1 //
   2 // Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // AMD64 Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 
  32 register %{
  33 //----------Architecture Description Register Definitions----------------------
  34 // General Registers
  35 // "reg_def"  name ( register save type, C convention save type,
  36 //                   ideal register type, encoding );
  37 // Register Save Types:
  38 //
  39 // NS  = No-Save:       The register allocator assumes that these registers
  40 //                      can be used without saving upon entry to the method, &
  41 //                      that they do not need to be saved at call sites.
  42 //
  43 // SOC = Save-On-Call:  The register allocator assumes that these registers
  44 //                      can be used without saving upon entry to the method,
  45 //                      but that they must be saved at call sites.
  46 //
  47 // SOE = Save-On-Entry: The register allocator assumes that these registers
  48 //                      must be saved before using them upon entry to the
  49 //                      method, but they do not need to be saved at call
  50 //                      sites.
  51 //
  52 // AS  = Always-Save:   The register allocator assumes that these registers
  53 //                      must be saved before using them upon entry to the
  54 //                      method, & that they must be saved at call sites.
  55 //
  56 // Ideal Register Type is used to determine how to save & restore a
  57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  59 //
  60 // The encoding number is the actual bit-pattern placed into the opcodes.
  61 
  62 // General Registers
  63 // R8-R15 must be encoded with REX.  (RSP, RBP, RSI, RDI need REX when
  64 // used as byte registers)
  65 
  66 // Previously set RBX, RSI, and RDI as save-on-entry for java code
  67 // Turn off SOE in java-code due to frequent use of uncommon-traps.
  68 // Now that allocator is better, turn on RSI and RDI as SOE registers.
  69 
  70 reg_def RAX  (SOC, SOC, Op_RegI,  0, rax->as_VMReg());
  71 reg_def RAX_H(SOC, SOC, Op_RegI,  0, rax->as_VMReg()->next());
  72 
  73 reg_def RCX  (SOC, SOC, Op_RegI,  1, rcx->as_VMReg());
  74 reg_def RCX_H(SOC, SOC, Op_RegI,  1, rcx->as_VMReg()->next());
  75 
  76 reg_def RDX  (SOC, SOC, Op_RegI,  2, rdx->as_VMReg());
  77 reg_def RDX_H(SOC, SOC, Op_RegI,  2, rdx->as_VMReg()->next());
  78 
  79 reg_def RBX  (SOC, SOE, Op_RegI,  3, rbx->as_VMReg());
  80 reg_def RBX_H(SOC, SOE, Op_RegI,  3, rbx->as_VMReg()->next());
  81 
  82 reg_def RSP  (NS,  NS,  Op_RegI,  4, rsp->as_VMReg());
  83 reg_def RSP_H(NS,  NS,  Op_RegI,  4, rsp->as_VMReg()->next());
  84 
  85 // now that adapter frames are gone RBP is always saved and restored by the prolog/epilog code
  86 reg_def RBP  (NS, SOE, Op_RegI,  5, rbp->as_VMReg());
  87 reg_def RBP_H(NS, SOE, Op_RegI,  5, rbp->as_VMReg()->next());
  88 
  89 #ifdef _WIN64
  90 
  91 reg_def RSI  (SOC, SOE, Op_RegI,  6, rsi->as_VMReg());
  92 reg_def RSI_H(SOC, SOE, Op_RegI,  6, rsi->as_VMReg()->next());
  93 
  94 reg_def RDI  (SOC, SOE, Op_RegI,  7, rdi->as_VMReg());
  95 reg_def RDI_H(SOC, SOE, Op_RegI,  7, rdi->as_VMReg()->next());
  96 
  97 #else
  98 
  99 reg_def RSI  (SOC, SOC, Op_RegI,  6, rsi->as_VMReg());
 100 reg_def RSI_H(SOC, SOC, Op_RegI,  6, rsi->as_VMReg()->next());
 101 
 102 reg_def RDI  (SOC, SOC, Op_RegI,  7, rdi->as_VMReg());
 103 reg_def RDI_H(SOC, SOC, Op_RegI,  7, rdi->as_VMReg()->next());
 104 
 105 #endif
 106 
 107 reg_def R8   (SOC, SOC, Op_RegI,  8, r8->as_VMReg());
 108 reg_def R8_H (SOC, SOC, Op_RegI,  8, r8->as_VMReg()->next());
 109 
 110 reg_def R9   (SOC, SOC, Op_RegI,  9, r9->as_VMReg());
 111 reg_def R9_H (SOC, SOC, Op_RegI,  9, r9->as_VMReg()->next());
 112 
 113 reg_def R10  (SOC, SOC, Op_RegI, 10, r10->as_VMReg());
 114 reg_def R10_H(SOC, SOC, Op_RegI, 10, r10->as_VMReg()->next());
 115 
 116 reg_def R11  (SOC, SOC, Op_RegI, 11, r11->as_VMReg());
 117 reg_def R11_H(SOC, SOC, Op_RegI, 11, r11->as_VMReg()->next());
 118 
 119 reg_def R12  (SOC, SOE, Op_RegI, 12, r12->as_VMReg());
 120 reg_def R12_H(SOC, SOE, Op_RegI, 12, r12->as_VMReg()->next());
 121 
 122 reg_def R13  (SOC, SOE, Op_RegI, 13, r13->as_VMReg());
 123 reg_def R13_H(SOC, SOE, Op_RegI, 13, r13->as_VMReg()->next());
 124 
 125 reg_def R14  (SOC, SOE, Op_RegI, 14, r14->as_VMReg());
 126 reg_def R14_H(SOC, SOE, Op_RegI, 14, r14->as_VMReg()->next());
 127 
 128 reg_def R15  (SOC, SOE, Op_RegI, 15, r15->as_VMReg());
 129 reg_def R15_H(SOC, SOE, Op_RegI, 15, r15->as_VMReg()->next());
 130 
 131 
 132 // Floating Point Registers
 133 
 134 // Specify priority of register selection within phases of register
 135 // allocation.  Highest priority is first.  A useful heuristic is to
 136 // give registers a low priority when they are required by machine
 137 // instructions, like EAX and EDX on I486, and choose no-save registers
 138 // before save-on-call, & save-on-call before save-on-entry.  Registers
 139 // which participate in fixed calling sequences should come last.
 140 // Registers which are used as pairs must fall on an even boundary.
 141 
 142 alloc_class chunk0(R10,         R10_H,
 143                    R11,         R11_H,
 144                    R8,          R8_H,
 145                    R9,          R9_H,
 146                    R12,         R12_H,
 147                    RCX,         RCX_H,
 148                    RBX,         RBX_H,
 149                    RDI,         RDI_H,
 150                    RDX,         RDX_H,
 151                    RSI,         RSI_H,
 152                    RAX,         RAX_H,
 153                    RBP,         RBP_H,
 154                    R13,         R13_H,
 155                    R14,         R14_H,
 156                    R15,         R15_H,
 157                    RSP,         RSP_H);
 158 
 159 
 160 //----------Architecture Description Register Classes--------------------------
 161 // Several register classes are automatically defined based upon information in
 162 // this architecture description.
 163 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
 164 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
 165 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
 166 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 167 //
 168 
 169 // Empty register class.
