1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_ASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_ASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/register.hpp"
  30 
  31 // definitions of various symbolic names for machine registers
  32 
  33 // First intercalls between C and Java which use 8 general registers
  34 // and 8 floating registers
  35 
  36 // we also have to copy between x86 and ARM registers but that's a
  37 // secondary complication -- not all code employing C call convention
  38 // executes as x86 code though -- we generate some of it
  39 
  40 class Argument {
  41  public:
  42   enum {
  43     n_int_register_parameters_c   = 8,  // r0, r1, ... r7 (c_rarg0, c_rarg1, ...)
  44     n_float_register_parameters_c = 8,  // v0, v1, ... v7 (c_farg0, c_farg1, ... )
  45 
  46     n_int_register_parameters_j   = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ...
  47     n_float_register_parameters_j = 8  // v0, v1, ... v7 (j_farg0, j_farg1, ...
  48   };
  49 };
  50 
  51 REGISTER_DECLARATION(Register, c_rarg0, r0);
  52 REGISTER_DECLARATION(Register, c_rarg1, r1);
  53 REGISTER_DECLARATION(Register, c_rarg2, r2);
  54 REGISTER_DECLARATION(Register, c_rarg3, r3);
  55 REGISTER_DECLARATION(Register, c_rarg4, r4);
  56 REGISTER_DECLARATION(Register, c_rarg5, r5);
  57 REGISTER_DECLARATION(Register, c_rarg6, r6);
  58 REGISTER_DECLARATION(Register, c_rarg7, r7);
  59 
  60 REGISTER_DECLARATION(FloatRegister, c_farg0, v0);
  61 REGISTER_DECLARATION(FloatRegister, c_farg1, v1);
  62 REGISTER_DECLARATION(FloatRegister, c_farg2, v2);
  63 REGISTER_DECLARATION(FloatRegister, c_farg3, v3);
  64 REGISTER_DECLARATION(FloatRegister, c_farg4, v4);
  65 REGISTER_DECLARATION(FloatRegister, c_farg5, v5);
  66 REGISTER_DECLARATION(FloatRegister, c_farg6, v6);
  67 REGISTER_DECLARATION(FloatRegister, c_farg7, v7);
  68 
  69 // Symbolically name the register arguments used by the Java calling convention.
  70 // We have control over the convention for java so we can do what we please.
  71 // What pleases us is to offset the java calling convention so that when
  72 // we call a suitable jni method the arguments are lined up and we don't
  73 // have to do much shuffling. A suitable jni method is non-static and a
  74 // small number of arguments
  75 //
  76 //  |--------------------------------------------------------------------|
  77 //  | c_rarg0  c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7  |
  78 //  |--------------------------------------------------------------------|
  79 //  | r0       r1       r2      r3      r4      r5      r6      r7       |
  80 //  |--------------------------------------------------------------------|
  81 //  | j_rarg7  j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6  |
  82 //  |--------------------------------------------------------------------|
  83 
  84 
  85 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
  86 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
  87 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
  88 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
  89 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
  90 REGISTER_DECLARATION(Register, j_rarg5, c_rarg6);
  91 REGISTER_DECLARATION(Register, j_rarg6, c_rarg7);
  92 REGISTER_DECLARATION(Register, j_rarg7, c_rarg0);
  93 
  94 // Java floating args are passed as per C
  95 
  96 REGISTER_DECLARATION(FloatRegister, j_farg0, v0);
  97 REGISTER_DECLARATION(FloatRegister, j_farg1, v1);
  98 REGISTER_DECLARATION(FloatRegister, j_farg2, v2);
  99 REGISTER_DECLARATION(FloatRegister, j_farg3, v3);
 100 REGISTER_DECLARATION(FloatRegister, j_farg4, v4);
 101 REGISTER_DECLARATION(FloatRegister, j_farg5, v5);
 102 REGISTER_DECLARATION(FloatRegister, j_farg6, v6);
 103 REGISTER_DECLARATION(FloatRegister, j_farg7, v7);
 104 
 105 // registers used to hold VM data either temporarily within a method
 106 // or across method calls
 107 
 108 // volatile (caller-save) registers
 109 
 110 // r8 is used for indirect result location return
 111 // we use it and r9 as scratch registers
 112 REGISTER_DECLARATION(Register, rscratch1, r8);
 113 REGISTER_DECLARATION(Register, rscratch2, r9);
 114 
 115 // current method -- must be in a call-clobbered register
 116 REGISTER_DECLARATION(Register, rmethod,   r12);
 117 
 118 // non-volatile (callee-save) registers are r16-29
 119 // of which the following are dedicated global state
 120 
 121 // link register
 122 REGISTER_DECLARATION(Register, lr,        r30);
 123 // frame pointer
 124 REGISTER_DECLARATION(Register, rfp,       r29);
 125 // current thread
 126 REGISTER_DECLARATION(Register, rthread,   r28);
 127 // base of heap
 128 REGISTER_DECLARATION(Register, rheapbase, r27);
 129 // constant pool cache
 130 REGISTER_DECLARATION(Register, rcpool,    r26);
 131 // monitors allocated on stack
 132 REGISTER_DECLARATION(Register, rmonitors, r25);
 133 // locals on stack
 134 REGISTER_DECLARATION(Register, rlocals,   r24);
 135 // bytecode pointer
 136 REGISTER_DECLARATION(Register, rbcp,      r22);
 137 // Dispatch table base
 138 REGISTER_DECLARATION(Register, rdispatch, r21);
 139 // Java stack pointer
 140 REGISTER_DECLARATION(Register, esp,      r20);
 141 
 142 // Preserved predicate register with all elements set TRUE.
 143 REGISTER_DECLARATION(PRegister, ptrue, p7);
 144 
 145 #define assert_cond(ARG1) assert(ARG1, #ARG1)
 146 
 147 namespace asm_util {
 148   uint32_t encode_logical_immediate(bool is32, uint64_t imm);
 149 };
 150 
 151 using namespace asm_util;
 152 
 153 
 154 class Assembler;
 155 
 156 class Instruction_aarch64 {
 157   unsigned insn;
 158 #ifdef ASSERT
 159   unsigned bits;
 160 #endif
 161   Assembler *assem;
 162 
 163 public:
 164 
 165   Instruction_aarch64(class Assembler *as) {
 166 #ifdef ASSERT
 167     bits = 0;
 168 #endif
 169     insn = 0;
 170     assem = as;
 171   }
 172 
 173   inline ~Instruction_aarch64();
 174 
 175   unsigned &get_insn() { return insn; }
 176 #ifdef ASSERT
 177   unsigned &get_bits() { return bits; }
 178 #endif
 179 
 180   static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) {
 181     union {
 182       unsigned u;
 183       int n;
 184     };
 185 
 186     u = val << (31 - hi);
 187     n = n >> (31 - hi + lo);
 188     return n;
 189   }
 190 
 191   static inline uint32_t extract(uint32_t val, int msb, int lsb) {
 192     int nbits = msb - lsb + 1;
 193     assert_cond(msb >= lsb);
 194     uint32_t mask = (1U << nbits) - 1;
 195     uint32_t result = val >> lsb;
 196     result &= mask;
 197     return result;
 198   }
 199 
 200   static inline int32_t sextract(uint32_t val, int msb, int lsb) {
 201     uint32_t uval = extract(val, msb, lsb);
 202     return extend(uval, msb - lsb);
 203   }
 204 
 205   static void patch(address a, int msb, int lsb, uint64_t val) {
 206     int nbits = msb - lsb + 1;
 207     guarantee(val < (1U << nbits), "Field too big for insn");
 208     assert_cond(msb >= lsb);
 209     unsigned mask = (1U << nbits) - 1;
 210     val <<= lsb;
 211     mask <<= lsb;
 212     unsigned target = *(unsigned *)a;
 213     target &= ~mask;
 214     target |= val;
 215     *(unsigned *)a = target;
 216   }
 217 
 218   static void spatch(address a, int msb, int lsb, int64_t val) {
 219     int nbits = msb - lsb + 1;
 220     int64_t chk = val >> (nbits - 1);
 221     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 222     unsigned uval = val;
 223     unsigned mask = (1U << nbits) - 1;
 224     uval &= mask;
 225     uval <<= lsb;
 226     mask <<= lsb;
 227     unsigned target = *(unsigned *)a;
 228     target &= ~mask;
 229     target |= uval;
 230     *(unsigned *)a = target;
 231   }
 232 
 233   void f(unsigned val, int msb, int lsb) {
 234     int nbits = msb - lsb + 1;
 235     guarantee(val < (1U << nbits), "Field too big for insn");
 236     assert_cond(msb >= lsb);
 237     unsigned mask = (1U << nbits) - 1;
 238     val <<= lsb;
 239     mask <<= lsb;
 240     insn |= val;
 241     assert_cond((bits & mask) == 0);
 242 #ifdef ASSERT
 243     bits |= mask;
 244 #endif
 245   }
 246 
 247   void f(unsigned val, int bit) {
 248     f(val, bit, bit);
 249   }
 250 
 251   void sf(int64_t val, int msb, int lsb) {
 252     int nbits = msb - lsb + 1;
 253     int64_t chk = val >> (nbits - 1);
 254     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 255     unsigned uval = val;
 256     unsigned mask = (1U << nbits) - 1;
 257     uval &= mask;
 258     f(uval, lsb + nbits - 1, lsb);
 259   }
 260 
 261   void rf(Register r, int lsb) {
 262     f(r->encoding_nocheck(), lsb + 4, lsb);
 263   }
 264 
 265   // reg|ZR
 266   void zrf(Register r, int lsb) {
 267     f(r->encoding_nocheck() - (r == zr), lsb + 4, lsb);
 268   }
 269 
 270   // reg|SP
 271   void srf(Register r, int lsb) {
 272     f(r == sp ? 31 : r->encoding_nocheck(), lsb + 4, lsb);
 273   }
 274 
 275   void rf(FloatRegister r, int lsb) {
 276     f(r->encoding_nocheck(), lsb + 4, lsb);
 277   }
 278 
 279   void prf(PRegister r, int lsb) {
 280     f(r->encoding_nocheck(), lsb + 3, lsb);
 281   }
 282 
 283   void pgrf(PRegister r, int lsb) {
 284     f(r->encoding_nocheck(), lsb + 2, lsb);
 285   }
 286 
 287   unsigned get(int msb = 31, int lsb = 0) {
 288     int nbits = msb - lsb + 1;
 289     unsigned mask = ((1U << nbits) - 1) << lsb;
 290     assert_cond((bits & mask) == mask);
 291     return (insn & mask) >> lsb;
 292   }
 293 
 294   void fixed(unsigned value, unsigned mask) {
 295     assert_cond ((mask & bits) == 0);
 296 #ifdef ASSERT
 297     bits |= mask;
 298 #endif
 299     insn |= value;
 300   }
 301 };
 302 
 303 #define starti Instruction_aarch64 do_not_use(this); set_current(&do_not_use)
 304 
 305 class PrePost {
 306   int _offset;
 307   Register _r;
 308 public:
 309   PrePost(Register reg, int o) : _offset(o), _r(reg) { }
 310   int offset() { return _offset; }
 311   Register reg() { return _r; }
 312 };
 313 
 314 class Pre : public PrePost {
 315 public:
 316   Pre(Register reg, int o) : PrePost(reg, o) { }
 317 };
 318 class Post : public PrePost {
 319   Register _idx;
 320   bool _is_postreg;
 321 public:
 322   Post(Register reg, int o) : PrePost(reg, o) { _idx = NULL; _is_postreg = false; }
 323   Post(Register reg, Register idx) : PrePost(reg, 0) { _idx = idx; _is_postreg = true; }
 324   Register idx_reg() { return _idx; }
 325   bool is_postreg() {return _is_postreg; }
 326 };
 327 
 328 namespace ext
 329 {
 330   enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx };
 331 };
 332 
 333 // Addressing modes
 334 class Address {
 335  public:
 336 
 337   enum mode { no_mode, base_plus_offset, pre, post, post_reg, pcrel,
 338               base_plus_offset_reg, literal };
 339 
 340   // Shift and extend for base reg + reg offset addressing
 341   class extend {
 342     int _option, _shift;
 343     ext::operation _op;
 344   public:
 345     extend() { }
 346     extend(int s, int o, ext::operation op) : _option(o), _shift(s), _op(op) { }
 347     int option() const{ return _option; }
 348     int shift() const { return _shift; }
 349     ext::operation op() const { return _op; }
 350   };
 351   class uxtw : public extend {
 352   public:
 353     uxtw(int shift = -1): extend(shift, 0b010, ext::uxtw) { }
 354   };
 355   class lsl : public extend {
 356   public:
 357     lsl(int shift = -1): extend(shift, 0b011, ext::uxtx) { }
 358   };
 359   class sxtw : public extend {
 360   public:
 361     sxtw(int shift = -1): extend(shift, 0b110, ext::sxtw) { }
 362   };
 363   class sxtx : public extend {
 364   public:
 365     sxtx(int shift = -1): extend(shift, 0b111, ext::sxtx) { }
 366   };
 367 
 368  private:
 369   Register _base;
 370   Register _index;
 371   int64_t _offset;
 372   enum mode _mode;
 373   extend _ext;
 374 
 375   RelocationHolder _rspec;
 376 
 377   // Typically we use AddressLiterals we want to use their rval
 378   // However in some situations we want the lval (effect address) of
 379   // the item.  We provide a special factory for making those lvals.
 380   bool _is_lval;
 381 
 382   // If the target is far we'll need to load the ea of this to a
 383   // register to reach it. Otherwise if near we can do PC-relative
 384   // addressing.
