1 /*
   2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
  26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
  27 
  28 #include "interpreter/bytecodes.hpp"
  29 #include "memory/universe.hpp"
  30 #include "oops/methodOop.hpp"
  31 #include "oops/oop.hpp"
  32 #include "runtime/orderAccess.hpp"
  33 
  34 class BytecodeStream;
  35 
  36 // The MethodData object collects counts and other profile information
  37 // during zeroth-tier (interpretive) and first-tier execution.
  38 // The profile is used later by compilation heuristics.  Some heuristics
  39 // enable use of aggressive (or "heroic") optimizations.  An aggressive
  40 // optimization often has a down-side, a corner case that it handles
  41 // poorly, but which is thought to be rare.  The profile provides
  42 // evidence of this rarity for a given method or even BCI.  It allows
  43 // the compiler to back out of the optimization at places where it
  44 // has historically been a poor choice.  Other heuristics try to use
  45 // specific information gathered about types observed at a given site.
  46 //
  47 // All data in the profile is approximate.  It is expected to be accurate
  48 // on the whole, but the system expects occasional inaccuraces, due to
  49 // counter overflow, multiprocessor races during data collection, space
  50 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
  51 // optimization quality but will not affect correctness.  Also, each MDO
  52 // is marked with its birth-date ("creation_mileage") which can be used
  53 // to assess the quality ("maturity") of its data.
  54 //
  55 // Short (<32-bit) counters are designed to overflow to a known "saturated"
  56 // state.  Also, certain recorded per-BCI events are given one-bit counters
  57 // which overflow to a saturated state which applied to all counters at
  58 // that BCI.  In other words, there is a small lattice which approximates
  59 // the ideal of an infinite-precision counter for each event at each BCI,
  60 // and the lattice quickly "bottoms out" in a state where all counters
  61 // are taken to be indefinitely large.
  62 //
  63 // The reader will find many data races in profile gathering code, starting
  64 // with invocation counter incrementation.  None of these races harm correct
  65 // execution of the compiled code.
  66 
  67 // forward decl
  68 class ProfileData;
  69 
  70 // DataLayout
  71 //
  72 // Overlay for generic profiling data.
  73 class DataLayout VALUE_OBJ_CLASS_SPEC {
  74 private:
  75   // Every data layout begins with a header.  This header
  76   // contains a tag, which is used to indicate the size/layout
  77   // of the data, 4 bits of flags, which can be used in any way,
  78   // 4 bits of trap history (none/one reason/many reasons),
  79   // and a bci, which is used to tie this piece of data to a
  80   // specific bci in the bytecodes.
  81   union {
  82     intptr_t _bits;
  83     struct {
  84       u1 _tag;
  85       u1 _flags;
  86       u2 _bci;
  87     } _struct;
  88   } _header;
  89 
  90   // The data layout has an arbitrary number of cells, each sized
  91   // to accomodate a pointer or an integer.
  92   intptr_t _cells[1];
  93 
  94   // Some types of data layouts need a length field.
  95   static bool needs_array_len(u1 tag);
  96 
  97 public:
  98   enum {
  99     counter_increment = 1
 100   };
 101 
 102   enum {
 103     cell_size = sizeof(intptr_t)
 104   };
 105 
 106   // Tag values
 107   enum {
 108     no_tag,
 109     bit_data_tag,
 110     counter_data_tag,
 111     jump_data_tag,
 112     receiver_type_data_tag,
 113     virtual_call_data_tag,
 114     ret_data_tag,
 115     branch_data_tag,
 116     multi_branch_data_tag,
 117     arg_info_data_tag
 118   };
 119 
 120   enum {
 121     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
 122     // The trap state breaks down further as [recompile:1 | reason:3].
 123     // This further breakdown is defined in deoptimization.cpp.
 124     // See Deoptimization::trap_state_reason for an assert that
 125     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
 126     //
 127     // The trap_state is collected only if ProfileTraps is true.
 128     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
 129     trap_shift = BitsPerByte - trap_bits,
 130     trap_mask = right_n_bits(trap_bits),
 131     trap_mask_in_place = (trap_mask << trap_shift),
 132     flag_limit = trap_shift,
 133     flag_mask = right_n_bits(flag_limit),
 134     first_flag = 0
 135   };
 136 
 137   // Size computation
 138   static int header_size_in_bytes() {
 139     return cell_size;
 140   }
 141   static int header_size_in_cells() {
 142     return 1;
 143   }
 144 
 145   static int compute_size_in_bytes(int cell_count) {
 146     return header_size_in_bytes() + cell_count * cell_size;
 147   }
 148 
 149   // Initialization
 150   void initialize(u1 tag, u2 bci, int cell_count);
 151 
 152   // Accessors
 153   u1 tag() {
 154     return _header._struct._tag;
 155   }
 156 
 157   // Return a few bits of trap state.  Range is [0..trap_mask].
 158   // The state tells if traps with zero, one, or many reasons have occurred.
 159   // It also tells whether zero or many recompilations have occurred.
 160   // The associated trap histogram in the MDO itself tells whether
 161   // traps are common or not.  If a BCI shows that a trap X has
 162   // occurred, and the MDO shows N occurrences of X, we make the
 163   // simplifying assumption that all N occurrences can be blamed
 164   // on that BCI.
 165   int trap_state() {
 166     return ((_header._struct._flags >> trap_shift) & trap_mask);
 167   }
 168 
 169   void set_trap_state(int new_state) {
 170     assert(ProfileTraps, "used only under +ProfileTraps");
 171     uint old_flags = (_header._struct._flags & flag_mask);
 172     _header._struct._flags = (new_state << trap_shift) | old_flags;
 173   }
 174 
 175   u1 flags() {
 176     return _header._struct._flags;
 177   }
 178 
 179   u2 bci() {
 180     return _header._struct._bci;
 181   }
 182 
 183   void set_header(intptr_t value) {
 184     _header._bits = value;
 185   }
 186   void release_set_header(intptr_t value) {
 187     OrderAccess::release_store_ptr(&_header._bits, value);
 188   }
 189   intptr_t header() {
 190     return _header._bits;
 191   }
 192   void set_cell_at(int index, intptr_t value) {
 193     _cells[index] = value;
 194   }
 195   void release_set_cell_at(int index, intptr_t value) {
 196     OrderAccess::release_store_ptr(&_cells[index], value);
 197   }
 198   intptr_t cell_at(int index) {
 199     return _cells[index];
 200   }
 201   intptr_t* adr_cell_at(int index) {
 202     return &_cells[index];
 203   }
 204   oop* adr_oop_at(int index) {
 205     return (oop*)&(_cells[index]);
 206   }
 207 
 208   void set_flag_at(int flag_number) {
 209     assert(flag_number < flag_limit, "oob");
 210     _header._struct._flags |= (0x1 << flag_number);
 211   }
 212   bool flag_at(int flag_number) {
 213     assert(flag_number < flag_limit, "oob");
 214     return (_header._struct._flags & (0x1 << flag_number)) != 0;
 215   }
 216 
 217   // Low-level support for code generation.
