1 /*
  2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_OPTO_CHAITIN_HPP
 26 #define SHARE_OPTO_CHAITIN_HPP
 27 
 28 #include "code/vmreg.hpp"
 29 #include "memory/resourceArea.hpp"
 30 #include "opto/connode.hpp"
 31 #include "opto/live.hpp"
 32 #include "opto/machnode.hpp"
 33 #include "opto/matcher.hpp"
 34 #include "opto/phase.hpp"
 35 #include "opto/regalloc.hpp"
 36 #include "opto/regmask.hpp"
 37 
 38 class Matcher;
 39 class PhaseCFG;
 40 class PhaseLive;
 41 class PhaseRegAlloc;
 42 class PhaseChaitin;
 43 
 44 #define OPTO_DEBUG_SPLIT_FREQ  BLOCK_FREQUENCY(0.001)
 45 #define OPTO_LRG_HIGH_FREQ     BLOCK_FREQUENCY(0.25)
 46 
 47 //------------------------------LRG--------------------------------------------
 48 // Live-RanGe structure.
 49 class LRG : public ResourceObj {
 50   friend class VMStructs;
 51 public:
 52   static const uint AllStack_size = 0xFFFFF; // This mask size is used to tell that the mask of this LRG supports stack positions
 53   enum { SPILL_REG=29999 };     // Register number of a spilled LRG
 54 
 55   double _cost;                 // 2 for loads/1 for stores times block freq
 56   double _area;                 // Sum of all simultaneously live values
 57   double score() const;         // Compute score from cost and area
 58   double _maxfreq;              // Maximum frequency of any def or use
 59 
 60   Node *_def;                   // Check for multi-def live ranges
 61 #ifndef PRODUCT
 62   GrowableArray<Node*>* _defs;
 63 #endif
 64 
 65   uint _risk_bias;              // Index of LRG which we want to avoid color
 66   uint _copy_bias;              // Index of LRG which we want to share color
 67 
 68   uint _next;                   // Index of next LRG in linked list
 69   uint _prev;                   // Index of prev LRG in linked list
 70 private:
 71   uint _reg;                    // Chosen register; undefined if mask is plural
 72 public:
 73   // Return chosen register for this LRG.  Error if the LRG is not bound to
 74   // a single register.
 75   OptoReg::Name reg() const { return OptoReg::Name(_reg); }
 76   void set_reg( OptoReg::Name r ) { _reg = r; }
 77 
 78 private:
 79   uint _eff_degree;             // Effective degree: Sum of neighbors _num_regs
 80 public:
 81   int degree() const { assert( _degree_valid , "" ); return _eff_degree; }
 82   // Degree starts not valid and any change to the IFG neighbor
 83   // set makes it not valid.
 84   void set_degree( uint degree ) {
 85     _eff_degree = degree;
 86     debug_only(_degree_valid = 1;)
 87     assert(!_mask.is_AllStack() || (_mask.is_AllStack() && lo_degree()), "_eff_degree can't be bigger than AllStack_size - _num_regs if the mask supports stack registers");
 88   }
 89   // Made a change that hammered degree
 90   void invalid_degree() { debug_only(_degree_valid=0;) }
 91   // Incrementally modify degree.  If it was correct, it should remain correct
 92   void inc_degree( uint mod ) {
 93     _eff_degree += mod;
 94     assert(!_mask.is_AllStack() || (_mask.is_AllStack() && lo_degree()), "_eff_degree can't be bigger than AllStack_size - _num_regs if the mask supports stack registers");
 95   }
 96   // Compute the degree between 2 live ranges
 97   int compute_degree( LRG &l ) const;
 98   bool mask_is_nonempty_and_up() const {
 99     return mask().is_UP() && mask_size();
100   }
101   bool is_float_or_vector() const {
102     return _is_float || _is_vector;
103   }
104 
105 private:
106   RegMask _mask;                // Allowed registers for this LRG
107   uint _mask_size;              // cache of _mask.Size();
108 public:
109   int compute_mask_size() const { return _mask.is_AllStack() ? AllStack_size : _mask.Size(); }
110   void set_mask_size( int size ) {
111     assert((size == (int)AllStack_size) || (size == (int)_mask.Size()), "");
112     _mask_size = size;
113 #ifdef ASSERT
114     _msize_valid=1;
115     if (_is_vector) {
116       assert(!_fat_proj, "sanity");
117       assert(_mask.is_aligned_sets(_num_regs), "mask is not aligned, adjacent sets");
118     } else if (_num_regs == 2 && !_fat_proj) {
119       assert(_mask.is_aligned_pairs(), "mask is not aligned, adjacent pairs");
120     }
121 #endif
122   }
123   void compute_set_mask_size() { set_mask_size(compute_mask_size()); }
124   int mask_size() const { assert( _msize_valid, "mask size not valid" );
125                           return _mask_size; }
126   // Get the last mask size computed, even if it does not match the
127   // count of bits in the current mask.