 385   address          _target;
 386 
 387  public:
 388   Address()
 389     : _mode(no_mode) { }
 390   Address(Register r)
 391     : _base(r), _index(noreg), _offset(0), _mode(base_plus_offset), _target(0) { }
 392   Address(Register r, int o)
 393     : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
 394   Address(Register r, int64_t o)
 395     : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
 396   Address(Register r, uint64_t o)
 397     : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
 398 #ifdef ASSERT
 399   Address(Register r, ByteSize disp)
 400     : _base(r), _index(noreg), _offset(in_bytes(disp)), _mode(base_plus_offset), _target(0) { }
 401 #endif
 402   Address(Register r, Register r1, extend ext = lsl())
 403     : _base(r), _index(r1), _offset(0), _mode(base_plus_offset_reg),
 404       _ext(ext), _target(0) { }
 405   Address(Pre p)
 406     : _base(p.reg()), _offset(p.offset()), _mode(pre) { }
 407   Address(Post p)
 408     : _base(p.reg()),  _index(p.idx_reg()), _offset(p.offset()),
 409       _mode(p.is_postreg() ? post_reg : post), _target(0) { }
 410   Address(address target, RelocationHolder const& rspec)
 411     : _mode(literal),
 412       _rspec(rspec),
 413       _is_lval(false),
 414       _target(target)  { }
 415   Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type);
 416   Address(Register base, RegisterOrConstant index, extend ext = lsl())
 417     : _base (base),
 418       _offset(0), _ext(ext), _target(0) {
 419     if (index.is_register()) {
 420       _mode = base_plus_offset_reg;
 421       _index = index.as_register();
 422     } else {
 423       guarantee(ext.option() == ext::uxtx, "should be");
 424       assert(index.is_constant(), "should be");
 425       _mode = base_plus_offset;
 426       _offset = index.as_constant() << ext.shift();
 427     }
 428   }
 429 
 430   Register base() const {
 431     guarantee((_mode == base_plus_offset | _mode == base_plus_offset_reg
 432                | _mode == post | _mode == post_reg),
 433               "wrong mode");
 434     return _base;
 435   }
 436   int64_t offset() const {
 437     return _offset;
 438   }
 439   Register index() const {
 440     return _index;
 441   }
 442   mode getMode() const {
 443     return _mode;
 444   }
 445   bool uses(Register reg) const { return _base == reg || _index == reg; }
 446   address target() const { return _target; }
 447   const RelocationHolder& rspec() const { return _rspec; }
 448 
 449   void encode(Instruction_aarch64 *i) const {
 450     i->f(0b111, 29, 27);
 451     i->srf(_base, 5);
 452 
 453     switch(_mode) {
 454     case base_plus_offset:
 455       {
 456         unsigned size = i->get(31, 30);
 457         if (i->get(26, 26) && i->get(23, 23)) {
 458           // SIMD Q Type - Size = 128 bits
 459           assert(size == 0, "bad size");
 460           size = 0b100;
 461         }
 462         unsigned mask = (1 << size) - 1;
 463         if (_offset < 0 || _offset & mask)
 464           {
 465             i->f(0b00, 25, 24);
 466             i->f(0, 21), i->f(0b00, 11, 10);
 467             i->sf(_offset, 20, 12);
 468           } else {
 469             i->f(0b01, 25, 24);
 470             i->f(_offset >> size, 21, 10);
 471           }
 472       }
 473       break;
 474 
 475     case base_plus_offset_reg:
 476       {
 477         i->f(0b00, 25, 24);
 478         i->f(1, 21);
 479         i->rf(_index, 16);
 480         i->f(_ext.option(), 15, 13);
 481         unsigned size = i->get(31, 30);
 482         if (i->get(26, 26) && i->get(23, 23)) {
 483           // SIMD Q Type - Size = 128 bits
 484           assert(size == 0, "bad size");
 485           size = 0b100;
 486         }
 487         if (size == 0) // It's a byte
 488           i->f(_ext.shift() >= 0, 12);
 489         else {
 490           if (_ext.shift() > 0)
 491             assert(_ext.shift() == (int)size, "bad shift");
 492           i->f(_ext.shift() > 0, 12);
 493         }
 494         i->f(0b10, 11, 10);
 495       }
 496       break;
 497 
 498     case pre:
 499       i->f(0b00, 25, 24);
 500       i->f(0, 21), i->f(0b11, 11, 10);
 501       i->sf(_offset, 20, 12);
 502       break;
 503 
 504     case post:
 505       i->f(0b00, 25, 24);
 506       i->f(0, 21), i->f(0b01, 11, 10);
 507       i->sf(_offset, 20, 12);
 508       break;
 509 
 510     default:
 511       ShouldNotReachHere();
 512     }
 513   }
 514 
 515   void encode_pair(Instruction_aarch64 *i) const {
 516     switch(_mode) {
 517     case base_plus_offset:
 518       i->f(0b010, 25, 23);
 519       break;
 520     case pre:
 521       i->f(0b011, 25, 23);
 522       break;
 523     case post:
 524       i->f(0b001, 25, 23);
 525       break;
 526     default:
 527       ShouldNotReachHere();
 528     }
 529 
 530     unsigned size; // Operand shift in 32-bit words
 531 
 532     if (i->get(26, 26)) { // float
 533       switch(i->get(31, 30)) {
 534       case 0b10:
 535         size = 2; break;
 536       case 0b01:
 537         size = 1; break;
 538       case 0b00:
 539         size = 0; break;
 540       default:
 541         ShouldNotReachHere();
 542         size = 0;  // unreachable
 543       }
 544     } else {
 545       size = i->get(31, 31);
 546     }
 547 
 548     size = 4 << size;
 549     guarantee(_offset % size == 0, "bad offset");
 550     i->sf(_offset / size, 21, 15);
 551     i->srf(_base, 5);
 552   }
 553 
 554   void encode_nontemporal_pair(Instruction_aarch64 *i) const {
 555     // Only base + offset is allowed
 556     i->f(0b000, 25, 23);
 557     unsigned size = i->get(31, 31);
 558     size = 4 << size;
 559     guarantee(_offset % size == 0, "bad offset");
 560     i->sf(_offset / size, 21, 15);
 561     i->srf(_base, 5);
 562     guarantee(_mode == Address::base_plus_offset,
 563               "Bad addressing mode for non-temporal op");
 564   }
 565 
 566   void lea(MacroAssembler *, Register) const;
 567 
 568   static bool offset_ok_for_immed(int64_t offset, uint shift);
 569 
 570   static bool offset_ok_for_sve_immed(long offset, int shift, int vl /* sve vector length */) {
 571     if (offset % vl == 0) {
 572       // Convert address offset into sve imm offset (MUL VL).
 573       int sve_offset = offset / vl;
 574       if (((-(1 << (shift - 1))) <= sve_offset) && (sve_offset < (1 << (shift - 1)))) {
 575         // sve_offset can be encoded
 576         return true;
 577       }
 578     }
 579     return false;
 580   }
 581 };
 582 
 583 // Convience classes
 584 class RuntimeAddress: public Address {
 585 
 586   public:
 587 
 588   RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {}
 589 
 590 };
 591 
 592 class OopAddress: public Address {
 593 
 594   public:
 595 
 596   OopAddress(address target) : Address(target, relocInfo::oop_type){}
 597 
 598 };
 599 
 600 class ExternalAddress: public Address {
 601  private:
 602   static relocInfo::relocType reloc_for_target(address target) {
 603     // Sometimes ExternalAddress is used for values which aren't
 604     // exactly addresses, like the card table base.
 605     // external_word_type can't be used for values in the first page
 606     // so just skip the reloc in that case.
 607     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 608   }
 609 
 610  public:
 611 
 612   ExternalAddress(address target) : Address(target, reloc_for_target(target)) {}
 613 
 614 };
 615 
 616 class InternalAddress: public Address {
 617 
 618   public:
 619 
 620   InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {}
 621 };
 622 
 623 const int FPUStateSizeInWords = FloatRegisterImpl::number_of_registers *
 624                                 FloatRegisterImpl::save_slots_per_register;
 625 
 626 typedef enum {
 627   PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM,
 628   PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM,
 629   PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM
 630 } prfop;
 631 
 632 class Assembler : public AbstractAssembler {
 633 
 634 #ifndef PRODUCT
 635   static const uintptr_t asm_bp;
 636 
 637   void emit_long(jint x) {
 638     if ((uintptr_t)pc() == asm_bp)
 639       asm volatile ("nop");
 640     AbstractAssembler::emit_int32(x);
 641   }
 642 #else
 643   void emit_long(jint x) {
 644     AbstractAssembler::emit_int32(x);
 645   }
 646 #endif
 647 
 648 public:
 649 
 650   enum { instruction_size = 4 };
 651 
 652   //---<  calculate length of instruction  >---
 653   // We just use the values set above.
 654   // instruction must start at passed address
 655   static unsigned int instr_len(unsigned char *instr) { return instruction_size; }
 656 
 657   //---<  longest instructions  >---
 658   static unsigned int instr_maxlen() { return instruction_size; }
 659 
 660   Address adjust(Register base, int offset, bool preIncrement) {
 661     if (preIncrement)
 662       return Address(Pre(base, offset));
 663     else
 664       return Address(Post(base, offset));
 665   }
 666 
 667   Address pre(Register base, int offset) {
 668     return adjust(base, offset, true);
 669   }
 670 
 671   Address post(Register base, int offset) {
 672     return adjust(base, offset, false);
 673   }
 674 
 675   Address post(Register base, Register idx) {
 676     return Address(Post(base, idx));
 677   }
 678 
 679   Instruction_aarch64* current;
 680 
 681   void set_current(Instruction_aarch64* i) { current = i; }
 682 
 683   void f(unsigned val, int msb, int lsb) {
 684     current->f(val, msb, lsb);
 685   }
 686   void f(unsigned val, int msb) {
 687     current->f(val, msb, msb);
 688   }
 689   void sf(int64_t val, int msb, int lsb) {
 690     current->sf(val, msb, lsb);
 691   }
 692   void rf(Register reg, int lsb) {
 693     current->rf(reg, lsb);
 694   }
 695   void srf(Register reg, int lsb) {
 696     current->srf(reg, lsb);
 697   }
 698   void zrf(Register reg, int lsb) {
 699     current->zrf(reg, lsb);
 700   }
 701   void rf(FloatRegister reg, int lsb) {
 702     current->rf(reg, lsb);
 703   }
 704   void prf(PRegister reg, int lsb) {
 705     current->prf(reg, lsb);
 706   }
 707   void pgrf(PRegister reg, int lsb) {
 708     current->pgrf(reg, lsb);
 709   }
 710   void fixed(unsigned value, unsigned mask) {
 711     current->fixed(value, mask);
 712   }
 713 
 714   void emit() {
 715     emit_long(current->get_insn());
 716     assert_cond(current->get_bits() == 0xffffffff);
 717     current = NULL;
 718   }
 719 
 720   typedef void (Assembler::* uncond_branch_insn)(address dest);
 721   typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest);
 722   typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest);
 723   typedef void (Assembler::* prefetch_insn)(address target, prfop);
 724 
 725   void wrap_label(Label &L, uncond_branch_insn insn);
 726   void wrap_label(Register r, Label &L, compare_and_branch_insn insn);
 727   void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn);
 728   void wrap_label(Label &L, prfop, prefetch_insn insn);
 729 
 730   // PC-rel. addressing
 731 
 732   void adr(Register Rd, address dest);
 733   void _adrp(Register Rd, address dest);
 734 
 735   void adr(Register Rd, const Address &dest);
 736   void _adrp(Register Rd, const Address &dest);
 737 
 738   void adr(Register Rd, Label &L) {
 739     wrap_label(Rd, L, &Assembler::Assembler::adr);
 740   }
 741   void _adrp(Register Rd, Label &L) {
 742     wrap_label(Rd, L, &Assembler::_adrp);
 743   }
 744 
 745   void adrp(Register Rd, const Address &dest, uint64_t &offset);
 746 
 747 #undef INSN
 748 
 749   void add_sub_immediate(Register Rd, Register Rn, unsigned uimm, int op,
 750                          int negated_op);
 751 
 752   // Add/subtract (immediate)
 753 #define INSN(NAME, decode, negated)                                     \
 754   void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) {   \
 755     starti;                                                             \
 756     f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \
 757     zrf(Rd, 0), srf(Rn, 5);                                             \
 758   }                                                                     \
 759                                                                         \
 760   void NAME(Register Rd, Register Rn, unsigned imm) {                   \
 761     starti;                                                             \
 762     add_sub_immediate(Rd, Rn, imm, decode, negated);                    \
 763   }
 764 
 765   INSN(addsw, 0b001, 0b011);
 766   INSN(subsw, 0b011, 0b001);
 767   INSN(adds,  0b101, 0b111);
 768   INSN(subs,  0b111, 0b101);
 769 
 770 #undef INSN
 771 
 772 #define INSN(NAME, decode, negated)                     \
 773   void NAME(Register Rd, Register Rn, unsigned imm) {   \
 774     starti;                                             \
 775     add_sub_immediate(Rd, Rn, imm, decode, negated);    \
 776   }
 777 
 778   INSN(addw, 0b000, 0b010);
 779   INSN(subw, 0b010, 0b000);
 780   INSN(add,  0b100, 0b110);
 781   INSN(sub,  0b110, 0b100);
 782 
 783 #undef INSN
 784 
 785  // Logical (immediate)
 786 #define INSN(NAME, decode, is32)                                \
 787   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 788     starti;                                                     \
 789     uint32_t val = encode_logical_immediate(is32, imm);         \
 790     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 791     srf(Rd, 0), zrf(Rn, 5);                                     \
 792   }
 793 
 794   INSN(andw, 0b000, true);
 795   INSN(orrw, 0b001, true);
 796   INSN(eorw, 0b010, true);
 797   INSN(andr,  0b100, false);
 798   INSN(orr,  0b101, false);
 799   INSN(eor,  0b110, false);
 800 
 801 #undef INSN
 802 
 803 #define INSN(NAME, decode, is32)                                \
 804   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 805     starti;                                                     \
 806     uint32_t val = encode_logical_immediate(is32, imm);         \
 807     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 808     zrf(Rd, 0), zrf(Rn, 5);                                     \
 809   }
 810 
 811   INSN(ands, 0b111, false);
 812   INSN(andsw, 0b011, true);
 813 
 814 #undef INSN
 815 
 816   // Move wide (immediate)
 817 #define INSN(NAME, opcode)                                              \
 818   void NAME(Register Rd, unsigned imm, unsigned shift = 0) {            \
 819     assert_cond((shift/16)*16 == shift);                                \
 820     starti;                                                             \
 821     f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21),        \
 822       f(imm, 20, 5);                                                    \
 823     rf(Rd, 0);                                                          \
 824   }
 825 
 826   INSN(movnw, 0b000);
 827   INSN(movzw, 0b010);
 828   INSN(movkw, 0b011);
 829   INSN(movn, 0b100);
 830   INSN(movz, 0b110);
 831   INSN(movk, 0b111);
 832 
 833 #undef INSN
 834 
 835   // Bitfield
 836 #define INSN(NAME, opcode, size)                                        \
 837   void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) {   \
 838     starti;                                                             \
 839     guarantee(size == 1 || (immr < 32 && imms < 32), "incorrect immr/imms");\
 840     f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10);                \
 841     zrf(Rn, 5), rf(Rd, 0);                                              \
 842   }
 843 
 844   INSN(sbfmw, 0b0001001100, 0);
 845   INSN(bfmw,  0b0011001100, 0);
 846   INSN(ubfmw, 0b0101001100, 0);
 847   INSN(sbfm,  0b1001001101, 1);
 848   INSN(bfm,   0b1011001101, 1);
 849   INSN(ubfm,  0b1101001101, 1);
 850 
 851 #undef INSN
 852 
 853   // Extract
 854 #define INSN(NAME, opcode, size)                                        \
 855   void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) {     \
 856     starti;                                                             \
 857     guarantee(size == 1 || imms < 32, "incorrect imms");                \
 858     f(opcode, 31, 21), f(imms, 15, 10);                                 \
 859     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                                \
 860   }
 861 
 862   INSN(extrw, 0b00010011100, 0);
 863   INSN(extr,  0b10010011110, 1);
 864 
 865 #undef INSN
 866 
 867   // The maximum range of a branch is fixed for the AArch64
 868   // architecture.  In debug mode we shrink it in order to test
 869   // trampolines, but not so small that branches in the interpreter
 870   // are out of range.
