1 /*
   2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "ci/ciCallSite.hpp"
  28 #include "ci/ciCPCache.hpp"
  29 #include "ci/ciMethodHandle.hpp"
  30 #include "classfile/javaClasses.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/callGenerator.hpp"
  34 #include "opto/callnode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/connode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/rootnode.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "opto/subnode.hpp"
  41 
  42 CallGenerator::CallGenerator(ciMethod* method) {
  43   _method = method;
  44 }
  45 
  46 // Utility function.
  47 const TypeFunc* CallGenerator::tf() const {
  48   return TypeFunc::make(method());
  49 }
  50 
  51 //-----------------------------ParseGenerator---------------------------------
  52 // Internal class which handles all direct bytecode traversal.
  53 class ParseGenerator : public InlineCallGenerator {
  54 private:
  55   bool  _is_osr;
  56   float _expected_uses;
  57 
  58 public:
  59   ParseGenerator(ciMethod* method, float expected_uses, bool is_osr = false)
  60     : InlineCallGenerator(method)
  61   {
  62     _is_osr        = is_osr;
  63     _expected_uses = expected_uses;
  64     assert(can_parse(method, is_osr), "parse must be possible");
  65   }
  66 
  67   // Can we build either an OSR or a regular parser for this method?
  68   static bool can_parse(ciMethod* method, int is_osr = false);
  69 
  70   virtual bool      is_parse() const           { return true; }
  71   virtual JVMState* generate(JVMState* jvms);
  72   int is_osr() { return _is_osr; }
  73 
  74 };
  75 
  76 JVMState* ParseGenerator::generate(JVMState* jvms) {
  77   Compile* C = Compile::current();
  78 
  79   if (is_osr()) {
  80     // The JVMS for a OSR has a single argument (see its TypeFunc).
  81     assert(jvms->depth() == 1, "no inline OSR");
  82   }
  83 
  84   if (C->failing()) {
  85     return NULL;  // bailing out of the compile; do not try to parse
  86   }
  87 
  88   Parse parser(jvms, method(), _expected_uses);
  89   // Grab signature for matching/allocation
  90 #ifdef ASSERT
  91   if (parser.tf() != (parser.depth() == 1 ? C->tf() : tf())) {
  92     MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
  93     assert(C->env()->system_dictionary_modification_counter_changed(),
  94            "Must invalidate if TypeFuncs differ");
  95   }
  96 #endif
  97 
  98   GraphKit& exits = parser.exits();
  99 
 100   if (C->failing()) {
 101     while (exits.pop_exception_state() != NULL) ;
 102     return NULL;
 103   }
 104 
 105   assert(exits.jvms()->same_calls_as(jvms), "sanity");
 106 
 107   // Simply return the exit state of the parser,
 108   // augmented by any exceptional states.
 109   return exits.transfer_exceptions_into_jvms();
 110 }
 111 
 112 //---------------------------DirectCallGenerator------------------------------
 113 // Internal class which handles all out-of-line calls w/o receiver type checks.
 114 class DirectCallGenerator : public CallGenerator {
 115  private:
 116   CallStaticJavaNode* _call_node;
 117   // Force separate memory and I/O projections for the exceptional
 118   // paths to facilitate late inlinig.
 119   bool                _separate_io_proj;
 120 
 121  public:
 122   DirectCallGenerator(ciMethod* method, bool separate_io_proj)
 123     : CallGenerator(method),
 124       _separate_io_proj(separate_io_proj)
 125   {
 126   }
 127   virtual JVMState* generate(JVMState* jvms);
 128 
 129   CallStaticJavaNode* call_node() const { return _call_node; }
 130 };
 131 
 132 JVMState* DirectCallGenerator::generate(JVMState* jvms) {
 133   GraphKit kit(jvms);
 134   bool is_static = method()->is_static();
 135   address target = is_static ? SharedRuntime::get_resolve_static_call_stub()
 136                              : SharedRuntime::get_resolve_opt_virtual_call_stub();
 137 
 138   if (kit.C->log() != NULL) {
 139     kit.C->log()->elem("direct_call bci='%d'", jvms->bci());
 140   }
 141 
 142   CallStaticJavaNode *call = new (kit.C, tf()->domain()->cnt()) CallStaticJavaNode(tf(), target, method(), kit.bci());
 143   if (!is_static) {
 144     // Make an explicit receiver null_check as part of this call.
 145     // Since we share a map with the caller, his JVMS gets adjusted.
 146     kit.null_check_receiver(method());
 147     if (kit.stopped()) {
 148       // And dump it back to the caller, decorated with any exceptions:
 149       return kit.transfer_exceptions_into_jvms();
 150     }
 151     // Mark the call node as virtual, sort of:
 152     call->set_optimized_virtual(true);
 153     if (method()->is_method_handle_invoke()) {
 154       call->set_method_handle_invoke(true);
 155     }
 156   }
 157   kit.set_arguments_for_java_call(call);
 158   kit.set_edges_for_java_call(call, false, _separate_io_proj);
 159   Node* ret = kit.set_results_for_java_call(call, _separate_io_proj);
 160   kit.push_node(method()->return_type()->basic_type(), ret);
 161   _call_node = call;  // Save the call node in case we need it later
 162   return kit.transfer_exceptions_into_jvms();
 163 }
 164 
 165 //---------------------------DynamicCallGenerator-----------------------------
 166 // Internal class which handles all out-of-line invokedynamic calls.
 167 class DynamicCallGenerator : public CallGenerator {
 168 public:
 169   DynamicCallGenerator(ciMethod* method)
 170     : CallGenerator(method)
 171   {
 172   }
 173   virtual JVMState* generate(JVMState* jvms);
 174 };
 175 
 176 JVMState* DynamicCallGenerator::generate(JVMState* jvms) {
 177   GraphKit kit(jvms);
 178 
 179   if (kit.C->log() != NULL) {
 180     kit.C->log()->elem("dynamic_call bci='%d'", jvms->bci());
 181   }
 182 
 183   // Get the constant pool cache from the caller class.
 184   ciMethod* caller_method = jvms->method();
 185   ciBytecodeStream str(caller_method);
 186   str.force_bci(jvms->bci());  // Set the stream to the invokedynamic bci.
