1 /*
   2  * Copyright (c) 2010, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCache.hpp"
  27 #include "compiler/compileTask.hpp"
  28 #include "runtime/advancedThresholdPolicy.hpp"
  29 #include "runtime/simpleThresholdPolicy.inline.hpp"
  30 
  31 #ifdef TIERED
  32 // Print an event.
  33 void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
  34                                              int bci, CompLevel level) {
  35   tty->print(" rate=");
  36   if (mh->prev_time() == 0) tty->print("n/a");
  37   else tty->print("%f", mh->rate());
  38 
  39   tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
  40                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
  41 
  42 }
  43 
  44 void AdvancedThresholdPolicy::initialize() {
  45   // Turn on ergonomic compiler count selection
  46   if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
  47     FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
  48   }
  49   int count = CICompilerCount;
  50   if (CICompilerCountPerCPU) {
  51     // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
  52     int log_cpu = log2_intptr(os::active_processor_count());
  53     int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
  54     count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
  55   }
  56 
  57   set_c1_count(MAX2(count / 3, 1));
  58   set_c2_count(MAX2(count - c1_count(), 1));
  59   FLAG_SET_ERGO(intx, CICompilerCount, c1_count() + c2_count());
  60 
  61   // Some inlining tuning
  62 #ifdef X86
  63   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
  64     FLAG_SET_DEFAULT(InlineSmallCode, 2000);
  65   }
  66 #endif
  67 
  68 #if defined SPARC || defined AARCH64
  69   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
  70     FLAG_SET_DEFAULT(InlineSmallCode, 2500);
  71   }
  72 #endif
  73 
  74   set_increase_threshold_at_ratio();
  75   set_start_time(os::javaTimeMillis());
  76 }
  77 
  78 // update_rate() is called from select_task() while holding a compile queue lock.
  79 void AdvancedThresholdPolicy::update_rate(jlong t, Method* m) {
  80   // Skip update if counters are absent.
  81   // Can't allocate them since we are holding compile queue lock.
  82   if (m->method_counters() == NULL)  return;
  83 
  84   if (is_old(m)) {
  85     // We don't remove old methods from the queue,
  86     // so we can just zero the rate.
  87     m->set_rate(0);
  88     return;
  89   }
  90 
  91   // We don't update the rate if we've just came out of a safepoint.
  92   // delta_s is the time since last safepoint in milliseconds.
  93   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
  94   jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
  95   // How many events were there since the last time?
  96   int event_count = m->invocation_count() + m->backedge_count();
  97   int delta_e = event_count - m->prev_event_count();
  98 
  99   // We should be running for at least 1ms.
 100   if (delta_s >= TieredRateUpdateMinTime) {
 101     // And we must've taken the previous point at least 1ms before.
 102     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
 103       m->set_prev_time(t);
 104       m->set_prev_event_count(event_count);
 105       m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
 106     } else {
 107       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
 108         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
 109         m->set_rate(0);
 110       }
 111     }
 112   }
 113 }
 114 
 115 // Check if this method has been stale from a given number of milliseconds.
 116 // See select_task().
 117 bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
 118   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
 119   jlong delta_t = t - m->prev_time();
 120   if (delta_t > timeout && delta_s > timeout) {
 121     int event_count = m->invocation_count() + m->backedge_count();
 122     int delta_e = event_count - m->prev_event_count();
 123     // Return true if there were no events.
 124     return delta_e == 0;
 125   }
 126   return false;
 127 }
 128 
 129 // We don't remove old methods from the compile queue even if they have
 130 // very low activity. See select_task().
 131 bool AdvancedThresholdPolicy::is_old(Method* method) {
 132   return method->invocation_count() > 50000 || method->backedge_count() > 500000;
 133 }
 134 
 135 double AdvancedThresholdPolicy::weight(Method* method) {
 136   return (double)(method->rate() + 1) *
 137     (method->invocation_count() + 1) * (method->backedge_count() + 1);
 138 }
 139 
 140 // Apply heuristics and return true if x should be compiled before y
 141 bool AdvancedThresholdPolicy::compare_methods(Method* x, Method* y) {
 142   if (x->highest_comp_level() > y->highest_comp_level()) {
 143     // recompilation after deopt
 144     return true;
 145   } else
 146     if (x->highest_comp_level() == y->highest_comp_level()) {
 147       if (weight(x) > weight(y)) {
 148         return true;
 149       }
 150     }
 151   return false;
 152 }
 153 
 154 // Is method profiled enough?