128   int get_invalid_mask_size() const { return _mask_size; }
129   const RegMask &mask() const { return _mask; }
130   void set_mask( const RegMask &rm ) { _mask = rm; debug_only(_msize_valid=0;)}
131   void AND( const RegMask &rm ) { _mask.AND(rm); debug_only(_msize_valid=0;)}
132   void SUBTRACT( const RegMask &rm ) { _mask.SUBTRACT(rm); debug_only(_msize_valid=0;)}
133   void Clear()   { _mask.Clear()  ; debug_only(_msize_valid=1); _mask_size = 0; }
134   void Set_All() { _mask.Set_All(); debug_only(_msize_valid=1); _mask_size = RegMask::CHUNK_SIZE; }
135 
136   void Insert( OptoReg::Name reg ) { _mask.Insert(reg);  debug_only(_msize_valid=0;) }
137   void Remove( OptoReg::Name reg ) { _mask.Remove(reg);  debug_only(_msize_valid=0;) }
138   void clear_to_sets()  { _mask.clear_to_sets(_num_regs); debug_only(_msize_valid=0;) }
139 
140   // Number of registers this live range uses when it colors
141 private:
142   uint16_t _num_regs;           // 2 for Longs and Doubles, 1 for all else
143                                 // except _num_regs is kill count for fat_proj
144 public:
145   int num_regs() const { return _num_regs; }
146   void set_num_regs( int reg ) { assert( _num_regs == reg || !_num_regs, "" ); _num_regs = reg; }
147 
148 private:
149   // Number of physical registers this live range uses when it colors
150   // Architecture and register-set dependent
151   uint16_t _reg_pressure;
152 public:
153   void set_reg_pressure(int i)  { _reg_pressure = i; }
154   int      reg_pressure() const { return _reg_pressure; }
155 
156   // How much 'wiggle room' does this live range have?
157   // How many color choices can it make (scaled by _num_regs)?
158   int degrees_of_freedom() const { return mask_size() - _num_regs; }
159   // Bound LRGs have ZERO degrees of freedom.  We also count
160   // must_spill as bound.
161   bool is_bound  () const { return _is_bound; }
162   // Negative degrees-of-freedom; even with no neighbors this
163   // live range must spill.
164   bool not_free() const { return degrees_of_freedom() <  0; }
165   // Is this live range of "low-degree"?  Trivially colorable?
166   bool lo_degree () const { return degree() <= degrees_of_freedom(); }
167   // Is this live range just barely "low-degree"?  Trivially colorable?
168   bool just_lo_degree () const { return degree() == degrees_of_freedom(); }
169 
170   uint   _is_oop:1,             // Live-range holds an oop
171          _is_float:1,           // True if in float registers
172          _is_vector:1,          // True if in vector registers
173          _was_spilled1:1,       // True if prior spilling on def
174          _was_spilled2:1,       // True if twice prior spilling on def
175          _is_bound:1,           // live range starts life with no
176                                 // degrees of freedom.
177          _direct_conflict:1,    // True if def and use registers in conflict
178          _must_spill:1,         // live range has lost all degrees of freedom
179     // If _fat_proj is set, live range does NOT require aligned, adjacent
180     // registers and has NO interferences.