 871   static const uint64_t branch_range = NOT_DEBUG(128 * M) DEBUG_ONLY(2 * M);
 872 
 873   static bool reachable_from_branch_at(address branch, address target) {
 874     return uabs(target - branch) < branch_range;
 875   }
 876 
 877   // Unconditional branch (immediate)
 878 #define INSN(NAME, opcode)                                              \
 879   void NAME(address dest) {                                             \
 880     starti;                                                             \
 881     int64_t offset = (dest - pc()) >> 2;                                \
 882     DEBUG_ONLY(assert(reachable_from_branch_at(pc(), dest), "debug only")); \
 883     f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0);               \
 884   }                                                                     \
 885   void NAME(Label &L) {                                                 \
 886     wrap_label(L, &Assembler::NAME);                                    \
 887   }                                                                     \
 888   void NAME(const Address &dest);
 889 
 890   INSN(b, 0);
 891   INSN(bl, 1);
 892 
 893 #undef INSN
 894 
 895   // Compare & branch (immediate)
 896 #define INSN(NAME, opcode)                              \
 897   void NAME(Register Rt, address dest) {                \
 898     int64_t offset = (dest - pc()) >> 2;                \
 899     starti;                                             \
 900     f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0);    \
 901   }                                                     \
 902   void NAME(Register Rt, Label &L) {                    \
 903     wrap_label(Rt, L, &Assembler::NAME);                \
 904   }
 905 
 906   INSN(cbzw,  0b00110100);
 907   INSN(cbnzw, 0b00110101);
 908   INSN(cbz,   0b10110100);
 909   INSN(cbnz,  0b10110101);
 910 
 911 #undef INSN
 912 
 913   // Test & branch (immediate)
 914 #define INSN(NAME, opcode)                                              \
 915   void NAME(Register Rt, int bitpos, address dest) {                    \
 916     int64_t offset = (dest - pc()) >> 2;                                \
 917     int b5 = bitpos >> 5;                                               \
 918     bitpos &= 0x1f;                                                     \
 919     starti;                                                             \
 920     f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \
 921     rf(Rt, 0);                                                          \
 922   }                                                                     \
 923   void NAME(Register Rt, int bitpos, Label &L) {                        \
 924     wrap_label(Rt, bitpos, L, &Assembler::NAME);                        \
 925   }
 926 
 927   INSN(tbz,  0b0110110);
 928   INSN(tbnz, 0b0110111);
 929 
 930 #undef INSN
 931 
 932   // Conditional branch (immediate)
 933   enum Condition
 934     {EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV};
 935 
 936   void br(Condition  cond, address dest) {
 937     int64_t offset = (dest - pc()) >> 2;
 938     starti;
 939     f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0);
 940   }
 941 
 942 #define INSN(NAME, cond)                        \
 943   void NAME(address dest) {                     \
 944     br(cond, dest);                             \
 945   }
 946 
 947   INSN(beq, EQ);
 948   INSN(bne, NE);
 949   INSN(bhs, HS);
 950   INSN(bcs, CS);
 951   INSN(blo, LO);
 952   INSN(bcc, CC);
 953   INSN(bmi, MI);
 954   INSN(bpl, PL);
 955   INSN(bvs, VS);
 956   INSN(bvc, VC);
 957   INSN(bhi, HI);
 958   INSN(bls, LS);
 959   INSN(bge, GE);
 960   INSN(blt, LT);
 961   INSN(bgt, GT);
 962   INSN(ble, LE);
 963   INSN(bal, AL);
 964   INSN(bnv, NV);
 965 
 966   void br(Condition cc, Label &L);
 967 
 968 #undef INSN
 969 
 970   // Exception generation
 971   void generate_exception(int opc, int op2, int LL, unsigned imm) {
 972     starti;
 973     f(0b11010100, 31, 24);
 974     f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0);
 975   }
 976 
 977 #define INSN(NAME, opc, op2, LL)                \
 978   void NAME(unsigned imm) {                     \
 979     generate_exception(opc, op2, LL, imm);      \
 980   }
 981 
 982   INSN(svc, 0b000, 0, 0b01);
 983   INSN(hvc, 0b000, 0, 0b10);
 984   INSN(smc, 0b000, 0, 0b11);
 985   INSN(brk, 0b001, 0, 0b00);
 986   INSN(hlt, 0b010, 0, 0b00);
 987   INSN(dcps1, 0b101, 0, 0b01);
 988   INSN(dcps2, 0b101, 0, 0b10);
 989   INSN(dcps3, 0b101, 0, 0b11);
 990 
 991 #undef INSN
 992 
 993   // System
 994   void system(int op0, int op1, int CRn, int CRm, int op2,
 995               Register rt = dummy_reg)
 996   {
 997     starti;
 998     f(0b11010101000, 31, 21);
 999     f(op0, 20, 19);
1000     f(op1, 18, 16);
1001     f(CRn, 15, 12);
1002     f(CRm, 11, 8);
1003     f(op2, 7, 5);
1004     rf(rt, 0);
1005   }
1006 
1007   void hint(int imm) {
1008     system(0b00, 0b011, 0b0010, 0b0000, imm);
1009   }
1010 
1011   void nop() {
1012     hint(0);
1013   }
1014 
1015   void yield() {
1016     hint(1);
1017   }
1018 
1019   void wfe() {
1020     hint(2);
1021   }
1022 
1023   void wfi() {
1024     hint(3);
1025   }
1026 
1027   void sev() {
1028     hint(4);
1029   }
1030 
1031   void sevl() {
1032     hint(5);
1033   }
1034 
1035   // we only provide mrs and msr for the special purpose system
1036   // registers where op1 (instr[20:19]) == 11 and, (currently) only
1037   // use it for FPSR n.b msr has L (instr[21]) == 0 mrs has L == 1
1038 
1039   void msr(int op1, int CRn, int CRm, int op2, Register rt) {
1040     starti;
1041     f(0b1101010100011, 31, 19);
1042     f(op1, 18, 16);
1043     f(CRn, 15, 12);
1044     f(CRm, 11, 8);
1045     f(op2, 7, 5);
1046     // writing zr is ok
1047     zrf(rt, 0);
1048   }
1049 
1050   void mrs(int op1, int CRn, int CRm, int op2, Register rt) {
1051     starti;
1052     f(0b1101010100111, 31, 19);
1053     f(op1, 18, 16);
1054     f(CRn, 15, 12);
1055     f(CRm, 11, 8);
1056     f(op2, 7, 5);
1057     // reading to zr is a mistake
1058     rf(rt, 0);
1059   }
1060 
1061   enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH,
1062                 ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY};
1063 
1064   void dsb(barrier imm) {
1065     system(0b00, 0b011, 0b00011, imm, 0b100);
1066   }
1067 
1068   void dmb(barrier imm) {
1069     system(0b00, 0b011, 0b00011, imm, 0b101);
1070   }
1071 
1072   void isb() {
1073     system(0b00, 0b011, 0b00011, SY, 0b110);
1074   }
1075 
1076   void sys(int op1, int CRn, int CRm, int op2,
1077            Register rt = (Register)0b11111) {
1078     system(0b01, op1, CRn, CRm, op2, rt);
1079   }
1080 
1081   // Only implement operations accessible from EL0 or higher, i.e.,
1082   //            op1    CRn    CRm    op2
1083   // IC IVAU     3      7      5      1
1084   // DC CVAC     3      7      10     1
1085   // DC CVAP     3      7      12     1
1086   // DC CVAU     3      7      11     1
1087   // DC CIVAC    3      7      14     1
1088   // DC ZVA      3      7      4      1
1089   // So only deal with the CRm field.
1090   enum icache_maintenance {IVAU = 0b0101};
1091   enum dcache_maintenance {CVAC = 0b1010, CVAP = 0b1100, CVAU = 0b1011, CIVAC = 0b1110, ZVA = 0b100};
1092 
1093   void dc(dcache_maintenance cm, Register Rt) {
1094     sys(0b011, 0b0111, cm, 0b001, Rt);
1095   }
1096 
1097   void ic(icache_maintenance cm, Register Rt) {
1098     sys(0b011, 0b0111, cm, 0b001, Rt);
1099   }
1100 
1101   // A more convenient access to dmb for our purposes
1102   enum Membar_mask_bits {
1103     // We can use ISH for a barrier because the ARM ARM says "This
1104     // architecture assumes that all Processing Elements that use the
1105     // same operating system or hypervisor are in the same Inner
1106     // Shareable shareability domain."
1107     StoreStore = ISHST,
1108     LoadStore  = ISHLD,
1109     LoadLoad   = ISHLD,
1110     StoreLoad  = ISH,
1111     AnyAny     = ISH
1112   };
1113 
1114   void membar(Membar_mask_bits order_constraint) {
1115     dmb(Assembler::barrier(order_constraint));
1116   }
1117 
1118   // Unconditional branch (register)
1119   void branch_reg(Register R, int opc) {
1120     starti;
1121     f(0b1101011, 31, 25);
1122     f(opc, 24, 21);
1123     f(0b11111000000, 20, 10);
1124     rf(R, 5);
1125     f(0b00000, 4, 0);
1126   }
1127 
1128 #define INSN(NAME, opc)                         \
1129   void NAME(Register R) {                       \
1130     branch_reg(R, opc);                         \
1131   }
1132 
1133   INSN(br, 0b0000);
1134   INSN(blr, 0b0001);
1135   INSN(ret, 0b0010);
1136 
1137   void ret(void *p); // This forces a compile-time error for ret(0)
1138 
1139 #undef INSN
1140 
1141 #define INSN(NAME, opc)                         \
1142   void NAME() {                 \
1143     branch_reg(dummy_reg, opc);         \
1144   }
1145 
1146   INSN(eret, 0b0100);
1147   INSN(drps, 0b0101);
1148 
1149 #undef INSN
1150 
1151   // Load/store exclusive
1152   enum operand_size { byte, halfword, word, xword };
1153 
1154   void load_store_exclusive(Register Rs, Register Rt1, Register Rt2,
1155     Register Rn, enum operand_size sz, int op, bool ordered) {
1156     starti;
1157     f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21);
1158     rf(Rs, 16), f(ordered, 15), zrf(Rt2, 10), srf(Rn, 5), zrf(Rt1, 0);
1159   }
1160 
1161   void load_exclusive(Register dst, Register addr,
1162                       enum operand_size sz, bool ordered) {
1163     load_store_exclusive(dummy_reg, dst, dummy_reg, addr,
1164                          sz, 0b010, ordered);
1165   }
1166 
1167   void store_exclusive(Register status, Register new_val, Register addr,
1168                        enum operand_size sz, bool ordered) {
1169     load_store_exclusive(status, new_val, dummy_reg, addr,
1170                          sz, 0b000, ordered);
1171   }
1172 
1173 #define INSN4(NAME, sz, op, o0) /* Four registers */                    \
1174   void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) {     \
1175     guarantee(Rs != Rn && Rs != Rt1 && Rs != Rt2, "unpredictable instruction"); \
1176     load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0);                 \
1177   }
1178 
1179 #define INSN3(NAME, sz, op, o0) /* Three registers */                   \
1180   void NAME(Register Rs, Register Rt, Register Rn) {                    \
1181     guarantee(Rs != Rn && Rs != Rt, "unpredictable instruction");       \
1182     load_store_exclusive(Rs, Rt, dummy_reg, Rn, sz, op, o0); \
1183   }
1184 
1185 #define INSN2(NAME, sz, op, o0) /* Two registers */                     \
1186   void NAME(Register Rt, Register Rn) {                                 \
1187     load_store_exclusive(dummy_reg, Rt, dummy_reg, \
1188                          Rn, sz, op, o0);                               \
1189   }
1190 
1191 #define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \
1192   void NAME(Register Rt1, Register Rt2, Register Rn) {                  \
1193     guarantee(Rt1 != Rt2, "unpredictable instruction");                 \
1194     load_store_exclusive(dummy_reg, Rt1, Rt2, Rn, sz, op, o0);          \
1195   }
1196 
1197   // bytes
1198   INSN3(stxrb, byte, 0b000, 0);
1199   INSN3(stlxrb, byte, 0b000, 1);
1200   INSN2(ldxrb, byte, 0b010, 0);
1201   INSN2(ldaxrb, byte, 0b010, 1);
1202   INSN2(stlrb, byte, 0b100, 1);
1203   INSN2(ldarb, byte, 0b110, 1);
1204 
1205   // halfwords
1206   INSN3(stxrh, halfword, 0b000, 0);
1207   INSN3(stlxrh, halfword, 0b000, 1);
1208   INSN2(ldxrh, halfword, 0b010, 0);
1209   INSN2(ldaxrh, halfword, 0b010, 1);
1210   INSN2(stlrh, halfword, 0b100, 1);
1211   INSN2(ldarh, halfword, 0b110, 1);
1212 
1213   // words
1214   INSN3(stxrw, word, 0b000, 0);
1215   INSN3(stlxrw, word, 0b000, 1);
1216   INSN4(stxpw, word, 0b001, 0);
1217   INSN4(stlxpw, word, 0b001, 1);
1218   INSN2(ldxrw, word, 0b010, 0);
1219   INSN2(ldaxrw, word, 0b010, 1);
1220   INSN_FOO(ldxpw, word, 0b011, 0);
1221   INSN_FOO(ldaxpw, word, 0b011, 1);
1222   INSN2(stlrw, word, 0b100, 1);
1223   INSN2(ldarw, word, 0b110, 1);
1224 
1225   // xwords
1226   INSN3(stxr, xword, 0b000, 0);
1227   INSN3(stlxr, xword, 0b000, 1);
1228   INSN4(stxp, xword, 0b001, 0);
1229   INSN4(stlxp, xword, 0b001, 1);
1230   INSN2(ldxr, xword, 0b010, 0);
1231   INSN2(ldaxr, xword, 0b010, 1);
1232   INSN_FOO(ldxp, xword, 0b011, 0);
1233   INSN_FOO(ldaxp, xword, 0b011, 1);
1234   INSN2(stlr, xword, 0b100, 1);
1235   INSN2(ldar, xword, 0b110, 1);
1236 
1237 #undef INSN2
1238 #undef INSN3
1239 #undef INSN4
1240 #undef INSN_FOO
1241 
1242   // 8.1 Compare and swap extensions
1243   void lse_cas(Register Rs, Register Rt, Register Rn,
1244                         enum operand_size sz, bool a, bool r, bool not_pair) {
1245     starti;
1246     if (! not_pair) { // Pair
1247       assert(sz == word || sz == xword, "invalid size");
1248       /* The size bit is in bit 30, not 31 */
1249       sz = (operand_size)(sz == word ? 0b00:0b01);
1250     }
1251     f(sz, 31, 30), f(0b001000, 29, 24), f(not_pair ? 1 : 0, 23), f(a, 22), f(1, 21);
1252     zrf(Rs, 16), f(r, 15), f(0b11111, 14, 10), srf(Rn, 5), zrf(Rt, 0);
1253   }
1254 
1255   // CAS
1256 #define INSN(NAME, a, r)                                                \
1257   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1258     assert(Rs != Rn && Rs != Rt, "unpredictable instruction");          \
1259     lse_cas(Rs, Rt, Rn, sz, a, r, true);                                \
1260   }
1261   INSN(cas,    false, false)
1262   INSN(casa,   true,  false)
1263   INSN(casl,   false, true)
1264   INSN(casal,  true,  true)
1265 #undef INSN
1266 
1267   // CASP
1268 #define INSN(NAME, a, r)                                                \
1269   void NAME(operand_size sz, Register Rs, Register Rs1,                 \
1270             Register Rt, Register Rt1, Register Rn) {                   \
1271     assert((Rs->encoding() & 1) == 0 && (Rt->encoding() & 1) == 0 &&    \
1272            Rs->successor() == Rs1 && Rt->successor() == Rt1 &&          \
1273            Rs != Rn && Rs1 != Rn && Rs != Rt, "invalid registers");     \
1274     lse_cas(Rs, Rt, Rn, sz, a, r, false);                               \
1275   }
1276   INSN(casp,    false, false)
1277   INSN(caspa,   true,  false)
1278   INSN(caspl,   false, true)
1279   INSN(caspal,  true,  true)
1280 #undef INSN
1281 
1282   // 8.1 Atomic operations
1283   void lse_atomic(Register Rs, Register Rt, Register Rn,
1284                   enum operand_size sz, int op1, int op2, bool a, bool r) {
1285     starti;
1286     f(sz, 31, 30), f(0b111000, 29, 24), f(a, 23), f(r, 22), f(1, 21);
1287     zrf(Rs, 16), f(op1, 15), f(op2, 14, 12), f(0, 11, 10), srf(Rn, 5), zrf(Rt, 0);
1288   }
1289 
1290 #define INSN(NAME, NAME_A, NAME_L, NAME_AL, op1, op2)                   \
1291   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1292     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, false);                 \
1293   }                                                                     \
1294   void NAME_A(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1295     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, false);                  \
1296   }                                                                     \
1297   void NAME_L(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1298     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, true);                  \
