1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/symbolTable.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/oopFactory.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/instanceKlass.hpp"
  35 #include "oops/instanceMirrorKlass.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "oops/typeArrayKlass.hpp"
  38 #include "opto/matcher.hpp"
  39 #include "opto/node.hpp"
  40 #include "opto/opcodes.hpp"
  41 #include "opto/type.hpp"
  42 #include "utilities/powerOfTwo.hpp"
  43 
  44 // Portions of code courtesy of Clifford Click
  45 
  46 // Optimization - Graph Style
  47 
  48 // Dictionary of types shared among compilations.
  49 Dict* Type::_shared_type_dict = NULL;
  50 
  51 // Array which maps compiler types to Basic Types
  52 const Type::TypeInfo Type::_type_info[Type::lastype] = {
  53   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  54   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  55   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  56   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  57   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  58   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  59   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  60   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  61   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  62   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  63 
  64 #if defined(PPC64)
  65   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  66   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  67   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  68   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  69   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  70 #elif defined(S390)
  71   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  72   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  73   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  74   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  75   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  76 #else // all other
  77   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  78   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  79   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  80   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  81   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
  82 #endif
  83   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  84   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  85   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  86   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  87   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  88   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  89   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  90   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  91   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  92   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  93   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  94   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
  95   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
  96   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
  97   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
  98   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
  99   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 100   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 101 };
 102 
 103 // Map ideal registers (machine types) to ideal types
 104 const Type *Type::mreg2type[_last_machine_leaf];
 105 
 106 // Map basic types to canonical Type* pointers.
 107 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 108 
 109 // Map basic types to constant-zero Types.
 110 const Type* Type::            _zero_type[T_CONFLICT+1];
 111 
 112 // Map basic types to array-body alias types.
 113 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 114 
 115 //=============================================================================
 116 // Convenience common pre-built types.
 117 const Type *Type::ABIO;         // State-of-machine only
 118 const Type *Type::BOTTOM;       // All values
 119 const Type *Type::CONTROL;      // Control only
 120 const Type *Type::DOUBLE;       // All doubles
 121 const Type *Type::FLOAT;        // All floats
 122 const Type *Type::HALF;         // Placeholder half of doublewide type
 123 const Type *Type::MEMORY;       // Abstract store only
 124 const Type *Type::RETURN_ADDRESS;
 125 const Type *Type::TOP;          // No values in set
 126 
 127 //------------------------------get_const_type---------------------------
 128 const Type* Type::get_const_type(ciType* type) {
 129   if (type == NULL) {
 130     return NULL;
 131   } else if (type->is_primitive_type()) {
 132     return get_const_basic_type(type->basic_type());
 133   } else {
 134     return TypeOopPtr::make_from_klass(type->as_klass());
 135   }
 136 }
 137 
 138 //---------------------------array_element_basic_type---------------------------------
 139 // Mapping to the array element's basic type.
 140 BasicType Type::array_element_basic_type() const {
 141   BasicType bt = basic_type();
 142   if (bt == T_INT) {
 143     if (this == TypeInt::INT)   return T_INT;
 144     if (this == TypeInt::CHAR)  return T_CHAR;
 145     if (this == TypeInt::BYTE)  return T_BYTE;
 146     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 147     if (this == TypeInt::SHORT) return T_SHORT;
 148     return T_VOID;
 149   }
 150   return bt;
 151 }
 152 
 153 // For two instance arrays of same dimension, return the base element types.
 154 // Otherwise or if the arrays have different dimensions, return NULL.
 155 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 156                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 157 
 158   if (e1) *e1 = NULL;
 159   if (e2) *e2 = NULL;
 160   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 161   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 162 
 163   if (a1tap != NULL && a2tap != NULL) {
 164     // Handle multidimensional arrays
 165     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 166     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 167     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 168       a1tap = a1tp->is_aryptr();
 169       a2tap = a2tp->is_aryptr();
 170       a1tp = a1tap->elem()->make_ptr();
 171       a2tp = a2tap->elem()->make_ptr();
 172     }
 173     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 174       if (e1) *e1 = a1tp->is_instptr();
 175       if (e2) *e2 = a2tp->is_instptr();
 176     }
 177   }
 178 }
 179 
 180 //---------------------------get_typeflow_type---------------------------------
 181 // Import a type produced by ciTypeFlow.
 182 const Type* Type::get_typeflow_type(ciType* type) {
 183   switch (type->basic_type()) {
 184 
 185   case ciTypeFlow::StateVector::T_BOTTOM:
 186     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 187     return Type::BOTTOM;
 188 
 189   case ciTypeFlow::StateVector::T_TOP:
 190     assert(type == ciTypeFlow::StateVector::top_type(), "");
 191     return Type::TOP;
 192 
 193   case ciTypeFlow::StateVector::T_NULL:
 194     assert(type == ciTypeFlow::StateVector::null_type(), "");
 195     return TypePtr::NULL_PTR;
 196 
 197   case ciTypeFlow::StateVector::T_LONG2:
 198     // The ciTypeFlow pass pushes a long, then the half.
 199     // We do the same.
 200     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 201     return TypeInt::TOP;
 202 
 203   case ciTypeFlow::StateVector::T_DOUBLE2:
 204     // The ciTypeFlow pass pushes double, then the half.
 205     // Our convention is the same.
 206     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 207     return Type::TOP;
 208 
 209   case T_ADDRESS:
 210     assert(type->is_return_address(), "");
 211     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 212 
 213   default:
 214     // make sure we did not mix up the cases:
 215     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 216     assert(type != ciTypeFlow::StateVector::top_type(), "");
 217     assert(type != ciTypeFlow::StateVector::null_type(), "");
 218     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 219     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 220     assert(!type->is_return_address(), "");
 221 
 222     return Type::get_const_type(type);
 223   }
 224 }
 225 
 226 
 227 //-----------------------make_from_constant------------------------------------
 228 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 229                                      int stable_dimension, bool is_narrow_oop,
 230                                      bool is_autobox_cache) {
 231   switch (constant.basic_type()) {
 232     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 233     case T_CHAR:     return TypeInt::make(constant.as_char());
 234     case T_BYTE:     return TypeInt::make(constant.as_byte());
 235     case T_SHORT:    return TypeInt::make(constant.as_short());
 236     case T_INT:      return TypeInt::make(constant.as_int());
 237     case T_LONG:     return TypeLong::make(constant.as_long());
 238     case T_FLOAT:    return TypeF::make(constant.as_float());
 239     case T_DOUBLE:   return TypeD::make(constant.as_double());
 240     case T_ARRAY:
 241     case T_OBJECT: {
 242         const Type* con_type = NULL;
 243         ciObject* oop_constant = constant.as_object();
 244         if (oop_constant->is_null_object()) {
 245           con_type = Type::get_zero_type(T_OBJECT);
 246         } else {
 247           guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
 248           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 249           if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 250             con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 251           }
 252           if (stable_dimension > 0) {
 253             assert(FoldStableValues, "sanity");
 254             assert(!con_type->is_zero_type(), "default value for stable field");
 255             con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 256           }
 257         }
 258         if (is_narrow_oop) {
 259           con_type = con_type->make_narrowoop();
 260         }
 261         return con_type;
 262       }
 263     case T_ILLEGAL:
 264       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 265       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 266       return NULL;
 267     default:
 268       // Fall through to failure
 269       return NULL;
 270   }
 271 }
 272 
 273 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 274   BasicType conbt = con.basic_type();
 275   switch (conbt) {
 276     case T_BOOLEAN: conbt = T_BYTE;   break;
 277     case T_ARRAY:   conbt = T_OBJECT; break;
 278     default:                          break;
 279   }
 280   switch (loadbt) {
 281     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 282     case T_NARROWOOP: loadbt = T_OBJECT; break;
 283     case T_ARRAY:     loadbt = T_OBJECT; break;
 284     case T_ADDRESS:   loadbt = T_OBJECT; break;
 285     default:                             break;
 286   }
 287   if (conbt == loadbt) {
 288     if (is_unsigned && conbt == T_BYTE) {
 289       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 290       return ciConstant(T_INT, con.as_int() & 0xFF);
 291     } else {
 292       return con;
 293     }
 294   }
 295   if (conbt == T_SHORT && loadbt == T_CHAR) {
 296     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 297     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 298   }
 299   return ciConstant(); // T_ILLEGAL
 300 }
 301 
 302 // Try to constant-fold a stable array element.
 303 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 304                                                    BasicType loadbt, bool is_unsigned_load) {
 305   // Decode the results of GraphKit::array_element_address.
 306   ciConstant element_value = array->element_value_by_offset(off);
 307   if (element_value.basic_type() == T_ILLEGAL) {
 308     return NULL; // wrong offset
 309   }
 310   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 311 
 312   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 313          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 314 
 315   if (con.is_valid() &&          // not a mismatched access
 316       !con.is_null_or_zero()) {  // not a default value
 317     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 318     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 319   }
 320   return NULL;
 321 }
 322 
 323 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 324   ciField* field;
 325   ciType* type = holder->java_mirror_type();
 326   if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 327     // Static field
 328     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 329   } else {
 330     // Instance field
 331     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 332   }
 333   if (field == NULL) {
 334     return NULL; // Wrong offset
 335   }
 336   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 337 }
 338 
 339 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 340                                            BasicType loadbt, bool is_unsigned_load) {
 341   if (!field->is_constant()) {
 342     return NULL; // Non-constant field
 343   }
 344   ciConstant field_value;
 345   if (field->is_static()) {
 346     // final static field
 347     field_value = field->constant_value();
 348   } else if (holder != NULL) {
 349     // final or stable non-static field
 350     // Treat final non-static fields of trusted classes (classes in
 351     // java.lang.invoke and sun.invoke packages and subpackages) as
 352     // compile time constants.
 353     field_value = field->constant_value_of(holder);
 354   }
 355   if (!field_value.is_valid()) {
 356     return NULL; // Not a constant
 357   }
 358 
 359   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 360 
 361   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 362          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 363 
 364   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 365   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 366   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 367 
 368   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 369                                             stable_dimension, is_narrow_oop,
 370                                             field->is_autobox_cache());
 371   if (con_type != NULL && field->is_call_site_target()) {
 372     ciCallSite* call_site = holder->as_call_site();
 373     if (!call_site->is_fully_initialized_constant_call_site()) {
 374       ciMethodHandle* target = con.as_object()->as_method_handle();
 375       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 376     }
 377   }
 378   return con_type;
 379 }
 380 
 381 //------------------------------make-------------------------------------------
 382 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 383 // and look for an existing copy in the type dictionary.
 384 const Type *Type::make( enum TYPES t ) {
 385   return (new Type(t))->hashcons();
 386 }
 387 
 388 //------------------------------cmp--------------------------------------------
 389 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 390   if( t1->_base != t2->_base )
 391     return 1;                   // Missed badly
 392   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 393   return !t1->eq(t2);           // Return ZERO if equal
 394 }
 395 
 396 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 397   if (!include_speculative) {
 398     return remove_speculative();
 399   }
 400   return this;
 401 }
 402 
 403 //------------------------------hash-------------------------------------------
 404 int Type::uhash( const Type *const t ) {
 405   return t->hash();
 406 }
 407 
 408 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 409 #define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite
 410 #define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite
 411 
 412 //--------------------------Initialize_shared----------------------------------
 413 void Type::Initialize_shared(Compile* current) {
 414   // This method does not need to be locked because the first system
 415   // compilations (stub compilations) occur serially.  If they are
 416   // changed to proceed in parallel, then this section will need
 417   // locking.
 418 
 419   Arena* save = current->type_arena();
 420   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 421 
 422   current->set_type_arena(shared_type_arena);
 423   _shared_type_dict =
 424     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 425                                   shared_type_arena, 128 );
 426   current->set_type_dict(_shared_type_dict);
 427 
 428   // Make shared pre-built types.
 429   CONTROL = make(Control);      // Control only
 430   TOP     = make(Top);          // No values in set
 431   MEMORY  = make(Memory);       // Abstract store only
 432   ABIO    = make(Abio);         // State-of-machine only
 433   RETURN_ADDRESS=make(Return_Address);
 434   FLOAT   = make(FloatBot);     // All floats
 435   DOUBLE  = make(DoubleBot);    // All doubles
 436   BOTTOM  = make(Bottom);       // Everything
 437   HALF    = make(Half);         // Placeholder half of doublewide type
 438 
 439   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 440   TypeF::ONE  = TypeF::make(1.0); // Float 1
 441   TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F));
 442   TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F));
 443 
 444   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 445   TypeD::ONE  = TypeD::make(1.0); // Double 1
 446   TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D));
 447   TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D));
 448 
 449   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 450   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 451   TypeInt::ONE     = TypeInt::make( 1);  //  1
 452   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 453   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 454   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 455   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 456   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 457   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 458   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 459   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 460   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 461   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 462   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 463   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 464   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 465   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 466   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 467   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 468   // CmpL is overloaded both as the bytecode computation returning
 469   // a trinary (-1,0,+1) integer result AND as an efficient long
 470   // compare returning optimizer ideal-type flags.
 471   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 472   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 473   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 474   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 475   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 476 
 477   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 478   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 479   TypeLong::ONE     = TypeLong::make( 1);        //  1
 480   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 481   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 482   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 483   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 484   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 485 
 486   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 487   fboth[0] = Type::CONTROL;
 488   fboth[1] = Type::CONTROL;
 489   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 490 
 491   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 492   ffalse[0] = Type::CONTROL;
 493   ffalse[1] = Type::TOP;
 494   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 495 
 496   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 497   fneither[0] = Type::TOP;
 498   fneither[1] = Type::TOP;
 499   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 500 
 501   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 502   ftrue[0] = Type::TOP;
 503   ftrue[1] = Type::CONTROL;
 504   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 505 
 506   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 507   floop[0] = Type::CONTROL;
 508   floop[1] = TypeInt::INT;
 509   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 510 
 511   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 512   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 513   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 514 
 515   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 516   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 517 
 518   const Type **fmembar = TypeTuple::fields(0);
 519   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 520 
 521   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 522   fsc[0] = TypeInt::CC;
 523   fsc[1] = Type::MEMORY;
 524   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 525 
 526   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 527   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 528   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 529   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 530                                            false, 0, oopDesc::mark_offset_in_bytes());
 531   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 532                                            false, 0, oopDesc::klass_offset_in_bytes());
 533   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 534 
 535   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 536 
 537   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 538   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 539 
 540   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 541 
 542   mreg2type[Op_Node] = Type::BOTTOM;
 543   mreg2type[Op_Set ] = 0;
 544   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 545   mreg2type[Op_RegI] = TypeInt::INT;
 546   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 547   mreg2type[Op_RegF] = Type::FLOAT;
 548   mreg2type[Op_RegD] = Type::DOUBLE;
 549   mreg2type[Op_RegL] = TypeLong::LONG;
 550   mreg2type[Op_RegFlags] = TypeInt::CC;
 551 
 552   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 553 
 554   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 555 
 556 #ifdef _LP64
 557   if (UseCompressedOops) {
 558     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 559     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 560   } else
 561 #endif
 562   {
 563     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 564     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 565   }
 566   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 567   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 568   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 569   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 570   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 571   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 572   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 573 
 574   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 575   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 576   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 577   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 578   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 579   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 580   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 581   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 582   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 583   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 584   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 585   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 586 
 587   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 588   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 589 
 590   const Type **fi2c = TypeTuple::fields(2);
 591   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 592   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 593   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 594 
 595   const Type **intpair = TypeTuple::fields(2);
 596   intpair[0] = TypeInt::INT;
 597   intpair[1] = TypeInt::INT;
 598   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 599 
 600   const Type **longpair = TypeTuple::fields(2);
 601   longpair[0] = TypeLong::LONG;
 602   longpair[1] = TypeLong::LONG;
 603   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 604 
 605   const Type **intccpair = TypeTuple::fields(2);
 606   intccpair[0] = TypeInt::INT;
 607   intccpair[1] = TypeInt::CC;
 608   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 609 
 610   const Type **longccpair = TypeTuple::fields(2);
 611   longccpair[0] = TypeLong::LONG;
 612   longccpair[1] = TypeInt::CC;
 613   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 614 
 615   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 616   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 617   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 618   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 619   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 620   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 621   _const_basic_type[T_INT]         = TypeInt::INT;
 622   _const_basic_type[T_LONG]        = TypeLong::LONG;
 623   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 624   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 625   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 626   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 627   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 628   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 629   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 630 
 631   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 632   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 633   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 634   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 635   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 636   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 637   _zero_type[T_INT]         = TypeInt::ZERO;
 638   _zero_type[T_LONG]        = TypeLong::ZERO;
 639   _zero_type[T_FLOAT]       = TypeF::ZERO;
 640   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 641   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 642   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 643   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 644   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 645 
 646   // get_zero_type() should not happen for T_CONFLICT
 647   _zero_type[T_CONFLICT]= NULL;
 648 
 649   // Vector predefined types, it needs initialized _const_basic_type[].
 650   if (Matcher::vector_size_supported(T_BYTE,4)) {
 651     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 652   }
 653   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 654     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 655   }
 656   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 657     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 658   }
 659   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 660     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 661   }
 662   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 663     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 664   }
 665   mreg2type[Op_VecS] = TypeVect::VECTS;
 666   mreg2type[Op_VecD] = TypeVect::VECTD;
 667   mreg2type[Op_VecX] = TypeVect::VECTX;
 668   mreg2type[Op_VecY] = TypeVect::VECTY;
 669   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 670 
 671   // Restore working type arena.
 672   current->set_type_arena(save);
 673   current->set_type_dict(NULL);
 674 }
 675 
 676 //------------------------------Initialize-------------------------------------
 677 void Type::Initialize(Compile* current) {
 678   assert(current->type_arena() != NULL, "must have created type arena");
 679 
 680   if (_shared_type_dict == NULL) {
 681     Initialize_shared(current);
 682   }
 683 
 684   Arena* type_arena = current->type_arena();
 685 
 686   // Create the hash-cons'ing dictionary with top-level storage allocation
 687   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 688   current->set_type_dict(tdic);
 689 
 690   // Transfer the shared types.
 691   DictI i(_shared_type_dict);
 692   for( ; i.test(); ++i ) {
 693     Type* t = (Type*)i._value;
 694     tdic->Insert(t,t);  // New Type, insert into Type table
 695   }
 696 }
 697 
 698 //------------------------------hashcons---------------------------------------
 699 // Do the hash-cons trick.  If the Type already exists in the type table,
 700 // delete the current Type and return the existing Type.  Otherwise stick the
 701 // current Type in the Type table.
 702 const Type *Type::hashcons(void) {
 703   debug_only(base());           // Check the assertion in Type::base().
 704   // Look up the Type in the Type dictionary
 705   Dict *tdic = type_dict();
 706   Type* old = (Type*)(tdic->Insert(this, this, false));
 707   if( old ) {                   // Pre-existing Type?
 708     if( old != this )           // Yes, this guy is not the pre-existing?
 709       delete this;              // Yes, Nuke this guy
 710     assert( old->_dual, "" );
 711     return old;                 // Return pre-existing
 712   }
 713 
 714   // Every type has a dual (to make my lattice symmetric).
 715   // Since we just discovered a new Type, compute its dual right now.
 716   assert( !_dual, "" );         // No dual yet
 717   _dual = xdual();              // Compute the dual
 718   if (cmp(this, _dual) == 0) {  // Handle self-symmetric
 719     if (_dual != this) {
 720       delete _dual;
 721       _dual = this;
 722     }
 723     return this;
 724   }
 725   assert( !_dual->_dual, "" );  // No reverse dual yet
 726   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 727   // New Type, insert into Type table
 728   tdic->Insert((void*)_dual,(void*)_dual);
 729   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 730 #ifdef ASSERT
 731   Type *dual_dual = (Type*)_dual->xdual();
 732   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 733   delete dual_dual;
 734 #endif
 735   return this;                  // Return new Type
 736 }
 737 
 738 //------------------------------eq---------------------------------------------
 739 // Structural equality check for Type representations
 740 bool Type::eq( const Type * ) const {
 741   return true;                  // Nothing else can go wrong
 742 }
 743 
 744 //------------------------------hash-------------------------------------------
 745 // Type-specific hashing function.
 746 int Type::hash(void) const {
 747   return _base;
 748 }
 749 
 750 //------------------------------is_finite--------------------------------------
 751 // Has a finite value
 752 bool Type::is_finite() const {
 753   return false;
 754 }
 755 
 756 //------------------------------is_nan-----------------------------------------
 757 // Is not a number (NaN)
 758 bool Type::is_nan()    const {
 759   return false;
 760 }
 761 
 762 //----------------------interface_vs_oop---------------------------------------
 763 #ifdef ASSERT
 764 bool Type::interface_vs_oop_helper(const Type *t) const {
 765   bool result = false;
 766 
 767   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 768   const TypePtr*    t_ptr =    t->make_ptr();
 769   if( this_ptr == NULL || t_ptr == NULL )
 770     return result;
 771 
 772   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 773   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 774   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 775     bool this_interface = this_inst->klass()->is_interface();
 776     bool    t_interface =    t_inst->klass()->is_interface();
 777     result = this_interface ^ t_interface;
 778   }
 779 
 780   return result;
 781 }
 782 
 783 bool Type::interface_vs_oop(const Type *t) const {
 784   if (interface_vs_oop_helper(t)) {
 785     return true;
 786   }
 787   // Now check the speculative parts as well
 788   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 789   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 790   if (this_spec != NULL && t_spec != NULL) {
 791     if (this_spec->interface_vs_oop_helper(t_spec)) {
 792       return true;
 793     }
 794     return false;
 795   }
 796   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 797     return true;
 798   }
 799   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 800     return true;
 801   }
 802   return false;
 803 }
 804 
 805 #endif
 806 
 807 void Type::check_symmetrical(const Type *t, const Type *mt) const {
 808 #ifdef ASSERT
 809   assert(mt == t->xmeet(this), "meet not commutative");
 810   const Type* dual_join = mt->_dual;
 811   const Type *t2t    = dual_join->xmeet(t->_dual);
 812   const Type *t2this = dual_join->xmeet(this->_dual);
 813 
 814   // Interface meet Oop is Not Symmetric:
 815   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 816   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 817 
 818   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this->_dual) ) {
 819     tty->print_cr("=== Meet Not Symmetric ===");
 820     tty->print("t   =                   ");              t->dump(); tty->cr();
 821     tty->print("this=                   ");                 dump(); tty->cr();
 822     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 823 
 824     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 825     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
 826     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 827 
 828     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 829     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 830 
 831     fatal("meet not symmetric" );
 832   }
 833 #endif
 834 }
 835 
 836 //------------------------------meet-------------------------------------------
 837 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 838 // commutative and the lattice is symmetric.
