1 /*
  2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_OPTO_MATCHER_HPP
 26 #define SHARE_OPTO_MATCHER_HPP
 27 
 28 #include "libadt/vectset.hpp"
 29 #include "memory/resourceArea.hpp"
 30 #include "opto/node.hpp"
 31 #include "opto/phaseX.hpp"
 32 #include "opto/regmask.hpp"
 33 
 34 class Compile;
 35 class Node;
 36 class MachNode;
 37 class MachTypeNode;
 38 class MachOper;
 39 
 40 //---------------------------Matcher-------------------------------------------
 41 class Matcher : public PhaseTransform {
 42   friend class VMStructs;
 43 
 44 public:
 45 
 46   // State and MStack class used in xform() and find_shared() iterative methods.
 47   enum Node_State { Pre_Visit,  // node has to be pre-visited
 48                     Visit,  // visit node
 49                     Post_Visit,  // post-visit node
 50                     Alt_Post_Visit   // alternative post-visit path
 51   };
 52 
 53   class MStack: public Node_Stack {
 54   public:
 55     MStack(int size) : Node_Stack(size) { }
 56 
 57     void push(Node *n, Node_State ns) {
 58       Node_Stack::push(n, (uint)ns);
 59     }
 60     void push(Node *n, Node_State ns, Node *parent, int indx) {
 61       ++_inode_top;
 62       if ((_inode_top + 1) >= _inode_max) grow();
 63       _inode_top->node = parent;
 64       _inode_top->indx = (uint)indx;
 65       ++_inode_top;
 66       _inode_top->node = n;
 67       _inode_top->indx = (uint)ns;
 68     }
 69     Node *parent() {
 70       pop();
 71       return node();
 72     }
 73     Node_State state() const {
 74       return (Node_State)index();
 75     }
 76     void set_state(Node_State ns) {
 77       set_index((uint)ns);
 78     }
 79   };
 80 
 81 private:
 82   // Private arena of State objects
 83   ResourceArea _states_arena;
 84 
 85   VectorSet   _visited;         // Visit bits
 86 
 87   // Used to control the Label pass
 88   VectorSet   _shared;          // Shared Ideal Node
 89   VectorSet   _dontcare;        // Nothing the matcher cares about
 90 
 91   // Private methods which perform the actual matching and reduction
 92   // Walks the label tree, generating machine nodes
 93   MachNode *ReduceInst( State *s, int rule, Node *&mem);
 94   void ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach);
 95   uint ReduceInst_Interior(State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds);
 96   void ReduceOper( State *s, int newrule, Node *&mem, MachNode *mach );
 97 
 98   // If this node already matched using "rule", return the MachNode for it.
 99   MachNode* find_shared_node(Node* n, uint rule);
100 
101   // Convert a dense opcode number to an expanded rule number
102   const int *_reduceOp;
103   const int *_leftOp;
104   const int *_rightOp;
105 
106   // Map dense opcode number to info on when rule is swallowed constant.
107   const bool *_swallowed;
108 
109   // Map dense rule number to determine if this is an instruction chain rule
110   const uint _begin_inst_chain_rule;
111   const uint _end_inst_chain_rule;
112 
113   // We want to clone constants and possible CmpI-variants.
114   // If we do not clone CmpI, then we can have many instances of
115   // condition codes alive at once.  This is OK on some chips and
116   // bad on others.  Hence the machine-dependent table lookup.