181     // If _fat_proj is clear, live range requires num_regs() to be a power of
182     // 2, and it requires registers to form an aligned, adjacent set.
183          _fat_proj:1,           //
184          _was_lo:1,             // Was lo-degree prior to coalesce
185          _msize_valid:1,        // _mask_size cache valid
186          _degree_valid:1,       // _degree cache valid
187          _has_copy:1,           // Adjacent to some copy instruction
188          _at_risk:1;            // Simplify says this guy is at risk to spill
189 
190 
191   // Alive if non-zero, dead if zero
192   bool alive() const { return _def != NULL; }
193   bool is_multidef() const { return _def == NodeSentinel; }
194   bool is_singledef() const { return _def != NodeSentinel; }
195 
196 #ifndef PRODUCT
197   void dump( ) const;
198 #endif
199 };
200 
201 //------------------------------IFG--------------------------------------------
202 //                         InterFerence Graph
203 // An undirected graph implementation.  Created with a fixed number of
204 // vertices.  Edges can be added & tested.  Vertices can be removed, then
205 // added back later with all edges intact.  Can add edges between one vertex
206 // and a list of other vertices.  Can union vertices (and their edges)
207 // together.  The IFG needs to be really really fast, and also fairly
208 // abstract!  It needs abstraction so I can fiddle with the implementation to
209 // get even more speed.
210 class PhaseIFG : public Phase {
211   friend class VMStructs;
212   // Current implementation: a triangular adjacency list.
213 
214   // Array of adjacency-lists, indexed by live-range number
215   IndexSet *_adjs;
216 
217   // Assertion bit for proper use of Squaring
218   bool _is_square;
219 
220   // Live range structure goes here
221   LRG *_lrgs;                   // Array of LRG structures
222 
223 public:
224   // Largest live-range number
225   uint _maxlrg;
226 
227   Arena *_arena;
228 
229   // Keep track of inserted and deleted Nodes
230   VectorSet *_yanked;
231 
232   PhaseIFG( Arena *arena );
233   void init( uint maxlrg );
234 
235   // Add edge between a and b.  Returns true if actually addded.
236   int add_edge( uint a, uint b );
237 
238   // Test for edge existance
239   int test_edge( uint a, uint b ) const;
240 
241   // Square-up matrix for faster Union
242   void SquareUp();
243 
244   // Return number of LRG neighbors
245   uint neighbor_cnt( uint a ) const { return _adjs[a].count(); }
246   // Union edges of b into a on Squared-up matrix
247   void Union( uint a, uint b );
248   // Test for edge in Squared-up matrix
249   int test_edge_sq( uint a, uint b ) const;
250   // Yank a Node and all connected edges from the IFG.  Be prepared to
251   // re-insert the yanked Node in reverse order of yanking.  Return a
252   // list of neighbors (edges) yanked.
253   IndexSet *remove_node( uint a );
254   // Reinsert a yanked Node
255   void re_insert( uint a );
256   // Return set of neighbors
257   IndexSet *neighbors( uint a ) const { return &_adjs[a]; }
258 
259 #ifndef PRODUCT
260   // Dump the IFG
261   void dump() const;
262   void stats() const;
263   void verify( const PhaseChaitin * ) const;
264 #endif
265 
266   //--------------- Live Range Accessors
267   LRG &lrgs(uint idx) const { assert(idx < _maxlrg, "oob"); return _lrgs[idx]; }
268 
269   // Compute and set effective degree.  Might be folded into SquareUp().
270   void Compute_Effective_Degree();
271 
272   // Compute effective degree as the sum of neighbors' _sizes.
273   int effective_degree( uint lidx ) const;
274 };
275 
276 // The LiveRangeMap class is responsible for storing node to live range id mapping.
277 // Each node is mapped to a live range id (a virtual register). Nodes that are
278 // not considered for register allocation are given live range id 0.
279 class LiveRangeMap {
280 
281 private:
282 
283   uint _max_lrg_id;
284 
285   // Union-find map.  Declared as a short for speed.
