1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_ASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_ASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/register.hpp"
  30 
  31 // definitions of various symbolic names for machine registers
  32 
  33 // First intercalls between C and Java which use 8 general registers
  34 // and 8 floating registers
  35 
  36 // we also have to copy between x86 and ARM registers but that's a
  37 // secondary complication -- not all code employing C call convention
  38 // executes as x86 code though -- we generate some of it
  39 
  40 class Argument {
  41  public:
  42   enum {
  43     n_int_register_parameters_c   = 8,  // r0, r1, ... r7 (c_rarg0, c_rarg1, ...)
  44     n_float_register_parameters_c = 8,  // v0, v1, ... v7 (c_farg0, c_farg1, ... )
  45 
  46     n_int_register_parameters_j   = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ...
  47     n_float_register_parameters_j = 8  // v0, v1, ... v7 (j_farg0, j_farg1, ...
  48   };
  49 };
  50 
  51 REGISTER_DECLARATION(Register, c_rarg0, r0);
  52 REGISTER_DECLARATION(Register, c_rarg1, r1);
  53 REGISTER_DECLARATION(Register, c_rarg2, r2);
  54 REGISTER_DECLARATION(Register, c_rarg3, r3);
  55 REGISTER_DECLARATION(Register, c_rarg4, r4);
  56 REGISTER_DECLARATION(Register, c_rarg5, r5);
  57 REGISTER_DECLARATION(Register, c_rarg6, r6);
  58 REGISTER_DECLARATION(Register, c_rarg7, r7);
  59 
  60 REGISTER_DECLARATION(FloatRegister, c_farg0, v0);
  61 REGISTER_DECLARATION(FloatRegister, c_farg1, v1);
  62 REGISTER_DECLARATION(FloatRegister, c_farg2, v2);
  63 REGISTER_DECLARATION(FloatRegister, c_farg3, v3);
  64 REGISTER_DECLARATION(FloatRegister, c_farg4, v4);
  65 REGISTER_DECLARATION(FloatRegister, c_farg5, v5);
  66 REGISTER_DECLARATION(FloatRegister, c_farg6, v6);
  67 REGISTER_DECLARATION(FloatRegister, c_farg7, v7);
  68 
  69 // Symbolically name the register arguments used by the Java calling convention.
  70 // We have control over the convention for java so we can do what we please.
  71 // What pleases us is to offset the java calling convention so that when
  72 // we call a suitable jni method the arguments are lined up and we don't
  73 // have to do much shuffling. A suitable jni method is non-static and a
  74 // small number of arguments
  75 //
  76 //  |--------------------------------------------------------------------|
  77 //  | c_rarg0  c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7  |
  78 //  |--------------------------------------------------------------------|
  79 //  | r0       r1       r2      r3      r4      r5      r6      r7       |
  80 //  |--------------------------------------------------------------------|
  81 //  | j_rarg7  j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6  |
  82 //  |--------------------------------------------------------------------|
  83 
  84 
  85 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
  86 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
  87 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
  88 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
  89 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
  90 REGISTER_DECLARATION(Register, j_rarg5, c_rarg6);
  91 REGISTER_DECLARATION(Register, j_rarg6, c_rarg7);
  92 REGISTER_DECLARATION(Register, j_rarg7, c_rarg0);
  93 
  94 // Java floating args are passed as per C
  95 
  96 REGISTER_DECLARATION(FloatRegister, j_farg0, v0);
  97 REGISTER_DECLARATION(FloatRegister, j_farg1, v1);
  98 REGISTER_DECLARATION(FloatRegister, j_farg2, v2);
  99 REGISTER_DECLARATION(FloatRegister, j_farg3, v3);
 100 REGISTER_DECLARATION(FloatRegister, j_farg4, v4);
 101 REGISTER_DECLARATION(FloatRegister, j_farg5, v5);
 102 REGISTER_DECLARATION(FloatRegister, j_farg6, v6);
 103 REGISTER_DECLARATION(FloatRegister, j_farg7, v7);
 104 
 105 // registers used to hold VM data either temporarily within a method
 106 // or across method calls
 107 
 108 // volatile (caller-save) registers
 109 
 110 // r8 is used for indirect result location return
 111 // we use it and r9 as scratch registers
 112 REGISTER_DECLARATION(Register, rscratch1, r8);
 113 REGISTER_DECLARATION(Register, rscratch2, r9);
 114 
 115 // current method -- must be in a call-clobbered register
 116 REGISTER_DECLARATION(Register, rmethod,   r12);
 117 
 118 // non-volatile (callee-save) registers are r16-29
 119 // of which the following are dedicated global state
 120 
 121 // link register
 122 REGISTER_DECLARATION(Register, lr,        r30);
 123 // frame pointer
 124 REGISTER_DECLARATION(Register, rfp,       r29);
 125 // current thread
 126 REGISTER_DECLARATION(Register, rthread,   r28);
 127 // base of heap
 128 REGISTER_DECLARATION(Register, rheapbase, r27);
 129 // constant pool cache
 130 REGISTER_DECLARATION(Register, rcpool,    r26);
 131 // monitors allocated on stack
 132 REGISTER_DECLARATION(Register, rmonitors, r25);
 133 // locals on stack
 134 REGISTER_DECLARATION(Register, rlocals,   r24);
 135 // bytecode pointer
 136 REGISTER_DECLARATION(Register, rbcp,      r22);
 137 // Dispatch table base
 138 REGISTER_DECLARATION(Register, rdispatch, r21);
 139 // Java stack pointer
 140 REGISTER_DECLARATION(Register, esp,      r20);
 141 
 142 #define assert_cond(ARG1) assert(ARG1, #ARG1)
 143 
 144 namespace asm_util {
 145   uint32_t encode_logical_immediate(bool is32, uint64_t imm);
 146 };
 147 
 148 using namespace asm_util;
 149 
 150 
 151 class Assembler;
 152 
 153 class Instruction_aarch64 {
 154   unsigned insn;
 155 #ifdef ASSERT
 156   unsigned bits;
 157 #endif
 158   Assembler *assem;
 159 
 160 public:
 161 
 162   Instruction_aarch64(class Assembler *as) {
 163 #ifdef ASSERT
 164     bits = 0;
 165 #endif
 166     insn = 0;
 167     assem = as;
 168   }
 169 
 170   inline ~Instruction_aarch64();
 171 
 172   unsigned &get_insn() { return insn; }
 173 #ifdef ASSERT
 174   unsigned &get_bits() { return bits; }
 175 #endif
 176 
 177   static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) {
 178     union {
 179       unsigned u;
 180       int n;
 181     };
 182 
 183     u = val << (31 - hi);
 184     n = n >> (31 - hi + lo);
 185     return n;
 186   }
 187 
 188   static inline uint32_t extract(uint32_t val, int msb, int lsb) {
 189     int nbits = msb - lsb + 1;
 190     assert_cond(msb >= lsb);
 191     uint32_t mask = (1U << nbits) - 1;
 192     uint32_t result = val >> lsb;
 193     result &= mask;
 194     return result;
 195   }
 196 
 197   static inline int32_t sextract(uint32_t val, int msb, int lsb) {
 198     uint32_t uval = extract(val, msb, lsb);
 199     return extend(uval, msb - lsb);
 200   }
 201 
 202   static void patch(address a, int msb, int lsb, uint64_t val) {
 203     int nbits = msb - lsb + 1;
 204     guarantee(val < (1U << nbits), "Field too big for insn");
 205     assert_cond(msb >= lsb);
 206     unsigned mask = (1U << nbits) - 1;
 207     val <<= lsb;
 208     mask <<= lsb;
 209     unsigned target = *(unsigned *)a;
 210     target &= ~mask;
 211     target |= val;
 212     *(unsigned *)a = target;
 213   }
 214 
 215   static void spatch(address a, int msb, int lsb, int64_t val) {
 216     int nbits = msb - lsb + 1;
 217     int64_t chk = val >> (nbits - 1);
 218     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 219     unsigned uval = val;
 220     unsigned mask = (1U << nbits) - 1;
 221     uval &= mask;
 222     uval <<= lsb;
 223     mask <<= lsb;
 224     unsigned target = *(unsigned *)a;
 225     target &= ~mask;
 226     target |= uval;
 227     *(unsigned *)a = target;
 228   }
 229 
 230   void f(unsigned val, int msb, int lsb) {
 231     int nbits = msb - lsb + 1;
 232     guarantee(val < (1U << nbits), "Field too big for insn");
 233     assert_cond(msb >= lsb);
 234     unsigned mask = (1U << nbits) - 1;
 235     val <<= lsb;
 236     mask <<= lsb;
 237     insn |= val;
 238     assert_cond((bits & mask) == 0);
 239 #ifdef ASSERT
 240     bits |= mask;
 241 #endif
 242   }
 243 
 244   void f(unsigned val, int bit) {
 245     f(val, bit, bit);
 246   }
 247 
 248   void sf(int64_t val, int msb, int lsb) {
 249     int nbits = msb - lsb + 1;
 250     int64_t chk = val >> (nbits - 1);
 251     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 252     unsigned uval = val;
 253     unsigned mask = (1U << nbits) - 1;
 254     uval &= mask;
 255     f(uval, lsb + nbits - 1, lsb);
 256   }
 257 
 258   void rf(Register r, int lsb) {
 259     f(r->encoding_nocheck(), lsb + 4, lsb);
 260   }
 261 
 262   // reg|ZR
 263   void zrf(Register r, int lsb) {
 264     f(r->encoding_nocheck() - (r == zr), lsb + 4, lsb);
 265   }
 266 
 267   // reg|SP
 268   void srf(Register r, int lsb) {
 269     f(r == sp ? 31 : r->encoding_nocheck(), lsb + 4, lsb);
 270   }
 271 
 272   void rf(FloatRegister r, int lsb) {
 273     f(r->encoding_nocheck(), lsb + 4, lsb);
 274   }
 275 
 276   void prf(PRegister r, int lsb) {
 277     f(r->encoding_nocheck(), lsb + 3, lsb);
 278   }
 279 
 280   void pgrf(PRegister r, int lsb) {
 281     f(r->encoding_nocheck(), lsb + 2, lsb);
 282   }
 283 
 284   unsigned get(int msb = 31, int lsb = 0) {
 285     int nbits = msb - lsb + 1;
 286     unsigned mask = ((1U << nbits) - 1) << lsb;
 287     assert_cond((bits & mask) == mask);
 288     return (insn & mask) >> lsb;
 289   }
 290 
 291   void fixed(unsigned value, unsigned mask) {
 292     assert_cond ((mask & bits) == 0);
 293 #ifdef ASSERT
 294     bits |= mask;
 295 #endif
 296     insn |= value;
 297   }
 298 };
 299 
 300 #define starti Instruction_aarch64 do_not_use(this); set_current(&do_not_use)
 301 
 302 class PrePost {
 303   int _offset;
 304   Register _r;
 305 public:
 306   PrePost(Register reg, int o) : _offset(o), _r(reg) { }
 307   int offset() { return _offset; }
 308   Register reg() { return _r; }
 309 };
 310 
 311 class Pre : public PrePost {
 312 public:
 313   Pre(Register reg, int o) : PrePost(reg, o) { }
 314 };
 315 class Post : public PrePost {
 316   Register _idx;
 317   bool _is_postreg;
 318 public:
 319   Post(Register reg, int o) : PrePost(reg, o) { _idx = NULL; _is_postreg = false; }
 320   Post(Register reg, Register idx) : PrePost(reg, 0) { _idx = idx; _is_postreg = true; }
 321   Register idx_reg() { return _idx; }
 322   bool is_postreg() {return _is_postreg; }
 323 };
 324 
 325 namespace ext
 326 {
 327   enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx };
 328 };
 329 
 330 // Addressing modes
 331 class Address {
 332  public:
 333 
 334   enum mode { no_mode, base_plus_offset, pre, post, post_reg, pcrel,
 335               base_plus_offset_reg, literal };
 336 
 337   // Shift and extend for base reg + reg offset addressing
 338   class extend {
 339     int _option, _shift;
 340     ext::operation _op;
 341   public:
 342     extend() { }
 343     extend(int s, int o, ext::operation op) : _option(o), _shift(s), _op(op) { }
 344     int option() const{ return _option; }
 345     int shift() const { return _shift; }
 346     ext::operation op() const { return _op; }
 347   };
 348   class uxtw : public extend {
 349   public:
 350     uxtw(int shift = -1): extend(shift, 0b010, ext::uxtw) { }
 351   };
 352   class lsl : public extend {
 353   public:
 354     lsl(int shift = -1): extend(shift, 0b011, ext::uxtx) { }
 355   };
 356   class sxtw : public extend {
 357   public:
 358     sxtw(int shift = -1): extend(shift, 0b110, ext::sxtw) { }
 359   };
 360   class sxtx : public extend {
 361   public:
 362     sxtx(int shift = -1): extend(shift, 0b111, ext::sxtx) { }
 363   };
 364 
 365  private:
 366   Register _base;
 367   Register _index;
 368   int64_t _offset;
 369   enum mode _mode;
 370   extend _ext;
 371 
 372   RelocationHolder _rspec;
 373 
 374   // Typically we use AddressLiterals we want to use their rval
 375   // However in some situations we want the lval (effect address) of
 376   // the item.  We provide a special factory for making those lvals.
 377   bool _is_lval;
 378 
 379   // If the target is far we'll need to load the ea of this to a
 380   // register to reach it. Otherwise if near we can do PC-relative
 381   // addressing.