1299   }                                                                     \
1300   void NAME_AL(operand_size sz, Register Rs, Register Rt, Register Rn) {\
1301     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, true);                   \
1302   }
1303   INSN(ldadd,  ldadda,  ldaddl,  ldaddal,  0, 0b000);
1304   INSN(ldbic,  ldbica,  ldbicl,  ldbical,  0, 0b001);
1305   INSN(ldeor,  ldeora,  ldeorl,  ldeoral,  0, 0b010);
1306   INSN(ldorr,  ldorra,  ldorrl,  ldorral,  0, 0b011);
1307   INSN(ldsmax, ldsmaxa, ldsmaxl, ldsmaxal, 0, 0b100);
1308   INSN(ldsmin, ldsmina, ldsminl, ldsminal, 0, 0b101);
1309   INSN(ldumax, ldumaxa, ldumaxl, ldumaxal, 0, 0b110);
1310   INSN(ldumin, ldumina, lduminl, lduminal, 0, 0b111);
1311   INSN(swp,    swpa,    swpl,    swpal,    1, 0b000);
1312 #undef INSN
1313 
1314   // Load register (literal)
1315 #define INSN(NAME, opc, V)                                              \
1316   void NAME(Register Rt, address dest) {                                \
1317     int64_t offset = (dest - pc()) >> 2;                                \
1318     starti;                                                             \
1319     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1320       sf(offset, 23, 5);                                                \
1321     rf(Rt, 0);                                                          \
1322   }                                                                     \
1323   void NAME(Register Rt, address dest, relocInfo::relocType rtype) {    \
1324     InstructionMark im(this);                                           \
1325     guarantee(rtype == relocInfo::internal_word_type,                   \
1326               "only internal_word_type relocs make sense here");        \
1327     code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \
1328     NAME(Rt, dest);                                                     \
1329   }                                                                     \
1330   void NAME(Register Rt, Label &L) {                                    \
1331     wrap_label(Rt, L, &Assembler::NAME);                                \
1332   }
1333 
1334   INSN(ldrw, 0b00, 0);
1335   INSN(ldr, 0b01, 0);
1336   INSN(ldrsw, 0b10, 0);
1337 
1338 #undef INSN
1339 
1340 #define INSN(NAME, opc, V)                                              \
1341   void NAME(FloatRegister Rt, address dest) {                           \
1342     int64_t offset = (dest - pc()) >> 2;                                \
1343     starti;                                                             \
1344     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1345       sf(offset, 23, 5);                                                \
1346     rf((Register)Rt, 0);                                                \
1347   }
1348 
1349   INSN(ldrs, 0b00, 1);
1350   INSN(ldrd, 0b01, 1);
1351   INSN(ldrq, 0b10, 1);
1352 
1353 #undef INSN
1354 
1355 #define INSN(NAME, opc, V)                                              \
1356   void NAME(address dest, prfop op = PLDL1KEEP) {                       \
1357     int64_t offset = (dest - pc()) >> 2;                                \
1358     starti;                                                             \
1359     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1360       sf(offset, 23, 5);                                                \
1361     f(op, 4, 0);                                                        \
1362   }                                                                     \
1363   void NAME(Label &L, prfop op = PLDL1KEEP) {                           \
1364     wrap_label(L, op, &Assembler::NAME);                                \
1365   }
1366 
1367   INSN(prfm, 0b11, 0);
1368 
1369 #undef INSN
1370 
1371   // Load/store
1372   void ld_st1(int opc, int p1, int V, int L,
1373               Register Rt1, Register Rt2, Address adr, bool no_allocate) {
1374     starti;
1375     f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22);
1376     zrf(Rt2, 10), zrf(Rt1, 0);
1377     if (no_allocate) {
1378       adr.encode_nontemporal_pair(current);
1379     } else {
1380       adr.encode_pair(current);
1381     }
1382   }
1383 
1384   // Load/store register pair (offset)
1385 #define INSN(NAME, size, p1, V, L, no_allocate)         \
1386   void NAME(Register Rt1, Register Rt2, Address adr) {  \
1387     ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \
1388    }
1389 
1390   INSN(stpw, 0b00, 0b101, 0, 0, false);
1391   INSN(ldpw, 0b00, 0b101, 0, 1, false);
1392   INSN(ldpsw, 0b01, 0b101, 0, 1, false);
1393   INSN(stp, 0b10, 0b101, 0, 0, false);
1394   INSN(ldp, 0b10, 0b101, 0, 1, false);
1395 
1396   // Load/store no-allocate pair (offset)
1397   INSN(stnpw, 0b00, 0b101, 0, 0, true);
1398   INSN(ldnpw, 0b00, 0b101, 0, 1, true);
1399   INSN(stnp, 0b10, 0b101, 0, 0, true);
1400   INSN(ldnp, 0b10, 0b101, 0, 1, true);
1401 
1402 #undef INSN
1403 
1404 #define INSN(NAME, size, p1, V, L, no_allocate)                         \
1405   void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) {        \
1406     ld_st1(size, p1, V, L, (Register)Rt1, (Register)Rt2, adr, no_allocate); \
1407    }
1408 
1409   INSN(stps, 0b00, 0b101, 1, 0, false);
1410   INSN(ldps, 0b00, 0b101, 1, 1, false);
1411   INSN(stpd, 0b01, 0b101, 1, 0, false);
1412   INSN(ldpd, 0b01, 0b101, 1, 1, false);
1413   INSN(stpq, 0b10, 0b101, 1, 0, false);
1414   INSN(ldpq, 0b10, 0b101, 1, 1, false);
1415 
1416 #undef INSN
1417 
1418   // Load/store register (all modes)
1419   void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) {
1420     starti;
1421 
1422     f(V, 26); // general reg?
1423     zrf(Rt, 0);
1424 
1425     // Encoding for literal loads is done here (rather than pushed
1426     // down into Address::encode) because the encoding of this
1427     // instruction is too different from all of the other forms to
1428     // make it worth sharing.
1429     if (adr.getMode() == Address::literal) {
1430       assert(size == 0b10 || size == 0b11, "bad operand size in ldr");
1431       assert(op == 0b01, "literal form can only be used with loads");
1432       f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24);
1433       int64_t offset = (adr.target() - pc()) >> 2;
1434       sf(offset, 23, 5);
1435       code_section()->relocate(pc(), adr.rspec());
1436       return;
1437     }
1438 
1439     f(size, 31, 30);
1440     f(op, 23, 22); // str
1441     adr.encode(current);
1442   }
1443 
1444 #define INSN(NAME, size, op)                            \
1445   void NAME(Register Rt, const Address &adr) {          \
1446     ld_st2(Rt, adr, size, op);                          \
1447   }                                                     \
1448 
1449   INSN(str, 0b11, 0b00);
1450   INSN(strw, 0b10, 0b00);
1451   INSN(strb, 0b00, 0b00);
1452   INSN(strh, 0b01, 0b00);
1453 
1454   INSN(ldr, 0b11, 0b01);
1455   INSN(ldrw, 0b10, 0b01);
1456   INSN(ldrb, 0b00, 0b01);
1457   INSN(ldrh, 0b01, 0b01);
1458 
1459   INSN(ldrsb, 0b00, 0b10);
1460   INSN(ldrsbw, 0b00, 0b11);
1461   INSN(ldrsh, 0b01, 0b10);
1462   INSN(ldrshw, 0b01, 0b11);
1463   INSN(ldrsw, 0b10, 0b10);
1464 
1465 #undef INSN
1466 
1467 #define INSN(NAME, size, op)                                    \
1468   void NAME(const Address &adr, prfop pfop = PLDL1KEEP) {       \
1469     ld_st2((Register)pfop, adr, size, op);                      \
1470   }
1471 
1472   INSN(prfm, 0b11, 0b10); // FIXME: PRFM should not be used with
1473                           // writeback modes, but the assembler
1474                           // doesn't enfore that.
1475 
1476 #undef INSN
1477 
1478 #define INSN(NAME, size, op)                            \
1479   void NAME(FloatRegister Rt, const Address &adr) {     \
1480     ld_st2((Register)Rt, adr, size, op, 1);             \
1481   }
1482 
1483   INSN(strd, 0b11, 0b00);
1484   INSN(strs, 0b10, 0b00);
1485   INSN(ldrd, 0b11, 0b01);
1486   INSN(ldrs, 0b10, 0b01);
1487   INSN(strq, 0b00, 0b10);
1488   INSN(ldrq, 0x00, 0b11);
1489 
1490 #undef INSN
1491 
1492   enum shift_kind { LSL, LSR, ASR, ROR };
1493 
1494   void op_shifted_reg(unsigned decode,
1495                       enum shift_kind kind, unsigned shift,
1496                       unsigned size, unsigned op) {
1497     f(size, 31);
1498     f(op, 30, 29);
1499     f(decode, 28, 24);
1500     f(shift, 15, 10);
1501     f(kind, 23, 22);
1502   }
1503 
1504   // Logical (shifted register)
1505 #define INSN(NAME, size, op, N)                                 \
1506   void NAME(Register Rd, Register Rn, Register Rm,              \
1507             enum shift_kind kind = LSL, unsigned shift = 0) {   \
1508     starti;                                                     \
1509     guarantee(size == 1 || shift < 32, "incorrect shift");      \
1510     f(N, 21);                                                   \
1511     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                        \
1512     op_shifted_reg(0b01010, kind, shift, size, op);             \
1513   }
1514 
1515   INSN(andr, 1, 0b00, 0);
1516   INSN(orr, 1, 0b01, 0);
1517   INSN(eor, 1, 0b10, 0);
1518   INSN(ands, 1, 0b11, 0);
1519   INSN(andw, 0, 0b00, 0);
1520   INSN(orrw, 0, 0b01, 0);
1521   INSN(eorw, 0, 0b10, 0);
1522   INSN(andsw, 0, 0b11, 0);
1523 
1524 #undef INSN
1525 
1526 #define INSN(NAME, size, op, N)                                         \
1527   void NAME(Register Rd, Register Rn, Register Rm,                      \
1528             enum shift_kind kind = LSL, unsigned shift = 0) {           \
1529     starti;                                                             \
1530     f(N, 21);                                                           \
1531     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                                \
1532     op_shifted_reg(0b01010, kind, shift, size, op);                     \
1533   }                                                                     \
1534                                                                         \
1535   /* These instructions have no immediate form. Provide an overload so  \
1536      that if anyone does try to use an immediate operand -- this has    \
1537      happened! -- we'll get a compile-time error. */                    \
1538   void NAME(Register Rd, Register Rn, unsigned imm,                     \
1539             enum shift_kind kind = LSL, unsigned shift = 0) {           \
1540     assert(false, " can't be used with immediate operand");             \
1541   }
1542 
1543   INSN(bic, 1, 0b00, 1);
1544   INSN(orn, 1, 0b01, 1);
1545   INSN(eon, 1, 0b10, 1);
1546   INSN(bics, 1, 0b11, 1);
1547   INSN(bicw, 0, 0b00, 1);
1548   INSN(ornw, 0, 0b01, 1);
1549   INSN(eonw, 0, 0b10, 1);
1550   INSN(bicsw, 0, 0b11, 1);
1551 
1552 #undef INSN
1553 
1554   // Aliases for short forms of orn
1555 void mvn(Register Rd, Register Rm,
1556             enum shift_kind kind = LSL, unsigned shift = 0) {
1557   orn(Rd, zr, Rm, kind, shift);
1558 }
1559 
1560 void mvnw(Register Rd, Register Rm,
1561             enum shift_kind kind = LSL, unsigned shift = 0) {
1562   ornw(Rd, zr, Rm, kind, shift);
1563 }
1564 
1565   // Add/subtract (shifted register)
1566 #define INSN(NAME, size, op)                            \
1567   void NAME(Register Rd, Register Rn, Register Rm,      \
1568             enum shift_kind kind, unsigned shift = 0) { \
1569     starti;                                             \
1570     f(0, 21);                                           \
1571     assert_cond(kind != ROR);                           \
1572     guarantee(size == 1 || shift < 32, "incorrect shift");\
1573     zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16);                \
1574     op_shifted_reg(0b01011, kind, shift, size, op);     \
1575   }
1576 
1577   INSN(add, 1, 0b000);
1578   INSN(sub, 1, 0b10);
1579   INSN(addw, 0, 0b000);
1580   INSN(subw, 0, 0b10);
1581 
1582   INSN(adds, 1, 0b001);
1583   INSN(subs, 1, 0b11);
1584   INSN(addsw, 0, 0b001);
1585   INSN(subsw, 0, 0b11);
1586 
1587 #undef INSN
1588 
1589   // Add/subtract (extended register)
1590 #define INSN(NAME, op)                                                  \
1591   void NAME(Register Rd, Register Rn, Register Rm,                      \
1592            ext::operation option, int amount = 0) {                     \
1593     starti;                                                             \
1594     zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0);                                \
1595     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1596   }
1597 
1598   void add_sub_extended_reg(unsigned op, unsigned decode,
1599     Register Rd, Register Rn, Register Rm,
1600     unsigned opt, ext::operation option, unsigned imm) {
1601     guarantee(imm <= 4, "shift amount must be <= 4");
1602     f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21);
1603     f(option, 15, 13), f(imm, 12, 10);
1604   }
1605 
1606   INSN(addw, 0b000);
1607   INSN(subw, 0b010);
1608   INSN(add, 0b100);
1609   INSN(sub, 0b110);
1610 
1611 #undef INSN
1612 
1613 #define INSN(NAME, op)                                                  \
1614   void NAME(Register Rd, Register Rn, Register Rm,                      \
1615            ext::operation option, int amount = 0) {                     \
1616     starti;                                                             \
1617     zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0);                                \
1618     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1619   }
1620 
1621   INSN(addsw, 0b001);
1622   INSN(subsw, 0b011);
1623   INSN(adds, 0b101);
1624   INSN(subs, 0b111);
1625 
1626 #undef INSN
1627 
1628   // Aliases for short forms of add and sub
1629 #define INSN(NAME)                                      \
1630   void NAME(Register Rd, Register Rn, Register Rm) {    \
1631     if (Rd == sp || Rn == sp)                           \
1632       NAME(Rd, Rn, Rm, ext::uxtx);                      \
1633     else                                                \
1634       NAME(Rd, Rn, Rm, LSL);                            \
1635   }
1636 
1637   INSN(addw);
1638   INSN(subw);
1639   INSN(add);
1640   INSN(sub);
1641 
1642   INSN(addsw);
1643   INSN(subsw);
1644   INSN(adds);
1645   INSN(subs);
1646 
1647 #undef INSN
1648 
1649   // Add/subtract (with carry)
1650   void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) {
1651     starti;
1652     f(op, 31, 29);
1653     f(0b11010000, 28, 21);
1654     f(0b000000, 15, 10);
1655     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);
1656   }
1657 
1658   #define INSN(NAME, op)                                \
1659     void NAME(Register Rd, Register Rn, Register Rm) {  \
1660       add_sub_carry(op, Rd, Rn, Rm);                    \
1661     }
1662 
1663   INSN(adcw, 0b000);
1664   INSN(adcsw, 0b001);
1665   INSN(sbcw, 0b010);
1666   INSN(sbcsw, 0b011);
1667   INSN(adc, 0b100);
1668   INSN(adcs, 0b101);
1669   INSN(sbc,0b110);
1670   INSN(sbcs, 0b111);
1671 
1672 #undef INSN
1673 
1674   // Conditional compare (both kinds)
1675   void conditional_compare(unsigned op, int o1, int o2, int o3,
1676                            Register Rn, unsigned imm5, unsigned nzcv,
1677                            unsigned cond) {
1678     starti;
1679     f(op, 31, 29);
1680     f(0b11010010, 28, 21);
1681     f(cond, 15, 12);
1682     f(o1, 11);