286   // Indexed by live-range number, it returns the compacted live-range number
287   LRG_List _uf_map;
288 
289   // Map from Nodes to live ranges
290   LRG_List _names;
291 
292   // Straight out of Tarjan's union-find algorithm
293   uint find_compress(const Node *node) {
294     uint lrg_id = find_compress(_names.at(node->_idx));
295     _names.at_put(node->_idx, lrg_id);
296     return lrg_id;
297   }
298 
299   uint find_compress(uint lrg);
300 
301 public:
302 
303   const LRG_List& names() {
304     return _names;
305   }
306 
307   uint max_lrg_id() const {
308     return _max_lrg_id;
309   }
310 
311   void set_max_lrg_id(uint max_lrg_id) {
312     _max_lrg_id = max_lrg_id;
313   }
314 
315   uint size() const {
316     return _names.length();
317   }
318 
319   uint live_range_id(uint idx) const {
320     return _names.at(idx);
321   }
322 
323   uint live_range_id(const Node *node) const {
324     return _names.at(node->_idx);
325   }
326 
327   uint uf_live_range_id(uint lrg_id) const {
328     return _uf_map.at(lrg_id);
329   }
330 
331   void map(uint idx, uint lrg_id) {
332     _names.at_put(idx, lrg_id);
333   }
334 
335   void uf_map(uint dst_lrg_id, uint src_lrg_id) {
336     _uf_map.at_put(dst_lrg_id, src_lrg_id);
337   }
338 
339   void extend(uint idx, uint lrg_id) {
340     _names.at_put_grow(idx, lrg_id);
341   }
342 
343   void uf_extend(uint dst_lrg_id, uint src_lrg_id) {
344     _uf_map.at_put_grow(dst_lrg_id, src_lrg_id);
345   }
346 
347   LiveRangeMap(Arena* arena, uint unique)
348   :  _max_lrg_id(0)
349   , _uf_map(arena, unique, unique, 0)
350   , _names(arena, unique, unique, 0) {}
351 
352   uint find_id( const Node *n ) {
353     uint retval = live_range_id(n);
354     assert(retval == find(n),"Invalid node to lidx mapping");
355     return retval;
356   }
357 
358   // Reset the Union-Find map to identity
359   void reset_uf_map(uint max_lrg_id);
360 
361   // Make all Nodes map directly to their final live range; no need for
362   // the Union-Find mapping after this call.
363   void compress_uf_map_for_nodes();
364 
365   uint find(uint lidx) {
366     uint uf_lidx = _uf_map.at(lidx);
367     return (uf_lidx == lidx) ? uf_lidx : find_compress(lidx);
368   }
369 
370   // Convert a Node into a Live Range Index - a lidx
371   uint find(const Node *node) {
372     uint lidx = live_range_id(node);
373     uint uf_lidx = _uf_map.at(lidx);
374     return (uf_lidx == lidx) ? uf_lidx : find_compress(node);
375   }
376 
377   // Like Find above, but no path compress, so bad asymptotic behavior
378   uint find_const(uint lrg) const;
379 
380   // Like Find above, but no path compress, so bad asymptotic behavior
381   uint find_const(const Node *node) const {
382     if(node->_idx >= (uint)_names.length()) {
383       return 0; // not mapped, usual for debug dump
384     }
385     return find_const(_names.at(node->_idx));
386   }
387 };
388 
389 //------------------------------Chaitin----------------------------------------
390 // Briggs-Chaitin style allocation, mostly.
391 class PhaseChaitin : public PhaseRegAlloc {
392   friend class VMStructs;
393 
394   int _trip_cnt;
395   int _alternate;
396 
397   PhaseLive *_live;             // Liveness, used in the interference graph
398   PhaseIFG *_ifg;               // Interference graph (for original chunk)
399   VectorSet _spilled_once;      // Nodes that have been spilled
400   VectorSet _spilled_twice;     // Nodes that have been spilled twice
401 
402   // Combine the Live Range Indices for these 2 Nodes into a single live
403   // range.  Future requests for any Node in either live range will
404   // return the live range index for the combined live range.