 839 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 840   if (isa_narrowoop() && t->isa_narrowoop()) {
 841     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 842     return result->make_narrowoop();
 843   }
 844   if (isa_narrowklass() && t->isa_narrowklass()) {
 845     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 846     return result->make_narrowklass();
 847   }
 848 
 849   const Type *this_t = maybe_remove_speculative(include_speculative);
 850   t = t->maybe_remove_speculative(include_speculative);
 851 
 852   const Type *mt = this_t->xmeet(t);
 853 #ifdef ASSERT
 854   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 855   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 856   Compile* C = Compile::current();
 857   if (!C->_type_verify_symmetry) {
 858     return mt;
 859   }
 860   this_t->check_symmetrical(t, mt);
 861   // In the case of an array, computing the meet above, caused the
 862   // computation of the meet of the elements which at verification
 863   // time caused the computation of the meet of the dual of the
 864   // elements. Computing the meet of the dual of the arrays here
 865   // causes the meet of the dual of the elements to be computed which
 866   // would cause the meet of the dual of the dual of the elements,
 867   // that is the meet of the elements already computed above to be
 868   // computed. Avoid redundant computations by requesting no
 869   // verification.
 870   C->_type_verify_symmetry = false;
 871   const Type *mt_dual = this_t->_dual->xmeet(t->_dual);
 872   this_t->_dual->check_symmetrical(t->_dual, mt_dual);
 873   assert(!C->_type_verify_symmetry, "shouldn't have changed");
 874   C->_type_verify_symmetry = true;
 875 #endif
 876   return mt;
 877 }
 878 
 879 //------------------------------xmeet------------------------------------------
 880 // Compute the MEET of two types.  It returns a new Type object.
 881 const Type *Type::xmeet( const Type *t ) const {
 882   // Perform a fast test for common case; meeting the same types together.
 883   if( this == t ) return this;  // Meeting same type-rep?
 884 
 885   // Meeting TOP with anything?
 886   if( _base == Top ) return t;
 887 
 888   // Meeting BOTTOM with anything?
 889   if( _base == Bottom ) return BOTTOM;
 890 
 891   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 892   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 893   switch (t->base()) {  // Switch on original type
 894 
 895   // Cut in half the number of cases I must handle.  Only need cases for when
 896   // the given enum "t->type" is less than or equal to the local enum "type".
 897   case FloatCon:
 898   case DoubleCon:
 899   case Int:
 900   case Long:
 901     return t->xmeet(this);
 902 
 903   case OopPtr:
 904     return t->xmeet(this);
 905 
 906   case InstPtr:
 907     return t->xmeet(this);
 908 
 909   case MetadataPtr:
 910   case KlassPtr:
 911     return t->xmeet(this);
 912 
 913   case AryPtr:
 914     return t->xmeet(this);
 915 
 916   case NarrowOop:
 917     return t->xmeet(this);
 918 
 919   case NarrowKlass:
 920     return t->xmeet(this);
 921 
 922   case Bad:                     // Type check
 923   default:                      // Bogus type not in lattice
 924     typerr(t);
 925     return Type::BOTTOM;
 926 
 927   case Bottom:                  // Ye Olde Default
 928     return t;
 929 
 930   case FloatTop:
 931     if( _base == FloatTop ) return this;
 932   case FloatBot:                // Float
 933     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 934     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 935     typerr(t);
 936     return Type::BOTTOM;
 937 
 938   case DoubleTop:
 939     if( _base == DoubleTop ) return this;
 940   case DoubleBot:               // Double
 941     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 942     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 943     typerr(t);
 944     return Type::BOTTOM;
 945 
 946   // These next few cases must match exactly or it is a compile-time error.
 947   case Control:                 // Control of code
 948   case Abio:                    // State of world outside of program
 949   case Memory:
 950     if( _base == t->_base )  return this;
 951     typerr(t);
 952     return Type::BOTTOM;
 953 
 954   case Top:                     // Top of the lattice
 955     return this;
 956   }
 957 
 958   // The type is unchanged
 959   return this;
 960 }
 961 
 962 //-----------------------------filter------------------------------------------
 963 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 964   const Type* ft = join_helper(kills, include_speculative);
 965   if (ft->empty())
 966     return Type::TOP;           // Canonical empty value
 967   return ft;
 968 }
 969 
 970 //------------------------------xdual------------------------------------------
 971 // Compute dual right now.
 972 const Type::TYPES Type::dual_type[Type::lastype] = {
 973   Bad,          // Bad
 974   Control,      // Control
 975   Bottom,       // Top
 976   Bad,          // Int - handled in v-call
 977   Bad,          // Long - handled in v-call
 978   Half,         // Half
 979   Bad,          // NarrowOop - handled in v-call
 980   Bad,          // NarrowKlass - handled in v-call
 981 
 982   Bad,          // Tuple - handled in v-call
 983   Bad,          // Array - handled in v-call
 984   Bad,          // VectorS - handled in v-call
 985   Bad,          // VectorD - handled in v-call
 986   Bad,          // VectorX - handled in v-call
 987   Bad,          // VectorY - handled in v-call
 988   Bad,          // VectorZ - handled in v-call
 989 
 990   Bad,          // AnyPtr - handled in v-call
 991   Bad,          // RawPtr - handled in v-call
 992   Bad,          // OopPtr - handled in v-call
 993   Bad,          // InstPtr - handled in v-call
 994   Bad,          // AryPtr - handled in v-call
 995 
 996   Bad,          //  MetadataPtr - handled in v-call
 997   Bad,          // KlassPtr - handled in v-call
 998 
 999   Bad,          // Function - handled in v-call
1000   Abio,         // Abio
1001   Return_Address,// Return_Address
1002   Memory,       // Memory
1003   FloatBot,     // FloatTop
1004   FloatCon,     // FloatCon
1005   FloatTop,     // FloatBot
1006   DoubleBot,    // DoubleTop
1007   DoubleCon,    // DoubleCon
1008   DoubleTop,    // DoubleBot
1009   Top           // Bottom
1010 };
1011 
1012 const Type *Type::xdual() const {
1013   // Note: the base() accessor asserts the sanity of _base.
1014   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1015   return new Type(_type_info[_base].dual_type);
1016 }
1017 
1018 //------------------------------has_memory-------------------------------------
1019 bool Type::has_memory() const {
1020   Type::TYPES tx = base();
1021   if (tx == Memory) return true;
1022   if (tx == Tuple) {
1023     const TypeTuple *t = is_tuple();
1024     for (uint i=0; i < t->cnt(); i++) {
1025       tx = t->field_at(i)->base();
1026       if (tx == Memory)  return true;
1027     }
1028   }
1029   return false;
1030 }
1031 
1032 #ifndef PRODUCT
1033 //------------------------------dump2------------------------------------------
1034 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1035   st->print("%s", _type_info[_base].msg);
1036 }
1037 
1038 //------------------------------dump-------------------------------------------
1039 void Type::dump_on(outputStream *st) const {
1040   ResourceMark rm;
1041   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1042   dump2(d,1, st);
1043   if (is_ptr_to_narrowoop()) {
1044     st->print(" [narrow]");
1045   } else if (is_ptr_to_narrowklass()) {
1046     st->print(" [narrowklass]");
1047   }
1048 }
1049 
1050 //-----------------------------------------------------------------------------
1051 const char* Type::str(const Type* t) {
1052   stringStream ss;
1053   t->dump_on(&ss);
1054   return ss.as_string();
1055 }
1056 #endif
1057 
1058 //------------------------------singleton--------------------------------------
1059 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1060 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1061 bool Type::singleton(void) const {
1062   return _base == Top || _base == Half;
1063 }
1064 
1065 //------------------------------empty------------------------------------------
1066 // TRUE if Type is a type with no values, FALSE otherwise.
1067 bool Type::empty(void) const {
1068   switch (_base) {
1069   case DoubleTop:
1070   case FloatTop:
1071   case Top:
1072     return true;
1073 
1074   case Half:
1075   case Abio:
1076   case Return_Address:
1077   case Memory:
1078   case Bottom:
1079   case FloatBot:
1080   case DoubleBot:
1081     return false;  // never a singleton, therefore never empty
1082 
1083   default:
1084     ShouldNotReachHere();
1085     return false;
1086   }
1087 }
1088 
1089 //------------------------------dump_stats-------------------------------------
1090 // Dump collected statistics to stderr
1091 #ifndef PRODUCT
1092 void Type::dump_stats() {
1093   tty->print("Types made: %d\n", type_dict()->Size());
1094 }
1095 #endif
1096 
1097 //------------------------------typerr-----------------------------------------
1098 void Type::typerr( const Type *t ) const {
1099 #ifndef PRODUCT
1100   tty->print("\nError mixing types: ");
1101   dump();
1102   tty->print(" and ");
1103   t->dump();
1104   tty->print("\n");
1105 #endif
1106   ShouldNotReachHere();
1107 }
1108 
1109 
1110 //=============================================================================
1111 // Convenience common pre-built types.
1112 const TypeF *TypeF::ZERO;       // Floating point zero
1113 const TypeF *TypeF::ONE;        // Floating point one
1114 const TypeF *TypeF::POS_INF;    // Floating point positive infinity
1115 const TypeF *TypeF::NEG_INF;    // Floating point negative infinity
1116 
1117 //------------------------------make-------------------------------------------
1118 // Create a float constant
1119 const TypeF *TypeF::make(float f) {
1120   return (TypeF*)(new TypeF(f))->hashcons();
1121 }
1122 
1123 //------------------------------meet-------------------------------------------
1124 // Compute the MEET of two types.  It returns a new Type object.
1125 const Type *TypeF::xmeet( const Type *t ) const {
1126   // Perform a fast test for common case; meeting the same types together.
1127   if( this == t ) return this;  // Meeting same type-rep?
1128 
1129   // Current "this->_base" is FloatCon
1130   switch (t->base()) {          // Switch on original type
1131   case AnyPtr:                  // Mixing with oops happens when javac
1132   case RawPtr:                  // reuses local variables
1133   case OopPtr:
1134   case InstPtr:
1135   case AryPtr:
1136   case MetadataPtr:
1137   case KlassPtr:
1138   case NarrowOop:
1139   case NarrowKlass:
1140   case Int:
1141   case Long:
1142   case DoubleTop:
1143   case DoubleCon:
1144   case DoubleBot:
1145   case Bottom:                  // Ye Olde Default
1146     return Type::BOTTOM;
1147 
1148   case FloatBot:
1149     return t;
1150 
1151   default:                      // All else is a mistake
1152     typerr(t);
1153 
1154   case FloatCon:                // Float-constant vs Float-constant?
1155     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1156                                 // must compare bitwise as positive zero, negative zero and NaN have
1157                                 // all the same representation in C++
1158       return FLOAT;             // Return generic float
1159                                 // Equal constants
1160   case Top:
1161   case FloatTop:
1162     break;                      // Return the float constant
1163   }
1164   return this;                  // Return the float constant
1165 }
1166 
1167 //------------------------------xdual------------------------------------------
1168 // Dual: symmetric
1169 const Type *TypeF::xdual() const {
1170   return this;
1171 }
1172 
1173 //------------------------------eq---------------------------------------------
1174 // Structural equality check for Type representations
1175 bool TypeF::eq(const Type *t) const {
1176   // Bitwise comparison to distinguish between +/-0. These values must be treated
1177   // as different to be consistent with C1 and the interpreter.
1178   return (jint_cast(_f) == jint_cast(t->getf()));
1179 }
1180 
1181 //------------------------------hash-------------------------------------------
1182 // Type-specific hashing function.
1183 int TypeF::hash(void) const {
1184   return *(int*)(&_f);
1185 }
1186 
1187 //------------------------------is_finite--------------------------------------
1188 // Has a finite value
1189 bool TypeF::is_finite() const {
1190   return g_isfinite(getf()) != 0;
1191 }
1192 
1193 //------------------------------is_nan-----------------------------------------
1194 // Is not a number (NaN)
1195 bool TypeF::is_nan()    const {
1196   return g_isnan(getf()) != 0;
1197 }
1198 
1199 //------------------------------dump2------------------------------------------
1200 // Dump float constant Type
1201 #ifndef PRODUCT
1202 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1203   Type::dump2(d,depth, st);
1204   st->print("%f", _f);
1205 }
1206 #endif
1207 
1208 //------------------------------singleton--------------------------------------
1209 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1210 // constants (Ldi nodes).  Singletons are integer, float or double constants
1211 // or a single symbol.
1212 bool TypeF::singleton(void) const {
1213   return true;                  // Always a singleton
1214 }
1215 
1216 bool TypeF::empty(void) const {
1217   return false;                 // always exactly a singleton
1218 }
1219 
1220 //=============================================================================
1221 // Convenience common pre-built types.
1222 const TypeD *TypeD::ZERO;       // Floating point zero
1223 const TypeD *TypeD::ONE;        // Floating point one
1224 const TypeD *TypeD::POS_INF;    // Floating point positive infinity
1225 const TypeD *TypeD::NEG_INF;    // Floating point negative infinity
1226 
1227 //------------------------------make-------------------------------------------
1228 const TypeD *TypeD::make(double d) {
1229   return (TypeD*)(new TypeD(d))->hashcons();
1230 }
1231 
1232 //------------------------------meet-------------------------------------------
1233 // Compute the MEET of two types.  It returns a new Type object.
1234 const Type *TypeD::xmeet( const Type *t ) const {
1235   // Perform a fast test for common case; meeting the same types together.
1236   if( this == t ) return this;  // Meeting same type-rep?
1237 
1238   // Current "this->_base" is DoubleCon
1239   switch (t->base()) {          // Switch on original type
1240   case AnyPtr:                  // Mixing with oops happens when javac
1241   case RawPtr:                  // reuses local variables
1242   case OopPtr:
1243   case InstPtr:
1244   case AryPtr:
1245   case MetadataPtr:
1246   case KlassPtr:
1247   case NarrowOop:
1248   case NarrowKlass:
1249   case Int:
1250   case Long:
1251   case FloatTop:
1252   case FloatCon:
1253   case FloatBot:
1254   case Bottom:                  // Ye Olde Default
1255     return Type::BOTTOM;
1256 
1257   case DoubleBot:
1258     return t;
1259 
1260   default:                      // All else is a mistake
1261     typerr(t);
1262 
1263   case DoubleCon:               // Double-constant vs Double-constant?
1264     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1265       return DOUBLE;            // Return generic double
1266   case Top:
1267   case DoubleTop:
1268     break;
1269   }
1270   return this;                  // Return the double constant
1271 }
1272 
1273 //------------------------------xdual------------------------------------------
1274 // Dual: symmetric
1275 const Type *TypeD::xdual() const {
1276   return this;
1277 }
1278 
1279 //------------------------------eq---------------------------------------------
1280 // Structural equality check for Type representations
1281 bool TypeD::eq(const Type *t) const {
1282   // Bitwise comparison to distinguish between +/-0. These values must be treated
1283   // as different to be consistent with C1 and the interpreter.
1284   return (jlong_cast(_d) == jlong_cast(t->getd()));
1285 }
1286 
1287 //------------------------------hash-------------------------------------------
1288 // Type-specific hashing function.
1289 int TypeD::hash(void) const {
1290   return *(int*)(&_d);
1291 }
1292 
1293 //------------------------------is_finite--------------------------------------
1294 // Has a finite value
1295 bool TypeD::is_finite() const {
1296   return g_isfinite(getd()) != 0;
1297 }
1298 
1299 //------------------------------is_nan-----------------------------------------
1300 // Is not a number (NaN)
1301 bool TypeD::is_nan()    const {
1302   return g_isnan(getd()) != 0;
1303 }
1304 
1305 //------------------------------dump2------------------------------------------
1306 // Dump double constant Type
1307 #ifndef PRODUCT
1308 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1309   Type::dump2(d,depth,st);
1310   st->print("%f", _d);
1311 }
1312 #endif
1313 
1314 //------------------------------singleton--------------------------------------
1315 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1316 // constants (Ldi nodes).  Singletons are integer, float or double constants
1317 // or a single symbol.
1318 bool TypeD::singleton(void) const {
1319   return true;                  // Always a singleton
1320 }
1321 
1322 bool TypeD::empty(void) const {
1323   return false;                 // always exactly a singleton
1324 }
1325 
1326 //=============================================================================
1327 // Convience common pre-built types.
1328 const TypeInt *TypeInt::MINUS_1;// -1
1329 const TypeInt *TypeInt::ZERO;   // 0
1330 const TypeInt *TypeInt::ONE;    // 1
1331 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1332 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1333 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1334 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1335 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1336 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1337 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1338 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1339 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1340 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1341 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1342 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1343 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1344 const TypeInt *TypeInt::INT;    // 32-bit integers
1345 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1346 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1347 
1348 //------------------------------TypeInt----------------------------------------
1349 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1350 }
1351 
1352 //------------------------------make-------------------------------------------
1353 const TypeInt *TypeInt::make( jint lo ) {
1354   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1355 }
1356 
1357 static int normalize_int_widen( jint lo, jint hi, int w ) {
1358   // Certain normalizations keep us sane when comparing types.
1359   // The 'SMALLINT' covers constants and also CC and its relatives.
1360   if (lo <= hi) {
1361     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1362     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1363   } else {
1364     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1365     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1366   }
1367   return w;
1368 }
1369 
1370 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1371   w = normalize_int_widen(lo, hi, w);
1372   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1373 }
1374 
1375 //------------------------------meet-------------------------------------------
1376 // Compute the MEET of two types.  It returns a new Type representation object
1377 // with reference count equal to the number of Types pointing at it.
1378 // Caller should wrap a Types around it.
1379 const Type *TypeInt::xmeet( const Type *t ) const {
1380   // Perform a fast test for common case; meeting the same types together.
1381   if( this == t ) return this;  // Meeting same type?
1382 
1383   // Currently "this->_base" is a TypeInt
1384   switch (t->base()) {          // Switch on original type
1385   case AnyPtr:                  // Mixing with oops happens when javac
1386   case RawPtr:                  // reuses local variables
1387   case OopPtr:
1388   case InstPtr:
1389   case AryPtr:
1390   case MetadataPtr:
1391   case KlassPtr:
1392   case NarrowOop:
1393   case NarrowKlass:
1394   case Long:
1395   case FloatTop:
1396   case FloatCon:
1397   case FloatBot:
1398   case DoubleTop:
1399   case DoubleCon:
1400   case DoubleBot:
1401   case Bottom:                  // Ye Olde Default
1402     return Type::BOTTOM;
1403   default:                      // All else is a mistake
1404     typerr(t);
1405   case Top:                     // No change
1406     return this;
1407   case Int:                     // Int vs Int?
1408     break;
1409   }
1410 
1411   // Expand covered set
1412   const TypeInt *r = t->is_int();
1413   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1414 }
1415 
1416 //------------------------------xdual------------------------------------------
1417 // Dual: reverse hi & lo; flip widen
1418 const Type *TypeInt::xdual() const {
1419   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1420   return new TypeInt(_hi,_lo,w);
1421 }
1422 
1423 //------------------------------widen------------------------------------------
1424 // Only happens for optimistic top-down optimizations.
1425 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1426   // Coming from TOP or such; no widening
1427   if( old->base() != Int ) return this;
1428   const TypeInt *ot = old->is_int();
1429 
1430   // If new guy is equal to old guy, no widening
1431   if( _lo == ot->_lo && _hi == ot->_hi )
1432     return old;
1433 
1434   // If new guy contains old, then we widened
1435   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1436     // New contains old
1437     // If new guy is already wider than old, no widening
1438     if( _widen > ot->_widen ) return this;
1439     // If old guy was a constant, do not bother
1440     if (ot->_lo == ot->_hi)  return this;
1441     // Now widen new guy.
1442     // Check for widening too far
1443     if (_widen == WidenMax) {
1444       int max = max_jint;
1445       int min = min_jint;
1446       if (limit->isa_int()) {
1447         max = limit->is_int()->_hi;
1448         min = limit->is_int()->_lo;
1449       }
1450       if (min < _lo && _hi < max) {
1451         // If neither endpoint is extremal yet, push out the endpoint
1452         // which is closer to its respective limit.