117   const char *_must_clone;
118 
119   // Find shared Nodes, or Nodes that otherwise are Matcher roots
120   void find_shared( Node *n );
121   bool find_shared_visit(MStack& mstack, Node* n, uint opcode, bool& mem_op, int& mem_addr_idx);
122   void find_shared_post_visit(Node* n, uint opcode);
123 
124   bool is_vshift_con_pattern(Node *n, Node *m);
125 
126   // Debug and profile information for nodes in old space:
127   GrowableArray<Node_Notes*>* _old_node_note_array;
128 
129   // Node labeling iterator for instruction selection
130   Node* Label_Root(const Node* n, State* svec, Node* control, Node*& mem);
131 
132   Node *transform( Node *dummy );
133 
134   Node_List _projection_list;        // For Machine nodes killing many values
135 
136   Node_Array _shared_nodes;
137 
138   debug_only(Node_Array _old2new_map;)   // Map roots of ideal-trees to machine-roots
139   debug_only(Node_Array _new2old_map;)   // Maps machine nodes back to ideal
140 
141   // Accessors for the inherited field PhaseTransform::_nodes:
142   void   grow_new_node_array(uint idx_limit) {
143     _nodes.map(idx_limit-1, NULL);
144   }
145   bool    has_new_node(const Node* n) const {
146     return _nodes.at(n->_idx) != NULL;
147   }
148   Node*       new_node(const Node* n) const {
149     assert(has_new_node(n), "set before get");
150     return _nodes.at(n->_idx);
151   }
152   void    set_new_node(const Node* n, Node *nn) {
153     assert(!has_new_node(n), "set only once");
154     _nodes.map(n->_idx, nn);
155   }
156 
157 #ifdef ASSERT
158   // Make sure only new nodes are reachable from this node
159   void verify_new_nodes_only(Node* root);
160 
161   Node* _mem_node;   // Ideal memory node consumed by mach node
162 #endif
163 
164   // Mach node for ConP #NULL
165   MachNode* _mach_null;
166 
167   void handle_precedence_edges(Node* n, MachNode *mach);
168 
169 public:
170   int LabelRootDepth;
171   // Convert ideal machine register to a register mask for spill-loads
172   static const RegMask *idealreg2regmask[];
173   RegMask *idealreg2spillmask  [_last_machine_leaf];
174   RegMask *idealreg2debugmask  [_last_machine_leaf];
175   RegMask *idealreg2mhdebugmask[_last_machine_leaf];
176   void init_spill_mask( Node *ret );
177   // Convert machine register number to register mask
178   static uint mreg2regmask_max;
179   static RegMask mreg2regmask[];
180   static RegMask STACK_ONLY_mask;
181   static RegMask caller_save_regmask;
182   static RegMask caller_save_regmask_exclude_soe;
183   static RegMask mh_caller_save_regmask;
184   static RegMask mh_caller_save_regmask_exclude_soe;
185 
186   MachNode* mach_null() const { return _mach_null; }
187 
188   bool    is_shared( Node *n ) { return _shared.test(n->_idx) != 0; }
189   void   set_shared( Node *n ) {  _shared.set(n->_idx); }
190   bool   is_visited( Node *n ) { return _visited.test(n->_idx) != 0; }
191   void  set_visited( Node *n ) { _visited.set(n->_idx); }
192   bool  is_dontcare( Node *n ) { return _dontcare.test(n->_idx) != 0; }
193   void set_dontcare( Node *n ) {  _dontcare.set(n->_idx); }
194 
195   // Mode bit to tell DFA and expand rules whether we are running after
196   // (or during) register selection.  Usually, the matcher runs before,
197   // but it will also get called to generate post-allocation spill code.
198   // In this situation, it is a deadly error to attempt to allocate more
199   // temporary registers.
200   bool _allocation_started;
201 
202   // Machine register names
203   static const char *regName[];
204   // Machine register encodings
205   static const unsigned char _regEncode[];
206   // Machine Node names
207   const char **_ruleName;
208   // Rules that are cheaper to rematerialize than to spill
209   static const uint _begin_rematerialize;
210   static const uint _end_rematerialize;
211 
212   // An array of chars, from 0 to _last_Mach_Reg.