 218   static ByteSize header_offset() {
 219     return byte_offset_of(DataLayout, _header);
 220   }
 221   static ByteSize tag_offset() {
 222     return byte_offset_of(DataLayout, _header._struct._tag);
 223   }
 224   static ByteSize flags_offset() {
 225     return byte_offset_of(DataLayout, _header._struct._flags);
 226   }
 227   static ByteSize bci_offset() {
 228     return byte_offset_of(DataLayout, _header._struct._bci);
 229   }
 230   static ByteSize cell_offset(int index) {
 231     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
 232   }
 233   // Return a value which, when or-ed as a byte into _flags, sets the flag.
 234   static int flag_number_to_byte_constant(int flag_number) {
 235     assert(0 <= flag_number && flag_number < flag_limit, "oob");
 236     DataLayout temp; temp.set_header(0);
 237     temp.set_flag_at(flag_number);
 238     return temp._header._struct._flags;
 239   }
 240   // Return a value which, when or-ed as a word into _header, sets the flag.
 241   static intptr_t flag_mask_to_header_mask(int byte_constant) {
 242     DataLayout temp; temp.set_header(0);
 243     temp._header._struct._flags = byte_constant;
 244     return temp._header._bits;
 245   }
 246 
 247   // GC support
 248   ProfileData* data_in();
 249   void follow_weak_refs(BoolObjectClosure* cl);
 250 };
 251 
 252 
 253 // ProfileData class hierarchy
 254 class ProfileData;
 255 class   BitData;
 256 class     CounterData;
 257 class       ReceiverTypeData;
 258 class         VirtualCallData;
 259 class       RetData;
 260 class   JumpData;
 261 class     BranchData;
 262 class   ArrayData;
 263 class     MultiBranchData;
 264 class     ArgInfoData;
 265 
 266 
 267 // ProfileData
 268 //
 269 // A ProfileData object is created to refer to a section of profiling
 270 // data in a structured way.
 271 class ProfileData : public ResourceObj {
 272 private:
 273 #ifndef PRODUCT
 274   enum {
 275     tab_width_one = 16,
 276     tab_width_two = 36
 277   };
 278 #endif // !PRODUCT
 279 
 280   // This is a pointer to a section of profiling data.
 281   DataLayout* _data;
 282 
 283 protected:
 284   DataLayout* data() { return _data; }
 285 
 286   enum {
 287     cell_size = DataLayout::cell_size
 288   };
 289 
 290 public:
 291   // How many cells are in this?
 292   virtual int cell_count() {
 293     ShouldNotReachHere();
 294     return -1;
 295   }
 296 
 297   // Return the size of this data.
 298   int size_in_bytes() {
 299     return DataLayout::compute_size_in_bytes(cell_count());
 300   }
 301 
 302 protected:
 303   // Low-level accessors for underlying data
 304   void set_intptr_at(int index, intptr_t value) {
 305     assert(0 <= index && index < cell_count(), "oob");
 306     data()->set_cell_at(index, value);
 307   }
 308   void release_set_intptr_at(int index, intptr_t value) {
 309     assert(0 <= index && index < cell_count(), "oob");
 310     data()->release_set_cell_at(index, value);
 311   }
 312   intptr_t intptr_at(int index) {
 313     assert(0 <= index && index < cell_count(), "oob");
 314     return data()->cell_at(index);
 315   }
 316   void set_uint_at(int index, uint value) {
 317     set_intptr_at(index, (intptr_t) value);
 318   }
 319   void release_set_uint_at(int index, uint value) {
 320     release_set_intptr_at(index, (intptr_t) value);
 321   }
 322   uint uint_at(int index) {
 323     return (uint)intptr_at(index);
 324   }
 325   void set_int_at(int index, int value) {
 326     set_intptr_at(index, (intptr_t) value);
 327   }
 328   void release_set_int_at(int index, int value) {
 329     release_set_intptr_at(index, (intptr_t) value);
 330   }
 331   int int_at(int index) {
 332     return (int)intptr_at(index);
 333   }
 334   int int_at_unchecked(int index) {
 335     return (int)data()->cell_at(index);
 336   }
 337   void set_oop_at(int index, oop value) {
 338     set_intptr_at(index, (intptr_t) value);
 339   }
 340   oop oop_at(int index) {
 341     return (oop)intptr_at(index);
 342   }
 343   oop* adr_oop_at(int index) {
 344     assert(0 <= index && index < cell_count(), "oob");
 345     return data()->adr_oop_at(index);
 346   }
 347 
 348   void set_flag_at(int flag_number) {
 349     data()->set_flag_at(flag_number);
 350   }
 351   bool flag_at(int flag_number) {
 352     return data()->flag_at(flag_number);
 353   }
 354 
 355   // two convenient imports for use by subclasses:
 356   static ByteSize cell_offset(int index) {
 357     return DataLayout::cell_offset(index);
 358   }
 359   static int flag_number_to_byte_constant(int flag_number) {
 360     return DataLayout::flag_number_to_byte_constant(flag_number);
 361   }
 362 
 363   ProfileData(DataLayout* data) {
 364     _data = data;
 365   }
 366 
 367 public:
 368   // Constructor for invalid ProfileData.