1453         if (_lo >= 0 ||                 // easy common case
1454             (juint)(_lo - min) >= (juint)(max - _hi)) {
1455           // Try to widen to an unsigned range type of 31 bits:
1456           return make(_lo, max, WidenMax);
1457         } else {
1458           return make(min, _hi, WidenMax);
1459         }
1460       }
1461       return TypeInt::INT;
1462     }
1463     // Returned widened new guy
1464     return make(_lo,_hi,_widen+1);
1465   }
1466 
1467   // If old guy contains new, then we probably widened too far & dropped to
1468   // bottom.  Return the wider fellow.
1469   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1470     return old;
1471 
1472   //fatal("Integer value range is not subset");
1473   //return this;
1474   return TypeInt::INT;
1475 }
1476 
1477 //------------------------------narrow---------------------------------------
1478 // Only happens for pessimistic optimizations.
1479 const Type *TypeInt::narrow( const Type *old ) const {
1480   if (_lo >= _hi)  return this;   // already narrow enough
1481   if (old == NULL)  return this;
1482   const TypeInt* ot = old->isa_int();
1483   if (ot == NULL)  return this;
1484   jint olo = ot->_lo;
1485   jint ohi = ot->_hi;
1486 
1487   // If new guy is equal to old guy, no narrowing
1488   if (_lo == olo && _hi == ohi)  return old;
1489 
1490   // If old guy was maximum range, allow the narrowing
1491   if (olo == min_jint && ohi == max_jint)  return this;
1492 
1493   if (_lo < olo || _hi > ohi)
1494     return this;                // doesn't narrow; pretty wierd
1495 
1496   // The new type narrows the old type, so look for a "death march".
1497   // See comments on PhaseTransform::saturate.
1498   juint nrange = (juint)_hi - _lo;
1499   juint orange = (juint)ohi - olo;
1500   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1501     // Use the new type only if the range shrinks a lot.
1502     // We do not want the optimizer computing 2^31 point by point.
1503     return old;
1504   }
1505 
1506   return this;
1507 }
1508 
1509 //-----------------------------filter------------------------------------------
1510 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1511   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1512   if (ft == NULL || ft->empty())
1513     return Type::TOP;           // Canonical empty value
1514   if (ft->_widen < this->_widen) {
1515     // Do not allow the value of kill->_widen to affect the outcome.
1516     // The widen bits must be allowed to run freely through the graph.
1517     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1518   }
1519   return ft;
1520 }
1521 
1522 //------------------------------eq---------------------------------------------
1523 // Structural equality check for Type representations
1524 bool TypeInt::eq( const Type *t ) const {
1525   const TypeInt *r = t->is_int(); // Handy access
1526   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1527 }
1528 
1529 //------------------------------hash-------------------------------------------
1530 // Type-specific hashing function.
1531 int TypeInt::hash(void) const {
1532   return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int));
1533 }
1534 
1535 //------------------------------is_finite--------------------------------------
1536 // Has a finite value
1537 bool TypeInt::is_finite() const {
1538   return true;
1539 }
1540 
1541 //------------------------------dump2------------------------------------------
1542 // Dump TypeInt
1543 #ifndef PRODUCT
1544 static const char* intname(char* buf, jint n) {
1545   if (n == min_jint)
1546     return "min";
1547   else if (n < min_jint + 10000)
1548     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1549   else if (n == max_jint)
1550     return "max";
1551   else if (n > max_jint - 10000)
1552     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1553   else
1554     sprintf(buf, INT32_FORMAT, n);
1555   return buf;
1556 }
1557 
1558 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1559   char buf[40], buf2[40];
1560   if (_lo == min_jint && _hi == max_jint)
1561     st->print("int");
1562   else if (is_con())
1563     st->print("int:%s", intname(buf, get_con()));
1564   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1565     st->print("bool");
1566   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1567     st->print("byte");
1568   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1569     st->print("char");
1570   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1571     st->print("short");
1572   else if (_hi == max_jint)
1573     st->print("int:>=%s", intname(buf, _lo));
1574   else if (_lo == min_jint)
1575     st->print("int:<=%s", intname(buf, _hi));
1576   else
1577     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1578 
1579   if (_widen != 0 && this != TypeInt::INT)
1580     st->print(":%.*s", _widen, "wwww");
1581 }
1582 #endif
1583 
1584 //------------------------------singleton--------------------------------------
1585 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1586 // constants.
1587 bool TypeInt::singleton(void) const {
1588   return _lo >= _hi;
1589 }
1590 
1591 bool TypeInt::empty(void) const {
1592   return _lo > _hi;
1593 }
1594 
1595 //=============================================================================
1596 // Convenience common pre-built types.
1597 const TypeLong *TypeLong::MINUS_1;// -1
1598 const TypeLong *TypeLong::ZERO; // 0
1599 const TypeLong *TypeLong::ONE;  // 1
1600 const TypeLong *TypeLong::POS;  // >=0
1601 const TypeLong *TypeLong::LONG; // 64-bit integers
1602 const TypeLong *TypeLong::INT;  // 32-bit subrange
1603 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1604 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1605 
1606 //------------------------------TypeLong---------------------------------------
1607 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1608 }
1609 
1610 //------------------------------make-------------------------------------------
1611 const TypeLong *TypeLong::make( jlong lo ) {
1612   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1613 }
1614 
1615 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1616   // Certain normalizations keep us sane when comparing types.
1617   // The 'SMALLINT' covers constants.
1618   if (lo <= hi) {
1619     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1620     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1621   } else {
1622     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1623     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1624   }
1625   return w;
1626 }
1627 
1628 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1629   w = normalize_long_widen(lo, hi, w);
1630   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1631 }
1632 
1633 
1634 //------------------------------meet-------------------------------------------
1635 // Compute the MEET of two types.  It returns a new Type representation object
1636 // with reference count equal to the number of Types pointing at it.
1637 // Caller should wrap a Types around it.
1638 const Type *TypeLong::xmeet( const Type *t ) const {
1639   // Perform a fast test for common case; meeting the same types together.
1640   if( this == t ) return this;  // Meeting same type?
1641 
1642   // Currently "this->_base" is a TypeLong
1643   switch (t->base()) {          // Switch on original type
1644   case AnyPtr:                  // Mixing with oops happens when javac
1645   case RawPtr:                  // reuses local variables
1646   case OopPtr:
1647   case InstPtr:
1648   case AryPtr:
1649   case MetadataPtr:
1650   case KlassPtr:
1651   case NarrowOop:
1652   case NarrowKlass:
1653   case Int:
1654   case FloatTop:
1655   case FloatCon:
1656   case FloatBot:
1657   case DoubleTop:
1658   case DoubleCon:
1659   case DoubleBot:
1660   case Bottom:                  // Ye Olde Default
1661     return Type::BOTTOM;
1662   default:                      // All else is a mistake
1663     typerr(t);
1664   case Top:                     // No change
1665     return this;
1666   case Long:                    // Long vs Long?
1667     break;
1668   }
1669 
1670   // Expand covered set
1671   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1672   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1673 }
1674 
1675 //------------------------------xdual------------------------------------------
1676 // Dual: reverse hi & lo; flip widen
1677 const Type *TypeLong::xdual() const {
1678   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1679   return new TypeLong(_hi,_lo,w);
1680 }
1681 
1682 //------------------------------widen------------------------------------------
1683 // Only happens for optimistic top-down optimizations.
1684 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1685   // Coming from TOP or such; no widening
1686   if( old->base() != Long ) return this;
1687   const TypeLong *ot = old->is_long();
1688 
1689   // If new guy is equal to old guy, no widening
1690   if( _lo == ot->_lo && _hi == ot->_hi )
1691     return old;
1692 
1693   // If new guy contains old, then we widened
1694   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1695     // New contains old
1696     // If new guy is already wider than old, no widening
1697     if( _widen > ot->_widen ) return this;
1698     // If old guy was a constant, do not bother
1699     if (ot->_lo == ot->_hi)  return this;
1700     // Now widen new guy.
1701     // Check for widening too far
1702     if (_widen == WidenMax) {
1703       jlong max = max_jlong;
1704       jlong min = min_jlong;
1705       if (limit->isa_long()) {
1706         max = limit->is_long()->_hi;
1707         min = limit->is_long()->_lo;
1708       }
1709       if (min < _lo && _hi < max) {
1710         // If neither endpoint is extremal yet, push out the endpoint
1711         // which is closer to its respective limit.
1712         if (_lo >= 0 ||                 // easy common case
1713             ((julong)_lo - min) >= ((julong)max - _hi)) {
1714           // Try to widen to an unsigned range type of 32/63 bits:
1715           if (max >= max_juint && _hi < max_juint)
1716             return make(_lo, max_juint, WidenMax);
1717           else
1718             return make(_lo, max, WidenMax);
1719         } else {
1720           return make(min, _hi, WidenMax);
1721         }
1722       }
1723       return TypeLong::LONG;
1724     }
1725     // Returned widened new guy
1726     return make(_lo,_hi,_widen+1);
1727   }
1728 
1729   // If old guy contains new, then we probably widened too far & dropped to
1730   // bottom.  Return the wider fellow.
1731   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1732     return old;
1733 
1734   //  fatal("Long value range is not subset");
1735   // return this;
1736   return TypeLong::LONG;
1737 }
1738 
1739 //------------------------------narrow----------------------------------------
1740 // Only happens for pessimistic optimizations.
1741 const Type *TypeLong::narrow( const Type *old ) const {
1742   if (_lo >= _hi)  return this;   // already narrow enough
1743   if (old == NULL)  return this;
1744   const TypeLong* ot = old->isa_long();
1745   if (ot == NULL)  return this;
1746   jlong olo = ot->_lo;
1747   jlong ohi = ot->_hi;
1748 
1749   // If new guy is equal to old guy, no narrowing
1750   if (_lo == olo && _hi == ohi)  return old;
1751 
1752   // If old guy was maximum range, allow the narrowing
1753   if (olo == min_jlong && ohi == max_jlong)  return this;
1754 
1755   if (_lo < olo || _hi > ohi)
1756     return this;                // doesn't narrow; pretty wierd
1757 
1758   // The new type narrows the old type, so look for a "death march".
1759   // See comments on PhaseTransform::saturate.
1760   julong nrange = _hi - _lo;
1761   julong orange = ohi - olo;
1762   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1763     // Use the new type only if the range shrinks a lot.
1764     // We do not want the optimizer computing 2^31 point by point.
1765     return old;
1766   }
1767 
1768   return this;
1769 }
1770 
1771 //-----------------------------filter------------------------------------------
1772 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1773   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1774   if (ft == NULL || ft->empty())
1775     return Type::TOP;           // Canonical empty value
1776   if (ft->_widen < this->_widen) {
1777     // Do not allow the value of kill->_widen to affect the outcome.
1778     // The widen bits must be allowed to run freely through the graph.
1779     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1780   }
1781   return ft;
1782 }
1783 
1784 //------------------------------eq---------------------------------------------
1785 // Structural equality check for Type representations
1786 bool TypeLong::eq( const Type *t ) const {
1787   const TypeLong *r = t->is_long(); // Handy access
1788   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1789 }
1790 
1791 //------------------------------hash-------------------------------------------
1792 // Type-specific hashing function.
1793 int TypeLong::hash(void) const {
1794   return (int)(_lo+_hi+_widen+(int)Type::Long);
1795 }
1796 
1797 //------------------------------is_finite--------------------------------------
1798 // Has a finite value
1799 bool TypeLong::is_finite() const {
1800   return true;
1801 }
1802 
1803 //------------------------------dump2------------------------------------------
1804 // Dump TypeLong
1805 #ifndef PRODUCT
1806 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1807   if (n > x) {
1808     if (n >= x + 10000)  return NULL;
1809     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1810   } else if (n < x) {
1811     if (n <= x - 10000)  return NULL;
1812     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1813   } else {
1814     return xname;
1815   }
1816   return buf;
1817 }
1818 
1819 static const char* longname(char* buf, jlong n) {
1820   const char* str;
1821   if (n == min_jlong)
1822     return "min";
1823   else if (n < min_jlong + 10000)
1824     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1825   else if (n == max_jlong)
1826     return "max";
1827   else if (n > max_jlong - 10000)
1828     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1829   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1830     return str;
1831   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1832     return str;
1833   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1834     return str;
1835   else
1836     sprintf(buf, JLONG_FORMAT, n);
1837   return buf;
1838 }
1839 
1840 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1841   char buf[80], buf2[80];
1842   if (_lo == min_jlong && _hi == max_jlong)
1843     st->print("long");
1844   else if (is_con())
1845     st->print("long:%s", longname(buf, get_con()));
1846   else if (_hi == max_jlong)
1847     st->print("long:>=%s", longname(buf, _lo));
1848   else if (_lo == min_jlong)
1849     st->print("long:<=%s", longname(buf, _hi));
1850   else
1851     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1852 
1853   if (_widen != 0 && this != TypeLong::LONG)
1854     st->print(":%.*s", _widen, "wwww");
1855 }
1856 #endif
1857 
1858 //------------------------------singleton--------------------------------------
1859 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1860 // constants
1861 bool TypeLong::singleton(void) const {
1862   return _lo >= _hi;
1863 }
1864 
1865 bool TypeLong::empty(void) const {
1866   return _lo > _hi;
1867 }
1868 
1869 //=============================================================================
1870 // Convenience common pre-built types.
1871 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1872 const TypeTuple *TypeTuple::IFFALSE;
1873 const TypeTuple *TypeTuple::IFTRUE;
1874 const TypeTuple *TypeTuple::IFNEITHER;
1875 const TypeTuple *TypeTuple::LOOPBODY;
1876 const TypeTuple *TypeTuple::MEMBAR;
1877 const TypeTuple *TypeTuple::STORECONDITIONAL;
1878 const TypeTuple *TypeTuple::START_I2C;
1879 const TypeTuple *TypeTuple::INT_PAIR;
1880 const TypeTuple *TypeTuple::LONG_PAIR;
1881 const TypeTuple *TypeTuple::INT_CC_PAIR;
1882 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1883 
1884 
1885 //------------------------------make-------------------------------------------
1886 // Make a TypeTuple from the range of a method signature
1887 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1888   ciType* return_type = sig->return_type();
1889   uint arg_cnt = return_type->size();
1890   const Type **field_array = fields(arg_cnt);
1891   switch (return_type->basic_type()) {
1892   case T_LONG:
1893     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1894     field_array[TypeFunc::Parms+1] = Type::HALF;
1895     break;
1896   case T_DOUBLE:
1897     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1898     field_array[TypeFunc::Parms+1] = Type::HALF;
1899     break;
1900   case T_OBJECT:
1901   case T_ARRAY:
1902   case T_BOOLEAN:
1903   case T_CHAR:
1904   case T_FLOAT:
1905   case T_BYTE:
1906   case T_SHORT:
1907   case T_INT:
1908     field_array[TypeFunc::Parms] = get_const_type(return_type);
1909     break;
1910   case T_VOID:
1911     break;
1912   default:
1913     ShouldNotReachHere();
1914   }
1915   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1916 }
1917 
1918 // Make a TypeTuple from the domain of a method signature
1919 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1920   uint arg_cnt = sig->size();
1921 
1922   uint pos = TypeFunc::Parms;
1923   const Type **field_array;
1924   if (recv != NULL) {
1925     arg_cnt++;
1926     field_array = fields(arg_cnt);
1927     // Use get_const_type here because it respects UseUniqueSubclasses:
1928     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1929   } else {
1930     field_array = fields(arg_cnt);
1931   }
1932 
1933   int i = 0;
1934   while (pos < TypeFunc::Parms + arg_cnt) {
1935     ciType* type = sig->type_at(i);
1936 
1937     switch (type->basic_type()) {
1938     case T_LONG:
1939       field_array[pos++] = TypeLong::LONG;
1940       field_array[pos++] = Type::HALF;
1941       break;
1942     case T_DOUBLE:
1943       field_array[pos++] = Type::DOUBLE;
1944       field_array[pos++] = Type::HALF;
1945       break;
1946     case T_OBJECT:
1947     case T_ARRAY:
1948     case T_FLOAT:
1949     case T_INT:
1950       field_array[pos++] = get_const_type(type);
1951       break;
1952     case T_BOOLEAN:
1953     case T_CHAR:
1954     case T_BYTE:
1955     case T_SHORT:
1956       field_array[pos++] = TypeInt::INT;
1957       break;
1958     default:
1959       ShouldNotReachHere();
1960     }
1961     i++;
1962   }
1963 
1964   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1965 }
1966 
1967 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1968   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1969 }
1970 
1971 //------------------------------fields-----------------------------------------
1972 // Subroutine call type with space allocated for argument types
1973 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
1974 const Type **TypeTuple::fields( uint arg_cnt ) {
1975   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1976   flds[TypeFunc::Control  ] = Type::CONTROL;
1977   flds[TypeFunc::I_O      ] = Type::ABIO;
1978   flds[TypeFunc::Memory   ] = Type::MEMORY;
1979   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1980   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1981 
1982   return flds;
1983 }
1984 
1985 //------------------------------meet-------------------------------------------
1986 // Compute the MEET of two types.  It returns a new Type object.
1987 const Type *TypeTuple::xmeet( const Type *t ) const {
1988   // Perform a fast test for common case; meeting the same types together.
1989   if( this == t ) return this;  // Meeting same type-rep?
1990 
1991   // Current "this->_base" is Tuple
1992   switch (t->base()) {          // switch on original type
1993 
1994   case Bottom:                  // Ye Olde Default
1995     return t;
1996 
1997   default:                      // All else is a mistake
1998     typerr(t);
1999 
2000   case Tuple: {                 // Meeting 2 signatures?
2001     const TypeTuple *x = t->is_tuple();
2002     assert( _cnt == x->_cnt, "" );
2003     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2004     for( uint i=0; i<_cnt; i++ )
2005       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2006     return TypeTuple::make(_cnt,fields);
2007   }
2008   case Top:
2009     break;
2010   }
2011   return this;                  // Return the double constant
2012 }
2013 
2014 //------------------------------xdual------------------------------------------
2015 // Dual: compute field-by-field dual
2016 const Type *TypeTuple::xdual() const {
2017   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2018   for( uint i=0; i<_cnt; i++ )
2019     fields[i] = _fields[i]->dual();
2020   return new TypeTuple(_cnt,fields);
2021 }
2022 
2023 //------------------------------eq---------------------------------------------
2024 // Structural equality check for Type representations
2025 bool TypeTuple::eq( const Type *t ) const {
2026   const TypeTuple *s = (const TypeTuple *)t;
2027   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2028   for (uint i = 0; i < _cnt; i++)
2029     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2030       return false;             // Missed
2031   return true;
2032 }
2033 
2034 //------------------------------hash-------------------------------------------
2035 // Type-specific hashing function.
2036 int TypeTuple::hash(void) const {
2037   intptr_t sum = _cnt;
2038   for( uint i=0; i<_cnt; i++ )
2039     sum += (intptr_t)_fields[i];     // Hash on pointers directly
2040   return sum;
2041 }
2042 
2043 //------------------------------dump2------------------------------------------
2044 // Dump signature Type
2045 #ifndef PRODUCT
2046 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2047   st->print("{");
2048   if( !depth || d[this] ) {     // Check for recursive print
2049     st->print("...}");
2050     return;
2051   }
2052   d.Insert((void*)this, (void*)this);   // Stop recursion
2053   if( _cnt ) {
2054     uint i;
2055     for( i=0; i<_cnt-1; i++ ) {
2056       st->print("%d:", i);
2057       _fields[i]->dump2(d, depth-1, st);
2058       st->print(", ");
2059     }
2060     st->print("%d:", i);
2061     _fields[i]->dump2(d, depth-1, st);
2062   }
2063   st->print("}");
2064 }
2065 #endif
2066 
2067 //------------------------------singleton--------------------------------------
2068 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2069 // constants (Ldi nodes).  Singletons are integer, float or double constants
2070 // or a single symbol.
2071 bool TypeTuple::singleton(void) const {
2072   return false;                 // Never a singleton
2073 }
2074 
2075 bool TypeTuple::empty(void) const {
2076   for( uint i=0; i<_cnt; i++ ) {
2077     if (_fields[i]->empty())  return true;
2078   }
2079   return false;
2080 }
2081 
2082 //=============================================================================
2083 // Convenience common pre-built types.
2084 
2085 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2086   // Certain normalizations keep us sane when comparing types.
2087   // We do not want arrayOop variables to differ only by the wideness
2088   // of their index types.  Pick minimum wideness, since that is the
2089   // forced wideness of small ranges anyway.
2090   if (size->_widen != Type::WidenMin)
2091     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2092   else
2093     return size;
2094 }
2095 
2096 //------------------------------make-------------------------------------------
2097 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2098   if (UseCompressedOops && elem->isa_oopptr()) {
2099     elem = elem->make_narrowoop();
2100   }
2101   size = normalize_array_size(size);
2102   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2103 }
2104 
2105 //------------------------------meet-------------------------------------------
2106 // Compute the MEET of two types.  It returns a new Type object.
2107 const Type *TypeAry::xmeet( const Type *t ) const {
2108   // Perform a fast test for common case; meeting the same types together.
2109   if( this == t ) return this;  // Meeting same type-rep?
2110 
2111   // Current "this->_base" is Ary
2112   switch (t->base()) {          // switch on original type
2113 
2114   case Bottom:                  // Ye Olde Default
2115     return t;
2116 
2117   default:                      // All else is a mistake
2118     typerr(t);
2119 
2120   case Array: {                 // Meeting 2 arrays?