 187   assert(str.cur_bc() == Bytecodes::_invokedynamic, "wrong place to issue a dynamic call!");
 188   ciCPCache* cpcache = str.get_cpcache();
 189 
 190   // Get the offset of the CallSite from the constant pool cache
 191   // pointer.
 192   int index = str.get_method_index();
 193   size_t call_site_offset = cpcache->get_f1_offset(index);
 194 
 195   // Load the CallSite object from the constant pool cache.
 196   const TypeOopPtr* cpcache_ptr = TypeOopPtr::make_from_constant(cpcache);
 197   Node* cpcache_adr = kit.makecon(cpcache_ptr);
 198   Node* call_site_adr = kit.basic_plus_adr(cpcache_adr, cpcache_adr, call_site_offset);
 199   Node* call_site = kit.make_load(kit.control(), call_site_adr, TypeInstPtr::BOTTOM, T_OBJECT, Compile::AliasIdxRaw);
 200 
 201   // Load the target MethodHandle from the CallSite object.
 202   Node* target_mh_adr = kit.basic_plus_adr(call_site, call_site, java_lang_invoke_CallSite::target_offset_in_bytes());
 203   Node* target_mh = kit.make_load(kit.control(), target_mh_adr, TypeInstPtr::BOTTOM, T_OBJECT);
 204 
 205   address resolve_stub = SharedRuntime::get_resolve_opt_virtual_call_stub();
 206 
 207   CallStaticJavaNode *call = new (kit.C, tf()->domain()->cnt()) CallStaticJavaNode(tf(), resolve_stub, method(), kit.bci());
 208   // invokedynamic is treated as an optimized invokevirtual.
 209   call->set_optimized_virtual(true);
 210   // Take extra care (in the presence of argument motion) not to trash the SP:
 211   call->set_method_handle_invoke(true);
 212 
 213   // Pass the target MethodHandle as first argument and shift the
 214   // other arguments.
 215   call->init_req(0 + TypeFunc::Parms, target_mh);
 216   uint nargs = call->method()->arg_size();
 217   for (uint i = 1; i < nargs; i++) {
 218     Node* arg = kit.argument(i - 1);
 219     call->init_req(i + TypeFunc::Parms, arg);
 220   }
 221 
 222   kit.set_edges_for_java_call(call);
 223   Node* ret = kit.set_results_for_java_call(call);
 224   kit.push_node(method()->return_type()->basic_type(), ret);
 225   return kit.transfer_exceptions_into_jvms();
 226 }
 227 
 228 //--------------------------VirtualCallGenerator------------------------------
 229 // Internal class which handles all out-of-line calls checking receiver type.
 230 class VirtualCallGenerator : public CallGenerator {
 231 private:
 232   int _vtable_index;
 233 public:
 234   VirtualCallGenerator(ciMethod* method, int vtable_index)
 235     : CallGenerator(method), _vtable_index(vtable_index)
 236   {
 237     assert(vtable_index == methodOopDesc::invalid_vtable_index ||
 238            vtable_index >= 0, "either invalid or usable");
 239   }
 240   virtual bool      is_virtual() const          { return true; }
 241   virtual JVMState* generate(JVMState* jvms);
 242 };
 243 
 244 JVMState* VirtualCallGenerator::generate(JVMState* jvms) {
 245   GraphKit kit(jvms);
 246   Node* receiver = kit.argument(0);
 247 
 248   if (kit.C->log() != NULL) {
 249     kit.C->log()->elem("virtual_call bci='%d'", jvms->bci());
 250   }
 251 
 252   // If the receiver is a constant null, do not torture the system
 253   // by attempting to call through it.  The compile will proceed
 254   // correctly, but may bail out in final_graph_reshaping, because
 255   // the call instruction will have a seemingly deficient out-count.
 256   // (The bailout says something misleading about an "infinite loop".)
 257   if (kit.gvn().type(receiver)->higher_equal(TypePtr::NULL_PTR)) {
 258     kit.inc_sp(method()->arg_size());  // restore arguments
 259     kit.uncommon_trap(Deoptimization::Reason_null_check,
 260                       Deoptimization::Action_none,
 261                       NULL, "null receiver");
 262     return kit.transfer_exceptions_into_jvms();
 263   }
 264 
 265   // Ideally we would unconditionally do a null check here and let it
 266   // be converted to an implicit check based on profile information.
 267   // However currently the conversion to implicit null checks in
 268   // Block::implicit_null_check() only looks for loads and stores, not calls.
 269   ciMethod *caller = kit.method();
 270   ciMethodData *caller_md = (caller == NULL) ? NULL : caller->method_data();
 271   if (!UseInlineCaches || !ImplicitNullChecks ||
 272        ((ImplicitNullCheckThreshold > 0) && caller_md &&
 273        (caller_md->trap_count(Deoptimization::Reason_null_check)
 274        >= (uint)ImplicitNullCheckThreshold))) {
 275     // Make an explicit receiver null_check as part of this call.
 276     // Since we share a map with the caller, his JVMS gets adjusted.
 277     receiver = kit.null_check_receiver(method());
 278     if (kit.stopped()) {
 279       // And dump it back to the caller, decorated with any exceptions:
 280       return kit.transfer_exceptions_into_jvms();
 281     }
 282   }
 283 
 284   assert(!method()->is_static(), "virtual call must not be to static");
 285   assert(!method()->is_final(), "virtual call should not be to final");
 286   assert(!method()->is_private(), "virtual call should not be to private");
 287   assert(_vtable_index == methodOopDesc::invalid_vtable_index || !UseInlineCaches,
 288          "no vtable calls if +UseInlineCaches ");
 289   address target = SharedRuntime::get_resolve_virtual_call_stub();
 290   // Normal inline cache used for call
 291   CallDynamicJavaNode *call = new (kit.C, tf()->domain()->cnt()) CallDynamicJavaNode(tf(), target, method(), _vtable_index, kit.bci());
 292   kit.set_arguments_for_java_call(call);
 293   kit.set_edges_for_java_call(call);
 294   Node* ret = kit.set_results_for_java_call(call);
 295   kit.push_node(method()->return_type()->basic_type(), ret);
 296 
 297   // Represent the effect of an implicit receiver null_check
 298   // as part of this call.  Since we share a map with the caller,
 299   // his JVMS gets adjusted.