 369   ProfileData();
 370 
 371   u2 bci() {
 372     return data()->bci();
 373   }
 374 
 375   address dp() {
 376     return (address)_data;
 377   }
 378 
 379   int trap_state() {
 380     return data()->trap_state();
 381   }
 382   void set_trap_state(int new_state) {
 383     data()->set_trap_state(new_state);
 384   }
 385 
 386   // Type checking
 387   virtual bool is_BitData()         { return false; }
 388   virtual bool is_CounterData()     { return false; }
 389   virtual bool is_JumpData()        { return false; }
 390   virtual bool is_ReceiverTypeData(){ return false; }
 391   virtual bool is_VirtualCallData() { return false; }
 392   virtual bool is_RetData()         { return false; }
 393   virtual bool is_BranchData()      { return false; }
 394   virtual bool is_ArrayData()       { return false; }
 395   virtual bool is_MultiBranchData() { return false; }
 396   virtual bool is_ArgInfoData()     { return false; }
 397 
 398 
 399   BitData* as_BitData() {
 400     assert(is_BitData(), "wrong type");
 401     return is_BitData()         ? (BitData*)        this : NULL;
 402   }
 403   CounterData* as_CounterData() {
 404     assert(is_CounterData(), "wrong type");
 405     return is_CounterData()     ? (CounterData*)    this : NULL;
 406   }
 407   JumpData* as_JumpData() {
 408     assert(is_JumpData(), "wrong type");
 409     return is_JumpData()        ? (JumpData*)       this : NULL;
 410   }
 411   ReceiverTypeData* as_ReceiverTypeData() {
 412     assert(is_ReceiverTypeData(), "wrong type");
 413     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
 414   }
 415   VirtualCallData* as_VirtualCallData() {
 416     assert(is_VirtualCallData(), "wrong type");
 417     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
 418   }
 419   RetData* as_RetData() {
 420     assert(is_RetData(), "wrong type");
 421     return is_RetData()         ? (RetData*)        this : NULL;
 422   }
 423   BranchData* as_BranchData() {
 424     assert(is_BranchData(), "wrong type");
 425     return is_BranchData()      ? (BranchData*)     this : NULL;
 426   }
 427   ArrayData* as_ArrayData() {
 428     assert(is_ArrayData(), "wrong type");
 429     return is_ArrayData()       ? (ArrayData*)      this : NULL;
 430   }
 431   MultiBranchData* as_MultiBranchData() {
 432     assert(is_MultiBranchData(), "wrong type");
 433     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
 434   }
 435   ArgInfoData* as_ArgInfoData() {
 436     assert(is_ArgInfoData(), "wrong type");
 437     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
 438   }
 439 
 440 
 441   // Subclass specific initialization
 442   virtual void post_initialize(BytecodeStream* stream, methodDataOop mdo) {}
 443 
 444   // GC support
 445   virtual void follow_contents() {}
 446   virtual void oop_iterate(OopClosure* blk) {}
 447   virtual void oop_iterate_m(OopClosure* blk, MemRegion mr) {}
 448   virtual void adjust_pointers() {}
 449   virtual void follow_weak_refs(BoolObjectClosure* is_alive_closure) {}
 450 
 451 #ifndef SERIALGC
 452   // Parallel old support
 453   virtual void follow_contents(ParCompactionManager* cm) {}
 454   virtual void update_pointers() {}
 455 #endif // SERIALGC
 456 
 457   // CI translation: ProfileData can represent both MethodDataOop data
 458   // as well as CIMethodData data. This function is provided for translating
 459   // an oop in a ProfileData to the ci equivalent. Generally speaking,
 460   // most ProfileData don't require any translation, so we provide the null
 461   // translation here, and the required translators are in the ci subclasses.
 462   virtual void translate_from(ProfileData* data) {}
 463 
 464   virtual void print_data_on(outputStream* st) {
 465     ShouldNotReachHere();
 466   }
 467 
 468 #ifndef PRODUCT
 469   void print_shared(outputStream* st, const char* name);
 470   void tab(outputStream* st);
 471 #endif
 472 };
 473 
 474 // BitData
 475 //
 476 // A BitData holds a flag or two in its header.
 477 class BitData : public ProfileData {
 478 protected:
 479   enum {
 480     // null_seen:
 481     //  saw a null operand (cast/aastore/instanceof)
 482     null_seen_flag              = DataLayout::first_flag + 0
 483   };
 484   enum { bit_cell_count = 0 };  // no additional data fields needed.
 485 public:
 486   BitData(DataLayout* layout) : ProfileData(layout) {
 487   }
 488 
 489   virtual bool is_BitData() { return true; }
 490 
 491   static int static_cell_count() {
 492     return bit_cell_count;
 493   }
 494 
 495   virtual int cell_count() {
 496     return static_cell_count();
 497   }
 498 
 499   // Accessor
 500 
 501   // The null_seen flag bit is specially known to the interpreter.
 502   // Consulting it allows the compiler to avoid setting up null_check traps.
 503   bool null_seen()     { return flag_at(null_seen_flag); }
 504   void set_null_seen()    { set_flag_at(null_seen_flag); }
 505 
 506 
 507   // Code generation support
 508   static int null_seen_byte_constant() {
 509     return flag_number_to_byte_constant(null_seen_flag);
 510   }
 511 
 512   static ByteSize bit_data_size() {
 513     return cell_offset(bit_cell_count);
 514   }
 515 
 516 #ifndef PRODUCT
 517   void print_data_on(outputStream* st);
 518 #endif
 519 };
 520 
 521 // CounterData
 522 //
 523 // A CounterData corresponds to a simple counter.
 524 class CounterData : public BitData {
 525 protected:
 526   enum {
 527     count_off,
 528     counter_cell_count
 529   };
 530 public:
 531   CounterData(DataLayout* layout) : BitData(layout) {}
 532 
 533   virtual bool is_CounterData() { return true; }
 534 
 535   static int static_cell_count() {
 536     return counter_cell_count;
 537   }
 538 
 539   virtual int cell_count() {
 540     return static_cell_count();
 541   }
 542 
 543   // Direct accessor
 544   uint count() {
 545     return uint_at(count_off);
 546   }
 547 
 548   // Code generation support
 549   static ByteSize count_offset() {
 550     return cell_offset(count_off);
 551   }
 552   static ByteSize counter_data_size() {
 553     return cell_offset(counter_cell_count);
 554   }
 555 
 556   void set_count(uint count) {
 557     set_uint_at(count_off, count);
 558   }
 559 
 560 #ifndef PRODUCT
 561   void print_data_on(outputStream* st);
 562 #endif
 563 };
 564 
 565 // JumpData
 566 //
 567 // A JumpData is used to access profiling information for a direct
 568 // branch.  It is a counter, used for counting the number of branches,
 569 // plus a data displacement, used for realigning the data pointer to
 570 // the corresponding target bci.