1683     f(o2, 10);
1684     f(o3, 4);
1685     f(nzcv, 3, 0);
1686     f(imm5, 20, 16), zrf(Rn, 5);
1687   }
1688 
1689 #define INSN(NAME, op)                                                  \
1690   void NAME(Register Rn, Register Rm, int imm, Condition cond) {        \
1691     int regNumber = (Rm == zr ? 31 : (uintptr_t)Rm);                    \
1692     conditional_compare(op, 0, 0, 0, Rn, regNumber, imm, cond);         \
1693   }                                                                     \
1694                                                                         \
1695   void NAME(Register Rn, int imm5, int imm, Condition cond) {           \
1696     conditional_compare(op, 1, 0, 0, Rn, imm5, imm, cond);              \
1697   }
1698 
1699   INSN(ccmnw, 0b001);
1700   INSN(ccmpw, 0b011);
1701   INSN(ccmn, 0b101);
1702   INSN(ccmp, 0b111);
1703 
1704 #undef INSN
1705 
1706   // Conditional select
1707   void conditional_select(unsigned op, unsigned op2,
1708                           Register Rd, Register Rn, Register Rm,
1709                           unsigned cond) {
1710     starti;
1711     f(op, 31, 29);
1712     f(0b11010100, 28, 21);
1713     f(cond, 15, 12);
1714     f(op2, 11, 10);
1715     zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0);
1716   }
1717 
1718 #define INSN(NAME, op, op2)                                             \
1719   void NAME(Register Rd, Register Rn, Register Rm, Condition cond) { \
1720     conditional_select(op, op2, Rd, Rn, Rm, cond);                      \
1721   }
1722 
1723   INSN(cselw, 0b000, 0b00);
1724   INSN(csincw, 0b000, 0b01);
1725   INSN(csinvw, 0b010, 0b00);
1726   INSN(csnegw, 0b010, 0b01);
1727   INSN(csel, 0b100, 0b00);
1728   INSN(csinc, 0b100, 0b01);
1729   INSN(csinv, 0b110, 0b00);
1730   INSN(csneg, 0b110, 0b01);
1731 
1732 #undef INSN
1733 
1734   // Data processing
1735   void data_processing(unsigned op29, unsigned opcode,
1736                        Register Rd, Register Rn) {
1737     f(op29, 31, 29), f(0b11010110, 28, 21);
1738     f(opcode, 15, 10);
1739     rf(Rn, 5), rf(Rd, 0);
1740   }
1741 
1742   // (1 source)
1743 #define INSN(NAME, op29, opcode2, opcode)       \
1744   void NAME(Register Rd, Register Rn) {         \
1745     starti;                                     \
1746     f(opcode2, 20, 16);                         \
1747     data_processing(op29, opcode, Rd, Rn);      \
1748   }
1749 
1750   INSN(rbitw,  0b010, 0b00000, 0b00000);
1751   INSN(rev16w, 0b010, 0b00000, 0b00001);
1752   INSN(revw,   0b010, 0b00000, 0b00010);
1753   INSN(clzw,   0b010, 0b00000, 0b00100);
1754   INSN(clsw,   0b010, 0b00000, 0b00101);
1755 
1756   INSN(rbit,   0b110, 0b00000, 0b00000);
1757   INSN(rev16,  0b110, 0b00000, 0b00001);
1758   INSN(rev32,  0b110, 0b00000, 0b00010);
1759   INSN(rev,    0b110, 0b00000, 0b00011);
1760   INSN(clz,    0b110, 0b00000, 0b00100);
1761   INSN(cls,    0b110, 0b00000, 0b00101);
1762 
1763 #undef INSN
1764 
1765   // (2 sources)
1766 #define INSN(NAME, op29, opcode)                        \
1767   void NAME(Register Rd, Register Rn, Register Rm) {    \
1768     starti;                                             \
1769     rf(Rm, 16);                                         \
1770     data_processing(op29, opcode, Rd, Rn);              \
1771   }
1772 
1773   INSN(udivw, 0b000, 0b000010);
1774   INSN(sdivw, 0b000, 0b000011);
1775   INSN(lslvw, 0b000, 0b001000);
1776   INSN(lsrvw, 0b000, 0b001001);
1777   INSN(asrvw, 0b000, 0b001010);
1778   INSN(rorvw, 0b000, 0b001011);
1779 
1780   INSN(udiv, 0b100, 0b000010);
1781   INSN(sdiv, 0b100, 0b000011);
1782   INSN(lslv, 0b100, 0b001000);
1783   INSN(lsrv, 0b100, 0b001001);
1784   INSN(asrv, 0b100, 0b001010);
1785   INSN(rorv, 0b100, 0b001011);
1786 
1787 #undef INSN
1788 
1789   // (3 sources)
1790   void data_processing(unsigned op54, unsigned op31, unsigned o0,
1791                        Register Rd, Register Rn, Register Rm,
1792                        Register Ra) {
1793     starti;
1794     f(op54, 31, 29), f(0b11011, 28, 24);
1795     f(op31, 23, 21), f(o0, 15);
1796     zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0);
1797   }
1798 
1799 #define INSN(NAME, op54, op31, o0)                                      \
1800   void NAME(Register Rd, Register Rn, Register Rm, Register Ra) {       \
1801     data_processing(op54, op31, o0, Rd, Rn, Rm, Ra);                    \
1802   }
1803 
1804   INSN(maddw, 0b000, 0b000, 0);
1805   INSN(msubw, 0b000, 0b000, 1);
1806   INSN(madd, 0b100, 0b000, 0);
1807   INSN(msub, 0b100, 0b000, 1);
1808   INSN(smaddl, 0b100, 0b001, 0);
1809   INSN(smsubl, 0b100, 0b001, 1);
1810   INSN(umaddl, 0b100, 0b101, 0);
1811   INSN(umsubl, 0b100, 0b101, 1);
1812 
1813 #undef INSN
1814 
1815 #define INSN(NAME, op54, op31, o0)                      \
1816   void NAME(Register Rd, Register Rn, Register Rm) {    \
1817     data_processing(op54, op31, o0, Rd, Rn, Rm, (Register)31);  \
1818   }
1819 
1820   INSN(smulh, 0b100, 0b010, 0);
1821   INSN(umulh, 0b100, 0b110, 0);
1822 
1823 #undef INSN
1824 
1825   // Floating-point data-processing (1 source)
1826   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1827                        FloatRegister Vd, FloatRegister Vn) {
1828     starti;
1829     f(op31, 31, 29);
1830     f(0b11110, 28, 24);
1831     f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10);
1832     rf(Vn, 5), rf(Vd, 0);
1833   }
1834 
1835 #define INSN(NAME, op31, type, opcode)                  \
1836   void NAME(FloatRegister Vd, FloatRegister Vn) {       \
1837     data_processing(op31, type, opcode, Vd, Vn);        \
1838   }
1839 
1840 private:
1841   INSN(i_fmovs, 0b000, 0b00, 0b000000);
1842 public:
1843   INSN(fabss, 0b000, 0b00, 0b000001);
1844   INSN(fnegs, 0b000, 0b00, 0b000010);
1845   INSN(fsqrts, 0b000, 0b00, 0b000011);
1846   INSN(fcvts, 0b000, 0b00, 0b000101);   // Single-precision to double-precision
1847 
1848 private:
1849   INSN(i_fmovd, 0b000, 0b01, 0b000000);
1850 public:
1851   INSN(fabsd, 0b000, 0b01, 0b000001);
1852   INSN(fnegd, 0b000, 0b01, 0b000010);
1853   INSN(fsqrtd, 0b000, 0b01, 0b000011);
1854   INSN(fcvtd, 0b000, 0b01, 0b000100);   // Double-precision to single-precision
1855 
1856   void fmovd(FloatRegister Vd, FloatRegister Vn) {
1857     assert(Vd != Vn, "should be");
1858     i_fmovd(Vd, Vn);
1859   }
1860 
1861   void fmovs(FloatRegister Vd, FloatRegister Vn) {
1862     assert(Vd != Vn, "should be");
1863     i_fmovs(Vd, Vn);
1864   }
1865 
1866 #undef INSN
1867 
1868   // Floating-point data-processing (2 source)
1869   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1870                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {
1871     starti;
1872     f(op31, 31, 29);
1873     f(0b11110, 28, 24);
1874     f(type, 23, 22), f(1, 21), f(opcode, 15, 12), f(0b10, 11, 10);
1875     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1876   }
1877 
1878 #define INSN(NAME, op31, type, opcode)                  \
1879   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {     \
1880     data_processing(op31, type, opcode, Vd, Vn, Vm);    \
1881   }
1882 
1883   INSN(fmuls, 0b000, 0b00, 0b0000);
1884   INSN(fdivs, 0b000, 0b00, 0b0001);
1885   INSN(fadds, 0b000, 0b00, 0b0010);
1886   INSN(fsubs, 0b000, 0b00, 0b0011);
1887   INSN(fmaxs, 0b000, 0b00, 0b0100);
1888   INSN(fmins, 0b000, 0b00, 0b0101);
1889   INSN(fnmuls, 0b000, 0b00, 0b1000);
1890 
1891   INSN(fmuld, 0b000, 0b01, 0b0000);
1892   INSN(fdivd, 0b000, 0b01, 0b0001);
1893   INSN(faddd, 0b000, 0b01, 0b0010);
1894   INSN(fsubd, 0b000, 0b01, 0b0011);
1895   INSN(fmaxd, 0b000, 0b01, 0b0100);
1896   INSN(fmind, 0b000, 0b01, 0b0101);
1897   INSN(fnmuld, 0b000, 0b01, 0b1000);
1898 
1899 #undef INSN
1900 
1901    // Floating-point data-processing (3 source)
1902   void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0,
1903                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,
1904                        FloatRegister Va) {
1905     starti;
1906     f(op31, 31, 29);
1907     f(0b11111, 28, 24);
1908     f(type, 23, 22), f(o1, 21), f(o0, 15);
1909     rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);
1910   }
1911 
1912 #define INSN(NAME, op31, type, o1, o0)                                  \
1913   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,       \
1914             FloatRegister Va) {                                         \
1915     data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va);                \
1916   }
1917 
1918   INSN(fmadds, 0b000, 0b00, 0, 0);
1919   INSN(fmsubs, 0b000, 0b00, 0, 1);
1920   INSN(fnmadds, 0b000, 0b00, 1, 0);
1921   INSN(fnmsubs, 0b000, 0b00, 1, 1);
1922 
1923   INSN(fmaddd, 0b000, 0b01, 0, 0);
1924   INSN(fmsubd, 0b000, 0b01, 0, 1);
1925   INSN(fnmaddd, 0b000, 0b01, 1, 0);
1926   INSN(fnmsub, 0b000, 0b01, 1, 1);
1927 
1928 #undef INSN
1929 
1930    // Floating-point conditional select
1931   void fp_conditional_select(unsigned op31, unsigned type,
1932                              unsigned op1, unsigned op2,
1933                              Condition cond, FloatRegister Vd,
1934                              FloatRegister Vn, FloatRegister Vm) {
1935     starti;
1936     f(op31, 31, 29);
1937     f(0b11110, 28, 24);
1938     f(type, 23, 22);
1939     f(op1, 21, 21);
1940     f(op2, 11, 10);
1941     f(cond, 15, 12);
1942     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1943   }
1944 
1945 #define INSN(NAME, op31, type, op1, op2)                                \
1946   void NAME(FloatRegister Vd, FloatRegister Vn,                         \
1947             FloatRegister Vm, Condition cond) {                         \
1948     fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm);      \
1949   }
1950 
1951   INSN(fcsels, 0b000, 0b00, 0b1, 0b11);
1952   INSN(fcseld, 0b000, 0b01, 0b1, 0b11);
1953 
1954 #undef INSN
1955 
1956    // Floating-point<->integer conversions
1957   void float_int_convert(unsigned op31, unsigned type,
1958                          unsigned rmode, unsigned opcode,
1959                          Register Rd, Register Rn) {
1960     starti;
1961     f(op31, 31, 29);
1962     f(0b11110, 28, 24);
1963     f(type, 23, 22), f(1, 21), f(rmode, 20, 19);
1964     f(opcode, 18, 16), f(0b000000, 15, 10);
1965     zrf(Rn, 5), zrf(Rd, 0);
1966   }
1967 
1968 #define INSN(NAME, op31, type, rmode, opcode)                           \
1969   void NAME(Register Rd, FloatRegister Vn) {                            \
1970     float_int_convert(op31, type, rmode, opcode, Rd, (Register)Vn);     \
1971   }
1972 
1973   INSN(fcvtzsw, 0b000, 0b00, 0b11, 0b000);
1974   INSN(fcvtzs,  0b100, 0b00, 0b11, 0b000);
1975   INSN(fcvtzdw, 0b000, 0b01, 0b11, 0b000);
1976   INSN(fcvtzd,  0b100, 0b01, 0b11, 0b000);
1977 
1978   INSN(fmovs, 0b000, 0b00, 0b00, 0b110);
1979   INSN(fmovd, 0b100, 0b01, 0b00, 0b110);
1980 
1981   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b110);
1982 
1983 #undef INSN
1984 
1985 #define INSN(NAME, op31, type, rmode, opcode)                           \
1986   void NAME(FloatRegister Vd, Register Rn) {                            \
1987     float_int_convert(op31, type, rmode, opcode, (Register)Vd, Rn);     \
1988   }
1989 
1990   INSN(fmovs, 0b000, 0b00, 0b00, 0b111);
1991   INSN(fmovd, 0b100, 0b01, 0b00, 0b111);
1992 
1993   INSN(scvtfws, 0b000, 0b00, 0b00, 0b010);
1994   INSN(scvtfs,  0b100, 0b00, 0b00, 0b010);
1995   INSN(scvtfwd, 0b000, 0b01, 0b00, 0b010);
1996   INSN(scvtfd,  0b100, 0b01, 0b00, 0b010);
1997 
1998   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b111);
1999 
2000 #undef INSN
2001 
2002   // Floating-point compare
2003   void float_compare(unsigned op31, unsigned type,
2004                      unsigned op, unsigned op2,
2005                      FloatRegister Vn, FloatRegister Vm = (FloatRegister)0) {
2006     starti;
2007     f(op31, 31, 29);
2008     f(0b11110, 28, 24);
2009     f(type, 23, 22), f(1, 21);
2010     f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0);
2011     rf(Vn, 5), rf(Vm, 16);
2012   }
2013 
2014 
2015 #define INSN(NAME, op31, type, op, op2)                 \
2016   void NAME(FloatRegister Vn, FloatRegister Vm) {       \
2017     float_compare(op31, type, op, op2, Vn, Vm);         \
2018   }
2019 
2020 #define INSN1(NAME, op31, type, op, op2)        \
2021   void NAME(FloatRegister Vn, double d) {       \
2022     assert_cond(d == 0.0);                      \
2023     float_compare(op31, type, op, op2, Vn);     \
2024   }
2025 
2026   INSN(fcmps, 0b000, 0b00, 0b00, 0b00000);
2027   INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000);
2028   // INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000);
2029   // INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000);
2030 
2031   INSN(fcmpd, 0b000,   0b01, 0b00, 0b00000);
2032   INSN1(fcmpd, 0b000,  0b01, 0b00, 0b01000);
2033   // INSN(fcmped, 0b000,  0b01, 0b00, 0b10000);
2034   // INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000);
2035 
2036 #undef INSN
2037 #undef INSN1
2038 
2039   // Floating-point Move (immediate)
2040 private:
2041   unsigned pack(double value);
2042 
2043   void fmov_imm(FloatRegister Vn, double value, unsigned size) {
2044     starti;
2045     f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21);
2046     f(pack(value), 20, 13), f(0b10000000, 12, 5);
2047     rf(Vn, 0);
2048   }
2049 
2050 public:
2051 
2052   void fmovs(FloatRegister Vn, double value) {
2053     if (value)
2054       fmov_imm(Vn, value, 0b00);
2055     else
2056       fmovs(Vn, zr);
2057   }
2058   void fmovd(FloatRegister Vn, double value) {
2059     if (value)
2060       fmov_imm(Vn, value, 0b01);
2061     else
2062       fmovd(Vn, zr);
2063   }
2064 
2065    // Floating-point rounding
2066    // type: half-precision = 11
2067    //       single         = 00
2068    //       double         = 01
2069    // rmode: A = Away     = 100
2070    //        I = current  = 111
2071    //        M = MinusInf = 010
2072    //        N = eveN     = 000
2073    //        P = PlusInf  = 001
2074    //        X = eXact    = 110
2075    //        Z = Zero     = 011
2076   void float_round(unsigned type, unsigned rmode, FloatRegister Rd, FloatRegister Rn) {
2077     starti;
2078     f(0b00011110, 31, 24);
2079     f(type, 23, 22);
2080     f(0b1001, 21, 18);
2081     f(rmode, 17, 15);
2082     f(0b10000, 14, 10);
2083     rf(Rn, 5), rf(Rd, 0);
2084   }
2085 #define INSN(NAME, type, rmode)                   \
2086   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2087     float_round(type, rmode, Vd, Vn);             \
2088   }
2089 
2090 public:
2091   INSN(frintah, 0b11, 0b100);
2092   INSN(frintih, 0b11, 0b111);
2093   INSN(frintmh, 0b11, 0b010);
2094   INSN(frintnh, 0b11, 0b000);
2095   INSN(frintph, 0b11, 0b001);
2096   INSN(frintxh, 0b11, 0b110);
2097   INSN(frintzh, 0b11, 0b011);
2098 
2099   INSN(frintas, 0b00, 0b100);
2100   INSN(frintis, 0b00, 0b111);
2101   INSN(frintms, 0b00, 0b010);
2102   INSN(frintns, 0b00, 0b000);
2103   INSN(frintps, 0b00, 0b001);
2104   INSN(frintxs, 0b00, 0b110);
2105   INSN(frintzs, 0b00, 0b011);
2106 
2107   INSN(frintad, 0b01, 0b100);
2108   INSN(frintid, 0b01, 0b111);
2109   INSN(frintmd, 0b01, 0b010);
2110   INSN(frintnd, 0b01, 0b000);
2111   INSN(frintpd, 0b01, 0b001);
2112   INSN(frintxd, 0b01, 0b110);
2113   INSN(frintzd, 0b01, 0b011);
2114 #undef INSN
2115 
2116 /* SIMD extensions
2117  *
2118  * We just use FloatRegister in the following. They are exactly the same
2119  * as SIMD registers.