2121     const TypeAry *a = t->is_ary();
2122     return TypeAry::make(_elem->meet_speculative(a->_elem),
2123                          _size->xmeet(a->_size)->is_int(),
2124                          _stable && a->_stable);
2125   }
2126   case Top:
2127     break;
2128   }
2129   return this;                  // Return the double constant
2130 }
2131 
2132 //------------------------------xdual------------------------------------------
2133 // Dual: compute field-by-field dual
2134 const Type *TypeAry::xdual() const {
2135   const TypeInt* size_dual = _size->dual()->is_int();
2136   size_dual = normalize_array_size(size_dual);
2137   return new TypeAry(_elem->dual(), size_dual, !_stable);
2138 }
2139 
2140 //------------------------------eq---------------------------------------------
2141 // Structural equality check for Type representations
2142 bool TypeAry::eq( const Type *t ) const {
2143   const TypeAry *a = (const TypeAry*)t;
2144   return _elem == a->_elem &&
2145     _stable == a->_stable &&
2146     _size == a->_size;
2147 }
2148 
2149 //------------------------------hash-------------------------------------------
2150 // Type-specific hashing function.
2151 int TypeAry::hash(void) const {
2152   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2153 }
2154 
2155 /**
2156  * Return same type without a speculative part in the element
2157  */
2158 const Type* TypeAry::remove_speculative() const {
2159   return make(_elem->remove_speculative(), _size, _stable);
2160 }
2161 
2162 /**
2163  * Return same type with cleaned up speculative part of element
2164  */
2165 const Type* TypeAry::cleanup_speculative() const {
2166   return make(_elem->cleanup_speculative(), _size, _stable);
2167 }
2168 
2169 /**
2170  * Return same type but with a different inline depth (used for speculation)
2171  *
2172  * @param depth  depth to meet with
2173  */
2174 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2175   if (!UseInlineDepthForSpeculativeTypes) {
2176     return this;
2177   }
2178   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2179 }
2180 
2181 //----------------------interface_vs_oop---------------------------------------
2182 #ifdef ASSERT
2183 bool TypeAry::interface_vs_oop(const Type *t) const {
2184   const TypeAry* t_ary = t->is_ary();
2185   if (t_ary) {
2186     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2187     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2188     if(this_ptr != NULL && t_ptr != NULL) {
2189       return this_ptr->interface_vs_oop(t_ptr);
2190     }
2191   }
2192   return false;
2193 }
2194 #endif
2195 
2196 //------------------------------dump2------------------------------------------
2197 #ifndef PRODUCT
2198 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2199   if (_stable)  st->print("stable:");
2200   _elem->dump2(d, depth, st);
2201   st->print("[");
2202   _size->dump2(d, depth, st);
2203   st->print("]");
2204 }
2205 #endif
2206 
2207 //------------------------------singleton--------------------------------------
2208 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2209 // constants (Ldi nodes).  Singletons are integer, float or double constants
2210 // or a single symbol.
2211 bool TypeAry::singleton(void) const {
2212   return false;                 // Never a singleton
2213 }
2214 
2215 bool TypeAry::empty(void) const {
2216   return _elem->empty() || _size->empty();
2217 }
2218 
2219 //--------------------------ary_must_be_exact----------------------------------
2220 bool TypeAry::ary_must_be_exact() const {
2221   // This logic looks at the element type of an array, and returns true
2222   // if the element type is either a primitive or a final instance class.
2223   // In such cases, an array built on this ary must have no subclasses.
2224   if (_elem == BOTTOM)      return false;  // general array not exact
2225   if (_elem == TOP   )      return false;  // inverted general array not exact
2226   const TypeOopPtr*  toop = NULL;
2227   if (UseCompressedOops && _elem->isa_narrowoop()) {
2228     toop = _elem->make_ptr()->isa_oopptr();
2229   } else {
2230     toop = _elem->isa_oopptr();
2231   }
2232   if (!toop)                return true;   // a primitive type, like int
2233   ciKlass* tklass = toop->klass();
2234   if (tklass == NULL)       return false;  // unloaded class
2235   if (!tklass->is_loaded()) return false;  // unloaded class
2236   const TypeInstPtr* tinst;
2237   if (_elem->isa_narrowoop())
2238     tinst = _elem->make_ptr()->isa_instptr();
2239   else
2240     tinst = _elem->isa_instptr();
2241   if (tinst)
2242     return tklass->as_instance_klass()->is_final();
2243   const TypeAryPtr*  tap;
2244   if (_elem->isa_narrowoop())
2245     tap = _elem->make_ptr()->isa_aryptr();
2246   else
2247     tap = _elem->isa_aryptr();
2248   if (tap)
2249     return tap->ary()->ary_must_be_exact();
2250   return false;
2251 }
2252 
2253 //==============================TypeVect=======================================
2254 // Convenience common pre-built types.
2255 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2256 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2257 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2258 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2259 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2260 
2261 //------------------------------make-------------------------------------------
2262 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2263   BasicType elem_bt = elem->array_element_basic_type();
2264   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2265   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2266   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2267   int size = length * type2aelembytes(elem_bt);
2268   switch (Matcher::vector_ideal_reg(size)) {
2269   case Op_VecS:
2270     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2271   case Op_RegL:
2272   case Op_VecD:
2273   case Op_RegD:
2274     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2275   case Op_VecX:
2276     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2277   case Op_VecY:
2278     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2279   case Op_VecZ:
2280     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2281   }
2282  ShouldNotReachHere();
2283   return NULL;
2284 }
2285 
2286 //------------------------------meet-------------------------------------------
2287 // Compute the MEET of two types.  It returns a new Type object.
2288 const Type *TypeVect::xmeet( const Type *t ) const {
2289   // Perform a fast test for common case; meeting the same types together.
2290   if( this == t ) return this;  // Meeting same type-rep?
2291 
2292   // Current "this->_base" is Vector
2293   switch (t->base()) {          // switch on original type
2294 
2295   case Bottom:                  // Ye Olde Default
2296     return t;
2297 
2298   default:                      // All else is a mistake
2299     typerr(t);
2300 
2301   case VectorS:
2302   case VectorD:
2303   case VectorX:
2304   case VectorY:
2305   case VectorZ: {                // Meeting 2 vectors?
2306     const TypeVect* v = t->is_vect();
2307     assert(  base() == v->base(), "");
2308     assert(length() == v->length(), "");
2309     assert(element_basic_type() == v->element_basic_type(), "");
2310     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2311   }
2312   case Top:
2313     break;
2314   }
2315   return this;
2316 }
2317 
2318 //------------------------------xdual------------------------------------------
2319 // Dual: compute field-by-field dual
2320 const Type *TypeVect::xdual() const {
2321   return new TypeVect(base(), _elem->dual(), _length);
2322 }
2323 
2324 //------------------------------eq---------------------------------------------
2325 // Structural equality check for Type representations
2326 bool TypeVect::eq(const Type *t) const {
2327   const TypeVect *v = t->is_vect();
2328   return (_elem == v->_elem) && (_length == v->_length);
2329 }
2330 
2331 //------------------------------hash-------------------------------------------
2332 // Type-specific hashing function.
2333 int TypeVect::hash(void) const {
2334   return (intptr_t)_elem + (intptr_t)_length;
2335 }
2336 
2337 //------------------------------singleton--------------------------------------
2338 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2339 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2340 // constant value (when vector is created with Replicate code).
2341 bool TypeVect::singleton(void) const {
2342 // There is no Con node for vectors yet.
2343 //  return _elem->singleton();
2344   return false;
2345 }
2346 
2347 bool TypeVect::empty(void) const {
2348   return _elem->empty();
2349 }
2350 
2351 //------------------------------dump2------------------------------------------
2352 #ifndef PRODUCT
2353 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2354   switch (base()) {
2355   case VectorS:
2356     st->print("vectors["); break;
2357   case VectorD:
2358     st->print("vectord["); break;
2359   case VectorX:
2360     st->print("vectorx["); break;
2361   case VectorY:
2362     st->print("vectory["); break;
2363   case VectorZ:
2364     st->print("vectorz["); break;
2365   default:
2366     ShouldNotReachHere();
2367   }
2368   st->print("%d]:{", _length);
2369   _elem->dump2(d, depth, st);
2370   st->print("}");
2371 }
2372 #endif
2373 
2374 
2375 //=============================================================================
2376 // Convenience common pre-built types.
2377 const TypePtr *TypePtr::NULL_PTR;
2378 const TypePtr *TypePtr::NOTNULL;
2379 const TypePtr *TypePtr::BOTTOM;
2380 
2381 //------------------------------meet-------------------------------------------
2382 // Meet over the PTR enum
2383 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2384   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2385   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2386   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2387   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2388   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2389   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2390   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2391 };
2392 
2393 //------------------------------make-------------------------------------------
2394 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2395   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2396 }
2397 
2398 //------------------------------cast_to_ptr_type-------------------------------
2399 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2400   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2401   if( ptr == _ptr ) return this;
2402   return make(_base, ptr, _offset, _speculative, _inline_depth);
2403 }
2404 
2405 //------------------------------get_con----------------------------------------
2406 intptr_t TypePtr::get_con() const {
2407   assert( _ptr == Null, "" );
2408   return _offset;
2409 }
2410 
2411 //------------------------------meet-------------------------------------------
2412 // Compute the MEET of two types.  It returns a new Type object.
2413 const Type *TypePtr::xmeet(const Type *t) const {
2414   const Type* res = xmeet_helper(t);
2415   if (res->isa_ptr() == NULL) {
2416     return res;
2417   }
2418 
2419   const TypePtr* res_ptr = res->is_ptr();
2420   if (res_ptr->speculative() != NULL) {
2421     // type->speculative() == NULL means that speculation is no better
2422     // than type, i.e. type->speculative() == type. So there are 2
2423     // ways to represent the fact that we have no useful speculative
2424     // data and we should use a single one to be able to test for
2425     // equality between types. Check whether type->speculative() ==
2426     // type and set speculative to NULL if it is the case.
2427     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2428       return res_ptr->remove_speculative();
2429     }
2430   }
2431 
2432   return res;
2433 }
2434 
2435 const Type *TypePtr::xmeet_helper(const Type *t) const {
2436   // Perform a fast test for common case; meeting the same types together.
2437   if( this == t ) return this;  // Meeting same type-rep?
2438 
2439   // Current "this->_base" is AnyPtr
2440   switch (t->base()) {          // switch on original type
2441   case Int:                     // Mixing ints & oops happens when javac
2442   case Long:                    // reuses local variables
2443   case FloatTop:
2444   case FloatCon:
2445   case FloatBot:
2446   case DoubleTop:
2447   case DoubleCon:
2448   case DoubleBot:
2449   case NarrowOop:
2450   case NarrowKlass:
2451   case Bottom:                  // Ye Olde Default
2452     return Type::BOTTOM;
2453   case Top:
2454     return this;
2455 
2456   case AnyPtr: {                // Meeting to AnyPtrs
2457     const TypePtr *tp = t->is_ptr();
2458     const TypePtr* speculative = xmeet_speculative(tp);
2459     int depth = meet_inline_depth(tp->inline_depth());
2460     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2461   }
2462   case RawPtr:                  // For these, flip the call around to cut down
2463   case OopPtr:
2464   case InstPtr:                 // on the cases I have to handle.
2465   case AryPtr:
2466   case MetadataPtr:
2467   case KlassPtr:
2468     return t->xmeet(this);      // Call in reverse direction
2469   default:                      // All else is a mistake
2470     typerr(t);
2471 
2472   }
2473   return this;
2474 }
2475 
2476 //------------------------------meet_offset------------------------------------
2477 int TypePtr::meet_offset( int offset ) const {
2478   // Either is 'TOP' offset?  Return the other offset!
2479   if( _offset == OffsetTop ) return offset;
2480   if( offset == OffsetTop ) return _offset;
2481   // If either is different, return 'BOTTOM' offset
2482   if( _offset != offset ) return OffsetBot;
2483   return _offset;
2484 }
2485 
2486 //------------------------------dual_offset------------------------------------
2487 int TypePtr::dual_offset( ) const {
2488   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2489   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2490   return _offset;               // Map everything else into self
2491 }
2492 
2493 //------------------------------xdual------------------------------------------
2494 // Dual: compute field-by-field dual
2495 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2496   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2497 };
2498 const Type *TypePtr::xdual() const {
2499   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2500 }
2501 
2502 //------------------------------xadd_offset------------------------------------
2503 int TypePtr::xadd_offset( intptr_t offset ) const {
2504   // Adding to 'TOP' offset?  Return 'TOP'!
2505   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2506   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2507   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2508   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2509   offset += (intptr_t)_offset;
2510   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2511 
2512   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2513   // It is possible to construct a negative offset during PhaseCCP
2514 
2515   return (int)offset;        // Sum valid offsets
2516 }
2517 
2518 //------------------------------add_offset-------------------------------------
2519 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2520   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2521 }
2522 
2523 //------------------------------eq---------------------------------------------
2524 // Structural equality check for Type representations
2525 bool TypePtr::eq( const Type *t ) const {
2526   const TypePtr *a = (const TypePtr*)t;
2527   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2528 }
2529 
2530 //------------------------------hash-------------------------------------------
2531 // Type-specific hashing function.
2532 int TypePtr::hash(void) const {
2533   return java_add(java_add((jint)_ptr, (jint)_offset), java_add((jint)hash_speculative(), (jint)_inline_depth));
2534 ;
2535 }
2536 
2537 /**
2538  * Return same type without a speculative part
2539  */
2540 const Type* TypePtr::remove_speculative() const {
2541   if (_speculative == NULL) {
2542     return this;
2543   }
2544   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2545   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2546 }
2547 
2548 /**
2549  * Return same type but drop speculative part if we know we won't use
2550  * it
2551  */
2552 const Type* TypePtr::cleanup_speculative() const {
2553   if (speculative() == NULL) {
2554     return this;
2555   }
2556   const Type* no_spec = remove_speculative();
2557   // If this is NULL_PTR then we don't need the speculative type
2558   // (with_inline_depth in case the current type inline depth is
2559   // InlineDepthTop)
2560   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2561     return no_spec;
2562   }
2563   if (above_centerline(speculative()->ptr())) {
2564     return no_spec;
2565   }
2566   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2567   // If the speculative may be null and is an inexact klass then it
2568   // doesn't help
2569   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2570       (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2571     return no_spec;
2572   }
2573   return this;
2574 }
2575 
2576 /**
2577  * dual of the speculative part of the type
2578  */
2579 const TypePtr* TypePtr::dual_speculative() const {
2580   if (_speculative == NULL) {
2581     return NULL;
2582   }
2583   return _speculative->dual()->is_ptr();
2584 }
2585 
2586 /**
2587  * meet of the speculative parts of 2 types
2588  *
2589  * @param other  type to meet with
2590  */
2591 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2592   bool this_has_spec = (_speculative != NULL);
2593   bool other_has_spec = (other->speculative() != NULL);
2594 
2595   if (!this_has_spec && !other_has_spec) {
2596     return NULL;
2597   }
2598 
2599   // If we are at a point where control flow meets and one branch has
2600   // a speculative type and the other has not, we meet the speculative
2601   // type of one branch with the actual type of the other. If the
2602   // actual type is exact and the speculative is as well, then the
2603   // result is a speculative type which is exact and we can continue
2604   // speculation further.
2605   const TypePtr* this_spec = _speculative;
2606   const TypePtr* other_spec = other->speculative();
2607 
2608   if (!this_has_spec) {
2609     this_spec = this;
2610   }
2611 
2612   if (!other_has_spec) {
2613     other_spec = other;
2614   }
2615 
2616   return this_spec->meet(other_spec)->is_ptr();
2617 }
2618 
2619 /**
2620  * dual of the inline depth for this type (used for speculation)
2621  */
2622 int TypePtr::dual_inline_depth() const {
2623   return -inline_depth();
2624 }
2625 
2626 /**
2627  * meet of 2 inline depths (used for speculation)
2628  *
2629  * @param depth  depth to meet with
2630  */
2631 int TypePtr::meet_inline_depth(int depth) const {
2632   return MAX2(inline_depth(), depth);
2633 }
2634 
2635 /**
2636  * Are the speculative parts of 2 types equal?
2637  *
2638  * @param other  type to compare this one to
2639  */
2640 bool TypePtr::eq_speculative(const TypePtr* other) const {
2641   if (_speculative == NULL || other->speculative() == NULL) {
2642     return _speculative == other->speculative();
2643   }
2644 
2645   if (_speculative->base() != other->speculative()->base()) {
2646     return false;
2647   }
2648 
2649   return _speculative->eq(other->speculative());
2650 }
2651 
2652 /**
2653  * Hash of the speculative part of the type
2654  */
2655 int TypePtr::hash_speculative() const {
2656   if (_speculative == NULL) {
2657     return 0;
2658   }
2659 
2660   return _speculative->hash();
2661 }
2662 
2663 /**
2664  * add offset to the speculative part of the type
2665  *
2666  * @param offset  offset to add
2667  */
2668 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2669   if (_speculative == NULL) {
2670     return NULL;
2671   }
2672   return _speculative->add_offset(offset)->is_ptr();
2673 }
2674 
2675 /**
2676  * return exact klass from the speculative type if there's one
2677  */
2678 ciKlass* TypePtr::speculative_type() const {
2679   if (_speculative != NULL && _speculative->isa_oopptr()) {
2680     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2681     if (speculative->klass_is_exact()) {
2682       return speculative->klass();
2683     }
2684   }
2685   return NULL;
2686 }
2687 
2688 /**
2689  * return true if speculative type may be null
2690  */
2691 bool TypePtr::speculative_maybe_null() const {
2692   if (_speculative != NULL) {
2693     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2694     return speculative->maybe_null();
2695   }
2696   return true;
2697 }
2698 
2699 bool TypePtr::speculative_always_null() const {
2700   if (_speculative != NULL) {
2701     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2702     return speculative == TypePtr::NULL_PTR;
2703   }
2704   return false;
2705 }
2706 
2707 /**
2708  * Same as TypePtr::speculative_type() but return the klass only if
2709  * the speculative tells us is not null
2710  */
2711 ciKlass* TypePtr::speculative_type_not_null() const {
2712   if (speculative_maybe_null()) {
2713     return NULL;
2714   }
2715   return speculative_type();
2716 }
2717 
2718 /**
2719  * Check whether new profiling would improve speculative type
2720  *
2721  * @param   exact_kls    class from profiling
2722  * @param   inline_depth inlining depth of profile point
2723  *
2724  * @return  true if type profile is valuable
2725  */
2726 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2727   // no profiling?
2728   if (exact_kls == NULL) {
2729     return false;
2730   }
2731   if (speculative() == TypePtr::NULL_PTR) {
2732     return false;
2733   }
2734   // no speculative type or non exact speculative type?
2735   if (speculative_type() == NULL) {
2736     return true;
2737   }
2738   // If the node already has an exact speculative type keep it,
2739   // unless it was provided by profiling that is at a deeper
2740   // inlining level. Profiling at a higher inlining depth is
2741   // expected to be less accurate.
2742   if (_speculative->inline_depth() == InlineDepthBottom) {
2743     return false;
2744   }
2745   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2746   return inline_depth < _speculative->inline_depth();
2747 }
2748 
2749 /**
2750  * Check whether new profiling would improve ptr (= tells us it is non
2751  * null)
2752  *
2753  * @param   ptr_kind always null or not null?
2754  *
2755  * @return  true if ptr profile is valuable
2756  */
2757 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
2758   // profiling doesn't tell us anything useful
2759   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
2760     return false;
2761   }
2762   // We already know this is not null
2763   if (!this->maybe_null()) {
2764     return false;
2765   }
2766   // We already know the speculative type cannot be null
2767   if (!speculative_maybe_null()) {
2768     return false;
2769   }
2770   // We already know this is always null
2771   if (this == TypePtr::NULL_PTR) {
2772     return false;
2773   }
2774   // We already know the speculative type is always null
2775   if (speculative_always_null()) {
2776     return false;
2777   }
2778   if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) {
2779     return false;
2780   }
2781   return true;
2782 }
2783 
2784 //------------------------------dump2------------------------------------------
2785 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2786   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2787 };
2788 
2789 #ifndef PRODUCT
2790 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2791   if( _ptr == Null ) st->print("NULL");
2792   else st->print("%s *", ptr_msg[_ptr]);
2793   if( _offset == OffsetTop ) st->print("+top");
2794   else if( _offset == OffsetBot ) st->print("+bot");
2795   else if( _offset ) st->print("+%d", _offset);
2796   dump_inline_depth(st);
2797   dump_speculative(st);
2798 }
2799 
2800 /**
2801  *dump the speculative part of the type
2802  */
2803 void TypePtr::dump_speculative(outputStream *st) const {
2804   if (_speculative != NULL) {
2805     st->print(" (speculative=");
2806     _speculative->dump_on(st);
2807     st->print(")");
2808   }
2809 }
2810 
2811 /**
2812  *dump the inline depth of the type
2813  */
2814 void TypePtr::dump_inline_depth(outputStream *st) const {
2815   if (_inline_depth != InlineDepthBottom) {
2816     if (_inline_depth == InlineDepthTop) {
2817       st->print(" (inline_depth=InlineDepthTop)");
2818     } else {
2819       st->print(" (inline_depth=%d)", _inline_depth);
2820     }
2821   }
2822 }
2823 #endif
2824 
2825 //------------------------------singleton--------------------------------------
2826 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2827 // constants
2828 bool TypePtr::singleton(void) const {
2829   // TopPTR, Null, AnyNull, Constant are all singletons
2830   return (_offset != OffsetBot) && !below_centerline(_ptr);
2831 }
2832 
2833 bool TypePtr::empty(void) const {
2834   return (_offset == OffsetTop) || above_centerline(_ptr);
2835 }
2836 
2837 //=============================================================================
2838 // Convenience common pre-built types.