213   // No Save       = 'N' (for register windows)
214   // Save on Entry = 'E'
215   // Save on Call  = 'C'
216   // Always Save   = 'A' (same as SOE + SOC)
217   const char *_register_save_policy;
218   const char *_c_reg_save_policy;
219   // Convert a machine register to a machine register type, so-as to
220   // properly match spill code.
221   const int *_register_save_type;
222   // Maps from machine register to boolean; true if machine register can
223   // be holding a call argument in some signature.
224   static bool can_be_java_arg( int reg );
225   // Maps from machine register to boolean; true if machine register holds
226   // a spillable argument.
227   static bool is_spillable_arg( int reg );
228 
229   // List of IfFalse or IfTrue Nodes that indicate a taken null test.
230   // List is valid in the post-matching space.
231   Node_List _null_check_tests;
232   void collect_null_checks( Node *proj, Node *orig_proj );
233   void validate_null_checks( );
234 
235   Matcher();
236 
237   // Get a projection node at position pos
238   Node* get_projection(uint pos) {
239     return _projection_list[pos];
240   }
241 
242   // Push a projection node onto the projection list
243   void push_projection(Node* node) {
244     _projection_list.push(node);
245   }
246 
247   Node* pop_projection() {
248     return _projection_list.pop();
249   }
250 
251   // Number of nodes in the projection list
252   uint number_of_projections() const {
253     return _projection_list.size();
254   }
255 
256   // Select instructions for entire method
257   void match();
258 
259   // Helper for match
260   OptoReg::Name warp_incoming_stk_arg( VMReg reg );
261 
262   // Transform, then walk.  Does implicit DCE while walking.
263   // Name changed from "transform" to avoid it being virtual.
264   Node *xform( Node *old_space_node, int Nodes );
265 
266   // Match a single Ideal Node - turn it into a 1-Node tree; Label & Reduce.
267   MachNode *match_tree( const Node *n );
268   MachNode *match_sfpt( SafePointNode *sfpt );
269   // Helper for match_sfpt
270   OptoReg::Name warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call );
271 
272   // Initialize first stack mask and related masks.
273   void init_first_stack_mask();
274 
275   // If we should save-on-entry this register
276   bool is_save_on_entry( int reg );
277 
278   // Fixup the save-on-entry registers
279   void Fixup_Save_On_Entry( );
280 
281   // --- Frame handling ---
282 
283   // Register number of the stack slot corresponding to the incoming SP.
284   // Per the Big Picture in the AD file, it is:
285   //   SharedInfo::stack0 + locks + in_preserve_stack_slots + pad2.
286   OptoReg::Name _old_SP;
287 
288   // Register number of the stack slot corresponding to the highest incoming
289   // argument on the stack.  Per the Big Picture in the AD file, it is:
290   //   _old_SP + out_preserve_stack_slots + incoming argument size.
291   OptoReg::Name _in_arg_limit;
292 
293   // Register number of the stack slot corresponding to the new SP.
294   // Per the Big Picture in the AD file, it is:
295   //   _in_arg_limit + pad0
296   OptoReg::Name _new_SP;
297 
298   // Register number of the stack slot corresponding to the highest outgoing
299   // argument on the stack.  Per the Big Picture in the AD file, it is:
300   //   _new_SP + max outgoing arguments of all calls
301   OptoReg::Name _out_arg_limit;
302 
303   OptoRegPair *_parm_regs;        // Array of machine registers per argument
304   RegMask *_calling_convention_mask; // Array of RegMasks per argument
305 
306   // Does matcher have a match rule for this ideal node?
307   static const bool has_match_rule(int opcode);
308   static const bool _hasMatchRule[_last_opcode];
309 
310   // Does matcher have a match rule for this ideal node and is the
311   // predicate (if there is one) true?
312   // NOTE: If this function is used more commonly in the future, ADLC
313   // should generate this one.