 300   kit.cast_not_null(receiver);
 301   return kit.transfer_exceptions_into_jvms();
 302 }
 303 
 304 bool ParseGenerator::can_parse(ciMethod* m, int entry_bci) {
 305   // Certain methods cannot be parsed at all:
 306   if (!m->can_be_compiled())              return false;
 307   if (!m->has_balanced_monitors())        return false;
 308   if (m->get_flow_analysis()->failing())  return false;
 309 
 310   // (Methods may bail out for other reasons, after the parser is run.
 311   // We try to avoid this, but if forced, we must return (Node*)NULL.
 312   // The user of the CallGenerator must check for this condition.)
 313   return true;
 314 }
 315 
 316 CallGenerator* CallGenerator::for_inline(ciMethod* m, float expected_uses) {
 317   if (!ParseGenerator::can_parse(m))  return NULL;
 318   return new ParseGenerator(m, expected_uses);
 319 }
 320 
 321 // As a special case, the JVMS passed to this CallGenerator is
 322 // for the method execution already in progress, not just the JVMS
 323 // of the caller.  Thus, this CallGenerator cannot be mixed with others!
 324 CallGenerator* CallGenerator::for_osr(ciMethod* m, int osr_bci) {
 325   if (!ParseGenerator::can_parse(m, true))  return NULL;
 326   float past_uses = m->interpreter_invocation_count();
 327   float expected_uses = past_uses;
 328   return new ParseGenerator(m, expected_uses, true);
 329 }
 330 
 331 CallGenerator* CallGenerator::for_direct_call(ciMethod* m, bool separate_io_proj) {
 332   assert(!m->is_abstract(), "for_direct_call mismatch");
 333   return new DirectCallGenerator(m, separate_io_proj);
 334 }
 335 
 336 CallGenerator* CallGenerator::for_dynamic_call(ciMethod* m) {
 337   assert(m->is_method_handle_invoke() || m->is_method_handle_adapter(), "for_dynamic_call mismatch");
 338   return new DynamicCallGenerator(m);
 339 }
 340 
 341 CallGenerator* CallGenerator::for_virtual_call(ciMethod* m, int vtable_index) {
 342   assert(!m->is_static(), "for_virtual_call mismatch");
 343   assert(!m->is_method_handle_invoke(), "should be a direct call");
 344   return new VirtualCallGenerator(m, vtable_index);
 345 }
 346 
 347 // Allow inlining decisions to be delayed
 348 class LateInlineCallGenerator : public DirectCallGenerator {
 349   CallGenerator* _inline_cg;
 350 
 351  public:
 352   LateInlineCallGenerator(ciMethod* method, CallGenerator* inline_cg) :
 353     DirectCallGenerator(method, true), _inline_cg(inline_cg) {}
 354 
 355   virtual bool      is_late_inline() const { return true; }
 356 
 357   // Convert the CallStaticJava into an inline
 358   virtual void do_late_inline();
 359 
 360   JVMState* generate(JVMState* jvms) {
 361     // Record that this call site should be revisited once the main
 362     // parse is finished.
 363     Compile::current()->add_late_inline(this);
 364 
 365     // Emit the CallStaticJava and request separate projections so
 366     // that the late inlining logic can distinguish between fall
 367     // through and exceptional uses of the memory and io projections
 368     // as is done for allocations and macro expansion.
 369     return DirectCallGenerator::generate(jvms);
 370   }
 371 
 372 };
 373 
 374 
 375 void LateInlineCallGenerator::do_late_inline() {
 376   // Can't inline it
 377   if (call_node() == NULL || call_node()->outcnt() == 0 ||
 378       call_node()->in(0) == NULL || call_node()->in(0)->is_top())
 379     return;
 380 
 381   CallStaticJavaNode* call = call_node();
 382 
 383   // Make a clone of the JVMState that appropriate to use for driving a parse
 384   Compile* C = Compile::current();
 385   JVMState* jvms     = call->jvms()->clone_shallow(C);
 386   uint size = call->req();
 387   SafePointNode* map = new (C, size) SafePointNode(size, jvms);
 388   for (uint i1 = 0; i1 < size; i1++) {
 389     map->init_req(i1, call->in(i1));
 390   }
 391 
 392   // Make sure the state is a MergeMem for parsing.
 393   if (!map->in(TypeFunc::Memory)->is_MergeMem()) {
 394     map->set_req(TypeFunc::Memory, MergeMemNode::make(C, map->in(TypeFunc::Memory)));
 395   }
 396 
 397   // Make enough space for the expression stack and transfer the incoming arguments
 398   int nargs    = method()->arg_size();
 399   jvms->set_map(map);
 400   map->ensure_stack(jvms, jvms->method()->max_stack());
 401   if (nargs > 0) {
 402     for (int i1 = 0; i1 < nargs; i1++) {
 403       map->set_req(i1 + jvms->argoff(), call->in(TypeFunc::Parms + i1));
 404     }
 405   }
 406 
 407   CompileLog* log = C->log();
 408   if (log != NULL) {
 409     log->head("late_inline method='%d'", log->identify(method()));
 410     JVMState* p = jvms;
 411     while (p != NULL) {
 412       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
 413       p = p->caller();
 414     }
 415     log->tail("late_inline");
 416   }
 417 
 418   // Setup default node notes to be picked up by the inlining
 419   Node_Notes* old_nn = C->default_node_notes();
 420   if (old_nn != NULL) {
 421     Node_Notes* entry_nn = old_nn->clone(C);
 422     entry_nn->set_jvms(jvms);
 423     C->set_default_node_notes(entry_nn);
 424   }
 425 
 426   // Now perform the inling using the synthesized JVMState
 427   JVMState* new_jvms = _inline_cg->generate(jvms);
 428   if (new_jvms == NULL)  return;  // no change
 429   if (C->failing())      return;
 430 
 431   // Capture any exceptional control flow
 432   GraphKit kit(new_jvms);
 433 
 434   // Find the result object
 435   Node* result = C->top();
 436   int   result_size = method()->return_type()->size();
 437   if (result_size != 0 && !kit.stopped()) {
 438     result = (result_size == 1) ? kit.pop() : kit.pop_pair();
 439   }
 440 
 441   kit.replace_call(call, result);
 442 }
 443 
 444 
 445 CallGenerator* CallGenerator::for_late_inline(ciMethod* method, CallGenerator* inline_cg) {
 446   return new LateInlineCallGenerator(method, inline_cg);
 447 }
 448 
 449 
 450 //---------------------------WarmCallGenerator--------------------------------
 451 // Internal class which handles initial deferral of inlining decisions.