 170 reg_class no_reg();
 171 
 172 // Class for all pointer/long registers
 173 reg_class all_reg(RAX, RAX_H,
 174                   RDX, RDX_H,
 175                   RBP, RBP_H,
 176                   RDI, RDI_H,
 177                   RSI, RSI_H,
 178                   RCX, RCX_H,
 179                   RBX, RBX_H,
 180                   RSP, RSP_H,
 181                   R8,  R8_H,
 182                   R9,  R9_H,
 183                   R10, R10_H,
 184                   R11, R11_H,
 185                   R12, R12_H,
 186                   R13, R13_H,
 187                   R14, R14_H,
 188                   R15, R15_H);
 189 
 190 // Class for all int registers
 191 reg_class all_int_reg(RAX
 192                       RDX,
 193                       RBP,
 194                       RDI,
 195                       RSI,
 196                       RCX,
 197                       RBX,
 198                       R8,
 199                       R9,
 200                       R10,
 201                       R11,
 202                       R12,
 203                       R13,
 204                       R14);
 205 
 206 // Class for all pointer registers
 207 reg_class any_reg %{
 208   return _ANY_REG_mask;
 209 %}
 210 
 211 // Class for all pointer registers (excluding RSP)
 212 reg_class ptr_reg %{
 213   return _PTR_REG_mask;
 214 %}
 215 
 216 // Class for all pointer registers (excluding RSP and RBP)
 217 reg_class ptr_reg_no_rbp %{
 218   return _PTR_REG_NO_RBP_mask;
 219 %}
 220 
 221 // Class for all pointer registers (excluding RAX and RSP)
 222 reg_class ptr_no_rax_reg %{
 223   return _PTR_NO_RAX_REG_mask;
 224 %}
 225 
 226 // Class for all pointer registers (excluding RAX, RBX, and RSP)
 227 reg_class ptr_no_rax_rbx_reg %{
 228   return _PTR_NO_RAX_RBX_REG_mask;
 229 %}
 230 
 231 // Class for all long registers (excluding RSP)
 232 reg_class long_reg %{
 233   return _LONG_REG_mask;
 234 %}
 235 
 236 // Class for all long registers (excluding RAX, RDX and RSP)
 237 reg_class long_no_rax_rdx_reg %{
 238   return _LONG_NO_RAX_RDX_REG_mask;
 239 %}
 240 
 241 // Class for all long registers (excluding RCX and RSP)
 242 reg_class long_no_rcx_reg %{
 243   return _LONG_NO_RCX_REG_mask;
 244 %}
 245 
 246 // Class for all int registers (excluding RSP)
 247 reg_class int_reg %{
 248   return _INT_REG_mask;
 249 %}
 250 
 251 // Class for all int registers (excluding RAX, RDX, and RSP)
 252 reg_class int_no_rax_rdx_reg %{
 253   return _INT_NO_RAX_RDX_REG_mask;
 254 %}
 255 
 256 // Class for all int registers (excluding RCX and RSP)
 257 reg_class int_no_rcx_reg %{
 258   return _INT_NO_RCX_REG_mask;
 259 %}
 260 
 261 // Singleton class for RAX pointer register
 262 reg_class ptr_rax_reg(RAX, RAX_H);
 263 
 264 // Singleton class for RBX pointer register
 265 reg_class ptr_rbx_reg(RBX, RBX_H);
 266 
 267 // Singleton class for RSI pointer register
 268 reg_class ptr_rsi_reg(RSI, RSI_H);
 269 
 270 // Singleton class for RBP pointer register
 271 reg_class ptr_rbp_reg(RBP, RBP_H);
 272 
 273 // Singleton class for RDI pointer register
 274 reg_class ptr_rdi_reg(RDI, RDI_H);
 275 
 276 // Singleton class for stack pointer
 277 reg_class ptr_rsp_reg(RSP, RSP_H);
 278 
 279 // Singleton class for TLS pointer
 280 reg_class ptr_r15_reg(R15, R15_H);
 281 
 282 // Singleton class for RAX long register
 283 reg_class long_rax_reg(RAX, RAX_H);
 284 
 285 // Singleton class for RCX long register
 286 reg_class long_rcx_reg(RCX, RCX_H);
 287 
 288 // Singleton class for RDX long register
 289 reg_class long_rdx_reg(RDX, RDX_H);
 290 
 291 // Singleton class for RAX int register
 292 reg_class int_rax_reg(RAX);
 293 
 294 // Singleton class for RBX int register
 295 reg_class int_rbx_reg(RBX);
 296 
 297 // Singleton class for RCX int register
 298 reg_class int_rcx_reg(RCX);
 299 
 300 // Singleton class for RCX int register
 301 reg_class int_rdx_reg(RDX);
 302 
 303 // Singleton class for RCX int register
 304 reg_class int_rdi_reg(RDI);
 305 
 306 // Singleton class for instruction pointer
 307 // reg_class ip_reg(RIP);
 308 
 309 %}
 310 
 311 //----------SOURCE BLOCK-------------------------------------------------------
 312 // This is a block of C++ code which provides values, functions, and
 313 // definitions necessary in the rest of the architecture description
 314 source_hpp %{
 315 
 316 extern RegMask _ANY_REG_mask;
 317 extern RegMask _PTR_REG_mask;
 318 extern RegMask _PTR_REG_NO_RBP_mask;
 319 extern RegMask _PTR_NO_RAX_REG_mask;
 320 extern RegMask _PTR_NO_RAX_RBX_REG_mask;
 321 extern RegMask _LONG_REG_mask;
 322 extern RegMask _LONG_NO_RAX_RDX_REG_mask;
 323 extern RegMask _LONG_NO_RCX_REG_mask;
 324 extern RegMask _INT_REG_mask;
 325 extern RegMask _INT_NO_RAX_RDX_REG_mask;
 326 extern RegMask _INT_NO_RCX_REG_mask;
 327 
 328 extern RegMask _STACK_OR_PTR_REG_mask;
 329 extern RegMask _STACK_OR_LONG_REG_mask;
 330 extern RegMask _STACK_OR_INT_REG_mask;
 331 
 332 inline const RegMask& STACK_OR_PTR_REG_mask()  { return _STACK_OR_PTR_REG_mask;  }
 333 inline const RegMask& STACK_OR_LONG_REG_mask() { return _STACK_OR_LONG_REG_mask; }
 334 inline const RegMask& STACK_OR_INT_REG_mask()  { return _STACK_OR_INT_REG_mask;  }
 335 
 336 %}
 337 
 338 source %{
 339 #define   RELOC_IMM64    Assembler::imm_operand
 340 #define   RELOC_DISP32   Assembler::disp32_operand
 341 
 342 #define __ _masm.
 343 
 344 RegMask _ANY_REG_mask;
 345 RegMask _PTR_REG_mask;
 346 RegMask _PTR_REG_NO_RBP_mask;
 347 RegMask _PTR_NO_RAX_REG_mask;
 348 RegMask _PTR_NO_RAX_RBX_REG_mask;
 349 RegMask _LONG_REG_mask;
 350 RegMask _LONG_NO_RAX_RDX_REG_mask;
 351 RegMask _LONG_NO_RCX_REG_mask;
 352 RegMask _INT_REG_mask;
 353 RegMask _INT_NO_RAX_RDX_REG_mask;
 354 RegMask _INT_NO_RCX_REG_mask;
 355 RegMask _STACK_OR_PTR_REG_mask;
 356 RegMask _STACK_OR_LONG_REG_mask;
 357 RegMask _STACK_OR_INT_REG_mask;
 358 
 359 static bool need_r12_heapbase() {
 360   return UseCompressedOops;
 361 }
 362 
 363 void reg_mask_init() {
 364   // _ALL_REG_mask is generated by adlc from the all_reg register class below.
 365   // We derive a number of subsets from it.