405   void Union( const Node *src, const Node *dst );
406 
407   void new_lrg( const Node *x, uint lrg );
408 
409   // Compact live ranges, removing unused ones.  Return new maxlrg.
410   void compact();
411 
412   uint _lo_degree;              // Head of lo-degree LRGs list
413   uint _lo_stk_degree;          // Head of lo-stk-degree LRGs list
414   uint _hi_degree;              // Head of hi-degree LRGs list
415   uint _simplified;             // Linked list head of simplified LRGs
416 
417   // Helper functions for Split()
418   uint split_DEF(Node *def, Block *b, int loc, uint max, Node **Reachblock, Node **debug_defs, GrowableArray<uint> splits, int slidx );
419   uint split_USE(MachSpillCopyNode::SpillType spill_type, Node *def, Block *b, Node *use, uint useidx, uint max, bool def_down, bool cisc_sp, GrowableArray<uint> splits, int slidx );
420 
421   //------------------------------clone_projs------------------------------------
422   // After cloning some rematerialized instruction, clone any MachProj's that
423   // follow it.  Example: Intel zero is XOR, kills flags.  Sparc FP constants
424   // use G3 as an address temp.
425   int clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id);
426 
427   int clone_projs(Block* b, uint idx, Node* orig, Node* copy, LiveRangeMap& lrg_map) {
428     uint max_lrg_id = lrg_map.max_lrg_id();
429     int found_projs = clone_projs(b, idx, orig, copy, max_lrg_id);
430     if (found_projs > 0) {
431       // max_lrg_id is updated during call above
432       lrg_map.set_max_lrg_id(max_lrg_id);
433     }
434     return found_projs;
435   }
436 
437   Node *split_Rematerialize(Node *def, Block *b, uint insidx, uint &maxlrg, GrowableArray<uint> splits,
438                             int slidx, uint *lrg2reach, Node **Reachblock, bool walkThru);
439   // True if lidx is used before any real register is def'd in the block
440   bool prompt_use( Block *b, uint lidx );
441   Node *get_spillcopy_wide(MachSpillCopyNode::SpillType spill_type, Node *def, Node *use, uint uidx );
442   // Insert the spill at chosen location.  Skip over any intervening Proj's or
443   // Phis.  Skip over a CatchNode and projs, inserting in the fall-through block
444   // instead.  Update high-pressure indices.  Create a new live range.
445   void insert_proj( Block *b, uint i, Node *spill, uint maxlrg );
446 
447   bool is_high_pressure( Block *b, LRG *lrg, uint insidx );
448 
449   uint _oldphi;                 // Node index which separates pre-allocation nodes
450 
451   Block **_blks;                // Array of blocks sorted by frequency for coalescing
452 
453   float _high_frequency_lrg;    // Frequency at which LRG will be spilled for debug info
454 
455 #ifndef PRODUCT
456   bool _trace_spilling;
457 #endif
458 
459 public:
460   PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher, bool track_liveout_pressure);
461   ~PhaseChaitin() {}
462 
463   LiveRangeMap _lrg_map;
464 
465   LRG &lrgs(uint idx) const { return _ifg->lrgs(idx); }
466 
467   // Do all the real work of allocate
468   void Register_Allocate();
469 
470   float high_frequency_lrg() const { return _high_frequency_lrg; }
471 
472   // Used when scheduling info generated, not in general register allocation
473   bool _scheduling_info_generated;
474 
475   void set_ifg(PhaseIFG &ifg) { _ifg = &ifg;  }
476   void set_live(PhaseLive &live) { _live = &live; }
477   PhaseLive* get_live() { return _live; }
478 
479   // Populate the live range maps with ssa info for scheduling
480   void mark_ssa();
481 
482 #ifndef PRODUCT
483   bool trace_spilling() const { return _trace_spilling; }
484 #endif
485 
486 private:
487   // De-SSA the world.  Assign registers to Nodes.  Use the same register for
488   // all inputs to a PhiNode, effectively coalescing live ranges.  Insert
489   // copies as needed.
490   void de_ssa();
491 
492   // Add edge between reg and everything in the vector.
493   // Use the RegMask information to trim the set of interferences.  Return the
494   // count of edges added.
495   void interfere_with_live(uint lid, IndexSet* liveout);
496 #ifdef ASSERT
497   // Count register pressure for asserts
498   uint count_int_pressure(IndexSet* liveout);
499   uint count_float_pressure(IndexSet* liveout);
500 #endif
501 
502   // Build the interference graph using virtual registers only.
503   // Used for aggressive coalescing.
504   void build_ifg_virtual( );
505 
506   // used when computing the register pressure for each block in the CFG. This
507   // is done during IFG creation.
508   class Pressure {
509       // keeps track of the register pressure at the current
510       // instruction (used when stepping backwards in the block)
511       uint _current_pressure;
512 
513       // keeps track of the instruction index of the first low to high register pressure
514       // transition (starting from the top) in the block
515       // if high_pressure_index == 0 then the whole block is high pressure
516       // if high_pressure_index = b.end_idx() + 1 then the whole block is low pressure
517       uint _high_pressure_index;
518 
519       // stores the highest pressure we find
520       uint _final_pressure;
521 
522       // number of live ranges that constitute high register pressure
523       uint _high_pressure_limit;
524 
525       // initial pressure observed
526       uint _start_pressure;
527 
528     public:
529 
530       // lower the register pressure and look for a low to high pressure
531       // transition
532       void lower(LRG& lrg, uint& location) {
533         _current_pressure -= lrg.reg_pressure();
534         if (_current_pressure == _high_pressure_limit) {
535           _high_pressure_index = location;
536         }
537       }
538 
539       // raise the pressure and store the pressure if it's the biggest
540       // pressure so far
541       void raise(LRG &lrg) {
542         _current_pressure += lrg.reg_pressure();
543         if (_current_pressure > _final_pressure) {
544           _final_pressure = _current_pressure;
545         }
546       }
547 
548       void init(int limit) {
549         _current_pressure = 0;
550         _high_pressure_index = 0;
551         _final_pressure = 0;
552         _high_pressure_limit = limit;
553         _start_pressure = 0;
554       }
555 
556       uint high_pressure_index() const {
557         return _high_pressure_index;
558       }
559 
560       uint final_pressure() const {
561         return _final_pressure;
562       }
563 
564       uint start_pressure() const {
565         return _start_pressure;
566       }
567 
568       uint current_pressure() const {
569         return _current_pressure;
570       }
571 
572       uint high_pressure_limit() const {
573         return _high_pressure_limit;
574       }
575 
576       void lower_high_pressure_index() {
577         _high_pressure_index--;
578       }
579 
580       void set_high_pressure_index_to_block_start() {
581         _high_pressure_index = 0;
582       }
583 
584       void set_start_pressure(int value) {
585         _start_pressure = value;
586         _final_pressure = value;
587       }
588 
589       void set_current_pressure(int value) {
590         _current_pressure = value;
591       }
592 
593       void check_pressure_at_fatproj(uint fatproj_location, RegMask& fatproj_mask) {
594         // this pressure is only valid at this instruction, i.e. we don't need to lower
595         // the register pressure since the fat proj was never live before (going backwards)
596         uint new_pressure = current_pressure() + fatproj_mask.Size();
597         if (new_pressure > final_pressure()) {
598           _final_pressure = new_pressure;
599         }
600 
601         // if we were at a low pressure and now and the fat proj is at high pressure, record the fat proj location
602         // as coming from a low to high (to low again)
603         if (current_pressure() <= high_pressure_limit() && new_pressure > high_pressure_limit()) {
604           _high_pressure_index = fatproj_location;
605         }
606       }
607 
608       Pressure(uint high_pressure_index, uint high_pressure_limit)