2839 const TypeRawPtr *TypeRawPtr::BOTTOM;
2840 const TypeRawPtr *TypeRawPtr::NOTNULL;
2841 
2842 //------------------------------make-------------------------------------------
2843 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2844   assert( ptr != Constant, "what is the constant?" );
2845   assert( ptr != Null, "Use TypePtr for NULL" );
2846   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2847 }
2848 
2849 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2850   assert( bits, "Use TypePtr for NULL" );
2851   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2852 }
2853 
2854 //------------------------------cast_to_ptr_type-------------------------------
2855 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2856   assert( ptr != Constant, "what is the constant?" );
2857   assert( ptr != Null, "Use TypePtr for NULL" );
2858   assert( _bits==0, "Why cast a constant address?");
2859   if( ptr == _ptr ) return this;
2860   return make(ptr);
2861 }
2862 
2863 //------------------------------get_con----------------------------------------
2864 intptr_t TypeRawPtr::get_con() const {
2865   assert( _ptr == Null || _ptr == Constant, "" );
2866   return (intptr_t)_bits;
2867 }
2868 
2869 //------------------------------meet-------------------------------------------
2870 // Compute the MEET of two types.  It returns a new Type object.
2871 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2872   // Perform a fast test for common case; meeting the same types together.
2873   if( this == t ) return this;  // Meeting same type-rep?
2874 
2875   // Current "this->_base" is RawPtr
2876   switch( t->base() ) {         // switch on original type
2877   case Bottom:                  // Ye Olde Default
2878     return t;
2879   case Top:
2880     return this;
2881   case AnyPtr:                  // Meeting to AnyPtrs
2882     break;
2883   case RawPtr: {                // might be top, bot, any/not or constant
2884     enum PTR tptr = t->is_ptr()->ptr();
2885     enum PTR ptr = meet_ptr( tptr );
2886     if( ptr == Constant ) {     // Cannot be equal constants, so...
2887       if( tptr == Constant && _ptr != Constant)  return t;
2888       if( _ptr == Constant && tptr != Constant)  return this;
2889       ptr = NotNull;            // Fall down in lattice
2890     }
2891     return make( ptr );
2892   }
2893 
2894   case OopPtr:
2895   case InstPtr:
2896   case AryPtr:
2897   case MetadataPtr:
2898   case KlassPtr:
2899     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2900   default:                      // All else is a mistake
2901     typerr(t);
2902   }
2903 
2904   // Found an AnyPtr type vs self-RawPtr type
2905   const TypePtr *tp = t->is_ptr();
2906   switch (tp->ptr()) {
2907   case TypePtr::TopPTR:  return this;
2908   case TypePtr::BotPTR:  return t;
2909   case TypePtr::Null:
2910     if( _ptr == TypePtr::TopPTR ) return t;
2911     return TypeRawPtr::BOTTOM;
2912   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
2913   case TypePtr::AnyNull:
2914     if( _ptr == TypePtr::Constant) return this;
2915     return make( meet_ptr(TypePtr::AnyNull) );
2916   default: ShouldNotReachHere();
2917   }
2918   return this;
2919 }
2920 
2921 //------------------------------xdual------------------------------------------
2922 // Dual: compute field-by-field dual
2923 const Type *TypeRawPtr::xdual() const {
2924   return new TypeRawPtr( dual_ptr(), _bits );
2925 }
2926 
2927 //------------------------------add_offset-------------------------------------
2928 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2929   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2930   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2931   if( offset == 0 ) return this; // No change
2932   switch (_ptr) {
2933   case TypePtr::TopPTR:
2934   case TypePtr::BotPTR:
2935   case TypePtr::NotNull:
2936     return this;
2937   case TypePtr::Null:
2938   case TypePtr::Constant: {
2939     address bits = _bits+offset;
2940     if ( bits == 0 ) return TypePtr::NULL_PTR;
2941     return make( bits );
2942   }
2943   default:  ShouldNotReachHere();
2944   }
2945   return NULL;                  // Lint noise
2946 }
2947 
2948 //------------------------------eq---------------------------------------------
2949 // Structural equality check for Type representations
2950 bool TypeRawPtr::eq( const Type *t ) const {
2951   const TypeRawPtr *a = (const TypeRawPtr*)t;
2952   return _bits == a->_bits && TypePtr::eq(t);
2953 }
2954 
2955 //------------------------------hash-------------------------------------------
2956 // Type-specific hashing function.
2957 int TypeRawPtr::hash(void) const {
2958   return (intptr_t)_bits + TypePtr::hash();
2959 }
2960 
2961 //------------------------------dump2------------------------------------------
2962 #ifndef PRODUCT
2963 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2964   if( _ptr == Constant )
2965     st->print(INTPTR_FORMAT, p2i(_bits));
2966   else
2967     st->print("rawptr:%s", ptr_msg[_ptr]);
2968 }
2969 #endif
2970 
2971 //=============================================================================
2972 // Convenience common pre-built type.
2973 const TypeOopPtr *TypeOopPtr::BOTTOM;
2974 
2975 //------------------------------TypeOopPtr-------------------------------------
2976 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
2977                        int instance_id, const TypePtr* speculative, int inline_depth)
2978   : TypePtr(t, ptr, offset, speculative, inline_depth),
2979     _const_oop(o), _klass(k),
2980     _klass_is_exact(xk),
2981     _is_ptr_to_narrowoop(false),
2982     _is_ptr_to_narrowklass(false),
2983     _is_ptr_to_boxed_value(false),
2984     _instance_id(instance_id) {
2985   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2986       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2987     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2988   }
2989 #ifdef _LP64
2990   if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) {
2991     if (_offset == oopDesc::klass_offset_in_bytes()) {
2992       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2993     } else if (klass() == NULL) {
2994       // Array with unknown body type
2995       assert(this->isa_aryptr(), "only arrays without klass");
2996       _is_ptr_to_narrowoop = UseCompressedOops;
2997     } else if (this->isa_aryptr()) {
2998       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2999                              _offset != arrayOopDesc::length_offset_in_bytes());
3000     } else if (klass()->is_instance_klass()) {
3001       ciInstanceKlass* ik = klass()->as_instance_klass();
3002       ciField* field = NULL;
3003       if (this->isa_klassptr()) {
3004         // Perm objects don't use compressed references
3005       } else if (_offset == OffsetBot || _offset == OffsetTop) {
3006         // unsafe access
3007         _is_ptr_to_narrowoop = UseCompressedOops;
3008       } else {
3009         assert(this->isa_instptr(), "must be an instance ptr.");
3010 
3011         if (klass() == ciEnv::current()->Class_klass() &&
3012             (_offset == java_lang_Class::klass_offset() ||
3013              _offset == java_lang_Class::array_klass_offset())) {
3014           // Special hidden fields from the Class.
3015           assert(this->isa_instptr(), "must be an instance ptr.");
3016           _is_ptr_to_narrowoop = false;
3017         } else if (klass() == ciEnv::current()->Class_klass() &&
3018                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3019           // Static fields
3020           assert(o != NULL, "must be constant");
3021           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
3022           ciField* field = k->get_field_by_offset(_offset, true);
3023           if (field != NULL) {
3024             BasicType basic_elem_type = field->layout_type();
3025             _is_ptr_to_narrowoop = UseCompressedOops && is_reference_type(basic_elem_type);
3026           } else {
3027             // unsafe access
3028             _is_ptr_to_narrowoop = UseCompressedOops;
3029           }
3030         } else {
3031           // Instance fields which contains a compressed oop references.
3032           field = ik->get_field_by_offset(_offset, false);
3033           if (field != NULL) {
3034             BasicType basic_elem_type = field->layout_type();
3035             _is_ptr_to_narrowoop = UseCompressedOops && is_reference_type(basic_elem_type);
3036           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3037             // Compile::find_alias_type() cast exactness on all types to verify
3038             // that it does not affect alias type.
3039             _is_ptr_to_narrowoop = UseCompressedOops;
3040           } else {
3041             // Type for the copy start in LibraryCallKit::inline_native_clone().
3042             _is_ptr_to_narrowoop = UseCompressedOops;
3043           }
3044         }
3045       }
3046     }
3047   }
3048 #endif
3049 }
3050 
3051 //------------------------------make-------------------------------------------
3052 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3053                                      const TypePtr* speculative, int inline_depth) {
3054   assert(ptr != Constant, "no constant generic pointers");
3055   ciKlass*  k = Compile::current()->env()->Object_klass();
3056   bool      xk = false;
3057   ciObject* o = NULL;
3058   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3059 }
3060 
3061 
3062 //------------------------------cast_to_ptr_type-------------------------------
3063 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3064   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3065   if( ptr == _ptr ) return this;
3066   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3067 }
3068 
3069 //-----------------------------cast_to_instance_id----------------------------
3070 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3071   // There are no instances of a general oop.
3072   // Return self unchanged.
3073   return this;
3074 }
3075 
3076 //-----------------------------cast_to_exactness-------------------------------
3077 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3078   // There is no such thing as an exact general oop.
3079   // Return self unchanged.
3080   return this;
3081 }
3082 
3083 
3084 //------------------------------as_klass_type----------------------------------
3085 // Return the klass type corresponding to this instance or array type.
3086 // It is the type that is loaded from an object of this type.
3087 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3088   ciKlass* k = klass();
3089   bool    xk = klass_is_exact();
3090   if (k == NULL)
3091     return TypeKlassPtr::OBJECT;
3092   else
3093     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
3094 }
3095 
3096 //------------------------------meet-------------------------------------------
3097 // Compute the MEET of two types.  It returns a new Type object.
3098 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3099   // Perform a fast test for common case; meeting the same types together.
3100   if( this == t ) return this;  // Meeting same type-rep?
3101 
3102   // Current "this->_base" is OopPtr
3103   switch (t->base()) {          // switch on original type
3104 
3105   case Int:                     // Mixing ints & oops happens when javac
3106   case Long:                    // reuses local variables
3107   case FloatTop:
3108   case FloatCon:
3109   case FloatBot:
3110   case DoubleTop:
3111   case DoubleCon:
3112   case DoubleBot:
3113   case NarrowOop:
3114   case NarrowKlass:
3115   case Bottom:                  // Ye Olde Default
3116     return Type::BOTTOM;
3117   case Top:
3118     return this;
3119 
3120   default:                      // All else is a mistake
3121     typerr(t);
3122 
3123   case RawPtr:
3124   case MetadataPtr:
3125   case KlassPtr:
3126     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3127 
3128   case AnyPtr: {
3129     // Found an AnyPtr type vs self-OopPtr type
3130     const TypePtr *tp = t->is_ptr();
3131     int offset = meet_offset(tp->offset());
3132     PTR ptr = meet_ptr(tp->ptr());
3133     const TypePtr* speculative = xmeet_speculative(tp);
3134     int depth = meet_inline_depth(tp->inline_depth());
3135     switch (tp->ptr()) {
3136     case Null:
3137       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3138       // else fall through:
3139     case TopPTR:
3140     case AnyNull: {
3141       int instance_id = meet_instance_id(InstanceTop);
3142       return make(ptr, offset, instance_id, speculative, depth);
3143     }
3144     case BotPTR:
3145     case NotNull:
3146       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3147     default: typerr(t);
3148     }
3149   }
3150 
3151   case OopPtr: {                 // Meeting to other OopPtrs
3152     const TypeOopPtr *tp = t->is_oopptr();
3153     int instance_id = meet_instance_id(tp->instance_id());
3154     const TypePtr* speculative = xmeet_speculative(tp);
3155     int depth = meet_inline_depth(tp->inline_depth());
3156     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3157   }
3158 
3159   case InstPtr:                  // For these, flip the call around to cut down
3160   case AryPtr:
3161     return t->xmeet(this);      // Call in reverse direction
3162 
3163   } // End of switch
3164   return this;                  // Return the double constant
3165 }
3166 
3167 
3168 //------------------------------xdual------------------------------------------
3169 // Dual of a pure heap pointer.  No relevant klass or oop information.
3170 const Type *TypeOopPtr::xdual() const {
3171   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3172   assert(const_oop() == NULL,             "no constants here");
3173   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3174 }
3175 
3176 //--------------------------make_from_klass_common-----------------------------
3177 // Computes the element-type given a klass.
3178 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3179   if (klass->is_instance_klass()) {
3180     Compile* C = Compile::current();
3181     Dependencies* deps = C->dependencies();
3182     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3183     // Element is an instance
3184     bool klass_is_exact = false;
3185     if (klass->is_loaded()) {
3186       // Try to set klass_is_exact.
3187       ciInstanceKlass* ik = klass->as_instance_klass();
3188       klass_is_exact = ik->is_final();
3189       if (!klass_is_exact && klass_change
3190           && deps != NULL && UseUniqueSubclasses) {
3191         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3192         if (sub != NULL) {
3193           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3194           klass = ik = sub;
3195           klass_is_exact = sub->is_final();
3196         }
3197       }
3198       if (!klass_is_exact && try_for_exact && deps != NULL &&
3199           !ik->is_interface() && !ik->has_subklass()) {
3200         // Add a dependence; if concrete subclass added we need to recompile
3201         deps->assert_leaf_type(ik);
3202         klass_is_exact = true;
3203       }
3204     }
3205     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
3206   } else if (klass->is_obj_array_klass()) {
3207     // Element is an object array. Recursively call ourself.
3208     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
3209     bool xk = etype->klass_is_exact();
3210     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3211     // We used to pass NotNull in here, asserting that the sub-arrays
3212     // are all not-null.  This is not true in generally, as code can
3213     // slam NULLs down in the subarrays.
3214     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
3215     return arr;
3216   } else if (klass->is_type_array_klass()) {
3217     // Element is an typeArray
3218     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3219     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3220     // We used to pass NotNull in here, asserting that the array pointer
3221     // is not-null. That was not true in general.
3222     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3223     return arr;
3224   } else {
3225     ShouldNotReachHere();
3226     return NULL;
3227   }
3228 }
3229 
3230 //------------------------------make_from_constant-----------------------------
3231 // Make a java pointer from an oop constant
3232 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3233   assert(!o->is_null_object(), "null object not yet handled here.");
3234 
3235   const bool make_constant = require_constant || o->should_be_constant();
3236 
3237   ciKlass* klass = o->klass();
3238   if (klass->is_instance_klass()) {
3239     // Element is an instance
3240     if (make_constant) {
3241       return TypeInstPtr::make(o);
3242     } else {
3243       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
3244     }
3245   } else if (klass->is_obj_array_klass()) {
3246     // Element is an object array. Recursively call ourself.
3247     const TypeOopPtr *etype =
3248       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
3249     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3250     // We used to pass NotNull in here, asserting that the sub-arrays
3251     // are all not-null.  This is not true in generally, as code can
3252     // slam NULLs down in the subarrays.
3253     if (make_constant) {
3254       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3255     } else {
3256       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3257     }
3258   } else if (klass->is_type_array_klass()) {
3259     // Element is an typeArray
3260     const Type* etype =
3261       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3262     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3263     // We used to pass NotNull in here, asserting that the array pointer
3264     // is not-null. That was not true in general.
3265     if (make_constant) {
3266       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3267     } else {
3268       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3269     }
3270   }
3271 
3272   fatal("unhandled object type");
3273   return NULL;
3274 }
3275 
3276 //------------------------------get_con----------------------------------------
3277 intptr_t TypeOopPtr::get_con() const {
3278   assert( _ptr == Null || _ptr == Constant, "" );
3279   assert( _offset >= 0, "" );
3280 
3281   if (_offset != 0) {
3282     // After being ported to the compiler interface, the compiler no longer
3283     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3284     // to a handle at compile time.  This handle is embedded in the generated
3285     // code and dereferenced at the time the nmethod is made.  Until that time,
3286     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3287     // have access to the addresses!).  This does not seem to currently happen,
3288     // but this assertion here is to help prevent its occurence.
3289     tty->print_cr("Found oop constant with non-zero offset");
3290     ShouldNotReachHere();
3291   }
3292 
3293   return (intptr_t)const_oop()->constant_encoding();
3294 }
3295 
3296 
3297 //-----------------------------filter------------------------------------------
3298 // Do not allow interface-vs.-noninterface joins to collapse to top.
3299 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3300 
3301   const Type* ft = join_helper(kills, include_speculative);
3302   const TypeInstPtr* ftip = ft->isa_instptr();
3303   const TypeInstPtr* ktip = kills->isa_instptr();
3304 
3305   if (ft->empty()) {
3306     // Check for evil case of 'this' being a class and 'kills' expecting an
3307     // interface.  This can happen because the bytecodes do not contain
3308     // enough type info to distinguish a Java-level interface variable
3309     // from a Java-level object variable.  If we meet 2 classes which
3310     // both implement interface I, but their meet is at 'j/l/O' which
3311     // doesn't implement I, we have no way to tell if the result should
3312     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3313     // into a Phi which "knows" it's an Interface type we'll have to
3314     // uplift the type.
3315     if (!empty()) {
3316       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3317         return kills;           // Uplift to interface
3318       }
3319       // Also check for evil cases of 'this' being a class array
3320       // and 'kills' expecting an array of interfaces.
3321       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3322       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3323         return kills;           // Uplift to array of interface
3324       }
3325     }
3326 
3327     return Type::TOP;           // Canonical empty value
3328   }
3329 
3330   // If we have an interface-typed Phi or cast and we narrow to a class type,
3331   // the join should report back the class.  However, if we have a J/L/Object
3332   // class-typed Phi and an interface flows in, it's possible that the meet &
3333   // join report an interface back out.  This isn't possible but happens
3334   // because the type system doesn't interact well with interfaces.
3335   if (ftip != NULL && ktip != NULL &&
3336       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3337       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3338     assert(!ftip->klass_is_exact(), "interface could not be exact");
3339     return ktip->cast_to_ptr_type(ftip->ptr());
3340   }
3341 
3342   return ft;
3343 }
3344 
3345 //------------------------------eq---------------------------------------------
3346 // Structural equality check for Type representations
3347 bool TypeOopPtr::eq( const Type *t ) const {
3348   const TypeOopPtr *a = (const TypeOopPtr*)t;
3349   if (_klass_is_exact != a->_klass_is_exact ||
3350       _instance_id != a->_instance_id)  return false;
3351   ciObject* one = const_oop();
3352   ciObject* two = a->const_oop();
3353   if (one == NULL || two == NULL) {
3354     return (one == two) && TypePtr::eq(t);
3355   } else {
3356     return one->equals(two) && TypePtr::eq(t);
3357   }
3358 }
3359 
3360 //------------------------------hash-------------------------------------------
3361 // Type-specific hashing function.
3362 int TypeOopPtr::hash(void) const {
3363   return
3364     java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact),
3365              java_add((jint)_instance_id, (jint)TypePtr::hash()));
3366 }
3367 
3368 //------------------------------dump2------------------------------------------
3369 #ifndef PRODUCT
3370 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3371   st->print("oopptr:%s", ptr_msg[_ptr]);
3372   if( _klass_is_exact ) st->print(":exact");
3373   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3374   switch( _offset ) {
3375   case OffsetTop: st->print("+top"); break;
3376   case OffsetBot: st->print("+any"); break;
3377   case         0: break;
3378   default:        st->print("+%d",_offset); break;
3379   }
3380   if (_instance_id == InstanceTop)
3381     st->print(",iid=top");
3382   else if (_instance_id != InstanceBot)
3383     st->print(",iid=%d",_instance_id);
3384 
3385   dump_inline_depth(st);
3386   dump_speculative(st);
3387 }
3388 #endif
3389 
3390 //------------------------------singleton--------------------------------------
3391 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3392 // constants
3393 bool TypeOopPtr::singleton(void) const {
3394   // detune optimizer to not generate constant oop + constant offset as a constant!
3395   // TopPTR, Null, AnyNull, Constant are all singletons
3396   return (_offset == 0) && !below_centerline(_ptr);
3397 }
3398 
3399 //------------------------------add_offset-------------------------------------
3400 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3401   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3402 }
3403 
3404 /**
3405  * Return same type without a speculative part
3406  */
3407 const Type* TypeOopPtr::remove_speculative() const {
3408   if (_speculative == NULL) {
3409     return this;
3410   }
3411   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3412   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3413 }
3414 
3415 /**
3416  * Return same type but drop speculative part if we know we won't use
3417  * it
3418  */
3419 const Type* TypeOopPtr::cleanup_speculative() const {
3420   // If the klass is exact and the ptr is not null then there's
3421   // nothing that the speculative type can help us with
3422   if (klass_is_exact() && !maybe_null()) {
3423     return remove_speculative();
3424   }
3425   return TypePtr::cleanup_speculative();
3426 }
3427 
3428 /**
3429  * Return same type but with a different inline depth (used for speculation)
3430  *
3431  * @param depth  depth to meet with
3432  */
3433 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3434   if (!UseInlineDepthForSpeculativeTypes) {
3435     return this;
3436   }
3437   return make(_ptr, _offset, _instance_id, _speculative, depth);
3438 }
3439 
3440 //------------------------------with_instance_id--------------------------------
3441 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const {
3442   assert(_instance_id != -1, "should be known");
3443   return make(_ptr, _offset, instance_id, _speculative, _inline_depth);
3444 }
3445 
3446 //------------------------------meet_instance_id--------------------------------
3447 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3448   // Either is 'TOP' instance?  Return the other instance!