 366   _ANY_REG_mask = _ALL_REG_mask;
 367 
 368   if (PreserveFramePointer) {
 369     _ANY_REG_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()));
 370     _ANY_REG_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()->next()));
 371   }
 372   if (need_r12_heapbase()) {
 373     _ANY_REG_mask.Remove(OptoReg::as_OptoReg(r12->as_VMReg()));
 374     _ANY_REG_mask.Remove(OptoReg::as_OptoReg(r12->as_VMReg()->next()));
 375   }
 376 
 377   _PTR_REG_mask = _ANY_REG_mask;
 378   _PTR_REG_mask.Remove(OptoReg::as_OptoReg(rsp->as_VMReg()));
 379   _PTR_REG_mask.Remove(OptoReg::as_OptoReg(rsp->as_VMReg()->next()));
 380   _PTR_REG_mask.Remove(OptoReg::as_OptoReg(r15->as_VMReg()));
 381   _PTR_REG_mask.Remove(OptoReg::as_OptoReg(r15->as_VMReg()->next()));
 382 
 383   _STACK_OR_PTR_REG_mask = _PTR_REG_mask;
 384   _STACK_OR_PTR_REG_mask.OR(STACK_OR_STACK_SLOTS_mask());
 385 
 386   _PTR_REG_NO_RBP_mask = _PTR_REG_mask;
 387   _PTR_REG_NO_RBP_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()));
 388   _PTR_REG_NO_RBP_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()->next()));
 389 
 390   _PTR_NO_RAX_REG_mask = _PTR_REG_mask;
 391   _PTR_NO_RAX_REG_mask.Remove(OptoReg::as_OptoReg(rax->as_VMReg()));
 392   _PTR_NO_RAX_REG_mask.Remove(OptoReg::as_OptoReg(rax->as_VMReg()->next()));
 393 
 394   _PTR_NO_RAX_RBX_REG_mask = _PTR_NO_RAX_REG_mask;
 395   _PTR_NO_RAX_RBX_REG_mask.Remove(OptoReg::as_OptoReg(rbx->as_VMReg()));
 396   _PTR_NO_RAX_RBX_REG_mask.Remove(OptoReg::as_OptoReg(rbx->as_VMReg()->next()));
 397 
 398   _LONG_REG_mask = _PTR_REG_mask;
 399   _STACK_OR_LONG_REG_mask = _LONG_REG_mask;
 400   _STACK_OR_LONG_REG_mask.OR(STACK_OR_STACK_SLOTS_mask());
 401 
 402   _LONG_NO_RAX_RDX_REG_mask = _LONG_REG_mask;
 403   _LONG_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rax->as_VMReg()));
 404   _LONG_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rax->as_VMReg()->next()));
 405   _LONG_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rdx->as_VMReg()));
 406   _LONG_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rdx->as_VMReg()->next()));
 407 
 408   _LONG_NO_RCX_REG_mask = _LONG_REG_mask;
 409   _LONG_NO_RCX_REG_mask.Remove(OptoReg::as_OptoReg(rcx->as_VMReg()));
 410   _LONG_NO_RCX_REG_mask.Remove(OptoReg::as_OptoReg(rcx->as_VMReg()->next()));
 411 
 412   _INT_REG_mask = _ALL_INT_REG_mask;
 413   if (PreserveFramePointer) {
 414     _INT_REG_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()));
 415   }
 416   if (need_r12_heapbase()) {
 417     _INT_REG_mask.Remove(OptoReg::as_OptoReg(r12->as_VMReg()));
 418   }
 419 
 420   _STACK_OR_INT_REG_mask = _INT_REG_mask;
 421   _STACK_OR_INT_REG_mask.OR(STACK_OR_STACK_SLOTS_mask());
 422 
 423   _INT_NO_RAX_RDX_REG_mask = _INT_REG_mask;
 424   _INT_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rax->as_VMReg()));
 425   _INT_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rdx->as_VMReg()));
 426 
 427   _INT_NO_RCX_REG_mask = _INT_REG_mask;
 428   _INT_NO_RCX_REG_mask.Remove(OptoReg::as_OptoReg(rcx->as_VMReg()));
 429 }
 430 
 431 static bool generate_vzeroupper(Compile* C) {
 432   return (VM_Version::supports_vzeroupper() && (C->max_vector_size() > 16 || C->clear_upper_avx() == true)) ? true: false;  // Generate vzeroupper
 433 }
 434 
 435 static int clear_avx_size() {
 436   return generate_vzeroupper(Compile::current()) ? 3: 0;  // vzeroupper
 437 }
 438 
 439 // !!!!! Special hack to get all types of calls to specify the byte offset
 440 //       from the start of the call to the point where the return address
 441 //       will point.
 442 int MachCallStaticJavaNode::ret_addr_offset()
 443 {
 444   int offset = 5; // 5 bytes from start of call to where return address points
 445   offset += clear_avx_size();
 446   return offset;
 447 }
 448 
 449 int MachCallDynamicJavaNode::ret_addr_offset()
 450 {
 451   int offset = 15; // 15 bytes from start of call to where return address points
 452   offset += clear_avx_size();
 453   return offset;
 454 }
 455 
 456 int MachCallRuntimeNode::ret_addr_offset() {
 457   int offset = 13; // movq r10,#addr; callq (r10)
 458   offset += clear_avx_size();
 459   return offset;
 460 }
 461 
 462 //
 463 // Compute padding required for nodes which need alignment
 464 //
 465 
 466 // The address of the call instruction needs to be 4-byte aligned to
 467 // ensure that it does not span a cache line so that it can be patched.
 468 int CallStaticJavaDirectNode::compute_padding(int current_offset) const
 469 {
 470   current_offset += clear_avx_size(); // skip vzeroupper
 471   current_offset += 1; // skip call opcode byte
 472   return align_up(current_offset, alignment_required()) - current_offset;
 473 }
 474 
 475 // The address of the call instruction needs to be 4-byte aligned to
 476 // ensure that it does not span a cache line so that it can be patched.
 477 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const
 478 {
 479   current_offset += clear_avx_size(); // skip vzeroupper
 480   current_offset += 11; // skip movq instruction + call opcode byte
 481   return align_up(current_offset, alignment_required()) - current_offset;
 482 }
 483 
 484 // EMIT_RM()
 485 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
 486   unsigned char c = (unsigned char) ((f1 << 6) | (f2 << 3) | f3);
 487   cbuf.insts()->emit_int8(c);
 488 }
 489 
 490 // EMIT_CC()
 491 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
 492   unsigned char c = (unsigned char) (f1 | f2);
 493   cbuf.insts()->emit_int8(c);
 494 }
 495 
 496 // EMIT_OPCODE()
 497 void emit_opcode(CodeBuffer &cbuf, int code) {
 498   cbuf.insts()->emit_int8((unsigned char) code);
 499 }
 500 
 501 // EMIT_OPCODE() w/ relocation information
 502 void emit_opcode(CodeBuffer &cbuf,
 503                  int code, relocInfo::relocType reloc, int offset, int format)
 504 {
 505   cbuf.relocate(cbuf.insts_mark() + offset, reloc, format);
 506   emit_opcode(cbuf, code);
 507 }
 508 
 509 // EMIT_D8()
 510 void emit_d8(CodeBuffer &cbuf, int d8) {
 511   cbuf.insts()->emit_int8((unsigned char) d8);
 512 }
 513 
 514 // EMIT_D16()
 515 void emit_d16(CodeBuffer &cbuf, int d16) {
 516   cbuf.insts()->emit_int16(d16);
 517 }
 518 
 519 // EMIT_D32()
 520 void emit_d32(CodeBuffer &cbuf, int d32) {
 521   cbuf.insts()->emit_int32(d32);
 522 }
 523 
 524 // EMIT_D64()
 525 void emit_d64(CodeBuffer &cbuf, int64_t d64) {
 526   cbuf.insts()->emit_int64(d64);
 527 }
 528 
 529 // emit 32 bit value and construct relocation entry from relocInfo::relocType
 530 void emit_d32_reloc(CodeBuffer& cbuf,
 531                     int d32,
 532                     relocInfo::relocType reloc,
 533                     int format)
 534 {
 535   assert(reloc != relocInfo::external_word_type, "use 2-arg emit_d32_reloc");
 536   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 537   cbuf.insts()->emit_int32(d32);
 538 }
 539 
 540 // emit 32 bit value and construct relocation entry from RelocationHolder
 541 void emit_d32_reloc(CodeBuffer& cbuf, int d32, RelocationHolder const& rspec, int format) {
 542 #ifdef ASSERT
 543   if (rspec.reloc()->type() == relocInfo::oop_type &&
 544       d32 != 0 && d32 != (intptr_t) Universe::non_oop_word()) {
 545     assert(Universe::heap()->is_in((address)(intptr_t)d32), "should be real oop");
 546     assert(oopDesc::is_oop(cast_to_oop((intptr_t)d32)), "cannot embed broken oops in code");
 547   }
 548 #endif
 549   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 550   cbuf.insts()->emit_int32(d32);
 551 }
 552 
 553 void emit_d32_reloc(CodeBuffer& cbuf, address addr) {
 554   address next_ip = cbuf.insts_end() + 4;
 555   emit_d32_reloc(cbuf, (int) (addr - next_ip),
 556                  external_word_Relocation::spec(addr),
 557                  RELOC_DISP32);
 558 }
 559 
 560 
 561 // emit 64 bit value and construct relocation entry from relocInfo::relocType
 562 void emit_d64_reloc(CodeBuffer& cbuf, int64_t d64, relocInfo::relocType reloc, int format) {
 563   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 564   cbuf.insts()->emit_int64(d64);
 565 }
 566 
 567 // emit 64 bit value and construct relocation entry from RelocationHolder
 568 void emit_d64_reloc(CodeBuffer& cbuf, int64_t d64, RelocationHolder const& rspec, int format) {