609         : _current_pressure(0)
610         , _high_pressure_index(high_pressure_index)
611         , _final_pressure(0)
612         , _high_pressure_limit(high_pressure_limit)
613         , _start_pressure(0) {}
614   };
615 
616   void check_for_high_pressure_transition_at_fatproj(uint& block_reg_pressure, uint location, LRG& lrg, Pressure& pressure, const int op_regtype);
617   void add_input_to_liveout(Block* b, Node* n, IndexSet* liveout, double cost, Pressure& int_pressure, Pressure& float_pressure);
618   void compute_initial_block_pressure(Block* b, IndexSet* liveout, Pressure& int_pressure, Pressure& float_pressure, double cost);
619   bool remove_node_if_not_used(Block* b, uint location, Node* n, uint lid, IndexSet* liveout);
620   void assign_high_score_to_immediate_copies(Block* b, Node* n, LRG& lrg, uint next_inst, uint last_inst);
621   void remove_interference_from_copy(Block* b, uint location, uint lid_copy, IndexSet* liveout, double cost, Pressure& int_pressure, Pressure& float_pressure);
622   void remove_bound_register_from_interfering_live_ranges(LRG& lrg, IndexSet* liveout, uint& must_spill);
623   void check_for_high_pressure_block(Pressure& pressure);
624   void adjust_high_pressure_index(Block* b, uint& hrp_index, Pressure& pressure);
625 
626   // Build the interference graph using physical registers when available.
627   // That is, if 2 live ranges are simultaneously alive but in their
628   // acceptable register sets do not overlap, then they do not interfere.
629   uint build_ifg_physical( ResourceArea *a );
630 
631 public:
632   // Gather LiveRanGe information, including register masks and base pointer/
633   // derived pointer relationships.
634   void gather_lrg_masks( bool mod_cisc_masks );
635 
636   // user visible pressure variables for scheduling
637   Pressure _sched_int_pressure;
638   Pressure _sched_float_pressure;
639   Pressure _scratch_int_pressure;
640   Pressure _scratch_float_pressure;
641 
642   // Pressure functions for user context
643   void lower_pressure(Block* b, uint location, LRG& lrg, IndexSet* liveout, Pressure& int_pressure, Pressure& float_pressure);
644   void raise_pressure(Block* b, LRG& lrg, Pressure& int_pressure, Pressure& float_pressure);
645   void compute_entry_block_pressure(Block* b);
646   void compute_exit_block_pressure(Block* b);
647   void print_pressure_info(Pressure& pressure, const char *str);
648 
649 private:
650   // Force the bases of derived pointers to be alive at GC points.
651   bool stretch_base_pointer_live_ranges( ResourceArea *a );
652   // Helper to stretch above; recursively discover the base Node for
653   // a given derived Node.  Easy for AddP-related machine nodes, but
654   // needs to be recursive for derived Phis.
655   Node *find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg );
656 
657   // Set the was-lo-degree bit.  Conservative coalescing should not change the
658   // colorability of the graph.  If any live range was of low-degree before
659   // coalescing, it should Simplify.  This call sets the was-lo-degree bit.
660   void set_was_low();
661 
662   // Init LRG caching of degree, numregs.  Init lo_degree list.
663   void cache_lrg_info( );
664 
665   // Simplify the IFG by removing LRGs of low degree
666   void Simplify();
667 
668   // Select colors by re-inserting edges into the IFG.
669   // Return TRUE if any spills occurred.
670   uint Select( );
671   // Helper function for select which allows biased coloring
672   OptoReg::Name choose_color( LRG &lrg, int chunk );
673   // Helper function which implements biasing heuristic
674   OptoReg::Name bias_color( LRG &lrg, int chunk );
675 
676   // Split uncolorable live ranges
677   // Return new number of live ranges
678   uint Split(uint maxlrg, ResourceArea* split_arena);
679 
680   // Set the 'spilled_once' or 'spilled_twice' flag on a node.
681   void set_was_spilled( Node *n );
682 
683   // Convert ideal spill-nodes into machine loads & stores
684   // Set C->failing when fixup spills could not complete, node limit exceeded.
685   void fixup_spills();
686 
687   // Post-Allocation peephole copy removal
688   void post_allocate_copy_removal();
689   Node *skip_copies( Node *c );
690   // Replace the old node with the current live version of that value
691   // and yank the old value if it's dead.