3449   if( _instance_id == InstanceTop ) return  instance_id;
3450   if(  instance_id == InstanceTop ) return _instance_id;
3451   // If either is different, return 'BOTTOM' instance
3452   if( _instance_id != instance_id ) return InstanceBot;
3453   return _instance_id;
3454 }
3455 
3456 //------------------------------dual_instance_id--------------------------------
3457 int TypeOopPtr::dual_instance_id( ) const {
3458   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3459   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3460   return _instance_id;              // Map everything else into self
3461 }
3462 
3463 /**
3464  * Check whether new profiling would improve speculative type
3465  *
3466  * @param   exact_kls    class from profiling
3467  * @param   inline_depth inlining depth of profile point
3468  *
3469  * @return  true if type profile is valuable
3470  */
3471 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3472   // no way to improve an already exact type
3473   if (klass_is_exact()) {
3474     return false;
3475   }
3476   return TypePtr::would_improve_type(exact_kls, inline_depth);
3477 }
3478 
3479 //=============================================================================
3480 // Convenience common pre-built types.
3481 const TypeInstPtr *TypeInstPtr::NOTNULL;
3482 const TypeInstPtr *TypeInstPtr::BOTTOM;
3483 const TypeInstPtr *TypeInstPtr::MIRROR;
3484 const TypeInstPtr *TypeInstPtr::MARK;
3485 const TypeInstPtr *TypeInstPtr::KLASS;
3486 
3487 //------------------------------TypeInstPtr-------------------------------------
3488 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
3489                          int instance_id, const TypePtr* speculative, int inline_depth)
3490   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3491     _name(k->name()) {
3492    assert(k != NULL &&
3493           (k->is_loaded() || o == NULL),
3494           "cannot have constants with non-loaded klass");
3495 };
3496 
3497 //------------------------------make-------------------------------------------
3498 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3499                                      ciKlass* k,
3500                                      bool xk,
3501                                      ciObject* o,
3502                                      int offset,
3503                                      int instance_id,
3504                                      const TypePtr* speculative,
3505                                      int inline_depth) {
3506   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3507   // Either const_oop() is NULL or else ptr is Constant
3508   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3509           "constant pointers must have a value supplied" );
3510   // Ptr is never Null
3511   assert( ptr != Null, "NULL pointers are not typed" );
3512 
3513   assert(instance_id <= 0 || xk, "instances are always exactly typed");
3514   if (ptr == Constant) {
3515     // Note:  This case includes meta-object constants, such as methods.
3516     xk = true;
3517   } else if (k->is_loaded()) {
3518     ciInstanceKlass* ik = k->as_instance_klass();
3519     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3520     if (xk && ik->is_interface())  xk = false;  // no exact interface
3521   }
3522 
3523   // Now hash this baby
3524   TypeInstPtr *result =
3525     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3526 
3527   return result;
3528 }
3529 
3530 /**
3531  *  Create constant type for a constant boxed value
3532  */
3533 const Type* TypeInstPtr::get_const_boxed_value() const {
3534   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3535   assert((const_oop() != NULL), "should be called only for constant object");
3536   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3537   BasicType bt = constant.basic_type();
3538   switch (bt) {
3539     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3540     case T_INT:      return TypeInt::make(constant.as_int());
3541     case T_CHAR:     return TypeInt::make(constant.as_char());
3542     case T_BYTE:     return TypeInt::make(constant.as_byte());
3543     case T_SHORT:    return TypeInt::make(constant.as_short());
3544     case T_FLOAT:    return TypeF::make(constant.as_float());
3545     case T_DOUBLE:   return TypeD::make(constant.as_double());
3546     case T_LONG:     return TypeLong::make(constant.as_long());
3547     default:         break;
3548   }
3549   fatal("Invalid boxed value type '%s'", type2name(bt));
3550   return NULL;
3551 }
3552 
3553 //------------------------------cast_to_ptr_type-------------------------------
3554 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3555   if( ptr == _ptr ) return this;
3556   // Reconstruct _sig info here since not a problem with later lazy
3557   // construction, _sig will show up on demand.
3558   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3559 }
3560 
3561 
3562 //-----------------------------cast_to_exactness-------------------------------
3563 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3564   if( klass_is_exact == _klass_is_exact ) return this;
3565   if (!_klass->is_loaded())  return this;
3566   ciInstanceKlass* ik = _klass->as_instance_klass();
3567   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3568   if( ik->is_interface() )              return this;  // cannot set xk
3569   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3570 }
3571 
3572 //-----------------------------cast_to_instance_id----------------------------
3573 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3574   if( instance_id == _instance_id ) return this;
3575   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3576 }
3577 
3578 //------------------------------xmeet_unloaded---------------------------------
3579 // Compute the MEET of two InstPtrs when at least one is unloaded.
3580 // Assume classes are different since called after check for same name/class-loader
3581 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3582     int off = meet_offset(tinst->offset());
3583     PTR ptr = meet_ptr(tinst->ptr());
3584     int instance_id = meet_instance_id(tinst->instance_id());
3585     const TypePtr* speculative = xmeet_speculative(tinst);
3586     int depth = meet_inline_depth(tinst->inline_depth());
3587 
3588     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3589     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3590     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3591       //
3592       // Meet unloaded class with java/lang/Object
3593       //
3594       // Meet
3595       //          |                     Unloaded Class
3596       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3597       //  ===================================================================
3598       //   TOP    | ..........................Unloaded......................|
3599       //  AnyNull |  U-AN    |................Unloaded......................|
3600       // Constant | ... O-NN .................................. |   O-BOT   |
3601       //  NotNull | ... O-NN .................................. |   O-BOT   |
3602       //  BOTTOM  | ........................Object-BOTTOM ..................|
3603       //
3604       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3605       //
3606       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3607       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3608       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3609       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3610         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3611         else                                      { return TypeInstPtr::NOTNULL; }
3612       }
3613       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3614 
3615       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3616     }
3617 
3618     // Both are unloaded, not the same class, not Object
3619     // Or meet unloaded with a different loaded class, not java/lang/Object
3620     if( ptr != TypePtr::BotPTR ) {
3621       return TypeInstPtr::NOTNULL;
3622     }
3623     return TypeInstPtr::BOTTOM;
3624 }
3625 
3626 
3627 //------------------------------meet-------------------------------------------
3628 // Compute the MEET of two types.  It returns a new Type object.
3629 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3630   // Perform a fast test for common case; meeting the same types together.
3631   if( this == t ) return this;  // Meeting same type-rep?
3632 
3633   // Current "this->_base" is Pointer
3634   switch (t->base()) {          // switch on original type
3635 
3636   case Int:                     // Mixing ints & oops happens when javac
3637   case Long:                    // reuses local variables
3638   case FloatTop:
3639   case FloatCon:
3640   case FloatBot:
3641   case DoubleTop:
3642   case DoubleCon:
3643   case DoubleBot:
3644   case NarrowOop:
3645   case NarrowKlass:
3646   case Bottom:                  // Ye Olde Default
3647     return Type::BOTTOM;
3648   case Top:
3649     return this;
3650 
3651   default:                      // All else is a mistake
3652     typerr(t);
3653 
3654   case MetadataPtr:
3655   case KlassPtr:
3656   case RawPtr: return TypePtr::BOTTOM;
3657 
3658   case AryPtr: {                // All arrays inherit from Object class
3659     const TypeAryPtr *tp = t->is_aryptr();
3660     int offset = meet_offset(tp->offset());
3661     PTR ptr = meet_ptr(tp->ptr());
3662     int instance_id = meet_instance_id(tp->instance_id());
3663     const TypePtr* speculative = xmeet_speculative(tp);
3664     int depth = meet_inline_depth(tp->inline_depth());
3665     switch (ptr) {
3666     case TopPTR:
3667     case AnyNull:                // Fall 'down' to dual of object klass
3668       // For instances when a subclass meets a superclass we fall
3669       // below the centerline when the superclass is exact. We need to
3670       // do the same here.
3671       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3672         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3673       } else {
3674         // cannot subclass, so the meet has to fall badly below the centerline
3675         ptr = NotNull;
3676         instance_id = InstanceBot;
3677         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3678       }
3679     case Constant:
3680     case NotNull:
3681     case BotPTR:                // Fall down to object klass
3682       // LCA is object_klass, but if we subclass from the top we can do better
3683       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3684         // If 'this' (InstPtr) is above the centerline and it is Object class
3685         // then we can subclass in the Java class hierarchy.
3686         // For instances when a subclass meets a superclass we fall
3687         // below the centerline when the superclass is exact. We need
3688         // to do the same here.
3689         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3690           // that is, tp's array type is a subtype of my klass
3691           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3692                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3693         }
3694       }
3695       // The other case cannot happen, since I cannot be a subtype of an array.
3696       // The meet falls down to Object class below centerline.
3697       if( ptr == Constant )
3698          ptr = NotNull;
3699       instance_id = InstanceBot;
3700       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3701     default: typerr(t);
3702     }
3703   }
3704 
3705   case OopPtr: {                // Meeting to OopPtrs
3706     // Found a OopPtr type vs self-InstPtr type
3707     const TypeOopPtr *tp = t->is_oopptr();
3708     int offset = meet_offset(tp->offset());
3709     PTR ptr = meet_ptr(tp->ptr());
3710     switch (tp->ptr()) {
3711     case TopPTR:
3712     case AnyNull: {
3713       int instance_id = meet_instance_id(InstanceTop);
3714       const TypePtr* speculative = xmeet_speculative(tp);
3715       int depth = meet_inline_depth(tp->inline_depth());
3716       return make(ptr, klass(), klass_is_exact(),
3717                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3718     }
3719     case NotNull:
3720     case BotPTR: {
3721       int instance_id = meet_instance_id(tp->instance_id());
3722       const TypePtr* speculative = xmeet_speculative(tp);
3723       int depth = meet_inline_depth(tp->inline_depth());
3724       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3725     }
3726     default: typerr(t);
3727     }
3728   }
3729 
3730   case AnyPtr: {                // Meeting to AnyPtrs
3731     // Found an AnyPtr type vs self-InstPtr type
3732     const TypePtr *tp = t->is_ptr();
3733     int offset = meet_offset(tp->offset());
3734     PTR ptr = meet_ptr(tp->ptr());
3735     int instance_id = meet_instance_id(InstanceTop);
3736     const TypePtr* speculative = xmeet_speculative(tp);
3737     int depth = meet_inline_depth(tp->inline_depth());
3738     switch (tp->ptr()) {
3739     case Null:
3740       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3741       // else fall through to AnyNull
3742     case TopPTR:
3743     case AnyNull: {
3744       return make(ptr, klass(), klass_is_exact(),
3745                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3746     }
3747     case NotNull:
3748     case BotPTR:
3749       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3750     default: typerr(t);
3751     }
3752   }
3753 
3754   /*
3755                  A-top         }
3756                /   |   \       }  Tops
3757            B-top A-any C-top   }
3758               | /  |  \ |      }  Any-nulls
3759            B-any   |   C-any   }
3760               |    |    |
3761            B-con A-con C-con   } constants; not comparable across classes
3762               |    |    |
3763            B-not   |   C-not   }
3764               | \  |  / |      }  not-nulls
3765            B-bot A-not C-bot   }
3766                \   |   /       }  Bottoms
3767                  A-bot         }
3768   */
3769 
3770   case InstPtr: {                // Meeting 2 Oops?
3771     // Found an InstPtr sub-type vs self-InstPtr type
3772     const TypeInstPtr *tinst = t->is_instptr();
3773     int off = meet_offset( tinst->offset() );
3774     PTR ptr = meet_ptr( tinst->ptr() );
3775     int instance_id = meet_instance_id(tinst->instance_id());
3776     const TypePtr* speculative = xmeet_speculative(tinst);
3777     int depth = meet_inline_depth(tinst->inline_depth());
3778 
3779     // Check for easy case; klasses are equal (and perhaps not loaded!)
3780     // If we have constants, then we created oops so classes are loaded
3781     // and we can handle the constants further down.  This case handles
3782     // both-not-loaded or both-loaded classes
3783     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3784       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3785     }
3786 
3787     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3788     ciKlass* tinst_klass = tinst->klass();
3789     ciKlass* this_klass  = this->klass();
3790     bool tinst_xk = tinst->klass_is_exact();
3791     bool this_xk  = this->klass_is_exact();
3792     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3793       // One of these classes has not been loaded
3794       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3795 #ifndef PRODUCT
3796       if( PrintOpto && Verbose ) {
3797         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3798         tty->print("  this == "); this->dump(); tty->cr();
3799         tty->print(" tinst == "); tinst->dump(); tty->cr();
3800       }
3801 #endif
3802       return unloaded_meet;
3803     }
3804 
3805     // Handle mixing oops and interfaces first.
3806     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3807                                         tinst_klass == ciEnv::current()->Object_klass())) {
3808       ciKlass *tmp = tinst_klass; // Swap interface around
3809       tinst_klass = this_klass;
3810       this_klass = tmp;
3811       bool tmp2 = tinst_xk;
3812       tinst_xk = this_xk;
3813       this_xk = tmp2;
3814     }
3815     if (tinst_klass->is_interface() &&
3816         !(this_klass->is_interface() ||
3817           // Treat java/lang/Object as an honorary interface,
3818           // because we need a bottom for the interface hierarchy.
3819           this_klass == ciEnv::current()->Object_klass())) {
3820       // Oop meets interface!
3821 
3822       // See if the oop subtypes (implements) interface.
3823       ciKlass *k;
3824       bool xk;
3825       if( this_klass->is_subtype_of( tinst_klass ) ) {
3826         // Oop indeed subtypes.  Now keep oop or interface depending
3827         // on whether we are both above the centerline or either is
3828         // below the centerline.  If we are on the centerline
3829         // (e.g., Constant vs. AnyNull interface), use the constant.
3830         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3831         // If we are keeping this_klass, keep its exactness too.
3832         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3833       } else {                  // Does not implement, fall to Object
3834         // Oop does not implement interface, so mixing falls to Object
3835         // just like the verifier does (if both are above the
3836         // centerline fall to interface)
3837         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3838         xk = above_centerline(ptr) ? tinst_xk : false;
3839         // Watch out for Constant vs. AnyNull interface.
3840         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3841         instance_id = InstanceBot;
3842       }
3843       ciObject* o = NULL;  // the Constant value, if any
3844       if (ptr == Constant) {
3845         // Find out which constant.
3846         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3847       }
3848       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3849     }
3850 
3851     // Either oop vs oop or interface vs interface or interface vs Object
3852 
3853     // !!! Here's how the symmetry requirement breaks down into invariants:
3854     // If we split one up & one down AND they subtype, take the down man.
3855     // If we split one up & one down AND they do NOT subtype, "fall hard".
3856     // If both are up and they subtype, take the subtype class.
3857     // If both are up and they do NOT subtype, "fall hard".
3858     // If both are down and they subtype, take the supertype class.
3859     // If both are down and they do NOT subtype, "fall hard".
3860     // Constants treated as down.
3861 
3862     // Now, reorder the above list; observe that both-down+subtype is also
3863     // "fall hard"; "fall hard" becomes the default case:
3864     // If we split one up & one down AND they subtype, take the down man.
3865     // If both are up and they subtype, take the subtype class.
3866 
3867     // If both are down and they subtype, "fall hard".
3868     // If both are down and they do NOT subtype, "fall hard".
3869     // If both are up and they do NOT subtype, "fall hard".
3870     // If we split one up & one down AND they do NOT subtype, "fall hard".
3871 
3872     // If a proper subtype is exact, and we return it, we return it exactly.
3873     // If a proper supertype is exact, there can be no subtyping relationship!
3874     // If both types are equal to the subtype, exactness is and-ed below the
3875     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3876 
3877     // Check for subtyping:
3878     ciKlass *subtype = NULL;
3879     bool subtype_exact = false;
3880     if( tinst_klass->equals(this_klass) ) {
3881       subtype = this_klass;
3882       subtype_exact = below_centerline(ptr) ? (this_xk && tinst_xk) : (this_xk || tinst_xk);
3883     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3884       subtype = this_klass;     // Pick subtyping class
3885       subtype_exact = this_xk;
3886     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3887       subtype = tinst_klass;    // Pick subtyping class
3888       subtype_exact = tinst_xk;
3889     }
3890 
3891     if( subtype ) {
3892       if( above_centerline(ptr) ) { // both are up?
3893         this_klass = tinst_klass = subtype;
3894         this_xk = tinst_xk = subtype_exact;
3895       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3896         this_klass = tinst_klass; // tinst is down; keep down man
3897         this_xk = tinst_xk;
3898       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3899         tinst_klass = this_klass; // this is down; keep down man
3900         tinst_xk = this_xk;
3901       } else {
3902         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3903       }
3904     }
3905 
3906     // Check for classes now being equal
3907     if (tinst_klass->equals(this_klass)) {
3908       // If the klasses are equal, the constants may still differ.  Fall to
3909       // NotNull if they do (neither constant is NULL; that is a special case
3910       // handled elsewhere).
3911       ciObject* o = NULL;             // Assume not constant when done
3912       ciObject* this_oop  = const_oop();
3913       ciObject* tinst_oop = tinst->const_oop();
3914       if( ptr == Constant ) {
3915         if (this_oop != NULL && tinst_oop != NULL &&
3916             this_oop->equals(tinst_oop) )
3917           o = this_oop;
3918         else if (above_centerline(this ->_ptr))
3919           o = tinst_oop;
3920         else if (above_centerline(tinst ->_ptr))
3921           o = this_oop;
3922         else
3923           ptr = NotNull;
3924       }
3925       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3926     } // Else classes are not equal
3927 
3928     // Since klasses are different, we require a LCA in the Java
3929     // class hierarchy - which means we have to fall to at least NotNull.
3930     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3931       ptr = NotNull;
3932 
3933     instance_id = InstanceBot;
3934 
3935     // Now we find the LCA of Java classes
3936     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3937     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3938   } // End of case InstPtr
3939 
3940   } // End of switch
3941   return this;                  // Return the double constant
3942 }
3943 
3944 
3945 //------------------------java_mirror_type--------------------------------------
3946 ciType* TypeInstPtr::java_mirror_type() const {
3947   // must be a singleton type
3948   if( const_oop() == NULL )  return NULL;
3949 
3950   // must be of type java.lang.Class
3951   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3952 
3953   return const_oop()->as_instance()->java_mirror_type();
3954 }
3955 
3956 
3957 //------------------------------xdual------------------------------------------
3958 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3959 // inheritance mechanism.
3960 const Type *TypeInstPtr::xdual() const {
3961   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3962 }
3963 
3964 //------------------------------eq---------------------------------------------
3965 // Structural equality check for Type representations
3966 bool TypeInstPtr::eq( const Type *t ) const {
3967   const TypeInstPtr *p = t->is_instptr();
3968   return
3969     klass()->equals(p->klass()) &&
3970     TypeOopPtr::eq(p);          // Check sub-type stuff
3971 }
3972 
3973 //------------------------------hash-------------------------------------------
3974 // Type-specific hashing function.
3975 int TypeInstPtr::hash(void) const {
3976   int hash = java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash());
3977   return hash;
3978 }
3979 
3980 //------------------------------dump2------------------------------------------
3981 // Dump oop Type
3982 #ifndef PRODUCT
3983 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3984   // Print the name of the klass.
3985   klass()->print_name_on(st);
3986 
3987   switch( _ptr ) {
3988   case Constant:
3989     // TO DO: Make CI print the hex address of the underlying oop.
3990     if (WizardMode || Verbose) {
3991       const_oop()->print_oop(st);
3992     }
3993   case BotPTR:
3994     if (!WizardMode && !Verbose) {
3995       if( _klass_is_exact ) st->print(":exact");
3996       break;
3997     }
3998   case TopPTR:
3999   case AnyNull:
4000   case NotNull:
4001     st->print(":%s", ptr_msg[_ptr]);
4002     if( _klass_is_exact ) st->print(":exact");
4003     break;
4004   default:
4005     break;
4006   }
4007 
4008   if( _offset ) {               // Dump offset, if any
4009     if( _offset == OffsetBot )      st->print("+any");
4010     else if( _offset == OffsetTop ) st->print("+unknown");
4011     else st->print("+%d", _offset);
4012   }
4013 
4014   st->print(" *");
4015   if (_instance_id == InstanceTop)
4016     st->print(",iid=top");
4017   else if (_instance_id != InstanceBot)
4018     st->print(",iid=%d",_instance_id);
4019 
4020   dump_inline_depth(st);
4021   dump_speculative(st);
4022 }
4023 #endif
4024 
4025 //------------------------------add_offset-------------------------------------
4026 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4027   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4028               _instance_id, add_offset_speculative(offset), _inline_depth);
4029 }
4030 
4031 const Type *TypeInstPtr::remove_speculative() const {
4032   if (_speculative == NULL) {
4033     return this;
4034   }
4035   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4036   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4037               _instance_id, NULL, _inline_depth);
4038 }
4039 
4040 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4041   if (!UseInlineDepthForSpeculativeTypes) {
4042     return this;
4043   }
4044   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4045 }
4046 
4047 const TypePtr *TypeInstPtr::with_instance_id(int instance_id) const {
4048   assert(is_known_instance(), "should be known");
4049   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);
4050 }
4051 
4052 //=============================================================================
4053 // Convenience common pre-built types.