 452 class WarmCallGenerator : public CallGenerator {
 453   WarmCallInfo*   _call_info;
 454   CallGenerator*  _if_cold;
 455   CallGenerator*  _if_hot;
 456   bool            _is_virtual;   // caches virtuality of if_cold
 457   bool            _is_inline;    // caches inline-ness of if_hot
 458 
 459 public:
 460   WarmCallGenerator(WarmCallInfo* ci,
 461                     CallGenerator* if_cold,
 462                     CallGenerator* if_hot)
 463     : CallGenerator(if_cold->method())
 464   {
 465     assert(method() == if_hot->method(), "consistent choices");
 466     _call_info  = ci;
 467     _if_cold    = if_cold;
 468     _if_hot     = if_hot;
 469     _is_virtual = if_cold->is_virtual();
 470     _is_inline  = if_hot->is_inline();
 471   }
 472 
 473   virtual bool      is_inline() const           { return _is_inline; }
 474   virtual bool      is_virtual() const          { return _is_virtual; }
 475   virtual bool      is_deferred() const         { return true; }
 476 
 477   virtual JVMState* generate(JVMState* jvms);
 478 };
 479 
 480 
 481 CallGenerator* CallGenerator::for_warm_call(WarmCallInfo* ci,
 482                                             CallGenerator* if_cold,
 483                                             CallGenerator* if_hot) {
 484   return new WarmCallGenerator(ci, if_cold, if_hot);
 485 }
 486 
 487 JVMState* WarmCallGenerator::generate(JVMState* jvms) {
 488   Compile* C = Compile::current();
 489   if (C->log() != NULL) {
 490     C->log()->elem("warm_call bci='%d'", jvms->bci());
 491   }
 492   jvms = _if_cold->generate(jvms);
 493   if (jvms != NULL) {
 494     Node* m = jvms->map()->control();
 495     if (m->is_CatchProj()) m = m->in(0);  else m = C->top();
 496     if (m->is_Catch())     m = m->in(0);  else m = C->top();
 497     if (m->is_Proj())      m = m->in(0);  else m = C->top();
 498     if (m->is_CallJava()) {
 499       _call_info->set_call(m->as_Call());
 500       _call_info->set_hot_cg(_if_hot);
 501 #ifndef PRODUCT
 502       if (PrintOpto || PrintOptoInlining) {
 503         tty->print_cr("Queueing for warm inlining at bci %d:", jvms->bci());
 504         tty->print("WCI: ");
 505         _call_info->print();
 506       }
 507 #endif
 508       _call_info->set_heat(_call_info->compute_heat());
 509       C->set_warm_calls(_call_info->insert_into(C->warm_calls()));
 510     }
 511   }
 512   return jvms;
 513 }
 514 
 515 void WarmCallInfo::make_hot() {
 516   Unimplemented();
 517 }
 518 
 519 void WarmCallInfo::make_cold() {
 520   // No action:  Just dequeue.
 521 }
 522 
 523 
 524 //------------------------PredictedCallGenerator------------------------------
 525 // Internal class which handles all out-of-line calls checking receiver type.
 526 class PredictedCallGenerator : public CallGenerator {
 527   ciKlass*       _predicted_receiver;
 528   CallGenerator* _if_missed;
 529   CallGenerator* _if_hit;
 530   float          _hit_prob;
 531 
 532 public:
 533   PredictedCallGenerator(ciKlass* predicted_receiver,
 534                          CallGenerator* if_missed,
 535                          CallGenerator* if_hit, float hit_prob)
 536     : CallGenerator(if_missed->method())
 537   {
 538     // The call profile data may predict the hit_prob as extreme as 0 or 1.
 539     // Remove the extremes values from the range.
 540     if (hit_prob > PROB_MAX)   hit_prob = PROB_MAX;
 541     if (hit_prob < PROB_MIN)   hit_prob = PROB_MIN;
 542 
 543     _predicted_receiver = predicted_receiver;
 544     _if_missed          = if_missed;
 545     _if_hit             = if_hit;
 546     _hit_prob           = hit_prob;
 547   }
 548 
 549   virtual bool      is_virtual()   const    { return true; }
 550   virtual bool      is_inline()    const    { return _if_hit->is_inline(); }
 551   virtual bool      is_deferred()  const    { return _if_hit->is_deferred(); }
 552 
 553   virtual JVMState* generate(JVMState* jvms);
 554 };
 555 
 556 
 557 CallGenerator* CallGenerator::for_predicted_call(ciKlass* predicted_receiver,
 558                                                  CallGenerator* if_missed,
 559                                                  CallGenerator* if_hit,
 560                                                  float hit_prob) {
 561   return new PredictedCallGenerator(predicted_receiver, if_missed, if_hit, hit_prob);
 562 }
 563 
 564 
 565 JVMState* PredictedCallGenerator::generate(JVMState* jvms) {
 566   GraphKit kit(jvms);
 567   PhaseGVN& gvn = kit.gvn();
 568   // We need an explicit receiver null_check before checking its type.
 569   // We share a map with the caller, so his JVMS gets adjusted.
 570   Node* receiver = kit.argument(0);
 571 
 572   CompileLog* log = kit.C->log();
 573   if (log != NULL) {
 574     log->elem("predicted_call bci='%d' klass='%d'",
 575               jvms->bci(), log->identify(_predicted_receiver));
 576   }
 577 
 578   receiver = kit.null_check_receiver(method());
 579   if (kit.stopped()) {
 580     return kit.transfer_exceptions_into_jvms();
 581   }
 582 
 583   Node* exact_receiver = receiver;  // will get updated in place...
 584   Node* slow_ctl = kit.type_check_receiver(receiver,
 585                                            _predicted_receiver, _hit_prob,
 586                                            &exact_receiver);
 587 
 588   SafePointNode* slow_map = NULL;
 589   JVMState* slow_jvms;
 590   { PreserveJVMState pjvms(&kit);
 591     kit.set_control(slow_ctl);
 592     if (!kit.stopped()) {
 593       slow_jvms = _if_missed->generate(kit.sync_jvms());
 594       assert(slow_jvms != NULL, "miss path must not fail to generate");
 595       kit.add_exception_states_from(slow_jvms);
 596       kit.set_map(slow_jvms->map());
 597       if (!kit.stopped())
 598         slow_map = kit.stop();
 599     }
 600   }
 601 
 602   if (kit.stopped()) {
 603     // Instance exactly does not matches the desired type.