 571 class JumpData : public ProfileData {
 572 protected:
 573   enum {
 574     taken_off_set,
 575     displacement_off_set,
 576     jump_cell_count
 577   };
 578 
 579   void set_displacement(int displacement) {
 580     set_int_at(displacement_off_set, displacement);
 581   }
 582 
 583 public:
 584   JumpData(DataLayout* layout) : ProfileData(layout) {
 585     assert(layout->tag() == DataLayout::jump_data_tag ||
 586       layout->tag() == DataLayout::branch_data_tag, "wrong type");
 587   }
 588 
 589   virtual bool is_JumpData() { return true; }
 590 
 591   static int static_cell_count() {
 592     return jump_cell_count;
 593   }
 594 
 595   virtual int cell_count() {
 596     return static_cell_count();
 597   }
 598 
 599   // Direct accessor
 600   uint taken() {
 601     return uint_at(taken_off_set);
 602   }
 603 
 604   void set_taken(uint cnt) {
 605     set_uint_at(taken_off_set, cnt);
 606   }
 607 
 608   // Saturating counter
 609   uint inc_taken() {
 610     uint cnt = taken() + 1;
 611     // Did we wrap? Will compiler screw us??
 612     if (cnt == 0) cnt--;
 613     set_uint_at(taken_off_set, cnt);
 614     return cnt;
 615   }
 616 
 617   int displacement() {
 618     return int_at(displacement_off_set);
 619   }
 620 
 621   // Code generation support
 622   static ByteSize taken_offset() {
 623     return cell_offset(taken_off_set);
 624   }
 625 
 626   static ByteSize displacement_offset() {
 627     return cell_offset(displacement_off_set);
 628   }
 629 
 630   // Specific initialization.
 631   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
 632 
 633 #ifndef PRODUCT
 634   void print_data_on(outputStream* st);
 635 #endif
 636 };
 637 
 638 // ReceiverTypeData
 639 //
 640 // A ReceiverTypeData is used to access profiling information about a
 641 // dynamic type check.  It consists of a counter which counts the total times
 642 // that the check is reached, and a series of (klassOop, count) pairs
 643 // which are used to store a type profile for the receiver of the check.
 644 class ReceiverTypeData : public CounterData {
 645 protected:
 646   enum {
 647     receiver0_offset = counter_cell_count,
 648     count0_offset,
 649     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
 650   };
 651 
 652 public:
 653   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
 654     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
 655            layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
 656   }
 657 
 658   virtual bool is_ReceiverTypeData() { return true; }
 659 
 660   static int static_cell_count() {
 661     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
 662   }
 663 
 664   virtual int cell_count() {
 665     return static_cell_count();
 666   }
 667 
 668   // Direct accessors
 669   static uint row_limit() {
 670     return TypeProfileWidth;
 671   }
 672   static int receiver_cell_index(uint row) {
 673     return receiver0_offset + row * receiver_type_row_cell_count;
 674   }
 675   static int receiver_count_cell_index(uint row) {
 676     return count0_offset + row * receiver_type_row_cell_count;
 677   }
 678 
 679   // Get the receiver at row.  The 'unchecked' version is needed by parallel old
 680   // gc; it does not assert the receiver is a klass.  During compaction of the
 681   // perm gen, the klass may already have moved, so the is_klass() predicate
 682   // would fail.  The 'normal' version should be used whenever possible.
 683   klassOop receiver_unchecked(uint row) {
 684     assert(row < row_limit(), "oob");
 685     oop recv = oop_at(receiver_cell_index(row));
 686     return (klassOop)recv;
 687   }
 688 
 689   klassOop receiver(uint row) {
 690     klassOop recv = receiver_unchecked(row);
 691     assert(recv == NULL || ((oop)recv)->is_klass(), "wrong type");
 692     return recv;
 693   }
 694 
 695   void set_receiver(uint row, oop p) {
 696     assert((uint)row < row_limit(), "oob");
 697     set_oop_at(receiver_cell_index(row), p);
 698   }
 699 
 700   uint receiver_count(uint row) {
 701     assert(row < row_limit(), "oob");
 702     return uint_at(receiver_count_cell_index(row));
 703   }
 704 
 705   void set_receiver_count(uint row, uint count) {
 706     assert(row < row_limit(), "oob");
 707     set_uint_at(receiver_count_cell_index(row), count);
 708   }
 709 
 710   void clear_row(uint row) {
 711     assert(row < row_limit(), "oob");
 712     // Clear total count - indicator of polymorphic call site.
 713     // The site may look like as monomorphic after that but
 714     // it allow to have more accurate profiling information because
 715     // there was execution phase change since klasses were unloaded.
 716     // If the site is still polymorphic then MDO will be updated
 717     // to reflect it. But it could be the case that the site becomes
 718     // only bimorphic. Then keeping total count not 0 will be wrong.
 719     // Even if we use monomorphic (when it is not) for compilation
 720     // we will only have trap, deoptimization and recompile again
 721     // with updated MDO after executing method in Interpreter.
 722     // An additional receiver will be recorded in the cleaned row
 723     // during next call execution.
 724     //
 725     // Note: our profiling logic works with empty rows in any slot.
 726     // We do sorting a profiling info (ciCallProfile) for compilation.
 727     //
 728     set_count(0);
 729     set_receiver(row, NULL);
 730     set_receiver_count(row, 0);
 731   }
 732 
 733   // Code generation support
 734   static ByteSize receiver_offset(uint row) {
 735     return cell_offset(receiver_cell_index(row));
 736   }
 737   static ByteSize receiver_count_offset(uint row) {
 738     return cell_offset(receiver_count_cell_index(row));
 739   }
 740   static ByteSize receiver_type_data_size() {
 741     return cell_offset(static_cell_count());
 742   }
 743 
 744   // GC support
 745   virtual void follow_contents();
 746   virtual void oop_iterate(OopClosure* blk);
 747   virtual void oop_iterate_m(OopClosure* blk, MemRegion mr);
 748   virtual void adjust_pointers();
 749   virtual void follow_weak_refs(BoolObjectClosure* is_alive_closure);
 750 
 751 #ifndef SERIALGC
 752   // Parallel old support
 753   virtual void follow_contents(ParCompactionManager* cm);
 754   virtual void update_pointers();
 755 #endif // SERIALGC
 756 
 757   oop* adr_receiver(uint row) {
 758     return adr_oop_at(receiver_cell_index(row));
 759   }
 760 
 761 #ifndef PRODUCT
 762   void print_receiver_data_on(outputStream* st);
 763   void print_data_on(outputStream* st);
 764 #endif
 765 };
 766 
 767 // VirtualCallData
 768 //
 769 // A VirtualCallData is used to access profiling information about a
 770 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
 771 class VirtualCallData : public ReceiverTypeData {
 772 public:
 773   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
 774     assert(layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
 775   }
 776 
 777   virtual bool is_VirtualCallData() { return true; }
 778 
 779   static int static_cell_count() {
 780     // At this point we could add more profile state, e.g., for arguments.