314   static const bool match_rule_supported(int opcode);
315 
316   // identify extra cases that we might want to provide match rules for
317   // e.g. Op_ vector nodes and other intrinsics while guarding with vlen
318   static const bool match_rule_supported_vector(int opcode, int vlen, BasicType bt);
319 
320   // Some microarchitectures have mask registers used on vectors
321   static const bool has_predicated_vectors(void);
322 
323   // Some uarchs have different sized float register resources
324   static const int float_pressure(int default_pressure_threshold);
325 
326   // Used to determine if we have fast l2f conversion
327   // USII has it, USIII doesn't
328   static const bool convL2FSupported(void);
329 
330   // Vector width in bytes
331   static const int vector_width_in_bytes(BasicType bt);
332 
333   // Limits on vector size (number of elements).
334   static const int max_vector_size(const BasicType bt);
335   static const int min_vector_size(const BasicType bt);
336   static const bool vector_size_supported(const BasicType bt, int size) {
337     return (Matcher::max_vector_size(bt) >= size &&
338             Matcher::min_vector_size(bt) <= size);
339   }
340 
341   // Vector ideal reg
342   static const uint vector_ideal_reg(int len);
343 
344   // CPU supports misaligned vectors store/load.
345   static const bool misaligned_vectors_ok();
346 
347   // Should original key array reference be passed to AES stubs
348   static const bool pass_original_key_for_aes();
349 
350   // Used to determine a "low complexity" 64-bit constant.  (Zero is simple.)
351   // The standard of comparison is one (StoreL ConL) vs. two (StoreI ConI).
352   // Depends on the details of 64-bit constant generation on the CPU.
353   static const bool isSimpleConstant64(jlong con);
354 
355   // These calls are all generated by the ADLC
356 
357   // TRUE - grows up, FALSE - grows down (Intel)
358   virtual bool stack_direction() const;
359 
360   // Java-Java calling convention
361   // (what you use when Java calls Java)
362 
363   // Alignment of stack in bytes, standard Intel word alignment is 4.
364   // Sparc probably wants at least double-word (8).
365   static uint stack_alignment_in_bytes();
366   // Alignment of stack, measured in stack slots.
367   // The size of stack slots is defined by VMRegImpl::stack_slot_size.
368   static uint stack_alignment_in_slots() {
369     return stack_alignment_in_bytes() / (VMRegImpl::stack_slot_size);
370   }
371 
372   // Array mapping arguments to registers.  Argument 0 is usually the 'this'
373   // pointer.  Registers can include stack-slots and regular registers.
374   static void calling_convention( BasicType *, VMRegPair *, uint len, bool is_outgoing );
375 
376   // Convert a sig into a calling convention register layout
377   // and find interesting things about it.
378   static OptoReg::Name  find_receiver( bool is_outgoing );
379   // Return address register.  On Intel it is a stack-slot.  On PowerPC
380   // it is the Link register.  On Sparc it is r31?
381   virtual OptoReg::Name return_addr() const;
382   RegMask              _return_addr_mask;
383   // Return value register.  On Intel it is EAX.  On Sparc i0/o0.
384   static OptoRegPair   return_value(uint ideal_reg, bool is_outgoing);
385   static OptoRegPair c_return_value(uint ideal_reg, bool is_outgoing);
386   RegMask                     _return_value_mask;
387   // Inline Cache Register
388   static OptoReg::Name  inline_cache_reg();
389   static int            inline_cache_reg_encode();
390 
391   // Register for DIVI projection of divmodI
392   static RegMask divI_proj_mask();
393   // Register for MODI projection of divmodI
394   static RegMask modI_proj_mask();
395 
396   // Register for DIVL projection of divmodL
397   static RegMask divL_proj_mask();
398   // Register for MODL projection of divmodL
399   static RegMask modL_proj_mask();
400 
401   // Use hardware DIV instruction when it is faster than
402   // a code which use multiply for division by constant.