 155 bool AdvancedThresholdPolicy::is_method_profiled(Method* method) {
 156   MethodData* mdo = method->method_data();
 157   if (mdo != NULL) {
 158     int i = mdo->invocation_count_delta();
 159     int b = mdo->backedge_count_delta();
 160     return call_predicate_helper<CompLevel_full_profile>(i, b, 1, method);
 161   }
 162   return false;
 163 }
 164 
 165 // Called with the queue locked and with at least one element
 166 CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
 167 #if INCLUDE_JVMCI
 168   CompileTask *max_blocking_task = NULL;
 169 #endif
 170   CompileTask *max_task = NULL;
 171   Method* max_method = NULL;
 172   jlong t = os::javaTimeMillis();
 173   // Iterate through the queue and find a method with a maximum rate.
 174   for (CompileTask* task = compile_queue->first(); task != NULL;) {
 175     CompileTask* next_task = task->next();
 176     Method* method = task->method();
 177     update_rate(t, method);
 178     if (max_task == NULL) {
 179       max_task = task;
 180       max_method = method;
 181     } else {
 182       // If a method has been stale for some time, remove it from the queue.
 183       if (is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
 184         if (PrintTieredEvents) {
 185           print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
 186         }
 187         task->log_task_dequeued("stale");
 188         compile_queue->remove_and_mark_stale(task);
 189         method->clear_queued_for_compilation();
 190         task = next_task;
 191         continue;
 192       }
 193 
 194       // Select a method with a higher rate
 195       if (compare_methods(method, max_method)) {
 196         max_task = task;
 197         max_method = method;
 198       }
 199     }
 200 #if INCLUDE_JVMCI
 201     if (UseJVMCICompiler && task->is_blocking()) {
 202       if (max_blocking_task == NULL || compare_methods(method, max_blocking_task->method())) {
 203         max_blocking_task = task;
 204       }
 205     }
 206 #endif
 207     task = next_task;
 208   }
 209 
 210 #if INCLUDE_JVMCI
 211   if (UseJVMCICompiler) {
 212     if (max_blocking_task != NULL) {
 213       // In blocking compilation mode, the CompileBroker will make
 214       // compilations submitted by a JVMCI compiler thread non-blocking. These
 215       // compilations should be scheduled after all blocking compilations
 216       // to service non-compiler related compilations sooner and reduce the
 217       // chance of such compilations timing out.
 218       max_task = max_blocking_task;
 219       max_method = max_task->method();
 220     }
 221   }
 222 #endif
 223 
 224   if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile
 225       && is_method_profiled(max_method)) {
 226     max_task->set_comp_level(CompLevel_limited_profile);
 227     if (PrintTieredEvents) {
 228       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 229     }
 230   }
 231 
 232   return max_task;
 233 }
 234 
 235 double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
 236   double queue_size = CompileBroker::queue_size(level);
 237   int comp_count = compiler_count(level);
 238   double k = queue_size / (feedback_k * comp_count) + 1;
 239 
 240   // Increase C1 compile threshold when the code cache is filled more
 241   // than specified by IncreaseFirstTierCompileThresholdAt percentage.
 242   // The main intention is to keep enough free space for C2 compiled code
 243   // to achieve peak performance if the code cache is under stress.
 244   if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
 245     double current_reverse_free_ratio = CodeCache::reverse_free_ratio(CodeCache::get_code_blob_type(level));
 246     if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
 247       k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
 248     }
 249   }
 250   return k;
 251 }
 252 
 253 // Call and loop predicates determine whether a transition to a higher
 254 // compilation level should be performed (pointers to predicate functions
 255 // are passed to common()).
 256 // Tier?LoadFeedback is basically a coefficient that determines of
 257 // how many methods per compiler thread can be in the queue before
 258 // the threshold values double.
 259 bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level, Method* method) {
 260   switch(cur_level) {
 261   case CompLevel_none:
 262   case CompLevel_limited_profile: {
 263     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 264     return loop_predicate_helper<CompLevel_none>(i, b, k, method);
 265   }
 266   case CompLevel_full_profile: {
 267     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 268     return loop_predicate_helper<CompLevel_full_profile>(i, b, k, method);
 269   }
 270   default:
 271     return true;
 272   }
 273 }
 274 
 275 bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level, Method* method) {
 276   switch(cur_level) {
 277   case CompLevel_none:
 278   case CompLevel_limited_profile: {
 279     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 280     return call_predicate_helper<CompLevel_none>(i, b, k, method);
 281   }
 282   case CompLevel_full_profile: {
 283     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 284     return call_predicate_helper<CompLevel_full_profile>(i, b, k, method);
 285   }
 286   default:
 287     return true;
 288   }
 289 }
 290 
 291 // If a method is old enough and is still in the interpreter we would want to
 292 // start profiling without waiting for the compiled method to arrive.
 293 // We also take the load on compilers into the account.