2120  */
2121  public:
2122 
2123   enum SIMD_Arrangement {
2124        T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D, T1Q
2125   };
2126 
2127   enum SIMD_RegVariant {
2128        B, H, S, D, Q
2129   };
2130 
2131 private:
2132   static short SIMD_Size_in_bytes[];
2133 
2134 public:
2135 #define INSN(NAME, op)                                            \
2136   void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) {   \
2137     ld_st2((Register)Rt, adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \
2138   }                                                                      \
2139 
2140   INSN(ldr, 1);
2141   INSN(str, 0);
2142 
2143 #undef INSN
2144 
2145  private:
2146 
2147   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) {
2148     starti;
2149     f(0,31), f((int)T & 1, 30);
2150     f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12);
2151     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2152   }
2153   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2154              int imm, int op1, int op2, int regs) {
2155 
2156     bool replicate = op2 >> 2 == 3;
2157     // post-index value (imm) is formed differently for replicate/non-replicate ld* instructions
2158     int expectedImmediate = replicate ? regs * (1 << (T >> 1)) : SIMD_Size_in_bytes[T] * regs;
2159     guarantee(T < T1Q , "incorrect arrangement");
2160     guarantee(imm == expectedImmediate, "bad offset");
2161     starti;
2162     f(0,31), f((int)T & 1, 30);
2163     f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12);
2164     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2165   }
2166   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2167              Register Xm, int op1, int op2) {
2168     starti;
2169     f(0,31), f((int)T & 1, 30);
2170     f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12);
2171     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2172   }
2173 
2174   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2, int regs) {
2175     switch (a.getMode()) {
2176     case Address::base_plus_offset:
2177       guarantee(a.offset() == 0, "no offset allowed here");
2178       ld_st(Vt, T, a.base(), op1, op2);
2179       break;
2180     case Address::post:
2181       ld_st(Vt, T, a.base(), a.offset(), op1, op2, regs);
2182       break;
2183     case Address::post_reg:
2184       ld_st(Vt, T, a.base(), a.index(), op1, op2);
2185       break;
2186     default:
2187       ShouldNotReachHere();
2188     }
2189   }
2190 
2191  public:
2192 
2193 #define INSN1(NAME, op1, op2)                                           \
2194   void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) {   \
2195     ld_st(Vt, T, a, op1, op2, 1);                                       \
2196  }
2197 
2198 #define INSN2(NAME, op1, op2)                                           \
2199   void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \
2200     assert(Vt->successor() == Vt2, "Registers must be ordered");        \
2201     ld_st(Vt, T, a, op1, op2, 2);                                       \
2202   }
2203 
2204 #define INSN3(NAME, op1, op2)                                           \
2205   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2206             SIMD_Arrangement T, const Address &a) {                     \
2207     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3,           \
2208            "Registers must be ordered");                                \
2209     ld_st(Vt, T, a, op1, op2, 3);                                       \
2210   }
2211 
2212 #define INSN4(NAME, op1, op2)                                           \
2213   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2214             FloatRegister Vt4, SIMD_Arrangement T, const Address &a) {  \
2215     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 &&         \
2216            Vt3->successor() == Vt4, "Registers must be ordered");       \
2217     ld_st(Vt, T, a, op1, op2, 4);                                       \
2218   }
2219 
2220   INSN1(ld1,  0b001100010, 0b0111);
2221   INSN2(ld1,  0b001100010, 0b1010);
2222   INSN3(ld1,  0b001100010, 0b0110);
2223   INSN4(ld1,  0b001100010, 0b0010);
2224 
2225   INSN2(ld2,  0b001100010, 0b1000);
2226   INSN3(ld3,  0b001100010, 0b0100);
2227   INSN4(ld4,  0b001100010, 0b0000);
2228 
2229   INSN1(st1,  0b001100000, 0b0111);
2230   INSN2(st1,  0b001100000, 0b1010);
2231   INSN3(st1,  0b001100000, 0b0110);
2232   INSN4(st1,  0b001100000, 0b0010);
2233 
2234   INSN2(st2,  0b001100000, 0b1000);
2235   INSN3(st3,  0b001100000, 0b0100);
2236   INSN4(st4,  0b001100000, 0b0000);
2237 
2238   INSN1(ld1r, 0b001101010, 0b1100);
2239   INSN2(ld2r, 0b001101011, 0b1100);
2240   INSN3(ld3r, 0b001101010, 0b1110);
2241   INSN4(ld4r, 0b001101011, 0b1110);
2242 
2243 #undef INSN1
2244 #undef INSN2
2245 #undef INSN3
2246 #undef INSN4
2247 
2248 #define INSN(NAME, opc)                                                                 \
2249   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2250     starti;                                                                             \
2251     assert(T == T8B || T == T16B, "must be T8B or T16B");                               \
2252     f(0, 31), f((int)T & 1, 30), f(opc, 29, 21);                                        \
2253     rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0);                              \
2254   }
2255 
2256   INSN(eor,  0b101110001);
2257   INSN(orr,  0b001110101);
2258   INSN(andr, 0b001110001);
2259   INSN(bic,  0b001110011);
2260   INSN(bif,  0b101110111);
2261   INSN(bit,  0b101110101);
2262   INSN(bsl,  0b101110011);
2263   INSN(orn,  0b001110111);
2264 
2265 #undef INSN
2266 
2267 #define INSN(NAME, opc, opc2, acceptT2D)                                                \
2268   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2269     guarantee(T != T1Q && T != T1D, "incorrect arrangement");                           \
2270     if (!acceptT2D) guarantee(T != T2D, "incorrect arrangement");                       \
2271     starti;                                                                             \
2272     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2273     f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10);                      \
2274     rf(Vn, 5), rf(Vd, 0);                                                               \
2275   }
2276 
2277   INSN(addv,   0, 0b100001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2278   INSN(subv,   1, 0b100001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2279   INSN(mulv,   0, 0b100111, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2280   INSN(mlav,   0, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2281   INSN(mlsv,   1, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2282   INSN(sshl,   0, 0b010001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2283   INSN(ushl,   1, 0b010001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2284   INSN(addpv,  0, 0b101111, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2285   INSN(smullv, 0, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2286   INSN(umullv, 1, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2287   INSN(umlalv, 1, 0b100000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2288 
2289 #undef INSN
2290 
2291 #define INSN(NAME, opc, opc2, accepted) \
2292   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2293     guarantee(T != T1Q && T != T1D, "incorrect arrangement");                           \
2294     if (accepted < 3) guarantee(T != T2D, "incorrect arrangement");                     \
2295     if (accepted < 2) guarantee(T != T2S, "incorrect arrangement");                     \
2296     if (accepted < 1) guarantee(T == T8B || T == T16B, "incorrect arrangement");        \
2297     starti;                                                                             \
2298     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2299     f((int)T >> 1, 23, 22), f(opc2, 21, 10);                                            \
2300     rf(Vn, 5), rf(Vd, 0);                                                               \
2301   }
2302 
2303   INSN(absr,   0, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2304   INSN(negr,   1, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2305   INSN(notr,   1, 0b100000010110, 0); // accepted arrangements: T8B, T16B
2306   INSN(addv,   0, 0b110001101110, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2307   INSN(cls,    0, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2308   INSN(clz,    1, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2309   INSN(cnt,    0, 0b100000010110, 0); // accepted arrangements: T8B, T16B
2310   INSN(uaddlp, 1, 0b100000001010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2311   INSN(uaddlv, 1, 0b110000001110, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2312 
2313 #undef INSN
2314 
2315 #define INSN(NAME, opc) \
2316   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                  \
2317     starti;                                                                            \
2318     assert(T == T4S, "arrangement must be T4S");                                       \
2319     f(0, 31), f((int)T & 1, 30), f(0b101110, 29, 24), f(opc, 23),                      \
2320     f(T == T4S ? 0 : 1, 22), f(0b110000111110, 21, 10); rf(Vn, 5), rf(Vd, 0);          \
2321   }
2322 
2323   INSN(fmaxv, 0);
2324   INSN(fminv, 1);
2325 
2326 #undef INSN
2327 
2328 #define INSN(NAME, op0, cmode0) \
2329   void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) {   \
2330     unsigned cmode = cmode0;                                                           \
2331     unsigned op = op0;                                                                 \
2332     starti;                                                                            \
2333     assert(lsl == 0 ||                                                                 \
2334            ((T == T4H || T == T8H) && lsl == 8) ||                                     \
2335            ((T == T2S || T == T4S) && ((lsl >> 3) < 4) && ((lsl & 7) == 0)), "invalid shift");\
2336     cmode |= lsl >> 2;                                                                 \
2337     if (T == T4H || T == T8H) cmode |= 0b1000;                                         \
2338     if (!(T == T4H || T == T8H || T == T2S || T == T4S)) {                             \
2339       assert(op == 0 && cmode0 == 0, "must be MOVI");                                  \
2340       cmode = 0b1110;                                                                  \
2341       if (T == T1D || T == T2D) op = 1;                                                \
2342     }                                                                                  \
2343     f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19);                   \
2344     f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5);  \
2345     rf(Vd, 0);                                                                         \
2346   }
2347 
2348   INSN(movi, 0, 0);
2349   INSN(orri, 0, 1);
2350   INSN(mvni, 1, 0);
2351   INSN(bici, 1, 1);
2352 
2353 #undef INSN
2354 
2355 #define INSN(NAME, op1, op2, op3) \
2356   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2357     starti;                                                                             \
2358     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                    \
2359     f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01110, 28, 24), f(op2, 23);            \
2360     f(T==T2D ? 1:0, 22); f(1, 21), rf(Vm, 16), f(op3, 15, 10), rf(Vn, 5), rf(Vd, 0);    \
2361   }
2362 
2363   INSN(fadd, 0, 0, 0b110101);
2364   INSN(fdiv, 1, 0, 0b111111);
2365   INSN(fmul, 1, 0, 0b110111);
2366   INSN(fsub, 0, 1, 0b110101);
2367   INSN(fmla, 0, 0, 0b110011);
2368   INSN(fmls, 0, 1, 0b110011);
2369   INSN(fmax, 0, 0, 0b111101);
2370   INSN(fmin, 0, 1, 0b111101);
2371 
2372 #undef INSN
2373 
2374 #define INSN(NAME, opc)                                                                 \
2375   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2376     starti;                                                                             \
2377     assert(T == T4S, "arrangement must be T4S");                                        \
2378     f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2379   }
2380 
2381   INSN(sha1c,     0b000000);
2382   INSN(sha1m,     0b001000);
2383   INSN(sha1p,     0b000100);
2384   INSN(sha1su0,   0b001100);
2385   INSN(sha256h2,  0b010100);
2386   INSN(sha256h,   0b010000);
2387   INSN(sha256su1, 0b011000);
2388 
2389 #undef INSN
2390 
2391 #define INSN(NAME, opc)                                                                 \
2392   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2393     starti;                                                                             \
2394     assert(T == T4S, "arrangement must be T4S");                                        \
2395     f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);                \
2396   }
2397 
2398   INSN(sha1h,     0b000010);
2399   INSN(sha1su1,   0b000110);
2400   INSN(sha256su0, 0b001010);
2401 
2402 #undef INSN
2403 
2404 #define INSN(NAME, opc)                                                                 \
2405   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2406     starti;                                                                             \
2407     assert(T == T2D, "arrangement must be T2D");                                        \
2408     f(0b11001110011, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2409   }
2410 
2411   INSN(sha512h,   0b100000);
2412   INSN(sha512h2,  0b100001);
2413   INSN(sha512su1, 0b100010);
2414 
2415 #undef INSN
2416 
2417 #define INSN(NAME, opc)                                                                 \
2418   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2419     starti;                                                                             \
2420     assert(T == T2D, "arrangement must be T2D");                                        \
2421     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);                                               \
2422   }
2423 
2424   INSN(sha512su0, 0b1100111011000000100000);
2425 
2426 #undef INSN
2427 
2428 #define INSN(NAME, opc)                           \
2429   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2430     starti;                                       \
2431     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);         \
2432   }
2433 
2434   INSN(aese, 0b0100111000101000010010);
2435   INSN(aesd, 0b0100111000101000010110);
2436   INSN(aesmc, 0b0100111000101000011010);
2437   INSN(aesimc, 0b0100111000101000011110);
2438 
2439 #undef INSN