403   static bool use_asm_for_ldiv_by_con( jlong divisor );
404 
405   static const RegMask method_handle_invoke_SP_save_mask();
406 
407   // Java-Interpreter calling convention
408   // (what you use when calling between compiled-Java and Interpreted-Java
409 
410   // Number of callee-save + always-save registers
411   // Ignores frame pointer and "special" registers
412   static int  number_of_saved_registers();
413 
414   // The Method-klass-holder may be passed in the inline_cache_reg
415   // and then expanded into the inline_cache_reg and a method_ptr register
416 
417   static OptoReg::Name  interpreter_method_oop_reg();
418   static int            interpreter_method_oop_reg_encode();
419 
420   static OptoReg::Name  compiler_method_oop_reg();
421   static const RegMask &compiler_method_oop_reg_mask();
422   static int            compiler_method_oop_reg_encode();
423 
424   // Interpreter's Frame Pointer Register
425   static OptoReg::Name  interpreter_frame_pointer_reg();
426 
427   // Java-Native calling convention
428   // (what you use when intercalling between Java and C++ code)
429 
430   // Array mapping arguments to registers.  Argument 0 is usually the 'this'
431   // pointer.  Registers can include stack-slots and regular registers.
432   static void c_calling_convention( BasicType*, VMRegPair *, uint );
433   // Frame pointer. The frame pointer is kept at the base of the stack
434   // and so is probably the stack pointer for most machines.  On Intel
435   // it is ESP.  On the PowerPC it is R1.  On Sparc it is SP.
436   OptoReg::Name  c_frame_pointer() const;
437   static RegMask c_frame_ptr_mask;
438 
439   // !!!!! Special stuff for building ScopeDescs
440   virtual int      regnum_to_fpu_offset(int regnum);
441 
442   // Is this branch offset small enough to be addressed by a short branch?
443   bool is_short_branch_offset(int rule, int br_size, int offset);
444 
445   // Optional scaling for the parameter to the ClearArray/CopyArray node.
446   static const bool init_array_count_is_in_bytes;
447 
448   // Some hardware needs 2 CMOV's for longs.
449   static const int long_cmove_cost();
450 
451   // Some hardware have expensive CMOV for float and double.
452   static const int float_cmove_cost();
453 
454   // Should the input 'm' of node 'n' be cloned during matching?
455   // Reports back whether the node was cloned or not.
456   bool    clone_node(Node* n, Node* m, Matcher::MStack& mstack);
457   bool pd_clone_node(Node* n, Node* m, Matcher::MStack& mstack);
458 
459   // Should the Matcher clone shifts on addressing modes, expecting them to
460   // be subsumed into complex addressing expressions or compute them into
461   // registers?  True for Intel but false for most RISCs
462   bool pd_clone_address_expressions(AddPNode* m, MStack& mstack, VectorSet& address_visited);
463   // Clone base + offset address expression
464   bool clone_base_plus_offset_address(AddPNode* m, MStack& mstack, VectorSet& address_visited);
465 
466   static bool narrow_oop_use_complex_address();
467   static bool narrow_klass_use_complex_address();
468 
469   static bool const_oop_prefer_decode();
470   static bool const_klass_prefer_decode();
471 
472   // Generate implicit null check for narrow oops if it can fold
473   // into address expression (x64).
474   //
475   // [R12 + narrow_oop_reg<<3 + offset] // fold into address expression
476   // NullCheck narrow_oop_reg
477   //
478   // When narrow oops can't fold into address expression (Sparc) and
479   // base is not null use decode_not_null and normal implicit null check.
480   // Note, decode_not_null node can be used here since it is referenced
481   // only on non null path but it requires special handling, see
482   // collect_null_checks():
483   //
484   // decode_not_null narrow_oop_reg, oop_reg // 'shift' and 'add base'
485   // [oop_reg + offset]
486   // NullCheck oop_reg
487   //
488   // With Zero base and when narrow oops can not fold into address
489   // expression use normal implicit null check since only shift
490   // is needed to decode narrow oop.