 294 bool AdvancedThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
 295   if (cur_level == CompLevel_none &&
 296       CompileBroker::queue_size(CompLevel_full_optimization) <=
 297       Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 298     int i = method->invocation_count();
 299     int b = method->backedge_count();
 300     double k = Tier0ProfilingStartPercentage / 100.0;
 301     return call_predicate_helper<CompLevel_none>(i, b, k, method) || loop_predicate_helper<CompLevel_none>(i, b, k, method);
 302   }
 303   return false;
 304 }
 305 
 306 // Inlining control: if we're compiling a profiled method with C1 and the callee
 307 // is known to have OSRed in a C2 version, don't inline it.
 308 bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
 309   CompLevel comp_level = (CompLevel)env->comp_level();
 310   if (comp_level == CompLevel_full_profile ||
 311       comp_level == CompLevel_limited_profile) {
 312     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
 313   }
 314   return false;
 315 }
 316 
 317 // Create MDO if necessary.
 318 void AdvancedThresholdPolicy::create_mdo(methodHandle mh, JavaThread* THREAD) {
 319   if (mh->is_native() ||
 320       mh->is_abstract() ||
 321       mh->is_accessor() ||
 322       mh->is_constant_getter()) {
 323     return;
 324   }
 325   if (mh->method_data() == NULL) {
 326     Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
 327   }
 328 }
 329 
 330 
 331 /*
 332  * Method states:
 333  *   0 - interpreter (CompLevel_none)
 334  *   1 - pure C1 (CompLevel_simple)
 335  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
 336  *   3 - C1 with full profiling (CompLevel_full_profile)
 337  *   4 - C2 (CompLevel_full_optimization)
 338  *
 339  * Common state transition patterns:
 340  * a. 0 -> 3 -> 4.
 341  *    The most common path. But note that even in this straightforward case
 342  *    profiling can start at level 0 and finish at level 3.
 343  *
 344  * b. 0 -> 2 -> 3 -> 4.
 345  *    This case occurs when the load on C2 is deemed too high. So, instead of transitioning
 346  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
 347  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
 348  *
 349  * c. 0 -> (3->2) -> 4.
 350  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
 351  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
 352  *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
 353  *    without full profiling while c2 is compiling.
 354  *
 355  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
 356  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
 357  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
 358  *
 359  * e. 0 -> 4.
 360  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
 361  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
 362  *    the compiled version already exists).
 363  *
 364  * Note that since state 0 can be reached from any other state via deoptimization different loops
 365  * are possible.
 366  *
 367  */
 368 
 369 // Common transition function. Given a predicate determines if a method should transition to another level.
 370 CompLevel AdvancedThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
 371   CompLevel next_level = cur_level;
 372   int i = method->invocation_count();
 373   int b = method->backedge_count();
 374 
 375   if (is_trivial(method)) {
 376     next_level = CompLevel_simple;
 377   } else {
 378     switch(cur_level) {
 379     case CompLevel_none:
 380       // If we were at full profile level, would we switch to full opt?
 381       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
 382         next_level = CompLevel_full_optimization;
 383       } else if ((this->*p)(i, b, cur_level, method)) {
 384 #if INCLUDE_JVMCI
 385         if (UseJVMCICompiler) {
 386           // Since JVMCI takes a while to warm up, its queue inevitably backs up during
 387           // early VM execution.
 388           next_level = CompLevel_full_profile;
 389           break;
 390         }
 391 #endif
 392         // C1-generated fully profiled code is about 30% slower than the limited profile
 393         // code that has only invocation and backedge counters. The observation is that
 394         // if C2 queue is large enough we can spend too much time in the fully profiled code
 395         // while waiting for C2 to pick the method from the queue. To alleviate this problem
 396         // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
 397         // we choose to compile a limited profiled version and then recompile with full profiling
 398         // when the load on C2 goes down.
 399         if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
 400             Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 401           next_level = CompLevel_limited_profile;
 402         } else {
 403           next_level = CompLevel_full_profile;
 404         }
 405       }
 406       break;
 407     case CompLevel_limited_profile:
 408       if (is_method_profiled(method)) {
 409         // Special case: we got here because this method was fully profiled in the interpreter.
 410         next_level = CompLevel_full_optimization;
 411       } else {
 412         MethodData* mdo = method->method_data();
 413         if (mdo != NULL) {
 414           if (mdo->would_profile()) {
 415             if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
 416                                      Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
 417                                      (this->*p)(i, b, cur_level, method))) {
 418               next_level = CompLevel_full_profile;
 419             }
 420           } else {
 421             next_level = CompLevel_full_optimization;
 422           }
 423         }
 424       }
 425       break;
 426     case CompLevel_full_profile:
 427       {
 428         MethodData* mdo = method->method_data();
 429         if (mdo != NULL) {
 430           if (mdo->would_profile()) {
 431             int mdo_i = mdo->invocation_count_delta();
 432             int mdo_b = mdo->backedge_count_delta();
 433             if ((this->*p)(mdo_i, mdo_b, cur_level, method)) {
 434               next_level = CompLevel_full_optimization;
 435             }
 436           } else {
 437             next_level = CompLevel_full_optimization;
 438           }
 439         }
 440       }
 441       break;
 442     }
 443   }
 444   return MIN2(next_level, (CompLevel)TieredStopAtLevel);
 445 }
 446 
 447 // Determine if a method should be compiled with a normal entry point at a different level.