 569 #ifdef ASSERT
 570   if (rspec.reloc()->type() == relocInfo::oop_type &&
 571       d64 != 0 && d64 != (int64_t) Universe::non_oop_word()) {
 572     assert(Universe::heap()->is_in((address)d64), "should be real oop");
 573     assert(oopDesc::is_oop(cast_to_oop(d64)), "cannot embed broken oops in code");
 574   }
 575 #endif
 576   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 577   cbuf.insts()->emit_int64(d64);
 578 }
 579 
 580 // Access stack slot for load or store
 581 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp)
 582 {
 583   emit_opcode(cbuf, opcode);                  // (e.g., FILD   [RSP+src])
 584   if (-0x80 <= disp && disp < 0x80) {
 585     emit_rm(cbuf, 0x01, rm_field, RSP_enc);   // R/M byte
 586     emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
 587     emit_d8(cbuf, disp);     // Displacement  // R/M byte
 588   } else {
 589     emit_rm(cbuf, 0x02, rm_field, RSP_enc);   // R/M byte
 590     emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
 591     emit_d32(cbuf, disp);     // Displacement // R/M byte
 592   }
 593 }
 594 
 595    // rRegI ereg, memory mem) %{    // emit_reg_mem
 596 void encode_RegMem(CodeBuffer &cbuf,
 597                    int reg,
 598                    int base, int index, int scale, int disp, relocInfo::relocType disp_reloc)
 599 {
 600   assert(disp_reloc == relocInfo::none, "cannot have disp");
 601   int regenc = reg & 7;
 602   int baseenc = base & 7;
 603   int indexenc = index & 7;
 604 
 605   // There is no index & no scale, use form without SIB byte
 606   if (index == 0x4 && scale == 0 && base != RSP_enc && base != R12_enc) {
 607     // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
 608     if (disp == 0 && base != RBP_enc && base != R13_enc) {
 609       emit_rm(cbuf, 0x0, regenc, baseenc); // *
 610     } else if (-0x80 <= disp && disp < 0x80 && disp_reloc == relocInfo::none) {
 611       // If 8-bit displacement, mode 0x1
 612       emit_rm(cbuf, 0x1, regenc, baseenc); // *
 613       emit_d8(cbuf, disp);
 614     } else {
 615       // If 32-bit displacement
 616       if (base == -1) { // Special flag for absolute address
 617         emit_rm(cbuf, 0x0, regenc, 0x5); // *
 618         if (disp_reloc != relocInfo::none) {
 619           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
 620         } else {
 621           emit_d32(cbuf, disp);
 622         }
 623       } else {
 624         // Normal base + offset
 625         emit_rm(cbuf, 0x2, regenc, baseenc); // *
 626         if (disp_reloc != relocInfo::none) {
 627           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
 628         } else {
 629           emit_d32(cbuf, disp);
 630         }
 631       }
 632     }
 633   } else {
 634     // Else, encode with the SIB byte
 635     // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
 636     if (disp == 0 && base != RBP_enc && base != R13_enc) {
 637       // If no displacement
 638       emit_rm(cbuf, 0x0, regenc, 0x4); // *
 639       emit_rm(cbuf, scale, indexenc, baseenc);
 640     } else {
 641       if (-0x80 <= disp && disp < 0x80 && disp_reloc == relocInfo::none) {
 642         // If 8-bit displacement, mode 0x1
 643         emit_rm(cbuf, 0x1, regenc, 0x4); // *
 644         emit_rm(cbuf, scale, indexenc, baseenc);
 645         emit_d8(cbuf, disp);
 646       } else {
 647         // If 32-bit displacement
 648         if (base == 0x04 ) {
 649           emit_rm(cbuf, 0x2, regenc, 0x4);
 650           emit_rm(cbuf, scale, indexenc, 0x04); // XXX is this valid???
 651         } else {
 652           emit_rm(cbuf, 0x2, regenc, 0x4);
 653           emit_rm(cbuf, scale, indexenc, baseenc); // *
 654         }
 655         if (disp_reloc != relocInfo::none) {
 656           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
 657         } else {
 658           emit_d32(cbuf, disp);
 659         }
 660       }
 661     }
 662   }
 663 }
 664 
 665 // This could be in MacroAssembler but it's fairly C2 specific
 666 void emit_cmpfp_fixup(MacroAssembler& _masm) {
 667   Label exit;
 668   __ jccb(Assembler::noParity, exit);
 669   __ pushf();
 670   //
 671   // comiss/ucomiss instructions set ZF,PF,CF flags and
 672   // zero OF,AF,SF for NaN values.
 673   // Fixup flags by zeroing ZF,PF so that compare of NaN
 674   // values returns 'less than' result (CF is set).
 675   // Leave the rest of flags unchanged.
 676   //
 677   //    7 6 5 4 3 2 1 0
 678   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
 679   //    0 0 1 0 1 0 1 1   (0x2B)
 680   //
 681   __ andq(Address(rsp, 0), 0xffffff2b);
 682   __ popf();
 683   __ bind(exit);
 684 }
 685 
 686 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
 687   Label done;
 688   __ movl(dst, -1);
 689   __ jcc(Assembler::parity, done);
 690   __ jcc(Assembler::below, done);
 691   __ setb(Assembler::notEqual, dst);
 692   __ movzbl(dst, dst);
 693   __ bind(done);
 694 }
 695 
 696 // Math.min()    # Math.max()
 697 // --------------------------
 698 // ucomis[s/d]   #
 699 // ja   -> b     # a
 700 // jp   -> NaN   # NaN
 701 // jb   -> a     # b
 702 // je            #
 703 // |-jz -> a | b # a & b
 704 // |    -> a     #
 705 void emit_fp_min_max(MacroAssembler& _masm, XMMRegister dst,
 706                      XMMRegister a, XMMRegister b,
 707                      XMMRegister xmmt, Register rt,
 708                      bool min, bool single) {
 709 
 710   Label nan, zero, below, above, done;
 711 
 712   if (single)
 713     __ ucomiss(a, b);
 714   else
 715     __ ucomisd(a, b);
 716 
 717   if (dst->encoding() != (min ? b : a)->encoding())
 718     __ jccb(Assembler::above, above); // CF=0 & ZF=0
 719   else
 720     __ jccb(Assembler::above, done);
 721 
 722   __ jccb(Assembler::parity, nan);  // PF=1
 723   __ jccb(Assembler::below, below); // CF=1
 724 
 725   // equal
 726   __ vpxor(xmmt, xmmt, xmmt, Assembler::AVX_128bit);
 727   if (single) {
 728     __ ucomiss(a, xmmt);
 729     __ jccb(Assembler::equal, zero);
 730 
 731     __ movflt(dst, a);
 732     __ jmp(done);
 733   }
 734   else {
 735     __ ucomisd(a, xmmt);
 736     __ jccb(Assembler::equal, zero);
 737 
 738     __ movdbl(dst, a);
 739     __ jmp(done);
 740   }
 741 
 742   __ bind(zero);
 743   if (min)
 744     __ vpor(dst, a, b, Assembler::AVX_128bit);
 745   else
 746     __ vpand(dst, a, b, Assembler::AVX_128bit);
 747 
 748   __ jmp(done);
 749 
 750   __ bind(above);
 751   if (single)
 752     __ movflt(dst, min ? b : a);
 753   else
 754     __ movdbl(dst, min ? b : a);
 755 
 756   __ jmp(done);
 757 
 758   __ bind(nan);
 759   if (single) {
 760     __ movl(rt, 0x7fc00000); // Float.NaN
 761     __ movdl(dst, rt);
 762   }
 763   else {
 764     __ mov64(rt, 0x7ff8000000000000L); // Double.NaN
 765     __ movdq(dst, rt);
 766   }
 767   __ jmp(done);
 768 
 769   __ bind(below);
 770   if (single)
 771     __ movflt(dst, min ? a : b);
 772   else
 773     __ movdbl(dst, min ? a : b);
 774 
 775   __ bind(done);
 776 }
 777 
 778 //=============================================================================
 779 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
 780 
 781 int ConstantTable::calculate_table_base_offset() const {
 782   return 0;  // absolute addressing, no offset
 783 }
 784 
 785 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
 786 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
 787   ShouldNotReachHere();
 788 }
 789 
 790 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
 791   // Empty encoding
 792 }
 793 
 794 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
 795   return 0;
 796 }
 797 
 798 #ifndef PRODUCT
 799 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 800   st->print("# MachConstantBaseNode (empty encoding)");
 801 }
 802 #endif
 803 
 804 
 805 //=============================================================================
 806 #ifndef PRODUCT
 807 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 808   Compile* C = ra_->C;
 809 
 810   int framesize = C->output()->frame_size_in_bytes();
 811   int bangsize = C->output()->bang_size_in_bytes();
 812   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 813   // Remove wordSize for return addr which is already pushed.