 781     // But for now it's the same size as the base record type.
 782     return ReceiverTypeData::static_cell_count();
 783   }
 784 
 785   virtual int cell_count() {
 786     return static_cell_count();
 787   }
 788 
 789   // Direct accessors
 790   static ByteSize virtual_call_data_size() {
 791     return cell_offset(static_cell_count());
 792   }
 793 
 794 #ifndef PRODUCT
 795   void print_data_on(outputStream* st);
 796 #endif
 797 };
 798 
 799 // RetData
 800 //
 801 // A RetData is used to access profiling information for a ret bytecode.
 802 // It is composed of a count of the number of times that the ret has
 803 // been executed, followed by a series of triples of the form
 804 // (bci, count, di) which count the number of times that some bci was the
 805 // target of the ret and cache a corresponding data displacement.
 806 class RetData : public CounterData {
 807 protected:
 808   enum {
 809     bci0_offset = counter_cell_count,
 810     count0_offset,
 811     displacement0_offset,
 812     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
 813   };
 814 
 815   void set_bci(uint row, int bci) {
 816     assert((uint)row < row_limit(), "oob");
 817     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
 818   }
 819   void release_set_bci(uint row, int bci) {
 820     assert((uint)row < row_limit(), "oob");
 821     // 'release' when setting the bci acts as a valid flag for other
 822     // threads wrt bci_count and bci_displacement.
 823     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
 824   }
 825   void set_bci_count(uint row, uint count) {
 826     assert((uint)row < row_limit(), "oob");
 827     set_uint_at(count0_offset + row * ret_row_cell_count, count);
 828   }
 829   void set_bci_displacement(uint row, int disp) {
 830     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
 831   }
 832 
 833 public:
 834   RetData(DataLayout* layout) : CounterData(layout) {
 835     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
 836   }
 837 
 838   virtual bool is_RetData() { return true; }
 839 
 840   enum {
 841     no_bci = -1 // value of bci when bci1/2 are not in use.
 842   };
 843 
 844   static int static_cell_count() {
 845     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
 846   }
 847 
 848   virtual int cell_count() {
 849     return static_cell_count();
 850   }
 851 
 852   static uint row_limit() {
 853     return BciProfileWidth;
 854   }
 855   static int bci_cell_index(uint row) {
 856     return bci0_offset + row * ret_row_cell_count;
 857   }
 858   static int bci_count_cell_index(uint row) {
 859     return count0_offset + row * ret_row_cell_count;
 860   }
 861   static int bci_displacement_cell_index(uint row) {
 862     return displacement0_offset + row * ret_row_cell_count;
 863   }
 864 
 865   // Direct accessors
 866   int bci(uint row) {
 867     return int_at(bci_cell_index(row));
 868   }
 869   uint bci_count(uint row) {
 870     return uint_at(bci_count_cell_index(row));
 871   }
 872   int bci_displacement(uint row) {
 873     return int_at(bci_displacement_cell_index(row));
 874   }
 875 
 876   // Interpreter Runtime support
 877   address fixup_ret(int return_bci, methodDataHandle mdo);
 878 
 879   // Code generation support
 880   static ByteSize bci_offset(uint row) {
 881     return cell_offset(bci_cell_index(row));
 882   }
 883   static ByteSize bci_count_offset(uint row) {
 884     return cell_offset(bci_count_cell_index(row));
 885   }
 886   static ByteSize bci_displacement_offset(uint row) {
 887     return cell_offset(bci_displacement_cell_index(row));
 888   }
 889 
 890   // Specific initialization.
 891   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
 892 
 893 #ifndef PRODUCT
 894   void print_data_on(outputStream* st);
 895 #endif
 896 };
 897 
 898 // BranchData
 899 //
 900 // A BranchData is used to access profiling data for a two-way branch.
 901 // It consists of taken and not_taken counts as well as a data displacement
 902 // for the taken case.
 903 class BranchData : public JumpData {
 904 protected:
 905   enum {
 906     not_taken_off_set = jump_cell_count,
 907     branch_cell_count
 908   };
 909 
 910   void set_displacement(int displacement) {
 911     set_int_at(displacement_off_set, displacement);
 912   }
 913 
 914 public:
 915   BranchData(DataLayout* layout) : JumpData(layout) {
 916     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
 917   }
 918 
 919   virtual bool is_BranchData() { return true; }
 920 
 921   static int static_cell_count() {
 922     return branch_cell_count;
 923   }
 924 
 925   virtual int cell_count() {
 926     return static_cell_count();
 927   }
 928 
 929   // Direct accessor
 930   uint not_taken() {
 931     return uint_at(not_taken_off_set);
 932   }
 933 
 934   void set_not_taken(uint cnt) {
 935     set_uint_at(not_taken_off_set, cnt);
 936   }
 937 
 938   uint inc_not_taken() {
 939     uint cnt = not_taken() + 1;
 940     // Did we wrap? Will compiler screw us??
 941     if (cnt == 0) cnt--;
 942     set_uint_at(not_taken_off_set, cnt);
 943     return cnt;
 944   }
 945 
 946   // Code generation support
 947   static ByteSize not_taken_offset() {
 948     return cell_offset(not_taken_off_set);
 949   }
 950   static ByteSize branch_data_size() {
 951     return cell_offset(branch_cell_count);
 952   }
 953 
 954   // Specific initialization.
 955   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
 956 
 957 #ifndef PRODUCT
 958   void print_data_on(outputStream* st);
 959 #endif
 960 };
 961 
 962 // ArrayData
 963 //
 964 // A ArrayData is a base class for accessing profiling data which does
 965 // not have a statically known size.  It consists of an array length
 966 // and an array start.
