));
2455             }
2456         }
2457 
2458         return false;
2459     }
2460 
2461     /**
2462      * Checks if the input value satisfies the relation. Each possible value or range is
2463      * separated by a comma ','
2464      *
2465      * @param relation relation string, e.g, "n = 1, 3..5", or "n != 1, 3..5"
2466      * @param input value to examine in double
2467      * @return boolean to indicate whether the relation satisfies or not. If the relation
2468      *  is '=', true if any of the possible value/range satisfies. If the relation is '!=',
2469      *  none of the possible value/range should satisfy to return true.
2470      */
2471     private static boolean relationCheck(String relation, double input) {
2472         Matcher expr = EXPR_PATTERN.matcher(relation);
2473 
2474         if (expr.find()) {
2475             double lop = evalLOperand(expr, input);
2476             Matcher rel = RELATION_PATTERN.matcher(relation);
2477 
2478             if (rel.find(expr.end())) {
2479                 var conditions =
2480                     Arrays.stream(relation.substring(rel.end()).split(","));
2481 
2482                 if (Objects.equals(rel.group("rel"), "!=")) {
2483                     return conditions.noneMatch(c -> valOrRangeMatches(c, lop));
2484                 } else {
2485                     return conditions.anyMatch(c -> valOrRangeMatches(c, lop));
2486                 }
2487             }
2488         }
2489 
2490         return false;
2491     }
2492 
2493     /**
2494      * Evaluates the left operand value.
2495      *
2496      * @param expr Match result
2497      * @param input value to examine in double
2498      * @return resulting double value
2499      */
2500     private static double evalLOperand(Matcher expr, double input) {
2501         double ret = 0;
2502 
2503         if (input == Double.POSITIVE_INFINITY) {
2504             ret =input;
2505         } else {
2506             String op = expr.group("op");
2507             if (Objects.equals(op, "n") || Objects.equals(op, "i")) {
2508                 ret = input;
2509             }
2510 
2511             String divop = expr.group("div");
2512             if (divop != null) {
2513                 String divisor = expr.group("val");
2514                 switch (divop) {
2515                     case "%" -> ret %= Double.parseDouble(divisor);
2516                     case "/" -> ret /= Double.parseDouble(divisor);
2517                 }
2518             }
2519         }
2520 
2521         return ret;
2522     }
2523 }