 814   framesize -= wordSize;
 815 
 816   if (C->output()->need_stack_bang(bangsize)) {
 817     framesize -= wordSize;
 818     st->print("# stack bang (%d bytes)", bangsize);
 819     st->print("\n\t");
 820     st->print("pushq   rbp\t# Save rbp");
 821     if (PreserveFramePointer) {
 822         st->print("\n\t");
 823         st->print("movq    rbp, rsp\t# Save the caller's SP into rbp");
 824     }
 825     if (framesize) {
 826       st->print("\n\t");
 827       st->print("subq    rsp, #%d\t# Create frame",framesize);
 828     }
 829   } else {
 830     st->print("subq    rsp, #%d\t# Create frame",framesize);
 831     st->print("\n\t");
 832     framesize -= wordSize;
 833     st->print("movq    [rsp + #%d], rbp\t# Save rbp",framesize);
 834     if (PreserveFramePointer) {
 835       st->print("\n\t");
 836       st->print("movq    rbp, rsp\t# Save the caller's SP into rbp");
 837       if (framesize > 0) {
 838         st->print("\n\t");
 839         st->print("addq    rbp, #%d", framesize);
 840       }
 841     }
 842   }
 843 
 844   if (VerifyStackAtCalls) {
 845     st->print("\n\t");
 846     framesize -= wordSize;
 847     st->print("movq    [rsp + #%d], 0xbadb100d\t# Majik cookie for stack depth check",framesize);
 848 #ifdef ASSERT
 849     st->print("\n\t");
 850     st->print("# stack alignment check");
 851 #endif
 852   }
 853   if (C->stub_function() != NULL && BarrierSet::barrier_set()->barrier_set_nmethod() != NULL) {
 854     st->print("\n\t");
 855     st->print("cmpl    [r15_thread + #disarmed_offset], #disarmed_value\t");
 856     st->print("\n\t");
 857     st->print("je      fast_entry\t");
 858     st->print("\n\t");
 859     st->print("call    #nmethod_entry_barrier_stub\t");
 860     st->print("\n\tfast_entry:");
 861   }
 862   st->cr();
 863 }
 864 #endif
 865 
 866 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 867   Compile* C = ra_->C;
 868   MacroAssembler _masm(&cbuf);
 869 
 870   int framesize = C->output()->frame_size_in_bytes();
 871   int bangsize = C->output()->bang_size_in_bytes();
 872 
 873   if (C->clinit_barrier_on_entry()) {
 874     assert(VM_Version::supports_fast_class_init_checks(), "sanity");
 875     assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started");
 876 
 877     Label L_skip_barrier;
 878     Register klass = rscratch1;
 879 
 880     __ mov_metadata(klass, C->method()->holder()->constant_encoding());
 881     __ clinit_barrier(klass, r15_thread, &L_skip_barrier /*L_fast_path*/);
 882 
 883     __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); // slow path
 884 
 885     __ bind(L_skip_barrier);
 886   }
 887 
 888   __ verified_entry(framesize, C->output()->need_stack_bang(bangsize)?bangsize:0, false, C->stub_function() != NULL);
 889 
 890   C->output()->set_frame_complete(cbuf.insts_size());
 891 
 892   if (C->has_mach_constant_base_node()) {
 893     // NOTE: We set the table base offset here because users might be
 894     // emitted before MachConstantBaseNode.
 895     ConstantTable& constant_table = C->output()->constant_table();
 896     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 897   }
 898 }
 899 
 900 uint MachPrologNode::size(PhaseRegAlloc* ra_) const
 901 {
 902   return MachNode::size(ra_); // too many variables; just compute it
 903                               // the hard way
 904 }
 905 
 906 int MachPrologNode::reloc() const
 907 {
 908   return 0; // a large enough number
 909 }
 910 
 911 //=============================================================================
 912 #ifndef PRODUCT
 913 void MachEpilogNode::format(PhaseRegAlloc* ra_, outputStream* st) const
 914 {
 915   Compile* C = ra_->C;
 916   if (generate_vzeroupper(C)) {
 917     st->print("vzeroupper");
 918     st->cr(); st->print("\t");
 919   }
 920 
 921   int framesize = C->output()->frame_size_in_bytes();
 922   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 923   // Remove word for return adr already pushed
 924   // and RBP
 925   framesize -= 2*wordSize;
 926 
 927   if (framesize) {
 928     st->print_cr("addq    rsp, %d\t# Destroy frame", framesize);
 929     st->print("\t");
 930   }
 931 
 932   st->print_cr("popq    rbp");
 933   if (do_polling() && C->is_method_compilation()) {
 934     st->print("\t");
 935     st->print_cr("movq    rscratch1, poll_offset[r15_thread] #polling_page_address\n\t"
 936                  "testl   rax, [rscratch1]\t"
 937                  "# Safepoint: poll for GC");
 938   }
 939 }
 940 #endif
 941 
 942 void MachEpilogNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
 943 {
 944   Compile* C = ra_->C;
 945   MacroAssembler _masm(&cbuf);
 946 
 947   if (generate_vzeroupper(C)) {
 948     // Clear upper bits of YMM registers when current compiled code uses
 949     // wide vectors to avoid AVX <-> SSE transition penalty during call.
 950     __ vzeroupper();
 951   }
 952 
 953   int framesize = C->output()->frame_size_in_bytes();
 954   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 955   // Remove word for return adr already pushed
 956   // and RBP
 957   framesize -= 2*wordSize;
 958 
 959   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
 960 
 961   if (framesize) {
 962     emit_opcode(cbuf, Assembler::REX_W);
 963     if (framesize < 0x80) {
 964       emit_opcode(cbuf, 0x83); // addq rsp, #framesize
 965       emit_rm(cbuf, 0x3, 0x00, RSP_enc);
 966       emit_d8(cbuf, framesize);
 967     } else {
 968       emit_opcode(cbuf, 0x81); // addq rsp, #framesize
 969       emit_rm(cbuf, 0x3, 0x00, RSP_enc);
 970       emit_d32(cbuf, framesize);
 971     }
 972   }
 973 
 974   // popq rbp
 975   emit_opcode(cbuf, 0x58 | RBP_enc);
 976 
 977   if (StackReservedPages > 0 && C->has_reserved_stack_access()) {
 978     __ reserved_stack_check();
 979   }
 980 
 981   if (do_polling() && C->is_method_compilation()) {
 982     MacroAssembler _masm(&cbuf);
 983     __ movq(rscratch1, Address(r15_thread, Thread::polling_page_offset()));
 984     __ relocate(relocInfo::poll_return_type);
 985     __ testl(rax, Address(rscratch1, 0));
 986   }
 987 }
 988 
 989 uint MachEpilogNode::size(PhaseRegAlloc* ra_) const
 990 {
 991   return MachNode::size(ra_); // too many variables; just compute it
 992                               // the hard way
 993 }
 994 
 995 int MachEpilogNode::reloc() const
 996 {
 997   return 2; // a large enough number
 998 }
 999 
1000 const Pipeline* MachEpilogNode::pipeline() const
1001 {
1002   return MachNode::pipeline_class();
1003 }
1004 
1005 //=============================================================================
1006 
1007 enum RC {
1008   rc_bad,
1009   rc_int,
1010   rc_float,
1011   rc_stack
1012 };
1013 
1014 static enum RC rc_class(OptoReg::Name reg)
1015 {
1016   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1017 
1018   if (OptoReg::is_stack(reg)) return rc_stack;
1019 
1020   VMReg r = OptoReg::as_VMReg(reg);
1021 
1022   if (r->is_Register()) return rc_int;
1023 
1024   assert(r->is_XMMRegister(), "must be");
1025   return rc_float;
1026 }
1027 
1028 // Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
1029 static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
1030                           int src_hi, int dst_hi, uint ireg, outputStream* st);
1031 
1032 int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
1033                      int stack_offset, int reg, uint ireg, outputStream* st);
1034 
1035 static void vec_stack_to_stack_helper(CodeBuffer *cbuf, int src_offset,
1036                                       int dst_offset, uint ireg, outputStream* st) {
1037   if (cbuf) {
1038     MacroAssembler _masm(cbuf);
1039     switch (ireg) {
1040     case Op_VecS:
1041       __ movq(Address(rsp, -8), rax);
1042       __ movl(rax, Address(rsp, src_offset));
1043       __ movl(Address(rsp, dst_offset), rax);
1044       __ movq(rax, Address(rsp, -8));
1045       break;
1046     case Op_VecD:
1047       __ pushq(Address(rsp, src_offset));
1048       __ popq (Address(rsp, dst_offset));
1049       break;
1050     case Op_VecX:
1051       __ pushq(Address(rsp, src_offset));
1052       __ popq (Address(rsp, dst_offset));
1053       __ pushq(Address(rsp, src_offset+8));
1054       __ popq (Address(rsp, dst_offset+8));
1055       break;
1056     case Op_VecY:
1057       __ vmovdqu(Address(rsp, -32), xmm0);
1058       __ vmovdqu(xmm0, Address(rsp, src_offset));
1059       __ vmovdqu(Address(rsp, dst_offset), xmm0);
1060       __ vmovdqu(xmm0, Address(rsp, -32));
1061       break;
1062     case Op_VecZ:
1063       __ evmovdquq(Address(rsp, -64), xmm0, 2);
1064       __ evmovdquq(xmm0, Address(rsp, src_offset), 2);
1065       __ evmovdquq(Address(rsp, dst_offset), xmm0, 2);
1066       __ evmovdquq(xmm0, Address(rsp, -64), 2);
1067       break;
1068     default:
1069       ShouldNotReachHere();
1070     }
1071 #ifndef PRODUCT
1072   } else {
1073     switch (ireg) {
1074     case Op_VecS:
1075       st->print("movq    [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
1076                 "movl    rax, [rsp + #%d]\n\t"
1077                 "movl    [rsp + #%d], rax\n\t"
1078                 "movq    rax, [rsp - #8]",
1079                 src_offset, dst_offset);
1080       break;
1081     case Op_VecD:
1082       st->print("pushq   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
1083                 "popq    [rsp + #%d]",
1084                 src_offset, dst_offset);
1085       break;
1086      case Op_VecX:
1087       st->print("pushq   [rsp + #%d]\t# 128-bit mem-mem spill\n\t"