 967 class ArrayData : public ProfileData {
 968 protected:
 969   friend class DataLayout;
 970 
 971   enum {
 972     array_len_off_set,
 973     array_start_off_set
 974   };
 975 
 976   uint array_uint_at(int index) {
 977     int aindex = index + array_start_off_set;
 978     return uint_at(aindex);
 979   }
 980   int array_int_at(int index) {
 981     int aindex = index + array_start_off_set;
 982     return int_at(aindex);
 983   }
 984   oop array_oop_at(int index) {
 985     int aindex = index + array_start_off_set;
 986     return oop_at(aindex);
 987   }
 988   void array_set_int_at(int index, int value) {
 989     int aindex = index + array_start_off_set;
 990     set_int_at(aindex, value);
 991   }
 992 
 993   // Code generation support for subclasses.
 994   static ByteSize array_element_offset(int index) {
 995     return cell_offset(array_start_off_set + index);
 996   }
 997 
 998 public:
 999   ArrayData(DataLayout* layout) : ProfileData(layout) {}
1000 
1001   virtual bool is_ArrayData() { return true; }
1002 
1003   static int static_cell_count() {
1004     return -1;
1005   }
1006 
1007   int array_len() {
1008     return int_at_unchecked(array_len_off_set);
1009   }
1010 
1011   virtual int cell_count() {
1012     return array_len() + 1;
1013   }
1014 
1015   // Code generation support
1016   static ByteSize array_len_offset() {
1017     return cell_offset(array_len_off_set);
1018   }
1019   static ByteSize array_start_offset() {
1020     return cell_offset(array_start_off_set);
1021   }
1022 };
1023 
1024 // MultiBranchData
1025 //
1026 // A MultiBranchData is used to access profiling information for
1027 // a multi-way branch (*switch bytecodes).  It consists of a series
1028 // of (count, displacement) pairs, which count the number of times each
1029 // case was taken and specify the data displacment for each branch target.
1030 class MultiBranchData : public ArrayData {
1031 protected:
1032   enum {
1033     default_count_off_set,
1034     default_disaplacement_off_set,
1035     case_array_start
1036   };
1037   enum {
1038     relative_count_off_set,
1039     relative_displacement_off_set,
1040     per_case_cell_count
1041   };
1042 
1043   void set_default_displacement(int displacement) {
1044     array_set_int_at(default_disaplacement_off_set, displacement);
1045   }
1046   void set_displacement_at(int index, int displacement) {
1047     array_set_int_at(case_array_start +
1048                      index * per_case_cell_count +
1049                      relative_displacement_off_set,
1050                      displacement);
1051   }
1052 
1053 public:
1054   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
1055     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
1056   }
1057 
1058   virtual bool is_MultiBranchData() { return true; }
1059 
1060   static int compute_cell_count(BytecodeStream* stream);
1061 
1062   int number_of_cases() {
1063     int alen = array_len() - 2; // get rid of default case here.
1064     assert(alen % per_case_cell_count == 0, "must be even");
1065     return (alen / per_case_cell_count);
1066   }
1067 
1068   uint default_count() {
1069     return array_uint_at(default_count_off_set);
1070   }
1071   int default_displacement() {
1072     return array_int_at(default_disaplacement_off_set);
1073   }
1074 
1075   uint count_at(int index) {
1076     return array_uint_at(case_array_start +
1077                          index * per_case_cell_count +
1078                          relative_count_off_set);
1079   }
1080   int displacement_at(int index) {
1081     return array_int_at(case_array_start +
1082                         index * per_case_cell_count +
1083                         relative_displacement_off_set);
1084   }
1085 
1086   // Code generation support
1087   static ByteSize default_count_offset() {
1088     return array_element_offset(default_count_off_set);
1089   }
1090   static ByteSize default_displacement_offset() {
1091     return array_element_offset(default_disaplacement_off_set);
1092   }
1093   static ByteSize case_count_offset(int index) {
1094     return case_array_offset() +
1095            (per_case_size() * index) +
1096            relative_count_offset();
1097   }
1098   static ByteSize case_array_offset() {
1099     return array_element_offset(case_array_start);
1100   }
1101   static ByteSize per_case_size() {
1102     return in_ByteSize(per_case_cell_count) * cell_size;
1103   }
1104   static ByteSize relative_count_offset() {
1105     return in_ByteSize(relative_count_off_set) * cell_size;
1106   }
1107   static ByteSize relative_displacement_offset() {
1108     return in_ByteSize(relative_displacement_off_set) * cell_size;
1109   }
1110 
1111   // Specific initialization.
1112   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
1113 
1114 #ifndef PRODUCT
1115   void print_data_on(outputStream* st);
1116 #endif
1117 };
1118 
1119 class ArgInfoData : public ArrayData {
1120 
1121 public:
1122   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
1123     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
1124   }
1125 
1126   virtual bool is_ArgInfoData() { return true; }
1127 
1128 
1129   int number_of_args() {
1130     return array_len();
1131   }
1132 
1133   uint arg_modified(int arg) {
1134     return array_uint_at(arg);
1135   }
1136 
1137   void set_arg_modified(int arg, uint val) {
1138     array_set_int_at(arg, val);
1139   }
1140 
1141 #ifndef PRODUCT
1142   void print_data_on(outputStream* st);
1143 #endif
1144 };
1145 
1146 // methodDataOop
1147 //
1148 // A methodDataOop holds information which has been collected about
1149 // a method.  Its layout looks like this:
1150 //
1151 // -----------------------------
1152 // | header                    |
1153 // | klass                     |
1154 // -----------------------------
1155 // | method                    |
1156 // | size of the methodDataOop |
1157 // -----------------------------
1158 // | Data entries...           |
1159 // |   (variable size)         |
1160 // |                           |
1161 // .                           .
1162 // .                           .
1163 // .                           .
1164 // |                           |
1165 // -----------------------------
1166 //
1167 // The data entry area is a heterogeneous array of DataLayouts. Each
1168 // DataLayout in the array corresponds to a specific bytecode in the
1169 // method.  The entries in the array are sorted by the corresponding
1170 // bytecode.  Access to the data is via resource-allocated ProfileData,
1171 // which point to the underlying blocks of DataLayout structures.
1172 //
1173 // During interpretation, if profiling in enabled, the interpreter
1174 // maintains a method data pointer (mdp), which points at the entry
1175 // in the array corresponding to the current bci.  In the course of
1176 // intepretation, when a bytecode is encountered that has profile data
1177 // associated with it, the entry pointed to by mdp is updated, then the
1178 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
1179 // is NULL to begin with, the interpreter assumes that the current method
1180 // is not (yet) being profiled.