4054 const TypeAryPtr *TypeAryPtr::RANGE;
4055 const TypeAryPtr *TypeAryPtr::OOPS;
4056 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4057 const TypeAryPtr *TypeAryPtr::BYTES;
4058 const TypeAryPtr *TypeAryPtr::SHORTS;
4059 const TypeAryPtr *TypeAryPtr::CHARS;
4060 const TypeAryPtr *TypeAryPtr::INTS;
4061 const TypeAryPtr *TypeAryPtr::LONGS;
4062 const TypeAryPtr *TypeAryPtr::FLOATS;
4063 const TypeAryPtr *TypeAryPtr::DOUBLES;
4064 
4065 //------------------------------make-------------------------------------------
4066 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4067                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4068   assert(!(k == NULL && ary->_elem->isa_int()),
4069          "integral arrays must be pre-equipped with a class");
4070   if (!xk)  xk = ary->ary_must_be_exact();
4071   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4072   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
4073 }
4074 
4075 //------------------------------make-------------------------------------------
4076 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4077                                    int instance_id, const TypePtr* speculative, int inline_depth,
4078                                    bool is_autobox_cache) {
4079   assert(!(k == NULL && ary->_elem->isa_int()),
4080          "integral arrays must be pre-equipped with a class");
4081   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4082   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4083   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4084   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4085 }
4086 
4087 //------------------------------cast_to_ptr_type-------------------------------
4088 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4089   if( ptr == _ptr ) return this;
4090   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4091 }
4092 
4093 
4094 //-----------------------------cast_to_exactness-------------------------------
4095 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4096   if( klass_is_exact == _klass_is_exact ) return this;
4097   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4098   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4099 }
4100 
4101 //-----------------------------cast_to_instance_id----------------------------
4102 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4103   if( instance_id == _instance_id ) return this;
4104   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4105 }
4106 
4107 
4108 //-----------------------------max_array_length-------------------------------
4109 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4110 jint TypeAryPtr::max_array_length(BasicType etype) {
4111   if (!is_java_primitive(etype) && !is_reference_type(etype)) {
4112     if (etype == T_NARROWOOP) {
4113       etype = T_OBJECT;
4114     } else if (etype == T_ILLEGAL) { // bottom[]
4115       etype = T_BYTE; // will produce conservatively high value
4116     } else {
4117       fatal("not an element type: %s", type2name(etype));
4118     }
4119   }
4120   return arrayOopDesc::max_array_length(etype);
4121 }
4122 
4123 //-----------------------------narrow_size_type-------------------------------
4124 // Narrow the given size type to the index range for the given array base type.
4125 // Return NULL if the resulting int type becomes empty.
4126 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4127   jint hi = size->_hi;
4128   jint lo = size->_lo;
4129   jint min_lo = 0;
4130   jint max_hi = max_array_length(elem()->basic_type());
4131   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4132   bool chg = false;
4133   if (lo < min_lo) {
4134     lo = min_lo;
4135     if (size->is_con()) {
4136       hi = lo;
4137     }
4138     chg = true;
4139   }
4140   if (hi > max_hi) {
4141     hi = max_hi;
4142     if (size->is_con()) {
4143       lo = hi;
4144     }
4145     chg = true;
4146   }
4147   // Negative length arrays will produce weird intermediate dead fast-path code
4148   if (lo > hi)
4149     return TypeInt::ZERO;
4150   if (!chg)
4151     return size;
4152   return TypeInt::make(lo, hi, Type::WidenMin);
4153 }
4154 
4155 //-------------------------------cast_to_size----------------------------------
4156 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4157   assert(new_size != NULL, "");
4158   new_size = narrow_size_type(new_size);
4159   if (new_size == size())  return this;
4160   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4161   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4162 }
4163 
4164 //------------------------------cast_to_stable---------------------------------
4165 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4166   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4167     return this;
4168 
4169   const Type* elem = this->elem();
4170   const TypePtr* elem_ptr = elem->make_ptr();
4171 
4172   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4173     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4174     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4175   }
4176 
4177   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4178 
4179   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4180 }
4181 
4182 //-----------------------------stable_dimension--------------------------------
4183 int TypeAryPtr::stable_dimension() const {
4184   if (!is_stable())  return 0;
4185   int dim = 1;
4186   const TypePtr* elem_ptr = elem()->make_ptr();
4187   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4188     dim += elem_ptr->is_aryptr()->stable_dimension();
4189   return dim;
4190 }
4191 
4192 //----------------------cast_to_autobox_cache-----------------------------------
4193 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4194   if (is_autobox_cache() == cache)  return this;
4195   const TypeOopPtr* etype = elem()->make_oopptr();
4196   if (etype == NULL)  return this;
4197   // The pointers in the autobox arrays are always non-null.
4198   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4199   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4200   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4201   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, cache);
4202 }
4203 
4204 //------------------------------eq---------------------------------------------
4205 // Structural equality check for Type representations
4206 bool TypeAryPtr::eq( const Type *t ) const {
4207   const TypeAryPtr *p = t->is_aryptr();
4208   return
4209     _ary == p->_ary &&  // Check array
4210     TypeOopPtr::eq(p);  // Check sub-parts
4211 }
4212 
4213 //------------------------------hash-------------------------------------------
4214 // Type-specific hashing function.
4215 int TypeAryPtr::hash(void) const {
4216   return (intptr_t)_ary + TypeOopPtr::hash();
4217 }
4218 
4219 //------------------------------meet-------------------------------------------
4220 // Compute the MEET of two types.  It returns a new Type object.
4221 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4222   // Perform a fast test for common case; meeting the same types together.
4223   if( this == t ) return this;  // Meeting same type-rep?
4224   // Current "this->_base" is Pointer
4225   switch (t->base()) {          // switch on original type
4226 
4227   // Mixing ints & oops happens when javac reuses local variables
4228   case Int:
4229   case Long:
4230   case FloatTop:
4231   case FloatCon:
4232   case FloatBot:
4233   case DoubleTop:
4234   case DoubleCon:
4235   case DoubleBot:
4236   case NarrowOop:
4237   case NarrowKlass:
4238   case Bottom:                  // Ye Olde Default
4239     return Type::BOTTOM;
4240   case Top:
4241     return this;
4242 
4243   default:                      // All else is a mistake
4244     typerr(t);
4245 
4246   case OopPtr: {                // Meeting to OopPtrs
4247     // Found a OopPtr type vs self-AryPtr type
4248     const TypeOopPtr *tp = t->is_oopptr();
4249     int offset = meet_offset(tp->offset());
4250     PTR ptr = meet_ptr(tp->ptr());
4251     int depth = meet_inline_depth(tp->inline_depth());
4252     const TypePtr* speculative = xmeet_speculative(tp);
4253     switch (tp->ptr()) {
4254     case TopPTR:
4255     case AnyNull: {
4256       int instance_id = meet_instance_id(InstanceTop);
4257       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4258                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4259     }
4260     case BotPTR:
4261     case NotNull: {
4262       int instance_id = meet_instance_id(tp->instance_id());
4263       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4264     }
4265     default: ShouldNotReachHere();
4266     }
4267   }
4268 
4269   case AnyPtr: {                // Meeting two AnyPtrs
4270     // Found an AnyPtr type vs self-AryPtr type
4271     const TypePtr *tp = t->is_ptr();
4272     int offset = meet_offset(tp->offset());
4273     PTR ptr = meet_ptr(tp->ptr());
4274     const TypePtr* speculative = xmeet_speculative(tp);
4275     int depth = meet_inline_depth(tp->inline_depth());
4276     switch (tp->ptr()) {
4277     case TopPTR:
4278       return this;
4279     case BotPTR:
4280     case NotNull:
4281       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4282     case Null:
4283       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4284       // else fall through to AnyNull
4285     case AnyNull: {
4286       int instance_id = meet_instance_id(InstanceTop);
4287       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4288                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4289     }
4290     default: ShouldNotReachHere();
4291     }
4292   }
4293 
4294   case MetadataPtr:
4295   case KlassPtr:
4296   case RawPtr: return TypePtr::BOTTOM;
4297 
4298   case AryPtr: {                // Meeting 2 references?
4299     const TypeAryPtr *tap = t->is_aryptr();
4300     int off = meet_offset(tap->offset());
4301     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4302     PTR ptr = meet_ptr(tap->ptr());
4303     int instance_id = meet_instance_id(tap->instance_id());
4304     const TypePtr* speculative = xmeet_speculative(tap);
4305     int depth = meet_inline_depth(tap->inline_depth());
4306     ciKlass* lazy_klass = NULL;
4307     if (tary->_elem->isa_int()) {
4308       // Integral array element types have irrelevant lattice relations.
4309       // It is the klass that determines array layout, not the element type.
4310       if (_klass == NULL)
4311         lazy_klass = tap->_klass;
4312       else if (tap->_klass == NULL || tap->_klass == _klass) {
4313         lazy_klass = _klass;
4314       } else {
4315         // Something like byte[int+] meets char[int+].
4316         // This must fall to bottom, not (int[-128..65535])[int+].
4317         instance_id = InstanceBot;
4318         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4319       }
4320     } else // Non integral arrays.
4321       // Must fall to bottom if exact klasses in upper lattice
4322       // are not equal or super klass is exact.
4323       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4324           // meet with top[] and bottom[] are processed further down:
4325           tap->_klass != NULL  && this->_klass != NULL   &&
4326           // both are exact and not equal:
4327           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4328            // 'tap'  is exact and super or unrelated:
4329            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4330            // 'this' is exact and super or unrelated:
4331            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4332       if (above_centerline(ptr) || (tary->_elem->make_ptr() && above_centerline(tary->_elem->make_ptr()->_ptr))) {
4333         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4334       }
4335       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
4336     }
4337 
4338     bool xk = false;
4339     switch (tap->ptr()) {
4340     case AnyNull:
4341     case TopPTR:
4342       // Compute new klass on demand, do not use tap->_klass
4343       if (below_centerline(this->_ptr)) {
4344         xk = this->_klass_is_exact;
4345       } else {
4346         xk = (tap->_klass_is_exact || this->_klass_is_exact);
4347       }
4348       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
4349     case Constant: {
4350       ciObject* o = const_oop();
4351       if( _ptr == Constant ) {
4352         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4353           xk = (klass() == tap->klass());
4354           ptr = NotNull;
4355           o = NULL;
4356           instance_id = InstanceBot;
4357         } else {
4358           xk = true;
4359         }
4360       } else if(above_centerline(_ptr)) {
4361         o = tap->const_oop();
4362         xk = true;
4363       } else {
4364         // Only precise for identical arrays
4365         xk = this->_klass_is_exact && (klass() == tap->klass());
4366       }
4367       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4368     }
4369     case NotNull:
4370     case BotPTR:
4371       // Compute new klass on demand, do not use tap->_klass
4372       if (above_centerline(this->_ptr))
4373             xk = tap->_klass_is_exact;
4374       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4375               (klass() == tap->klass()); // Only precise for identical arrays
4376       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4377     default: ShouldNotReachHere();
4378     }
4379   }
4380 
4381   // All arrays inherit from Object class
4382   case InstPtr: {
4383     const TypeInstPtr *tp = t->is_instptr();
4384     int offset = meet_offset(tp->offset());
4385     PTR ptr = meet_ptr(tp->ptr());
4386     int instance_id = meet_instance_id(tp->instance_id());
4387     const TypePtr* speculative = xmeet_speculative(tp);
4388     int depth = meet_inline_depth(tp->inline_depth());
4389     switch (ptr) {
4390     case TopPTR:
4391     case AnyNull:                // Fall 'down' to dual of object klass
4392       // For instances when a subclass meets a superclass we fall
4393       // below the centerline when the superclass is exact. We need to
4394       // do the same here.
4395       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4396         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4397       } else {
4398         // cannot subclass, so the meet has to fall badly below the centerline
4399         ptr = NotNull;
4400         instance_id = InstanceBot;
4401         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4402       }
4403     case Constant:
4404     case NotNull:
4405     case BotPTR:                // Fall down to object klass
4406       // LCA is object_klass, but if we subclass from the top we can do better
4407       if (above_centerline(tp->ptr())) {
4408         // If 'tp'  is above the centerline and it is Object class
4409         // then we can subclass in the Java class hierarchy.
4410         // For instances when a subclass meets a superclass we fall
4411         // below the centerline when the superclass is exact. We need
4412         // to do the same here.
4413         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4414           // that is, my array type is a subtype of 'tp' klass
4415           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4416                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4417         }
4418       }
4419       // The other case cannot happen, since t cannot be a subtype of an array.
4420       // The meet falls down to Object class below centerline.
4421       if( ptr == Constant )
4422          ptr = NotNull;
4423       instance_id = InstanceBot;
4424       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4425     default: typerr(t);
4426     }
4427   }
4428   }
4429   return this;                  // Lint noise
4430 }
4431 
4432 //------------------------------xdual------------------------------------------
4433 // Dual: compute field-by-field dual
4434 const Type *TypeAryPtr::xdual() const {
4435   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4436 }
4437 
4438 //----------------------interface_vs_oop---------------------------------------
4439 #ifdef ASSERT
4440 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4441   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4442   if (t_aryptr) {
4443     return _ary->interface_vs_oop(t_aryptr->_ary);
4444   }
4445   return false;
4446 }
4447 #endif
4448 
4449 //------------------------------dump2------------------------------------------
4450 #ifndef PRODUCT
4451 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4452   _ary->dump2(d,depth,st);
4453   switch( _ptr ) {
4454   case Constant:
4455     const_oop()->print(st);
4456     break;
4457   case BotPTR:
4458     if (!WizardMode && !Verbose) {
4459       if( _klass_is_exact ) st->print(":exact");
4460       break;
4461     }
4462   case TopPTR:
4463   case AnyNull:
4464   case NotNull:
4465     st->print(":%s", ptr_msg[_ptr]);
4466     if( _klass_is_exact ) st->print(":exact");
4467     break;
4468   default:
4469     break;
4470   }
4471 
4472   if( _offset != 0 ) {
4473     int header_size = objArrayOopDesc::header_size() * wordSize;
4474     if( _offset == OffsetTop )       st->print("+undefined");
4475     else if( _offset == OffsetBot )  st->print("+any");
4476     else if( _offset < header_size ) st->print("+%d", _offset);
4477     else {
4478       BasicType basic_elem_type = elem()->basic_type();
4479       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4480       int elem_size = type2aelembytes(basic_elem_type);
4481       st->print("[%d]", (_offset - array_base)/elem_size);
4482     }
4483   }
4484   st->print(" *");
4485   if (_instance_id == InstanceTop)
4486     st->print(",iid=top");
4487   else if (_instance_id != InstanceBot)
4488     st->print(",iid=%d",_instance_id);
4489 
4490   dump_inline_depth(st);
4491   dump_speculative(st);
4492 }
4493 #endif
4494 
4495 bool TypeAryPtr::empty(void) const {
4496   if (_ary->empty())       return true;
4497   return TypeOopPtr::empty();
4498 }
4499 
4500 //------------------------------add_offset-------------------------------------
4501 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4502   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4503 }
4504 
4505 const Type *TypeAryPtr::remove_speculative() const {
4506   if (_speculative == NULL) {
4507     return this;
4508   }
4509   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4510   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4511 }
4512 
4513 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4514   if (!UseInlineDepthForSpeculativeTypes) {
4515     return this;
4516   }
4517   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4518 }
4519 
4520 const TypePtr *TypeAryPtr::with_instance_id(int instance_id) const {
4521   assert(is_known_instance(), "should be known");
4522   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4523 }
4524 
4525 //=============================================================================
4526 
4527 //------------------------------hash-------------------------------------------
4528 // Type-specific hashing function.
4529 int TypeNarrowPtr::hash(void) const {
4530   return _ptrtype->hash() + 7;
4531 }
4532 
4533 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4534   return _ptrtype->singleton();
4535 }
4536 
4537 bool TypeNarrowPtr::empty(void) const {
4538   return _ptrtype->empty();
4539 }
4540 
4541 intptr_t TypeNarrowPtr::get_con() const {
4542   return _ptrtype->get_con();
4543 }
4544 
4545 bool TypeNarrowPtr::eq( const Type *t ) const {
4546   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4547   if (tc != NULL) {
4548     if (_ptrtype->base() != tc->_ptrtype->base()) {
4549       return false;
4550     }
4551     return tc->_ptrtype->eq(_ptrtype);
4552   }
4553   return false;
4554 }
4555 
4556 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4557   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4558   return make_same_narrowptr(odual);
4559 }
4560 
4561 
4562 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4563   if (isa_same_narrowptr(kills)) {
4564     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4565     if (ft->empty())
4566       return Type::TOP;           // Canonical empty value
4567     if (ft->isa_ptr()) {
4568       return make_hash_same_narrowptr(ft->isa_ptr());
4569     }
4570     return ft;
4571   } else if (kills->isa_ptr()) {
4572     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4573     if (ft->empty())
4574       return Type::TOP;           // Canonical empty value
4575     return ft;
4576   } else {
4577     return Type::TOP;
4578   }
4579 }
4580 
4581 //------------------------------xmeet------------------------------------------
4582 // Compute the MEET of two types.  It returns a new Type object.
4583 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4584   // Perform a fast test for common case; meeting the same types together.
4585   if( this == t ) return this;  // Meeting same type-rep?
4586 
4587   if (t->base() == base()) {
4588     const Type* result = _ptrtype->xmeet(t->make_ptr());
4589     if (result->isa_ptr()) {
4590       return make_hash_same_narrowptr(result->is_ptr());
4591     }
4592     return result;
4593   }
4594 
4595   // Current "this->_base" is NarrowKlass or NarrowOop
4596   switch (t->base()) {          // switch on original type
4597 
4598   case Int:                     // Mixing ints & oops happens when javac
4599   case Long:                    // reuses local variables
4600   case FloatTop:
4601   case FloatCon:
4602   case FloatBot:
4603   case DoubleTop:
4604   case DoubleCon:
4605   case DoubleBot:
4606   case AnyPtr:
4607   case RawPtr:
4608   case OopPtr:
4609   case InstPtr:
4610   case AryPtr:
4611   case MetadataPtr:
4612   case KlassPtr:
4613   case NarrowOop:
4614   case NarrowKlass:
4615 
4616   case Bottom:                  // Ye Olde Default
4617     return Type::BOTTOM;
4618   case Top:
4619     return this;
4620 
4621   default:                      // All else is a mistake
4622     typerr(t);
4623 
4624   } // End of switch
4625 
4626   return this;
4627 }
4628 
4629 #ifndef PRODUCT
4630 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4631   _ptrtype->dump2(d, depth, st);
4632 }
4633 #endif
4634 
4635 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4636 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4637 
4638 
4639 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4640   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4641 }
4642 
4643 const Type* TypeNarrowOop::remove_speculative() const {
4644   return make(_ptrtype->remove_speculative()->is_ptr());
4645 }
4646 
4647 const Type* TypeNarrowOop::cleanup_speculative() const {
4648   return make(_ptrtype->cleanup_speculative()->is_ptr());
4649 }
4650 
4651 #ifndef PRODUCT
4652 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4653   st->print("narrowoop: ");
4654   TypeNarrowPtr::dump2(d, depth, st);
4655 }
4656 #endif
4657 
4658 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4659 
4660 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4661   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4662 }
4663 
4664 #ifndef PRODUCT
4665 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4666   st->print("narrowklass: ");
4667   TypeNarrowPtr::dump2(d, depth, st);
4668 }
4669 #endif
4670 
4671 
4672 //------------------------------eq---------------------------------------------
4673 // Structural equality check for Type representations
4674 bool TypeMetadataPtr::eq( const Type *t ) const {
4675   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4676   ciMetadata* one = metadata();
4677   ciMetadata* two = a->metadata();
4678   if (one == NULL || two == NULL) {
4679     return (one == two) && TypePtr::eq(t);
4680   } else {
4681     return one->equals(two) && TypePtr::eq(t);
4682   }
4683 }
4684 
4685 //------------------------------hash-------------------------------------------
4686 // Type-specific hashing function.
4687 int TypeMetadataPtr::hash(void) const {
4688   return
4689     (metadata() ? metadata()->hash() : 0) +
4690     TypePtr::hash();
4691 }
4692 
4693 //------------------------------singleton--------------------------------------
4694 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4695 // constants
4696 bool TypeMetadataPtr::singleton(void) const {
4697   // detune optimizer to not generate constant metadata + constant offset as a constant!
4698   // TopPTR, Null, AnyNull, Constant are all singletons
4699   return (_offset == 0) && !below_centerline(_ptr);
4700 }
4701 
4702 //------------------------------add_offset-------------------------------------
4703 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4704   return make( _ptr, _metadata, xadd_offset(offset));
4705 }
4706 
4707 //-----------------------------filter------------------------------------------
4708 // Do not allow interface-vs.-noninterface joins to collapse to top.
4709 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4710   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4711   if (ft == NULL || ft->empty())
4712     return Type::TOP;           // Canonical empty value
4713   return ft;
4714 }
4715 
4716  //------------------------------get_con----------------------------------------
4717 intptr_t TypeMetadataPtr::get_con() const {
4718   assert( _ptr == Null || _ptr == Constant, "" );
4719   assert( _offset >= 0, "" );
4720 
4721   if (_offset != 0) {
4722     // After being ported to the compiler interface, the compiler no longer
4723     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4724     // to a handle at compile time.  This handle is embedded in the generated
4725     // code and dereferenced at the time the nmethod is made.  Until that time,
4726     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4727     // have access to the addresses!).  This does not seem to currently happen,
4728     // but this assertion here is to help prevent its occurence.