 382   address          _target;
 383 
 384  public:
 385   Address()
 386     : _mode(no_mode) { }
 387   Address(Register r)
 388     : _base(r), _index(noreg), _offset(0), _mode(base_plus_offset), _target(0) { }
 389   Address(Register r, int o)
 390     : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
 391   Address(Register r, int64_t o)
 392     : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
 393   Address(Register r, uint64_t o)
 394     : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
 395 #ifdef ASSERT
 396   Address(Register r, ByteSize disp)
 397     : _base(r), _index(noreg), _offset(in_bytes(disp)), _mode(base_plus_offset), _target(0) { }
 398 #endif
 399   Address(Register r, Register r1, extend ext = lsl())
 400     : _base(r), _index(r1), _offset(0), _mode(base_plus_offset_reg),
 401       _ext(ext), _target(0) { }
 402   Address(Pre p)
 403     : _base(p.reg()), _offset(p.offset()), _mode(pre) { }
 404   Address(Post p)
 405     : _base(p.reg()),  _index(p.idx_reg()), _offset(p.offset()),
 406       _mode(p.is_postreg() ? post_reg : post), _target(0) { }
 407   Address(address target, RelocationHolder const& rspec)
 408     : _mode(literal),
 409       _rspec(rspec),
 410       _is_lval(false),
 411       _target(target)  { }
 412   Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type);
 413   Address(Register base, RegisterOrConstant index, extend ext = lsl())
 414     : _base (base),
 415       _offset(0), _ext(ext), _target(0) {
 416     if (index.is_register()) {
 417       _mode = base_plus_offset_reg;
 418       _index = index.as_register();
 419     } else {
 420       guarantee(ext.option() == ext::uxtx, "should be");
 421       assert(index.is_constant(), "should be");
 422       _mode = base_plus_offset;
 423       _offset = index.as_constant() << ext.shift();
 424     }
 425   }
 426 
 427   Register base() const {
 428     guarantee((_mode == base_plus_offset | _mode == base_plus_offset_reg
 429                | _mode == post | _mode == post_reg),
 430               "wrong mode");
 431     return _base;
 432   }
 433   int64_t offset() const {
 434     return _offset;
 435   }
 436   Register index() const {
 437     return _index;
 438   }
 439   mode getMode() const {
 440     return _mode;
 441   }
 442   bool uses(Register reg) const { return _base == reg || _index == reg; }
 443   address target() const { return _target; }
 444   const RelocationHolder& rspec() const { return _rspec; }
 445 
 446   void encode(Instruction_aarch64 *i) const {
 447     i->f(0b111, 29, 27);
 448     i->srf(_base, 5);
 449 
 450     switch(_mode) {
 451     case base_plus_offset:
 452       {
 453         unsigned size = i->get(31, 30);
 454         if (i->get(26, 26) && i->get(23, 23)) {
 455           // SIMD Q Type - Size = 128 bits
 456           assert(size == 0, "bad size");
 457           size = 0b100;
 458         }
 459         unsigned mask = (1 << size) - 1;
 460         if (_offset < 0 || _offset & mask)
 461           {
 462             i->f(0b00, 25, 24);
 463             i->f(0, 21), i->f(0b00, 11, 10);
 464             i->sf(_offset, 20, 12);
 465           } else {
 466             i->f(0b01, 25, 24);
 467             i->f(_offset >> size, 21, 10);
 468           }
 469       }
 470       break;
 471 
 472     case base_plus_offset_reg:
 473       {
 474         i->f(0b00, 25, 24);
 475         i->f(1, 21);
 476         i->rf(_index, 16);
 477         i->f(_ext.option(), 15, 13);
 478         unsigned size = i->get(31, 30);
 479         if (i->get(26, 26) && i->get(23, 23)) {
 480           // SIMD Q Type - Size = 128 bits
 481           assert(size == 0, "bad size");
 482           size = 0b100;
 483         }
 484         if (size == 0) // It's a byte
 485           i->f(_ext.shift() >= 0, 12);
 486         else {
 487           if (_ext.shift() > 0)
 488             assert(_ext.shift() == (int)size, "bad shift");
 489           i->f(_ext.shift() > 0, 12);
 490         }
 491         i->f(0b10, 11, 10);
 492       }
 493       break;
 494 
 495     case pre:
 496       i->f(0b00, 25, 24);
 497       i->f(0, 21), i->f(0b11, 11, 10);
 498       i->sf(_offset, 20, 12);
 499       break;
 500 
 501     case post:
 502       i->f(0b00, 25, 24);
 503       i->f(0, 21), i->f(0b01, 11, 10);
 504       i->sf(_offset, 20, 12);
 505       break;
 506 
 507     default:
 508       ShouldNotReachHere();
 509     }
 510   }
 511 
 512   void encode_pair(Instruction_aarch64 *i) const {
 513     switch(_mode) {
 514     case base_plus_offset:
 515       i->f(0b010, 25, 23);
 516       break;
 517     case pre:
 518       i->f(0b011, 25, 23);
 519       break;
 520     case post:
 521       i->f(0b001, 25, 23);
 522       break;
 523     default:
 524       ShouldNotReachHere();
 525     }
 526 
 527     unsigned size; // Operand shift in 32-bit words
 528 
 529     if (i->get(26, 26)) { // float
 530       switch(i->get(31, 30)) {
 531       case 0b10:
 532         size = 2; break;
 533       case 0b01:
 534         size = 1; break;
 535       case 0b00:
 536         size = 0; break;
 537       default:
 538         ShouldNotReachHere();
 539         size = 0;  // unreachable
 540       }
 541     } else {
 542       size = i->get(31, 31);
 543     }
 544 
 545     size = 4 << size;
 546     guarantee(_offset % size == 0, "bad offset");
 547     i->sf(_offset / size, 21, 15);
 548     i->srf(_base, 5);
 549   }
 550 
 551   void encode_nontemporal_pair(Instruction_aarch64 *i) const {
 552     // Only base + offset is allowed
 553     i->f(0b000, 25, 23);
 554     unsigned size = i->get(31, 31);
 555     size = 4 << size;
 556     guarantee(_offset % size == 0, "bad offset");
 557     i->sf(_offset / size, 21, 15);
 558     i->srf(_base, 5);
 559     guarantee(_mode == Address::base_plus_offset,
 560               "Bad addressing mode for non-temporal op");
 561   }
 562 
 563   void lea(MacroAssembler *, Register) const;
 564 
 565   static bool offset_ok_for_immed(int64_t offset, uint shift);
 566 };
 567 
 568 // Convience classes
 569 class RuntimeAddress: public Address {
 570 
 571   public:
 572 
 573   RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {}
 574 
 575 };
 576 
 577 class OopAddress: public Address {
 578 
 579   public:
 580 
 581   OopAddress(address target) : Address(target, relocInfo::oop_type){}
 582 
 583 };
 584 
 585 class ExternalAddress: public Address {
 586  private:
 587   static relocInfo::relocType reloc_for_target(address target) {
 588     // Sometimes ExternalAddress is used for values which aren't
 589     // exactly addresses, like the card table base.
 590     // external_word_type can't be used for values in the first page
 591     // so just skip the reloc in that case.
 592     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 593   }
 594 
 595  public:
 596 
 597   ExternalAddress(address target) : Address(target, reloc_for_target(target)) {}
 598 
 599 };
 600 
 601 class InternalAddress: public Address {
 602 
 603   public:
 604 
 605   InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {}
 606 };
 607 
 608 const int FPUStateSizeInWords = FloatRegisterImpl::number_of_registers *
 609                                 FloatRegisterImpl::save_slots_per_register;
 610 
 611 typedef enum {
 612   PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM,
 613   PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM,
 614   PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM
 615 } prfop;
 616 
 617 class Assembler : public AbstractAssembler {
 618 
 619 #ifndef PRODUCT
 620   static const uintptr_t asm_bp;
 621 
 622   void emit_long(jint x) {
 623     if ((uintptr_t)pc() == asm_bp)
 624       asm volatile ("nop");
 625     AbstractAssembler::emit_int32(x);
 626   }
 627 #else
 628   void emit_long(jint x) {
 629     AbstractAssembler::emit_int32(x);
 630   }
 631 #endif
 632 
 633 public:
 634 
 635   enum { instruction_size = 4 };
 636 
 637   //---<  calculate length of instruction  >---
 638   // We just use the values set above.
 639   // instruction must start at passed address
 640   static unsigned int instr_len(unsigned char *instr) { return instruction_size; }
 641 
 642   //---<  longest instructions  >---
 643   static unsigned int instr_maxlen() { return instruction_size; }
 644 
 645   Address adjust(Register base, int offset, bool preIncrement) {
 646     if (preIncrement)
 647       return Address(Pre(base, offset));
 648     else
 649       return Address(Post(base, offset));
 650   }
 651 
 652   Address pre(Register base, int offset) {
 653     return adjust(base, offset, true);
 654   }
 655 
 656   Address post(Register base, int offset) {
 657     return adjust(base, offset, false);
 658   }
 659 
 660   Address post(Register base, Register idx) {
 661     return Address(Post(base, idx));
 662   }
 663 
 664   Instruction_aarch64* current;
 665 
 666   void set_current(Instruction_aarch64* i) { current = i; }
 667 
 668   void f(unsigned val, int msb, int lsb) {
 669     current->f(val, msb, lsb);
 670   }
 671   void f(unsigned val, int msb) {
 672     current->f(val, msb, msb);
 673   }
 674   void sf(int64_t val, int msb, int lsb) {
 675     current->sf(val, msb, lsb);
 676   }
 677   void rf(Register reg, int lsb) {
 678     current->rf(reg, lsb);
 679   }
 680   void srf(Register reg, int lsb) {
 681     current->srf(reg, lsb);
 682   }
 683   void zrf(Register reg, int lsb) {
 684     current->zrf(reg, lsb);
 685   }
 686   void rf(FloatRegister reg, int lsb) {
 687     current->rf(reg, lsb);
 688   }
 689   void prf(PRegister reg, int lsb) {
 690     current->prf(reg, lsb);
 691   }
 692   void pgrf(PRegister reg, int lsb) {
 693     current->pgrf(reg, lsb);
 694   }
 695   void fixed(unsigned value, unsigned mask) {
 696     current->fixed(value, mask);
 697   }
 698 
 699   void emit() {
 700     emit_long(current->get_insn());
 701     assert_cond(current->get_bits() == 0xffffffff);
 702     current = NULL;
 703   }
 704 
 705   typedef void (Assembler::* uncond_branch_insn)(address dest);
 706   typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest);
 707   typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest);
 708   typedef void (Assembler::* prefetch_insn)(address target, prfop);
 709 
 710   void wrap_label(Label &L, uncond_branch_insn insn);
 711   void wrap_label(Register r, Label &L, compare_and_branch_insn insn);
 712   void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn);
 713   void wrap_label(Label &L, prfop, prefetch_insn insn);
 714 
 715   // PC-rel. addressing
 716 
 717   void adr(Register Rd, address dest);
 718   void _adrp(Register Rd, address dest);
 719 
 720   void adr(Register Rd, const Address &dest);
 721   void _adrp(Register Rd, const Address &dest);
 722 
 723   void adr(Register Rd, Label &L) {
 724     wrap_label(Rd, L, &Assembler::Assembler::adr);
 725   }
 726   void _adrp(Register Rd, Label &L) {
 727     wrap_label(Rd, L, &Assembler::_adrp);
 728   }
 729 
 730   void adrp(Register Rd, const Address &dest, uint64_t &offset);
 731 
 732 #undef INSN
 733 
 734   void add_sub_immediate(Register Rd, Register Rn, unsigned uimm, int op,
 735                          int negated_op);
 736 
 737   // Add/subtract (immediate)
 738 #define INSN(NAME, decode, negated)                                     \
 739   void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) {   \
 740     starti;                                                             \
 741     f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \
 742     zrf(Rd, 0), srf(Rn, 5);                                             \
 743   }                                                                     \
 744                                                                         \
 745   void NAME(Register Rd, Register Rn, unsigned imm) {                   \
 746     starti;                                                             \
 747     add_sub_immediate(Rd, Rn, imm, decode, negated);                    \
 748   }
 749 
 750   INSN(addsw, 0b001, 0b011);
 751   INSN(subsw, 0b011, 0b001);
 752   INSN(adds,  0b101, 0b111);
 753   INSN(subs,  0b111, 0b101);
 754 
 755 #undef INSN
 756 
 757 #define INSN(NAME, decode, negated)                     \
 758   void NAME(Register Rd, Register Rn, unsigned imm) {   \
 759     starti;                                             \
 760     add_sub_immediate(Rd, Rn, imm, decode, negated);    \
 761   }
 762 
 763   INSN(addw, 0b000, 0b010);
 764   INSN(subw, 0b010, 0b000);
 765   INSN(add,  0b100, 0b110);
 766   INSN(sub,  0b110, 0b100);
 767 
 768 #undef INSN
 769 
 770  // Logical (immediate)
 771 #define INSN(NAME, decode, is32)                                \
 772   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 773     starti;                                                     \
 774     uint32_t val = encode_logical_immediate(is32, imm);         \
 775     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 776     srf(Rd, 0), zrf(Rn, 5);                                     \
 777   }
 778 
 779   INSN(andw, 0b000, true);
 780   INSN(orrw, 0b001, true);
 781   INSN(eorw, 0b010, true);
 782   INSN(andr,  0b100, false);
 783   INSN(orr,  0b101, false);
 784   INSN(eor,  0b110, false);
 785 
 786 #undef INSN
 787 
 788 #define INSN(NAME, decode, is32)                                \
 789   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 790     starti;                                                     \
 791     uint32_t val = encode_logical_immediate(is32, imm);         \
 792     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 793     zrf(Rd, 0), zrf(Rn, 5);                                     \
 794   }
 795 
 796   INSN(ands, 0b111, false);
 797   INSN(andsw, 0b011, true);
 798 
 799 #undef INSN
 800 
 801   // Move wide (immediate)
 802 #define INSN(NAME, opcode)                                              \
 803   void NAME(Register Rd, unsigned imm, unsigned shift = 0) {            \
 804     assert_cond((shift/16)*16 == shift);                                \
 805     starti;                                                             \
 806     f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21),        \
 807       f(imm, 20, 5);                                                    \
 808     rf(Rd, 0);                                                          \
 809   }
 810 
 811   INSN(movnw, 0b000);
 812   INSN(movzw, 0b010);
 813   INSN(movkw, 0b011);
 814   INSN(movn, 0b100);
 815   INSN(movz, 0b110);
 816   INSN(movk, 0b111);
 817 
 818 #undef INSN
 819 
 820   // Bitfield
 821 #define INSN(NAME, opcode, size)                                        \
 822   void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) {   \
 823     starti;                                                             \
 824     guarantee(size == 1 || (immr < 32 && imms < 32), "incorrect immr/imms");\
 825     f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10);                \
 826     zrf(Rn, 5), rf(Rd, 0);                                              \
 827   }
 828 
 829   INSN(sbfmw, 0b0001001100, 0);
 830   INSN(bfmw,  0b0011001100, 0);
 831   INSN(ubfmw, 0b0101001100, 0);
 832   INSN(sbfm,  0b1001001101, 1);
 833   INSN(bfm,   0b1011001101, 1);
 834   INSN(ubfm,  0b1101001101, 1);
 835 
 836 #undef INSN
 837 
 838   // Extract
 839 #define INSN(NAME, opcode, size)                                        \
 840   void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) {     \
 841     starti;                                                             \
 842     guarantee(size == 1 || imms < 32, "incorrect imms");                \
 843     f(opcode, 31, 21), f(imms, 15, 10);                                 \
 844     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                                \
 845   }
 846 
 847   INSN(extrw, 0b00010011100, 0);
 848   INSN(extr,  0b10010011110, 1);
 849 
 850 #undef INSN
 851 
 852   // The maximum range of a branch is fixed for the AArch64
 853   // architecture.  In debug mode we shrink it in order to test
 854   // trampolines, but not so small that branches in the interpreter
 855   // are out of range.