1181 //
1182 // In methodDataOop parlance, "dp" is a "data pointer", the actual address
1183 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
1184 // from the base of the data entry array.  A "displacement" is the byte offset
1185 // in certain ProfileData objects that indicate the amount the mdp must be
1186 // adjusted in the event of a change in control flow.
1187 //
1188 
1189 class methodDataOopDesc : public oopDesc {
1190   friend class VMStructs;
1191 private:
1192   friend class ProfileData;
1193 
1194   // Back pointer to the methodOop
1195   methodOop _method;
1196 
1197   // Size of this oop in bytes
1198   int _size;
1199 
1200   // Cached hint for bci_to_dp and bci_to_data
1201   int _hint_di;
1202 
1203   // Whole-method sticky bits and flags
1204 public:
1205   enum {
1206     _trap_hist_limit    = 17,   // decoupled from Deoptimization::Reason_LIMIT
1207     _trap_hist_mask     = max_jubyte,
1208     _extra_data_count   = 4     // extra DataLayout headers, for trap history
1209   }; // Public flag values
1210 private:
1211   uint _nof_decompiles;             // count of all nmethod removals
1212   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
1213   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
1214   union {
1215     intptr_t _align;
1216     u1 _array[_trap_hist_limit];
1217   } _trap_hist;
1218 
1219   // Support for interprocedural escape analysis, from Thomas Kotzmann.
1220   intx              _eflags;          // flags on escape information
1221   intx              _arg_local;       // bit set of non-escaping arguments
1222   intx              _arg_stack;       // bit set of stack-allocatable arguments
1223   intx              _arg_returned;    // bit set of returned arguments
1224 
1225   int _creation_mileage;              // method mileage at MDO creation
1226 
1227   // How many invocations has this MDO seen?
1228   // These counters are used to determine the exact age of MDO.
1229   // We need those because in tiered a method can be concurrently
1230   // executed at different levels.
1231   InvocationCounter _invocation_counter;
1232   // Same for backedges.
1233   InvocationCounter _backedge_counter;
1234   // Counter values at the time profiling started.
1235   int               _invocation_counter_start;
1236   int               _backedge_counter_start;
1237   // Number of loops and blocks is computed when compiling the first
1238   // time with C1. It is used to determine if method is trivial.
1239   short             _num_loops;
1240   short             _num_blocks;
1241   // Highest compile level this method has ever seen.
1242   u1                _highest_comp_level;
1243   // Same for OSR level
1244   u1                _highest_osr_comp_level;
1245   // Does this method contain anything worth profiling?
1246   bool              _would_profile;
1247 
1248   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
1249   int _data_size;
1250 
1251   // Beginning of the data entries
1252   intptr_t _data[1];
1253 
1254   // Helper for size computation
1255   static int compute_data_size(BytecodeStream* stream);
1256   static int bytecode_cell_count(Bytecodes::Code code);
1257   enum { no_profile_data = -1, variable_cell_count = -2 };
1258 
1259   // Helper for initialization
1260   DataLayout* data_layout_at(int data_index) {
1261     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
1262     return (DataLayout*) (((address)_data) + data_index);
1263   }
1264 
1265   // Initialize an individual data segment.  Returns the size of
1266   // the segment in bytes.
1267   int initialize_data(BytecodeStream* stream, int data_index);
1268 
1269   // Helper for data_at
1270   DataLayout* limit_data_position() {
1271     return (DataLayout*)((address)data_base() + _data_size);
1272   }
1273   bool out_of_bounds(int data_index) {
1274     return data_index >= data_size();
1275   }
1276 
1277   // Give each of the data entries a chance to perform specific
1278   // data initialization.
1279   void post_initialize(BytecodeStream* stream);
1280 
1281   // hint accessors
1282   int      hint_di() const  { return _hint_di; }
1283   void set_hint_di(int di)  {
1284     assert(!out_of_bounds(di), "hint_di out of bounds");
1285     _hint_di = di;
1286   }
1287   ProfileData* data_before(int bci) {
1288     // avoid SEGV on this edge case
1289     if (data_size() == 0)
1290       return NULL;
1291     int hint = hint_di();
1292     if (data_layout_at(hint)->bci() <= bci)
1293       return data_at(hint);
1294     return first_data();
1295   }
1296 
1297   // What is the index of the first data entry?
1298   int first_di() { return 0; }
1299 
1300   // Find or create an extra ProfileData:
1301   ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
1302 
1303   // return the argument info cell
1304   ArgInfoData *arg_info();
1305 
1306 public:
1307   static int header_size() {
1308     return sizeof(methodDataOopDesc)/wordSize;
1309   }
1310 
1311   // Compute the size of a methodDataOop before it is created.
1312   static int compute_allocation_size_in_bytes(methodHandle method);
1313   static int compute_allocation_size_in_words(methodHandle method);
1314   static int compute_extra_data_count(int data_size, int empty_bc_count);
1315 
1316   // Determine if a given bytecode can have profile information.
1317   static bool bytecode_has_profile(Bytecodes::Code code) {
1318     return bytecode_cell_count(code) != no_profile_data;
1319   }
1320 
1321   // Perform initialization of a new methodDataOop
1322   void initialize(methodHandle method);
1323 
1324   // My size
1325   int object_size_in_bytes() { return _size; }
1326   int object_size() {
1327     return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord);
1328   }
1329 
1330   int      creation_mileage() const  { return _creation_mileage; }
1331   void set_creation_mileage(int x)   { _creation_mileage = x; }
1332 
1333   int invocation_count() {
1334     if (invocation_counter()->carry()) {
1335       return InvocationCounter::count_limit;
1336     }
1337     return invocation_counter()->count();
1338   }
1339   int backedge_count() {
1340     if (backedge_counter()->carry()) {
1341       return InvocationCounter::count_limit;
1342     }
1343     return backedge_counter()->count();
1344   }
1345 
1346   int invocation_count_start() {
1347     if (invocation_counter()->carry()) {
1348       return 0;
1349     }
1350     return _invocation_counter_start;
1351   }
1352 
1353   int backedge_count_start() {
1354     if (backedge_counter()->carry()) {
1355       return 0;
1356     }
1357     return _backedge_counter_start;
1358   }
1359 
1360   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
1361   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
1362 
1363   void reset_start_counters() {
1364     _invocation_counter_start = invocation_count();
1365     _backedge_counter_start = backedge_count();
1366   }
1367 
1368   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
1369   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
1370 
1371   void set_would_profile(bool p)              { _would_profile = p;    }
1372   bool would_profile() const                  { return _would_profile; }
1373 
1374   int highest_comp_level()                    { return _highest_comp_level;      }
1375   void set_highest_comp_level(int level)      { _highest_comp_level = level;     }
1376   int highest_osr_comp_level()                { return _highest_osr_comp_level;  }
1377   void set_highest_osr_comp_level(int level)  { _highest_osr_comp_level = level; }
1378 
1379   int num_loops() const                       { return _num_loops;  }
1380   void set_num_loops(int n)                   { _num_loops = n;     }
1381   int num_blocks() const                      { return _num_blocks; }
1382   void set_num_blocks(int n)                  { _num_blocks = n;    }
1383 
1384   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
1385   static int mileage_of(methodOop m);
1386 
1387   // Support for interprocedural escape analysis, from Thomas Kotzmann.