1088                 "popq    [rsp + #%d]\n\t"
1089                 "pushq   [rsp + #%d]\n\t"
1090                 "popq    [rsp + #%d]",
1091                 src_offset, dst_offset, src_offset+8, dst_offset+8);
1092       break;
1093     case Op_VecY:
1094       st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
1095                 "vmovdqu xmm0, [rsp + #%d]\n\t"
1096                 "vmovdqu [rsp + #%d], xmm0\n\t"
1097                 "vmovdqu xmm0, [rsp - #32]",
1098                 src_offset, dst_offset);
1099       break;
1100     case Op_VecZ:
1101       st->print("vmovdqu [rsp - #64], xmm0\t# 512-bit mem-mem spill\n\t"
1102                 "vmovdqu xmm0, [rsp + #%d]\n\t"
1103                 "vmovdqu [rsp + #%d], xmm0\n\t"
1104                 "vmovdqu xmm0, [rsp - #64]",
1105                 src_offset, dst_offset);
1106       break;
1107     default:
1108       ShouldNotReachHere();
1109     }
1110 #endif
1111   }
1112 }
1113 
1114 uint MachSpillCopyNode::implementation(CodeBuffer* cbuf,
1115                                        PhaseRegAlloc* ra_,
1116                                        bool do_size,
1117                                        outputStream* st) const {
1118   assert(cbuf != NULL || st  != NULL, "sanity");
1119   // Get registers to move
1120   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1121   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1122   OptoReg::Name dst_second = ra_->get_reg_second(this);
1123   OptoReg::Name dst_first = ra_->get_reg_first(this);
1124 
1125   enum RC src_second_rc = rc_class(src_second);
1126   enum RC src_first_rc = rc_class(src_first);
1127   enum RC dst_second_rc = rc_class(dst_second);
1128   enum RC dst_first_rc = rc_class(dst_first);
1129 
1130   assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first),
1131          "must move at least 1 register" );
1132 
1133   if (src_first == dst_first && src_second == dst_second) {
1134     // Self copy, no move
1135     return 0;
1136   }
1137   if (bottom_type()->isa_vect() != NULL) {
1138     uint ireg = ideal_reg();
1139     assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
1140     assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY || ireg == Op_VecZ ), "sanity");
1141     if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1142       // mem -> mem
1143       int src_offset = ra_->reg2offset(src_first);
1144       int dst_offset = ra_->reg2offset(dst_first);
1145       vec_stack_to_stack_helper(cbuf, src_offset, dst_offset, ireg, st);
1146     } else if (src_first_rc == rc_float && dst_first_rc == rc_float ) {
1147       vec_mov_helper(cbuf, false, src_first, dst_first, src_second, dst_second, ireg, st);
1148     } else if (src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1149       int stack_offset = ra_->reg2offset(dst_first);
1150       vec_spill_helper(cbuf, false, false, stack_offset, src_first, ireg, st);
1151     } else if (src_first_rc == rc_stack && dst_first_rc == rc_float ) {
1152       int stack_offset = ra_->reg2offset(src_first);
1153       vec_spill_helper(cbuf, false, true,  stack_offset, dst_first, ireg, st);
1154     } else {
1155       ShouldNotReachHere();
1156     }
1157     return 0;
1158   }
1159   if (src_first_rc == rc_stack) {
1160     // mem ->
1161     if (dst_first_rc == rc_stack) {
1162       // mem -> mem
1163       assert(src_second != dst_first, "overlap");
1164       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1165           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1166         // 64-bit
1167         int src_offset = ra_->reg2offset(src_first);
1168         int dst_offset = ra_->reg2offset(dst_first);
1169         if (cbuf) {
1170           MacroAssembler _masm(cbuf);
1171           __ pushq(Address(rsp, src_offset));
1172           __ popq (Address(rsp, dst_offset));
1173 #ifndef PRODUCT
1174         } else {
1175           st->print("pushq   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
1176                     "popq    [rsp + #%d]",
1177                      src_offset, dst_offset);
1178 #endif
1179         }
1180       } else {
1181         // 32-bit
1182         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1183         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1184         // No pushl/popl, so:
1185         int src_offset = ra_->reg2offset(src_first);
1186         int dst_offset = ra_->reg2offset(dst_first);
1187         if (cbuf) {
1188           MacroAssembler _masm(cbuf);
1189           __ movq(Address(rsp, -8), rax);
1190           __ movl(rax, Address(rsp, src_offset));
1191           __ movl(Address(rsp, dst_offset), rax);
1192           __ movq(rax, Address(rsp, -8));
1193 #ifndef PRODUCT
1194         } else {
1195           st->print("movq    [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
1196                     "movl    rax, [rsp + #%d]\n\t"
1197                     "movl    [rsp + #%d], rax\n\t"
1198                     "movq    rax, [rsp - #8]",
1199                      src_offset, dst_offset);
1200 #endif
1201         }
1202       }
1203       return 0;
1204     } else if (dst_first_rc == rc_int) {
1205       // mem -> gpr
1206       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1207           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1208         // 64-bit
1209         int offset = ra_->reg2offset(src_first);
1210         if (cbuf) {
1211           MacroAssembler _masm(cbuf);
1212           __ movq(as_Register(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1213 #ifndef PRODUCT
1214         } else {
1215           st->print("movq    %s, [rsp + #%d]\t# spill",
1216                      Matcher::regName[dst_first],
1217                      offset);
1218 #endif
1219         }
1220       } else {
1221         // 32-bit
1222         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1223         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1224         int offset = ra_->reg2offset(src_first);
1225         if (cbuf) {
1226           MacroAssembler _masm(cbuf);
1227           __ movl(as_Register(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1228 #ifndef PRODUCT
1229         } else {
1230           st->print("movl    %s, [rsp + #%d]\t# spill",
1231                      Matcher::regName[dst_first],
1232                      offset);
1233 #endif
1234         }
1235       }
1236       return 0;
1237     } else if (dst_first_rc == rc_float) {
1238       // mem-> xmm
1239       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1240           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1241         // 64-bit
1242         int offset = ra_->reg2offset(src_first);
1243         if (cbuf) {
1244           MacroAssembler _masm(cbuf);
1245           __ movdbl( as_XMMRegister(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1246 #ifndef PRODUCT
1247         } else {
1248           st->print("%s  %s, [rsp + #%d]\t# spill",
1249                      UseXmmLoadAndClearUpper ? "movsd " : "movlpd",
1250                      Matcher::regName[dst_first],
1251                      offset);
1252 #endif
1253         }
1254       } else {
1255         // 32-bit
1256         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1257         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1258         int offset = ra_->reg2offset(src_first);
1259         if (cbuf) {
1260           MacroAssembler _masm(cbuf);
1261           __ movflt( as_XMMRegister(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1262 #ifndef PRODUCT
1263         } else {
1264           st->print("movss   %s, [rsp + #%d]\t# spill",
1265                      Matcher::regName[dst_first],
1266                      offset);
1267 #endif
1268         }
1269       }
1270       return 0;
1271     }
1272   } else if (src_first_rc == rc_int) {
1273     // gpr ->
1274     if (dst_first_rc == rc_stack) {
1275       // gpr -> mem
1276       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1277           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1278         // 64-bit
1279         int offset = ra_->reg2offset(dst_first);
1280         if (cbuf) {
1281           MacroAssembler _masm(cbuf);
1282           __ movq(Address(rsp, offset), as_Register(Matcher::_regEncode[src_first]));
1283 #ifndef PRODUCT
1284         } else {
1285           st->print("movq    [rsp + #%d], %s\t# spill",
1286                      offset,
1287                      Matcher::regName[src_first]);
1288 #endif
1289         }
1290       } else {
1291         // 32-bit
1292         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1293         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1294         int offset = ra_->reg2offset(dst_first);
1295         if (cbuf) {
1296           MacroAssembler _masm(cbuf);
1297           __ movl(Address(rsp, offset), as_Register(Matcher::_regEncode[src_first]));
1298 #ifndef PRODUCT
1299         } else {
1300           st->print("movl    [rsp + #%d], %s\t# spill",
1301                      offset,
1302                      Matcher::regName[src_first]);
1303 #endif
1304         }
1305       }
1306       return 0;
1307     } else if (dst_first_rc == rc_int) {
1308       // gpr -> gpr
1309       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1310           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1311         // 64-bit
1312         if (cbuf) {
1313           MacroAssembler _masm(cbuf);
1314           __ movq(as_Register(Matcher::_regEncode[dst_first]),