 856   static const uint64_t branch_range = NOT_DEBUG(128 * M) DEBUG_ONLY(2 * M);
 857 
 858   static bool reachable_from_branch_at(address branch, address target) {
 859     return uabs(target - branch) < branch_range;
 860   }
 861 
 862   // Unconditional branch (immediate)
 863 #define INSN(NAME, opcode)                                              \
 864   void NAME(address dest) {                                             \
 865     starti;                                                             \
 866     int64_t offset = (dest - pc()) >> 2;                                \
 867     DEBUG_ONLY(assert(reachable_from_branch_at(pc(), dest), "debug only")); \
 868     f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0);               \
 869   }                                                                     \
 870   void NAME(Label &L) {                                                 \
 871     wrap_label(L, &Assembler::NAME);                                    \
 872   }                                                                     \
 873   void NAME(const Address &dest);
 874 
 875   INSN(b, 0);
 876   INSN(bl, 1);
 877 
 878 #undef INSN
 879 
 880   // Compare & branch (immediate)
 881 #define INSN(NAME, opcode)                              \
 882   void NAME(Register Rt, address dest) {                \
 883     int64_t offset = (dest - pc()) >> 2;                \
 884     starti;                                             \
 885     f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0);    \
 886   }                                                     \
 887   void NAME(Register Rt, Label &L) {                    \
 888     wrap_label(Rt, L, &Assembler::NAME);                \
 889   }
 890 
 891   INSN(cbzw,  0b00110100);
 892   INSN(cbnzw, 0b00110101);
 893   INSN(cbz,   0b10110100);
 894   INSN(cbnz,  0b10110101);
 895 
 896 #undef INSN
 897 
 898   // Test & branch (immediate)
 899 #define INSN(NAME, opcode)                                              \
 900   void NAME(Register Rt, int bitpos, address dest) {                    \
 901     int64_t offset = (dest - pc()) >> 2;                                \
 902     int b5 = bitpos >> 5;                                               \
 903     bitpos &= 0x1f;                                                     \
 904     starti;                                                             \
 905     f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \
 906     rf(Rt, 0);                                                          \
 907   }                                                                     \
 908   void NAME(Register Rt, int bitpos, Label &L) {                        \
 909     wrap_label(Rt, bitpos, L, &Assembler::NAME);                        \
 910   }
 911 
 912   INSN(tbz,  0b0110110);
 913   INSN(tbnz, 0b0110111);
 914 
 915 #undef INSN
 916 
 917   // Conditional branch (immediate)
 918   enum Condition
 919     {EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV};
 920 
 921   void br(Condition  cond, address dest) {
 922     int64_t offset = (dest - pc()) >> 2;
 923     starti;
 924     f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0);
 925   }
 926 
 927 #define INSN(NAME, cond)                        \
 928   void NAME(address dest) {                     \
 929     br(cond, dest);                             \
 930   }
 931 
 932   INSN(beq, EQ);
 933   INSN(bne, NE);
 934   INSN(bhs, HS);
 935   INSN(bcs, CS);
 936   INSN(blo, LO);
 937   INSN(bcc, CC);
 938   INSN(bmi, MI);
 939   INSN(bpl, PL);
 940   INSN(bvs, VS);
 941   INSN(bvc, VC);
 942   INSN(bhi, HI);
 943   INSN(bls, LS);
 944   INSN(bge, GE);
 945   INSN(blt, LT);
 946   INSN(bgt, GT);
 947   INSN(ble, LE);
 948   INSN(bal, AL);
 949   INSN(bnv, NV);
 950 
 951   void br(Condition cc, Label &L);
 952 
 953 #undef INSN
 954 
 955   // Exception generation
 956   void generate_exception(int opc, int op2, int LL, unsigned imm) {
 957     starti;
 958     f(0b11010100, 31, 24);
 959     f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0);
 960   }
 961 
 962 #define INSN(NAME, opc, op2, LL)                \
 963   void NAME(unsigned imm) {                     \
 964     generate_exception(opc, op2, LL, imm);      \
 965   }
 966 
 967   INSN(svc, 0b000, 0, 0b01);
 968   INSN(hvc, 0b000, 0, 0b10);
 969   INSN(smc, 0b000, 0, 0b11);
 970   INSN(brk, 0b001, 0, 0b00);
 971   INSN(hlt, 0b010, 0, 0b00);
 972   INSN(dcps1, 0b101, 0, 0b01);
 973   INSN(dcps2, 0b101, 0, 0b10);
 974   INSN(dcps3, 0b101, 0, 0b11);
 975 
 976 #undef INSN
 977 
 978   // System
 979   void system(int op0, int op1, int CRn, int CRm, int op2,
 980               Register rt = dummy_reg)
 981   {
 982     starti;
 983     f(0b11010101000, 31, 21);
 984     f(op0, 20, 19);
 985     f(op1, 18, 16);
 986     f(CRn, 15, 12);
 987     f(CRm, 11, 8);
 988     f(op2, 7, 5);
 989     rf(rt, 0);
 990   }
 991 
 992   void hint(int imm) {
 993     system(0b00, 0b011, 0b0010, 0b0000, imm);
 994   }
 995 
 996   void nop() {
 997     hint(0);
 998   }
 999 
1000   void yield() {
1001     hint(1);
1002   }
1003 
1004   void wfe() {
1005     hint(2);
1006   }
1007 
1008   void wfi() {
1009     hint(3);
1010   }
1011 
1012   void sev() {
1013     hint(4);
1014   }
1015 
1016   void sevl() {
1017     hint(5);
1018   }
1019 
1020   // we only provide mrs and msr for the special purpose system
1021   // registers where op1 (instr[20:19]) == 11 and, (currently) only
1022   // use it for FPSR n.b msr has L (instr[21]) == 0 mrs has L == 1
1023 
1024   void msr(int op1, int CRn, int CRm, int op2, Register rt) {
1025     starti;
1026     f(0b1101010100011, 31, 19);
1027     f(op1, 18, 16);
1028     f(CRn, 15, 12);
1029     f(CRm, 11, 8);
1030     f(op2, 7, 5);
1031     // writing zr is ok
1032     zrf(rt, 0);
1033   }
1034 
1035   void mrs(int op1, int CRn, int CRm, int op2, Register rt) {
1036     starti;
1037     f(0b1101010100111, 31, 19);
1038     f(op1, 18, 16);
1039     f(CRn, 15, 12);
1040     f(CRm, 11, 8);
1041     f(op2, 7, 5);
1042     // reading to zr is a mistake
1043     rf(rt, 0);
1044   }
1045 
1046   enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH,
1047                 ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY};
1048 
1049   void dsb(barrier imm) {
1050     system(0b00, 0b011, 0b00011, imm, 0b100);
1051   }
1052 
1053   void dmb(barrier imm) {
1054     system(0b00, 0b011, 0b00011, imm, 0b101);
1055   }
1056 
1057   void isb() {
1058     system(0b00, 0b011, 0b00011, SY, 0b110);
1059   }
1060 
1061   void sys(int op1, int CRn, int CRm, int op2,
1062            Register rt = (Register)0b11111) {
1063     system(0b01, op1, CRn, CRm, op2, rt);
1064   }
1065 
1066   // Only implement operations accessible from EL0 or higher, i.e.,
1067   //            op1    CRn    CRm    op2
1068   // IC IVAU     3      7      5      1
1069   // DC CVAC     3      7      10     1
1070   // DC CVAP     3      7      12     1
1071   // DC CVAU     3      7      11     1
1072   // DC CIVAC    3      7      14     1
1073   // DC ZVA      3      7      4      1
1074   // So only deal with the CRm field.
1075   enum icache_maintenance {IVAU = 0b0101};
1076   enum dcache_maintenance {CVAC = 0b1010, CVAP = 0b1100, CVAU = 0b1011, CIVAC = 0b1110, ZVA = 0b100};
1077 
1078   void dc(dcache_maintenance cm, Register Rt) {
1079     sys(0b011, 0b0111, cm, 0b001, Rt);
1080   }
1081 
1082   void ic(icache_maintenance cm, Register Rt) {
1083     sys(0b011, 0b0111, cm, 0b001, Rt);
1084   }
1085 
1086   // A more convenient access to dmb for our purposes
1087   enum Membar_mask_bits {
1088     // We can use ISH for a barrier because the ARM ARM says "This
1089     // architecture assumes that all Processing Elements that use the
1090     // same operating system or hypervisor are in the same Inner
1091     // Shareable shareability domain."
1092     StoreStore = ISHST,
1093     LoadStore  = ISHLD,
1094     LoadLoad   = ISHLD,
1095     StoreLoad  = ISH,
1096     AnyAny     = ISH
1097   };
1098 
1099   void membar(Membar_mask_bits order_constraint) {
1100     dmb(Assembler::barrier(order_constraint));
1101   }
1102 
1103   // Unconditional branch (register)
1104   void branch_reg(Register R, int opc) {
1105     starti;
1106     f(0b1101011, 31, 25);
1107     f(opc, 24, 21);
1108     f(0b11111000000, 20, 10);
1109     rf(R, 5);
1110     f(0b00000, 4, 0);
1111   }
1112 
1113 #define INSN(NAME, opc)                         \
1114   void NAME(Register R) {                       \
1115     branch_reg(R, opc);                         \
1116   }
1117 
1118   INSN(br, 0b0000);
1119   INSN(blr, 0b0001);
1120   INSN(ret, 0b0010);
1121 
1122   void ret(void *p); // This forces a compile-time error for ret(0)
1123 
1124 #undef INSN
1125 
1126 #define INSN(NAME, opc)                         \
1127   void NAME() {                 \
1128     branch_reg(dummy_reg, opc);         \
1129   }
1130 
1131   INSN(eret, 0b0100);
1132   INSN(drps, 0b0101);
1133 
1134 #undef INSN
1135 
1136   // Load/store exclusive
1137   enum operand_size { byte, halfword, word, xword };
1138 
1139   void load_store_exclusive(Register Rs, Register Rt1, Register Rt2,
1140     Register Rn, enum operand_size sz, int op, bool ordered) {
1141     starti;
1142     f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21);
1143     rf(Rs, 16), f(ordered, 15), zrf(Rt2, 10), srf(Rn, 5), zrf(Rt1, 0);
1144   }
1145 
1146   void load_exclusive(Register dst, Register addr,
1147                       enum operand_size sz, bool ordered) {
1148     load_store_exclusive(dummy_reg, dst, dummy_reg, addr,
1149                          sz, 0b010, ordered);
1150   }
1151 
1152   void store_exclusive(Register status, Register new_val, Register addr,
1153                        enum operand_size sz, bool ordered) {
1154     load_store_exclusive(status, new_val, dummy_reg, addr,
1155                          sz, 0b000, ordered);
1156   }
1157 
1158 #define INSN4(NAME, sz, op, o0) /* Four registers */                    \
1159   void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) {     \
1160     guarantee(Rs != Rn && Rs != Rt1 && Rs != Rt2, "unpredictable instruction"); \
1161     load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0);                 \
1162   }
1163 
1164 #define INSN3(NAME, sz, op, o0) /* Three registers */                   \
1165   void NAME(Register Rs, Register Rt, Register Rn) {                    \
1166     guarantee(Rs != Rn && Rs != Rt, "unpredictable instruction");       \
1167     load_store_exclusive(Rs, Rt, dummy_reg, Rn, sz, op, o0); \
1168   }
1169 
1170 #define INSN2(NAME, sz, op, o0) /* Two registers */                     \
1171   void NAME(Register Rt, Register Rn) {                                 \
1172     load_store_exclusive(dummy_reg, Rt, dummy_reg, \
1173                          Rn, sz, op, o0);                               \
1174   }
1175 
1176 #define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \
1177   void NAME(Register Rt1, Register Rt2, Register Rn) {                  \
1178     guarantee(Rt1 != Rt2, "unpredictable instruction");                 \
1179     load_store_exclusive(dummy_reg, Rt1, Rt2, Rn, sz, op, o0);          \
1180   }
1181 
1182   // bytes
1183   INSN3(stxrb, byte, 0b000, 0);
1184   INSN3(stlxrb, byte, 0b000, 1);
1185   INSN2(ldxrb, byte, 0b010, 0);
1186   INSN2(ldaxrb, byte, 0b010, 1);
1187   INSN2(stlrb, byte, 0b100, 1);
1188   INSN2(ldarb, byte, 0b110, 1);
1189 
1190   // halfwords
1191   INSN3(stxrh, halfword, 0b000, 0);
1192   INSN3(stlxrh, halfword, 0b000, 1);
1193   INSN2(ldxrh, halfword, 0b010, 0);
1194   INSN2(ldaxrh, halfword, 0b010, 1);
1195   INSN2(stlrh, halfword, 0b100, 1);
1196   INSN2(ldarh, halfword, 0b110, 1);
1197 
1198   // words
1199   INSN3(stxrw, word, 0b000, 0);
1200   INSN3(stlxrw, word, 0b000, 1);
1201   INSN4(stxpw, word, 0b001, 0);
1202   INSN4(stlxpw, word, 0b001, 1);
1203   INSN2(ldxrw, word, 0b010, 0);
1204   INSN2(ldaxrw, word, 0b010, 1);
1205   INSN_FOO(ldxpw, word, 0b011, 0);
1206   INSN_FOO(ldaxpw, word, 0b011, 1);
1207   INSN2(stlrw, word, 0b100, 1);
1208   INSN2(ldarw, word, 0b110, 1);
1209 
1210   // xwords
1211   INSN3(stxr, xword, 0b000, 0);
1212   INSN3(stlxr, xword, 0b000, 1);
1213   INSN4(stxp, xword, 0b001, 0);
1214   INSN4(stlxp, xword, 0b001, 1);
1215   INSN2(ldxr, xword, 0b010, 0);
1216   INSN2(ldaxr, xword, 0b010, 1);
1217   INSN_FOO(ldxp, xword, 0b011, 0);
1218   INSN_FOO(ldaxp, xword, 0b011, 1);
1219   INSN2(stlr, xword, 0b100, 1);
1220   INSN2(ldar, xword, 0b110, 1);
1221 
1222 #undef INSN2
1223 #undef INSN3
1224 #undef INSN4
1225 #undef INSN_FOO
1226 
1227   // 8.1 Compare and swap extensions
1228   void lse_cas(Register Rs, Register Rt, Register Rn,
1229                         enum operand_size sz, bool a, bool r, bool not_pair) {
1230     starti;
1231     if (! not_pair) { // Pair
1232       assert(sz == word || sz == xword, "invalid size");
1233       /* The size bit is in bit 30, not 31 */
1234       sz = (operand_size)(sz == word ? 0b00:0b01);
1235     }
1236     f(sz, 31, 30), f(0b001000, 29, 24), f(not_pair ? 1 : 0, 23), f(a, 22), f(1, 21);
1237     zrf(Rs, 16), f(r, 15), f(0b11111, 14, 10), srf(Rn, 5), zrf(Rt, 0);
1238   }
1239 
1240   // CAS
1241 #define INSN(NAME, a, r)                                                \
1242   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1243     assert(Rs != Rn && Rs != Rt, "unpredictable instruction");          \
1244     lse_cas(Rs, Rt, Rn, sz, a, r, true);                                \
1245   }
1246   INSN(cas,    false, false)
1247   INSN(casa,   true,  false)
1248   INSN(casl,   false, true)
1249   INSN(casal,  true,  true)
1250 #undef INSN
1251 
1252   // CASP
1253 #define INSN(NAME, a, r)                                                \
1254   void NAME(operand_size sz, Register Rs, Register Rs1,                 \
1255             Register Rt, Register Rt1, Register Rn) {                   \
1256     assert((Rs->encoding() & 1) == 0 && (Rt->encoding() & 1) == 0 &&    \
1257            Rs->successor() == Rs1 && Rt->successor() == Rt1 &&          \
1258            Rs != Rn && Rs1 != Rn && Rs != Rt, "invalid registers");     \
1259     lse_cas(Rs, Rt, Rn, sz, a, r, false);                               \
1260   }
1261   INSN(casp,    false, false)
1262   INSN(caspa,   true,  false)
1263   INSN(caspl,   false, true)
1264   INSN(caspal,  true,  true)
1265 #undef INSN
1266 
1267   // 8.1 Atomic operations
1268   void lse_atomic(Register Rs, Register Rt, Register Rn,
1269                   enum operand_size sz, int op1, int op2, bool a, bool r) {
1270     starti;
1271     f(sz, 31, 30), f(0b111000, 29, 24), f(a, 23), f(r, 22), f(1, 21);
1272     zrf(Rs, 16), f(op1, 15), f(op2, 14, 12), f(0, 11, 10), srf(Rn, 5), zrf(Rt, 0);
1273   }
1274 
1275 #define INSN(NAME, NAME_A, NAME_L, NAME_AL, op1, op2)                   \
1276   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1277     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, false);                 \
1278   }                                                                     \
1279   void NAME_A(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1280     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, false);                  \
1281   }                                                                     \
1282   void NAME_L(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1283     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, true);                  \
1284   }                                                                     \
1285   void NAME_AL(operand_size sz, Register Rs, Register Rt, Register Rn) {\
1286     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, true);                   \
1287   }
1288   INSN(ldadd,  ldadda,  ldaddl,  ldaddal,  0, 0b000);
1289   INSN(ldbic,  ldbica,  ldbicl,  ldbical,  0, 0b001);
1290   INSN(ldeor,  ldeora,  ldeorl,  ldeoral,  0, 0b010);
1291   INSN(ldorr,  ldorra,  ldorrl,  ldorral,  0, 0b011);
1292   INSN(ldsmax, ldsmaxa, ldsmaxl, ldsmaxal, 0, 0b100);
1293   INSN(ldsmin, ldsmina, ldsminl, ldsminal, 0, 0b101);
1294   INSN(ldumax, ldumaxa, ldumaxl, ldumaxal, 0, 0b110);
1295   INSN(ldumin, ldumina, lduminl, lduminal, 0, 0b111);
1296   INSN(swp,    swpa,    swpl,    swpal,    1, 0b000);
1297 #undef INSN
1298 
1299   // Load register (literal)
1300 #define INSN(NAME, opc, V)                                              \
1301   void NAME(Register Rt, address dest) {                                \
1302     int64_t offset = (dest - pc()) >> 2;                                \
1303     starti;                                                             \
1304     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1305       sf(offset, 23, 5);                                                \
1306     rf(Rt, 0);                                                          \
1307   }                                                                     \
1308   void NAME(Register Rt, address dest, relocInfo::relocType rtype) {    \
1309     InstructionMark im(this);                                           \
1310     guarantee(rtype == relocInfo::internal_word_type,                   \
1311               "only internal_word_type relocs make sense here");        \
1312     code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \
1313     NAME(Rt, dest);                                                     \
1314   }                                                                     \
1315   void NAME(Register Rt, Label &L) {                                    \
1316     wrap_label(Rt, L, &Assembler::NAME);                                \
1317   }
1318 
1319   INSN(ldrw, 0b00, 0);
1320   INSN(ldr, 0b01, 0);
1321   INSN(ldrsw, 0b10, 0);
1322 
1323 #undef INSN
1324 
1325 #define INSN(NAME, opc, V)                                              \
1326   void NAME(FloatRegister Rt, address dest) {                           \
1327     int64_t offset = (dest - pc()) >> 2;                                \
1328     starti;                                                             \
1329     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1330       sf(offset, 23, 5);                                                \
1331     rf((Register)Rt, 0);                                                \
1332   }
1333 
1334   INSN(ldrs, 0b00, 1);
1335   INSN(ldrd, 0b01, 1);
1336   INSN(ldrq, 0b10, 1);
1337 
1338 #undef INSN
1339 
1340 #define INSN(NAME, opc, V)                                              \
1341   void NAME(address dest, prfop op = PLDL1KEEP) {                       \
1342     int64_t offset = (dest - pc()) >> 2;                                \
1343     starti;                                                             \
1344     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1345       sf(offset, 23, 5);                                                \
1346     f(op, 4, 0);                                                        \
1347   }                                                                     \
1348   void NAME(Label &L, prfop op = PLDL1KEEP) {                           \
1349     wrap_label(L, op, &Assembler::NAME);                                \
1350   }
1351 
1352   INSN(prfm, 0b11, 0);
1353 
1354 #undef INSN
1355 
1356   // Load/store
1357   void ld_st1(int opc, int p1, int V, int L,
1358               Register Rt1, Register Rt2, Address adr, bool no_allocate) {
1359     starti;
1360     f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22);
1361     zrf(Rt2, 10), zrf(Rt1, 0);
1362     if (no_allocate) {
1363       adr.encode_nontemporal_pair(current);
1364     } else {
1365       adr.encode_pair(current);
1366     }
1367   }
1368 
1369   // Load/store register pair (offset)
1370 #define INSN(NAME, size, p1, V, L, no_allocate)         \
1371   void NAME(Register Rt1, Register Rt2, Address adr) {  \
1372     ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \
1373    }
1374 
1375   INSN(stpw, 0b00, 0b101, 0, 0, false);
1376   INSN(ldpw, 0b00, 0b101, 0, 1, false);
1377   INSN(ldpsw, 0b01, 0b101, 0, 1, false);
1378   INSN(stp, 0b10, 0b101, 0, 0, false);
1379   INSN(ldp, 0b10, 0b101, 0, 1, false);
1380 
1381   // Load/store no-allocate pair (offset)
1382   INSN(stnpw, 0b00, 0b101, 0, 0, true);
1383   INSN(ldnpw, 0b00, 0b101, 0, 1, true);
1384   INSN(stnp, 0b10, 0b101, 0, 0, true);
1385   INSN(ldnp, 0b10, 0b101, 0, 1, true);
1386 
1387 #undef INSN
1388 
1389 #define INSN(NAME, size, p1, V, L, no_allocate)                         \
1390   void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) {        \
1391     ld_st1(size, p1, V, L, (Register)Rt1, (Register)Rt2, adr, no_allocate); \
1392    }
1393 
1394   INSN(stps, 0b00, 0b101, 1, 0, false);
1395   INSN(ldps, 0b00, 0b101, 1, 1, false);
1396   INSN(stpd, 0b01, 0b101, 1, 0, false);
1397   INSN(ldpd, 0b01, 0b101, 1, 1, false);
1398   INSN(stpq, 0b10, 0b101, 1, 0, false);
1399   INSN(ldpq, 0b10, 0b101, 1, 1, false);
1400 
1401 #undef INSN
1402 
1403   // Load/store register (all modes)
1404   void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) {
1405     starti;
1406 
1407     f(V, 26); // general reg?
1408     zrf(Rt, 0);
1409 
1410     // Encoding for literal loads is done here (rather than pushed
1411     // down into Address::encode) because the encoding of this
1412     // instruction is too different from all of the other forms to
1413     // make it worth sharing.
1414     if (adr.getMode() == Address::literal) {
1415       assert(size == 0b10 || size == 0b11, "bad operand size in ldr");
1416       assert(op == 0b01, "literal form can only be used with loads");
1417       f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24);
1418       int64_t offset = (adr.target() - pc()) >> 2;
1419       sf(offset, 23, 5);
1420       code_section()->relocate(pc(), adr.rspec());
1421       return;
1422     }
1423 
1424     f(size, 31, 30);
1425     f(op, 23, 22); // str
1426     adr.encode(current);
1427   }
1428 
1429 #define INSN(NAME, size, op)                            \
1430   void NAME(Register Rt, const Address &adr) {          \
1431     ld_st2(Rt, adr, size, op);                          \
1432   }                                                     \
1433 
1434   INSN(str, 0b11, 0b00);
1435   INSN(strw, 0b10, 0b00);
1436   INSN(strb, 0b00, 0b00);
1437   INSN(strh, 0b01, 0b00);
1438 
1439   INSN(ldr, 0b11, 0b01);
1440   INSN(ldrw, 0b10, 0b01);
1441   INSN(ldrb, 0b00, 0b01);
1442   INSN(ldrh, 0b01, 0b01);
1443 
1444   INSN(ldrsb, 0b00, 0b10);
1445   INSN(ldrsbw, 0b00, 0b11);
1446   INSN(ldrsh, 0b01, 0b10);
1447   INSN(ldrshw, 0b01, 0b11);
1448   INSN(ldrsw, 0b10, 0b10);
1449 
1450 #undef INSN
1451 
1452 #define INSN(NAME, size, op)                                    \
1453   void NAME(const Address &adr, prfop pfop = PLDL1KEEP) {       \
1454     ld_st2((Register)pfop, adr, size, op);                      \
1455   }
1456 
1457   INSN(prfm, 0b11, 0b10); // FIXME: PRFM should not be used with
1458                           // writeback modes, but the assembler
1459                           // doesn't enfore that.
1460 
1461 #undef INSN
1462 
1463 #define INSN(NAME, size, op)                            \
1464   void NAME(FloatRegister Rt, const Address &adr) {     \
1465     ld_st2((Register)Rt, adr, size, op, 1);             \
1466   }
1467 
1468   INSN(strd, 0b11, 0b00);
1469   INSN(strs, 0b10, 0b00);
1470   INSN(ldrd, 0b11, 0b01);
1471   INSN(ldrs, 0b10, 0b01);
1472   INSN(strq, 0b00, 0b10);
1473   INSN(ldrq, 0x00, 0b11);
1474 
1475 #undef INSN
1476 
1477   enum shift_kind { LSL, LSR, ASR, ROR };
1478 
1479   void op_shifted_reg(unsigned decode,
1480                       enum shift_kind kind, unsigned shift,
1481                       unsigned size, unsigned op) {
1482     f(size, 31);
1483     f(op, 30, 29);
1484     f(decode, 28, 24);
1485     f(shift, 15, 10);
1486     f(kind, 23, 22);
1487   }
1488 
1489   // Logical (shifted register)
1490 #define INSN(NAME, size, op, N)                                 \
1491   void NAME(Register Rd, Register Rn, Register Rm,              \
1492             enum shift_kind kind = LSL, unsigned shift = 0) {   \
1493     starti;                                                     \
1494     guarantee(size == 1 || shift < 32, "incorrect shift");      \
1495     f(N, 21);                                                   \
1496     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                        \
1497     op_shifted_reg(0b01010, kind, shift, size, op);             \
1498   }
1499 
1500   INSN(andr, 1, 0b00, 0);
1501   INSN(orr, 1, 0b01, 0);
1502   INSN(eor, 1, 0b10, 0);
1503   INSN(ands, 1, 0b11, 0);
1504   INSN(andw, 0, 0b00, 0);
1505   INSN(orrw, 0, 0b01, 0);
1506   INSN(eorw, 0, 0b10, 0);
1507   INSN(andsw, 0, 0b11, 0);
1508 
1509 #undef INSN
1510 
1511 #define INSN(NAME, size, op, N)                                         \
1512   void NAME(Register Rd, Register Rn, Register Rm,                      \
1513             enum shift_kind kind = LSL, unsigned shift = 0) {           \
1514     starti;                                                             \
1515     f(N, 21);                                                           \
1516     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                                \
1517     op_shifted_reg(0b01010, kind, shift, size, op);                     \
1518   }                                                                     \
1519                                                                         \
1520   /* These instructions have no immediate form. Provide an overload so  \
1521      that if anyone does try to use an immediate operand -- this has    \
1522      happened! -- we'll get a compile-time error. */                    \
1523   void NAME(Register Rd, Register Rn, unsigned imm,                     \
1524             enum shift_kind kind = LSL, unsigned shift = 0) {           \
1525     assert(false, " can't be used with immediate operand");             \
1526   }
1527 
1528   INSN(bic, 1, 0b00, 1);
1529   INSN(orn, 1, 0b01, 1);
1530   INSN(eon, 1, 0b10, 1);
1531   INSN(bics, 1, 0b11, 1);
1532   INSN(bicw, 0, 0b00, 1);
1533   INSN(ornw, 0, 0b01, 1);
1534   INSN(eonw, 0, 0b10, 1);
1535   INSN(bicsw, 0, 0b11, 1);
1536 
1537 #undef INSN
1538 
1539   // Aliases for short forms of orn
1540 void mvn(Register Rd, Register Rm,
1541             enum shift_kind kind = LSL, unsigned shift = 0) {
1542   orn(Rd, zr, Rm, kind, shift);
1543 }
1544 
1545 void mvnw(Register Rd, Register Rm,
1546             enum shift_kind kind = LSL, unsigned shift = 0) {
1547   ornw(Rd, zr, Rm, kind, shift);
1548 }
1549 
1550   // Add/subtract (shifted register)
1551 #define INSN(NAME, size, op)                            \
1552   void NAME(Register Rd, Register Rn, Register Rm,      \
1553             enum shift_kind kind, unsigned shift = 0) { \
1554     starti;                                             \
1555     f(0, 21);                                           \
1556     assert_cond(kind != ROR);                           \
1557     guarantee(size == 1 || shift < 32, "incorrect shift");\
1558     zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16);                \
1559     op_shifted_reg(0b01011, kind, shift, size, op);     \
1560   }
1561 
1562   INSN(add, 1, 0b000);
1563   INSN(sub, 1, 0b10);
1564   INSN(addw, 0, 0b000);
1565   INSN(subw, 0, 0b10);
1566 
1567   INSN(adds, 1, 0b001);
1568   INSN(subs, 1, 0b11);
1569   INSN(addsw, 0, 0b001);
1570   INSN(subsw, 0, 0b11);
1571 
1572 #undef INSN
1573 
1574   // Add/subtract (extended register)
1575 #define INSN(NAME, op)                                                  \
1576   void NAME(Register Rd, Register Rn, Register Rm,                      \
1577            ext::operation option, int amount = 0) {                     \
1578     starti;                                                             \
1579     zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0);                                \
1580     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1581   }
1582 
1583   void add_sub_extended_reg(unsigned op, unsigned decode,
1584     Register Rd, Register Rn, Register Rm,
1585     unsigned opt, ext::operation option, unsigned imm) {
1586     guarantee(imm <= 4, "shift amount must be <= 4");
1587     f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21);
1588     f(option, 15, 13), f(imm, 12, 10);
1589   }
1590 
1591   INSN(addw, 0b000);
1592   INSN(subw, 0b010);
1593   INSN(add, 0b100);
1594   INSN(sub, 0b110);
1595 
1596 #undef INSN
1597 
1598 #define INSN(NAME, op)                                                  \
1599   void NAME(Register Rd, Register Rn, Register Rm,                      \
1600            ext::operation option, int amount = 0) {                     \
1601     starti;                                                             \
1602     zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0);                                \
1603     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1604   }
1605 
1606   INSN(addsw, 0b001);
1607   INSN(subsw, 0b011);
1608   INSN(adds, 0b101);
1609   INSN(subs, 0b111);
1610 
1611 #undef INSN
1612 
1613   // Aliases for short forms of add and sub
1614 #define INSN(NAME)                                      \
1615   void NAME(Register Rd, Register Rn, Register Rm) {    \
1616     if (Rd == sp || Rn == sp)                           \
1617       NAME(Rd, Rn, Rm, ext::uxtx);                      \
1618     else                                                \
1619       NAME(Rd, Rn, Rm, LSL);                            \
1620   }
1621 
1622   INSN(addw);
1623   INSN(subw);
1624   INSN(add);
1625   INSN(sub);
1626 
1627   INSN(addsw);
1628   INSN(subsw);
1629   INSN(adds);
1630   INSN(subs);
1631 
1632 #undef INSN
1633 
1634   // Add/subtract (with carry)
1635   void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) {
1636     starti;
1637     f(op, 31, 29);
1638     f(0b11010000, 28, 21);
1639     f(0b000000, 15, 10);
1640     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);
1641   }
1642 
1643   #define INSN(NAME, op)                                \
1644     void NAME(Register Rd, Register Rn, Register Rm) {  \
1645       add_sub_carry(op, Rd, Rn, Rm);                    \
1646     }
1647 
1648   INSN(adcw, 0b000);
1649   INSN(adcsw, 0b001);
1650   INSN(sbcw, 0b010);
1651   INSN(sbcsw, 0b011);
1652   INSN(adc, 0b100);
1653   INSN(adcs, 0b101);
1654   INSN(sbc,0b110);
1655   INSN(sbcs, 0b111);
1656 
1657 #undef INSN
1658 
1659   // Conditional compare (both kinds)
1660   void conditional_compare(unsigned op, int o1, int o2, int o3,
1661                            Register Rn, unsigned imm5, unsigned nzcv,
1662                            unsigned cond) {
1663     starti;
1664     f(op, 31, 29);
1665     f(0b11010010, 28, 21);
1666     f(cond, 15, 12);
1667     f(o1, 11);
1668     f(o2, 10);
1669     f(o3, 4);
1670     f(nzcv, 3, 0);
1671     f(imm5, 20, 16), zrf(Rn, 5);
1672   }
1673 
1674 #define INSN(NAME, op)                                                  \
1675   void NAME(Register Rn, Register Rm, int imm, Condition cond) {        \
1676     int regNumber = (Rm == zr ? 31 : (uintptr_t)Rm);                    \
1677     conditional_compare(op, 0, 0, 0, Rn, regNumber, imm, cond);         \
1678   }                                                                     \
1679                                                                         \
1680   void NAME(Register Rn, int imm5, int imm, Condition cond) {           \
1681     conditional_compare(op, 1, 0, 0, Rn, imm5, imm, cond);              \
1682   }
1683 
1684   INSN(ccmnw, 0b001);
1685   INSN(ccmpw, 0b011);
1686   INSN(ccmn, 0b101);
1687   INSN(ccmp, 0b111);
1688 
1689 #undef INSN
1690 
1691   // Conditional select
1692   void conditional_select(unsigned op, unsigned op2,
1693                           Register Rd, Register Rn, Register Rm,
1694                           unsigned cond) {
1695     starti;
1696     f(op, 31, 29);
1697     f(0b11010100, 28, 21);
1698     f(cond, 15, 12);
1699     f(op2, 11, 10);
1700     zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0);
1701   }
1702 
1703 #define INSN(NAME, op, op2)                                             \
1704   void NAME(Register Rd, Register Rn, Register Rm, Condition cond) { \
1705     conditional_select(op, op2, Rd, Rn, Rm, cond);                      \
1706   }
1707 
1708   INSN(cselw, 0b000, 0b00);
1709   INSN(csincw, 0b000, 0b01);
1710   INSN(csinvw, 0b010, 0b00);
1711   INSN(csnegw, 0b010, 0b01);
1712   INSN(csel, 0b100, 0b00);
1713   INSN(csinc, 0b100, 0b01);
1714   INSN(csinv, 0b110, 0b00);
1715   INSN(csneg, 0b110, 0b01);
1716 
1717 #undef INSN
1718 
1719   // Data processing
1720   void data_processing(unsigned op29, unsigned opcode,
1721                        Register Rd, Register Rn) {
1722     f(op29, 31, 29), f(0b11010110, 28, 21);
1723     f(opcode, 15, 10);
1724     rf(Rn, 5), rf(Rd, 0);
1725   }
1726 
1727   // (1 source)
1728 #define INSN(NAME, op29, opcode2, opcode)       \
1729   void NAME(Register Rd, Register Rn) {         \
1730     starti;                                     \
1731     f(opcode2, 20, 16);                         \
1732     data_processing(op29, opcode, Rd, Rn);      \
1733   }
1734 
1735   INSN(rbitw,  0b010, 0b00000, 0b00000);
1736   INSN(rev16w, 0b010, 0b00000, 0b00001);
1737   INSN(revw,   0b010, 0b00000, 0b00010);
1738   INSN(clzw,   0b010, 0b00000, 0b00100);
1739   INSN(clsw,   0b010, 0b00000, 0b00101);
1740 
1741   INSN(rbit,   0b110, 0b00000, 0b00000);
1742   INSN(rev16,  0b110, 0b00000, 0b00001);
1743   INSN(rev32,  0b110, 0b00000, 0b00010);
1744   INSN(rev,    0b110, 0b00000, 0b00011);
1745   INSN(clz,    0b110, 0b00000, 0b00100);
1746   INSN(cls,    0b110, 0b00000, 0b00101);
1747 
1748 #undef INSN
1749 
1750   // (2 sources)
1751 #define INSN(NAME, op29, opcode)                        \
1752   void NAME(Register Rd, Register Rn, Register Rm) {    \
1753     starti;                                             \
1754     rf(Rm, 16);                                         \
1755     data_processing(op29, opcode, Rd, Rn);              \
1756   }
1757 
1758   INSN(udivw, 0b000, 0b000010);
1759   INSN(sdivw, 0b000, 0b000011);
1760   INSN(lslvw, 0b000, 0b001000);
1761   INSN(lsrvw, 0b000, 0b001001);
1762   INSN(asrvw, 0b000, 0b001010);
1763   INSN(rorvw, 0b000, 0b001011);
1764 
1765   INSN(udiv, 0b100, 0b000010);
1766   INSN(sdiv, 0b100, 0b000011);
1767   INSN(lslv, 0b100, 0b001000);
1768   INSN(lsrv, 0b100, 0b001001);
1769   INSN(asrv, 0b100, 0b001010);
1770   INSN(rorv, 0b100, 0b001011);
1771 
1772 #undef INSN
1773 
1774   // (3 sources)