491   //
492   // decode narrow_oop_reg, oop_reg // only 'shift'
493   // [oop_reg + offset]
494   // NullCheck oop_reg
495   //
496   static bool gen_narrow_oop_implicit_null_checks();
497 
498   // Is it better to copy float constants, or load them directly from memory?
499   // Intel can load a float constant from a direct address, requiring no
500   // extra registers.  Most RISCs will have to materialize an address into a
501   // register first, so they may as well materialize the constant immediately.
502   static const bool rematerialize_float_constants;
503 
504   // If CPU can load and store mis-aligned doubles directly then no fixup is
505   // needed.  Else we split the double into 2 integer pieces and move it
506   // piece-by-piece.  Only happens when passing doubles into C code or when
507   // calling i2c adapters as the Java calling convention forces doubles to be
508   // aligned.
509   static const bool misaligned_doubles_ok;
510 
511   // Does the CPU require postalloc expand (see block.cpp for description of
512   // postalloc expand)?
513   static const bool require_postalloc_expand;
514 
515   // Does the platform support generic vector operands?
516   // Requires cleanup after selection phase.
517   static const bool supports_generic_vector_operands;
518 
519  private:
520   void do_postselect_cleanup();
521 
522   void specialize_generic_vector_operands();
523   void specialize_mach_node(MachNode* m);
524   void specialize_temp_node(MachTempNode* tmp, MachNode* use, uint idx);
525   MachOper* specialize_vector_operand(MachNode* m, uint opnd_idx);
526 
527   static MachOper* pd_specialize_generic_vector_operand(MachOper* generic_opnd, uint ideal_reg, bool is_temp);
528   static bool is_generic_reg2reg_move(MachNode* m);
529   static bool is_generic_vector(MachOper* opnd);
530 
531   const RegMask* regmask_for_ideal_register(uint ideal_reg, Node* ret);
532 
533   // Graph verification code
534   DEBUG_ONLY( bool verify_after_postselect_cleanup(); )
535 
536  public:
537   // Perform a platform dependent implicit null fixup.  This is needed
538   // on windows95 to take care of some unusual register constraints.
539   void pd_implicit_null_fixup(MachNode *load, uint idx);
540 
541   // Advertise here if the CPU requires explicit rounding operations to implement strictfp mode.
542   static const bool strict_fp_requires_explicit_rounding;
543 
544   // Are floats conerted to double when stored to stack during deoptimization?
545   static bool float_in_double();
546   // Do ints take an entire long register or just half?
547   static const bool int_in_long;
548 
549   // Do the processor's shift instructions only use the low 5/6 bits
550   // of the count for 32/64 bit ints? If not we need to do the masking
551   // ourselves.
552   static const bool need_masked_shift_count;
553 
554   // Whether code generation need accurate ConvI2L types.
555   static const bool convi2l_type_required;
556 
557   // This routine is run whenever a graph fails to match.
558   // If it returns, the compiler should bailout to interpreter without error.
559   // In non-product mode, SoftMatchFailure is false to detect non-canonical
560   // graphs.  Print a message and exit.
561   static void soft_match_failure() {
562     if( SoftMatchFailure ) return;
563     else { fatal("SoftMatchFailure is not allowed except in product"); }
564   }
565 
566   // Check for a following volatile memory barrier without an
567   // intervening load and thus we don't need a barrier here.  We
568   // retain the Node to act as a compiler ordering barrier.
569   static bool post_store_load_barrier(const Node* mb);
570 
571   // Does n lead to an uncommon trap that can cause deoptimization?
572   static bool branches_to_uncommon_trap(const Node *n);
573 
574 #ifdef ASSERT
575   void dump_old2new_map();      // machine-independent to machine-dependent
576 
577   Node* find_old_node(Node* new_node) {
578     return _new2old_map[new_node->_idx];
579   }
580 #endif
581 };
582 
583 #endif // SHARE_OPTO_MATCHER_HPP