 604     kit.set_jvms(slow_jvms);
 605     return kit.transfer_exceptions_into_jvms();
 606   }
 607 
 608   // fall through if the instance exactly matches the desired type
 609   kit.replace_in_map(receiver, exact_receiver);
 610 
 611   // Make the hot call:
 612   JVMState* new_jvms = _if_hit->generate(kit.sync_jvms());
 613   if (new_jvms == NULL) {
 614     // Inline failed, so make a direct call.
 615     assert(_if_hit->is_inline(), "must have been a failed inline");
 616     CallGenerator* cg = CallGenerator::for_direct_call(_if_hit->method());
 617     new_jvms = cg->generate(kit.sync_jvms());
 618   }
 619   kit.add_exception_states_from(new_jvms);
 620   kit.set_jvms(new_jvms);
 621 
 622   // Need to merge slow and fast?
 623   if (slow_map == NULL) {
 624     // The fast path is the only path remaining.
 625     return kit.transfer_exceptions_into_jvms();
 626   }
 627 
 628   if (kit.stopped()) {
 629     // Inlined method threw an exception, so it's just the slow path after all.
 630     kit.set_jvms(slow_jvms);
 631     return kit.transfer_exceptions_into_jvms();
 632   }
 633 
 634   // Finish the diamond.
 635   kit.C->set_has_split_ifs(true); // Has chance for split-if optimization
 636   RegionNode* region = new (kit.C, 3) RegionNode(3);
 637   region->init_req(1, kit.control());
 638   region->init_req(2, slow_map->control());
 639   kit.set_control(gvn.transform(region));
 640   Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO);
 641   iophi->set_req(2, slow_map->i_o());
 642   kit.set_i_o(gvn.transform(iophi));
 643   kit.merge_memory(slow_map->merged_memory(), region, 2);
 644   uint tos = kit.jvms()->stkoff() + kit.sp();
 645   uint limit = slow_map->req();
 646   for (uint i = TypeFunc::Parms; i < limit; i++) {
 647     // Skip unused stack slots; fast forward to monoff();
 648     if (i == tos) {
 649       i = kit.jvms()->monoff();
 650       if( i >= limit ) break;
 651     }
 652     Node* m = kit.map()->in(i);
 653     Node* n = slow_map->in(i);
 654     if (m != n) {
 655       const Type* t = gvn.type(m)->meet(gvn.type(n));
 656       Node* phi = PhiNode::make(region, m, t);
 657       phi->set_req(2, n);
 658       kit.map()->set_req(i, gvn.transform(phi));
 659     }
 660   }
 661   return kit.transfer_exceptions_into_jvms();
 662 }
 663 
 664 
 665 //------------------------PredictedDynamicCallGenerator-----------------------
 666 // Internal class which handles all out-of-line calls checking receiver type.
 667 class PredictedDynamicCallGenerator : public CallGenerator {
 668   ciMethodHandle* _predicted_method_handle;
 669   CallGenerator*  _if_missed;
 670   CallGenerator*  _if_hit;
 671   float           _hit_prob;
 672 
 673 public:
 674   PredictedDynamicCallGenerator(ciMethodHandle* predicted_method_handle,
 675                                 CallGenerator* if_missed,
 676                                 CallGenerator* if_hit,
 677                                 float hit_prob)
 678     : CallGenerator(if_missed->method()),
 679       _predicted_method_handle(predicted_method_handle),
 680       _if_missed(if_missed),
 681       _if_hit(if_hit),
 682       _hit_prob(hit_prob)
 683   {}
 684 
 685   virtual bool is_inline()   const { return _if_hit->is_inline(); }
 686   virtual bool is_deferred() const { return _if_hit->is_deferred(); }
 687 
 688   virtual JVMState* generate(JVMState* jvms);
 689 };
 690 
 691 
 692 CallGenerator* CallGenerator::for_predicted_dynamic_call(ciMethodHandle* predicted_method_handle,
 693                                                          CallGenerator* if_missed,
 694                                                          CallGenerator* if_hit,
 695                                                          float hit_prob) {
 696   return new PredictedDynamicCallGenerator(predicted_method_handle, if_missed, if_hit, hit_prob);
 697 }
 698 
 699 
 700 CallGenerator* CallGenerator::for_method_handle_inline(Node* method_handle, JVMState* jvms,
 701                                                        ciMethod* caller, ciMethod* callee, ciCallProfile profile) {
 702   if (method_handle->Opcode() == Op_ConP) {
 703     const TypeOopPtr* oop_ptr = method_handle->bottom_type()->is_oopptr();
 704     ciObject* const_oop = oop_ptr->const_oop();
 705     ciMethodHandle* method_handle = const_oop->as_method_handle();
 706 
 707     // Set the callee to have access to the class and signature in
 708     // the MethodHandleCompiler.
 709     method_handle->set_callee(callee);
 710     method_handle->set_caller(caller);
 711     method_handle->set_call_profile(profile);
 712 
 713     // Get an adapter for the MethodHandle.
 714     ciMethod* target_method = method_handle->get_method_handle_adapter();
 715     if (target_method != NULL) {
 716       CallGenerator* cg = Compile::current()->call_generator(target_method, -1, false, jvms, true, PROB_ALWAYS);
 717       if (cg != NULL && cg->is_inline())
 718         return cg;
 719     }
 720   } else if (method_handle->Opcode() == Op_Phi && method_handle->req() == 3 &&
 721              method_handle->in(1)->Opcode() == Op_ConP && method_handle->in(2)->Opcode() == Op_ConP) {
 722     float prob = PROB_FAIR;
 723     Node* meth_region = method_handle->in(0);
 724     if (meth_region->is_Region() &&
 725         meth_region->in(1)->is_Proj() && meth_region->in(2)->is_Proj() &&
 726         meth_region->in(1)->in(0) == meth_region->in(2)->in(0) &&
 727         meth_region->in(1)->in(0)->is_If()) {
 728       // If diamond, so grab the probability of the test to drive the inlining below
 729       prob = meth_region->in(1)->in(0)->as_If()->_prob;
 730       if (meth_region->in(1)->is_IfTrue()) {
 731         prob = 1 - prob;
 732       }
 733     }
 734 
 735     // selectAlternative idiom merging two constant MethodHandles.