1388   enum EscapeFlag {
1389     estimated    = 1 << 0,
1390     return_local = 1 << 1,
1391     return_allocated = 1 << 2,
1392     allocated_escapes = 1 << 3,
1393     unknown_modified = 1 << 4
1394   };
1395 
1396   intx eflags()                                  { return _eflags; }
1397   intx arg_local()                               { return _arg_local; }
1398   intx arg_stack()                               { return _arg_stack; }
1399   intx arg_returned()                            { return _arg_returned; }
1400   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
1401                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
1402                                                    return aid->arg_modified(a); }
1403 
1404   void set_eflags(intx v)                        { _eflags = v; }
1405   void set_arg_local(intx v)                     { _arg_local = v; }
1406   void set_arg_stack(intx v)                     { _arg_stack = v; }
1407   void set_arg_returned(intx v)                  { _arg_returned = v; }
1408   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
1409                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
1410 
1411                                                    aid->set_arg_modified(a, v); }
1412 
1413   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
1414 
1415   // Location and size of data area
1416   address data_base() const {
1417     return (address) _data;
1418   }
1419   int data_size() {
1420     return _data_size;
1421   }
1422 
1423   // Accessors
1424   methodOop method() { return _method; }
1425 
1426   // Get the data at an arbitrary (sort of) data index.
1427   ProfileData* data_at(int data_index);
1428 
1429   // Walk through the data in order.
1430   ProfileData* first_data() { return data_at(first_di()); }
1431   ProfileData* next_data(ProfileData* current);
1432   bool is_valid(ProfileData* current) { return current != NULL; }
1433 
1434   // Convert a dp (data pointer) to a di (data index).
1435   int dp_to_di(address dp) {
1436     return dp - ((address)_data);
1437   }
1438 
1439   address di_to_dp(int di) {
1440     return (address)data_layout_at(di);
1441   }
1442 
1443   // bci to di/dp conversion.
1444   address bci_to_dp(int bci);
1445   int bci_to_di(int bci) {
1446     return dp_to_di(bci_to_dp(bci));
1447   }
1448 
1449   // Get the data at an arbitrary bci, or NULL if there is none.
1450   ProfileData* bci_to_data(int bci);
1451 
1452   // Same, but try to create an extra_data record if one is needed:
1453   ProfileData* allocate_bci_to_data(int bci) {
1454     ProfileData* data = bci_to_data(bci);
1455     return (data != NULL) ? data : bci_to_extra_data(bci, true);
1456   }
1457 
1458   // Add a handful of extra data records, for trap tracking.
1459   DataLayout* extra_data_base() { return limit_data_position(); }
1460   DataLayout* extra_data_limit() { return (DataLayout*)((address)this + object_size_in_bytes()); }
1461   int extra_data_size() { return (address)extra_data_limit()
1462                                - (address)extra_data_base(); }
1463   static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
1464 
1465   // Return (uint)-1 for overflow.
1466   uint trap_count(int reason) const {
1467     assert((uint)reason < _trap_hist_limit, "oob");
1468     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
1469   }
1470   // For loops:
1471   static uint trap_reason_limit() { return _trap_hist_limit; }
1472   static uint trap_count_limit()  { return _trap_hist_mask; }
1473   uint inc_trap_count(int reason) {
1474     // Count another trap, anywhere in this method.
1475     assert(reason >= 0, "must be single trap");
1476     if ((uint)reason < _trap_hist_limit) {
1477       uint cnt1 = 1 + _trap_hist._array[reason];
1478       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
1479         _trap_hist._array[reason] = cnt1;
1480         return cnt1;
1481       } else {
1482         return _trap_hist_mask + (++_nof_overflow_traps);
1483       }
1484     } else {
1485       // Could not represent the count in the histogram.
1486       return (++_nof_overflow_traps);
1487     }
1488   }
1489 
1490   uint overflow_trap_count() const {
1491     return _nof_overflow_traps;
1492   }
1493   uint overflow_recompile_count() const {
1494     return _nof_overflow_recompiles;
1495   }
1496   void inc_overflow_recompile_count() {
1497     _nof_overflow_recompiles += 1;
1498   }
1499   uint decompile_count() const {
1500     return _nof_decompiles;
1501   }
1502   void inc_decompile_count() {
1503     _nof_decompiles += 1;
1504     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
1505       method()->set_not_compilable(CompLevel_full_optimization);
1506     }
1507   }
1508 
1509   // Support for code generation
1510   static ByteSize data_offset() {
1511     return byte_offset_of(methodDataOopDesc, _data[0]);
1512   }
1513 
1514   static ByteSize invocation_counter_offset() {
1515     return byte_offset_of(methodDataOopDesc, _invocation_counter);
1516   }
1517   static ByteSize backedge_counter_offset() {
1518     return byte_offset_of(methodDataOopDesc, _backedge_counter);
1519   }
1520 
1521   // GC support
1522   oop* adr_method() const { return (oop*)&_method; }
1523   bool object_is_parsable() const { return _size != 0; }
1524   void set_object_is_parsable(int object_size_in_bytes) { _size = object_size_in_bytes; }
1525 
1526 #ifndef PRODUCT
1527   // printing support for method data
1528   void print_data_on(outputStream* st);
1529 #endif
1530 
1531   // verification
1532   void verify_data_on(outputStream* st);
1533 };
1534 
1535 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP