1 /*
   2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.io.BufferedWriter;
  29 import java.io.Closeable;
  30 import java.io.IOException;
  31 import java.io.File;
  32 import java.io.FileOutputStream;
  33 import java.io.FileNotFoundException;
  34 import java.io.Flushable;
  35 import java.io.OutputStream;
  36 import java.io.OutputStreamWriter;
  37 import java.io.PrintStream;
  38 import java.io.UnsupportedEncodingException;
  39 import java.math.BigDecimal;
  40 import java.math.BigInteger;
  41 import java.math.MathContext;
  42 import java.math.RoundingMode;
  43 import java.nio.charset.Charset;
  44 import java.nio.charset.IllegalCharsetNameException;
  45 import java.nio.charset.UnsupportedCharsetException;
  46 import java.text.DateFormatSymbols;
  47 import java.text.DecimalFormat;
  48 import java.text.DecimalFormatSymbols;
  49 import java.text.NumberFormat;
  50 import java.util.regex.Matcher;
  51 import java.util.regex.Pattern;
  52 import java.util.Objects;
  53 
  54 import java.time.DateTimeException;
  55 import java.time.Instant;
  56 import java.time.ZoneId;
  57 import java.time.ZoneOffset;
  58 import java.time.temporal.ChronoField;
  59 import java.time.temporal.TemporalAccessor;
  60 import java.time.temporal.TemporalQueries;
  61 import java.time.temporal.UnsupportedTemporalTypeException;
  62 
  63 import jdk.internal.math.DoubleConsts;
  64 import jdk.internal.math.FormattedFloatingDecimal;
  65 
  66 /**
  67  * An interpreter for printf-style format strings.  This class provides support
  68  * for layout justification and alignment, common formats for numeric, string,
  69  * and date/time data, and locale-specific output.  Common Java types such as
  70  * {@code byte}, {@link java.math.BigDecimal BigDecimal}, and {@link Calendar}
  71  * are supported.  Limited formatting customization for arbitrary user types is
  72  * provided through the {@link Formattable} interface.
  73  *
  74  * <p> Formatters are not necessarily safe for multithreaded access.  Thread
  75  * safety is optional and is the responsibility of users of methods in this
  76  * class.
  77  *
  78  * <p> Formatted printing for the Java language is heavily inspired by C's
  79  * {@code printf}.  Although the format strings are similar to C, some
  80  * customizations have been made to accommodate the Java language and exploit
  81  * some of its features.  Also, Java formatting is more strict than C's; for
  82  * example, if a conversion is incompatible with a flag, an exception will be
  83  * thrown.  In C inapplicable flags are silently ignored.  The format strings
  84  * are thus intended to be recognizable to C programmers but not necessarily
  85  * completely compatible with those in C.
  86  *
  87  * <p> Examples of expected usage:
  88  *
  89  * <blockquote><pre>
  90  *   StringBuilder sb = new StringBuilder();
  91  *   // Send all output to the Appendable object sb
  92  *   Formatter formatter = new Formatter(sb, Locale.US);
  93  *
  94  *   // Explicit argument indices may be used to re-order output.
  95  *   formatter.format("%4$2s %3$2s %2$2s %1$2s", "a", "b", "c", "d")
  96  *   // -&gt; " d  c  b  a"
  97  *
  98  *   // Optional locale as the first argument can be used to get
  99  *   // locale-specific formatting of numbers.  The precision and width can be
 100  *   // given to round and align the value.
 101  *   formatter.format(Locale.FRANCE, "e = %+10.4f", Math.E);
 102  *   // -&gt; "e =    +2,7183"
 103  *
 104  *   // The '(' numeric flag may be used to format negative numbers with
 105  *   // parentheses rather than a minus sign.  Group separators are
 106  *   // automatically inserted.
 107  *   formatter.format("Amount gained or lost since last statement: $ %(,.2f",
 108  *                    balanceDelta);
 109  *   // -&gt; "Amount gained or lost since last statement: $ (6,217.58)"
 110  * </pre></blockquote>
 111  *
 112  * <p> Convenience methods for common formatting requests exist as illustrated
 113  * by the following invocations:
 114  *
 115  * <blockquote><pre>
 116  *   // Writes a formatted string to System.out.
 117  *   System.out.format("Local time: %tT", Calendar.getInstance());
 118  *   // -&gt; "Local time: 13:34:18"
 119  *
 120  *   // Writes formatted output to System.err.
 121  *   System.err.printf("Unable to open file '%1$s': %2$s",
 122  *                     fileName, exception.getMessage());
 123  *   // -&gt; "Unable to open file 'food': No such file or directory"
 124  * </pre></blockquote>
 125  *
 126  * <p> Like C's {@code sprintf(3)}, Strings may be formatted using the static
 127  * method {@link String#format(String,Object...) String.format}:
 128  *
 129  * <blockquote><pre>
 130  *   // Format a string containing a date.
 131  *   import java.util.Calendar;
 132  *   import java.util.GregorianCalendar;
 133  *   import static java.util.Calendar.*;
 134  *
 135  *   Calendar c = new GregorianCalendar(1995, MAY, 23);
 136  *   String s = String.format("Duke's Birthday: %1$tb %1$te, %1$tY", c);
 137  *   // -&gt; s == "Duke's Birthday: May 23, 1995"
 138  * </pre></blockquote>
 139  *
 140  * <h3><a id="org">Organization</a></h3>
 141  *
 142  * <p> This specification is divided into two sections.  The first section, <a
 143  * href="#summary">Summary</a>, covers the basic formatting concepts.  This
 144  * section is intended for users who want to get started quickly and are
 145  * familiar with formatted printing in other programming languages.  The second
 146  * section, <a href="#detail">Details</a>, covers the specific implementation
 147  * details.  It is intended for users who want more precise specification of
 148  * formatting behavior.
 149  *
 150  * <h3><a id="summary">Summary</a></h3>
 151  *
 152  * <p> This section is intended to provide a brief overview of formatting
 153  * concepts.  For precise behavioral details, refer to the <a
 154  * href="#detail">Details</a> section.
 155  *
 156  * <h4><a id="syntax">Format String Syntax</a></h4>
 157  *
 158  * <p> Every method which produces formatted output requires a <i>format
 159  * string</i> and an <i>argument list</i>.  The format string is a {@link
 160  * String} which may contain fixed text and one or more embedded <i>format
 161  * specifiers</i>.  Consider the following example:
 162  *
 163  * <blockquote><pre>
 164  *   Calendar c = ...;
 165  *   String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
 166  * </pre></blockquote>
 167  *
 168  * This format string is the first argument to the {@code format} method.  It
 169  * contains three format specifiers "{@code %1$tm}", "{@code %1$te}", and
 170  * "{@code %1$tY}" which indicate how the arguments should be processed and
 171  * where they should be inserted in the text.  The remaining portions of the
 172  * format string are fixed text including {@code "Dukes Birthday: "} and any
 173  * other spaces or punctuation.
 174  *
 175  * The argument list consists of all arguments passed to the method after the
 176  * format string.  In the above example, the argument list is of size one and
 177  * consists of the {@link java.util.Calendar Calendar} object {@code c}.
 178  *
 179  * <ul>
 180  *
 181  * <li> The format specifiers for general, character, and numeric types have
 182  * the following syntax:
 183  *
 184  * <blockquote><pre>
 185  *   %[argument_index$][flags][width][.precision]conversion
 186  * </pre></blockquote>
 187  *
 188  * <p> The optional <i>argument_index</i> is a decimal integer indicating the
 189  * position of the argument in the argument list.  The first argument is
 190  * referenced by "{@code 1$}", the second by "{@code 2$}", etc.
 191  *
 192  * <p> The optional <i>flags</i> is a set of characters that modify the output
 193  * format.  The set of valid flags depends on the conversion.
 194  *
 195  * <p> The optional <i>width</i> is a positive decimal integer indicating
 196  * the minimum number of characters to be written to the output.
 197  *
 198  * <p> The optional <i>precision</i> is a non-negative decimal integer usually
 199  * used to restrict the number of characters.  The specific behavior depends on
 200  * the conversion.
 201  *
 202  * <p> The required <i>conversion</i> is a character indicating how the
 203  * argument should be formatted.  The set of valid conversions for a given
 204  * argument depends on the argument's data type.
 205  *
 206  * <li> The format specifiers for types which are used to represents dates and
 207  * times have the following syntax:
 208  *
 209  * <blockquote><pre>
 210  *   %[argument_index$][flags][width]conversion
 211  * </pre></blockquote>
 212  *
 213  * <p> The optional <i>argument_index</i>, <i>flags</i> and <i>width</i> are
 214  * defined as above.
 215  *
 216  * <p> The required <i>conversion</i> is a two character sequence.  The first
 217  * character is {@code 't'} or {@code 'T'}.  The second character indicates
 218  * the format to be used.  These characters are similar to but not completely
 219  * identical to those defined by GNU {@code date} and POSIX
 220  * {@code strftime(3c)}.
 221  *
 222  * <li> The format specifiers which do not correspond to arguments have the
 223  * following syntax:
 224  *
 225  * <blockquote><pre>
 226  *   %[flags][width]conversion
 227  * </pre></blockquote>
 228  *
 229  * <p> The optional <i>flags</i> and <i>width</i> is defined as above.
 230  *
 231  * <p> The required <i>conversion</i> is a character indicating content to be
 232  * inserted in the output.
 233  *
 234  * </ul>
 235  *
 236  * <h4> Conversions </h4>
 237  *
 238  * <p> Conversions are divided into the following categories:
 239  *
 240  * <ol>
 241  *
 242  * <li> <b>General</b> - may be applied to any argument
 243  * type
 244  *
 245  * <li> <b>Character</b> - may be applied to basic types which represent
 246  * Unicode characters: {@code char}, {@link Character}, {@code byte}, {@link
 247  * Byte}, {@code short}, and {@link Short}. This conversion may also be
 248  * applied to the types {@code int} and {@link Integer} when {@link
 249  * Character#isValidCodePoint} returns {@code true}
 250  *
 251  * <li> <b>Numeric</b>
 252  *
 253  * <ol>
 254  *
 255  * <li> <b>Integral</b> - may be applied to Java integral types: {@code byte},
 256  * {@link Byte}, {@code short}, {@link Short}, {@code int} and {@link
 257  * Integer}, {@code long}, {@link Long}, and {@link java.math.BigInteger
 258  * BigInteger} (but not {@code char} or {@link Character})
 259  *
 260  * <li><b>Floating Point</b> - may be applied to Java floating-point types:
 261  * {@code float}, {@link Float}, {@code double}, {@link Double}, and {@link
 262  * java.math.BigDecimal BigDecimal}
 263  *
 264  * </ol>
 265  *
 266  * <li> <b>Date/Time</b> - may be applied to Java types which are capable of
 267  * encoding a date or time: {@code long}, {@link Long}, {@link Calendar},
 268  * {@link Date} and {@link TemporalAccessor TemporalAccessor}
 269  *
 270  * <li> <b>Percent</b> - produces a literal {@code '%'}
 271  * (<code>'\u0025'</code>)
 272  *
 273  * <li> <b>Line Separator</b> - produces the platform-specific line separator
 274  *
 275  * </ol>
 276  *
 277  * <p> For category <i>General</i>, <i>Character</i>, <i>Numberic</i>,
 278  * <i>Integral</i> and <i>Date/Time</i> conversion, unless otherwise specified,
 279  * if the argument <i>arg</i> is {@code null}, then the result is "{@code null}".
 280  *
 281  * <p> The following table summarizes the supported conversions.  Conversions
 282  * denoted by an upper-case character (i.e. {@code 'B'}, {@code 'H'},
 283  * {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'}, {@code 'G'},
 284  * {@code 'A'}, and {@code 'T'}) are the same as those for the corresponding
 285  * lower-case conversion characters except that the result is converted to
 286  * upper case according to the rules of the prevailing {@link java.util.Locale
 287  * Locale}.  The result is equivalent to the following invocation of {@link
 288  * String#toUpperCase(Locale)}
 289  *
 290  * <pre>
 291  *    out.toUpperCase(Locale.getDefault(Locale.Category.FORMAT)) </pre>
 292  *
 293  * <table class="striped">
 294  * <caption style="display:none">genConv</caption>
 295  * <thead>
 296  * <tr><th scope="col" style="vertical-align:bottom"> Conversion
 297  *     <th scope="col" style="vertical-align:bottom"> Argument Category
 298  *     <th scope="col" style="vertical-align:bottom"> Description
 299  * </thead>
 300  * <tbody>
 301  * <tr><th scope="row" style="vertical-align:top"> {@code 'b'}, {@code 'B'}
 302  *     <td style="vertical-align:top"> general
 303  *     <td> If the argument <i>arg</i> is {@code null}, then the result is
 304  *     "{@code false}".  If <i>arg</i> is a {@code boolean} or {@link
 305  *     Boolean}, then the result is the string returned by {@link
 306  *     String#valueOf(boolean) String.valueOf(arg)}.  Otherwise, the result is
 307  *     "true".
 308  *
 309  * <tr><th scope="row" style="vertical-align:top"> {@code 'h'}, {@code 'H'}
 310  *     <td style="vertical-align:top"> general
 311  *     <td> The result is obtained by invoking
 312  *     {@code Integer.toHexString(arg.hashCode())}.
 313  *
 314  * <tr><th scope="row" style="vertical-align:top"> {@code 's'}, {@code 'S'}
 315  *     <td style="vertical-align:top"> general
 316  *     <td> If <i>arg</i> implements {@link Formattable}, then
 317  *     {@link Formattable#formatTo arg.formatTo} is invoked. Otherwise, the
 318  *     result is obtained by invoking {@code arg.toString()}.
 319  *
 320  * <tr><th scope="row" style="vertical-align:top">{@code 'c'}, {@code 'C'}
 321  *     <td style="vertical-align:top"> character
 322  *     <td> The result is a Unicode character
 323  *
 324  * <tr><th scope="row" style="vertical-align:top">{@code 'd'}
 325  *     <td style="vertical-align:top"> integral
 326  *     <td> The result is formatted as a decimal integer
 327  *
 328  * <tr><th scope="row" style="vertical-align:top">{@code 'o'}
 329  *     <td style="vertical-align:top"> integral
 330  *     <td> The result is formatted as an octal integer
 331  *
 332  * <tr><th scope="row" style="vertical-align:top">{@code 'x'}, {@code 'X'}
 333  *     <td style="vertical-align:top"> integral
 334  *     <td> The result is formatted as a hexadecimal integer
 335  *
 336  * <tr><th scope="row" style="vertical-align:top">{@code 'e'}, {@code 'E'}
 337  *     <td style="vertical-align:top"> floating point
 338  *     <td> The result is formatted as a decimal number in computerized
 339  *     scientific notation
 340  *
 341  * <tr><th scope="row" style="vertical-align:top">{@code 'f'}
 342  *     <td style="vertical-align:top"> floating point
 343  *     <td> The result is formatted as a decimal number
 344  *
 345  * <tr><th scope="row" style="vertical-align:top">{@code 'g'}, {@code 'G'}
 346  *     <td style="vertical-align:top"> floating point
 347  *     <td> The result is formatted using computerized scientific notation or
 348  *     decimal format, depending on the precision and the value after rounding.
 349  *
 350  * <tr><th scope="row" style="vertical-align:top">{@code 'a'}, {@code 'A'}
 351  *     <td style="vertical-align:top"> floating point
 352  *     <td> The result is formatted as a hexadecimal floating-point number with
 353  *     a significand and an exponent. This conversion is <b>not</b> supported
 354  *     for the {@code BigDecimal} type despite the latter's being in the
 355  *     <i>floating point</i> argument category.
 356  *
 357  * <tr><th scope="row" style="vertical-align:top">{@code 't'}, {@code 'T'}
 358  *     <td style="vertical-align:top"> date/time
 359  *     <td> Prefix for date and time conversion characters.  See <a
 360  *     href="#dt">Date/Time Conversions</a>.
 361  *
 362  * <tr><th scope="row" style="vertical-align:top">{@code '%'}
 363  *     <td style="vertical-align:top"> percent
 364  *     <td> The result is a literal {@code '%'} (<code>'\u0025'</code>)
 365  *
 366  * <tr><th scope="row" style="vertical-align:top">{@code 'n'}
 367  *     <td style="vertical-align:top"> line separator
 368  *     <td> The result is the platform-specific line separator
 369  *
 370  * </tbody>
 371  * </table>
 372  *
 373  * <p> Any characters not explicitly defined as conversions are illegal and are
 374  * reserved for future extensions.
 375  *
 376  * <h4><a id="dt">Date/Time Conversions</a></h4>
 377  *
 378  * <p> The following date and time conversion suffix characters are defined for
 379  * the {@code 't'} and {@code 'T'} conversions.  The types are similar to but
 380  * not completely identical to those defined by GNU {@code date} and POSIX
 381  * {@code strftime(3c)}.  Additional conversion types are provided to access
 382  * Java-specific functionality (e.g. {@code 'L'} for milliseconds within the
 383  * second).
 384  *
 385  * <p> The following conversion characters are used for formatting times:
 386  *
 387  * <table class="striped">
 388  * <caption style="display:none">time</caption>
 389  * <tbody>
 390  * <tr><th scope="row" style="vertical-align:top"> {@code 'H'}
 391  *     <td> Hour of the day for the 24-hour clock, formatted as two digits with
 392  *     a leading zero as necessary i.e. {@code 00 - 23}.
 393  *
 394  * <tr><th scope="row" style="vertical-align:top">{@code 'I'}
 395  *     <td> Hour for the 12-hour clock, formatted as two digits with a leading
 396  *     zero as necessary, i.e.  {@code 01 - 12}.
 397  *
 398  * <tr><th scope="row" style="vertical-align:top">{@code 'k'}
 399  *     <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
 400  *
 401  * <tr><th scope="row" style="vertical-align:top">{@code 'l'}
 402  *     <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}.
 403  *
 404  * <tr><th scope="row" style="vertical-align:top">{@code 'M'}
 405  *     <td> Minute within the hour formatted as two digits with a leading zero
 406  *     as necessary, i.e.  {@code 00 - 59}.
 407  *
 408  * <tr><th scope="row" style="vertical-align:top">{@code 'S'}
 409  *     <td> Seconds within the minute, formatted as two digits with a leading
 410  *     zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
 411  *     value required to support leap seconds).
 412  *
 413  * <tr><th scope="row" style="vertical-align:top">{@code 'L'}
 414  *     <td> Millisecond within the second formatted as three digits with
 415  *     leading zeros as necessary, i.e. {@code 000 - 999}.
 416  *
 417  * <tr><th scope="row" style="vertical-align:top">{@code 'N'}
 418  *     <td> Nanosecond within the second, formatted as nine digits with leading
 419  *     zeros as necessary, i.e. {@code 000000000 - 999999999}.
 420  *
 421  * <tr><th scope="row" style="vertical-align:top">{@code 'p'}
 422  *     <td> Locale-specific {@linkplain
 423  *     java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
 424  *     in lower case, e.g."{@code am}" or "{@code pm}". Use of the conversion
 425  *     prefix {@code 'T'} forces this output to upper case.
 426  *
 427  * <tr><th scope="row" style="vertical-align:top">{@code 'z'}
 428  *     <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC&nbsp;822</a>
 429  *     style numeric time zone offset from GMT, e.g. {@code -0800}.  This
 430  *     value will be adjusted as necessary for Daylight Saving Time.  For
 431  *     {@code long}, {@link Long}, and {@link Date} the time zone used is
 432  *     the {@linkplain TimeZone#getDefault() default time zone} for this
 433  *     instance of the Java virtual machine.
 434  *
 435  * <tr><th scope="row" style="vertical-align:top">{@code 'Z'}
 436  *     <td> A string representing the abbreviation for the time zone.  This
 437  *     value will be adjusted as necessary for Daylight Saving Time.  For
 438  *     {@code long}, {@link Long}, and {@link Date} the  time zone used is
 439  *     the {@linkplain TimeZone#getDefault() default time zone} for this
 440  *     instance of the Java virtual machine.  The Formatter's locale will
 441  *     supersede the locale of the argument (if any).
 442  *
 443  * <tr><th scope="row" style="vertical-align:top">{@code 's'}
 444  *     <td> Seconds since the beginning of the epoch starting at 1 January 1970
 445  *     {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
 446  *     {@code Long.MAX_VALUE/1000}.
 447  *
 448  * <tr><th scope="row" style="vertical-align:top">{@code 'Q'}
 449  *     <td> Milliseconds since the beginning of the epoch starting at 1 January
 450  *     1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
 451  *     {@code Long.MAX_VALUE}.
 452  *
 453  * </tbody>
 454  * </table>
 455  *
 456  * <p> The following conversion characters are used for formatting dates:
 457  *
 458  * <table class="striped">
 459  * <caption style="display:none">date</caption>
 460  * <tbody>
 461  *
 462  * <tr><th scope="row" style="vertical-align:top">{@code 'B'}
 463  *     <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
 464  *     full month name}, e.g. {@code "January"}, {@code "February"}.
 465  *
 466  * <tr><th scope="row" style="vertical-align:top">{@code 'b'}
 467  *     <td> Locale-specific {@linkplain
 468  *     java.text.DateFormatSymbols#getShortMonths abbreviated month name},
 469  *     e.g. {@code "Jan"}, {@code "Feb"}.
 470  *
 471  * <tr><th scope="row" style="vertical-align:top">{@code 'h'}
 472  *     <td> Same as {@code 'b'}.
 473  *
 474  * <tr><th scope="row" style="vertical-align:top">{@code 'A'}
 475  *     <td> Locale-specific full name of the {@linkplain
 476  *     java.text.DateFormatSymbols#getWeekdays day of the week},
 477  *     e.g. {@code "Sunday"}, {@code "Monday"}
 478  *
 479  * <tr><th scope="row" style="vertical-align:top">{@code 'a'}
 480  *     <td> Locale-specific short name of the {@linkplain
 481  *     java.text.DateFormatSymbols#getShortWeekdays day of the week},
 482  *     e.g. {@code "Sun"}, {@code "Mon"}
 483  *
 484  * <tr><th scope="row" style="vertical-align:top">{@code 'C'}
 485  *     <td> Four-digit year divided by {@code 100}, formatted as two digits
 486  *     with leading zero as necessary, i.e. {@code 00 - 99}
 487  *
 488  * <tr><th scope="row" style="vertical-align:top">{@code 'Y'}
 489  *     <td> Year, formatted as at least four digits with leading zeros as
 490  *     necessary, e.g. {@code 0092} equals {@code 92} CE for the Gregorian
 491  *     calendar.
 492  *
 493  * <tr><th scope="row" style="vertical-align:top">{@code 'y'}
 494  *     <td> Last two digits of the year, formatted with leading zeros as
 495  *     necessary, i.e. {@code 00 - 99}.
 496  *
 497  * <tr><th scope="row" style="vertical-align:top">{@code 'j'}
 498  *     <td> Day of year, formatted as three digits with leading zeros as
 499  *     necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
 500  *
 501  * <tr><th scope="row" style="vertical-align:top">{@code 'm'}
 502  *     <td> Month, formatted as two digits with leading zeros as necessary,
 503  *     i.e. {@code 01 - 13}.
 504  *
 505  * <tr><th scope="row" style="vertical-align:top">{@code 'd'}
 506  *     <td> Day of month, formatted as two digits with leading zeros as
 507  *     necessary, i.e. {@code 01 - 31}
 508  *
 509  * <tr><th scope="row" style="vertical-align:top">{@code 'e'}
 510  *     <td> Day of month, formatted as two digits, i.e. {@code 1 - 31}.
 511  *
 512  * </tbody>
 513  * </table>
 514  *
 515  * <p> The following conversion characters are used for formatting common
 516  * date/time compositions.
 517  *
 518  * <table class="striped">
 519  * <caption style="display:none">composites</caption>
 520  * <tbody>
 521  *
 522  * <tr><th scope="row" style="vertical-align:top">{@code 'R'}
 523  *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"}
 524  *
 525  * <tr><th scope="row" style="vertical-align:top">{@code 'T'}
 526  *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
 527  *
 528  * <tr><th scope="row" style="vertical-align:top">{@code 'r'}
 529  *     <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS %Tp"}.
 530  *     The location of the morning or afternoon marker ({@code '%Tp'}) may be
 531  *     locale-dependent.
 532  *
 533  * <tr><th scope="row" style="vertical-align:top">{@code 'D'}
 534  *     <td> Date formatted as {@code "%tm/%td/%ty"}.
 535  *
 536  * <tr><th scope="row" style="vertical-align:top">{@code 'F'}
 537  *     <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO&nbsp;8601</a>
 538  *     complete date formatted as {@code "%tY-%tm-%td"}.
 539  *
 540  * <tr><th scope="row" style="vertical-align:top">{@code 'c'}
 541  *     <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
 542  *     e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
 543  *
 544  * </tbody>
 545  * </table>
 546  *
 547  * <p> Any characters not explicitly defined as date/time conversion suffixes
 548  * are illegal and are reserved for future extensions.
 549  *
 550  * <h4> Flags </h4>
 551  *
 552  * <p> The following table summarizes the supported flags.  <i>y</i> means the
 553  * flag is supported for the indicated argument types.
 554  *
 555  * <table class="striped">
 556  * <caption style="display:none">genConv</caption>
 557  * <thead>
 558  * <tr><th scope="col" style="vertical-align:bottom"> Flag <th scope="col" style="vertical-align:bottom"> General
 559  *     <th scope="col" style="vertical-align:bottom"> Character <th scope="col" style="vertical-align:bottom"> Integral
 560  *     <th scope="col" style="vertical-align:bottom"> Floating Point
 561  *     <th scope="col" style="vertical-align:bottom"> Date/Time
 562  *     <th scope="col" style="vertical-align:bottom"> Description
 563  * </thead>
 564  * <tbody>
 565  * <tr><th scope="row"> '-' <td style="text-align:center; vertical-align:top"> y
 566  *     <td style="text-align:center; vertical-align:top"> y
 567  *     <td style="text-align:center; vertical-align:top"> y
 568  *     <td style="text-align:center; vertical-align:top"> y
 569  *     <td style="text-align:center; vertical-align:top"> y
 570  *     <td> The result will be left-justified.
 571  *
 572  * <tr><th scope="row"> '#' <td style="text-align:center; vertical-align:top"> y<sup>1</sup>
 573  *     <td style="text-align:center; vertical-align:top"> -
 574  *     <td style="text-align:center; vertical-align:top"> y<sup>3</sup>
 575  *     <td style="text-align:center; vertical-align:top"> y
 576  *     <td style="text-align:center; vertical-align:top"> -
 577  *     <td> The result should use a conversion-dependent alternate form
 578  *
 579  * <tr><th scope="row"> '+' <td style="text-align:center; vertical-align:top"> -
 580  *     <td style="text-align:center; vertical-align:top"> -
 581  *     <td style="text-align:center; vertical-align:top"> y<sup>4</sup>
 582  *     <td style="text-align:center; vertical-align:top"> y
 583  *     <td style="text-align:center; vertical-align:top"> -
 584  *     <td> The result will always include a sign
 585  *
 586  * <tr><th scope="row"> '&nbsp;&nbsp;' <td style="text-align:center; vertical-align:top"> -
 587  *     <td style="text-align:center; vertical-align:top"> -
 588  *     <td style="text-align:center; vertical-align:top"> y<sup>4</sup>
 589  *     <td style="text-align:center; vertical-align:top"> y
 590  *     <td style="text-align:center; vertical-align:top"> -
 591  *     <td> The result will include a leading space for positive values
 592  *
 593  * <tr><th scope="row"> '0' <td style="text-align:center; vertical-align:top"> -
 594  *     <td style="text-align:center; vertical-align:top"> -
 595  *     <td style="text-align:center; vertical-align:top"> y
 596  *     <td style="text-align:center; vertical-align:top"> y
 597  *     <td style="text-align:center; vertical-align:top"> -
 598  *     <td> The result will be zero-padded
 599  *
 600  * <tr><th scope="row"> ',' <td style="text-align:center; vertical-align:top"> -
 601  *     <td style="text-align:center; vertical-align:top"> -
 602  *     <td style="text-align:center; vertical-align:top"> y<sup>2</sup>
 603  *     <td style="text-align:center; vertical-align:top"> y<sup>5</sup>
 604  *     <td style="text-align:center; vertical-align:top"> -
 605  *     <td> The result will include locale-specific {@linkplain
 606  *     java.text.DecimalFormatSymbols#getGroupingSeparator grouping separators}
 607  *
 608  * <tr><th scope="row"> '(' <td style="text-align:center; vertical-align:top"> -
 609  *     <td style="text-align:center; vertical-align:top"> -
 610  *     <td style="text-align:center; vertical-align:top"> y<sup>4</sup>
 611  *     <td style="text-align:center; vertical-align:top"> y<sup>5</sup>
 612  *     <td style="text-align:center"> -
 613  *     <td> The result will enclose negative numbers in parentheses
 614  *
 615  * </tbody>
 616  * </table>
 617  *
 618  * <p> <sup>1</sup> Depends on the definition of {@link Formattable}.
 619  *
 620  * <p> <sup>2</sup> For {@code 'd'} conversion only.
 621  *
 622  * <p> <sup>3</sup> For {@code 'o'}, {@code 'x'}, and {@code 'X'}
 623  * conversions only.
 624  *
 625  * <p> <sup>4</sup> For {@code 'd'}, {@code 'o'}, {@code 'x'}, and
 626  * {@code 'X'} conversions applied to {@link java.math.BigInteger BigInteger}
 627  * or {@code 'd'} applied to {@code byte}, {@link Byte}, {@code short}, {@link
 628  * Short}, {@code int} and {@link Integer}, {@code long}, and {@link Long}.
 629  *
 630  * <p> <sup>5</sup> For {@code 'e'}, {@code 'E'}, {@code 'f'},
 631  * {@code 'g'}, and {@code 'G'} conversions only.
 632  *
 633  * <p> Any characters not explicitly defined as flags are illegal and are
 634  * reserved for future extensions.
 635  *
 636  * <h4> Width </h4>
 637  *
 638  * <p> The width is the minimum number of characters to be written to the
 639  * output.  For the line separator conversion, width is not applicable; if it
 640  * is provided, an exception will be thrown.
 641  *
 642  * <h4> Precision </h4>
 643  *
 644  * <p> For general argument types, the precision is the maximum number of
 645  * characters to be written to the output.
 646  *
 647  * <p> For the floating-point conversions {@code 'a'}, {@code 'A'}, {@code 'e'},
 648  * {@code 'E'}, and {@code 'f'} the precision is the number of digits after the
 649  * radix point.  If the conversion is {@code 'g'} or {@code 'G'}, then the
 650  * precision is the total number of digits in the resulting magnitude after
 651  * rounding.
 652  *
 653  * <p> For character, integral, and date/time argument types and the percent
 654  * and line separator conversions, the precision is not applicable; if a
 655  * precision is provided, an exception will be thrown.
 656  *
 657  * <h4> Argument Index </h4>
 658  *
 659  * <p> The argument index is a decimal integer indicating the position of the
 660  * argument in the argument list.  The first argument is referenced by
 661  * "{@code 1$}", the second by "{@code 2$}", etc.
 662  *
 663  * <p> Another way to reference arguments by position is to use the
 664  * {@code '<'} (<code>'\u003c'</code>) flag, which causes the argument for
 665  * the previous format specifier to be re-used.  For example, the following two
 666  * statements would produce identical strings:
 667  *
 668  * <blockquote><pre>
 669  *   Calendar c = ...;
 670  *   String s1 = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
 671  *
 672  *   String s2 = String.format("Duke's Birthday: %1$tm %&lt;te,%&lt;tY", c);
 673  * </pre></blockquote>
 674  *
 675  * <hr>
 676  * <h3><a id="detail">Details</a></h3>
 677  *
 678  * <p> This section is intended to provide behavioral details for formatting,
 679  * including conditions and exceptions, supported data types, localization, and
 680  * interactions between flags, conversions, and data types.  For an overview of
 681  * formatting concepts, refer to the <a href="#summary">Summary</a>
 682  *
 683  * <p> Any characters not explicitly defined as conversions, date/time
 684  * conversion suffixes, or flags are illegal and are reserved for
 685  * future extensions.  Use of such a character in a format string will
 686  * cause an {@link UnknownFormatConversionException} or {@link
 687  * UnknownFormatFlagsException} to be thrown.
 688  *
 689  * <p> If the format specifier contains a width or precision with an invalid
 690  * value or which is otherwise unsupported, then a {@link
 691  * IllegalFormatWidthException} or {@link IllegalFormatPrecisionException}
 692  * respectively will be thrown.
 693  *
 694  * <p> If a format specifier contains a conversion character that is not
 695  * applicable to the corresponding argument, then an {@link
 696  * IllegalFormatConversionException} will be thrown.
 697  *
 698  * <p> All specified exceptions may be thrown by any of the {@code format}
 699  * methods of {@code Formatter} as well as by any {@code format} convenience
 700  * methods such as {@link String#format(String,Object...) String.format} and
 701  * {@link java.io.PrintStream#printf(String,Object...) PrintStream.printf}.
 702  *
 703  * <p> For category <i>General</i>, <i>Character</i>, <i>Numberic</i>,
 704  * <i>Integral</i> and <i>Date/Time</i> conversion, unless otherwise specified,
 705  * if the argument <i>arg</i> is {@code null}, then the result is "{@code null}".
 706  *
 707  * <p> Conversions denoted by an upper-case character (i.e. {@code 'B'},
 708  * {@code 'H'}, {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'},
 709  * {@code 'G'}, {@code 'A'}, and {@code 'T'}) are the same as those for the
 710  * corresponding lower-case conversion characters except that the result is
 711  * converted to upper case according to the rules of the prevailing {@link
 712  * java.util.Locale Locale}.  The result is equivalent to the following
 713  * invocation of {@link String#toUpperCase(Locale)}
 714  *
 715  * <pre>
 716  *    out.toUpperCase(Locale.getDefault(Locale.Category.FORMAT)) </pre>
 717  *
 718  * <h4><a id="dgen">General</a></h4>
 719  *
 720  * <p> The following general conversions may be applied to any argument type:
 721  *
 722  * <table class="striped">
 723  * <caption style="display:none">dgConv</caption>
 724  * <tbody>
 725  *
 726  * <tr><th scope="row" style="vertical-align:top"> {@code 'b'}
 727  *     <td style="vertical-align:top"> <code>'\u0062'</code>
 728  *     <td> Produces either "{@code true}" or "{@code false}" as returned by
 729  *     {@link Boolean#toString(boolean)}.
 730  *
 731  *     <p> If the argument is {@code null}, then the result is
 732  *     "{@code false}".  If the argument is a {@code boolean} or {@link
 733  *     Boolean}, then the result is the string returned by {@link
 734  *     String#valueOf(boolean) String.valueOf()}.  Otherwise, the result is
 735  *     "{@code true}".
 736  *
 737  *     <p> If the {@code '#'} flag is given, then a {@link
 738  *     FormatFlagsConversionMismatchException} will be thrown.
 739  *
 740  * <tr><th scope="row" style="vertical-align:top"> {@code 'B'}
 741  *     <td style="vertical-align:top"> <code>'\u0042'</code>
 742  *     <td> The upper-case variant of {@code 'b'}.
 743  *
 744  * <tr><th scope="row" style="vertical-align:top"> {@code 'h'}
 745  *     <td style="vertical-align:top"> <code>'\u0068'</code>
 746  *     <td> Produces a string representing the hash code value of the object.
 747  *
 748  *     <p> The result is obtained by invoking
 749  *     {@code Integer.toHexString(arg.hashCode())}.
 750  *
 751  *     <p> If the {@code '#'} flag is given, then a {@link
 752  *     FormatFlagsConversionMismatchException} will be thrown.
 753  *
 754  * <tr><th scope="row" style="vertical-align:top"> {@code 'H'}
 755  *     <td style="vertical-align:top"> <code>'\u0048'</code>
 756  *     <td> The upper-case variant of {@code 'h'}.
 757  *
 758  * <tr><th scope="row" style="vertical-align:top"> {@code 's'}
 759  *     <td style="vertical-align:top"> <code>'\u0073'</code>
 760  *     <td> Produces a string.
 761  *
 762  *     <p> If the argument implements {@link Formattable}, then
 763  *     its {@link Formattable#formatTo formatTo} method is invoked.
 764  *     Otherwise, the result is obtained by invoking the argument's
 765  *     {@code toString()} method.
 766  *
 767  *     <p> If the {@code '#'} flag is given and the argument is not a {@link
 768  *     Formattable} , then a {@link FormatFlagsConversionMismatchException}
 769  *     will be thrown.
 770  *
 771  * <tr><th scope="row" style="vertical-align:top"> {@code 'S'}
 772  *     <td style="vertical-align:top"> <code>'\u0053'</code>
 773  *     <td> The upper-case variant of {@code 's'}.
 774  *
 775  * </tbody>
 776  * </table>
 777  *
 778  * <p> The following <a id="dFlags">flags</a> apply to general conversions:
 779  *
 780  * <table class="striped">
 781  * <caption style="display:none">dFlags</caption>
 782  * <tbody>
 783  *
 784  * <tr><th scope="row" style="vertical-align:top"> {@code '-'}
 785  *     <td style="vertical-align:top"> <code>'\u002d'</code>
 786  *     <td> Left justifies the output.  Spaces (<code>'\u0020'</code>) will be
 787  *     added at the end of the converted value as required to fill the minimum
 788  *     width of the field.  If the width is not provided, then a {@link
 789  *     MissingFormatWidthException} will be thrown.  If this flag is not given
 790  *     then the output will be right-justified.
 791  *
 792  * <tr><th scope="row" style="vertical-align:top"> {@code '#'}
 793  *     <td style="vertical-align:top"> <code>'\u0023'</code>
 794  *     <td> Requires the output use an alternate form.  The definition of the
 795  *     form is specified by the conversion.
 796  *
 797  * </tbody>
 798  * </table>
 799  *
 800  * <p> The <a id="genWidth">width</a> is the minimum number of characters to
 801  * be written to the
 802  * output.  If the length of the converted value is less than the width then
 803  * the output will be padded by <code>'&nbsp;&nbsp;'</code> (<code>'\u0020'</code>)
 804  * until the total number of characters equals the width.  The padding is on
 805  * the left by default.  If the {@code '-'} flag is given, then the padding
 806  * will be on the right.  If the width is not specified then there is no
 807  * minimum.
 808  *
 809  * <p> The precision is the maximum number of characters to be written to the
 810  * output.  The precision is applied before the width, thus the output will be
 811  * truncated to {@code precision} characters even if the width is greater than
 812  * the precision.  If the precision is not specified then there is no explicit
 813  * limit on the number of characters.
 814  *
 815  * <h4><a id="dchar">Character</a></h4>
 816  *
 817  * This conversion may be applied to {@code char} and {@link Character}.  It
 818  * may also be applied to the types {@code byte}, {@link Byte},
 819  * {@code short}, and {@link Short}, {@code int} and {@link Integer} when
 820  * {@link Character#isValidCodePoint} returns {@code true}.  If it returns
 821  * {@code false} then an {@link IllegalFormatCodePointException} will be
 822  * thrown.
 823  *
 824  * <table class="striped">
 825  * <caption style="display:none">charConv</caption>
 826  * <tbody>
 827  *
 828  * <tr><th scope="row" style="vertical-align:top"> {@code 'c'}
 829  *     <td style="vertical-align:top"> <code>'\u0063'</code>
 830  *     <td> Formats the argument as a Unicode character as described in <a
 831  *     href="../lang/Character.html#unicode">Unicode Character
 832  *     Representation</a>.  This may be more than one 16-bit {@code char} in
 833  *     the case where the argument represents a supplementary character.
 834  *
 835  *     <p> If the {@code '#'} flag is given, then a {@link
 836  *     FormatFlagsConversionMismatchException} will be thrown.
 837  *
 838  * <tr><th scope="row" style="vertical-align:top"> {@code 'C'}
 839  *     <td style="vertical-align:top"> <code>'\u0043'</code>
 840  *     <td> The upper-case variant of {@code 'c'}.
 841  *
 842  * </tbody>
 843  * </table>
 844  *
 845  * <p> The {@code '-'} flag defined for <a href="#dFlags">General
 846  * conversions</a> applies.  If the {@code '#'} flag is given, then a {@link
 847  * FormatFlagsConversionMismatchException} will be thrown.
 848  *
 849  * <p> The width is defined as for <a href="#genWidth">General conversions</a>.
 850  *
 851  * <p> The precision is not applicable.  If the precision is specified then an
 852  * {@link IllegalFormatPrecisionException} will be thrown.
 853  *
 854  * <h4><a id="dnum">Numeric</a></h4>
 855  *
 856  * <p> Numeric conversions are divided into the following categories:
 857  *
 858  * <ol>
 859  *
 860  * <li> <a href="#dnint"><b>Byte, Short, Integer, and Long</b></a>
 861  *
 862  * <li> <a href="#dnbint"><b>BigInteger</b></a>
 863  *
 864  * <li> <a href="#dndec"><b>Float and Double</b></a>
 865  *
 866  * <li> <a href="#dnbdec"><b>BigDecimal</b></a>
 867  *
 868  * </ol>
 869  *
 870  * <p> Numeric types will be formatted according to the following algorithm:
 871  *
 872  * <p><b><a id="L10nAlgorithm"> Number Localization Algorithm</a></b>
 873  *
 874  * <p> After digits are obtained for the integer part, fractional part, and
 875  * exponent (as appropriate for the data type), the following transformation
 876  * is applied:
 877  *
 878  * <ol>
 879  *
 880  * <li> Each digit character <i>d</i> in the string is replaced by a
 881  * locale-specific digit computed relative to the current locale's
 882  * {@linkplain java.text.DecimalFormatSymbols#getZeroDigit() zero digit}
 883  * <i>z</i>; that is <i>d&nbsp;-&nbsp;</i> {@code '0'}
 884  * <i>&nbsp;+&nbsp;z</i>.
 885  *
 886  * <li> If a decimal separator is present, a locale-specific {@linkplain
 887  * java.text.DecimalFormatSymbols#getDecimalSeparator decimal separator} is
 888  * substituted.
 889  *
 890  * <li> If the {@code ','} (<code>'\u002c'</code>)
 891  * <a id="L10nGroup">flag</a> is given, then the locale-specific {@linkplain
 892  * java.text.DecimalFormatSymbols#getGroupingSeparator grouping separator} is
 893  * inserted by scanning the integer part of the string from least significant
 894  * to most significant digits and inserting a separator at intervals defined by
 895  * the locale's {@linkplain java.text.DecimalFormat#getGroupingSize() grouping
 896  * size}.
 897  *
 898  * <li> If the {@code '0'} flag is given, then the locale-specific {@linkplain
 899  * java.text.DecimalFormatSymbols#getZeroDigit() zero digits} are inserted
 900  * after the sign character, if any, and before the first non-zero digit, until
 901  * the length of the string is equal to the requested field width.
 902  *
 903  * <li> If the value is negative and the {@code '('} flag is given, then a
 904  * {@code '('} (<code>'\u0028'</code>) is prepended and a {@code ')'}
 905  * (<code>'\u0029'</code>) is appended.
 906  *
 907  * <li> If the value is negative (or floating-point negative zero) and
 908  * {@code '('} flag is not given, then a {@code '-'} (<code>'\u002d'</code>)
 909  * is prepended.
 910  *
 911  * <li> If the {@code '+'} flag is given and the value is positive or zero (or
 912  * floating-point positive zero), then a {@code '+'} (<code>'\u002b'</code>)
 913  * will be prepended.
 914  *
 915  * </ol>
 916  *
 917  * <p> If the value is NaN or positive infinity the literal strings "NaN" or
 918  * "Infinity" respectively, will be output.  If the value is negative infinity,
 919  * then the output will be "(Infinity)" if the {@code '('} flag is given
 920  * otherwise the output will be "-Infinity".  These values are not localized.
 921  *
 922  * <p><a id="dnint"><b> Byte, Short, Integer, and Long </b></a>
 923  *
 924  * <p> The following conversions may be applied to {@code byte}, {@link Byte},
 925  * {@code short}, {@link Short}, {@code int} and {@link Integer},
 926  * {@code long}, and {@link Long}.
 927  *
 928  * <table class="striped">
 929  * <caption style="display:none">IntConv</caption>
 930  * <tbody>
 931  *
 932  * <tr><th scope="row" style="vertical-align:top"> {@code 'd'}
 933  *     <td style="vertical-align:top"> <code>'\u0064'</code>
 934  *     <td> Formats the argument as a decimal integer. The <a
 935  *     href="#L10nAlgorithm">localization algorithm</a> is applied.
 936  *
 937  *     <p> If the {@code '0'} flag is given and the value is negative, then
 938  *     the zero padding will occur after the sign.
 939  *
 940  *     <p> If the {@code '#'} flag is given then a {@link
 941  *     FormatFlagsConversionMismatchException} will be thrown.
 942  *
 943  * <tr><th scope="row" style="vertical-align:top"> {@code 'o'}
 944  *     <td style="vertical-align:top"> <code>'\u006f'</code>
 945  *     <td> Formats the argument as an integer in base eight.  No localization
 946  *     is applied.
 947  *
 948  *     <p> If <i>x</i> is negative then the result will be an unsigned value
 949  *     generated by adding 2<sup>n</sup> to the value where {@code n} is the
 950  *     number of bits in the type as returned by the static {@code SIZE} field
 951  *     in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
 952  *     {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
 953  *     classes as appropriate.
 954  *
 955  *     <p> If the {@code '#'} flag is given then the output will always begin
 956  *     with the radix indicator {@code '0'}.
 957  *
 958  *     <p> If the {@code '0'} flag is given then the output will be padded
 959  *     with leading zeros to the field width following any indication of sign.
 960  *
 961  *     <p> If {@code '('}, {@code '+'}, '&nbsp;&nbsp;', or {@code ','} flags
 962  *     are given then a {@link FormatFlagsConversionMismatchException} will be
 963  *     thrown.
 964  *
 965  * <tr><th scope="row" style="vertical-align:top"> {@code 'x'}
 966  *     <td style="vertical-align:top"> <code>'\u0078'</code>
 967  *     <td> Formats the argument as an integer in base sixteen. No
 968  *     localization is applied.
 969  *
 970  *     <p> If <i>x</i> is negative then the result will be an unsigned value
 971  *     generated by adding 2<sup>n</sup> to the value where {@code n} is the
 972  *     number of bits in the type as returned by the static {@code SIZE} field
 973  *     in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
 974  *     {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
 975  *     classes as appropriate.
 976  *
 977  *     <p> If the {@code '#'} flag is given then the output will always begin
 978  *     with the radix indicator {@code "0x"}.
 979  *
 980  *     <p> If the {@code '0'} flag is given then the output will be padded to
 981  *     the field width with leading zeros after the radix indicator or sign (if
 982  *     present).
 983  *
 984  *     <p> If {@code '('}, <code>'&nbsp;&nbsp;'</code>, {@code '+'}, or
 985  *     {@code ','} flags are given then a {@link
 986  *     FormatFlagsConversionMismatchException} will be thrown.
 987  *
 988  * <tr><th scope="row" style="vertical-align:top"> {@code 'X'}
 989  *     <td style="vertical-align:top"> <code>'\u0058'</code>
 990  *     <td> The upper-case variant of {@code 'x'}.  The entire string
 991  *     representing the number will be converted to {@linkplain
 992  *     String#toUpperCase upper case} including the {@code 'x'} (if any) and
 993  *     all hexadecimal digits {@code 'a'} - {@code 'f'}
 994  *     (<code>'\u0061'</code> -  <code>'\u0066'</code>).
 995  *
 996  * </tbody>
 997  * </table>
 998  *
 999  * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
1000  * both the {@code '#'} and the {@code '0'} flags are given, then result will
1001  * contain the radix indicator ({@code '0'} for octal and {@code "0x"} or
1002  * {@code "0X"} for hexadecimal), some number of zeros (based on the width),
1003  * and the value.
1004  *
1005  * <p> If the {@code '-'} flag is not given, then the space padding will occur
1006  * before the sign.
1007  *
1008  * <p> The following <a id="intFlags">flags</a> apply to numeric integral
1009  * conversions:
1010  *
1011  * <table class="striped">
1012  * <caption style="display:none">intFlags</caption>
1013  * <tbody>
1014  *
1015  * <tr><th scope="row" style="vertical-align:top"> {@code '+'}
1016  *     <td style="vertical-align:top"> <code>'\u002b'</code>
1017  *     <td> Requires the output to include a positive sign for all positive
1018  *     numbers.  If this flag is not given then only negative values will
1019  *     include a sign.
1020  *
1021  *     <p> If both the {@code '+'} and <code>'&nbsp;&nbsp;'</code> flags are given
1022  *     then an {@link IllegalFormatFlagsException} will be thrown.
1023  *
1024  * <tr><th scope="row" style="vertical-align:top"> <code>'&nbsp;&nbsp;'</code>
1025  *     <td style="vertical-align:top"> <code>'\u0020'</code>
1026  *     <td> Requires the output to include a single extra space
1027  *     (<code>'\u0020'</code>) for non-negative values.
1028  *
1029  *     <p> If both the {@code '+'} and <code>'&nbsp;&nbsp;'</code> flags are given
1030  *     then an {@link IllegalFormatFlagsException} will be thrown.
1031  *
1032  * <tr><th scope="row" style="vertical-align:top"> {@code '0'}
1033  *     <td style="vertical-align:top"> <code>'\u0030'</code>
1034  *     <td> Requires the output to be padded with leading {@linkplain
1035  *     java.text.DecimalFormatSymbols#getZeroDigit zeros} to the minimum field
1036  *     width following any sign or radix indicator except when converting NaN
1037  *     or infinity.  If the width is not provided, then a {@link
1038  *     MissingFormatWidthException} will be thrown.
1039  *
1040  *     <p> If both the {@code '-'} and {@code '0'} flags are given then an
1041  *     {@link IllegalFormatFlagsException} will be thrown.
1042  *
1043  * <tr><th scope="row" style="vertical-align:top"> {@code ','}
1044  *     <td style="vertical-align:top"> <code>'\u002c'</code>
1045  *     <td> Requires the output to include the locale-specific {@linkplain
1046  *     java.text.DecimalFormatSymbols#getGroupingSeparator group separators} as
1047  *     described in the <a href="#L10nGroup">"group" section</a> of the
1048  *     localization algorithm.
1049  *
1050  * <tr><th scope="row" style="vertical-align:top"> {@code '('}
1051  *     <td style="vertical-align:top"> <code>'\u0028'</code>
1052  *     <td> Requires the output to prepend a {@code '('}
1053  *     (<code>'\u0028'</code>) and append a {@code ')'}
1054  *     (<code>'\u0029'</code>) to negative values.
1055  *
1056  * </tbody>
1057  * </table>
1058  *
1059  * <p> If no <a id="intdFlags">flags</a> are given the default formatting is
1060  * as follows:
1061  *
1062  * <ul>
1063  *
1064  * <li> The output is right-justified within the {@code width}
1065  *
1066  * <li> Negative numbers begin with a {@code '-'} (<code>'\u002d'</code>)
1067  *
1068  * <li> Positive numbers and zero do not include a sign or extra leading
1069  * space
1070  *
1071  * <li> No grouping separators are included
1072  *
1073  * </ul>
1074  *
1075  * <p> The <a id="intWidth">width</a> is the minimum number of characters to
1076  * be written to the output.  This includes any signs, digits, grouping
1077  * separators, radix indicator, and parentheses.  If the length of the
1078  * converted value is less than the width then the output will be padded by
1079  * spaces (<code>'\u0020'</code>) until the total number of characters equals
1080  * width.  The padding is on the left by default.  If {@code '-'} flag is
1081  * given then the padding will be on the right.  If width is not specified then
1082  * there is no minimum.
1083  *
1084  * <p> The precision is not applicable.  If precision is specified then an
1085  * {@link IllegalFormatPrecisionException} will be thrown.
1086  *
1087  * <p><a id="dnbint"><b> BigInteger </b></a>
1088  *
1089  * <p> The following conversions may be applied to {@link
1090  * java.math.BigInteger}.
1091  *
1092  * <table class="striped">
1093  * <caption style="display:none">bIntConv</caption>
1094  * <tbody>
1095  *
1096  * <tr><th scope="row" style="vertical-align:top"> {@code 'd'}
1097  *     <td style="vertical-align:top"> <code>'\u0064'</code>
1098  *     <td> Requires the output to be formatted as a decimal integer. The <a
1099  *     href="#L10nAlgorithm">localization algorithm</a> is applied.
1100  *
1101  *     <p> If the {@code '#'} flag is given {@link
1102  *     FormatFlagsConversionMismatchException} will be thrown.
1103  *
1104  * <tr><th scope="row" style="vertical-align:top"> {@code 'o'}
1105  *     <td style="vertical-align:top"> <code>'\u006f'</code>
1106  *     <td> Requires the output to be formatted as an integer in base eight.
1107  *     No localization is applied.
1108  *
1109  *     <p> If <i>x</i> is negative then the result will be a signed value
1110  *     beginning with {@code '-'} (<code>'\u002d'</code>).  Signed output is
1111  *     allowed for this type because unlike the primitive types it is not
1112  *     possible to create an unsigned equivalent without assuming an explicit
1113  *     data-type size.
1114  *
1115  *     <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given
1116  *     then the result will begin with {@code '+'} (<code>'\u002b'</code>).
1117  *
1118  *     <p> If the {@code '#'} flag is given then the output will always begin
1119  *     with {@code '0'} prefix.
1120  *
1121  *     <p> If the {@code '0'} flag is given then the output will be padded
1122  *     with leading zeros to the field width following any indication of sign.
1123  *
1124  *     <p> If the {@code ','} flag is given then a {@link
1125  *     FormatFlagsConversionMismatchException} will be thrown.
1126  *
1127  * <tr><th scope="row" style="vertical-align:top"> {@code 'x'}
1128  *     <td style="vertical-align:top"> <code>'\u0078'</code>
1129  *     <td> Requires the output to be formatted as an integer in base
1130  *     sixteen.  No localization is applied.
1131  *
1132  *     <p> If <i>x</i> is negative then the result will be a signed value
1133  *     beginning with {@code '-'} (<code>'\u002d'</code>).  Signed output is
1134  *     allowed for this type because unlike the primitive types it is not
1135  *     possible to create an unsigned equivalent without assuming an explicit
1136  *     data-type size.
1137  *
1138  *     <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given
1139  *     then the result will begin with {@code '+'} (<code>'\u002b'</code>).
1140  *
1141  *     <p> If the {@code '#'} flag is given then the output will always begin
1142  *     with the radix indicator {@code "0x"}.
1143  *
1144  *     <p> If the {@code '0'} flag is given then the output will be padded to
1145  *     the field width with leading zeros after the radix indicator or sign (if
1146  *     present).
1147  *
1148  *     <p> If the {@code ','} flag is given then a {@link
1149  *     FormatFlagsConversionMismatchException} will be thrown.
1150  *
1151  * <tr><th scope="row" style="vertical-align:top"> {@code 'X'}
1152  *     <td style="vertical-align:top"> <code>'\u0058'</code>
1153  *     <td> The upper-case variant of {@code 'x'}.  The entire string
1154  *     representing the number will be converted to {@linkplain
1155  *     String#toUpperCase upper case} including the {@code 'x'} (if any) and
1156  *     all hexadecimal digits {@code 'a'} - {@code 'f'}
1157  *     (<code>'\u0061'</code> - <code>'\u0066'</code>).
1158  *
1159  * </tbody>
1160  * </table>
1161  *
1162  * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
1163  * both the {@code '#'} and the {@code '0'} flags are given, then result will
1164  * contain the base indicator ({@code '0'} for octal and {@code "0x"} or
1165  * {@code "0X"} for hexadecimal), some number of zeros (based on the width),
1166  * and the value.
1167  *
1168  * <p> If the {@code '0'} flag is given and the value is negative, then the
1169  * zero padding will occur after the sign.
1170  *
1171  * <p> If the {@code '-'} flag is not given, then the space padding will occur
1172  * before the sign.
1173  *
1174  * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1175  * Long apply.  The <a href="#intdFlags">default behavior</a> when no flags are
1176  * given is the same as for Byte, Short, Integer, and Long.
1177  *
1178  * <p> The specification of <a href="#intWidth">width</a> is the same as
1179  * defined for Byte, Short, Integer, and Long.
1180  *
1181  * <p> The precision is not applicable.  If precision is specified then an
1182  * {@link IllegalFormatPrecisionException} will be thrown.
1183  *
1184  * <p><a id="dndec"><b> Float and Double</b></a>
1185  *
1186  * <p> The following conversions may be applied to {@code float}, {@link
1187  * Float}, {@code double} and {@link Double}.
1188  *
1189  * <table class="striped">
1190  * <caption style="display:none">floatConv</caption>
1191  * <tbody>
1192  *
1193  * <tr><th scope="row" style="vertical-align:top"> {@code 'e'}
1194  *     <td style="vertical-align:top"> <code>'\u0065'</code>
1195  *     <td> Requires the output to be formatted using <a
1196  *     id="scientific">computerized scientific notation</a>.  The <a
1197  *     href="#L10nAlgorithm">localization algorithm</a> is applied.
1198  *
1199  *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1200  *
1201  *     <p> If <i>m</i> is NaN or infinite, the literal strings "NaN" or
1202  *     "Infinity", respectively, will be output.  These values are not
1203  *     localized.
1204  *
1205  *     <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
1206  *     will be {@code "+00"}.
1207  *
1208  *     <p> Otherwise, the result is a string that represents the sign and
1209  *     magnitude (absolute value) of the argument.  The formatting of the sign
1210  *     is described in the <a href="#L10nAlgorithm">localization
1211  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1212  *     value.
1213  *
1214  *     <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
1215  *     &lt;= <i>m</i> &lt; 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
1216  *     mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
1217  *     that 1 &lt;= <i>a</i> &lt; 10. The magnitude is then represented as the
1218  *     integer part of <i>a</i>, as a single decimal digit, followed by the
1219  *     decimal separator followed by decimal digits representing the fractional
1220  *     part of <i>a</i>, followed by the exponent symbol {@code 'e'}
1221  *     (<code>'\u0065'</code>), followed by the sign of the exponent, followed
1222  *     by a representation of <i>n</i> as a decimal integer, as produced by the
1223  *     method {@link Long#toString(long, int)}, and zero-padded to include at
1224  *     least two digits.
1225  *
1226  *     <p> The number of digits in the result for the fractional part of
1227  *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1228  *     specified then the default value is {@code 6}. If the precision is less
1229  *     than the number of digits which would appear after the decimal point in
1230  *     the string returned by {@link Float#toString(float)} or {@link
1231  *     Double#toString(double)} respectively, then the value will be rounded
1232  *     using the {@linkplain java.math.RoundingMode#HALF_UP round half up
1233  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1234  *     For a canonical representation of the value, use {@link
1235  *     Float#toString(float)} or {@link Double#toString(double)} as
1236  *     appropriate.
1237  *
1238  *     <p>If the {@code ','} flag is given, then an {@link
1239  *     FormatFlagsConversionMismatchException} will be thrown.
1240  *
1241  * <tr><th scope="row" style="vertical-align:top"> {@code 'E'}
1242  *     <td style="vertical-align:top"> <code>'\u0045'</code>
1243  *     <td> The upper-case variant of {@code 'e'}.  The exponent symbol
1244  *     will be {@code 'E'} (<code>'\u0045'</code>).
1245  *
1246  * <tr><th scope="row" style="vertical-align:top"> {@code 'g'}
1247  *     <td style="vertical-align:top"> <code>'\u0067'</code>
1248  *     <td> Requires the output to be formatted in general scientific notation
1249  *     as described below. The <a href="#L10nAlgorithm">localization
1250  *     algorithm</a> is applied.
1251  *
1252  *     <p> After rounding for the precision, the formatting of the resulting
1253  *     magnitude <i>m</i> depends on its value.
1254  *
1255  *     <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
1256  *     than 10<sup>precision</sup> then it is represented in <i><a
1257  *     href="#decimal">decimal format</a></i>.
1258  *
1259  *     <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
1260  *     10<sup>precision</sup>, then it is represented in <i><a
1261  *     href="#scientific">computerized scientific notation</a></i>.
1262  *
1263  *     <p> The total number of significant digits in <i>m</i> is equal to the
1264  *     precision.  If the precision is not specified, then the default value is
1265  *     {@code 6}.  If the precision is {@code 0}, then it is taken to be
1266  *     {@code 1}.
1267  *
1268  *     <p> If the {@code '#'} flag is given then an {@link
1269  *     FormatFlagsConversionMismatchException} will be thrown.
1270  *
1271  * <tr><th scope="row" style="vertical-align:top"> {@code 'G'}
1272  *     <td style="vertical-align:top"> <code>'\u0047'</code>
1273  *     <td> The upper-case variant of {@code 'g'}.
1274  *
1275  * <tr><th scope="row" style="vertical-align:top"> {@code 'f'}
1276  *     <td style="vertical-align:top"> <code>'\u0066'</code>
1277  *     <td> Requires the output to be formatted using <a id="decimal">decimal
1278  *     format</a>.  The <a href="#L10nAlgorithm">localization algorithm</a> is
1279  *     applied.
1280  *
1281  *     <p> The result is a string that represents the sign and magnitude
1282  *     (absolute value) of the argument.  The formatting of the sign is
1283  *     described in the <a href="#L10nAlgorithm">localization
1284  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1285  *     value.
1286  *
1287  *     <p> If <i>m</i> NaN or infinite, the literal strings "NaN" or
1288  *     "Infinity", respectively, will be output.  These values are not
1289  *     localized.
1290  *
1291  *     <p> The magnitude is formatted as the integer part of <i>m</i>, with no
1292  *     leading zeroes, followed by the decimal separator followed by one or
1293  *     more decimal digits representing the fractional part of <i>m</i>.
1294  *
1295  *     <p> The number of digits in the result for the fractional part of
1296  *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1297  *     specified then the default value is {@code 6}. If the precision is less
1298  *     than the number of digits which would appear after the decimal point in
1299  *     the string returned by {@link Float#toString(float)} or {@link
1300  *     Double#toString(double)} respectively, then the value will be rounded
1301  *     using the {@linkplain java.math.RoundingMode#HALF_UP round half up
1302  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1303  *     For a canonical representation of the value, use {@link
1304  *     Float#toString(float)} or {@link Double#toString(double)} as
1305  *     appropriate.
1306  *
1307  * <tr><th scope="row" style="vertical-align:top"> {@code 'a'}
1308  *     <td style="vertical-align:top"> <code>'\u0061'</code>
1309  *     <td> Requires the output to be formatted in hexadecimal exponential
1310  *     form.  No localization is applied.
1311  *
1312  *     <p> The result is a string that represents the sign and magnitude
1313  *     (absolute value) of the argument <i>x</i>.
1314  *
1315  *     <p> If <i>x</i> is negative or a negative-zero value then the result
1316  *     will begin with {@code '-'} (<code>'\u002d'</code>).
1317  *
1318  *     <p> If <i>x</i> is positive or a positive-zero value and the
1319  *     {@code '+'} flag is given then the result will begin with {@code '+'}
1320  *     (<code>'\u002b'</code>).
1321  *
1322  *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1323  *
1324  *     <ul>
1325  *
1326  *     <li> If the value is NaN or infinite, the literal strings "NaN" or
1327  *     "Infinity", respectively, will be output.
1328  *
1329  *     <li> If <i>m</i> is zero then it is represented by the string
1330  *     {@code "0x0.0p0"}.
1331  *
1332  *     <li> If <i>m</i> is a {@code double} value with a normalized
1333  *     representation then substrings are used to represent the significand and
1334  *     exponent fields.  The significand is represented by the characters
1335  *     {@code "0x1."} followed by the hexadecimal representation of the rest
1336  *     of the significand as a fraction.  The exponent is represented by
1337  *     {@code 'p'} (<code>'\u0070'</code>) followed by a decimal string of the
1338  *     unbiased exponent as if produced by invoking {@link
1339  *     Integer#toString(int) Integer.toString} on the exponent value.  If the
1340  *     precision is specified, the value is rounded to the given number of
1341  *     hexadecimal digits.
1342  *
1343  *     <li> If <i>m</i> is a {@code double} value with a subnormal
1344  *     representation then, unless the precision is specified to be in the range
1345  *     1 through 12, inclusive, the significand is represented by the characters
1346  *     {@code '0x0.'} followed by the hexadecimal representation of the rest of
1347  *     the significand as a fraction, and the exponent represented by
1348  *     {@code 'p-1022'}.  If the precision is in the interval
1349  *     [1,&nbsp;12], the subnormal value is normalized such that it
1350  *     begins with the characters {@code '0x1.'}, rounded to the number of
1351  *     hexadecimal digits of precision, and the exponent adjusted
1352  *     accordingly.  Note that there must be at least one nonzero digit in a
1353  *     subnormal significand.
1354  *
1355  *     </ul>
1356  *
1357  *     <p> If the {@code '('} or {@code ','} flags are given, then a {@link
1358  *     FormatFlagsConversionMismatchException} will be thrown.
1359  *
1360  * <tr><th scope="row" style="vertical-align:top"> {@code 'A'}
1361  *     <td style="vertical-align:top"> <code>'\u0041'</code>
1362  *     <td> The upper-case variant of {@code 'a'}.  The entire string
1363  *     representing the number will be converted to upper case including the
1364  *     {@code 'x'} (<code>'\u0078'</code>) and {@code 'p'}
1365  *     (<code>'\u0070'</code> and all hexadecimal digits {@code 'a'} -
1366  *     {@code 'f'} (<code>'\u0061'</code> - <code>'\u0066'</code>).
1367  *
1368  * </tbody>
1369  * </table>
1370  *
1371  * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1372  * Long apply.
1373  *
1374  * <p> If the {@code '#'} flag is given, then the decimal separator will
1375  * always be present.
1376  *
1377  * <p> If no <a id="floatdFlags">flags</a> are given the default formatting
1378  * is as follows:
1379  *
1380  * <ul>
1381  *
1382  * <li> The output is right-justified within the {@code width}
1383  *
1384  * <li> Negative numbers begin with a {@code '-'}
1385  *
1386  * <li> Positive numbers and positive zero do not include a sign or extra
1387  * leading space
1388  *
1389  * <li> No grouping separators are included
1390  *
1391  * <li> The decimal separator will only appear if a digit follows it
1392  *
1393  * </ul>
1394  *
1395  * <p> The <a id="floatDWidth">width</a> is the minimum number of characters
1396  * to be written to the output.  This includes any signs, digits, grouping
1397  * separators, decimal separators, exponential symbol, radix indicator,
1398  * parentheses, and strings representing infinity and NaN as applicable.  If
1399  * the length of the converted value is less than the width then the output
1400  * will be padded by spaces (<code>'\u0020'</code>) until the total number of
1401  * characters equals width.  The padding is on the left by default.  If the
1402  * {@code '-'} flag is given then the padding will be on the right.  If width
1403  * is not specified then there is no minimum.
1404  *
1405  * <p> If the <a id="floatDPrec">conversion</a> is {@code 'e'},
1406  * {@code 'E'} or {@code 'f'}, then the precision is the number of digits
1407  * after the decimal separator.  If the precision is not specified, then it is
1408  * assumed to be {@code 6}.
1409  *
1410  * <p> If the conversion is {@code 'g'} or {@code 'G'}, then the precision is
1411  * the total number of significant digits in the resulting magnitude after
1412  * rounding.  If the precision is not specified, then the default value is
1413  * {@code 6}.  If the precision is {@code 0}, then it is taken to be
1414  * {@code 1}.
1415  *
1416  * <p> If the conversion is {@code 'a'} or {@code 'A'}, then the precision
1417  * is the number of hexadecimal digits after the radix point.  If the
1418  * precision is not provided, then all of the digits as returned by {@link
1419  * Double#toHexString(double)} will be output.
1420  *
1421  * <p><a id="dnbdec"><b> BigDecimal </b></a>
1422  *
1423  * <p> The following conversions may be applied {@link java.math.BigDecimal
1424  * BigDecimal}.
1425  *
1426  * <table class="striped">
1427  * <caption style="display:none">floatConv</caption>
1428  * <tbody>
1429  *
1430  * <tr><th scope="row" style="vertical-align:top"> {@code 'e'}
1431  *     <td style="vertical-align:top"> <code>'\u0065'</code>
1432  *     <td> Requires the output to be formatted using <a
1433  *     id="bscientific">computerized scientific notation</a>.  The <a
1434  *     href="#L10nAlgorithm">localization algorithm</a> is applied.
1435  *
1436  *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1437  *
1438  *     <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
1439  *     will be {@code "+00"}.
1440  *
1441  *     <p> Otherwise, the result is a string that represents the sign and
1442  *     magnitude (absolute value) of the argument.  The formatting of the sign
1443  *     is described in the <a href="#L10nAlgorithm">localization
1444  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1445  *     value.
1446  *
1447  *     <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
1448  *     &lt;= <i>m</i> &lt; 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
1449  *     mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
1450  *     that 1 &lt;= <i>a</i> &lt; 10. The magnitude is then represented as the
1451  *     integer part of <i>a</i>, as a single decimal digit, followed by the
1452  *     decimal separator followed by decimal digits representing the fractional
1453  *     part of <i>a</i>, followed by the exponent symbol {@code 'e'}
1454  *     (<code>'\u0065'</code>), followed by the sign of the exponent, followed
1455  *     by a representation of <i>n</i> as a decimal integer, as produced by the
1456  *     method {@link Long#toString(long, int)}, and zero-padded to include at
1457  *     least two digits.
1458  *
1459  *     <p> The number of digits in the result for the fractional part of
1460  *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1461  *     specified then the default value is {@code 6}.  If the precision is
1462  *     less than the number of digits to the right of the decimal point then
1463  *     the value will be rounded using the
1464  *     {@linkplain java.math.RoundingMode#HALF_UP round half up
1465  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1466  *     For a canonical representation of the value, use {@link
1467  *     BigDecimal#toString()}.
1468  *
1469  *     <p> If the {@code ','} flag is given, then an {@link
1470  *     FormatFlagsConversionMismatchException} will be thrown.
1471  *
1472  * <tr><th scope="row" style="vertical-align:top"> {@code 'E'}
1473  *     <td style="vertical-align:top"> <code>'\u0045'</code>
1474  *     <td> The upper-case variant of {@code 'e'}.  The exponent symbol
1475  *     will be {@code 'E'} (<code>'\u0045'</code>).
1476  *
1477  * <tr><th scope="row" style="vertical-align:top"> {@code 'g'}
1478  *     <td style="vertical-align:top"> <code>'\u0067'</code>
1479  *     <td> Requires the output to be formatted in general scientific notation
1480  *     as described below. The <a href="#L10nAlgorithm">localization
1481  *     algorithm</a> is applied.
1482  *
1483  *     <p> After rounding for the precision, the formatting of the resulting
1484  *     magnitude <i>m</i> depends on its value.
1485  *
1486  *     <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
1487  *     than 10<sup>precision</sup> then it is represented in <i><a
1488  *     href="#bdecimal">decimal format</a></i>.
1489  *
1490  *     <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
1491  *     10<sup>precision</sup>, then it is represented in <i><a
1492  *     href="#bscientific">computerized scientific notation</a></i>.
1493  *
1494  *     <p> The total number of significant digits in <i>m</i> is equal to the
1495  *     precision.  If the precision is not specified, then the default value is
1496  *     {@code 6}.  If the precision is {@code 0}, then it is taken to be
1497  *     {@code 1}.
1498  *
1499  *     <p> If the {@code '#'} flag is given then an {@link
1500  *     FormatFlagsConversionMismatchException} will be thrown.
1501  *
1502  * <tr><th scope="row" style="vertical-align:top"> {@code 'G'}
1503  *     <td style="vertical-align:top"> <code>'\u0047'</code>
1504  *     <td> The upper-case variant of {@code 'g'}.
1505  *
1506  * <tr><th scope="row" style="vertical-align:top"> {@code 'f'}
1507  *     <td style="vertical-align:top"> <code>'\u0066'</code>
1508  *     <td> Requires the output to be formatted using <a id="bdecimal">decimal
1509  *     format</a>.  The <a href="#L10nAlgorithm">localization algorithm</a> is
1510  *     applied.
1511  *
1512  *     <p> The result is a string that represents the sign and magnitude
1513  *     (absolute value) of the argument.  The formatting of the sign is
1514  *     described in the <a href="#L10nAlgorithm">localization
1515  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1516  *     value.
1517  *
1518  *     <p> The magnitude is formatted as the integer part of <i>m</i>, with no
1519  *     leading zeroes, followed by the decimal separator followed by one or
1520  *     more decimal digits representing the fractional part of <i>m</i>.
1521  *
1522  *     <p> The number of digits in the result for the fractional part of
1523  *     <i>m</i> or <i>a</i> is equal to the precision. If the precision is not
1524  *     specified then the default value is {@code 6}.  If the precision is
1525  *     less than the number of digits to the right of the decimal point
1526  *     then the value will be rounded using the
1527  *     {@linkplain java.math.RoundingMode#HALF_UP round half up
1528  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1529  *     For a canonical representation of the value, use {@link
1530  *     BigDecimal#toString()}.
1531  *
1532  * </tbody>
1533  * </table>
1534  *
1535  * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1536  * Long apply.
1537  *
1538  * <p> If the {@code '#'} flag is given, then the decimal separator will
1539  * always be present.
1540  *
1541  * <p> The <a href="#floatdFlags">default behavior</a> when no flags are
1542  * given is the same as for Float and Double.
1543  *
1544  * <p> The specification of <a href="#floatDWidth">width</a> and <a
1545  * href="#floatDPrec">precision</a> is the same as defined for Float and
1546  * Double.
1547  *
1548  * <h4><a id="ddt">Date/Time</a></h4>
1549  *
1550  * <p> This conversion may be applied to {@code long}, {@link Long}, {@link
1551  * Calendar}, {@link Date} and {@link TemporalAccessor TemporalAccessor}
1552  *
1553  * <table class="striped">
1554  * <caption style="display:none">DTConv</caption>
1555  * <tbody>
1556  *
1557  * <tr><th scope="row" style="vertical-align:top"> {@code 't'}
1558  *     <td style="vertical-align:top"> <code>'\u0074'</code>
1559  *     <td> Prefix for date and time conversion characters.
1560  * <tr><th scope="row" style="vertical-align:top"> {@code 'T'}
1561  *     <td style="vertical-align:top"> <code>'\u0054'</code>
1562  *     <td> The upper-case variant of {@code 't'}.
1563  *
1564  * </tbody>
1565  * </table>
1566  *
1567  * <p> The following date and time conversion character suffixes are defined
1568  * for the {@code 't'} and {@code 'T'} conversions.  The types are similar to
1569  * but not completely identical to those defined by GNU {@code date} and
1570  * POSIX {@code strftime(3c)}.  Additional conversion types are provided to
1571  * access Java-specific functionality (e.g. {@code 'L'} for milliseconds
1572  * within the second).
1573  *
1574  * <p> The following conversion characters are used for formatting times:
1575  *
1576  * <table class="striped">
1577  * <caption style="display:none">time</caption>
1578  * <tbody>
1579  *
1580  * <tr><th scope="row" style="vertical-align:top"> {@code 'H'}
1581  *     <td style="vertical-align:top"> <code>'\u0048'</code>
1582  *     <td> Hour of the day for the 24-hour clock, formatted as two digits with
1583  *     a leading zero as necessary i.e. {@code 00 - 23}. {@code 00}
1584  *     corresponds to midnight.
1585  *
1586  * <tr><th scope="row" style="vertical-align:top">{@code 'I'}
1587  *     <td style="vertical-align:top"> <code>'\u0049'</code>
1588  *     <td> Hour for the 12-hour clock, formatted as two digits with a leading
1589  *     zero as necessary, i.e.  {@code 01 - 12}.  {@code 01} corresponds to
1590  *     one o'clock (either morning or afternoon).
1591  *
1592  * <tr><th scope="row" style="vertical-align:top">{@code 'k'}
1593  *     <td style="vertical-align:top"> <code>'\u006b'</code>
1594  *     <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
1595  *     {@code 0} corresponds to midnight.
1596  *
1597  * <tr><th scope="row" style="vertical-align:top">{@code 'l'}
1598  *     <td style="vertical-align:top"> <code>'\u006c'</code>
1599  *     <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}.  {@code 1}
1600  *     corresponds to one o'clock (either morning or afternoon).
1601  *
1602  * <tr><th scope="row" style="vertical-align:top">{@code 'M'}
1603  *     <td style="vertical-align:top"> <code>'\u004d'</code>
1604  *     <td> Minute within the hour formatted as two digits with a leading zero
1605  *     as necessary, i.e.  {@code 00 - 59}.
1606  *
1607  * <tr><th scope="row" style="vertical-align:top">{@code 'S'}
1608  *     <td style="vertical-align:top"> <code>'\u0053'</code>
1609  *     <td> Seconds within the minute, formatted as two digits with a leading
1610  *     zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
1611  *     value required to support leap seconds).
1612  *
1613  * <tr><th scope="row" style="vertical-align:top">{@code 'L'}
1614  *     <td style="vertical-align:top"> <code>'\u004c'</code>
1615  *     <td> Millisecond within the second formatted as three digits with
1616  *     leading zeros as necessary, i.e. {@code 000 - 999}.
1617  *
1618  * <tr><th scope="row" style="vertical-align:top">{@code 'N'}
1619  *     <td style="vertical-align:top"> <code>'\u004e'</code>
1620  *     <td> Nanosecond within the second, formatted as nine digits with leading
1621  *     zeros as necessary, i.e. {@code 000000000 - 999999999}.  The precision
1622  *     of this value is limited by the resolution of the underlying operating
1623  *     system or hardware.
1624  *
1625  * <tr><th scope="row" style="vertical-align:top">{@code 'p'}
1626  *     <td style="vertical-align:top"> <code>'\u0070'</code>
1627  *     <td> Locale-specific {@linkplain
1628  *     java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
1629  *     in lower case, e.g."{@code am}" or "{@code pm}".  Use of the
1630  *     conversion prefix {@code 'T'} forces this output to upper case.  (Note
1631  *     that {@code 'p'} produces lower-case output.  This is different from
1632  *     GNU {@code date} and POSIX {@code strftime(3c)} which produce
1633  *     upper-case output.)
1634  *
1635  * <tr><th scope="row" style="vertical-align:top">{@code 'z'}
1636  *     <td style="vertical-align:top"> <code>'\u007a'</code>
1637  *     <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC&nbsp;822</a>
1638  *     style numeric time zone offset from GMT, e.g. {@code -0800}.  This
1639  *     value will be adjusted as necessary for Daylight Saving Time.  For
1640  *     {@code long}, {@link Long}, and {@link Date} the time zone used is
1641  *     the {@linkplain TimeZone#getDefault() default time zone} for this
1642  *     instance of the Java virtual machine.
1643  *
1644  * <tr><th scope="row" style="vertical-align:top">{@code 'Z'}
1645  *     <td style="vertical-align:top"> <code>'\u005a'</code>
1646  *     <td> A string representing the abbreviation for the time zone.  This
1647  *     value will be adjusted as necessary for Daylight Saving Time.  For
1648  *     {@code long}, {@link Long}, and {@link Date} the time zone used is
1649  *     the {@linkplain TimeZone#getDefault() default time zone} for this
1650  *     instance of the Java virtual machine.  The Formatter's locale will
1651  *     supersede the locale of the argument (if any).
1652  *
1653  * <tr><th scope="row" style="vertical-align:top">{@code 's'}
1654  *     <td style="vertical-align:top"> <code>'\u0073'</code>
1655  *     <td> Seconds since the beginning of the epoch starting at 1 January 1970
1656  *     {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
1657  *     {@code Long.MAX_VALUE/1000}.
1658  *
1659  * <tr><th scope="row" style="vertical-align:top">{@code 'Q'}
1660  *     <td style="vertical-align:top"> <code>'\u004f'</code>
1661  *     <td> Milliseconds since the beginning of the epoch starting at 1 January
1662  *     1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
1663  *     {@code Long.MAX_VALUE}. The precision of this value is limited by
1664  *     the resolution of the underlying operating system or hardware.
1665  *
1666  * </tbody>
1667  * </table>
1668  *
1669  * <p> The following conversion characters are used for formatting dates:
1670  *
1671  * <table class="striped">
1672  * <caption style="display:none">date</caption>
1673  * <tbody>
1674  *
1675  * <tr><th scope="row" style="vertical-align:top">{@code 'B'}
1676  *     <td style="vertical-align:top"> <code>'\u0042'</code>
1677  *     <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
1678  *     full month name}, e.g. {@code "January"}, {@code "February"}.
1679  *
1680  * <tr><th scope="row" style="vertical-align:top">{@code 'b'}
1681  *     <td style="vertical-align:top"> <code>'\u0062'</code>
1682  *     <td> Locale-specific {@linkplain
1683  *     java.text.DateFormatSymbols#getShortMonths abbreviated month name},
1684  *     e.g. {@code "Jan"}, {@code "Feb"}.
1685  *
1686  * <tr><th scope="row" style="vertical-align:top">{@code 'h'}
1687  *     <td style="vertical-align:top"> <code>'\u0068'</code>
1688  *     <td> Same as {@code 'b'}.
1689  *
1690  * <tr><th scope="row" style="vertical-align:top">{@code 'A'}
1691  *     <td style="vertical-align:top"> <code>'\u0041'</code>
1692  *     <td> Locale-specific full name of the {@linkplain
1693  *     java.text.DateFormatSymbols#getWeekdays day of the week},
1694  *     e.g. {@code "Sunday"}, {@code "Monday"}
1695  *
1696  * <tr><th scope="row" style="vertical-align:top">{@code 'a'}
1697  *     <td style="vertical-align:top"> <code>'\u0061'</code>
1698  *     <td> Locale-specific short name of the {@linkplain
1699  *     java.text.DateFormatSymbols#getShortWeekdays day of the week},
1700  *     e.g. {@code "Sun"}, {@code "Mon"}
1701  *
1702  * <tr><th scope="row" style="vertical-align:top">{@code 'C'}
1703  *     <td style="vertical-align:top"> <code>'\u0043'</code>
1704  *     <td> Four-digit year divided by {@code 100}, formatted as two digits
1705  *     with leading zero as necessary, i.e. {@code 00 - 99}
1706  *
1707  * <tr><th scope="row" style="vertical-align:top">{@code 'Y'}
1708  *     <td style="vertical-align:top"> <code>'\u0059'</code> <td> Year, formatted to at least
1709  *     four digits with leading zeros as necessary, e.g. {@code 0092} equals
1710  *     {@code 92} CE for the Gregorian calendar.
1711  *
1712  * <tr><th scope="row" style="vertical-align:top">{@code 'y'}
1713  *     <td style="vertical-align:top"> <code>'\u0079'</code>
1714  *     <td> Last two digits of the year, formatted with leading zeros as
1715  *     necessary, i.e. {@code 00 - 99}.
1716  *
1717  * <tr><th scope="row" style="vertical-align:top">{@code 'j'}
1718  *     <td style="vertical-align:top"> <code>'\u006a'</code>
1719  *     <td> Day of year, formatted as three digits with leading zeros as
1720  *     necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
1721  *     {@code 001} corresponds to the first day of the year.
1722  *
1723  * <tr><th scope="row" style="vertical-align:top">{@code 'm'}
1724  *     <td style="vertical-align:top"> <code>'\u006d'</code>
1725  *     <td> Month, formatted as two digits with leading zeros as necessary,
1726  *     i.e. {@code 01 - 13}, where "{@code 01}" is the first month of the
1727  *     year and ("{@code 13}" is a special value required to support lunar
1728  *     calendars).
1729  *
1730  * <tr><th scope="row" style="vertical-align:top">{@code 'd'}
1731  *     <td style="vertical-align:top"> <code>'\u0064'</code>
1732  *     <td> Day of month, formatted as two digits with leading zeros as
1733  *     necessary, i.e. {@code 01 - 31}, where "{@code 01}" is the first day
1734  *     of the month.
1735  *
1736  * <tr><th scope="row" style="vertical-align:top">{@code 'e'}
1737  *     <td style="vertical-align:top"> <code>'\u0065'</code>
1738  *     <td> Day of month, formatted as two digits, i.e. {@code 1 - 31} where
1739  *     "{@code 1}" is the first day of the month.
1740  *
1741  * </tbody>
1742  * </table>
1743  *
1744  * <p> The following conversion characters are used for formatting common
1745  * date/time compositions.
1746  *
1747  * <table class="striped">
1748  * <caption style="display:none">composites</caption>
1749  * <tbody>
1750  *
1751  * <tr><th scope="row" style="vertical-align:top">{@code 'R'}
1752  *     <td style="vertical-align:top"> <code>'\u0052'</code>
1753  *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"}
1754  *
1755  * <tr><th scope="row" style="vertical-align:top">{@code 'T'}
1756  *     <td style="vertical-align:top"> <code>'\u0054'</code>
1757  *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
1758  *
1759  * <tr><th scope="row" style="vertical-align:top">{@code 'r'}
1760  *     <td style="vertical-align:top"> <code>'\u0072'</code>
1761  *     <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS
1762  *     %Tp"}.  The location of the morning or afternoon marker
1763  *     ({@code '%Tp'}) may be locale-dependent.
1764  *
1765  * <tr><th scope="row" style="vertical-align:top">{@code 'D'}
1766  *     <td style="vertical-align:top"> <code>'\u0044'</code>
1767  *     <td> Date formatted as {@code "%tm/%td/%ty"}.
1768  *
1769  * <tr><th scope="row" style="vertical-align:top">{@code 'F'}
1770  *     <td style="vertical-align:top"> <code>'\u0046'</code>
1771  *     <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO&nbsp;8601</a>
1772  *     complete date formatted as {@code "%tY-%tm-%td"}.
1773  *
1774  * <tr><th scope="row" style="vertical-align:top">{@code 'c'}
1775  *     <td style="vertical-align:top"> <code>'\u0063'</code>
1776  *     <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
1777  *     e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
1778  *
1779  * </tbody>
1780  * </table>
1781  *
1782  * <p> The {@code '-'} flag defined for <a href="#dFlags">General
1783  * conversions</a> applies.  If the {@code '#'} flag is given, then a {@link
1784  * FormatFlagsConversionMismatchException} will be thrown.
1785  *
1786  * <p> The width is the minimum number of characters to
1787  * be written to the output.  If the length of the converted value is less than
1788  * the {@code width} then the output will be padded by spaces
1789  * (<code>'\u0020'</code>) until the total number of characters equals width.
1790  * The padding is on the left by default.  If the {@code '-'} flag is given
1791  * then the padding will be on the right.  If width is not specified then there
1792  * is no minimum.
1793  *
1794  * <p> The precision is not applicable.  If the precision is specified then an
1795  * {@link IllegalFormatPrecisionException} will be thrown.
1796  *
1797  * <h4><a id="dper">Percent</a></h4>
1798  *
1799  * <p> The conversion does not correspond to any argument.
1800  *
1801  * <table class="striped">
1802  * <caption style="display:none">DTConv</caption>
1803  * <tbody>
1804  *
1805  * <tr><th scope="row" style="vertical-align:top">{@code '%'}
1806  *     <td> The result is a literal {@code '%'} (<code>'\u0025'</code>)
1807  *
1808  * <p> The width is the minimum number of characters to
1809  * be written to the output including the {@code '%'}.  If the length of the
1810  * converted value is less than the {@code width} then the output will be
1811  * padded by spaces (<code>'\u0020'</code>) until the total number of
1812  * characters equals width.  The padding is on the left.  If width is not
1813  * specified then just the {@code '%'} is output.
1814  *
1815  * <p> The {@code '-'} flag defined for <a href="#dFlags">General
1816  * conversions</a> applies.  If any other flags are provided, then a
1817  * {@link FormatFlagsConversionMismatchException} will be thrown.
1818  *
1819  * <p> The precision is not applicable.  If the precision is specified an
1820  * {@link IllegalFormatPrecisionException} will be thrown.
1821  *
1822  * </tbody>
1823  * </table>
1824  *
1825  * <h4><a id="dls">Line Separator</a></h4>
1826  *
1827  * <p> The conversion does not correspond to any argument.
1828  *
1829  * <table class="striped">
1830  * <caption style="display:none">DTConv</caption>
1831  * <tbody>
1832  *
1833  * <tr><th scope="row" style="vertical-align:top">{@code 'n'}
1834  *     <td> the platform-specific line separator as returned by {@link
1835  *     System#lineSeparator()}.
1836  *
1837  * </tbody>
1838  * </table>
1839  *
1840  * <p> Flags, width, and precision are not applicable.  If any are provided an
1841  * {@link IllegalFormatFlagsException}, {@link IllegalFormatWidthException},
1842  * and {@link IllegalFormatPrecisionException}, respectively will be thrown.
1843  *
1844  * <h4><a id="dpos">Argument Index</a></h4>
1845  *
1846  * <p> Format specifiers can reference arguments in three ways:
1847  *
1848  * <ul>
1849  *
1850  * <li> <i>Explicit indexing</i> is used when the format specifier contains an
1851  * argument index.  The argument index is a decimal integer indicating the
1852  * position of the argument in the argument list.  The first argument is
1853  * referenced by "{@code 1$}", the second by "{@code 2$}", etc.  An argument
1854  * may be referenced more than once.
1855  *
1856  * <p> For example:
1857  *
1858  * <blockquote><pre>
1859  *   formatter.format("%4$s %3$s %2$s %1$s %4$s %3$s %2$s %1$s",
1860  *                    "a", "b", "c", "d")
1861  *   // -&gt; "d c b a d c b a"
1862  * </pre></blockquote>
1863  *
1864  * <li> <i>Relative indexing</i> is used when the format specifier contains a
1865  * {@code '<'} (<code>'\u003c'</code>) flag which causes the argument for
1866  * the previous format specifier to be re-used.  If there is no previous
1867  * argument, then a {@link MissingFormatArgumentException} is thrown.
1868  *
1869  * <blockquote><pre>
1870  *    formatter.format("%s %s %&lt;s %&lt;s", "a", "b", "c", "d")
1871  *    // -&gt; "a b b b"
1872  *    // "c" and "d" are ignored because they are not referenced
1873  * </pre></blockquote>
1874  *
1875  * <li> <i>Ordinary indexing</i> is used when the format specifier contains
1876  * neither an argument index nor a {@code '<'} flag.  Each format specifier
1877  * which uses ordinary indexing is assigned a sequential implicit index into
1878  * argument list which is independent of the indices used by explicit or
1879  * relative indexing.
1880  *
1881  * <blockquote><pre>
1882  *   formatter.format("%s %s %s %s", "a", "b", "c", "d")
1883  *   // -&gt; "a b c d"
1884  * </pre></blockquote>
1885  *
1886  * </ul>
1887  *
1888  * <p> It is possible to have a format string which uses all forms of indexing,
1889  * for example:
1890  *
1891  * <blockquote><pre>
1892  *   formatter.format("%2$s %s %&lt;s %s", "a", "b", "c", "d")
1893  *   // -&gt; "b a a b"
1894  *   // "c" and "d" are ignored because they are not referenced
1895  * </pre></blockquote>
1896  *
1897  * <p> The maximum number of arguments is limited by the maximum dimension of a
1898  * Java array as defined by
1899  * <cite>The Java&trade; Virtual Machine Specification</cite>.
1900  * If the argument index does not correspond to an
1901  * available argument, then a {@link MissingFormatArgumentException} is thrown.
1902  *
1903  * <p> If there are more arguments than format specifiers, the extra arguments
1904  * are ignored.
1905  *
1906  * <p> Unless otherwise specified, passing a {@code null} argument to any
1907  * method or constructor in this class will cause a {@link
1908  * NullPointerException} to be thrown.
1909  *
1910  * @author  Iris Clark
1911  * @since 1.5
1912  */
1913 public final class Formatter implements Closeable, Flushable {
1914     private Appendable a;
1915     private final Locale l;
1916 
1917     private IOException lastException;
1918 
1919     private final char zero;
1920     private static double scaleUp;
1921 
1922     // 1 (sign) + 19 (max # sig digits) + 1 ('.') + 1 ('e') + 1 (sign)
1923     // + 3 (max # exp digits) + 4 (error) = 30
1924     private static final int MAX_FD_CHARS = 30;
1925 
1926     /**
1927      * Returns a charset object for the given charset name.
1928      * @throws NullPointerException          is csn is null
1929      * @throws UnsupportedEncodingException  if the charset is not supported
1930      */
1931     private static Charset toCharset(String csn)
1932         throws UnsupportedEncodingException
1933     {
1934         Objects.requireNonNull(csn, "charsetName");
1935         try {
1936             return Charset.forName(csn);
1937         } catch (IllegalCharsetNameException|UnsupportedCharsetException unused) {
1938             // UnsupportedEncodingException should be thrown
1939             throw new UnsupportedEncodingException(csn);
1940         }
1941     }
1942 
1943     private static final Appendable nonNullAppendable(Appendable a) {
1944         if (a == null)
1945             return new StringBuilder();
1946 
1947         return a;
1948     }
1949 
1950     /* Private constructors */
1951     private Formatter(Locale l, Appendable a) {
1952         this.a = a;
1953         this.l = l;
1954         this.zero = getZero(l);
1955     }
1956 
1957     private Formatter(Charset charset, Locale l, File file)
1958         throws FileNotFoundException
1959     {
1960         this(l,
1961              new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file), charset)));
1962     }
1963 
1964     /**
1965      * Constructs a new formatter.
1966      *
1967      * <p> The destination of the formatted output is a {@link StringBuilder}
1968      * which may be retrieved by invoking {@link #out out()} and whose
1969      * current content may be converted into a string by invoking {@link
1970      * #toString toString()}.  The locale used is the {@linkplain
1971      * Locale#getDefault(Locale.Category) default locale} for
1972      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
1973      * virtual machine.
1974      */
1975     public Formatter() {
1976         this(Locale.getDefault(Locale.Category.FORMAT), new StringBuilder());
1977     }
1978 
1979     /**
1980      * Constructs a new formatter with the specified destination.
1981      *
1982      * <p> The locale used is the {@linkplain
1983      * Locale#getDefault(Locale.Category) default locale} for
1984      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
1985      * virtual machine.
1986      *
1987      * @param  a
1988      *         Destination for the formatted output.  If {@code a} is
1989      *         {@code null} then a {@link StringBuilder} will be created.
1990      */
1991     public Formatter(Appendable a) {
1992         this(Locale.getDefault(Locale.Category.FORMAT), nonNullAppendable(a));
1993     }
1994 
1995     /**
1996      * Constructs a new formatter with the specified locale.
1997      *
1998      * <p> The destination of the formatted output is a {@link StringBuilder}
1999      * which may be retrieved by invoking {@link #out out()} and whose current
2000      * content may be converted into a string by invoking {@link #toString
2001      * toString()}.
2002      *
2003      * @param  l
2004      *         The {@linkplain java.util.Locale locale} to apply during
2005      *         formatting.  If {@code l} is {@code null} then no localization
2006      *         is applied.
2007      */
2008     public Formatter(Locale l) {
2009         this(l, new StringBuilder());
2010     }
2011 
2012     /**
2013      * Constructs a new formatter with the specified destination and locale.
2014      *
2015      * @param  a
2016      *         Destination for the formatted output.  If {@code a} is
2017      *         {@code null} then a {@link StringBuilder} will be created.
2018      *
2019      * @param  l
2020      *         The {@linkplain java.util.Locale locale} to apply during
2021      *         formatting.  If {@code l} is {@code null} then no localization
2022      *         is applied.
2023      */
2024     public Formatter(Appendable a, Locale l) {
2025         this(l, nonNullAppendable(a));
2026     }
2027 
2028     /**
2029      * Constructs a new formatter with the specified file name.
2030      *
2031      * <p> The charset used is the {@linkplain
2032      * java.nio.charset.Charset#defaultCharset() default charset} for this
2033      * instance of the Java virtual machine.
2034      *
2035      * <p> The locale used is the {@linkplain
2036      * Locale#getDefault(Locale.Category) default locale} for
2037      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2038      * virtual machine.
2039      *
2040      * @param  fileName
2041      *         The name of the file to use as the destination of this
2042      *         formatter.  If the file exists then it will be truncated to
2043      *         zero size; otherwise, a new file will be created.  The output
2044      *         will be written to the file and is buffered.
2045      *
2046      * @throws  SecurityException
2047      *          If a security manager is present and {@link
2048      *          SecurityManager#checkWrite checkWrite(fileName)} denies write
2049      *          access to the file
2050      *
2051      * @throws  FileNotFoundException
2052      *          If the given file name does not denote an existing, writable
2053      *          regular file and a new regular file of that name cannot be
2054      *          created, or if some other error occurs while opening or
2055      *          creating the file
2056      */
2057     public Formatter(String fileName) throws FileNotFoundException {
2058         this(Locale.getDefault(Locale.Category.FORMAT),
2059              new BufferedWriter(new OutputStreamWriter(new FileOutputStream(fileName))));
2060     }
2061 
2062     /**
2063      * Constructs a new formatter with the specified file name and charset.
2064      *
2065      * <p> The locale used is the {@linkplain
2066      * Locale#getDefault(Locale.Category) default locale} for
2067      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2068      * virtual machine.
2069      *
2070      * @param  fileName
2071      *         The name of the file to use as the destination of this
2072      *         formatter.  If the file exists then it will be truncated to
2073      *         zero size; otherwise, a new file will be created.  The output
2074      *         will be written to the file and is buffered.
2075      *
2076      * @param  csn
2077      *         The name of a supported {@linkplain java.nio.charset.Charset
2078      *         charset}
2079      *
2080      * @throws  FileNotFoundException
2081      *          If the given file name does not denote an existing, writable
2082      *          regular file and a new regular file of that name cannot be
2083      *          created, or if some other error occurs while opening or
2084      *          creating the file
2085      *
2086      * @throws  SecurityException
2087      *          If a security manager is present and {@link
2088      *          SecurityManager#checkWrite checkWrite(fileName)} denies write
2089      *          access to the file
2090      *
2091      * @throws  UnsupportedEncodingException
2092      *          If the named charset is not supported
2093      */
2094     public Formatter(String fileName, String csn)
2095         throws FileNotFoundException, UnsupportedEncodingException
2096     {
2097         this(fileName, csn, Locale.getDefault(Locale.Category.FORMAT));
2098     }
2099 
2100     /**
2101      * Constructs a new formatter with the specified file name, charset, and
2102      * locale.
2103      *
2104      * @param  fileName
2105      *         The name of the file to use as the destination of this
2106      *         formatter.  If the file exists then it will be truncated to
2107      *         zero size; otherwise, a new file will be created.  The output
2108      *         will be written to the file and is buffered.
2109      *
2110      * @param  csn
2111      *         The name of a supported {@linkplain java.nio.charset.Charset
2112      *         charset}
2113      *
2114      * @param  l
2115      *         The {@linkplain java.util.Locale locale} to apply during
2116      *         formatting.  If {@code l} is {@code null} then no localization
2117      *         is applied.
2118      *
2119      * @throws  FileNotFoundException
2120      *          If the given file name does not denote an existing, writable
2121      *          regular file and a new regular file of that name cannot be
2122      *          created, or if some other error occurs while opening or
2123      *          creating the file
2124      *
2125      * @throws  SecurityException
2126      *          If a security manager is present and {@link
2127      *          SecurityManager#checkWrite checkWrite(fileName)} denies write
2128      *          access to the file
2129      *
2130      * @throws  UnsupportedEncodingException
2131      *          If the named charset is not supported
2132      */
2133     public Formatter(String fileName, String csn, Locale l)
2134         throws FileNotFoundException, UnsupportedEncodingException
2135     {
2136         this(toCharset(csn), l, new File(fileName));
2137     }
2138 
2139     /**
2140      * Constructs a new formatter with the specified file name, charset, and
2141      * locale.
2142      *
2143      * @param  fileName
2144      *         The name of the file to use as the destination of this
2145      *         formatter.  If the file exists then it will be truncated to
2146      *         zero size; otherwise, a new file will be created.  The output
2147      *         will be written to the file and is buffered.
2148      *
2149      * @param  charset
2150      *         A {@linkplain java.nio.charset.Charset charset}
2151      *
2152      * @param  l
2153      *         The {@linkplain java.util.Locale locale} to apply during
2154      *         formatting.  If {@code l} is {@code null} then no localization
2155      *         is applied.
2156      *
2157      * @throws  IOException
2158      *          if an I/O error occurs while opening or creating the file
2159      *
2160      * @throws  SecurityException
2161      *          If a security manager is present and {@link
2162      *          SecurityManager#checkWrite checkWrite(fileName)} denies write
2163      *          access to the file
2164      *
2165      * @throws NullPointerException
2166      *         if {@code fileName} or {@code charset} is {@code null}.
2167      */
2168     public Formatter(String fileName, Charset charset, Locale l) throws IOException {
2169         this(Objects.requireNonNull(charset, "charset"), l, new File(fileName));
2170     }
2171 
2172     /**
2173      * Constructs a new formatter with the specified file.
2174      *
2175      * <p> The charset used is the {@linkplain
2176      * java.nio.charset.Charset#defaultCharset() default charset} for this
2177      * instance of the Java virtual machine.
2178      *
2179      * <p> The locale used is the {@linkplain
2180      * Locale#getDefault(Locale.Category) default locale} for
2181      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2182      * virtual machine.
2183      *
2184      * @param  file
2185      *         The file to use as the destination of this formatter.  If the
2186      *         file exists then it will be truncated to zero size; otherwise,
2187      *         a new file will be created.  The output will be written to the
2188      *         file and is buffered.
2189      *
2190      * @throws  SecurityException
2191      *          If a security manager is present and {@link
2192      *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2193      *          write access to the file
2194      *
2195      * @throws  FileNotFoundException
2196      *          If the given file object does not denote an existing, writable
2197      *          regular file and a new regular file of that name cannot be
2198      *          created, or if some other error occurs while opening or
2199      *          creating the file
2200      */
2201     public Formatter(File file) throws FileNotFoundException {
2202         this(Locale.getDefault(Locale.Category.FORMAT),
2203              new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file))));
2204     }
2205 
2206     /**
2207      * Constructs a new formatter with the specified file and charset.
2208      *
2209      * <p> The locale used is the {@linkplain
2210      * Locale#getDefault(Locale.Category) default locale} for
2211      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2212      * virtual machine.
2213      *
2214      * @param  file
2215      *         The file to use as the destination of this formatter.  If the
2216      *         file exists then it will be truncated to zero size; otherwise,
2217      *         a new file will be created.  The output will be written to the
2218      *         file and is buffered.
2219      *
2220      * @param  csn
2221      *         The name of a supported {@linkplain java.nio.charset.Charset
2222      *         charset}
2223      *
2224      * @throws  FileNotFoundException
2225      *          If the given file object does not denote an existing, writable
2226      *          regular file and a new regular file of that name cannot be
2227      *          created, or if some other error occurs while opening or
2228      *          creating the file
2229      *
2230      * @throws  SecurityException
2231      *          If a security manager is present and {@link
2232      *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2233      *          write access to the file
2234      *
2235      * @throws  UnsupportedEncodingException
2236      *          If the named charset is not supported
2237      */
2238     public Formatter(File file, String csn)
2239         throws FileNotFoundException, UnsupportedEncodingException
2240     {
2241         this(file, csn, Locale.getDefault(Locale.Category.FORMAT));
2242     }
2243 
2244     /**
2245      * Constructs a new formatter with the specified file, charset, and
2246      * locale.
2247      *
2248      * @param  file
2249      *         The file to use as the destination of this formatter.  If the
2250      *         file exists then it will be truncated to zero size; otherwise,
2251      *         a new file will be created.  The output will be written to the
2252      *         file and is buffered.
2253      *
2254      * @param  csn
2255      *         The name of a supported {@linkplain java.nio.charset.Charset
2256      *         charset}
2257      *
2258      * @param  l
2259      *         The {@linkplain java.util.Locale locale} to apply during
2260      *         formatting.  If {@code l} is {@code null} then no localization
2261      *         is applied.
2262      *
2263      * @throws  FileNotFoundException
2264      *          If the given file object does not denote an existing, writable
2265      *          regular file and a new regular file of that name cannot be
2266      *          created, or if some other error occurs while opening or
2267      *          creating the file
2268      *
2269      * @throws  SecurityException
2270      *          If a security manager is present and {@link
2271      *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2272      *          write access to the file
2273      *
2274      * @throws  UnsupportedEncodingException
2275      *          If the named charset is not supported
2276      */
2277     public Formatter(File file, String csn, Locale l)
2278         throws FileNotFoundException, UnsupportedEncodingException
2279     {
2280         this(toCharset(csn), l, file);
2281     }
2282 
2283     /**
2284      * Constructs a new formatter with the specified file, charset, and
2285      * locale.
2286      *
2287      * @param  file
2288      *         The file to use as the destination of this formatter.  If the
2289      *         file exists then it will be truncated to zero size; otherwise,
2290      *         a new file will be created.  The output will be written to the
2291      *         file and is buffered.
2292      *
2293      * @param  charset
2294      *         A {@linkplain java.nio.charset.Charset charset}
2295      *
2296      * @param  l
2297      *         The {@linkplain java.util.Locale locale} to apply during
2298      *         formatting.  If {@code l} is {@code null} then no localization
2299      *         is applied.
2300      *
2301      * @throws IOException
2302      *         if an I/O error occurs while opening or creating the file
2303      *
2304      * @throws SecurityException
2305      *         If a security manager is present and {@link
2306      *         SecurityManager#checkWrite checkWrite(file.getPath())} denies
2307      *         write access to the file
2308      *
2309      * @throws NullPointerException
2310      *         if {@code file} or {@code charset} is {@code null}.
2311      */
2312     public Formatter(File file, Charset charset, Locale l) throws IOException {
2313         this(Objects.requireNonNull(charset, "charset"), l, file);
2314     }
2315 
2316 
2317     /**
2318      * Constructs a new formatter with the specified print stream.
2319      *
2320      * <p> The locale used is the {@linkplain
2321      * Locale#getDefault(Locale.Category) default locale} for
2322      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2323      * virtual machine.
2324      *
2325      * <p> Characters are written to the given {@link java.io.PrintStream
2326      * PrintStream} object and are therefore encoded using that object's
2327      * charset.
2328      *
2329      * @param  ps
2330      *         The stream to use as the destination of this formatter.
2331      */
2332     public Formatter(PrintStream ps) {
2333         this(Locale.getDefault(Locale.Category.FORMAT),
2334              (Appendable)Objects.requireNonNull(ps));
2335     }
2336 
2337     /**
2338      * Constructs a new formatter with the specified output stream.
2339      *
2340      * <p> The charset used is the {@linkplain
2341      * java.nio.charset.Charset#defaultCharset() default charset} for this
2342      * instance of the Java virtual machine.
2343      *
2344      * <p> The locale used is the {@linkplain
2345      * Locale#getDefault(Locale.Category) default locale} for
2346      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2347      * virtual machine.
2348      *
2349      * @param  os
2350      *         The output stream to use as the destination of this formatter.
2351      *         The output will be buffered.
2352      */
2353     public Formatter(OutputStream os) {
2354         this(Locale.getDefault(Locale.Category.FORMAT),
2355              new BufferedWriter(new OutputStreamWriter(os)));
2356     }
2357 
2358     /**
2359      * Constructs a new formatter with the specified output stream and
2360      * charset.
2361      *
2362      * <p> The locale used is the {@linkplain
2363      * Locale#getDefault(Locale.Category) default locale} for
2364      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2365      * virtual machine.
2366      *
2367      * @param  os
2368      *         The output stream to use as the destination of this formatter.
2369      *         The output will be buffered.
2370      *
2371      * @param  csn
2372      *         The name of a supported {@linkplain java.nio.charset.Charset
2373      *         charset}
2374      *
2375      * @throws  UnsupportedEncodingException
2376      *          If the named charset is not supported
2377      */
2378     public Formatter(OutputStream os, String csn)
2379         throws UnsupportedEncodingException
2380     {
2381         this(os, csn, Locale.getDefault(Locale.Category.FORMAT));
2382     }
2383 
2384     /**
2385      * Constructs a new formatter with the specified output stream, charset,
2386      * and locale.
2387      *
2388      * @param  os
2389      *         The output stream to use as the destination of this formatter.
2390      *         The output will be buffered.
2391      *
2392      * @param  csn
2393      *         The name of a supported {@linkplain java.nio.charset.Charset
2394      *         charset}
2395      *
2396      * @param  l
2397      *         The {@linkplain java.util.Locale locale} to apply during
2398      *         formatting.  If {@code l} is {@code null} then no localization
2399      *         is applied.
2400      *
2401      * @throws  UnsupportedEncodingException
2402      *          If the named charset is not supported
2403      */
2404     public Formatter(OutputStream os, String csn, Locale l)
2405         throws UnsupportedEncodingException
2406     {
2407         this(l, new BufferedWriter(new OutputStreamWriter(os, csn)));
2408     }
2409 
2410     /**
2411      * Constructs a new formatter with the specified output stream, charset,
2412      * and locale.
2413      *
2414      * @param  os
2415      *         The output stream to use as the destination of this formatter.
2416      *         The output will be buffered.
2417      *
2418      * @param  charset
2419      *         A {@linkplain java.nio.charset.Charset charset}
2420      *
2421      * @param  l
2422      *         The {@linkplain java.util.Locale locale} to apply during
2423      *         formatting.  If {@code l} is {@code null} then no localization
2424      *         is applied.
2425      *
2426      * @throws NullPointerException
2427      *         if {@code os} or {@code charset} is {@code null}.
2428      */
2429     public Formatter(OutputStream os, Charset charset, Locale l) {
2430         this(l, new BufferedWriter(new OutputStreamWriter(os, charset)));
2431     }
2432 
2433     private static char getZero(Locale l) {
2434         if ((l != null) && !l.equals(Locale.US)) {
2435             DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
2436             return dfs.getZeroDigit();
2437         } else {
2438             return '0';
2439         }
2440     }
2441 
2442     /**
2443      * Returns the locale set by the construction of this formatter.
2444      *
2445      * <p> The {@link #format(java.util.Locale,String,Object...) format} method
2446      * for this object which has a locale argument does not change this value.
2447      *
2448      * @return  {@code null} if no localization is applied, otherwise a
2449      *          locale
2450      *
2451      * @throws  FormatterClosedException
2452      *          If this formatter has been closed by invoking its {@link
2453      *          #close()} method
2454      */
2455     public Locale locale() {
2456         ensureOpen();
2457         return l;
2458     }
2459 
2460     /**
2461      * Returns the destination for the output.
2462      *
2463      * @return  The destination for the output
2464      *
2465      * @throws  FormatterClosedException
2466      *          If this formatter has been closed by invoking its {@link
2467      *          #close()} method
2468      */
2469     public Appendable out() {
2470         ensureOpen();
2471         return a;
2472     }
2473 
2474     /**
2475      * Returns the result of invoking {@code toString()} on the destination
2476      * for the output.  For example, the following code formats text into a
2477      * {@link StringBuilder} then retrieves the resultant string:
2478      *
2479      * <blockquote><pre>
2480      *   Formatter f = new Formatter();
2481      *   f.format("Last reboot at %tc", lastRebootDate);
2482      *   String s = f.toString();
2483      *   // -&gt; s == "Last reboot at Sat Jan 01 00:00:00 PST 2000"
2484      * </pre></blockquote>
2485      *
2486      * <p> An invocation of this method behaves in exactly the same way as the
2487      * invocation
2488      *
2489      * <pre>
2490      *     out().toString() </pre>
2491      *
2492      * <p> Depending on the specification of {@code toString} for the {@link
2493      * Appendable}, the returned string may or may not contain the characters
2494      * written to the destination.  For instance, buffers typically return
2495      * their contents in {@code toString()}, but streams cannot since the
2496      * data is discarded.
2497      *
2498      * @return  The result of invoking {@code toString()} on the destination
2499      *          for the output
2500      *
2501      * @throws  FormatterClosedException
2502      *          If this formatter has been closed by invoking its {@link
2503      *          #close()} method
2504      */
2505     public String toString() {
2506         ensureOpen();
2507         return a.toString();
2508     }
2509 
2510     /**
2511      * Flushes this formatter.  If the destination implements the {@link
2512      * java.io.Flushable} interface, its {@code flush} method will be invoked.
2513      *
2514      * <p> Flushing a formatter writes any buffered output in the destination
2515      * to the underlying stream.
2516      *
2517      * @throws  FormatterClosedException
2518      *          If this formatter has been closed by invoking its {@link
2519      *          #close()} method
2520      */
2521     public void flush() {
2522         ensureOpen();
2523         if (a instanceof Flushable) {
2524             try {
2525                 ((Flushable)a).flush();
2526             } catch (IOException ioe) {
2527                 lastException = ioe;
2528             }
2529         }
2530     }
2531 
2532     /**
2533      * Closes this formatter.  If the destination implements the {@link
2534      * java.io.Closeable} interface, its {@code close} method will be invoked.
2535      *
2536      * <p> Closing a formatter allows it to release resources it may be holding
2537      * (such as open files).  If the formatter is already closed, then invoking
2538      * this method has no effect.
2539      *
2540      * <p> Attempting to invoke any methods except {@link #ioException()} in
2541      * this formatter after it has been closed will result in a {@link
2542      * FormatterClosedException}.
2543      */
2544     public void close() {
2545         if (a == null)
2546             return;
2547         try {
2548             if (a instanceof Closeable)
2549                 ((Closeable)a).close();
2550         } catch (IOException ioe) {
2551             lastException = ioe;
2552         } finally {
2553             a = null;
2554         }
2555     }
2556 
2557     private void ensureOpen() {
2558         if (a == null)
2559             throw new FormatterClosedException();
2560     }
2561 
2562     /**
2563      * Returns the {@code IOException} last thrown by this formatter's {@link
2564      * Appendable}.
2565      *
2566      * <p> If the destination's {@code append()} method never throws
2567      * {@code IOException}, then this method will always return {@code null}.
2568      *
2569      * @return  The last exception thrown by the Appendable or {@code null} if
2570      *          no such exception exists.
2571      */
2572     public IOException ioException() {
2573         return lastException;
2574     }
2575 
2576     /**
2577      * Writes a formatted string to this object's destination using the
2578      * specified format string and arguments.  The locale used is the one
2579      * defined during the construction of this formatter.
2580      *
2581      * @param  format
2582      *         A format string as described in <a href="#syntax">Format string
2583      *         syntax</a>.
2584      *
2585      * @param  args
2586      *         Arguments referenced by the format specifiers in the format
2587      *         string.  If there are more arguments than format specifiers, the
2588      *         extra arguments are ignored.  The maximum number of arguments is
2589      *         limited by the maximum dimension of a Java array as defined by
2590      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2591      *
2592      * @throws  IllegalFormatException
2593      *          If a format string contains an illegal syntax, a format
2594      *          specifier that is incompatible with the given arguments,
2595      *          insufficient arguments given the format string, or other
2596      *          illegal conditions.  For specification of all possible
2597      *          formatting errors, see the <a href="#detail">Details</a>
2598      *          section of the formatter class specification.
2599      *
2600      * @throws  FormatterClosedException
2601      *          If this formatter has been closed by invoking its {@link
2602      *          #close()} method
2603      *
2604      * @return  This formatter
2605      */
2606     public Formatter format(String format, Object ... args) {
2607         return format(l, format, args);
2608     }
2609 
2610     /**
2611      * Writes a formatted string to this object's destination using the
2612      * specified locale, format string, and arguments.
2613      *
2614      * @param  l
2615      *         The {@linkplain java.util.Locale locale} to apply during
2616      *         formatting.  If {@code l} is {@code null} then no localization
2617      *         is applied.  This does not change this object's locale that was
2618      *         set during construction.
2619      *
2620      * @param  format
2621      *         A format string as described in <a href="#syntax">Format string
2622      *         syntax</a>
2623      *
2624      * @param  args
2625      *         Arguments referenced by the format specifiers in the format
2626      *         string.  If there are more arguments than format specifiers, the
2627      *         extra arguments are ignored.  The maximum number of arguments is
2628      *         limited by the maximum dimension of a Java array as defined by
2629      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2630      *
2631      * @throws  IllegalFormatException
2632      *          If a format string contains an illegal syntax, a format
2633      *          specifier that is incompatible with the given arguments,
2634      *          insufficient arguments given the format string, or other
2635      *          illegal conditions.  For specification of all possible
2636      *          formatting errors, see the <a href="#detail">Details</a>
2637      *          section of the formatter class specification.
2638      *
2639      * @throws  FormatterClosedException
2640      *          If this formatter has been closed by invoking its {@link
2641      *          #close()} method
2642      *
2643      * @return  This formatter
2644      */
2645     public Formatter format(Locale l, String format, Object ... args) {
2646         ensureOpen();
2647 
2648         // index of last argument referenced
2649         int last = -1;
2650         // last ordinary index
2651         int lasto = -1;
2652 
2653         List<FormatString> fsa = parse(format);
2654         for (FormatString fs : fsa) {
2655             int index = fs.index();
2656             try {
2657                 switch (index) {
2658                 case -2:  // fixed string, "%n", or "%%"
2659                     fs.print(null, l);
2660                     break;
2661                 case -1:  // relative index
2662                     if (last < 0 || (args != null && last > args.length - 1))
2663                         throw new MissingFormatArgumentException(fs.toString());
2664                     fs.print((args == null ? null : args[last]), l);
2665                     break;
2666                 case 0:  // ordinary index
2667                     lasto++;
2668                     last = lasto;
2669                     if (args != null && lasto > args.length - 1)
2670                         throw new MissingFormatArgumentException(fs.toString());
2671                     fs.print((args == null ? null : args[lasto]), l);
2672                     break;
2673                 default:  // explicit index
2674                     last = index - 1;
2675                     if (args != null && last > args.length - 1)
2676                         throw new MissingFormatArgumentException(fs.toString());
2677                     fs.print((args == null ? null : args[last]), l);
2678                     break;
2679                 }
2680             } catch (IOException x) {
2681                 lastException = x;
2682             }
2683         }
2684         return this;
2685     }
2686 
2687     // %[argument_index$][flags][width][.precision][t]conversion
2688     private static final String formatSpecifier
2689         = "%(\\d+\\$)?([-#+ 0,(\\<]*)?(\\d+)?(\\.\\d+)?([tT])?([a-zA-Z%])";
2690 
2691     private static Pattern fsPattern = Pattern.compile(formatSpecifier);
2692 
2693     /**
2694      * Finds format specifiers in the format string.
2695      */
2696     private List<FormatString> parse(String s) {
2697         ArrayList<FormatString> al = new ArrayList<>();
2698         Matcher m = fsPattern.matcher(s);
2699         for (int i = 0, len = s.length(); i < len; ) {
2700             if (m.find(i)) {
2701                 // Anything between the start of the string and the beginning
2702                 // of the format specifier is either fixed text or contains
2703                 // an invalid format string.
2704                 if (m.start() != i) {
2705                     // Make sure we didn't miss any invalid format specifiers
2706                     checkText(s, i, m.start());
2707                     // Assume previous characters were fixed text
2708                     al.add(new FixedString(s, i, m.start()));
2709                 }
2710 
2711                 al.add(new FormatSpecifier(s, m));
2712                 i = m.end();
2713             } else {
2714                 // No more valid format specifiers.  Check for possible invalid
2715                 // format specifiers.
2716                 checkText(s, i, len);
2717                 // The rest of the string is fixed text
2718                 al.add(new FixedString(s, i, s.length()));
2719                 break;
2720             }
2721         }
2722         return al;
2723     }
2724 
2725     private static void checkText(String s, int start, int end) {
2726         for (int i = start; i < end; i++) {
2727             // Any '%' found in the region starts an invalid format specifier.
2728             if (s.charAt(i) == '%') {
2729                 char c = (i == end - 1) ? '%' : s.charAt(i + 1);
2730                 throw new UnknownFormatConversionException(String.valueOf(c));
2731             }
2732         }
2733     }
2734 
2735     private interface FormatString {
2736         int index();
2737         void print(Object arg, Locale l) throws IOException;
2738         String toString();
2739     }
2740 
2741     private class FixedString implements FormatString {
2742         private String s;
2743         private int start;
2744         private int end;
2745         FixedString(String s, int start, int end) {
2746             this.s = s;
2747             this.start = start;
2748             this.end = end;
2749         }
2750         public int index() { return -2; }
2751         public void print(Object arg, Locale l)
2752             throws IOException { a.append(s, start, end); }
2753         public String toString() { return s.substring(start, end); }
2754     }
2755 
2756     /**
2757      * Enum for {@code BigDecimal} formatting.
2758      */
2759     public enum BigDecimalLayoutForm {
2760         /**
2761          * Format the {@code BigDecimal} in computerized scientific notation.
2762          */
2763         SCIENTIFIC,
2764 
2765         /**
2766          * Format the {@code BigDecimal} as a decimal number.
2767          */
2768         DECIMAL_FLOAT
2769     };
2770 
2771     private class FormatSpecifier implements FormatString {
2772         private int index = -1;
2773         private Flags f = Flags.NONE;
2774         private int width;
2775         private int precision;
2776         private boolean dt = false;
2777         private char c;
2778 
2779         private int index(String s, int start, int end) {
2780             if (start >= 0) {
2781                 try {
2782                     // skip the trailing '$'
2783                     index = Integer.parseInt(s, start, end - 1, 10);
2784                 } catch (NumberFormatException x) {
2785                     assert(false);
2786                 }
2787             } else {
2788                 index = 0;
2789             }
2790             return index;
2791         }
2792 
2793         public int index() {
2794             return index;
2795         }
2796 
2797         private Flags flags(String s, int start, int end) {
2798             f = Flags.parse(s, start, end);
2799             if (f.contains(Flags.PREVIOUS))
2800                 index = -1;
2801             return f;
2802         }
2803 
2804         private int width(String s, int start, int end) {
2805             width = -1;
2806             if (start >= 0) {
2807                 try {
2808                     width = Integer.parseInt(s, start, end, 10);
2809                     if (width < 0)
2810                         throw new IllegalFormatWidthException(width);
2811                 } catch (NumberFormatException x) {
2812                     assert(false);
2813                 }
2814             }
2815             return width;
2816         }
2817 
2818         private int precision(String s, int start, int end) {
2819             precision = -1;
2820             if (start >= 0) {
2821                 try {
2822                     // skip the leading '.'
2823                     precision = Integer.parseInt(s, start + 1, end, 10);
2824                     if (precision < 0)
2825                         throw new IllegalFormatPrecisionException(precision);
2826                 } catch (NumberFormatException x) {
2827                     assert(false);
2828                 }
2829             }
2830             return precision;
2831         }
2832 
2833         private char conversion(char conv) {
2834             c = conv;
2835             if (!dt) {
2836                 if (!Conversion.isValid(c)) {
2837                     throw new UnknownFormatConversionException(String.valueOf(c));
2838                 }
2839                 if (Character.isUpperCase(c)) {
2840                     f.add(Flags.UPPERCASE);
2841                     c = Character.toLowerCase(c);
2842                 }
2843                 if (Conversion.isText(c)) {
2844                     index = -2;
2845                 }
2846             }
2847             return c;
2848         }
2849 
2850         FormatSpecifier(String s, Matcher m) {
2851             index(s, m.start(1), m.end(1));
2852             flags(s, m.start(2), m.end(2));
2853             width(s, m.start(3), m.end(3));
2854             precision(s, m.start(4), m.end(4));
2855 
2856             int tTStart = m.start(5);
2857             if (tTStart >= 0) {
2858                 dt = true;
2859                 if (s.charAt(tTStart) == 'T') {
2860                     f.add(Flags.UPPERCASE);
2861                 }
2862             }
2863             conversion(s.charAt(m.start(6)));
2864 
2865             if (dt)
2866                 checkDateTime();
2867             else if (Conversion.isGeneral(c))
2868                 checkGeneral();
2869             else if (Conversion.isCharacter(c))
2870                 checkCharacter();
2871             else if (Conversion.isInteger(c))
2872                 checkInteger();
2873             else if (Conversion.isFloat(c))
2874                 checkFloat();
2875             else if (Conversion.isText(c))
2876                 checkText();
2877             else
2878                 throw new UnknownFormatConversionException(String.valueOf(c));
2879         }
2880 
2881         public void print(Object arg, Locale l) throws IOException {
2882             if (dt) {
2883                 printDateTime(arg, l);
2884                 return;
2885             }
2886             switch(c) {
2887             case Conversion.DECIMAL_INTEGER:
2888             case Conversion.OCTAL_INTEGER:
2889             case Conversion.HEXADECIMAL_INTEGER:
2890                 printInteger(arg, l);
2891                 break;
2892             case Conversion.SCIENTIFIC:
2893             case Conversion.GENERAL:
2894             case Conversion.DECIMAL_FLOAT:
2895             case Conversion.HEXADECIMAL_FLOAT:
2896                 printFloat(arg, l);
2897                 break;
2898             case Conversion.CHARACTER:
2899             case Conversion.CHARACTER_UPPER:
2900                 printCharacter(arg);
2901                 break;
2902             case Conversion.BOOLEAN:
2903                 printBoolean(arg);
2904                 break;
2905             case Conversion.STRING:
2906                 printString(arg, l);
2907                 break;
2908             case Conversion.HASHCODE:
2909                 printHashCode(arg);
2910                 break;
2911             case Conversion.LINE_SEPARATOR:
2912                 a.append(System.lineSeparator());
2913                 break;
2914             case Conversion.PERCENT_SIGN:
2915                 a.append('%');
2916                 break;
2917             default:
2918                 assert false;
2919             }
2920         }
2921 
2922         private void printInteger(Object arg, Locale l) throws IOException {
2923             if (arg == null)
2924                 print("null");
2925             else if (arg instanceof Byte)
2926                 print(((Byte)arg).byteValue(), l);
2927             else if (arg instanceof Short)
2928                 print(((Short)arg).shortValue(), l);
2929             else if (arg instanceof Integer)
2930                 print(((Integer)arg).intValue(), l);
2931             else if (arg instanceof Long)
2932                 print(((Long)arg).longValue(), l);
2933             else if (arg instanceof BigInteger)
2934                 print(((BigInteger)arg), l);
2935             else
2936                 failConversion(c, arg);
2937         }
2938 
2939         private void printFloat(Object arg, Locale l) throws IOException {
2940             if (arg == null)
2941                 print("null");
2942             else if (arg instanceof Float)
2943                 print(((Float)arg).floatValue(), l);
2944             else if (arg instanceof Double)
2945                 print(((Double)arg).doubleValue(), l);
2946             else if (arg instanceof BigDecimal)
2947                 print(((BigDecimal)arg), l);
2948             else
2949                 failConversion(c, arg);
2950         }
2951 
2952         private void printDateTime(Object arg, Locale l) throws IOException {
2953             if (arg == null) {
2954                 print("null");
2955                 return;
2956             }
2957             Calendar cal = null;
2958 
2959             // Instead of Calendar.setLenient(true), perhaps we should
2960             // wrap the IllegalArgumentException that might be thrown?
2961             if (arg instanceof Long) {
2962                 // Note that the following method uses an instance of the
2963                 // default time zone (TimeZone.getDefaultRef().
2964                 cal = Calendar.getInstance(l == null ? Locale.US : l);
2965                 cal.setTimeInMillis((Long)arg);
2966             } else if (arg instanceof Date) {
2967                 // Note that the following method uses an instance of the
2968                 // default time zone (TimeZone.getDefaultRef().
2969                 cal = Calendar.getInstance(l == null ? Locale.US : l);
2970                 cal.setTime((Date)arg);
2971             } else if (arg instanceof Calendar) {
2972                 cal = (Calendar) ((Calendar) arg).clone();
2973                 cal.setLenient(true);
2974             } else if (arg instanceof TemporalAccessor) {
2975                 print((TemporalAccessor) arg, c, l);
2976                 return;
2977             } else {
2978                 failConversion(c, arg);
2979             }
2980             // Use the provided locale so that invocations of
2981             // localizedMagnitude() use optimizations for null.
2982             print(cal, c, l);
2983         }
2984 
2985         private void printCharacter(Object arg) throws IOException {
2986             if (arg == null) {
2987                 print("null");
2988                 return;
2989             }
2990             String s = null;
2991             if (arg instanceof Character) {
2992                 s = ((Character)arg).toString();
2993             } else if (arg instanceof Byte) {
2994                 byte i = ((Byte)arg).byteValue();
2995                 if (Character.isValidCodePoint(i))
2996                     s = new String(Character.toChars(i));
2997                 else
2998                     throw new IllegalFormatCodePointException(i);
2999             } else if (arg instanceof Short) {
3000                 short i = ((Short)arg).shortValue();
3001                 if (Character.isValidCodePoint(i))
3002                     s = new String(Character.toChars(i));
3003                 else
3004                     throw new IllegalFormatCodePointException(i);
3005             } else if (arg instanceof Integer) {
3006                 int i = ((Integer)arg).intValue();
3007                 if (Character.isValidCodePoint(i))
3008                     s = new String(Character.toChars(i));
3009                 else
3010                     throw new IllegalFormatCodePointException(i);
3011             } else {
3012                 failConversion(c, arg);
3013             }
3014             print(s);
3015         }
3016 
3017         private void printString(Object arg, Locale l) throws IOException {
3018             if (arg instanceof Formattable) {
3019                 Formatter fmt = Formatter.this;
3020                 if (fmt.locale() != l)
3021                     fmt = new Formatter(fmt.out(), l);
3022                 ((Formattable)arg).formatTo(fmt, f.valueOf(), width, precision);
3023             } else {
3024                 if (f.contains(Flags.ALTERNATE))
3025                     failMismatch(Flags.ALTERNATE, 's');
3026                 if (arg == null)
3027                     print("null");
3028                 else
3029                     print(arg.toString());
3030             }
3031         }
3032 
3033         private void printBoolean(Object arg) throws IOException {
3034             String s;
3035             if (arg != null)
3036                 s = ((arg instanceof Boolean)
3037                      ? ((Boolean)arg).toString()
3038                      : Boolean.toString(true));
3039             else
3040                 s = Boolean.toString(false);
3041             print(s);
3042         }
3043 
3044         private void printHashCode(Object arg) throws IOException {
3045             String s = (arg == null
3046                         ? "null"
3047                         : Integer.toHexString(arg.hashCode()));
3048             print(s);
3049         }
3050 
3051         private void print(String s) throws IOException {
3052             if (precision != -1 && precision < s.length())
3053                 s = s.substring(0, precision);
3054             if (f.contains(Flags.UPPERCASE))
3055                 s = s.toUpperCase(Locale.getDefault(Locale.Category.FORMAT));
3056             appendJustified(a, s);
3057         }
3058 
3059         private Appendable appendJustified(Appendable a, CharSequence cs) throws IOException {
3060              if (width == -1) {
3061                  return a.append(cs);
3062              }
3063              boolean padRight = f.contains(Flags.LEFT_JUSTIFY);
3064              int sp = width - cs.length();
3065              if (padRight) {
3066                  a.append(cs);
3067              }
3068              for (int i = 0; i < sp; i++) {
3069                  a.append(' ');
3070              }
3071              if (!padRight) {
3072                  a.append(cs);
3073              }
3074              return a;
3075         }
3076 
3077         public String toString() {
3078             StringBuilder sb = new StringBuilder("%");
3079             // Flags.UPPERCASE is set internally for legal conversions.
3080             Flags dupf = f.dup().remove(Flags.UPPERCASE);
3081             sb.append(dupf.toString());
3082             if (index > 0)
3083                 sb.append(index).append('$');
3084             if (width != -1)
3085                 sb.append(width);
3086             if (precision != -1)
3087                 sb.append('.').append(precision);
3088             if (dt)
3089                 sb.append(f.contains(Flags.UPPERCASE) ? 'T' : 't');
3090             sb.append(f.contains(Flags.UPPERCASE)
3091                       ? Character.toUpperCase(c) : c);
3092             return sb.toString();
3093         }
3094 
3095         private void checkGeneral() {
3096             if ((c == Conversion.BOOLEAN || c == Conversion.HASHCODE)
3097                 && f.contains(Flags.ALTERNATE))
3098                 failMismatch(Flags.ALTERNATE, c);
3099             // '-' requires a width
3100             if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
3101                 throw new MissingFormatWidthException(toString());
3102             checkBadFlags(Flags.PLUS, Flags.LEADING_SPACE, Flags.ZERO_PAD,
3103                           Flags.GROUP, Flags.PARENTHESES);
3104         }
3105 
3106         private void checkDateTime() {
3107             if (precision != -1)
3108                 throw new IllegalFormatPrecisionException(precision);
3109             if (!DateTime.isValid(c))
3110                 throw new UnknownFormatConversionException("t" + c);
3111             checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
3112                           Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
3113             // '-' requires a width
3114             if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
3115                 throw new MissingFormatWidthException(toString());
3116         }
3117 
3118         private void checkCharacter() {
3119             if (precision != -1)
3120                 throw new IllegalFormatPrecisionException(precision);
3121             checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
3122                           Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
3123             // '-' requires a width
3124             if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
3125                 throw new MissingFormatWidthException(toString());
3126         }
3127 
3128         private void checkInteger() {
3129             checkNumeric();
3130             if (precision != -1)
3131                 throw new IllegalFormatPrecisionException(precision);
3132 
3133             if (c == Conversion.DECIMAL_INTEGER)
3134                 checkBadFlags(Flags.ALTERNATE);
3135             else if (c == Conversion.OCTAL_INTEGER)
3136                 checkBadFlags(Flags.GROUP);
3137             else
3138                 checkBadFlags(Flags.GROUP);
3139         }
3140 
3141         private void checkBadFlags(Flags ... badFlags) {
3142             for (Flags badFlag : badFlags)
3143                 if (f.contains(badFlag))
3144                     failMismatch(badFlag, c);
3145         }
3146 
3147         private void checkFloat() {
3148             checkNumeric();
3149             if (c == Conversion.DECIMAL_FLOAT) {
3150             } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3151                 checkBadFlags(Flags.PARENTHESES, Flags.GROUP);
3152             } else if (c == Conversion.SCIENTIFIC) {
3153                 checkBadFlags(Flags.GROUP);
3154             } else if (c == Conversion.GENERAL) {
3155                 checkBadFlags(Flags.ALTERNATE);
3156             }
3157         }
3158 
3159         private void checkNumeric() {
3160             if (width != -1 && width < 0)
3161                 throw new IllegalFormatWidthException(width);
3162 
3163             if (precision != -1 && precision < 0)
3164                 throw new IllegalFormatPrecisionException(precision);
3165 
3166             // '-' and '0' require a width
3167             if (width == -1
3168                 && (f.contains(Flags.LEFT_JUSTIFY) || f.contains(Flags.ZERO_PAD)))
3169                 throw new MissingFormatWidthException(toString());
3170 
3171             // bad combination
3172             if ((f.contains(Flags.PLUS) && f.contains(Flags.LEADING_SPACE))
3173                 || (f.contains(Flags.LEFT_JUSTIFY) && f.contains(Flags.ZERO_PAD)))
3174                 throw new IllegalFormatFlagsException(f.toString());
3175         }
3176 
3177         private void checkText() {
3178             if (precision != -1)
3179                 throw new IllegalFormatPrecisionException(precision);
3180             switch (c) {
3181             case Conversion.PERCENT_SIGN:
3182                 if (f.valueOf() != Flags.LEFT_JUSTIFY.valueOf()
3183                     && f.valueOf() != Flags.NONE.valueOf())
3184                     throw new IllegalFormatFlagsException(f.toString());
3185                 // '-' requires a width
3186                 if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
3187                     throw new MissingFormatWidthException(toString());
3188                 break;
3189             case Conversion.LINE_SEPARATOR:
3190                 if (width != -1)
3191                     throw new IllegalFormatWidthException(width);
3192                 if (f.valueOf() != Flags.NONE.valueOf())
3193                     throw new IllegalFormatFlagsException(f.toString());
3194                 break;
3195             default:
3196                 assert false;
3197             }
3198         }
3199 
3200         private void print(byte value, Locale l) throws IOException {
3201             long v = value;
3202             if (value < 0
3203                 && (c == Conversion.OCTAL_INTEGER
3204                     || c == Conversion.HEXADECIMAL_INTEGER)) {
3205                 v += (1L << 8);
3206                 assert v >= 0 : v;
3207             }
3208             print(v, l);
3209         }
3210 
3211         private void print(short value, Locale l) throws IOException {
3212             long v = value;
3213             if (value < 0
3214                 && (c == Conversion.OCTAL_INTEGER
3215                     || c == Conversion.HEXADECIMAL_INTEGER)) {
3216                 v += (1L << 16);
3217                 assert v >= 0 : v;
3218             }
3219             print(v, l);
3220         }
3221 
3222         private void print(int value, Locale l) throws IOException {
3223             long v = value;
3224             if (value < 0
3225                 && (c == Conversion.OCTAL_INTEGER
3226                     || c == Conversion.HEXADECIMAL_INTEGER)) {
3227                 v += (1L << 32);
3228                 assert v >= 0 : v;
3229             }
3230             print(v, l);
3231         }
3232 
3233         private void print(long value, Locale l) throws IOException {
3234 
3235             StringBuilder sb = new StringBuilder();
3236 
3237             if (c == Conversion.DECIMAL_INTEGER) {
3238                 boolean neg = value < 0;
3239                 String valueStr = Long.toString(value, 10);
3240 
3241                 // leading sign indicator
3242                 leadingSign(sb, neg);
3243 
3244                 // the value
3245                 localizedMagnitude(sb, valueStr, neg ? 1 : 0, f, adjustWidth(width, f, neg), l);
3246 
3247                 // trailing sign indicator
3248                 trailingSign(sb, neg);
3249             } else if (c == Conversion.OCTAL_INTEGER) {
3250                 checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
3251                               Flags.PLUS);
3252                 String s = Long.toOctalString(value);
3253                 int len = (f.contains(Flags.ALTERNATE)
3254                            ? s.length() + 1
3255                            : s.length());
3256 
3257                 // apply ALTERNATE (radix indicator for octal) before ZERO_PAD
3258                 if (f.contains(Flags.ALTERNATE))
3259                     sb.append('0');
3260                 if (f.contains(Flags.ZERO_PAD)) {
3261                     trailingZeros(sb, width - len);
3262                 }
3263                 sb.append(s);
3264             } else if (c == Conversion.HEXADECIMAL_INTEGER) {
3265                 checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
3266                               Flags.PLUS);
3267                 String s = Long.toHexString(value);
3268                 int len = (f.contains(Flags.ALTERNATE)
3269                            ? s.length() + 2
3270                            : s.length());
3271 
3272                 // apply ALTERNATE (radix indicator for hex) before ZERO_PAD
3273                 if (f.contains(Flags.ALTERNATE))
3274                     sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
3275                 if (f.contains(Flags.ZERO_PAD)) {
3276                     trailingZeros(sb, width - len);
3277                 }
3278                 if (f.contains(Flags.UPPERCASE))
3279                     s = s.toUpperCase(Locale.getDefault(Locale.Category.FORMAT));
3280                 sb.append(s);
3281             }
3282 
3283             // justify based on width
3284             appendJustified(a, sb);
3285         }
3286 
3287         // neg := val < 0
3288         private StringBuilder leadingSign(StringBuilder sb, boolean neg) {
3289             if (!neg) {
3290                 if (f.contains(Flags.PLUS)) {
3291                     sb.append('+');
3292                 } else if (f.contains(Flags.LEADING_SPACE)) {
3293                     sb.append(' ');
3294                 }
3295             } else {
3296                 if (f.contains(Flags.PARENTHESES))
3297                     sb.append('(');
3298                 else
3299                     sb.append('-');
3300             }
3301             return sb;
3302         }
3303 
3304         // neg := val < 0
3305         private StringBuilder trailingSign(StringBuilder sb, boolean neg) {
3306             if (neg && f.contains(Flags.PARENTHESES))
3307                 sb.append(')');
3308             return sb;
3309         }
3310 
3311         private void print(BigInteger value, Locale l) throws IOException {
3312             StringBuilder sb = new StringBuilder();
3313             boolean neg = value.signum() == -1;
3314             BigInteger v = value.abs();
3315 
3316             // leading sign indicator
3317             leadingSign(sb, neg);
3318 
3319             // the value
3320             if (c == Conversion.DECIMAL_INTEGER) {
3321                 localizedMagnitude(sb, v.toString(), 0, f, adjustWidth(width, f, neg), l);
3322             } else if (c == Conversion.OCTAL_INTEGER) {
3323                 String s = v.toString(8);
3324 
3325                 int len = s.length() + sb.length();
3326                 if (neg && f.contains(Flags.PARENTHESES))
3327                     len++;
3328 
3329                 // apply ALTERNATE (radix indicator for octal) before ZERO_PAD
3330                 if (f.contains(Flags.ALTERNATE)) {
3331                     len++;
3332                     sb.append('0');
3333                 }
3334                 if (f.contains(Flags.ZERO_PAD)) {
3335                     trailingZeros(sb, width - len);
3336                 }
3337                 sb.append(s);
3338             } else if (c == Conversion.HEXADECIMAL_INTEGER) {
3339                 String s = v.toString(16);
3340 
3341                 int len = s.length() + sb.length();
3342                 if (neg && f.contains(Flags.PARENTHESES))
3343                     len++;
3344 
3345                 // apply ALTERNATE (radix indicator for hex) before ZERO_PAD
3346                 if (f.contains(Flags.ALTERNATE)) {
3347                     len += 2;
3348                     sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
3349                 }
3350                 if (f.contains(Flags.ZERO_PAD)) {
3351                     trailingZeros(sb, width - len);
3352                 }
3353                 if (f.contains(Flags.UPPERCASE))
3354                     s = s.toUpperCase(Locale.getDefault(Locale.Category.FORMAT));
3355                 sb.append(s);
3356             }
3357 
3358             // trailing sign indicator
3359             trailingSign(sb, (value.signum() == -1));
3360 
3361             // justify based on width
3362             appendJustified(a, sb);
3363         }
3364 
3365         private void print(float value, Locale l) throws IOException {
3366             print((double) value, l);
3367         }
3368 
3369         private void print(double value, Locale l) throws IOException {
3370             StringBuilder sb = new StringBuilder();
3371             boolean neg = Double.compare(value, 0.0) == -1;
3372 
3373             if (!Double.isNaN(value)) {
3374                 double v = Math.abs(value);
3375 
3376                 // leading sign indicator
3377                 leadingSign(sb, neg);
3378 
3379                 // the value
3380                 if (!Double.isInfinite(v))
3381                     print(sb, v, l, f, c, precision, neg);
3382                 else
3383                     sb.append(f.contains(Flags.UPPERCASE)
3384                               ? "INFINITY" : "Infinity");
3385 
3386                 // trailing sign indicator
3387                 trailingSign(sb, neg);
3388             } else {
3389                 sb.append(f.contains(Flags.UPPERCASE) ? "NAN" : "NaN");
3390             }
3391 
3392             // justify based on width
3393             appendJustified(a, sb);
3394         }
3395 
3396         // !Double.isInfinite(value) && !Double.isNaN(value)
3397         private void print(StringBuilder sb, double value, Locale l,
3398                            Flags f, char c, int precision, boolean neg)
3399             throws IOException
3400         {
3401             if (c == Conversion.SCIENTIFIC) {
3402                 // Create a new FormattedFloatingDecimal with the desired
3403                 // precision.
3404                 int prec = (precision == -1 ? 6 : precision);
3405 
3406                 FormattedFloatingDecimal fd
3407                         = FormattedFloatingDecimal.valueOf(value, prec,
3408                           FormattedFloatingDecimal.Form.SCIENTIFIC);
3409 
3410                 StringBuilder mant = new StringBuilder().append(fd.getMantissa());
3411                 addZeros(mant, prec);
3412 
3413                 // If the precision is zero and the '#' flag is set, add the
3414                 // requested decimal point.
3415                 if (f.contains(Flags.ALTERNATE) && (prec == 0)) {
3416                     mant.append('.');
3417                 }
3418 
3419                 char[] exp = (value == 0.0)
3420                     ? new char[] {'+','0','0'} : fd.getExponent();
3421 
3422                 int newW = width;
3423                 if (width != -1) {
3424                     newW = adjustWidth(width - exp.length - 1, f, neg);
3425                 }
3426                 localizedMagnitude(sb, mant, 0, f, newW, l);
3427 
3428                 sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3429 
3430                 char sign = exp[0];
3431                 assert(sign == '+' || sign == '-');
3432                 sb.append(sign);
3433 
3434                 localizedMagnitudeExp(sb, exp, 1, l);
3435             } else if (c == Conversion.DECIMAL_FLOAT) {
3436                 // Create a new FormattedFloatingDecimal with the desired
3437                 // precision.
3438                 int prec = (precision == -1 ? 6 : precision);
3439 
3440                 FormattedFloatingDecimal fd
3441                         = FormattedFloatingDecimal.valueOf(value, prec,
3442                           FormattedFloatingDecimal.Form.DECIMAL_FLOAT);
3443 
3444                 StringBuilder mant = new StringBuilder().append(fd.getMantissa());
3445                 addZeros(mant, prec);
3446 
3447                 // If the precision is zero and the '#' flag is set, add the
3448                 // requested decimal point.
3449                 if (f.contains(Flags.ALTERNATE) && (prec == 0))
3450                     mant.append('.');
3451 
3452                 int newW = width;
3453                 if (width != -1)
3454                     newW = adjustWidth(width, f, neg);
3455                 localizedMagnitude(sb, mant, 0, f, newW, l);
3456             } else if (c == Conversion.GENERAL) {
3457                 int prec = precision;
3458                 if (precision == -1)
3459                     prec = 6;
3460                 else if (precision == 0)
3461                     prec = 1;
3462 
3463                 char[] exp;
3464                 StringBuilder mant = new StringBuilder();
3465                 int expRounded;
3466                 if (value == 0.0) {
3467                     exp = null;
3468                     mant.append('0');
3469                     expRounded = 0;
3470                 } else {
3471                     FormattedFloatingDecimal fd
3472                         = FormattedFloatingDecimal.valueOf(value, prec,
3473                           FormattedFloatingDecimal.Form.GENERAL);
3474                     exp = fd.getExponent();
3475                     mant.append(fd.getMantissa());
3476                     expRounded = fd.getExponentRounded();
3477                 }
3478 
3479                 if (exp != null) {
3480                     prec -= 1;
3481                 } else {
3482                     prec -= expRounded + 1;
3483                 }
3484 
3485                 addZeros(mant, prec);
3486                 // If the precision is zero and the '#' flag is set, add the
3487                 // requested decimal point.
3488                 if (f.contains(Flags.ALTERNATE) && (prec == 0)) {
3489                     mant.append('.');
3490                 }
3491 
3492                 int newW = width;
3493                 if (width != -1) {
3494                     if (exp != null)
3495                         newW = adjustWidth(width - exp.length - 1, f, neg);
3496                     else
3497                         newW = adjustWidth(width, f, neg);
3498                 }
3499                 localizedMagnitude(sb, mant, 0, f, newW, l);
3500 
3501                 if (exp != null) {
3502                     sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3503 
3504                     char sign = exp[0];
3505                     assert(sign == '+' || sign == '-');
3506                     sb.append(sign);
3507 
3508                     localizedMagnitudeExp(sb, exp, 1, l);
3509                 }
3510             } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3511                 int prec = precision;
3512                 if (precision == -1)
3513                     // assume that we want all of the digits
3514                     prec = 0;
3515                 else if (precision == 0)
3516                     prec = 1;
3517 
3518                 String s = hexDouble(value, prec);
3519 
3520                 StringBuilder va = new StringBuilder();
3521                 boolean upper = f.contains(Flags.UPPERCASE);
3522                 sb.append(upper ? "0X" : "0x");
3523 
3524                 if (f.contains(Flags.ZERO_PAD)) {
3525                     trailingZeros(sb, width - s.length() - 2);
3526                 }
3527 
3528                 int idx = s.indexOf('p');
3529                 if (upper) {
3530                     String tmp = s.substring(0, idx);
3531                     // don't localize hex
3532                     tmp = tmp.toUpperCase(Locale.ROOT);
3533                     va.append(tmp);
3534                 } else {
3535                     va.append(s, 0, idx);
3536                 }
3537                 if (prec != 0) {
3538                     addZeros(va, prec);
3539                 }
3540                 sb.append(va);
3541                 sb.append(upper ? 'P' : 'p');
3542                 sb.append(s, idx+1, s.length());
3543             }
3544         }
3545 
3546         // Add zeros to the requested precision.
3547         private void addZeros(StringBuilder sb, int prec) {
3548             // Look for the dot.  If we don't find one, the we'll need to add
3549             // it before we add the zeros.
3550             int len = sb.length();
3551             int i;
3552             for (i = 0; i < len; i++) {
3553                 if (sb.charAt(i) == '.') {
3554                     break;
3555                 }
3556             }
3557             boolean needDot = false;
3558             if (i == len) {
3559                 needDot = true;
3560             }
3561 
3562             // Determine existing precision.
3563             int outPrec = len - i - (needDot ? 0 : 1);
3564             assert (outPrec <= prec);
3565             if (outPrec == prec) {
3566                 return;
3567             }
3568 
3569             // Add dot if previously determined to be necessary.
3570             if (needDot) {
3571                 sb.append('.');
3572             }
3573 
3574             // Add zeros.
3575             trailingZeros(sb, prec - outPrec);
3576         }
3577 
3578         // Method assumes that d > 0.
3579         private String hexDouble(double d, int prec) {
3580             // Let Double.toHexString handle simple cases
3581             if (!Double.isFinite(d) || d == 0.0 || prec == 0 || prec >= 13) {
3582                 // remove "0x"
3583                 return Double.toHexString(d).substring(2);
3584             } else {
3585                 assert(prec >= 1 && prec <= 12);
3586 
3587                 int exponent  = Math.getExponent(d);
3588                 boolean subnormal
3589                     = (exponent == Double.MIN_EXPONENT - 1);
3590 
3591                 // If this is subnormal input so normalize (could be faster to
3592                 // do as integer operation).
3593                 if (subnormal) {
3594                     scaleUp = Math.scalb(1.0, 54);
3595                     d *= scaleUp;
3596                     // Calculate the exponent.  This is not just exponent + 54
3597                     // since the former is not the normalized exponent.
3598                     exponent = Math.getExponent(d);
3599                     assert exponent >= Double.MIN_EXPONENT &&
3600                         exponent <= Double.MAX_EXPONENT: exponent;
3601                 }
3602 
3603                 int precision = 1 + prec*4;
3604                 int shiftDistance
3605                     =  DoubleConsts.SIGNIFICAND_WIDTH - precision;
3606                 assert(shiftDistance >= 1 && shiftDistance < DoubleConsts.SIGNIFICAND_WIDTH);
3607 
3608                 long doppel = Double.doubleToLongBits(d);
3609                 // Deterime the number of bits to keep.
3610                 long newSignif
3611                     = (doppel & (DoubleConsts.EXP_BIT_MASK
3612                                  | DoubleConsts.SIGNIF_BIT_MASK))
3613                                      >> shiftDistance;
3614                 // Bits to round away.
3615                 long roundingBits = doppel & ~(~0L << shiftDistance);
3616 
3617                 // To decide how to round, look at the low-order bit of the
3618                 // working significand, the highest order discarded bit (the
3619                 // round bit) and whether any of the lower order discarded bits
3620                 // are nonzero (the sticky bit).
3621 
3622                 boolean leastZero = (newSignif & 0x1L) == 0L;
3623                 boolean round
3624                     = ((1L << (shiftDistance - 1) ) & roundingBits) != 0L;
3625                 boolean sticky  = shiftDistance > 1 &&
3626                     (~(1L<< (shiftDistance - 1)) & roundingBits) != 0;
3627                 if((leastZero && round && sticky) || (!leastZero && round)) {
3628                     newSignif++;
3629                 }
3630 
3631                 long signBit = doppel & DoubleConsts.SIGN_BIT_MASK;
3632                 newSignif = signBit | (newSignif << shiftDistance);
3633                 double result = Double.longBitsToDouble(newSignif);
3634 
3635                 if (Double.isInfinite(result) ) {
3636                     // Infinite result generated by rounding
3637                     return "1.0p1024";
3638                 } else {
3639                     String res = Double.toHexString(result).substring(2);
3640                     if (!subnormal)
3641                         return res;
3642                     else {
3643                         // Create a normalized subnormal string.
3644                         int idx = res.indexOf('p');
3645                         if (idx == -1) {
3646                             // No 'p' character in hex string.
3647                             assert false;
3648                             return null;
3649                         } else {
3650                             // Get exponent and append at the end.
3651                             String exp = res.substring(idx + 1);
3652                             int iexp = Integer.parseInt(exp) -54;
3653                             return res.substring(0, idx) + "p"
3654                                 + Integer.toString(iexp);
3655                         }
3656                     }
3657                 }
3658             }
3659         }
3660 
3661         private void print(BigDecimal value, Locale l) throws IOException {
3662             if (c == Conversion.HEXADECIMAL_FLOAT)
3663                 failConversion(c, value);
3664             StringBuilder sb = new StringBuilder();
3665             boolean neg = value.signum() == -1;
3666             BigDecimal v = value.abs();
3667             // leading sign indicator
3668             leadingSign(sb, neg);
3669 
3670             // the value
3671             print(sb, v, l, f, c, precision, neg);
3672 
3673             // trailing sign indicator
3674             trailingSign(sb, neg);
3675 
3676             // justify based on width
3677             appendJustified(a, sb);
3678         }
3679 
3680         // value > 0
3681         private void print(StringBuilder sb, BigDecimal value, Locale l,
3682                            Flags f, char c, int precision, boolean neg)
3683             throws IOException
3684         {
3685             if (c == Conversion.SCIENTIFIC) {
3686                 // Create a new BigDecimal with the desired precision.
3687                 int prec = (precision == -1 ? 6 : precision);
3688                 int scale = value.scale();
3689                 int origPrec = value.precision();
3690                 int nzeros = 0;
3691                 int compPrec;
3692 
3693                 if (prec > origPrec - 1) {
3694                     compPrec = origPrec;
3695                     nzeros = prec - (origPrec - 1);
3696                 } else {
3697                     compPrec = prec + 1;
3698                 }
3699 
3700                 MathContext mc = new MathContext(compPrec);
3701                 BigDecimal v
3702                     = new BigDecimal(value.unscaledValue(), scale, mc);
3703 
3704                 BigDecimalLayout bdl
3705                     = new BigDecimalLayout(v.unscaledValue(), v.scale(),
3706                                            BigDecimalLayoutForm.SCIENTIFIC);
3707 
3708                 StringBuilder mant = bdl.mantissa();
3709 
3710                 // Add a decimal point if necessary.  The mantissa may not
3711                 // contain a decimal point if the scale is zero (the internal
3712                 // representation has no fractional part) or the original
3713                 // precision is one. Append a decimal point if '#' is set or if
3714                 // we require zero padding to get to the requested precision.
3715                 if ((origPrec == 1 || !bdl.hasDot())
3716                         && (nzeros > 0 || (f.contains(Flags.ALTERNATE)))) {
3717                     mant.append('.');
3718                 }
3719 
3720                 // Add trailing zeros in the case precision is greater than
3721                 // the number of available digits after the decimal separator.
3722                 trailingZeros(mant, nzeros);
3723 
3724                 StringBuilder exp = bdl.exponent();
3725                 int newW = width;
3726                 if (width != -1) {
3727                     newW = adjustWidth(width - exp.length() - 1, f, neg);
3728                 }
3729                 localizedMagnitude(sb, mant, 0, f, newW, l);
3730 
3731                 sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3732 
3733                 Flags flags = f.dup().remove(Flags.GROUP);
3734                 char sign = exp.charAt(0);
3735                 assert(sign == '+' || sign == '-');
3736                 sb.append(sign);
3737 
3738                 sb.append(localizedMagnitude(null, exp, 1, flags, -1, l));
3739             } else if (c == Conversion.DECIMAL_FLOAT) {
3740                 // Create a new BigDecimal with the desired precision.
3741                 int prec = (precision == -1 ? 6 : precision);
3742                 int scale = value.scale();
3743 
3744                 if (scale > prec) {
3745                     // more "scale" digits than the requested "precision"
3746                     int compPrec = value.precision();
3747                     if (compPrec <= scale) {
3748                         // case of 0.xxxxxx
3749                         value = value.setScale(prec, RoundingMode.HALF_UP);
3750                     } else {
3751                         compPrec -= (scale - prec);
3752                         value = new BigDecimal(value.unscaledValue(),
3753                                                scale,
3754                                                new MathContext(compPrec));
3755                     }
3756                 }
3757                 BigDecimalLayout bdl = new BigDecimalLayout(
3758                                            value.unscaledValue(),
3759                                            value.scale(),
3760                                            BigDecimalLayoutForm.DECIMAL_FLOAT);
3761 
3762                 StringBuilder mant = bdl.mantissa();
3763                 int nzeros = (bdl.scale() < prec ? prec - bdl.scale() : 0);
3764 
3765                 // Add a decimal point if necessary.  The mantissa may not
3766                 // contain a decimal point if the scale is zero (the internal
3767                 // representation has no fractional part).  Append a decimal
3768                 // point if '#' is set or we require zero padding to get to the
3769                 // requested precision.
3770                 if (bdl.scale() == 0 && (f.contains(Flags.ALTERNATE)
3771                         || nzeros > 0)) {
3772                     mant.append('.');
3773                 }
3774 
3775                 // Add trailing zeros if the precision is greater than the
3776                 // number of available digits after the decimal separator.
3777                 trailingZeros(mant, nzeros);
3778 
3779                 localizedMagnitude(sb, mant, 0, f, adjustWidth(width, f, neg), l);
3780             } else if (c == Conversion.GENERAL) {
3781                 int prec = precision;
3782                 if (precision == -1)
3783                     prec = 6;
3784                 else if (precision == 0)
3785                     prec = 1;
3786 
3787                 BigDecimal tenToTheNegFour = BigDecimal.valueOf(1, 4);
3788                 BigDecimal tenToThePrec = BigDecimal.valueOf(1, -prec);
3789                 if ((value.equals(BigDecimal.ZERO))
3790                     || ((value.compareTo(tenToTheNegFour) != -1)
3791                         && (value.compareTo(tenToThePrec) == -1))) {
3792 
3793                     int e = - value.scale()
3794                         + (value.unscaledValue().toString().length() - 1);
3795 
3796                     // xxx.yyy
3797                     //   g precision (# sig digits) = #x + #y
3798                     //   f precision = #y
3799                     //   exponent = #x - 1
3800                     // => f precision = g precision - exponent - 1
3801                     // 0.000zzz
3802                     //   g precision (# sig digits) = #z
3803                     //   f precision = #0 (after '.') + #z
3804                     //   exponent = - #0 (after '.') - 1
3805                     // => f precision = g precision - exponent - 1
3806                     prec = prec - e - 1;
3807 
3808                     print(sb, value, l, f, Conversion.DECIMAL_FLOAT, prec,
3809                           neg);
3810                 } else {
3811                     print(sb, value, l, f, Conversion.SCIENTIFIC, prec - 1, neg);
3812                 }
3813             } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3814                 // This conversion isn't supported.  The error should be
3815                 // reported earlier.
3816                 assert false;
3817             }
3818         }
3819 
3820         private class BigDecimalLayout {
3821             private StringBuilder mant;
3822             private StringBuilder exp;
3823             private boolean dot = false;
3824             private int scale;
3825 
3826             public BigDecimalLayout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
3827                 layout(intVal, scale, form);
3828             }
3829 
3830             public boolean hasDot() {
3831                 return dot;
3832             }
3833 
3834             public int scale() {
3835                 return scale;
3836             }
3837 
3838             public StringBuilder mantissa() {
3839                 return mant;
3840             }
3841 
3842             // The exponent will be formatted as a sign ('+' or '-') followed
3843             // by the exponent zero-padded to include at least two digits.
3844             public StringBuilder exponent() {
3845                 return exp;
3846             }
3847 
3848             private void layout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
3849                 String coeff = intVal.toString();
3850                 this.scale = scale;
3851 
3852                 // Construct a buffer, with sufficient capacity for all cases.
3853                 // If E-notation is needed, length will be: +1 if negative, +1
3854                 // if '.' needed, +2 for "E+", + up to 10 for adjusted
3855                 // exponent.  Otherwise it could have +1 if negative, plus
3856                 // leading "0.00000"
3857                 int len = coeff.length();
3858                 mant = new StringBuilder(len + 14);
3859 
3860                 if (scale == 0) {
3861                     if (len > 1) {
3862                         mant.append(coeff.charAt(0));
3863                         if (form == BigDecimalLayoutForm.SCIENTIFIC) {
3864                             mant.append('.');
3865                             dot = true;
3866                             mant.append(coeff, 1, len);
3867                             exp = new StringBuilder("+");
3868                             if (len < 10) {
3869                                 exp.append('0').append(len - 1);
3870                             } else {
3871                                 exp.append(len - 1);
3872                             }
3873                         } else {
3874                             mant.append(coeff, 1, len);
3875                         }
3876                     } else {
3877                         mant.append(coeff);
3878                         if (form == BigDecimalLayoutForm.SCIENTIFIC) {
3879                             exp = new StringBuilder("+00");
3880                         }
3881                     }
3882                 } else if (form == BigDecimalLayoutForm.DECIMAL_FLOAT) {
3883                     // count of padding zeros
3884 
3885                     if (scale >= len) {
3886                         // 0.xxx form
3887                         mant.append("0.");
3888                         dot = true;
3889                         trailingZeros(mant, scale - len);
3890                         mant.append(coeff);
3891                     } else {
3892                         if (scale > 0) {
3893                             // xx.xx form
3894                             int pad = len - scale;
3895                             mant.append(coeff, 0, pad);
3896                             mant.append('.');
3897                             dot = true;
3898                             mant.append(coeff, pad, len);
3899                         } else { // scale < 0
3900                             // xx form
3901                             mant.append(coeff, 0, len);
3902                             if (intVal.signum() != 0) {
3903                                 trailingZeros(mant, -scale);
3904                             }
3905                             this.scale = 0;
3906                         }
3907                     }
3908                 } else {
3909                     // x.xxx form
3910                     mant.append(coeff.charAt(0));
3911                     if (len > 1) {
3912                         mant.append('.');
3913                         dot = true;
3914                         mant.append(coeff, 1, len);
3915                     }
3916                     exp = new StringBuilder();
3917                     long adjusted = -(long) scale + (len - 1);
3918                     if (adjusted != 0) {
3919                         long abs = Math.abs(adjusted);
3920                         // require sign
3921                         exp.append(adjusted < 0 ? '-' : '+');
3922                         if (abs < 10) {
3923                             exp.append('0');
3924                         }
3925                         exp.append(abs);
3926                     } else {
3927                         exp.append("+00");
3928                     }
3929                 }
3930             }
3931         }
3932 
3933         private int adjustWidth(int width, Flags f, boolean neg) {
3934             int newW = width;
3935             if (newW != -1 && neg && f.contains(Flags.PARENTHESES))
3936                 newW--;
3937             return newW;
3938         }
3939 
3940         // Add trailing zeros
3941         private void trailingZeros(StringBuilder sb, int nzeros) {
3942             for (int i = 0; i < nzeros; i++) {
3943                 sb.append('0');
3944             }
3945         }
3946 
3947         private void print(Calendar t, char c, Locale l)  throws IOException {
3948             StringBuilder sb = new StringBuilder();
3949             print(sb, t, c, l);
3950 
3951             // justify based on width
3952             if (f.contains(Flags.UPPERCASE)) {
3953                 appendJustified(a, sb.toString().toUpperCase(Locale.getDefault(Locale.Category.FORMAT)));
3954             } else {
3955                 appendJustified(a, sb);
3956             }
3957         }
3958 
3959         private Appendable print(StringBuilder sb, Calendar t, char c, Locale l)
3960                 throws IOException {
3961             if (sb == null)
3962                 sb = new StringBuilder();
3963             switch (c) {
3964             case DateTime.HOUR_OF_DAY_0: // 'H' (00 - 23)
3965             case DateTime.HOUR_0:        // 'I' (01 - 12)
3966             case DateTime.HOUR_OF_DAY:   // 'k' (0 - 23) -- like H
3967             case DateTime.HOUR:        { // 'l' (1 - 12) -- like I
3968                 int i = t.get(Calendar.HOUR_OF_DAY);
3969                 if (c == DateTime.HOUR_0 || c == DateTime.HOUR)
3970                     i = (i == 0 || i == 12 ? 12 : i % 12);
3971                 Flags flags = (c == DateTime.HOUR_OF_DAY_0
3972                                || c == DateTime.HOUR_0
3973                                ? Flags.ZERO_PAD
3974                                : Flags.NONE);
3975                 sb.append(localizedMagnitude(null, i, flags, 2, l));
3976                 break;
3977             }
3978             case DateTime.MINUTE:      { // 'M' (00 - 59)
3979                 int i = t.get(Calendar.MINUTE);
3980                 Flags flags = Flags.ZERO_PAD;
3981                 sb.append(localizedMagnitude(null, i, flags, 2, l));
3982                 break;
3983             }
3984             case DateTime.NANOSECOND:  { // 'N' (000000000 - 999999999)
3985                 int i = t.get(Calendar.MILLISECOND) * 1000000;
3986                 Flags flags = Flags.ZERO_PAD;
3987                 sb.append(localizedMagnitude(null, i, flags, 9, l));
3988                 break;
3989             }
3990             case DateTime.MILLISECOND: { // 'L' (000 - 999)
3991                 int i = t.get(Calendar.MILLISECOND);
3992                 Flags flags = Flags.ZERO_PAD;
3993                 sb.append(localizedMagnitude(null, i, flags, 3, l));
3994                 break;
3995             }
3996             case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
3997                 long i = t.getTimeInMillis();
3998                 Flags flags = Flags.NONE;
3999                 sb.append(localizedMagnitude(null, i, flags, width, l));
4000                 break;
4001             }
4002             case DateTime.AM_PM:       { // 'p' (am or pm)
4003                 // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
4004                 String[] ampm = { "AM", "PM" };
4005                 if (l != null && l != Locale.US) {
4006                     DateFormatSymbols dfs = DateFormatSymbols.getInstance(l);
4007                     ampm = dfs.getAmPmStrings();
4008                 }
4009                 String s = ampm[t.get(Calendar.AM_PM)];
4010                 sb.append(s.toLowerCase(Objects.requireNonNullElse(l,
4011                             Locale.getDefault(Locale.Category.FORMAT))));
4012                 break;
4013             }
4014             case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
4015                 long i = t.getTimeInMillis() / 1000;
4016                 Flags flags = Flags.NONE;
4017                 sb.append(localizedMagnitude(null, i, flags, width, l));
4018                 break;
4019             }
4020             case DateTime.SECOND:      { // 'S' (00 - 60 - leap second)
4021                 int i = t.get(Calendar.SECOND);
4022                 Flags flags = Flags.ZERO_PAD;
4023                 sb.append(localizedMagnitude(null, i, flags, 2, l));
4024                 break;
4025             }
4026             case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
4027                 int i = t.get(Calendar.ZONE_OFFSET) + t.get(Calendar.DST_OFFSET);
4028                 boolean neg = i < 0;
4029                 sb.append(neg ? '-' : '+');
4030                 if (neg)
4031                     i = -i;
4032                 int min = i / 60000;
4033                 // combine minute and hour into a single integer
4034                 int offset = (min / 60) * 100 + (min % 60);
4035                 Flags flags = Flags.ZERO_PAD;
4036 
4037                 sb.append(localizedMagnitude(null, offset, flags, 4, l));
4038                 break;
4039             }
4040             case DateTime.ZONE:        { // 'Z' (symbol)
4041                 TimeZone tz = t.getTimeZone();
4042                 sb.append(tz.getDisplayName((t.get(Calendar.DST_OFFSET) != 0),
4043                                            TimeZone.SHORT,
4044                                            Objects.requireNonNullElse(l, Locale.US)));
4045                 break;
4046             }
4047 
4048             // Date
4049             case DateTime.NAME_OF_DAY_ABBREV:     // 'a'
4050             case DateTime.NAME_OF_DAY:          { // 'A'
4051                 int i = t.get(Calendar.DAY_OF_WEEK);
4052                 Locale lt = Objects.requireNonNullElse(l, Locale.US);
4053                 DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4054                 if (c == DateTime.NAME_OF_DAY)
4055                     sb.append(dfs.getWeekdays()[i]);
4056                 else
4057                     sb.append(dfs.getShortWeekdays()[i]);
4058                 break;
4059             }
4060             case DateTime.NAME_OF_MONTH_ABBREV:   // 'b'
4061             case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
4062             case DateTime.NAME_OF_MONTH:        { // 'B'
4063                 int i = t.get(Calendar.MONTH);
4064                 Locale lt = Objects.requireNonNullElse(l, Locale.US);
4065                 DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4066                 if (c == DateTime.NAME_OF_MONTH)
4067                     sb.append(dfs.getMonths()[i]);
4068                 else
4069                     sb.append(dfs.getShortMonths()[i]);
4070                 break;
4071             }
4072             case DateTime.CENTURY:                // 'C' (00 - 99)
4073             case DateTime.YEAR_2:                 // 'y' (00 - 99)
4074             case DateTime.YEAR_4:               { // 'Y' (0000 - 9999)
4075                 int i = t.get(Calendar.YEAR);
4076                 int size = 2;
4077                 switch (c) {
4078                 case DateTime.CENTURY:
4079                     i /= 100;
4080                     break;
4081                 case DateTime.YEAR_2:
4082                     i %= 100;
4083                     break;
4084                 case DateTime.YEAR_4:
4085                     size = 4;
4086                     break;
4087                 }
4088                 Flags flags = Flags.ZERO_PAD;
4089                 sb.append(localizedMagnitude(null, i, flags, size, l));
4090                 break;
4091             }
4092             case DateTime.DAY_OF_MONTH_0:         // 'd' (01 - 31)
4093             case DateTime.DAY_OF_MONTH:         { // 'e' (1 - 31) -- like d
4094                 int i = t.get(Calendar.DATE);
4095                 Flags flags = (c == DateTime.DAY_OF_MONTH_0
4096                                ? Flags.ZERO_PAD
4097                                : Flags.NONE);
4098                 sb.append(localizedMagnitude(null, i, flags, 2, l));
4099                 break;
4100             }
4101             case DateTime.DAY_OF_YEAR:          { // 'j' (001 - 366)
4102                 int i = t.get(Calendar.DAY_OF_YEAR);
4103                 Flags flags = Flags.ZERO_PAD;
4104                 sb.append(localizedMagnitude(null, i, flags, 3, l));
4105                 break;
4106             }
4107             case DateTime.MONTH:                { // 'm' (01 - 12)
4108                 int i = t.get(Calendar.MONTH) + 1;
4109                 Flags flags = Flags.ZERO_PAD;
4110                 sb.append(localizedMagnitude(null, i, flags, 2, l));
4111                 break;
4112             }
4113 
4114             // Composites
4115             case DateTime.TIME:         // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
4116             case DateTime.TIME_24_HOUR:    { // 'R' (hh:mm same as %H:%M)
4117                 char sep = ':';
4118                 print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
4119                 print(sb, t, DateTime.MINUTE, l);
4120                 if (c == DateTime.TIME) {
4121                     sb.append(sep);
4122                     print(sb, t, DateTime.SECOND, l);
4123                 }
4124                 break;
4125             }
4126             case DateTime.TIME_12_HOUR:    { // 'r' (hh:mm:ss [AP]M)
4127                 char sep = ':';
4128                 print(sb, t, DateTime.HOUR_0, l).append(sep);
4129                 print(sb, t, DateTime.MINUTE, l).append(sep);
4130                 print(sb, t, DateTime.SECOND, l).append(' ');
4131                 // this may be in wrong place for some locales
4132                 StringBuilder tsb = new StringBuilder();
4133                 print(tsb, t, DateTime.AM_PM, l);
4134 
4135                 sb.append(tsb.toString().toUpperCase(Objects.requireNonNullElse(l,
4136                                                Locale.getDefault(Locale.Category.FORMAT))));
4137                 break;
4138             }
4139             case DateTime.DATE_TIME:    { // 'c' (Sat Nov 04 12:02:33 EST 1999)
4140                 char sep = ' ';
4141                 print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
4142                 print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
4143                 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4144                 print(sb, t, DateTime.TIME, l).append(sep);
4145                 print(sb, t, DateTime.ZONE, l).append(sep);
4146                 print(sb, t, DateTime.YEAR_4, l);
4147                 break;
4148             }
4149             case DateTime.DATE:            { // 'D' (mm/dd/yy)
4150                 char sep = '/';
4151                 print(sb, t, DateTime.MONTH, l).append(sep);
4152                 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4153                 print(sb, t, DateTime.YEAR_2, l);
4154                 break;
4155             }
4156             case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
4157                 char sep = '-';
4158                 print(sb, t, DateTime.YEAR_4, l).append(sep);
4159                 print(sb, t, DateTime.MONTH, l).append(sep);
4160                 print(sb, t, DateTime.DAY_OF_MONTH_0, l);
4161                 break;
4162             }
4163             default:
4164                 assert false;
4165             }
4166             return sb;
4167         }
4168 
4169         private void print(TemporalAccessor t, char c, Locale l)  throws IOException {
4170             StringBuilder sb = new StringBuilder();
4171             print(sb, t, c, l);
4172             // justify based on width
4173             if (f.contains(Flags.UPPERCASE)) {
4174                 appendJustified(a, sb.toString().toUpperCase(Locale.getDefault(Locale.Category.FORMAT)));
4175             } else {
4176                 appendJustified(a, sb);
4177             }
4178         }
4179 
4180         private Appendable print(StringBuilder sb, TemporalAccessor t, char c,
4181                                  Locale l) throws IOException {
4182             if (sb == null)
4183                 sb = new StringBuilder();
4184             try {
4185                 switch (c) {
4186                 case DateTime.HOUR_OF_DAY_0: {  // 'H' (00 - 23)
4187                     int i = t.get(ChronoField.HOUR_OF_DAY);
4188                     sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l));
4189                     break;
4190                 }
4191                 case DateTime.HOUR_OF_DAY: {   // 'k' (0 - 23) -- like H
4192                     int i = t.get(ChronoField.HOUR_OF_DAY);
4193                     sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l));
4194                     break;
4195                 }
4196                 case DateTime.HOUR_0:      {  // 'I' (01 - 12)
4197                     int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM);
4198                     sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l));
4199                     break;
4200                 }
4201                 case DateTime.HOUR:        { // 'l' (1 - 12) -- like I
4202                     int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM);
4203                     sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l));
4204                     break;
4205                 }
4206                 case DateTime.MINUTE:      { // 'M' (00 - 59)
4207                     int i = t.get(ChronoField.MINUTE_OF_HOUR);
4208                     Flags flags = Flags.ZERO_PAD;
4209                     sb.append(localizedMagnitude(null, i, flags, 2, l));
4210                     break;
4211                 }
4212                 case DateTime.NANOSECOND:  { // 'N' (000000000 - 999999999)
4213                     int i;
4214                     try {
4215                         i = t.get(ChronoField.NANO_OF_SECOND);
4216                     } catch (UnsupportedTemporalTypeException u) {
4217                         i = t.get(ChronoField.MILLI_OF_SECOND) * 1000000;
4218                     }
4219                     Flags flags = Flags.ZERO_PAD;
4220                     sb.append(localizedMagnitude(null, i, flags, 9, l));
4221                     break;
4222                 }
4223                 case DateTime.MILLISECOND: { // 'L' (000 - 999)
4224                     int i = t.get(ChronoField.MILLI_OF_SECOND);
4225                     Flags flags = Flags.ZERO_PAD;
4226                     sb.append(localizedMagnitude(null, i, flags, 3, l));
4227                     break;
4228                 }
4229                 case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
4230                     long i = t.getLong(ChronoField.INSTANT_SECONDS) * 1000L +
4231                              t.getLong(ChronoField.MILLI_OF_SECOND);
4232                     Flags flags = Flags.NONE;
4233                     sb.append(localizedMagnitude(null, i, flags, width, l));
4234                     break;
4235                 }
4236                 case DateTime.AM_PM:       { // 'p' (am or pm)
4237                     // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
4238                     String[] ampm = { "AM", "PM" };
4239                     if (l != null && l != Locale.US) {
4240                         DateFormatSymbols dfs = DateFormatSymbols.getInstance(l);
4241                         ampm = dfs.getAmPmStrings();
4242                     }
4243                     String s = ampm[t.get(ChronoField.AMPM_OF_DAY)];
4244                     sb.append(s.toLowerCase(Objects.requireNonNullElse(l,
4245                             Locale.getDefault(Locale.Category.FORMAT))));
4246                     break;
4247                 }
4248                 case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
4249                     long i = t.getLong(ChronoField.INSTANT_SECONDS);
4250                     Flags flags = Flags.NONE;
4251                     sb.append(localizedMagnitude(null, i, flags, width, l));
4252                     break;
4253                 }
4254                 case DateTime.SECOND:      { // 'S' (00 - 60 - leap second)
4255                     int i = t.get(ChronoField.SECOND_OF_MINUTE);
4256                     Flags flags = Flags.ZERO_PAD;
4257                     sb.append(localizedMagnitude(null, i, flags, 2, l));
4258                     break;
4259                 }
4260                 case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
4261                     int i = t.get(ChronoField.OFFSET_SECONDS);
4262                     boolean neg = i < 0;
4263                     sb.append(neg ? '-' : '+');
4264                     if (neg)
4265                         i = -i;
4266                     int min = i / 60;
4267                     // combine minute and hour into a single integer
4268                     int offset = (min / 60) * 100 + (min % 60);
4269                     Flags flags = Flags.ZERO_PAD;
4270                     sb.append(localizedMagnitude(null, offset, flags, 4, l));
4271                     break;
4272                 }
4273                 case DateTime.ZONE:        { // 'Z' (symbol)
4274                     ZoneId zid = t.query(TemporalQueries.zone());
4275                     if (zid == null) {
4276                         throw new IllegalFormatConversionException(c, t.getClass());
4277                     }
4278                     if (!(zid instanceof ZoneOffset) &&
4279                         t.isSupported(ChronoField.INSTANT_SECONDS)) {
4280                         Instant instant = Instant.from(t);
4281                         sb.append(TimeZone.getTimeZone(zid.getId())
4282                                           .getDisplayName(zid.getRules().isDaylightSavings(instant),
4283                                                           TimeZone.SHORT,
4284                                                           Objects.requireNonNullElse(l, Locale.US)));
4285                         break;
4286                     }
4287                     sb.append(zid.getId());
4288                     break;
4289                 }
4290                 // Date
4291                 case DateTime.NAME_OF_DAY_ABBREV:     // 'a'
4292                 case DateTime.NAME_OF_DAY:          { // 'A'
4293                     int i = t.get(ChronoField.DAY_OF_WEEK) % 7 + 1;
4294                     Locale lt = Objects.requireNonNullElse(l, Locale.US);
4295                     DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4296                     if (c == DateTime.NAME_OF_DAY)
4297                         sb.append(dfs.getWeekdays()[i]);
4298                     else
4299                         sb.append(dfs.getShortWeekdays()[i]);
4300                     break;
4301                 }
4302                 case DateTime.NAME_OF_MONTH_ABBREV:   // 'b'
4303                 case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
4304                 case DateTime.NAME_OF_MONTH:        { // 'B'
4305                     int i = t.get(ChronoField.MONTH_OF_YEAR) - 1;
4306                     Locale lt = Objects.requireNonNullElse(l, Locale.US);
4307                     DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4308                     if (c == DateTime.NAME_OF_MONTH)
4309                         sb.append(dfs.getMonths()[i]);
4310                     else
4311                         sb.append(dfs.getShortMonths()[i]);
4312                     break;
4313                 }
4314                 case DateTime.CENTURY:                // 'C' (00 - 99)
4315                 case DateTime.YEAR_2:                 // 'y' (00 - 99)
4316                 case DateTime.YEAR_4:               { // 'Y' (0000 - 9999)
4317                     int i = t.get(ChronoField.YEAR_OF_ERA);
4318                     int size = 2;
4319                     switch (c) {
4320                     case DateTime.CENTURY:
4321                         i /= 100;
4322                         break;
4323                     case DateTime.YEAR_2:
4324                         i %= 100;
4325                         break;
4326                     case DateTime.YEAR_4:
4327                         size = 4;
4328                         break;
4329                     }
4330                     Flags flags = Flags.ZERO_PAD;
4331                     sb.append(localizedMagnitude(null, i, flags, size, l));
4332                     break;
4333                 }
4334                 case DateTime.DAY_OF_MONTH_0:         // 'd' (01 - 31)
4335                 case DateTime.DAY_OF_MONTH:         { // 'e' (1 - 31) -- like d
4336                     int i = t.get(ChronoField.DAY_OF_MONTH);
4337                     Flags flags = (c == DateTime.DAY_OF_MONTH_0
4338                                    ? Flags.ZERO_PAD
4339                                    : Flags.NONE);
4340                     sb.append(localizedMagnitude(null, i, flags, 2, l));
4341                     break;
4342                 }
4343                 case DateTime.DAY_OF_YEAR:          { // 'j' (001 - 366)
4344                     int i = t.get(ChronoField.DAY_OF_YEAR);
4345                     Flags flags = Flags.ZERO_PAD;
4346                     sb.append(localizedMagnitude(null, i, flags, 3, l));
4347                     break;
4348                 }
4349                 case DateTime.MONTH:                { // 'm' (01 - 12)
4350                     int i = t.get(ChronoField.MONTH_OF_YEAR);
4351                     Flags flags = Flags.ZERO_PAD;
4352                     sb.append(localizedMagnitude(null, i, flags, 2, l));
4353                     break;
4354                 }
4355 
4356                 // Composites
4357                 case DateTime.TIME:         // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
4358                 case DateTime.TIME_24_HOUR:    { // 'R' (hh:mm same as %H:%M)
4359                     char sep = ':';
4360                     print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
4361                     print(sb, t, DateTime.MINUTE, l);
4362                     if (c == DateTime.TIME) {
4363                         sb.append(sep);
4364                         print(sb, t, DateTime.SECOND, l);
4365                     }
4366                     break;
4367                 }
4368                 case DateTime.TIME_12_HOUR:    { // 'r' (hh:mm:ss [AP]M)
4369                     char sep = ':';
4370                     print(sb, t, DateTime.HOUR_0, l).append(sep);
4371                     print(sb, t, DateTime.MINUTE, l).append(sep);
4372                     print(sb, t, DateTime.SECOND, l).append(' ');
4373                     // this may be in wrong place for some locales
4374                     StringBuilder tsb = new StringBuilder();
4375                     print(tsb, t, DateTime.AM_PM, l);
4376                     sb.append(tsb.toString().toUpperCase(Objects.requireNonNullElse(l,
4377                                         Locale.getDefault(Locale.Category.FORMAT))));
4378                     break;
4379                 }
4380                 case DateTime.DATE_TIME:    { // 'c' (Sat Nov 04 12:02:33 EST 1999)
4381                     char sep = ' ';
4382                     print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
4383                     print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
4384                     print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4385                     print(sb, t, DateTime.TIME, l).append(sep);
4386                     print(sb, t, DateTime.ZONE, l).append(sep);
4387                     print(sb, t, DateTime.YEAR_4, l);
4388                     break;
4389                 }
4390                 case DateTime.DATE:            { // 'D' (mm/dd/yy)
4391                     char sep = '/';
4392                     print(sb, t, DateTime.MONTH, l).append(sep);
4393                     print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4394                     print(sb, t, DateTime.YEAR_2, l);
4395                     break;
4396                 }
4397                 case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
4398                     char sep = '-';
4399                     print(sb, t, DateTime.YEAR_4, l).append(sep);
4400                     print(sb, t, DateTime.MONTH, l).append(sep);
4401                     print(sb, t, DateTime.DAY_OF_MONTH_0, l);
4402                     break;
4403                 }
4404                 default:
4405                     assert false;
4406                 }
4407             } catch (DateTimeException x) {
4408                 throw new IllegalFormatConversionException(c, t.getClass());
4409             }
4410             return sb;
4411         }
4412 
4413         // -- Methods to support throwing exceptions --
4414 
4415         private void failMismatch(Flags f, char c) {
4416             String fs = f.toString();
4417             throw new FormatFlagsConversionMismatchException(fs, c);
4418         }
4419 
4420         private void failConversion(char c, Object arg) {
4421             throw new IllegalFormatConversionException(c, arg.getClass());
4422         }
4423 
4424         private char getZero(Locale l) {
4425             if ((l != null) &&  !l.equals(locale())) {
4426                 DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4427                 return dfs.getZeroDigit();
4428             }
4429             return zero;
4430         }
4431 
4432         private StringBuilder localizedMagnitude(StringBuilder sb,
4433                 long value, Flags f, int width, Locale l) {
4434             return localizedMagnitude(sb, Long.toString(value, 10), 0, f, width, l);
4435         }
4436 
4437         private StringBuilder localizedMagnitude(StringBuilder sb,
4438                 CharSequence value, final int offset, Flags f, int width,
4439                 Locale l) {
4440             if (sb == null) {
4441                 sb = new StringBuilder();
4442             }
4443             int begin = sb.length();
4444 
4445             char zero = getZero(l);
4446 
4447             // determine localized grouping separator and size
4448             char grpSep = '\0';
4449             int  grpSize = -1;
4450             char decSep = '\0';
4451 
4452             int len = value.length();
4453             int dot = len;
4454             for (int j = offset; j < len; j++) {
4455                 if (value.charAt(j) == '.') {
4456                     dot = j;
4457                     break;
4458                 }
4459             }
4460 
4461             if (dot < len) {
4462                 if (l == null || l.equals(Locale.US)) {
4463                     decSep  = '.';
4464                 } else {
4465                     DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4466                     decSep  = dfs.getDecimalSeparator();
4467                 }
4468             }
4469 
4470             if (f.contains(Flags.GROUP)) {
4471                 if (l == null || l.equals(Locale.US)) {
4472                     grpSep = ',';
4473                     grpSize = 3;
4474                 } else {
4475                     DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4476                     grpSep = dfs.getGroupingSeparator();
4477                     DecimalFormat df = (DecimalFormat) NumberFormat.getIntegerInstance(l);
4478                     grpSize = df.getGroupingSize();
4479                 }
4480             }
4481 
4482             // localize the digits inserting group separators as necessary
4483             for (int j = offset; j < len; j++) {
4484                 if (j == dot) {
4485                     sb.append(decSep);
4486                     // no more group separators after the decimal separator
4487                     grpSep = '\0';
4488                     continue;
4489                 }
4490 
4491                 char c = value.charAt(j);
4492                 sb.append((char) ((c - '0') + zero));
4493                 if (grpSep != '\0' && j != dot - 1 && ((dot - j) % grpSize == 1)) {
4494                     sb.append(grpSep);
4495                 }
4496             }
4497 
4498             // apply zero padding
4499             if (width != -1 && f.contains(Flags.ZERO_PAD)) {
4500                 for (int k = sb.length(); k < width; k++) {
4501                     sb.insert(begin, zero);
4502                 }
4503             }
4504 
4505             return sb;
4506         }
4507 
4508         // Specialized localization of exponents, where the source value can only
4509         // contain characters '0' through '9', starting at index offset, and no
4510         // group separators is added for any locale.
4511         private void localizedMagnitudeExp(StringBuilder sb, char[] value,
4512                 final int offset, Locale l) {
4513             char zero = getZero(l);
4514 
4515             int len = value.length;
4516             for (int j = offset; j < len; j++) {
4517                 char c = value[j];
4518                 sb.append((char) ((c - '0') + zero));
4519             }
4520         }
4521     }
4522 
4523     private static class Flags {
4524         private int flags;
4525 
4526         static final Flags NONE          = new Flags(0);      // ''
4527 
4528         // duplicate declarations from Formattable.java
4529         static final Flags LEFT_JUSTIFY  = new Flags(1<<0);   // '-'
4530         static final Flags UPPERCASE     = new Flags(1<<1);   // '^'
4531         static final Flags ALTERNATE     = new Flags(1<<2);   // '#'
4532 
4533         // numerics
4534         static final Flags PLUS          = new Flags(1<<3);   // '+'
4535         static final Flags LEADING_SPACE = new Flags(1<<4);   // ' '
4536         static final Flags ZERO_PAD      = new Flags(1<<5);   // '0'
4537         static final Flags GROUP         = new Flags(1<<6);   // ','
4538         static final Flags PARENTHESES   = new Flags(1<<7);   // '('
4539 
4540         // indexing
4541         static final Flags PREVIOUS      = new Flags(1<<8);   // '<'
4542 
4543         private Flags(int f) {
4544             flags = f;
4545         }
4546 
4547         public int valueOf() {
4548             return flags;
4549         }
4550 
4551         public boolean contains(Flags f) {
4552             return (flags & f.valueOf()) == f.valueOf();
4553         }
4554 
4555         public Flags dup() {
4556             return new Flags(flags);
4557         }
4558 
4559         private Flags add(Flags f) {
4560             flags |= f.valueOf();
4561             return this;
4562         }
4563 
4564         public Flags remove(Flags f) {
4565             flags &= ~f.valueOf();
4566             return this;
4567         }
4568 
4569         public static Flags parse(String s, int start, int end) {
4570             Flags f = new Flags(0);
4571             for (int i = start; i < end; i++) {
4572                 char c = s.charAt(i);
4573                 Flags v = parse(c);
4574                 if (f.contains(v))
4575                     throw new DuplicateFormatFlagsException(v.toString());
4576                 f.add(v);
4577             }
4578             return f;
4579         }
4580 
4581         // parse those flags which may be provided by users
4582         private static Flags parse(char c) {
4583             switch (c) {
4584             case '-': return LEFT_JUSTIFY;
4585             case '#': return ALTERNATE;
4586             case '+': return PLUS;
4587             case ' ': return LEADING_SPACE;
4588             case '0': return ZERO_PAD;
4589             case ',': return GROUP;
4590             case '(': return PARENTHESES;
4591             case '<': return PREVIOUS;
4592             default:
4593                 throw new UnknownFormatFlagsException(String.valueOf(c));
4594             }
4595         }
4596 
4597         // Returns a string representation of the current {@code Flags}.
4598         public static String toString(Flags f) {
4599             return f.toString();
4600         }
4601 
4602         public String toString() {
4603             StringBuilder sb = new StringBuilder();
4604             if (contains(LEFT_JUSTIFY))  sb.append('-');
4605             if (contains(UPPERCASE))     sb.append('^');
4606             if (contains(ALTERNATE))     sb.append('#');
4607             if (contains(PLUS))          sb.append('+');
4608             if (contains(LEADING_SPACE)) sb.append(' ');
4609             if (contains(ZERO_PAD))      sb.append('0');
4610             if (contains(GROUP))         sb.append(',');
4611             if (contains(PARENTHESES))   sb.append('(');
4612             if (contains(PREVIOUS))      sb.append('<');
4613             return sb.toString();
4614         }
4615     }
4616 
4617     private static class Conversion {
4618         // Byte, Short, Integer, Long, BigInteger
4619         // (and associated primitives due to autoboxing)
4620         static final char DECIMAL_INTEGER     = 'd';
4621         static final char OCTAL_INTEGER       = 'o';
4622         static final char HEXADECIMAL_INTEGER = 'x';
4623         static final char HEXADECIMAL_INTEGER_UPPER = 'X';
4624 
4625         // Float, Double, BigDecimal
4626         // (and associated primitives due to autoboxing)
4627         static final char SCIENTIFIC          = 'e';
4628         static final char SCIENTIFIC_UPPER    = 'E';
4629         static final char GENERAL             = 'g';
4630         static final char GENERAL_UPPER       = 'G';
4631         static final char DECIMAL_FLOAT       = 'f';
4632         static final char HEXADECIMAL_FLOAT   = 'a';
4633         static final char HEXADECIMAL_FLOAT_UPPER = 'A';
4634 
4635         // Character, Byte, Short, Integer
4636         // (and associated primitives due to autoboxing)
4637         static final char CHARACTER           = 'c';
4638         static final char CHARACTER_UPPER     = 'C';
4639 
4640         // java.util.Date, java.util.Calendar, long
4641         static final char DATE_TIME           = 't';
4642         static final char DATE_TIME_UPPER     = 'T';
4643 
4644         // if (arg.TYPE != boolean) return boolean
4645         // if (arg != null) return true; else return false;
4646         static final char BOOLEAN             = 'b';
4647         static final char BOOLEAN_UPPER       = 'B';
4648         // if (arg instanceof Formattable) arg.formatTo()
4649         // else arg.toString();
4650         static final char STRING              = 's';
4651         static final char STRING_UPPER        = 'S';
4652         // arg.hashCode()
4653         static final char HASHCODE            = 'h';
4654         static final char HASHCODE_UPPER      = 'H';
4655 
4656         static final char LINE_SEPARATOR      = 'n';
4657         static final char PERCENT_SIGN        = '%';
4658 
4659         static boolean isValid(char c) {
4660             return (isGeneral(c) || isInteger(c) || isFloat(c) || isText(c)
4661                     || c == 't' || isCharacter(c));
4662         }
4663 
4664         // Returns true iff the Conversion is applicable to all objects.
4665         static boolean isGeneral(char c) {
4666             switch (c) {
4667             case BOOLEAN:
4668             case BOOLEAN_UPPER:
4669             case STRING:
4670             case STRING_UPPER:
4671             case HASHCODE:
4672             case HASHCODE_UPPER:
4673                 return true;
4674             default:
4675                 return false;
4676             }
4677         }
4678 
4679         // Returns true iff the Conversion is applicable to character.
4680         static boolean isCharacter(char c) {
4681             switch (c) {
4682             case CHARACTER:
4683             case CHARACTER_UPPER:
4684                 return true;
4685             default:
4686                 return false;
4687             }
4688         }
4689 
4690         // Returns true iff the Conversion is an integer type.
4691         static boolean isInteger(char c) {
4692             switch (c) {
4693             case DECIMAL_INTEGER:
4694             case OCTAL_INTEGER:
4695             case HEXADECIMAL_INTEGER:
4696             case HEXADECIMAL_INTEGER_UPPER:
4697                 return true;
4698             default:
4699                 return false;
4700             }
4701         }
4702 
4703         // Returns true iff the Conversion is a floating-point type.
4704         static boolean isFloat(char c) {
4705             switch (c) {
4706             case SCIENTIFIC:
4707             case SCIENTIFIC_UPPER:
4708             case GENERAL:
4709             case GENERAL_UPPER:
4710             case DECIMAL_FLOAT:
4711             case HEXADECIMAL_FLOAT:
4712             case HEXADECIMAL_FLOAT_UPPER:
4713                 return true;
4714             default:
4715                 return false;
4716             }
4717         }
4718 
4719         // Returns true iff the Conversion does not require an argument
4720         static boolean isText(char c) {
4721             switch (c) {
4722             case LINE_SEPARATOR:
4723             case PERCENT_SIGN:
4724                 return true;
4725             default:
4726                 return false;
4727             }
4728         }
4729     }
4730 
4731     private static class DateTime {
4732         static final char HOUR_OF_DAY_0 = 'H'; // (00 - 23)
4733         static final char HOUR_0        = 'I'; // (01 - 12)
4734         static final char HOUR_OF_DAY   = 'k'; // (0 - 23) -- like H
4735         static final char HOUR          = 'l'; // (1 - 12) -- like I
4736         static final char MINUTE        = 'M'; // (00 - 59)
4737         static final char NANOSECOND    = 'N'; // (000000000 - 999999999)
4738         static final char MILLISECOND   = 'L'; // jdk, not in gnu (000 - 999)
4739         static final char MILLISECOND_SINCE_EPOCH = 'Q'; // (0 - 99...?)
4740         static final char AM_PM         = 'p'; // (am or pm)
4741         static final char SECONDS_SINCE_EPOCH = 's'; // (0 - 99...?)
4742         static final char SECOND        = 'S'; // (00 - 60 - leap second)
4743         static final char TIME          = 'T'; // (24 hour hh:mm:ss)
4744         static final char ZONE_NUMERIC  = 'z'; // (-1200 - +1200) - ls minus?
4745         static final char ZONE          = 'Z'; // (symbol)
4746 
4747         // Date
4748         static final char NAME_OF_DAY_ABBREV    = 'a'; // 'a'
4749         static final char NAME_OF_DAY           = 'A'; // 'A'
4750         static final char NAME_OF_MONTH_ABBREV  = 'b'; // 'b'
4751         static final char NAME_OF_MONTH         = 'B'; // 'B'
4752         static final char CENTURY               = 'C'; // (00 - 99)
4753         static final char DAY_OF_MONTH_0        = 'd'; // (01 - 31)
4754         static final char DAY_OF_MONTH          = 'e'; // (1 - 31) -- like d
4755 // *    static final char ISO_WEEK_OF_YEAR_2    = 'g'; // cross %y %V
4756 // *    static final char ISO_WEEK_OF_YEAR_4    = 'G'; // cross %Y %V
4757         static final char NAME_OF_MONTH_ABBREV_X  = 'h'; // -- same b
4758         static final char DAY_OF_YEAR           = 'j'; // (001 - 366)
4759         static final char MONTH                 = 'm'; // (01 - 12)
4760 // *    static final char DAY_OF_WEEK_1         = 'u'; // (1 - 7) Monday
4761 // *    static final char WEEK_OF_YEAR_SUNDAY   = 'U'; // (0 - 53) Sunday+
4762 // *    static final char WEEK_OF_YEAR_MONDAY_01 = 'V'; // (01 - 53) Monday+
4763 // *    static final char DAY_OF_WEEK_0         = 'w'; // (0 - 6) Sunday
4764 // *    static final char WEEK_OF_YEAR_MONDAY   = 'W'; // (00 - 53) Monday
4765         static final char YEAR_2                = 'y'; // (00 - 99)
4766         static final char YEAR_4                = 'Y'; // (0000 - 9999)
4767 
4768         // Composites
4769         static final char TIME_12_HOUR  = 'r'; // (hh:mm:ss [AP]M)
4770         static final char TIME_24_HOUR  = 'R'; // (hh:mm same as %H:%M)
4771 // *    static final char LOCALE_TIME   = 'X'; // (%H:%M:%S) - parse format?
4772         static final char DATE_TIME             = 'c';
4773                                             // (Sat Nov 04 12:02:33 EST 1999)
4774         static final char DATE                  = 'D'; // (mm/dd/yy)
4775         static final char ISO_STANDARD_DATE     = 'F'; // (%Y-%m-%d)
4776 // *    static final char LOCALE_DATE           = 'x'; // (mm/dd/yy)
4777 
4778         static boolean isValid(char c) {
4779             switch (c) {
4780             case HOUR_OF_DAY_0:
4781             case HOUR_0:
4782             case HOUR_OF_DAY:
4783             case HOUR:
4784             case MINUTE:
4785             case NANOSECOND:
4786             case MILLISECOND:
4787             case MILLISECOND_SINCE_EPOCH:
4788             case AM_PM:
4789             case SECONDS_SINCE_EPOCH:
4790             case SECOND:
4791             case TIME:
4792             case ZONE_NUMERIC:
4793             case ZONE:
4794 
4795             // Date
4796             case NAME_OF_DAY_ABBREV:
4797             case NAME_OF_DAY:
4798             case NAME_OF_MONTH_ABBREV:
4799             case NAME_OF_MONTH:
4800             case CENTURY:
4801             case DAY_OF_MONTH_0:
4802             case DAY_OF_MONTH:
4803 // *        case ISO_WEEK_OF_YEAR_2:
4804 // *        case ISO_WEEK_OF_YEAR_4:
4805             case NAME_OF_MONTH_ABBREV_X:
4806             case DAY_OF_YEAR:
4807             case MONTH:
4808 // *        case DAY_OF_WEEK_1:
4809 // *        case WEEK_OF_YEAR_SUNDAY:
4810 // *        case WEEK_OF_YEAR_MONDAY_01:
4811 // *        case DAY_OF_WEEK_0:
4812 // *        case WEEK_OF_YEAR_MONDAY:
4813             case YEAR_2:
4814             case YEAR_4:
4815 
4816             // Composites
4817             case TIME_12_HOUR:
4818             case TIME_24_HOUR:
4819 // *        case LOCALE_TIME:
4820             case DATE_TIME:
4821             case DATE:
4822             case ISO_STANDARD_DATE:
4823 // *        case LOCALE_DATE:
4824                 return true;
4825             default:
4826                 return false;
4827             }
4828         }
4829     }
4830 }