1775   void data_processing(unsigned op54, unsigned op31, unsigned o0,
1776                        Register Rd, Register Rn, Register Rm,
1777                        Register Ra) {
1778     starti;
1779     f(op54, 31, 29), f(0b11011, 28, 24);
1780     f(op31, 23, 21), f(o0, 15);
1781     zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0);
1782   }
1783 
1784 #define INSN(NAME, op54, op31, o0)                                      \
1785   void NAME(Register Rd, Register Rn, Register Rm, Register Ra) {       \
1786     data_processing(op54, op31, o0, Rd, Rn, Rm, Ra);                    \
1787   }
1788 
1789   INSN(maddw, 0b000, 0b000, 0);
1790   INSN(msubw, 0b000, 0b000, 1);
1791   INSN(madd, 0b100, 0b000, 0);
1792   INSN(msub, 0b100, 0b000, 1);
1793   INSN(smaddl, 0b100, 0b001, 0);
1794   INSN(smsubl, 0b100, 0b001, 1);
1795   INSN(umaddl, 0b100, 0b101, 0);
1796   INSN(umsubl, 0b100, 0b101, 1);
1797 
1798 #undef INSN
1799 
1800 #define INSN(NAME, op54, op31, o0)                      \
1801   void NAME(Register Rd, Register Rn, Register Rm) {    \
1802     data_processing(op54, op31, o0, Rd, Rn, Rm, (Register)31);  \
1803   }
1804 
1805   INSN(smulh, 0b100, 0b010, 0);
1806   INSN(umulh, 0b100, 0b110, 0);
1807 
1808 #undef INSN
1809 
1810   // Floating-point data-processing (1 source)
1811   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1812                        FloatRegister Vd, FloatRegister Vn) {
1813     starti;
1814     f(op31, 31, 29);
1815     f(0b11110, 28, 24);
1816     f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10);
1817     rf(Vn, 5), rf(Vd, 0);
1818   }
1819 
1820 #define INSN(NAME, op31, type, opcode)                  \
1821   void NAME(FloatRegister Vd, FloatRegister Vn) {       \
1822     data_processing(op31, type, opcode, Vd, Vn);        \
1823   }
1824 
1825 private:
1826   INSN(i_fmovs, 0b000, 0b00, 0b000000);
1827 public:
1828   INSN(fabss, 0b000, 0b00, 0b000001);
1829   INSN(fnegs, 0b000, 0b00, 0b000010);
1830   INSN(fsqrts, 0b000, 0b00, 0b000011);
1831   INSN(fcvts, 0b000, 0b00, 0b000101);   // Single-precision to double-precision
1832 
1833 private:
1834   INSN(i_fmovd, 0b000, 0b01, 0b000000);
1835 public:
1836   INSN(fabsd, 0b000, 0b01, 0b000001);
1837   INSN(fnegd, 0b000, 0b01, 0b000010);
1838   INSN(fsqrtd, 0b000, 0b01, 0b000011);
1839   INSN(fcvtd, 0b000, 0b01, 0b000100);   // Double-precision to single-precision
1840 
1841   void fmovd(FloatRegister Vd, FloatRegister Vn) {
1842     assert(Vd != Vn, "should be");
1843     i_fmovd(Vd, Vn);
1844   }
1845 
1846   void fmovs(FloatRegister Vd, FloatRegister Vn) {
1847     assert(Vd != Vn, "should be");
1848     i_fmovs(Vd, Vn);
1849   }
1850 
1851 #undef INSN
1852 
1853   // Floating-point data-processing (2 source)
1854   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1855                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {
1856     starti;
1857     f(op31, 31, 29);
1858     f(0b11110, 28, 24);
1859     f(type, 23, 22), f(1, 21), f(opcode, 15, 12), f(0b10, 11, 10);
1860     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1861   }
1862 
1863 #define INSN(NAME, op31, type, opcode)                  \
1864   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {     \
1865     data_processing(op31, type, opcode, Vd, Vn, Vm);    \
1866   }
1867 
1868   INSN(fmuls, 0b000, 0b00, 0b0000);
1869   INSN(fdivs, 0b000, 0b00, 0b0001);
1870   INSN(fadds, 0b000, 0b00, 0b0010);
1871   INSN(fsubs, 0b000, 0b00, 0b0011);
1872   INSN(fmaxs, 0b000, 0b00, 0b0100);
1873   INSN(fmins, 0b000, 0b00, 0b0101);
1874   INSN(fnmuls, 0b000, 0b00, 0b1000);
1875 
1876   INSN(fmuld, 0b000, 0b01, 0b0000);
1877   INSN(fdivd, 0b000, 0b01, 0b0001);
1878   INSN(faddd, 0b000, 0b01, 0b0010);
1879   INSN(fsubd, 0b000, 0b01, 0b0011);
1880   INSN(fmaxd, 0b000, 0b01, 0b0100);
1881   INSN(fmind, 0b000, 0b01, 0b0101);
1882   INSN(fnmuld, 0b000, 0b01, 0b1000);
1883 
1884 #undef INSN
1885 
1886    // Floating-point data-processing (3 source)
1887   void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0,
1888                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,
1889                        FloatRegister Va) {
1890     starti;
1891     f(op31, 31, 29);
1892     f(0b11111, 28, 24);
1893     f(type, 23, 22), f(o1, 21), f(o0, 15);
1894     rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);
1895   }
1896 
1897 #define INSN(NAME, op31, type, o1, o0)                                  \
1898   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,       \
1899             FloatRegister Va) {                                         \
1900     data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va);                \
1901   }
1902 
1903   INSN(fmadds, 0b000, 0b00, 0, 0);
1904   INSN(fmsubs, 0b000, 0b00, 0, 1);
1905   INSN(fnmadds, 0b000, 0b00, 1, 0);
1906   INSN(fnmsubs, 0b000, 0b00, 1, 1);
1907 
1908   INSN(fmaddd, 0b000, 0b01, 0, 0);
1909   INSN(fmsubd, 0b000, 0b01, 0, 1);
1910   INSN(fnmaddd, 0b000, 0b01, 1, 0);
1911   INSN(fnmsub, 0b000, 0b01, 1, 1);
1912 
1913 #undef INSN
1914 
1915    // Floating-point conditional select
1916   void fp_conditional_select(unsigned op31, unsigned type,
1917                              unsigned op1, unsigned op2,
1918                              Condition cond, FloatRegister Vd,
1919                              FloatRegister Vn, FloatRegister Vm) {
1920     starti;
1921     f(op31, 31, 29);
1922     f(0b11110, 28, 24);
1923     f(type, 23, 22);
1924     f(op1, 21, 21);
1925     f(op2, 11, 10);
1926     f(cond, 15, 12);
1927     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1928   }
1929 
1930 #define INSN(NAME, op31, type, op1, op2)                                \
1931   void NAME(FloatRegister Vd, FloatRegister Vn,                         \
1932             FloatRegister Vm, Condition cond) {                         \
1933     fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm);      \
1934   }
1935 
1936   INSN(fcsels, 0b000, 0b00, 0b1, 0b11);
1937   INSN(fcseld, 0b000, 0b01, 0b1, 0b11);
1938 
1939 #undef INSN
1940 
1941    // Floating-point<->integer conversions
1942   void float_int_convert(unsigned op31, unsigned type,
1943                          unsigned rmode, unsigned opcode,
1944                          Register Rd, Register Rn) {
1945     starti;
1946     f(op31, 31, 29);
1947     f(0b11110, 28, 24);
1948     f(type, 23, 22), f(1, 21), f(rmode, 20, 19);
1949     f(opcode, 18, 16), f(0b000000, 15, 10);
1950     zrf(Rn, 5), zrf(Rd, 0);
1951   }
1952 
1953 #define INSN(NAME, op31, type, rmode, opcode)                           \
1954   void NAME(Register Rd, FloatRegister Vn) {                            \
1955     float_int_convert(op31, type, rmode, opcode, Rd, (Register)Vn);     \
1956   }
1957 
1958   INSN(fcvtzsw, 0b000, 0b00, 0b11, 0b000);
1959   INSN(fcvtzs,  0b100, 0b00, 0b11, 0b000);
1960   INSN(fcvtzdw, 0b000, 0b01, 0b11, 0b000);
1961   INSN(fcvtzd,  0b100, 0b01, 0b11, 0b000);
1962 
1963   INSN(fmovs, 0b000, 0b00, 0b00, 0b110);
1964   INSN(fmovd, 0b100, 0b01, 0b00, 0b110);
1965 
1966   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b110);
1967 
1968 #undef INSN
1969 
1970 #define INSN(NAME, op31, type, rmode, opcode)                           \
1971   void NAME(FloatRegister Vd, Register Rn) {                            \
1972     float_int_convert(op31, type, rmode, opcode, (Register)Vd, Rn);     \
1973   }
1974 
1975   INSN(fmovs, 0b000, 0b00, 0b00, 0b111);
1976   INSN(fmovd, 0b100, 0b01, 0b00, 0b111);
1977 
1978   INSN(scvtfws, 0b000, 0b00, 0b00, 0b010);
1979   INSN(scvtfs,  0b100, 0b00, 0b00, 0b010);
1980   INSN(scvtfwd, 0b000, 0b01, 0b00, 0b010);
1981   INSN(scvtfd,  0b100, 0b01, 0b00, 0b010);
1982 
1983   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b111);
1984 
1985 #undef INSN
1986 
1987   // Floating-point compare
1988   void float_compare(unsigned op31, unsigned type,
1989                      unsigned op, unsigned op2,
1990                      FloatRegister Vn, FloatRegister Vm = (FloatRegister)0) {
1991     starti;
1992     f(op31, 31, 29);
1993     f(0b11110, 28, 24);
1994     f(type, 23, 22), f(1, 21);
1995     f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0);
1996     rf(Vn, 5), rf(Vm, 16);
1997   }
1998 
1999 
2000 #define INSN(NAME, op31, type, op, op2)                 \
2001   void NAME(FloatRegister Vn, FloatRegister Vm) {       \
2002     float_compare(op31, type, op, op2, Vn, Vm);         \
2003   }
2004 
2005 #define INSN1(NAME, op31, type, op, op2)        \
2006   void NAME(FloatRegister Vn, double d) {       \
2007     assert_cond(d == 0.0);                      \
2008     float_compare(op31, type, op, op2, Vn);     \
2009   }
2010 
2011   INSN(fcmps, 0b000, 0b00, 0b00, 0b00000);
2012   INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000);
2013   // INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000);
2014   // INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000);
2015 
2016   INSN(fcmpd, 0b000,   0b01, 0b00, 0b00000);
2017   INSN1(fcmpd, 0b000,  0b01, 0b00, 0b01000);
2018   // INSN(fcmped, 0b000,  0b01, 0b00, 0b10000);
2019   // INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000);
2020 
2021 #undef INSN
2022 #undef INSN1
2023 
2024   // Floating-point Move (immediate)
2025 private:
2026   unsigned pack(double value);
2027 
2028   void fmov_imm(FloatRegister Vn, double value, unsigned size) {
2029     starti;
2030     f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21);
2031     f(pack(value), 20, 13), f(0b10000000, 12, 5);
2032     rf(Vn, 0);
2033   }
2034 
2035 public:
2036 
2037   void fmovs(FloatRegister Vn, double value) {
2038     if (value)
2039       fmov_imm(Vn, value, 0b00);
2040     else
2041       fmovs(Vn, zr);
2042   }
2043   void fmovd(FloatRegister Vn, double value) {
2044     if (value)
2045       fmov_imm(Vn, value, 0b01);
2046     else
2047       fmovd(Vn, zr);
2048   }
2049 
2050    // Floating-point rounding
2051    // type: half-precision = 11
2052    //       single         = 00
2053    //       double         = 01
2054    // rmode: A = Away     = 100
2055    //        I = current  = 111
2056    //        M = MinusInf = 010
2057    //        N = eveN     = 000
2058    //        P = PlusInf  = 001
2059    //        X = eXact    = 110
2060    //        Z = Zero     = 011
2061   void float_round(unsigned type, unsigned rmode, FloatRegister Rd, FloatRegister Rn) {
2062     starti;
2063     f(0b00011110, 31, 24);
2064     f(type, 23, 22);
2065     f(0b1001, 21, 18);
2066     f(rmode, 17, 15);
2067     f(0b10000, 14, 10);
2068     rf(Rn, 5), rf(Rd, 0);
2069   }
2070 #define INSN(NAME, type, rmode)                   \
2071   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2072     float_round(type, rmode, Vd, Vn);             \
2073   }
2074 
2075 public:
2076   INSN(frintah, 0b11, 0b100);
2077   INSN(frintih, 0b11, 0b111);
2078   INSN(frintmh, 0b11, 0b010);
2079   INSN(frintnh, 0b11, 0b000);
2080   INSN(frintph, 0b11, 0b001);
2081   INSN(frintxh, 0b11, 0b110);
2082   INSN(frintzh, 0b11, 0b011);
2083 
2084   INSN(frintas, 0b00, 0b100);
2085   INSN(frintis, 0b00, 0b111);
2086   INSN(frintms, 0b00, 0b010);
2087   INSN(frintns, 0b00, 0b000);
2088   INSN(frintps, 0b00, 0b001);
2089   INSN(frintxs, 0b00, 0b110);
2090   INSN(frintzs, 0b00, 0b011);
2091 
2092   INSN(frintad, 0b01, 0b100);
2093   INSN(frintid, 0b01, 0b111);
2094   INSN(frintmd, 0b01, 0b010);
2095   INSN(frintnd, 0b01, 0b000);
2096   INSN(frintpd, 0b01, 0b001);
2097   INSN(frintxd, 0b01, 0b110);
2098   INSN(frintzd, 0b01, 0b011);
2099 #undef INSN
2100 
2101 /* SIMD extensions
2102  *
2103  * We just use FloatRegister in the following. They are exactly the same
2104  * as SIMD registers.