2440 
2441 #define INSN(NAME, op1, op2) \
2442   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index = 0) { \
2443     starti;                                                                                            \
2444     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                                   \
2445     assert(index >= 0 && ((T == T2D && index <= 1) || (T != T2D && index <= 3)), "invalid index");     \
2446     f(0, 31), f((int)T & 1, 30), f(op1, 29); f(0b011111, 28, 23);                                      \
2447     f(T == T2D ? 1 : 0, 22), f(T == T2D ? 0 : index & 1, 21), rf(Vm, 16);                              \
2448     f(op2, 15, 12), f(T == T2D ? index : (index >> 1), 11), f(0, 10);                                  \
2449     rf(Vn, 5), rf(Vd, 0);                                                                              \
2450   }
2451 
2452   // FMLA/FMLS - Vector - Scalar
2453   INSN(fmlavs, 0, 0b0001);
2454   INSN(fmlsvs, 0, 0b0101);
2455   // FMULX - Vector - Scalar
2456   INSN(fmulxvs, 1, 0b1001);
2457 
2458 #undef INSN
2459 
2460   // Floating-point Reciprocal Estimate
2461   void frecpe(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) {
2462     assert(type == D || type == S, "Wrong type for frecpe");
2463     starti;
2464     f(0b010111101, 31, 23);
2465     f(type == D ? 1 : 0, 22);
2466     f(0b100001110110, 21, 10);
2467     rf(Vn, 5), rf(Vd, 0);
2468   }
2469 
2470   // (double) {a, b} -> (a + b)
2471   void faddpd(FloatRegister Vd, FloatRegister Vn) {
2472     starti;
2473     f(0b0111111001110000110110, 31, 10);
2474     rf(Vn, 5), rf(Vd, 0);
2475   }
2476 
2477   void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) {
2478     starti;
2479     assert(T != Q, "invalid register variant");
2480     f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15);
2481     f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
2482   }
2483 
2484 #define INSN(NAME, op)                                                     \
2485   void NAME(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) {   \
2486     starti;                                                                \
2487     f(0, 31), f(T==D ? 1:0, 30), f(0b001110000, 29, 21);                   \
2488     f(((idx<<1)|1)<<(int)T, 20, 16), f(op, 15, 10);                        \
2489     rf(Vn, 5), rf(Rd, 0);                                                  \
2490   }
2491 
2492   INSN(umov, 0b001111);
2493   INSN(smov, 0b001011);
2494 #undef INSN
2495 
2496 #define INSN(NAME, opc, opc2, isSHR)                                    \
2497   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){ \
2498     starti;                                                             \
2499     /* The encodings for the immh:immb fields (bits 22:16) in *SHR are  \
2500      *   0001 xxx       8B/16B, shift = 16  - UInt(immh:immb)           \
2501      *   001x xxx       4H/8H,  shift = 32  - UInt(immh:immb)           \
2502      *   01xx xxx       2S/4S,  shift = 64  - UInt(immh:immb)           \
2503      *   1xxx xxx       1D/2D,  shift = 128 - UInt(immh:immb)           \
2504      *   (1D is RESERVED)                                               \
2505      * for SHL shift is calculated as:                                  \
2506      *   0001 xxx       8B/16B, shift = UInt(immh:immb) - 8             \
2507      *   001x xxx       4H/8H,  shift = UInt(immh:immb) - 16            \
2508      *   01xx xxx       2S/4S,  shift = UInt(immh:immb) - 32            \
2509      *   1xxx xxx       1D/2D,  shift = UInt(immh:immb) - 64            \
2510      *   (1D is RESERVED)                                               \
2511      */                                                                 \
2512     assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value");           \
2513     int cVal = (1 << (((T >> 1) + 3) + (isSHR ? 1 : 0)));               \
2514     int encodedShift = isSHR ? cVal - shift : cVal + shift;             \
2515     f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23),            \
2516     f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0);     \
2517   }
2518 
2519   INSN(shl,  0, 0b010101, /* isSHR = */ false);
2520   INSN(sshr, 0, 0b000001, /* isSHR = */ true);
2521   INSN(ushr, 1, 0b000001, /* isSHR = */ true);
2522 
2523 #undef INSN
2524 
2525 private:
2526   void _ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
2527     starti;
2528     /* The encodings for the immh:immb fields (bits 22:16) are
2529      *   0001 xxx       8H, 8B/16b shift = xxx
2530      *   001x xxx       4S, 4H/8H  shift = xxxx
2531      *   01xx xxx       2D, 2S/4S  shift = xxxxx
2532      *   1xxx xxx       RESERVED
2533      */
2534     assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
2535     assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value");
2536     f(0, 31), f(Tb & 1, 30), f(0b1011110, 29, 23), f((1 << ((Tb>>1)+3))|shift, 22, 16);
2537     f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2538   }
2539 
2540 public:
2541   void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2542     assert(Tb == T8B || Tb == T4H || Tb == T2S, "invalid arrangement");
2543     _ushll(Vd, Ta, Vn, Tb, shift);
2544   }
2545 
2546   void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2547     assert(Tb == T16B || Tb == T8H || Tb == T4S, "invalid arrangement");
2548     _ushll(Vd, Ta, Vn, Tb, shift);
2549   }
2550 
2551   // Move from general purpose register
2552   //   mov  Vd.T[index], Rn
2553   void mov(FloatRegister Vd, SIMD_Arrangement T, int index, Register Xn) {
2554     starti;
2555     f(0b01001110000, 31, 21), f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2556     f(0b000111, 15, 10), zrf(Xn, 5), rf(Vd, 0);
2557   }
2558 
2559   // Move to general purpose register
2560   //   mov  Rd, Vn.T[index]
2561   void mov(Register Xd, FloatRegister Vn, SIMD_Arrangement T, int index) {
2562     guarantee(T >= T2S && T < T1Q, "only D and S arrangements are supported");
2563     starti;
2564     f(0, 31), f((T >= T1D) ? 1:0, 30), f(0b001110000, 29, 21);
2565     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2566     f(0b001111, 15, 10), rf(Vn, 5), rf(Xd, 0);
2567   }
2568 
2569 private:
2570   void _pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2571     starti;
2572     assert((Ta == T1Q && (Tb == T1D || Tb == T2D)) ||
2573            (Ta == T8H && (Tb == T8B || Tb == T16B)), "Invalid Size specifier");
2574     int size = (Ta == T1Q) ? 0b11 : 0b00;
2575     f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size, 23, 22);
2576     f(1, 21), rf(Vm, 16), f(0b111000, 15, 10), rf(Vn, 5), rf(Vd, 0);
2577   }
2578 
2579 public:
2580   void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2581     assert(Tb == T1D || Tb == T8B, "pmull assumes T1D or T8B as the second size specifier");
2582     _pmull(Vd, Ta, Vn, Vm, Tb);
2583   }
2584 
2585   void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2586     assert(Tb == T2D || Tb == T16B, "pmull2 assumes T2D or T16B as the second size specifier");
2587     _pmull(Vd, Ta, Vn, Vm, Tb);
2588   }
2589 
2590   void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
2591     starti;
2592     int size_b = (int)Tb >> 1;
2593     int size_a = (int)Ta >> 1;
2594     assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
2595     f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22);
2596     f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0);
2597   }
2598 
2599   void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs)
2600   {
2601     starti;
2602     assert(T != T1D, "reserved encoding");
2603     f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2604     f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), zrf(Xs, 5), rf(Vd, 0);
2605   }
2606 
2607   void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0)
2608   {
2609     starti;
2610     assert(T != T1D, "reserved encoding");
2611     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2612     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2613     f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2614   }
2615 
2616   // AdvSIMD ZIP/UZP/TRN
2617 #define INSN(NAME, opcode)                                              \
2618   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2619     guarantee(T != T1D && T != T1Q, "invalid arrangement");             \
2620     starti;                                                             \
2621     f(0, 31), f(0b001110, 29, 24), f(0, 21), f(0, 15);                  \
2622     f(opcode, 14, 12), f(0b10, 11, 10);                                 \
2623     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);                                   \
2624     f(T & 1, 30), f(T >> 1, 23, 22);                                    \
2625   }
2626 
2627   INSN(uzp1, 0b001);
2628   INSN(trn1, 0b010);
2629   INSN(zip1, 0b011);
2630   INSN(uzp2, 0b101);
2631   INSN(trn2, 0b110);
2632   INSN(zip2, 0b111);
2633 
2634 #undef INSN
2635 
2636   // CRC32 instructions
2637 #define INSN(NAME, c, sf, sz)                                             \
2638   void NAME(Register Rd, Register Rn, Register Rm) {                      \
2639     starti;                                                               \
2640     f(sf, 31), f(0b0011010110, 30, 21), f(0b010, 15, 13), f(c, 12);       \
2641     f(sz, 11, 10), rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                      \
2642   }
2643 
2644   INSN(crc32b,  0, 0, 0b00);
2645   INSN(crc32h,  0, 0, 0b01);
2646   INSN(crc32w,  0, 0, 0b10);
2647   INSN(crc32x,  0, 1, 0b11);
2648   INSN(crc32cb, 1, 0, 0b00);
2649   INSN(crc32ch, 1, 0, 0b01);
2650   INSN(crc32cw, 1, 0, 0b10);
2651   INSN(crc32cx, 1, 1, 0b11);
2652 
2653 #undef INSN
2654 
2655   // Table vector lookup
2656 #define INSN(NAME, op)                                                  \
2657   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, unsigned registers, FloatRegister Vm) { \
2658     starti;                                                             \
2659     assert(T == T8B || T == T16B, "invalid arrangement");               \
2660     assert(0 < registers && registers <= 4, "invalid number of registers"); \
2661     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21), rf(Vm, 16), f(0, 15); \
2662     f(registers - 1, 14, 13), f(op, 12),f(0b00, 11, 10), rf(Vn, 5), rf(Vd, 0); \
2663   }
2664 
2665   INSN(tbl, 0);
2666   INSN(tbx, 1);
2667 
2668 #undef INSN
2669 
2670   // AdvSIMD two-reg misc
2671   // In this instruction group, the 2 bits in the size field ([23:22]) may be
2672   // fixed or determined by the "SIMD_Arrangement T", or both. The additional
2673   // parameter "tmask" is a 2-bit mask used to indicate which bits in the size
2674   // field are determined by the SIMD_Arrangement. The bit of "tmask" should be
2675   // set to 1 if corresponding bit marked as "x" in the ArmARM.
2676 #define INSN(NAME, U, size, tmask, opcode)                                          \
2677   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {               \
2678        starti;                                                                      \
2679        assert((ASSERTION), MSG);                                                    \
2680        f(0, 31), f((int)T & 1, 30), f(U, 29), f(0b01110, 28, 24);                   \
2681        f(size | ((int)(T >> 1) & tmask), 23, 22), f(0b10000, 21, 17);               \
2682        f(opcode, 16, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);                    \
2683  }
2684 
2685 #define MSG "invalid arrangement"
2686 
2687 #define ASSERTION (T == T2S || T == T4S || T == T2D)
2688   INSN(fsqrt,  1, 0b10, 0b01, 0b11111);
2689   INSN(fabs,   0, 0b10, 0b01, 0b01111);
2690   INSN(fneg,   1, 0b10, 0b01, 0b01111);
2691   INSN(frintn, 0, 0b00, 0b01, 0b11000);
2692   INSN(frintm, 0, 0b00, 0b01, 0b11001);
2693   INSN(frintp, 0, 0b10, 0b01, 0b11000);
2694 #undef ASSERTION
2695 
2696 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H || T == T2S || T == T4S)
2697   INSN(rev64, 0, 0b00, 0b11, 0b00000);
2698 #undef ASSERTION
2699 
2700 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H)
2701   INSN(rev32, 1, 0b00, 0b11, 0b00000);
2702 #undef ASSERTION
2703 
2704 #define ASSERTION (T == T8B || T == T16B)
2705   INSN(rev16, 0, 0b00, 0b11, 0b00001);
2706   INSN(rbit,  1, 0b01, 0b00, 0b00101);
2707 #undef ASSERTION
2708 
2709 #undef MSG
2710 
2711 #undef INSN
2712 
2713   void ext(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index)
2714   {
2715     starti;
2716     assert(T == T8B || T == T16B, "invalid arrangement");
2717     assert((T == T8B && index <= 0b0111) || (T == T16B && index <= 0b1111), "Invalid index value");
2718     f(0, 31), f((int)T & 1, 30), f(0b101110000, 29, 21);
2719     rf(Vm, 16), f(0, 15), f(index, 14, 11);
2720     f(0, 10), rf(Vn, 5), rf(Vd, 0);
2721   }
2722 
2723 // SVE arithmetics - unpredicated
2724 #define INSN(NAME, opcode)                                                             \
2725   void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { \
2726     starti;                                                                            \
2727     assert(T != Q, "invalid register variant");                                        \
2728     f(0b00000100, 31, 24), f(T, 23, 22), f(1, 21),                                     \
2729     rf(Zm, 16), f(0, 15, 13), f(opcode, 12, 10), rf(Zn, 5), rf(Zd, 0);                 \
2730   }
2731   INSN(sve_add, 0b000);
2732   INSN(sve_sub, 0b001);
2733 #undef INSN
2734 
2735 // SVE floating-point arithmetic - unpredicated
2736 #define INSN(NAME, opcode)                                                             \
2737   void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { \
2738     starti;                                                                            \
2739     assert(T == S || T == D, "invalid register variant");                              \
2740     f(0b01100101, 31, 24), f(T, 23, 22), f(0, 21),                                     \
2741     rf(Zm, 16), f(0, 15, 13), f(opcode, 12, 10), rf(Zn, 5), rf(Zd, 0);                 \
2742   }
2743 
2744   INSN(sve_fadd, 0b000);
2745   INSN(sve_fmul, 0b010);
2746   INSN(sve_fsub, 0b001);
2747 #undef INSN
2748 
2749 private:
2750   void sve_predicate_reg_insn(unsigned op24, unsigned op13,
2751                               FloatRegister Zd_or_Vd, SIMD_RegVariant T,
2752                               PRegister Pg, FloatRegister Zn_or_Vn) {
2753     starti;
2754     f(op24, 31, 24), f(T, 23, 22), f(op13, 21, 13);
2755     pgrf(Pg, 10), rf(Zn_or_Vn, 5), rf(Zd_or_Vd, 0);
2756   }
2757 
2758 public:
2759 
2760 // SVE integer arithmetics - predicate
2761 #define INSN(NAME, op1, op2)                                                                            \