 736     // Generate a guard so that each can be inlined.  We might want to
 737     // do more inputs at later point but this gets the most common
 738     // case.
 739     CallGenerator* cg1 = for_method_handle_inline(method_handle->in(1), jvms, caller, callee, profile.rescale(1.0 - prob));
 740     CallGenerator* cg2 = for_method_handle_inline(method_handle->in(2), jvms, caller, callee, profile.rescale(prob));
 741     if (cg1 != NULL && cg2 != NULL) {
 742       const TypeOopPtr* oop_ptr = method_handle->in(1)->bottom_type()->is_oopptr();
 743       ciObject* const_oop = oop_ptr->const_oop();
 744       ciMethodHandle* mh = const_oop->as_method_handle();
 745       return new PredictedDynamicCallGenerator(mh, cg2, cg1, prob);
 746     }
 747   }
 748   return NULL;
 749 }
 750 
 751 
 752 CallGenerator* CallGenerator::for_invokedynamic_inline(ciCallSite* call_site, JVMState* jvms,
 753                                                        ciMethod* caller, ciMethod* callee, ciCallProfile profile) {
 754   assert(call_site->is_constant_call_site() || call_site->is_mutable_call_site(), "must be");
 755   ciMethodHandle* method_handle = call_site->get_target();
 756 
 757   // Set the callee to have access to the class and signature in the
 758   // MethodHandleCompiler.
 759   method_handle->set_callee(callee);
 760   method_handle->set_caller(caller);
 761   method_handle->set_call_profile(profile);
 762 
 763   // Get an adapter for the MethodHandle.
 764   ciMethod* target_method = method_handle->get_invokedynamic_adapter();
 765   if (target_method != NULL) {
 766     Compile *C = Compile::current();
 767     CallGenerator* cg = C->call_generator(target_method, -1, false, jvms, true, PROB_ALWAYS);
 768     if (cg != NULL && cg->is_inline()) {
 769       // Add a dependence for invalidation of the optimization.
 770       if (call_site->is_mutable_call_site()) {
 771         C->dependencies()->assert_call_site_target_value(call_site, method_handle);
 772       }
 773       return cg;
 774     }
 775   }
 776   return NULL;
 777 }
 778 
 779 
 780 JVMState* PredictedDynamicCallGenerator::generate(JVMState* jvms) {
 781   GraphKit kit(jvms);
 782   PhaseGVN& gvn = kit.gvn();
 783 
 784   CompileLog* log = kit.C->log();
 785   if (log != NULL) {
 786     log->elem("predicted_dynamic_call bci='%d'", jvms->bci());
 787   }
 788 
 789   const TypeOopPtr* predicted_mh_ptr = TypeOopPtr::make_from_constant(_predicted_method_handle, true);
 790   Node* predicted_mh = kit.makecon(predicted_mh_ptr);
 791 
 792   Node* bol = NULL;
 793   int bc = jvms->method()->java_code_at_bci(jvms->bci());
 794   if (bc == Bytecodes::_invokespecial) {
 795     // This is the selectAlternative idiom for guardWithTest
 796     Node* receiver = kit.argument(0);
 797 
 798     // Check if the MethodHandle is the expected one
 799     Node* cmp = gvn.transform(new(kit.C, 3) CmpPNode(receiver, predicted_mh));
 800     bol = gvn.transform(new(kit.C, 2) BoolNode(cmp, BoolTest::eq) );
 801   } else {
 802     assert(bc == Bytecodes::_invokedynamic, "must be");
 803     // Get the constant pool cache from the caller class.
 804     ciMethod* caller_method = jvms->method();
 805     ciBytecodeStream str(caller_method);
 806     str.force_bci(jvms->bci());  // Set the stream to the invokedynamic bci.
 807     ciCPCache* cpcache = str.get_cpcache();
 808 
 809     // Get the offset of the CallSite from the constant pool cache
 810     // pointer.
 811     int index = str.get_method_index();
 812     size_t call_site_offset = cpcache->get_f1_offset(index);
 813 
 814     // Load the CallSite object from the constant pool cache.
 815     const TypeOopPtr* cpcache_ptr = TypeOopPtr::make_from_constant(cpcache);
 816     Node* cpcache_adr   = kit.makecon(cpcache_ptr);
 817     Node* call_site_adr = kit.basic_plus_adr(cpcache_adr, cpcache_adr, call_site_offset);
 818     Node* call_site     = kit.make_load(kit.control(), call_site_adr, TypeInstPtr::BOTTOM, T_OBJECT, Compile::AliasIdxRaw);
 819 
 820     // Load the target MethodHandle from the CallSite object.
 821     Node* target_adr = kit.basic_plus_adr(call_site, call_site, java_lang_invoke_CallSite::target_offset_in_bytes());
 822     Node* target_mh  = kit.make_load(kit.control(), target_adr, TypeInstPtr::BOTTOM, T_OBJECT);
 823 
 824     // Check if the MethodHandle is still the same.
 825     Node* cmp = gvn.transform(new(kit.C, 3) CmpPNode(target_mh, predicted_mh));
 826     bol = gvn.transform(new(kit.C, 2) BoolNode(cmp, BoolTest::eq) );
 827   }
 828   IfNode* iff = kit.create_and_xform_if(kit.control(), bol, _hit_prob, COUNT_UNKNOWN);
 829   kit.set_control( gvn.transform(new(kit.C, 1) IfTrueNode (iff)));
 830   Node* slow_ctl = gvn.transform(new(kit.C, 1) IfFalseNode(iff));
 831 
 832   SafePointNode* slow_map = NULL;
 833   JVMState* slow_jvms;
 834   { PreserveJVMState pjvms(&kit);
 835     kit.set_control(slow_ctl);
 836     if (!kit.stopped()) {
 837       slow_jvms = _if_missed->generate(kit.sync_jvms());
 838       assert(slow_jvms != NULL, "miss path must not fail to generate");
 839       kit.add_exception_states_from(slow_jvms);
 840       kit.set_map(slow_jvms->map());
 841       if (!kit.stopped())
 842         slow_map = kit.stop();
 843     }
 844   }
 845 
 846   if (kit.stopped()) {
 847     // Instance exactly does not matches the desired type.