2105  */
2106  public:
2107 
2108   enum SIMD_Arrangement {
2109        T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D, T1Q
2110   };
2111 
2112   enum SIMD_RegVariant {
2113        B, H, S, D, Q
2114   };
2115 
2116 private:
2117   static short SIMD_Size_in_bytes[];
2118 
2119 public:
2120 #define INSN(NAME, op)                                            \
2121   void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) {   \
2122     ld_st2((Register)Rt, adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \
2123   }                                                                      \
2124 
2125   INSN(ldr, 1);
2126   INSN(str, 0);
2127 
2128 #undef INSN
2129 
2130  private:
2131 
2132   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) {
2133     starti;
2134     f(0,31), f((int)T & 1, 30);
2135     f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12);
2136     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2137   }
2138   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2139              int imm, int op1, int op2, int regs) {
2140 
2141     bool replicate = op2 >> 2 == 3;
2142     // post-index value (imm) is formed differently for replicate/non-replicate ld* instructions
2143     int expectedImmediate = replicate ? regs * (1 << (T >> 1)) : SIMD_Size_in_bytes[T] * regs;
2144     guarantee(T < T1Q , "incorrect arrangement");
2145     guarantee(imm == expectedImmediate, "bad offset");
2146     starti;
2147     f(0,31), f((int)T & 1, 30);
2148     f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12);
2149     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2150   }
2151   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2152              Register Xm, int op1, int op2) {
2153     starti;
2154     f(0,31), f((int)T & 1, 30);
2155     f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12);
2156     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2157   }
2158 
2159   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2, int regs) {
2160     switch (a.getMode()) {
2161     case Address::base_plus_offset:
2162       guarantee(a.offset() == 0, "no offset allowed here");
2163       ld_st(Vt, T, a.base(), op1, op2);
2164       break;
2165     case Address::post:
2166       ld_st(Vt, T, a.base(), a.offset(), op1, op2, regs);
2167       break;
2168     case Address::post_reg:
2169       ld_st(Vt, T, a.base(), a.index(), op1, op2);
2170       break;
2171     default:
2172       ShouldNotReachHere();
2173     }
2174   }
2175 
2176  public:
2177 
2178 #define INSN1(NAME, op1, op2)                                           \
2179   void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) {   \
2180     ld_st(Vt, T, a, op1, op2, 1);                                       \
2181  }
2182 
2183 #define INSN2(NAME, op1, op2)                                           \
2184   void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \
2185     assert(Vt->successor() == Vt2, "Registers must be ordered");        \
2186     ld_st(Vt, T, a, op1, op2, 2);                                       \
2187   }
2188 
2189 #define INSN3(NAME, op1, op2)                                           \
2190   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2191             SIMD_Arrangement T, const Address &a) {                     \
2192     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3,           \
2193            "Registers must be ordered");                                \
2194     ld_st(Vt, T, a, op1, op2, 3);                                       \
2195   }
2196 
2197 #define INSN4(NAME, op1, op2)                                           \
2198   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2199             FloatRegister Vt4, SIMD_Arrangement T, const Address &a) {  \
2200     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 &&         \
2201            Vt3->successor() == Vt4, "Registers must be ordered");       \
2202     ld_st(Vt, T, a, op1, op2, 4);                                       \
2203   }
2204 
2205   INSN1(ld1,  0b001100010, 0b0111);
2206   INSN2(ld1,  0b001100010, 0b1010);
2207   INSN3(ld1,  0b001100010, 0b0110);
2208   INSN4(ld1,  0b001100010, 0b0010);
2209 
2210   INSN2(ld2,  0b001100010, 0b1000);
2211   INSN3(ld3,  0b001100010, 0b0100);
2212   INSN4(ld4,  0b001100010, 0b0000);
2213 
2214   INSN1(st1,  0b001100000, 0b0111);
2215   INSN2(st1,  0b001100000, 0b1010);
2216   INSN3(st1,  0b001100000, 0b0110);
2217   INSN4(st1,  0b001100000, 0b0010);
2218 
2219   INSN2(st2,  0b001100000, 0b1000);
2220   INSN3(st3,  0b001100000, 0b0100);
2221   INSN4(st4,  0b001100000, 0b0000);
2222 
2223   INSN1(ld1r, 0b001101010, 0b1100);
2224   INSN2(ld2r, 0b001101011, 0b1100);
2225   INSN3(ld3r, 0b001101010, 0b1110);
2226   INSN4(ld4r, 0b001101011, 0b1110);
2227 
2228 #undef INSN1
2229 #undef INSN2
2230 #undef INSN3
2231 #undef INSN4
2232 
2233 #define INSN(NAME, opc)                                                                 \
2234   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2235     starti;                                                                             \
2236     assert(T == T8B || T == T16B, "must be T8B or T16B");                               \
2237     f(0, 31), f((int)T & 1, 30), f(opc, 29, 21);                                        \
2238     rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0);                              \
2239   }
2240 
2241   INSN(eor,  0b101110001);
2242   INSN(orr,  0b001110101);
2243   INSN(andr, 0b001110001);
2244   INSN(bic,  0b001110011);
2245   INSN(bif,  0b101110111);
2246   INSN(bit,  0b101110101);
2247   INSN(bsl,  0b101110011);
2248   INSN(orn,  0b001110111);
2249 
2250 #undef INSN
2251 
2252 #define INSN(NAME, opc, opc2, acceptT2D)                                                \
2253   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2254     guarantee(T != T1Q && T != T1D, "incorrect arrangement");                           \
2255     if (!acceptT2D) guarantee(T != T2D, "incorrect arrangement");                       \
2256     starti;                                                                             \
2257     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2258     f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10);                      \
2259     rf(Vn, 5), rf(Vd, 0);                                                               \
2260   }
2261 
2262   INSN(addv,   0, 0b100001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2263   INSN(subv,   1, 0b100001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2264   INSN(mulv,   0, 0b100111, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2265   INSN(mlav,   0, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2266   INSN(mlsv,   1, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2267   INSN(sshl,   0, 0b010001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2268   INSN(ushl,   1, 0b010001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2269   INSN(addpv,  0, 0b101111, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2270   INSN(smullv, 0, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2271   INSN(umullv, 1, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2272   INSN(umlalv, 1, 0b100000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2273 
2274 #undef INSN
2275 
2276 #define INSN(NAME, opc, opc2, accepted) \
2277   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2278     guarantee(T != T1Q && T != T1D, "incorrect arrangement");                           \
2279     if (accepted < 3) guarantee(T != T2D, "incorrect arrangement");                     \
2280     if (accepted < 2) guarantee(T != T2S, "incorrect arrangement");                     \
2281     if (accepted < 1) guarantee(T == T8B || T == T16B, "incorrect arrangement");        \
2282     starti;                                                                             \
2283     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2284     f((int)T >> 1, 23, 22), f(opc2, 21, 10);                                            \
2285     rf(Vn, 5), rf(Vd, 0);                                                               \
2286   }
2287 
2288   INSN(absr,   0, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2289   INSN(negr,   1, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2290   INSN(notr,   1, 0b100000010110, 0); // accepted arrangements: T8B, T16B
2291   INSN(addv,   0, 0b110001101110, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2292   INSN(cls,    0, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2293   INSN(clz,    1, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2294   INSN(cnt,    0, 0b100000010110, 0); // accepted arrangements: T8B, T16B
2295   INSN(uaddlp, 1, 0b100000001010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2296   INSN(uaddlv, 1, 0b110000001110, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2297 
2298 #undef INSN
2299 
2300 #define INSN(NAME, opc) \
2301   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                  \
2302     starti;                                                                            \
2303     assert(T == T4S, "arrangement must be T4S");                                       \
2304     f(0, 31), f((int)T & 1, 30), f(0b101110, 29, 24), f(opc, 23),                      \
2305     f(T == T4S ? 0 : 1, 22), f(0b110000111110, 21, 10); rf(Vn, 5), rf(Vd, 0);          \
2306   }
2307 
2308   INSN(fmaxv, 0);
2309   INSN(fminv, 1);
2310 
2311 #undef INSN
2312 
2313 #define INSN(NAME, op0, cmode0) \
2314   void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) {   \
2315     unsigned cmode = cmode0;                                                           \
2316     unsigned op = op0;                                                                 \
2317     starti;                                                                            \
2318     assert(lsl == 0 ||                                                                 \
2319            ((T == T4H || T == T8H) && lsl == 8) ||                                     \
2320            ((T == T2S || T == T4S) && ((lsl >> 3) < 4) && ((lsl & 7) == 0)), "invalid shift");\
2321     cmode |= lsl >> 2;                                                                 \
2322     if (T == T4H || T == T8H) cmode |= 0b1000;                                         \
2323     if (!(T == T4H || T == T8H || T == T2S || T == T4S)) {                             \
2324       assert(op == 0 && cmode0 == 0, "must be MOVI");                                  \
2325       cmode = 0b1110;                                                                  \
2326       if (T == T1D || T == T2D) op = 1;                                                \
2327     }                                                                                  \
2328     f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19);                   \
2329     f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5);  \
2330     rf(Vd, 0);                                                                         \
2331   }
2332 
2333   INSN(movi, 0, 0);
2334   INSN(orri, 0, 1);
2335   INSN(mvni, 1, 0);
2336   INSN(bici, 1, 1);
2337 
2338 #undef INSN
2339 
2340 #define INSN(NAME, op1, op2, op3) \
2341   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2342     starti;                                                                             \
2343     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                    \
2344     f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01110, 28, 24), f(op2, 23);            \
2345     f(T==T2D ? 1:0, 22); f(1, 21), rf(Vm, 16), f(op3, 15, 10), rf(Vn, 5), rf(Vd, 0);    \
2346   }
2347 
2348   INSN(fadd, 0, 0, 0b110101);
2349   INSN(fdiv, 1, 0, 0b111111);
2350   INSN(fmul, 1, 0, 0b110111);
2351   INSN(fsub, 0, 1, 0b110101);
2352   INSN(fmla, 0, 0, 0b110011);
2353   INSN(fmls, 0, 1, 0b110011);
2354   INSN(fmax, 0, 0, 0b111101);
2355   INSN(fmin, 0, 1, 0b111101);
2356 
2357 #undef INSN
2358 
2359 #define INSN(NAME, opc)                                                                 \
2360   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2361     starti;                                                                             \
2362     assert(T == T4S, "arrangement must be T4S");                                        \
2363     f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2364   }
2365 
2366   INSN(sha1c,     0b000000);
2367   INSN(sha1m,     0b001000);
2368   INSN(sha1p,     0b000100);
2369   INSN(sha1su0,   0b001100);
2370   INSN(sha256h2,  0b010100);
2371   INSN(sha256h,   0b010000);
2372   INSN(sha256su1, 0b011000);
2373 
2374 #undef INSN
2375 
2376 #define INSN(NAME, opc)                                                                 \
2377   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2378     starti;                                                                             \
2379     assert(T == T4S, "arrangement must be T4S");                                        \
2380     f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);                \
2381   }
2382 
2383   INSN(sha1h,     0b000010);
2384   INSN(sha1su1,   0b000110);
2385   INSN(sha256su0, 0b001010);
2386 
2387 #undef INSN
2388 
2389 #define INSN(NAME, opc)                                                                 \
2390   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2391     starti;                                                                             \
2392     assert(T == T2D, "arrangement must be T2D");                                        \
2393     f(0b11001110011, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2394   }
2395 
2396   INSN(sha512h,   0b100000);
2397   INSN(sha512h2,  0b100001);
2398   INSN(sha512su1, 0b100010);
2399 
2400 #undef INSN
2401 
2402 #define INSN(NAME, opc)                                                                 \
2403   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2404     starti;                                                                             \
2405     assert(T == T2D, "arrangement must be T2D");                                        \
2406     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);                                               \
2407   }
2408 
2409   INSN(sha512su0, 0b1100111011000000100000);
2410 
2411 #undef INSN
2412 
2413 #define INSN(NAME, opc)                           \
2414   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2415     starti;                                       \