692   int replace_and_yank_if_dead( Node *old, OptoReg::Name nreg,
693       Block *current_block, Node_List& value, Node_List& regnd ) {
694     Node* v = regnd[nreg];
695     assert(v->outcnt() != 0, "no dead values");
696     old->replace_by(v);
697     return yank_if_dead(old, current_block, &value, &regnd);
698   }
699 
700   int yank_if_dead( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
701     return yank_if_dead_recurse(old, old, current_block, value, regnd);
702   }
703   int yank_if_dead_recurse(Node *old, Node *orig_old, Block *current_block,
704       Node_List *value, Node_List *regnd);
705   int yank( Node *old, Block *current_block, Node_List *value, Node_List *regnd );
706   int elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List &regnd, bool can_change_regs );
707   int use_prior_register( Node *copy, uint idx, Node *def, Block *current_block, Node_List &value, Node_List &regnd );
708   bool may_be_copy_of_callee( Node *def ) const;
709 
710   // If nreg already contains the same constant as val then eliminate it
711   bool eliminate_copy_of_constant(Node* val, Node* n,
712       Block *current_block, Node_List& value, Node_List &regnd,
713       OptoReg::Name nreg, OptoReg::Name nreg2);
714   // Extend the node to LRG mapping
715   void add_reference( const Node *node, const Node *old_node);
716 
717   // Record the first use of a def in the block for a register.
718   class RegDefUse {
719     Node* _def;
720     Node* _first_use;
721   public:
722     RegDefUse() : _def(NULL), _first_use(NULL) { }
723     Node* def() const       { return _def;       }
724     Node* first_use() const { return _first_use; }
725 
726     void update(Node* def, Node* use) {
727       if (_def != def) {
728         _def = def;
729         _first_use = use;
730       }
731     }
732     void clear() {
733       _def = NULL;
734       _first_use = NULL;
735     }
736   };
737   typedef GrowableArray<RegDefUse> RegToDefUseMap;
738   int possibly_merge_multidef(Node *n, uint k, Block *block, RegToDefUseMap& reg2defuse);
739 
740   // Merge nodes that are a part of a multidef lrg and produce the same value within a block.
741   void merge_multidefs();
742 
743 private:
744 
745   static int _final_loads, _final_stores, _final_copies, _final_memoves;
746   static double _final_load_cost, _final_store_cost, _final_copy_cost, _final_memove_cost;
747   static int _conserv_coalesce, _conserv_coalesce_pair;
748   static int _conserv_coalesce_trie, _conserv_coalesce_quad;
749   static int _post_alloc;
750   static int _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce;
751   static int _used_cisc_instructions, _unused_cisc_instructions;
752   static int _allocator_attempts, _allocator_successes;
753 
754 #ifdef ASSERT
755   // Verify that base pointers and derived pointers are still sane
756   void verify_base_ptrs(ResourceArea* a) const;
757   void verify(ResourceArea* a, bool verify_ifg = false) const;
758 #endif // ASSERT
759 
760 #ifndef PRODUCT
761   static uint _high_pressure, _low_pressure;
762 
763   void dump() const;
764   void dump(const Node* n) const;
765   void dump(const Block* b) const;
766   void dump_degree_lists() const;
767   void dump_simplified() const;
768   void dump_lrg(uint lidx, bool defs_only) const;
769   void dump_lrg(uint lidx) const {
770     // dump defs and uses by default
771     dump_lrg(lidx, false);
772   }
773   void dump_bb(uint pre_order) const;
774   void dump_for_spill_split_recycle() const;
775 
776 public:
777   void dump_frame() const;
778   char *dump_register(const Node* n, char* buf) const;
779 private:
780   static void print_chaitin_statistics();
781 #endif // not PRODUCT
782   friend class PhaseCoalesce;
783   friend class PhaseAggressiveCoalesce;
784   friend class PhaseConservativeCoalesce;
785 };
786 
787 #endif // SHARE_OPTO_CHAITIN_HPP