1315                   as_Register(Matcher::_regEncode[src_first]));
1316 #ifndef PRODUCT
1317         } else {
1318           st->print("movq    %s, %s\t# spill",
1319                      Matcher::regName[dst_first],
1320                      Matcher::regName[src_first]);
1321 #endif
1322         }
1323         return 0;
1324       } else {
1325         // 32-bit
1326         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1327         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1328         if (cbuf) {
1329           MacroAssembler _masm(cbuf);
1330           __ movl(as_Register(Matcher::_regEncode[dst_first]),
1331                   as_Register(Matcher::_regEncode[src_first]));
1332 #ifndef PRODUCT
1333         } else {
1334           st->print("movl    %s, %s\t# spill",
1335                      Matcher::regName[dst_first],
1336                      Matcher::regName[src_first]);
1337 #endif
1338         }
1339         return 0;
1340       }
1341     } else if (dst_first_rc == rc_float) {
1342       // gpr -> xmm
1343       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1344           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1345         // 64-bit
1346         if (cbuf) {
1347           MacroAssembler _masm(cbuf);
1348           __ movdq( as_XMMRegister(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
1349 #ifndef PRODUCT
1350         } else {
1351           st->print("movdq   %s, %s\t# spill",
1352                      Matcher::regName[dst_first],
1353                      Matcher::regName[src_first]);
1354 #endif
1355         }
1356       } else {
1357         // 32-bit
1358         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1359         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1360         if (cbuf) {
1361           MacroAssembler _masm(cbuf);
1362           __ movdl( as_XMMRegister(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
1363 #ifndef PRODUCT
1364         } else {
1365           st->print("movdl   %s, %s\t# spill",
1366                      Matcher::regName[dst_first],
1367                      Matcher::regName[src_first]);
1368 #endif
1369         }
1370       }
1371       return 0;
1372     }
1373   } else if (src_first_rc == rc_float) {
1374     // xmm ->
1375     if (dst_first_rc == rc_stack) {
1376       // xmm -> mem
1377       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1378           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1379         // 64-bit
1380         int offset = ra_->reg2offset(dst_first);
1381         if (cbuf) {
1382           MacroAssembler _masm(cbuf);
1383           __ movdbl( Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[src_first]));
1384 #ifndef PRODUCT
1385         } else {
1386           st->print("movsd   [rsp + #%d], %s\t# spill",
1387                      offset,
1388                      Matcher::regName[src_first]);
1389 #endif
1390         }
1391       } else {
1392         // 32-bit
1393         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1394         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1395         int offset = ra_->reg2offset(dst_first);
1396         if (cbuf) {
1397           MacroAssembler _masm(cbuf);
1398           __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[src_first]));
1399 #ifndef PRODUCT
1400         } else {
1401           st->print("movss   [rsp + #%d], %s\t# spill",
1402                      offset,
1403                      Matcher::regName[src_first]);
1404 #endif
1405         }
1406       }
1407       return 0;
1408     } else if (dst_first_rc == rc_int) {
1409       // xmm -> gpr
1410       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1411           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1412         // 64-bit
1413         if (cbuf) {
1414           MacroAssembler _masm(cbuf);
1415           __ movdq( as_Register(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1416 #ifndef PRODUCT
1417         } else {
1418           st->print("movdq   %s, %s\t# spill",
1419                      Matcher::regName[dst_first],
1420                      Matcher::regName[src_first]);
1421 #endif
1422         }
1423       } else {
1424         // 32-bit
1425         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1426         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1427         if (cbuf) {
1428           MacroAssembler _masm(cbuf);
1429           __ movdl( as_Register(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1430 #ifndef PRODUCT
1431         } else {
1432           st->print("movdl   %s, %s\t# spill",
1433                      Matcher::regName[dst_first],
1434                      Matcher::regName[src_first]);
1435 #endif
1436         }
1437       }
1438       return 0;
1439     } else if (dst_first_rc == rc_float) {
1440       // xmm -> xmm
1441       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1442           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1443         // 64-bit
1444         if (cbuf) {
1445           MacroAssembler _masm(cbuf);
1446           __ movdbl( as_XMMRegister(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1447 #ifndef PRODUCT
1448         } else {
1449           st->print("%s  %s, %s\t# spill",
1450                      UseXmmRegToRegMoveAll ? "movapd" : "movsd ",
1451                      Matcher::regName[dst_first],
1452                      Matcher::regName[src_first]);
1453 #endif
1454         }
1455       } else {
1456         // 32-bit
1457         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1458         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1459         if (cbuf) {
1460           MacroAssembler _masm(cbuf);
1461           __ movflt( as_XMMRegister(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1462 #ifndef PRODUCT
1463         } else {
1464           st->print("%s  %s, %s\t# spill",
1465                      UseXmmRegToRegMoveAll ? "movaps" : "movss ",
1466                      Matcher::regName[dst_first],
1467                      Matcher::regName[src_first]);
1468 #endif
1469         }
1470       }
1471       return 0;
1472     }
1473   }
1474 
1475   assert(0," foo ");
1476   Unimplemented();
1477   return 0;
1478 }
1479 
1480 #ifndef PRODUCT
1481 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
1482   implementation(NULL, ra_, false, st);
1483 }
1484 #endif
1485 
1486 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1487   implementation(&cbuf, ra_, false, NULL);
1488 }
1489 
1490 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1491   return MachNode::size(ra_);
1492 }
1493 
1494 //=============================================================================
1495 #ifndef PRODUCT
1496 void BoxLockNode::format(PhaseRegAlloc* ra_, outputStream* st) const
1497 {
1498   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1499   int reg = ra_->get_reg_first(this);
1500   st->print("leaq    %s, [rsp + #%d]\t# box lock",
1501             Matcher::regName[reg], offset);
1502 }
1503 #endif
1504 
1505 void BoxLockNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
1506 {
1507   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1508   int reg = ra_->get_encode(this);
1509   if (offset >= 0x80) {
1510     emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
1511     emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
1512     emit_rm(cbuf, 0x2, reg & 7, 0x04);
1513     emit_rm(cbuf, 0x0, 0x04, RSP_enc);
1514     emit_d32(cbuf, offset);
1515   } else {
1516     emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
1517     emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
1518     emit_rm(cbuf, 0x1, reg & 7, 0x04);
1519     emit_rm(cbuf, 0x0, 0x04, RSP_enc);
1520     emit_d8(cbuf, offset);
1521   }
1522 }
1523 
1524 uint BoxLockNode::size(PhaseRegAlloc *ra_) const
1525 {
1526   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1527   return (offset < 0x80) ? 5 : 8; // REX
1528 }
1529 
1530 //=============================================================================
1531 #ifndef PRODUCT
1532 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
1533 {
1534   if (UseCompressedClassPointers) {
1535     st->print_cr("movl    rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
1536     st->print_cr("\tdecode_klass_not_null rscratch1, rscratch1");
1537     st->print_cr("\tcmpq    rax, rscratch1\t # Inline cache check");
1538   } else {
1539     st->print_cr("\tcmpq    rax, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t"
1540                  "# Inline cache check");
1541   }
1542   st->print_cr("\tjne     SharedRuntime::_ic_miss_stub");
1543   st->print_cr("\tnop\t# nops to align entry point");
1544 }
1545 #endif
1546 
1547 void MachUEPNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
1548 {
1549   MacroAssembler masm(&cbuf);
1550   uint insts_size = cbuf.insts_size();
1551   if (UseCompressedClassPointers) {
1552     masm.load_klass(rscratch1, j_rarg0, rscratch2);
1553     masm.cmpptr(rax, rscratch1);
1554   } else {
1555     masm.cmpptr(rax, Address(j_rarg0, oopDesc::klass_offset_in_bytes()));
1556   }
1557 
1558   masm.jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1559 
1560   /* WARNING these NOPs are critical so that verified entry point is properly
1561      4 bytes aligned for patching by NativeJump::patch_verified_entry() */
1562   int nops_cnt = 4 - ((cbuf.insts_size() - insts_size) & 0x3);
1563   if (OptoBreakpoint) {
1564     // Leave space for int3
1565     nops_cnt -= 1;
1566   }
1567   nops_cnt &= 0x3; // Do not add nops if code is aligned.