2416     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);         \
2417   }
2418 
2419   INSN(aese, 0b0100111000101000010010);
2420   INSN(aesd, 0b0100111000101000010110);
2421   INSN(aesmc, 0b0100111000101000011010);
2422   INSN(aesimc, 0b0100111000101000011110);
2423 
2424 #undef INSN
2425 
2426 #define INSN(NAME, op1, op2) \
2427   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index = 0) { \
2428     starti;                                                                                            \
2429     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                                   \
2430     assert(index >= 0 && ((T == T2D && index <= 1) || (T != T2D && index <= 3)), "invalid index");     \
2431     f(0, 31), f((int)T & 1, 30), f(op1, 29); f(0b011111, 28, 23);                                      \
2432     f(T == T2D ? 1 : 0, 22), f(T == T2D ? 0 : index & 1, 21), rf(Vm, 16);                              \
2433     f(op2, 15, 12), f(T == T2D ? index : (index >> 1), 11), f(0, 10);                                  \
2434     rf(Vn, 5), rf(Vd, 0);                                                                              \
2435   }
2436 
2437   // FMLA/FMLS - Vector - Scalar
2438   INSN(fmlavs, 0, 0b0001);
2439   INSN(fmlsvs, 0, 0b0101);
2440   // FMULX - Vector - Scalar
2441   INSN(fmulxvs, 1, 0b1001);
2442 
2443 #undef INSN
2444 
2445   // Floating-point Reciprocal Estimate
2446   void frecpe(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) {
2447     assert(type == D || type == S, "Wrong type for frecpe");
2448     starti;
2449     f(0b010111101, 31, 23);
2450     f(type == D ? 1 : 0, 22);
2451     f(0b100001110110, 21, 10);
2452     rf(Vn, 5), rf(Vd, 0);
2453   }
2454 
2455   // (double) {a, b} -> (a + b)
2456   void faddpd(FloatRegister Vd, FloatRegister Vn) {
2457     starti;
2458     f(0b0111111001110000110110, 31, 10);
2459     rf(Vn, 5), rf(Vd, 0);
2460   }
2461 
2462   void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) {
2463     starti;
2464     assert(T != Q, "invalid register variant");
2465     f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15);
2466     f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
2467   }
2468 
2469   void umov(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) {
2470     starti;
2471     f(0, 31), f(T==D ? 1:0, 30), f(0b001110000, 29, 21);
2472     f(((idx<<1)|1)<<(int)T, 20, 16), f(0b001111, 15, 10);
2473     rf(Vn, 5), rf(Rd, 0);
2474   }
2475 
2476 #define INSN(NAME, opc, opc2, isSHR)                                    \
2477   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){ \
2478     starti;                                                             \
2479     /* The encodings for the immh:immb fields (bits 22:16) in *SHR are  \
2480      *   0001 xxx       8B/16B, shift = 16  - UInt(immh:immb)           \
2481      *   001x xxx       4H/8H,  shift = 32  - UInt(immh:immb)           \
2482      *   01xx xxx       2S/4S,  shift = 64  - UInt(immh:immb)           \
2483      *   1xxx xxx       1D/2D,  shift = 128 - UInt(immh:immb)           \
2484      *   (1D is RESERVED)                                               \
2485      * for SHL shift is calculated as:                                  \
2486      *   0001 xxx       8B/16B, shift = UInt(immh:immb) - 8             \
2487      *   001x xxx       4H/8H,  shift = UInt(immh:immb) - 16            \
2488      *   01xx xxx       2S/4S,  shift = UInt(immh:immb) - 32            \
2489      *   1xxx xxx       1D/2D,  shift = UInt(immh:immb) - 64            \
2490      *   (1D is RESERVED)                                               \
2491      */                                                                 \
2492     assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value");           \
2493     int cVal = (1 << (((T >> 1) + 3) + (isSHR ? 1 : 0)));               \
2494     int encodedShift = isSHR ? cVal - shift : cVal + shift;             \
2495     f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23),            \
2496     f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0);     \
2497   }
2498 
2499   INSN(shl,  0, 0b010101, /* isSHR = */ false);
2500   INSN(sshr, 0, 0b000001, /* isSHR = */ true);
2501   INSN(ushr, 1, 0b000001, /* isSHR = */ true);
2502 
2503 #undef INSN
2504 
2505 private:
2506   void _ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
2507     starti;
2508     /* The encodings for the immh:immb fields (bits 22:16) are
2509      *   0001 xxx       8H, 8B/16b shift = xxx
2510      *   001x xxx       4S, 4H/8H  shift = xxxx
2511      *   01xx xxx       2D, 2S/4S  shift = xxxxx
2512      *   1xxx xxx       RESERVED
2513      */
2514     assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
2515     assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value");
2516     f(0, 31), f(Tb & 1, 30), f(0b1011110, 29, 23), f((1 << ((Tb>>1)+3))|shift, 22, 16);
2517     f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2518   }
2519 
2520 public:
2521   void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2522     assert(Tb == T8B || Tb == T4H || Tb == T2S, "invalid arrangement");
2523     _ushll(Vd, Ta, Vn, Tb, shift);
2524   }
2525 
2526   void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2527     assert(Tb == T16B || Tb == T8H || Tb == T4S, "invalid arrangement");
2528     _ushll(Vd, Ta, Vn, Tb, shift);
2529   }
2530 
2531   // Move from general purpose register
2532   //   mov  Vd.T[index], Rn
2533   void mov(FloatRegister Vd, SIMD_Arrangement T, int index, Register Xn) {
2534     starti;
2535     f(0b01001110000, 31, 21), f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2536     f(0b000111, 15, 10), zrf(Xn, 5), rf(Vd, 0);
2537   }
2538 
2539   // Move to general purpose register
2540   //   mov  Rd, Vn.T[index]
2541   void mov(Register Xd, FloatRegister Vn, SIMD_Arrangement T, int index) {
2542     guarantee(T >= T2S && T < T1Q, "only D and S arrangements are supported");
2543     starti;
2544     f(0, 31), f((T >= T1D) ? 1:0, 30), f(0b001110000, 29, 21);
2545     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2546     f(0b001111, 15, 10), rf(Vn, 5), rf(Xd, 0);
2547   }
2548 
2549 private:
2550   void _pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2551     starti;
2552     assert((Ta == T1Q && (Tb == T1D || Tb == T2D)) ||
2553            (Ta == T8H && (Tb == T8B || Tb == T16B)), "Invalid Size specifier");
2554     int size = (Ta == T1Q) ? 0b11 : 0b00;
2555     f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size, 23, 22);
2556     f(1, 21), rf(Vm, 16), f(0b111000, 15, 10), rf(Vn, 5), rf(Vd, 0);
2557   }
2558 
2559 public:
2560   void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2561     assert(Tb == T1D || Tb == T8B, "pmull assumes T1D or T8B as the second size specifier");
2562     _pmull(Vd, Ta, Vn, Vm, Tb);
2563   }
2564 
2565   void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2566     assert(Tb == T2D || Tb == T16B, "pmull2 assumes T2D or T16B as the second size specifier");
2567     _pmull(Vd, Ta, Vn, Vm, Tb);
2568   }
2569 
2570   void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
2571     starti;
2572     int size_b = (int)Tb >> 1;
2573     int size_a = (int)Ta >> 1;
2574     assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
2575     f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22);
2576     f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0);
2577   }
2578 
2579   void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs)
2580   {
2581     starti;
2582     assert(T != T1D, "reserved encoding");
2583     f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2584     f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), zrf(Xs, 5), rf(Vd, 0);
2585   }
2586 
2587   void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0)
2588   {
2589     starti;
2590     assert(T != T1D, "reserved encoding");
2591     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2592     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2593     f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2594   }
2595 
2596   // AdvSIMD ZIP/UZP/TRN
2597 #define INSN(NAME, opcode)                                              \
2598   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2599     guarantee(T != T1D && T != T1Q, "invalid arrangement");             \
2600     starti;                                                             \
2601     f(0, 31), f(0b001110, 29, 24), f(0, 21), f(0, 15);                  \
2602     f(opcode, 14, 12), f(0b10, 11, 10);                                 \
2603     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);                                   \
2604     f(T & 1, 30), f(T >> 1, 23, 22);                                    \
2605   }
2606 
2607   INSN(uzp1, 0b001);
2608   INSN(trn1, 0b010);
2609   INSN(zip1, 0b011);
2610   INSN(uzp2, 0b101);
2611   INSN(trn2, 0b110);
2612   INSN(zip2, 0b111);
2613 
2614 #undef INSN
2615 
2616   // CRC32 instructions
2617 #define INSN(NAME, c, sf, sz)                                             \
2618   void NAME(Register Rd, Register Rn, Register Rm) {                      \
2619     starti;                                                               \
2620     f(sf, 31), f(0b0011010110, 30, 21), f(0b010, 15, 13), f(c, 12);       \
2621     f(sz, 11, 10), rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                      \
2622   }
2623 
2624   INSN(crc32b,  0, 0, 0b00);
2625   INSN(crc32h,  0, 0, 0b01);
2626   INSN(crc32w,  0, 0, 0b10);
2627   INSN(crc32x,  0, 1, 0b11);
2628   INSN(crc32cb, 1, 0, 0b00);
2629   INSN(crc32ch, 1, 0, 0b01);
2630   INSN(crc32cw, 1, 0, 0b10);
2631   INSN(crc32cx, 1, 1, 0b11);
2632 
2633 #undef INSN
2634 
2635   // Table vector lookup
2636 #define INSN(NAME, op)                                                  \
2637   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, unsigned registers, FloatRegister Vm) { \
2638     starti;                                                             \
2639     assert(T == T8B || T == T16B, "invalid arrangement");               \
2640     assert(0 < registers && registers <= 4, "invalid number of registers"); \
2641     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21), rf(Vm, 16), f(0, 15); \
2642     f(registers - 1, 14, 13), f(op, 12),f(0b00, 11, 10), rf(Vn, 5), rf(Vd, 0); \
2643   }
2644 
2645   INSN(tbl, 0);
2646   INSN(tbx, 1);
2647 
2648 #undef INSN
2649 
2650   // AdvSIMD two-reg misc
2651   // In this instruction group, the 2 bits in the size field ([23:22]) may be
2652   // fixed or determined by the "SIMD_Arrangement T", or both. The additional
2653   // parameter "tmask" is a 2-bit mask used to indicate which bits in the size
2654   // field are determined by the SIMD_Arrangement. The bit of "tmask" should be
2655   // set to 1 if corresponding bit marked as "x" in the ArmARM.
2656 #define INSN(NAME, U, size, tmask, opcode)                                          \
2657   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {               \
2658        starti;                                                                      \
2659        assert((ASSERTION), MSG);                                                    \
2660        f(0, 31), f((int)T & 1, 30), f(U, 29), f(0b01110, 28, 24);                   \
2661        f(size | ((int)(T >> 1) & tmask), 23, 22), f(0b10000, 21, 17);               \
2662        f(opcode, 16, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);                    \
2663  }
2664 
2665 #define MSG "invalid arrangement"
2666 
2667 #define ASSERTION (T == T2S || T == T4S || T == T2D)
2668   INSN(fsqrt,  1, 0b10, 0b01, 0b11111);
2669   INSN(fabs,   0, 0b10, 0b01, 0b01111);
2670   INSN(fneg,   1, 0b10, 0b01, 0b01111);
2671   INSN(frintn, 0, 0b00, 0b01, 0b11000);
2672   INSN(frintm, 0, 0b00, 0b01, 0b11001);
2673   INSN(frintp, 0, 0b10, 0b01, 0b11000);
2674 #undef ASSERTION
2675 
2676 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H || T == T2S || T == T4S)
2677   INSN(rev64, 0, 0b00, 0b11, 0b00000);
2678 #undef ASSERTION
2679 
2680 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H)
2681   INSN(rev32, 1, 0b00, 0b11, 0b00000);
2682 #undef ASSERTION
2683 
2684 #define ASSERTION (T == T8B || T == T16B)
2685   INSN(rev16, 0, 0b00, 0b11, 0b00001);
2686   INSN(rbit,  1, 0b01, 0b00, 0b00101);
2687 #undef ASSERTION
2688 
2689 #undef MSG
2690 
2691 #undef INSN
2692 
2693   void ext(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index)
2694   {
2695     starti;
2696     assert(T == T8B || T == T16B, "invalid arrangement");
2697     assert((T == T8B && index <= 0b0111) || (T == T16B && index <= 0b1111), "Invalid index value");
2698     f(0, 31), f((int)T & 1, 30), f(0b101110000, 29, 21);
2699     rf(Vm, 16), f(0, 15), f(index, 14, 11);
2700     f(0, 10), rf(Vn, 5), rf(Vd, 0);
2701   }
2702 
2703   void sve_inc(Register Xdn, SIMD_RegVariant T, unsigned imm4 = 1, int pattern = 0b11111) {
2704     starti;
2705     assert(T != Q, "invalid size");
2706     f(0b00000100,31, 24), f(T, 23, 22), f(0b11, 21, 20);
2707     f(imm4 - 1, 19, 16), f(0b111000, 15, 10), f(pattern, 9, 5), rf(Xdn, 0);
2708   }
2709 
2710   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
2711   }
2712 
2713   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
2714                                                 Register tmp,
2715                                                 int offset) {
2716     ShouldNotCallThis();
2717     return RegisterOrConstant();
2718   }
2719 
2720   // Stack overflow checking
2721   virtual void bang_stack_with_offset(int offset);
2722 
2723   static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm);
2724   static bool operand_valid_for_add_sub_immediate(int64_t imm);
2725   static bool operand_valid_for_float_immediate(double imm);
2726 
2727   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
2728   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
2729 };
2730 
2731 inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a,
2732                                              Assembler::Membar_mask_bits b) {
2733   return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b));
2734 }
2735 
2736 Instruction_aarch64::~Instruction_aarch64() {
2737   assem->emit();
2738 }
2739 
2740 #undef starti
2741 
2742 // Invert a condition
2743 inline const Assembler::Condition operator~(const Assembler::Condition cond) {
2744   return Assembler::Condition(int(cond) ^ 1);
2745 }
2746 
2747 class BiasedLockingCounters;
2748 
2749 extern "C" void das(uint64_t start, int len);
2750 
2751 #endif // CPU_AARCH64_ASSEMBLER_AARCH64_HPP