 848     kit.set_jvms(slow_jvms);
 849     return kit.transfer_exceptions_into_jvms();
 850   }
 851 
 852   // Make the hot call:
 853   JVMState* new_jvms = _if_hit->generate(kit.sync_jvms());
 854   if (new_jvms == NULL) {
 855     // Inline failed, so make a direct call.
 856     assert(_if_hit->is_inline(), "must have been a failed inline");
 857     CallGenerator* cg = CallGenerator::for_direct_call(_if_hit->method());
 858     new_jvms = cg->generate(kit.sync_jvms());
 859   }
 860   kit.add_exception_states_from(new_jvms);
 861   kit.set_jvms(new_jvms);
 862 
 863   // Need to merge slow and fast?
 864   if (slow_map == NULL) {
 865     // The fast path is the only path remaining.
 866     return kit.transfer_exceptions_into_jvms();
 867   }
 868 
 869   if (kit.stopped()) {
 870     // Inlined method threw an exception, so it's just the slow path after all.
 871     kit.set_jvms(slow_jvms);
 872     return kit.transfer_exceptions_into_jvms();
 873   }
 874 
 875   // Finish the diamond.
 876   kit.C->set_has_split_ifs(true); // Has chance for split-if optimization
 877   RegionNode* region = new (kit.C, 3) RegionNode(3);
 878   region->init_req(1, kit.control());
 879   region->init_req(2, slow_map->control());
 880   kit.set_control(gvn.transform(region));
 881   Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO);
 882   iophi->set_req(2, slow_map->i_o());
 883   kit.set_i_o(gvn.transform(iophi));
 884   kit.merge_memory(slow_map->merged_memory(), region, 2);
 885   uint tos = kit.jvms()->stkoff() + kit.sp();
 886   uint limit = slow_map->req();
 887   for (uint i = TypeFunc::Parms; i < limit; i++) {
 888     // Skip unused stack slots; fast forward to monoff();
 889     if (i == tos) {
 890       i = kit.jvms()->monoff();
 891       if( i >= limit ) break;
 892     }
 893     Node* m = kit.map()->in(i);
 894     Node* n = slow_map->in(i);
 895     if (m != n) {
 896       const Type* t = gvn.type(m)->meet(gvn.type(n));
 897       Node* phi = PhiNode::make(region, m, t);
 898       phi->set_req(2, n);
 899       kit.map()->set_req(i, gvn.transform(phi));
 900     }
 901   }
 902   return kit.transfer_exceptions_into_jvms();
 903 }
 904 
 905 
 906 //-------------------------UncommonTrapCallGenerator-----------------------------
 907 // Internal class which handles all out-of-line calls checking receiver type.
 908 class UncommonTrapCallGenerator : public CallGenerator {
 909   Deoptimization::DeoptReason _reason;
 910   Deoptimization::DeoptAction _action;
 911 
 912 public:
 913   UncommonTrapCallGenerator(ciMethod* m,
 914                             Deoptimization::DeoptReason reason,
 915                             Deoptimization::DeoptAction action)
 916     : CallGenerator(m)
 917   {
 918     _reason = reason;
 919     _action = action;
 920   }
 921 
 922   virtual bool      is_virtual() const          { ShouldNotReachHere(); return false; }
 923   virtual bool      is_trap() const             { return true; }
 924 
 925   virtual JVMState* generate(JVMState* jvms);
 926 };
 927 
 928 
 929 CallGenerator*
 930 CallGenerator::for_uncommon_trap(ciMethod* m,
 931                                  Deoptimization::DeoptReason reason,
 932                                  Deoptimization::DeoptAction action) {
 933   return new UncommonTrapCallGenerator(m, reason, action);
 934 }
 935 
 936 
 937 JVMState* UncommonTrapCallGenerator::generate(JVMState* jvms) {
 938   GraphKit kit(jvms);
 939   // Take the trap with arguments pushed on the stack.  (Cf. null_check_receiver).
 940   int nargs = method()->arg_size();
 941   kit.inc_sp(nargs);
 942   assert(nargs <= kit.sp() && kit.sp() <= jvms->stk_size(), "sane sp w/ args pushed");
 943   if (_reason == Deoptimization::Reason_class_check &&
 944       _action == Deoptimization::Action_maybe_recompile) {
 945     // Temp fix for 6529811
 946     // Don't allow uncommon_trap to override our decision to recompile in the event
 947     // of a class cast failure for a monomorphic call as it will never let us convert
 948     // the call to either bi-morphic or megamorphic and can lead to unc-trap loops
 949     bool keep_exact_action = true;
 950     kit.uncommon_trap(_reason, _action, NULL, "monomorphic vcall checkcast", false, keep_exact_action);
 951   } else {
 952     kit.uncommon_trap(_reason, _action);
 953   }
 954   return kit.transfer_exceptions_into_jvms();
 955 }
 956 
 957 // (Note:  Moved hook_up_call to GraphKit::set_edges_for_java_call.)
 958 
 959 // (Node:  Merged hook_up_exits into ParseGenerator::generate.)
 960 
 961 #define NODES_OVERHEAD_PER_METHOD (30.0)
 962 #define NODES_PER_BYTECODE (9.5)
 963 
 964 void WarmCallInfo::init(JVMState* call_site, ciMethod* call_method, ciCallProfile& profile, float prof_factor) {
 965   int call_count = profile.count();
 966   int code_size = call_method->code_size();
 967 
 968   // Expected execution count is based on the historical count:
 969   _count = call_count < 0 ? 1 : call_site->method()->scale_count(call_count, prof_factor);
 970 
 971   // Expected profit from inlining, in units of simple call-overheads.
 972   _profit = 1.0;
 973 
 974   // Expected work performed by the call in units of call-overheads.
 975   // %%% need an empirical curve fit for "work" (time in call)
 976   float bytecodes_per_call = 3;
 977   _work = 1.0 + code_size / bytecodes_per_call;
 978 
 979   // Expected size of compilation graph:
 980   // -XX:+PrintParseStatistics once reported:
 981   //  Methods seen: 9184  Methods parsed: 9184  Nodes created: 1582391
 982   //  Histogram of 144298 parsed bytecodes:
 983   // %%% Need an better predictor for graph size.