2762   void NAME(FloatRegister Zdn_or_Zd_or_Vd, SIMD_RegVariant T, PRegister Pg, FloatRegister Znm_or_Vn) {  \
2763     assert(T != Q, "invalid register variant");                                                         \
2764     sve_predicate_reg_insn(op1, op2, Zdn_or_Zd_or_Vd, T, Pg, Znm_or_Vn);                                \
2765   }
2766 
2767   INSN(sve_abs,  0b00000100, 0b010110101); // vector abs, unary
2768   INSN(sve_add,  0b00000100, 0b000000000); // vector add
2769   INSN(sve_andv, 0b00000100, 0b011010001); // bitwise and reduction to scalar
2770   INSN(sve_asr,  0b00000100, 0b010000100); // vector arithmetic shift right
2771   INSN(sve_cnt,  0b00000100, 0b011010101)  // count non-zero bits
2772   INSN(sve_cpy,  0b00000101, 0b100000100); // copy scalar to each active vector element
2773   INSN(sve_eorv, 0b00000100, 0b011001001); // bitwise xor reduction to scalar
2774   INSN(sve_lsl,  0b00000100, 0b010011100); // vector logical shift left
2775   INSN(sve_lsr,  0b00000100, 0b010001100); // vector logical shift right
2776   INSN(sve_mul,  0b00000100, 0b010000000); // vector mul
2777   INSN(sve_neg,  0b00000100, 0b010111101); // vector neg, unary
2778   INSN(sve_not,  0b00000100, 0b011110101); // bitwise invert vector, unary
2779   INSN(sve_orv,  0b00000100, 0b011000001); // bitwise or reduction to scalar
2780   INSN(sve_smax, 0b00000100, 0b001000000); // signed maximum vectors
2781   INSN(sve_smaxv, 0b00000100, 0b001000001); // signed maximum reduction to scalar
2782   INSN(sve_smin,  0b00000100, 0b001010000); // signed minimum vectors
2783   INSN(sve_sminv, 0b00000100, 0b001010001); // signed minimum reduction to scalar
2784   INSN(sve_sub,   0b00000100, 0b000001000); // vector sub
2785   INSN(sve_uaddv, 0b00000100, 0b000001001); // unsigned add reduction to scalar
2786 #undef INSN
2787 
2788 // SVE floating-point arithmetics - predicate
2789 #define INSN(NAME, op1, op2)                                                                          \
2790   void NAME(FloatRegister Zd_or_Zdn_or_Vd, SIMD_RegVariant T, PRegister Pg, FloatRegister Zn_or_Zm) { \
2791     assert(T == S || T == D, "invalid register variant");                                             \
2792     sve_predicate_reg_insn(op1, op2, Zd_or_Zdn_or_Vd, T, Pg, Zn_or_Zm);                               \
2793   }
2794 
2795   INSN(sve_fabs,    0b00000100, 0b011100101);
2796   INSN(sve_fadd,    0b01100101, 0b000000100);
2797   INSN(sve_fadda,   0b01100101, 0b011000001); // add strictly-ordered reduction to scalar Vd
2798   INSN(sve_fdiv,    0b01100101, 0b001101100);
2799   INSN(sve_fmax,    0b01100101, 0b000110100); // floating-point maximum
2800   INSN(sve_fmaxv,   0b01100101, 0b000110001); // floating-point maximum recursive reduction to scalar
2801   INSN(sve_fmin,    0b01100101, 0b000111100); // floating-point minimum
2802   INSN(sve_fminv,   0b01100101, 0b000111001); // floating-point minimum recursive reduction to scalar
2803   INSN(sve_fmul,    0b01100101, 0b000010100);
2804   INSN(sve_fneg,    0b00000100, 0b011101101);
2805   INSN(sve_frintm,  0b01100101, 0b000010101); // floating-point round to integral value, toward minus infinity
2806   INSN(sve_frintn,  0b01100101, 0b000000101); // floating-point round to integral value, nearest with ties to even
2807   INSN(sve_frintp,  0b01100101, 0b000001101); // floating-point round to integral value, toward plus infinity
2808   INSN(sve_fsqrt,   0b01100101, 0b001101101);
2809   INSN(sve_fsub,    0b01100101, 0b000001100);
2810 #undef INSN
2811 
2812   // SVE multiple-add/sub - predicated
2813 #define INSN(NAME, op0, op1, op2)                                                                     \
2814   void NAME(FloatRegister Zda, SIMD_RegVariant T, PRegister Pg, FloatRegister Zn, FloatRegister Zm) { \
2815     starti;                                                                                           \
2816     assert(T != Q, "invalid size");                                                                   \
2817     f(op0, 31, 24), f(T, 23, 22), f(op1, 21), rf(Zm, 16);                                             \
2818     f(op2, 15, 13), pgrf(Pg, 10), rf(Zn, 5), rf(Zda, 0);                                              \
2819   }
2820 
2821   INSN(sve_fmla,  0b01100101, 1, 0b000); // floating-point fused multiply-add: Zda = Zda + Zn * Zm
2822   INSN(sve_fmls,  0b01100101, 1, 0b001); // floating-point fused multiply-subtract: Zda = Zda + -Zn * Zm
2823   INSN(sve_fnmla, 0b01100101, 1, 0b010); // floating-point negated fused multiply-add: Zda = -Zda + -Zn * Zm
2824   INSN(sve_fnmls, 0b01100101, 1, 0b011); // floating-point negated fused multiply-subtract: Zda = -Zda + Zn * Zm
2825   INSN(sve_mla,   0b00000100, 0, 0b010); // multiply-add: Zda = Zda + Zn*Zm
2826   INSN(sve_mls,   0b00000100, 0, 0b011); // multiply-subtract: Zda = Zda + -Zn*Zm
2827 #undef INSN
2828 
2829 // SVE bitwise logical - unpredicated
2830 #define INSN(NAME, opc)                                              \
2831   void NAME(FloatRegister Zd, FloatRegister Zn, FloatRegister Zm) {  \
2832     starti;                                                          \
2833     f(0b00000100, 31, 24), f(opc, 23, 22), f(1, 21),                 \
2834     rf(Zm, 16), f(0b001100, 15, 10), rf(Zn, 5), rf(Zd, 0);           \
2835   }
2836   INSN(sve_and, 0b00);
2837   INSN(sve_eor, 0b10);
2838   INSN(sve_orr, 0b01);
2839 #undef INSN
2840 
2841 // SVE shift immediate - unpredicated
2842 #define INSN(NAME, opc, isSHR)                                                  \
2843   void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, int shift) { \
2844     starti;                                                                     \
2845     /* The encodings for the tszh:tszl:imm3 fields (bits 23:22 20:19 18:16)     \
2846      * for shift right is calculated as:                                        \
2847      *   0001 xxx       B, shift = 16  - UInt(tszh:tszl:imm3)                   \
2848      *   001x xxx       H, shift = 32  - UInt(tszh:tszl:imm3)                   \
2849      *   01xx xxx       S, shift = 64  - UInt(tszh:tszl:imm3)                   \
2850      *   1xxx xxx       D, shift = 128 - UInt(tszh:tszl:imm3)                   \
2851      * for shift left is calculated as:                                         \
2852      *   0001 xxx       B, shift = UInt(tszh:tszl:imm3) - 8                     \
2853      *   001x xxx       H, shift = UInt(tszh:tszl:imm3) - 16                    \
2854      *   01xx xxx       S, shift = UInt(tszh:tszl:imm3) - 32                    \
2855      *   1xxx xxx       D, shift = UInt(tszh:tszl:imm3) - 64                    \
2856      */                                                                         \
2857     assert(T != Q, "Invalid register variant");                                 \
2858     if (isSHR) {                                                                \
2859       assert(((1 << (T + 3)) >= shift) && (shift > 0) , "Invalid shift value"); \
2860     } else {                                                                    \
2861       assert(((1 << (T + 3)) > shift) && (shift >= 0) , "Invalid shift value"); \
2862     }                                                                           \
2863     int cVal = (1 << ((T + 3) + (isSHR ? 1 : 0)));                              \
2864     int encodedShift = isSHR ? cVal - shift : cVal + shift;                     \
2865     int tszh = encodedShift >> 5;                                               \
2866     int tszl_imm = encodedShift & 0x1f;                                         \
2867     f(0b00000100, 31, 24);                                                      \
2868     f(tszh, 23, 22), f(1,21), f(tszl_imm, 20, 16);                              \
2869     f(0b100, 15, 13), f(opc, 12, 10), rf(Zn, 5), rf(Zd, 0);                     \
2870   }
2871 
2872   INSN(sve_asr, 0b100, /* isSHR = */ true);
2873   INSN(sve_lsl, 0b111, /* isSHR = */ false);
2874   INSN(sve_lsr, 0b101, /* isSHR = */ true);
2875 #undef INSN
2876 
2877 private:
2878 
2879   // Scalar base + immediate index
2880   void sve_ld_st1(FloatRegister Zt, Register Xn, int imm, PRegister Pg,
2881               SIMD_RegVariant T, int op1, int type, int op2) {
2882     starti;
2883     assert_cond(T >= type);
2884     f(op1, 31, 25), f(type, 24, 23), f(T, 22, 21);
2885     f(0, 20), sf(imm, 19, 16), f(op2, 15, 13);
2886     pgrf(Pg, 10), srf(Xn, 5), rf(Zt, 0);
2887   }
2888 
2889   // Scalar base + scalar index
2890   void sve_ld_st1(FloatRegister Zt, Register Xn, Register Xm, PRegister Pg,
2891               SIMD_RegVariant T, int op1, int type, int op2) {
2892     starti;
2893     assert_cond(T >= type);
2894     f(op1, 31, 25), f(type, 24, 23), f(T, 22, 21);
2895     rf(Xm, 16), f(op2, 15, 13);
2896     pgrf(Pg, 10), srf(Xn, 5), rf(Zt, 0);
2897   }
2898 
2899   void sve_ld_st1(FloatRegister Zt, PRegister Pg,
2900               SIMD_RegVariant T, const Address &a,
2901               int op1, int type, int imm_op2, int scalar_op2) {
2902     switch (a.getMode()) {
2903     case Address::base_plus_offset:
2904       sve_ld_st1(Zt, a.base(), a.offset(), Pg, T, op1, type, imm_op2);
2905       break;
2906     case Address::base_plus_offset_reg:
2907       sve_ld_st1(Zt, a.base(), a.index(), Pg, T, op1, type, scalar_op2);
2908       break;
2909     default:
2910       ShouldNotReachHere();
2911     }
2912   }
2913 
2914 public:
2915 
2916 // SVE load/store - predicated
2917 #define INSN(NAME, op1, type, imm_op2, scalar_op2)                                   \
2918   void NAME(FloatRegister Zt, SIMD_RegVariant T, PRegister Pg, const Address &a) {   \
2919     assert(T != Q, "invalid register variant");                                      \
2920     sve_ld_st1(Zt, Pg, T, a, op1, type, imm_op2, scalar_op2);                        \
2921   }
2922 
2923   INSN(sve_ld1b, 0b1010010, 0b00, 0b101, 0b010);
2924   INSN(sve_st1b, 0b1110010, 0b00, 0b111, 0b010);
2925   INSN(sve_ld1h, 0b1010010, 0b01, 0b101, 0b010);
2926   INSN(sve_st1h, 0b1110010, 0b01, 0b111, 0b010);
2927   INSN(sve_ld1w, 0b1010010, 0b10, 0b101, 0b010);
2928   INSN(sve_st1w, 0b1110010, 0b10, 0b111, 0b010);
2929   INSN(sve_ld1d, 0b1010010, 0b11, 0b101, 0b010);
2930   INSN(sve_st1d, 0b1110010, 0b11, 0b111, 0b010);
2931 #undef INSN
2932 
2933 // SVE load/store - unpredicated
2934 #define INSN(NAME, op1)                                                         \
2935   void NAME(FloatRegister Zt, const Address &a)  {                              \
2936     starti;                                                                     \
2937     assert(a.index() == noreg, "invalid address variant");                      \
2938     f(op1, 31, 29), f(0b0010110, 28, 22), sf(a.offset() >> 3, 21, 16),          \
2939     f(0b010, 15, 13), f(a.offset() & 0x7, 12, 10), srf(a.base(), 5), rf(Zt, 0); \
2940   }
2941 
2942   INSN(sve_ldr, 0b100); // LDR (vector)
2943   INSN(sve_str, 0b111); // STR (vector)
2944 #undef INSN
2945 
2946 #define INSN(NAME, op) \
2947   void NAME(Register Xd, Register Xn, int imm6) {                 \
2948     starti;                                                       \
2949     f(0b000001000, 31, 23), f(op, 22, 21);                        \
2950     srf(Xn, 16), f(0b01010, 15, 11), sf(imm6, 10, 5), srf(Xd, 0); \
2951   }
2952 
2953   INSN(sve_addvl, 0b01);
2954   INSN(sve_addpl, 0b11);
2955 #undef INSN
2956 
2957 // SVE inc/dec register by element count
2958 #define INSN(NAME, op) \
2959   void NAME(Register Xdn, SIMD_RegVariant T, unsigned imm4 = 1, int pattern = 0b11111) { \
2960     starti;                                                                              \
2961     assert(T != Q, "invalid size");                                                      \
2962     f(0b00000100,31, 24), f(T, 23, 22), f(0b11, 21, 20);                                 \
2963     f(imm4 - 1, 19, 16), f(0b11100, 15, 11), f(op, 10), f(pattern, 9, 5), rf(Xdn, 0);    \
2964   }
2965 
2966   INSN(sve_inc, 0);
2967   INSN(sve_dec, 1);
2968 #undef INSN
2969 
2970   // SVE predicate count
2971   void sve_cntp(Register Xd, SIMD_RegVariant T, PRegister Pg, PRegister Pn) {
2972     starti;
2973     assert(T != Q, "invalid size");
2974     f(0b00100101, 31, 24), f(T, 23, 22), f(0b10000010, 21, 14);
2975     prf(Pg, 10), f(0, 9), prf(Pn, 5), rf(Xd, 0);
2976   }
2977 
2978   // SVE dup scalar
2979   void sve_dup(FloatRegister Zd, SIMD_RegVariant T, Register Rn) {
2980     starti;
2981     assert(T != Q, "invalid size");
2982     f(0b00000101, 31, 24), f(T, 23, 22), f(0b100000001110, 21, 10);
2983     srf(Rn, 5), rf(Zd, 0);
2984   }
2985 
2986   // SVE dup imm
2987   void sve_dup(FloatRegister Zd, SIMD_RegVariant T, int imm8) {
2988     starti;
2989     assert(T != Q, "invalid size");
2990     int sh = 0;
2991     if (imm8 <= 127 && imm8 >= -128) {
2992       sh = 0;
2993     } else if (T != B && imm8 <= 32512 && imm8 >= -32768 && (imm8 & 0xff) == 0) {
2994       sh = 1;
2995       imm8 = (imm8 >> 8);
2996     } else {
2997       guarantee(false, "invalid immediate");
2998     }
2999     f(0b00100101, 31, 24), f(T, 23, 22), f(0b11100011, 21, 14);
3000     f(sh, 13), sf(imm8, 12, 5), rf(Zd, 0);
3001   }
3002 
3003   void sve_ptrue(PRegister pd, SIMD_RegVariant esize, int pattern = 0b11111) {
3004     starti;
3005     f(0b00100101, 31, 24), f(esize, 23, 22), f(0b011000111000, 21, 10);
3006     f(pattern, 9, 5), f(0b0, 4), prf(pd, 0);
3007   }
3008 
3009   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
3010   }
3011 
3012   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
3013                                                 Register tmp,
3014                                                 int offset) {
3015     ShouldNotCallThis();
3016     return RegisterOrConstant();
3017   }
3018 
3019   // Stack overflow checking
3020   virtual void bang_stack_with_offset(int offset);
3021 
3022   static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm);
3023   static bool operand_valid_for_add_sub_immediate(int64_t imm);
3024   static bool operand_valid_for_float_immediate(double imm);
3025 
3026   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
3027   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
3028 };
3029 
3030 inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a,
3031                                              Assembler::Membar_mask_bits b) {
3032   return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b));
3033 }
3034 
3035 Instruction_aarch64::~Instruction_aarch64() {
3036   assem->emit();
3037 }
3038 
3039 #undef starti
3040 
3041 // Invert a condition
3042 inline const Assembler::Condition operator~(const Assembler::Condition cond) {
3043   return Assembler::Condition(int(cond) ^ 1);
3044 }
3045 
3046 class BiasedLockingCounters;
3047 
3048 extern "C" void das(uint64_t start, int len);
3049 
3050 #endif // CPU_AARCH64_ASSEMBLER_AARCH64_HPP