 448 CompLevel AdvancedThresholdPolicy::call_event(Method* method, CompLevel cur_level) {
 449   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
 450                              common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true));
 451   CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);
 452 
 453   // If OSR method level is greater than the regular method level, the levels should be
 454   // equalized by raising the regular method level in order to avoid OSRs during each
 455   // invocation of the method.
 456   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
 457     MethodData* mdo = method->method_data();
 458     guarantee(mdo != NULL, "MDO should not be NULL");
 459     if (mdo->invocation_count() >= 1) {
 460       next_level = CompLevel_full_optimization;
 461     }
 462   } else {
 463     next_level = MAX2(osr_level, next_level);
 464   }
 465   return next_level;
 466 }
 467 
 468 // Determine if we should do an OSR compilation of a given method.
 469 CompLevel AdvancedThresholdPolicy::loop_event(Method* method, CompLevel cur_level) {
 470   CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true);
 471   if (cur_level == CompLevel_none) {
 472     // If there is a live OSR method that means that we deopted to the interpreter
 473     // for the transition.
 474     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
 475     if (osr_level > CompLevel_none) {
 476       return osr_level;
 477     }
 478   }
 479   return next_level;
 480 }
 481 
 482 // Update the rate and submit compile
 483 void AdvancedThresholdPolicy::submit_compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) {
 484   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
 485   update_rate(os::javaTimeMillis(), mh());
 486   CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", thread);
 487 }
 488 
 489 // Handle the invocation event.
 490 void AdvancedThresholdPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
 491                                                       CompLevel level, nmethod* nm, JavaThread* thread) {
 492   if (should_create_mdo(mh(), level)) {
 493     create_mdo(mh, thread);
 494   }
 495   if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
 496     CompLevel next_level = call_event(mh(), level);
 497     if (next_level != level) {
 498       compile(mh, InvocationEntryBci, next_level, thread);
 499     }
 500   }
 501 }
 502 
 503 // Handle the back branch event. Notice that we can compile the method
 504 // with a regular entry from here.
 505 void AdvancedThresholdPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
 506                                                        int bci, CompLevel level, nmethod* nm, JavaThread* thread) {
 507   if (should_create_mdo(mh(), level)) {
 508     create_mdo(mh, thread);
 509   }
 510   // Check if MDO should be created for the inlined method
 511   if (should_create_mdo(imh(), level)) {
 512     create_mdo(imh, thread);
 513   }
 514 
 515   if (is_compilation_enabled()) {
 516     CompLevel next_osr_level = loop_event(imh(), level);
 517     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
 518     // At the very least compile the OSR version
 519     if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
 520       compile(imh, bci, next_osr_level, thread);
 521     }
 522 
 523     // Use loop event as an opportunity to also check if there's been
 524     // enough calls.
 525     CompLevel cur_level, next_level;
 526     if (mh() != imh()) { // If there is an enclosing method
 527       guarantee(nm != NULL, "Should have nmethod here");
 528       cur_level = comp_level(mh());
 529       next_level = call_event(mh(), cur_level);
 530 
 531       if (max_osr_level == CompLevel_full_optimization) {
 532         // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
 533         bool make_not_entrant = false;
 534         if (nm->is_osr_method()) {
 535           // This is an osr method, just make it not entrant and recompile later if needed
 536           make_not_entrant = true;
 537         } else {
 538           if (next_level != CompLevel_full_optimization) {
 539             // next_level is not full opt, so we need to recompile the
 540             // enclosing method without the inlinee
 541             cur_level = CompLevel_none;
 542             make_not_entrant = true;
 543           }
 544         }
 545         if (make_not_entrant) {
 546           if (PrintTieredEvents) {
 547             int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
 548             print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
 549           }
 550           nm->make_not_entrant();
 551         }
 552       }
 553       if (!CompileBroker::compilation_is_in_queue(mh)) {
 554         // Fix up next_level if necessary to avoid deopts
 555         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
 556           next_level = CompLevel_full_profile;
 557         }
 558         if (cur_level != next_level) {
 559           compile(mh, InvocationEntryBci, next_level, thread);
 560         }
 561       }
 562     } else {
 563       cur_level = comp_level(imh());
 564       next_level = call_event(imh(), cur_level);
 565       if (!CompileBroker::compilation_is_in_queue(imh) && (next_level != cur_level)) {
 566         compile(imh, InvocationEntryBci, next_level, thread);
 567       }
 568     }
 569   }
 570 }
 571 
 572 #endif // TIERED