 984   _size = NODES_OVERHEAD_PER_METHOD + (NODES_PER_BYTECODE * code_size);
 985 }
 986 
 987 // is_cold:  Return true if the node should never be inlined.
 988 // This is true if any of the key metrics are extreme.
 989 bool WarmCallInfo::is_cold() const {
 990   if (count()  <  WarmCallMinCount)        return true;
 991   if (profit() <  WarmCallMinProfit)       return true;
 992   if (work()   >  WarmCallMaxWork)         return true;
 993   if (size()   >  WarmCallMaxSize)         return true;
 994   return false;
 995 }
 996 
 997 // is_hot:  Return true if the node should be inlined immediately.
 998 // This is true if any of the key metrics are extreme.
 999 bool WarmCallInfo::is_hot() const {
1000   assert(!is_cold(), "eliminate is_cold cases before testing is_hot");
1001   if (count()  >= HotCallCountThreshold)   return true;
1002   if (profit() >= HotCallProfitThreshold)  return true;
1003   if (work()   <= HotCallTrivialWork)      return true;
1004   if (size()   <= HotCallTrivialSize)      return true;
1005   return false;
1006 }
1007 
1008 // compute_heat:
1009 float WarmCallInfo::compute_heat() const {
1010   assert(!is_cold(), "compute heat only on warm nodes");
1011   assert(!is_hot(),  "compute heat only on warm nodes");
1012   int min_size = MAX2(0,   (int)HotCallTrivialSize);
1013   int max_size = MIN2(500, (int)WarmCallMaxSize);
1014   float method_size = (size() - min_size) / MAX2(1, max_size - min_size);
1015   float size_factor;
1016   if      (method_size < 0.05)  size_factor = 4;   // 2 sigmas better than avg.
1017   else if (method_size < 0.15)  size_factor = 2;   // 1 sigma better than avg.
1018   else if (method_size < 0.5)   size_factor = 1;   // better than avg.
1019   else                          size_factor = 0.5; // worse than avg.
1020   return (count() * profit() * size_factor);
1021 }
1022 
1023 bool WarmCallInfo::warmer_than(WarmCallInfo* that) {
1024   assert(this != that, "compare only different WCIs");
1025   assert(this->heat() != 0 && that->heat() != 0, "call compute_heat 1st");
1026   if (this->heat() > that->heat())   return true;
1027   if (this->heat() < that->heat())   return false;
1028   assert(this->heat() == that->heat(), "no NaN heat allowed");
1029   // Equal heat.  Break the tie some other way.
1030   if (!this->call() || !that->call())  return (address)this > (address)that;
1031   return this->call()->_idx > that->call()->_idx;
1032 }
1033 
1034 //#define UNINIT_NEXT ((WarmCallInfo*)badAddress)
1035 #define UNINIT_NEXT ((WarmCallInfo*)NULL)
1036 
1037 WarmCallInfo* WarmCallInfo::insert_into(WarmCallInfo* head) {
1038   assert(next() == UNINIT_NEXT, "not yet on any list");
1039   WarmCallInfo* prev_p = NULL;
1040   WarmCallInfo* next_p = head;
1041   while (next_p != NULL && next_p->warmer_than(this)) {
1042     prev_p = next_p;
1043     next_p = prev_p->next();
1044   }
1045   // Install this between prev_p and next_p.
1046   this->set_next(next_p);
1047   if (prev_p == NULL)
1048     head = this;
1049   else
1050     prev_p->set_next(this);
1051   return head;
1052 }
1053 
1054 WarmCallInfo* WarmCallInfo::remove_from(WarmCallInfo* head) {
1055   WarmCallInfo* prev_p = NULL;
1056   WarmCallInfo* next_p = head;
1057   while (next_p != this) {
1058     assert(next_p != NULL, "this must be in the list somewhere");
1059     prev_p = next_p;
1060     next_p = prev_p->next();
1061   }
1062   next_p = this->next();
1063   debug_only(this->set_next(UNINIT_NEXT));
1064   // Remove this from between prev_p and next_p.
1065   if (prev_p == NULL)
1066     head = next_p;
1067   else
1068     prev_p->set_next(next_p);
1069   return head;
1070 }
1071 
1072 WarmCallInfo WarmCallInfo::_always_hot(WarmCallInfo::MAX_VALUE(), WarmCallInfo::MAX_VALUE(),
1073                                        WarmCallInfo::MIN_VALUE(), WarmCallInfo::MIN_VALUE());
1074 WarmCallInfo WarmCallInfo::_always_cold(WarmCallInfo::MIN_VALUE(), WarmCallInfo::MIN_VALUE(),
1075                                         WarmCallInfo::MAX_VALUE(), WarmCallInfo::MAX_VALUE());
1076 
1077 WarmCallInfo* WarmCallInfo::always_hot() {
1078   assert(_always_hot.is_hot(), "must always be hot");
1079   return &_always_hot;
1080 }
1081 
1082 WarmCallInfo* WarmCallInfo::always_cold() {
1083   assert(_always_cold.is_cold(), "must always be cold");
1084   return &_always_cold;
1085 }
1086 
1087 
1088 #ifndef PRODUCT
1089 
1090 void WarmCallInfo::print() const {
1091   tty->print("%s : C=%6.1f P=%6.1f W=%6.1f S=%6.1f H=%6.1f -> %p",
1092              is_cold() ? "cold" : is_hot() ? "hot " : "warm",
1093              count(), profit(), work(), size(), compute_heat(), next());
1094   tty->cr();
1095   if (call() != NULL)  call()->dump();
1096 }
1097 
1098 void print_wci(WarmCallInfo* ci) {
1099   ci->print();
1100 }
1101 
1102 void WarmCallInfo::print_all() const {
1103   for (const WarmCallInfo* p = this; p != NULL; p = p->next())
1104     p->print();
1105 }
1106 
1107 int WarmCallInfo::count_all() const {
1108   int cnt = 0;
1109   for (const WarmCallInfo* p = this; p != NULL; p = p->next())
1110     cnt++;
1111   return cnt;
1112 }
1113 
1114 #endif //PRODUCT