4729     tty->print_cr("Found oop constant with non-zero offset");
4730     ShouldNotReachHere();
4731   }
4732 
4733   return (intptr_t)metadata()->constant_encoding();
4734 }
4735 
4736 //------------------------------cast_to_ptr_type-------------------------------
4737 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4738   if( ptr == _ptr ) return this;
4739   return make(ptr, metadata(), _offset);
4740 }
4741 
4742 //------------------------------meet-------------------------------------------
4743 // Compute the MEET of two types.  It returns a new Type object.
4744 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4745   // Perform a fast test for common case; meeting the same types together.
4746   if( this == t ) return this;  // Meeting same type-rep?
4747 
4748   // Current "this->_base" is OopPtr
4749   switch (t->base()) {          // switch on original type
4750 
4751   case Int:                     // Mixing ints & oops happens when javac
4752   case Long:                    // reuses local variables
4753   case FloatTop:
4754   case FloatCon:
4755   case FloatBot:
4756   case DoubleTop:
4757   case DoubleCon:
4758   case DoubleBot:
4759   case NarrowOop:
4760   case NarrowKlass:
4761   case Bottom:                  // Ye Olde Default
4762     return Type::BOTTOM;
4763   case Top:
4764     return this;
4765 
4766   default:                      // All else is a mistake
4767     typerr(t);
4768 
4769   case AnyPtr: {
4770     // Found an AnyPtr type vs self-OopPtr type
4771     const TypePtr *tp = t->is_ptr();
4772     int offset = meet_offset(tp->offset());
4773     PTR ptr = meet_ptr(tp->ptr());
4774     switch (tp->ptr()) {
4775     case Null:
4776       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4777       // else fall through:
4778     case TopPTR:
4779     case AnyNull: {
4780       return make(ptr, _metadata, offset);
4781     }
4782     case BotPTR:
4783     case NotNull:
4784       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4785     default: typerr(t);
4786     }
4787   }
4788 
4789   case RawPtr:
4790   case KlassPtr:
4791   case OopPtr:
4792   case InstPtr:
4793   case AryPtr:
4794     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4795 
4796   case MetadataPtr: {
4797     const TypeMetadataPtr *tp = t->is_metadataptr();
4798     int offset = meet_offset(tp->offset());
4799     PTR tptr = tp->ptr();
4800     PTR ptr = meet_ptr(tptr);
4801     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4802     if (tptr == TopPTR || _ptr == TopPTR ||
4803         metadata()->equals(tp->metadata())) {
4804       return make(ptr, md, offset);
4805     }
4806     // metadata is different
4807     if( ptr == Constant ) {  // Cannot be equal constants, so...
4808       if( tptr == Constant && _ptr != Constant)  return t;
4809       if( _ptr == Constant && tptr != Constant)  return this;
4810       ptr = NotNull;            // Fall down in lattice
4811     }
4812     return make(ptr, NULL, offset);
4813     break;
4814   }
4815   } // End of switch
4816   return this;                  // Return the double constant
4817 }
4818 
4819 
4820 //------------------------------xdual------------------------------------------
4821 // Dual of a pure metadata pointer.
4822 const Type *TypeMetadataPtr::xdual() const {
4823   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4824 }
4825 
4826 //------------------------------dump2------------------------------------------
4827 #ifndef PRODUCT
4828 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4829   st->print("metadataptr:%s", ptr_msg[_ptr]);
4830   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
4831   switch( _offset ) {
4832   case OffsetTop: st->print("+top"); break;
4833   case OffsetBot: st->print("+any"); break;
4834   case         0: break;
4835   default:        st->print("+%d",_offset); break;
4836   }
4837 }
4838 #endif
4839 
4840 
4841 //=============================================================================
4842 // Convenience common pre-built type.
4843 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4844 
4845 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4846   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4847 }
4848 
4849 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4850   return make(Constant, m, 0);
4851 }
4852 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4853   return make(Constant, m, 0);
4854 }
4855 
4856 //------------------------------make-------------------------------------------
4857 // Create a meta data constant
4858 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4859   assert(m == NULL || !m->is_klass(), "wrong type");
4860   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4861 }
4862 
4863 
4864 //=============================================================================
4865 // Convenience common pre-built types.
4866 
4867 // Not-null object klass or below
4868 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4869 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4870 
4871 //------------------------------TypeKlassPtr-----------------------------------
4872 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4873   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4874 }
4875 
4876 //------------------------------make-------------------------------------------
4877 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4878 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4879   assert( k != NULL, "Expect a non-NULL klass");
4880   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4881   TypeKlassPtr *r =
4882     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4883 
4884   return r;
4885 }
4886 
4887 //------------------------------eq---------------------------------------------
4888 // Structural equality check for Type representations
4889 bool TypeKlassPtr::eq( const Type *t ) const {
4890   const TypeKlassPtr *p = t->is_klassptr();
4891   return
4892     klass()->equals(p->klass()) &&
4893     TypePtr::eq(p);
4894 }
4895 
4896 //------------------------------hash-------------------------------------------
4897 // Type-specific hashing function.
4898 int TypeKlassPtr::hash(void) const {
4899   return java_add((jint)klass()->hash(), (jint)TypePtr::hash());
4900 }
4901 
4902 //------------------------------singleton--------------------------------------
4903 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4904 // constants
4905 bool TypeKlassPtr::singleton(void) const {
4906   // detune optimizer to not generate constant klass + constant offset as a constant!
4907   // TopPTR, Null, AnyNull, Constant are all singletons
4908   return (_offset == 0) && !below_centerline(_ptr);
4909 }
4910 
4911 // Do not allow interface-vs.-noninterface joins to collapse to top.
4912 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4913   // logic here mirrors the one from TypeOopPtr::filter. See comments
4914   // there.
4915   const Type* ft = join_helper(kills, include_speculative);
4916   const TypeKlassPtr* ftkp = ft->isa_klassptr();
4917   const TypeKlassPtr* ktkp = kills->isa_klassptr();
4918 
4919   if (ft->empty()) {
4920     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4921       return kills;             // Uplift to interface
4922 
4923     return Type::TOP;           // Canonical empty value
4924   }
4925 
4926   // Interface klass type could be exact in opposite to interface type,
4927   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4928   if (ftkp != NULL && ktkp != NULL &&
4929       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4930       !ftkp->klass_is_exact() && // Keep exact interface klass
4931       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4932     return ktkp->cast_to_ptr_type(ftkp->ptr());
4933   }
4934 
4935   return ft;
4936 }
4937 
4938 //----------------------compute_klass------------------------------------------
4939 // Compute the defining klass for this class
4940 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4941   // Compute _klass based on element type.
4942   ciKlass* k_ary = NULL;
4943   const TypeInstPtr *tinst;
4944   const TypeAryPtr *tary;
4945   const Type* el = elem();
4946   if (el->isa_narrowoop()) {
4947     el = el->make_ptr();
4948   }
4949 
4950   // Get element klass
4951   if ((tinst = el->isa_instptr()) != NULL) {
4952     // Compute array klass from element klass
4953     k_ary = ciObjArrayKlass::make(tinst->klass());
4954   } else if ((tary = el->isa_aryptr()) != NULL) {
4955     // Compute array klass from element klass
4956     ciKlass* k_elem = tary->klass();
4957     // If element type is something like bottom[], k_elem will be null.
4958     if (k_elem != NULL)
4959       k_ary = ciObjArrayKlass::make(k_elem);
4960   } else if ((el->base() == Type::Top) ||
4961              (el->base() == Type::Bottom)) {
4962     // element type of Bottom occurs from meet of basic type
4963     // and object; Top occurs when doing join on Bottom.
4964     // Leave k_ary at NULL.
4965   } else {
4966     // Cannot compute array klass directly from basic type,
4967     // since subtypes of TypeInt all have basic type T_INT.
4968 #ifdef ASSERT
4969     if (verify && el->isa_int()) {
4970       // Check simple cases when verifying klass.
4971       BasicType bt = T_ILLEGAL;
4972       if (el == TypeInt::BYTE) {
4973         bt = T_BYTE;
4974       } else if (el == TypeInt::SHORT) {
4975         bt = T_SHORT;
4976       } else if (el == TypeInt::CHAR) {
4977         bt = T_CHAR;
4978       } else if (el == TypeInt::INT) {
4979         bt = T_INT;
4980       } else {
4981         return _klass; // just return specified klass
4982       }
4983       return ciTypeArrayKlass::make(bt);
4984     }
4985 #endif
4986     assert(!el->isa_int(),
4987            "integral arrays must be pre-equipped with a class");
4988     // Compute array klass directly from basic type
4989     k_ary = ciTypeArrayKlass::make(el->basic_type());
4990   }
4991   return k_ary;
4992 }
4993 
4994 //------------------------------klass------------------------------------------
4995 // Return the defining klass for this class
4996 ciKlass* TypeAryPtr::klass() const {
4997   if( _klass ) return _klass;   // Return cached value, if possible
4998 
4999   // Oops, need to compute _klass and cache it
5000   ciKlass* k_ary = compute_klass();
5001 
5002   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
5003     // The _klass field acts as a cache of the underlying
5004     // ciKlass for this array type.  In order to set the field,
5005     // we need to cast away const-ness.
5006     //
5007     // IMPORTANT NOTE: we *never* set the _klass field for the
5008     // type TypeAryPtr::OOPS.  This Type is shared between all
5009     // active compilations.  However, the ciKlass which represents
5010     // this Type is *not* shared between compilations, so caching
5011     // this value would result in fetching a dangling pointer.
5012     //
5013     // Recomputing the underlying ciKlass for each request is
5014     // a bit less efficient than caching, but calls to
5015     // TypeAryPtr::OOPS->klass() are not common enough to matter.
5016     ((TypeAryPtr*)this)->_klass = k_ary;
5017     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
5018         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
5019       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5020     }
5021   }
5022   return k_ary;
5023 }
5024 
5025 
5026 //------------------------------add_offset-------------------------------------
5027 // Access internals of klass object
5028 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
5029   return make( _ptr, klass(), xadd_offset(offset) );
5030 }
5031 
5032 //------------------------------cast_to_ptr_type-------------------------------
5033 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5034   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5035   if( ptr == _ptr ) return this;
5036   return make(ptr, _klass, _offset);
5037 }
5038 
5039 
5040 //-----------------------------cast_to_exactness-------------------------------
5041 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5042   if( klass_is_exact == _klass_is_exact ) return this;
5043   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5044 }
5045 
5046 
5047 //-----------------------------as_instance_type--------------------------------
5048 // Corresponding type for an instance of the given class.
5049 // It will be NotNull, and exact if and only if the klass type is exact.
5050 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5051   ciKlass* k = klass();
5052   bool    xk = klass_is_exact();
5053   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
5054   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5055   guarantee(toop != NULL, "need type for given klass");
5056   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5057   return toop->cast_to_exactness(xk)->is_oopptr();
5058 }
5059 
5060 
5061 //------------------------------xmeet------------------------------------------
5062 // Compute the MEET of two types, return a new Type object.
5063 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
5064   // Perform a fast test for common case; meeting the same types together.
5065   if( this == t ) return this;  // Meeting same type-rep?
5066 
5067   // Current "this->_base" is Pointer
5068   switch (t->base()) {          // switch on original type
5069 
5070   case Int:                     // Mixing ints & oops happens when javac
5071   case Long:                    // reuses local variables
5072   case FloatTop:
5073   case FloatCon:
5074   case FloatBot:
5075   case DoubleTop:
5076   case DoubleCon:
5077   case DoubleBot:
5078   case NarrowOop:
5079   case NarrowKlass:
5080   case Bottom:                  // Ye Olde Default
5081     return Type::BOTTOM;
5082   case Top:
5083     return this;
5084 
5085   default:                      // All else is a mistake
5086     typerr(t);
5087 
5088   case AnyPtr: {                // Meeting to AnyPtrs
5089     // Found an AnyPtr type vs self-KlassPtr type
5090     const TypePtr *tp = t->is_ptr();
5091     int offset = meet_offset(tp->offset());
5092     PTR ptr = meet_ptr(tp->ptr());
5093     switch (tp->ptr()) {
5094     case TopPTR:
5095       return this;
5096     case Null:
5097       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5098     case AnyNull:
5099       return make( ptr, klass(), offset );
5100     case BotPTR:
5101     case NotNull:
5102       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5103     default: typerr(t);
5104     }
5105   }
5106 
5107   case RawPtr:
5108   case MetadataPtr:
5109   case OopPtr:
5110   case AryPtr:                  // Meet with AryPtr
5111   case InstPtr:                 // Meet with InstPtr
5112     return TypePtr::BOTTOM;
5113 
5114   //
5115   //             A-top         }
5116   //           /   |   \       }  Tops
5117   //       B-top A-any C-top   }
5118   //          | /  |  \ |      }  Any-nulls
5119   //       B-any   |   C-any   }
5120   //          |    |    |
5121   //       B-con A-con C-con   } constants; not comparable across classes
5122   //          |    |    |
5123   //       B-not   |   C-not   }
5124   //          | \  |  / |      }  not-nulls
5125   //       B-bot A-not C-bot   }
5126   //           \   |   /       }  Bottoms
5127   //             A-bot         }
5128   //
5129 
5130   case KlassPtr: {  // Meet two KlassPtr types
5131     const TypeKlassPtr *tkls = t->is_klassptr();
5132     int  off     = meet_offset(tkls->offset());
5133     PTR  ptr     = meet_ptr(tkls->ptr());
5134 
5135     // Check for easy case; klasses are equal (and perhaps not loaded!)
5136     // If we have constants, then we created oops so classes are loaded
5137     // and we can handle the constants further down.  This case handles
5138     // not-loaded classes
5139     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5140       return make( ptr, klass(), off );
5141     }
5142 
5143     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5144     ciKlass* tkls_klass = tkls->klass();
5145     ciKlass* this_klass = this->klass();
5146     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5147     assert( this_klass->is_loaded(), "This class should have been loaded.");
5148 
5149     // If 'this' type is above the centerline and is a superclass of the
5150     // other, we can treat 'this' as having the same type as the other.
5151     if ((above_centerline(this->ptr())) &&
5152         tkls_klass->is_subtype_of(this_klass)) {
5153       this_klass = tkls_klass;
5154     }
5155     // If 'tinst' type is above the centerline and is a superclass of the
5156     // other, we can treat 'tinst' as having the same type as the other.
5157     if ((above_centerline(tkls->ptr())) &&
5158         this_klass->is_subtype_of(tkls_klass)) {
5159       tkls_klass = this_klass;
5160     }
5161 
5162     // Check for classes now being equal
5163     if (tkls_klass->equals(this_klass)) {
5164       // If the klasses are equal, the constants may still differ.  Fall to
5165       // NotNull if they do (neither constant is NULL; that is a special case
5166       // handled elsewhere).
5167       if( ptr == Constant ) {
5168         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5169             this->klass()->equals(tkls->klass()));
5170         else if (above_centerline(this->ptr()));
5171         else if (above_centerline(tkls->ptr()));
5172         else
5173           ptr = NotNull;
5174       }
5175       return make( ptr, this_klass, off );
5176     } // Else classes are not equal
5177 
5178     // Since klasses are different, we require the LCA in the Java
5179     // class hierarchy - which means we have to fall to at least NotNull.
5180     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5181       ptr = NotNull;
5182     // Now we find the LCA of Java classes
5183     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5184     return   make( ptr, k, off );
5185   } // End of case KlassPtr
5186 
5187   } // End of switch
5188   return this;                  // Return the double constant
5189 }
5190 
5191 //------------------------------xdual------------------------------------------
5192 // Dual: compute field-by-field dual
5193 const Type    *TypeKlassPtr::xdual() const {
5194   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5195 }
5196 
5197 //------------------------------get_con----------------------------------------
5198 intptr_t TypeKlassPtr::get_con() const {
5199   assert( _ptr == Null || _ptr == Constant, "" );
5200   assert( _offset >= 0, "" );
5201 
5202   if (_offset != 0) {
5203     // After being ported to the compiler interface, the compiler no longer
5204     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5205     // to a handle at compile time.  This handle is embedded in the generated
5206     // code and dereferenced at the time the nmethod is made.  Until that time,
5207     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5208     // have access to the addresses!).  This does not seem to currently happen,
5209     // but this assertion here is to help prevent its occurence.
5210     tty->print_cr("Found oop constant with non-zero offset");
5211     ShouldNotReachHere();
5212   }
5213 
5214   return (intptr_t)klass()->constant_encoding();
5215 }
5216 //------------------------------dump2------------------------------------------
5217 // Dump Klass Type
5218 #ifndef PRODUCT
5219 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5220   switch( _ptr ) {
5221   case Constant:
5222     st->print("precise ");
5223   case NotNull:
5224     {
5225       const char *name = klass()->name()->as_utf8();
5226       if( name ) {
5227         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5228       } else {
5229         ShouldNotReachHere();
5230       }
5231     }
5232   case BotPTR:
5233     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5234   case TopPTR:
5235   case AnyNull:
5236     st->print(":%s", ptr_msg[_ptr]);
5237     if( _klass_is_exact ) st->print(":exact");
5238     break;
5239   default:
5240     break;
5241   }
5242 
5243   if( _offset ) {               // Dump offset, if any
5244     if( _offset == OffsetBot )      { st->print("+any"); }
5245     else if( _offset == OffsetTop ) { st->print("+unknown"); }
5246     else                            { st->print("+%d", _offset); }
5247   }
5248 
5249   st->print(" *");
5250 }
5251 #endif
5252 
5253 
5254 
5255 //=============================================================================
5256 // Convenience common pre-built types.
5257 
5258 //------------------------------make-------------------------------------------
5259 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
5260   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
5261 }
5262 
5263 //------------------------------make-------------------------------------------
5264 const TypeFunc *TypeFunc::make(ciMethod* method) {
5265   Compile* C = Compile::current();
5266   const TypeFunc* tf = C->last_tf(method); // check cache
5267   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5268   const TypeTuple *domain;
5269   if (method->is_static()) {
5270     domain = TypeTuple::make_domain(NULL, method->signature());
5271   } else {
5272     domain = TypeTuple::make_domain(method->holder(), method->signature());
5273   }
5274   const TypeTuple *range  = TypeTuple::make_range(method->signature());
5275   tf = TypeFunc::make(domain, range);
5276   C->set_last_tf(method, tf);  // fill cache
5277   return tf;
5278 }
5279 
5280 //------------------------------meet-------------------------------------------
5281 // Compute the MEET of two types.  It returns a new Type object.
5282 const Type *TypeFunc::xmeet( const Type *t ) const {
5283   // Perform a fast test for common case; meeting the same types together.
5284   if( this == t ) return this;  // Meeting same type-rep?
5285 
5286   // Current "this->_base" is Func
5287   switch (t->base()) {          // switch on original type
5288 
5289   case Bottom:                  // Ye Olde Default
5290     return t;
5291 
5292   default:                      // All else is a mistake
5293     typerr(t);
5294 
5295   case Top:
5296     break;
5297   }
5298   return this;                  // Return the double constant
5299 }
5300 
5301 //------------------------------xdual------------------------------------------
5302 // Dual: compute field-by-field dual
5303 const Type *TypeFunc::xdual() const {
5304   return this;
5305 }
5306 
5307 //------------------------------eq---------------------------------------------
5308 // Structural equality check for Type representations
5309 bool TypeFunc::eq( const Type *t ) const {
5310   const TypeFunc *a = (const TypeFunc*)t;
5311   return _domain == a->_domain &&
5312     _range == a->_range;
5313 }
5314 
5315 //------------------------------hash-------------------------------------------
5316 // Type-specific hashing function.
5317 int TypeFunc::hash(void) const {
5318   return (intptr_t)_domain + (intptr_t)_range;
5319 }
5320 
5321 //------------------------------dump2------------------------------------------
5322 // Dump Function Type
5323 #ifndef PRODUCT
5324 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5325   if( _range->cnt() <= Parms )
5326     st->print("void");
5327   else {
5328     uint i;
5329     for (i = Parms; i < _range->cnt()-1; i++) {
5330       _range->field_at(i)->dump2(d,depth,st);
5331       st->print("/");
5332     }
5333     _range->field_at(i)->dump2(d,depth,st);
5334   }
5335   st->print(" ");
5336   st->print("( ");
5337   if( !depth || d[this] ) {     // Check for recursive dump
5338     st->print("...)");
5339     return;
5340   }
5341   d.Insert((void*)this,(void*)this);    // Stop recursion
5342   if (Parms < _domain->cnt())
5343     _domain->field_at(Parms)->dump2(d,depth-1,st);
5344   for (uint i = Parms+1; i < _domain->cnt(); i++) {
5345     st->print(", ");
5346     _domain->field_at(i)->dump2(d,depth-1,st);
5347   }
5348   st->print(" )");
5349 }
5350 #endif
5351 
5352 //------------------------------singleton--------------------------------------
5353 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5354 // constants (Ldi nodes).  Singletons are integer, float or double constants
5355 // or a single symbol.
5356 bool TypeFunc::singleton(void) const {
5357   return false;                 // Never a singleton
5358 }
5359 
5360 bool TypeFunc::empty(void) const {
5361   return false;                 // Never empty
5362 }
5363 
5364 
5365 BasicType TypeFunc::return_type() const{
5366   if (range()->cnt() == TypeFunc::Parms) {
5367     return T_VOID;
5368   }
5369   return range()->field_at(TypeFunc::Parms)->basic_type();
5370 }