1568   if (nops_cnt > 0)
1569     masm.nop(nops_cnt);
1570 }
1571 
1572 uint MachUEPNode::size(PhaseRegAlloc* ra_) const
1573 {
1574   return MachNode::size(ra_); // too many variables; just compute it
1575                               // the hard way
1576 }
1577 
1578 
1579 //=============================================================================
1580 
1581 int Matcher::regnum_to_fpu_offset(int regnum)
1582 {
1583   return regnum - 32; // The FP registers are in the second chunk
1584 }
1585 
1586 // This is UltraSparc specific, true just means we have fast l2f conversion
1587 const bool Matcher::convL2FSupported(void) {
1588   return true;
1589 }
1590 
1591 // Is this branch offset short enough that a short branch can be used?
1592 //
1593 // NOTE: If the platform does not provide any short branch variants, then
1594 //       this method should return false for offset 0.
1595 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1596   // The passed offset is relative to address of the branch.
1597   // On 86 a branch displacement is calculated relative to address
1598   // of a next instruction.
1599   offset -= br_size;
1600 
1601   // the short version of jmpConUCF2 contains multiple branches,
1602   // making the reach slightly less
1603   if (rule == jmpConUCF2_rule)
1604     return (-126 <= offset && offset <= 125);
1605   return (-128 <= offset && offset <= 127);
1606 }
1607 
1608 const bool Matcher::isSimpleConstant64(jlong value) {
1609   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1610   //return value == (int) value;  // Cf. storeImmL and immL32.
1611 
1612   // Probably always true, even if a temp register is required.
1613   return true;
1614 }
1615 
1616 // The ecx parameter to rep stosq for the ClearArray node is in words.
1617 const bool Matcher::init_array_count_is_in_bytes = false;
1618 
1619 // No additional cost for CMOVL.
1620 const int Matcher::long_cmove_cost() { return 0; }
1621 
1622 // No CMOVF/CMOVD with SSE2
1623 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
1624 
1625 // Does the CPU require late expand (see block.cpp for description of late expand)?
1626 const bool Matcher::require_postalloc_expand = false;
1627 
1628 // Do we need to mask the count passed to shift instructions or does
1629 // the cpu only look at the lower 5/6 bits anyway?
1630 const bool Matcher::need_masked_shift_count = false;
1631 
1632 bool Matcher::narrow_oop_use_complex_address() {
1633   assert(UseCompressedOops, "only for compressed oops code");
1634   return (LogMinObjAlignmentInBytes <= 3);
1635 }
1636 
1637 bool Matcher::narrow_klass_use_complex_address() {
1638   assert(UseCompressedClassPointers, "only for compressed klass code");
1639   return (LogKlassAlignmentInBytes <= 3);
1640 }
1641 
1642 bool Matcher::const_oop_prefer_decode() {
1643   // Prefer ConN+DecodeN over ConP.
1644   return true;
1645 }
1646 
1647 bool Matcher::const_klass_prefer_decode() {
1648   // Prefer ConP over ConNKlass+DecodeNKlass.
1649   return true;
1650 }
1651 
1652 // Is it better to copy float constants, or load them directly from
1653 // memory?  Intel can load a float constant from a direct address,
1654 // requiring no extra registers.  Most RISCs will have to materialize
1655 // an address into a register first, so they would do better to copy
1656 // the constant from stack.
1657 const bool Matcher::rematerialize_float_constants = true; // XXX
1658 
1659 // If CPU can load and store mis-aligned doubles directly then no
1660 // fixup is needed.  Else we split the double into 2 integer pieces
1661 // and move it piece-by-piece.  Only happens when passing doubles into
1662 // C code as the Java calling convention forces doubles to be aligned.
1663 const bool Matcher::misaligned_doubles_ok = true;
1664 
1665 // No-op on amd64
1666 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {}
1667 
1668 // Advertise here if the CPU requires explicit rounding operations to implement strictfp mode.
1669 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1670 
1671 // Are floats conerted to double when stored to stack during deoptimization?
1672 // On x64 it is stored without convertion so we can use normal access.
1673 bool Matcher::float_in_double() { return false; }
1674 
1675 // Do ints take an entire long register or just half?
1676 const bool Matcher::int_in_long = true;
1677 
1678 // Return whether or not this register is ever used as an argument.
1679 // This function is used on startup to build the trampoline stubs in
1680 // generateOptoStub.  Registers not mentioned will be killed by the VM
1681 // call in the trampoline, and arguments in those registers not be
1682 // available to the callee.
1683 bool Matcher::can_be_java_arg(int reg)
1684 {
1685   return
1686     reg ==  RDI_num || reg == RDI_H_num ||
1687     reg ==  RSI_num || reg == RSI_H_num ||
1688     reg ==  RDX_num || reg == RDX_H_num ||
1689     reg ==  RCX_num || reg == RCX_H_num ||
1690     reg ==   R8_num || reg ==  R8_H_num ||
1691     reg ==   R9_num || reg ==  R9_H_num ||
1692     reg ==  R12_num || reg == R12_H_num ||
1693     reg == XMM0_num || reg == XMM0b_num ||
1694     reg == XMM1_num || reg == XMM1b_num ||
1695     reg == XMM2_num || reg == XMM2b_num ||
1696     reg == XMM3_num || reg == XMM3b_num ||
1697     reg == XMM4_num || reg == XMM4b_num ||
1698     reg == XMM5_num || reg == XMM5b_num ||
1699     reg == XMM6_num || reg == XMM6b_num ||
1700     reg == XMM7_num || reg == XMM7b_num;
1701 }
1702 
1703 bool Matcher::is_spillable_arg(int reg)
1704 {
1705   return can_be_java_arg(reg);
1706 }
1707 
1708 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1709   // In 64 bit mode a code which use multiply when
1710   // devisor is constant is faster than hardware
1711   // DIV instruction (it uses MulHiL).
1712   return false;
1713 }
1714 
1715 // Register for DIVI projection of divmodI
1716 RegMask Matcher::divI_proj_mask() {
1717   return INT_RAX_REG_mask();
1718 }
1719 
1720 // Register for MODI projection of divmodI
1721 RegMask Matcher::modI_proj_mask() {
1722   return INT_RDX_REG_mask();
1723 }
1724 
1725 // Register for DIVL projection of divmodL
1726 RegMask Matcher::divL_proj_mask() {
1727   return LONG_RAX_REG_mask();
1728 }
1729 
1730 // Register for MODL projection of divmodL
1731 RegMask Matcher::modL_proj_mask() {
1732   return LONG_RDX_REG_mask();
1733 }
1734 
1735 // Register for saving SP into on method handle invokes. Not used on x86_64.
1736 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1737     return NO_REG_mask();
1738 }
1739 
1740 %}
1741 
1742 //----------ENCODING BLOCK-----------------------------------------------------
1743 // This block specifies the encoding classes used by the compiler to
1744 // output byte streams.  Encoding classes are parameterized macros
1745 // used by Machine Instruction Nodes in order to generate the bit
1746 // encoding of the instruction.  Operands specify their base encoding
1747 // interface with the interface keyword.  There are currently
1748 // supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
1749 // COND_INTER.  REG_INTER causes an operand to generate a function
1750 // which returns its register number when queried.  CONST_INTER causes
1751 // an operand to generate a function which returns the value of the
1752 // constant when queried.  MEMORY_INTER causes an operand to generate
1753 // four functions which return the Base Register, the Index Register,
1754 // the Scale Value, and the Offset Value of the operand when queried.
1755 // COND_INTER causes an operand to generate six functions which return
1756 // the encoding code (ie - encoding bits for the instruction)
1757 // associated with each basic boolean condition for a conditional
1758 // instruction.
1759 //
1760 // Instructions specify two basic values for encoding.  Again, a
1761 // function is available to check if the constant displacement is an
1762 // oop. They use the ins_encode keyword to specify their encoding
1763 // classes (which must be a sequence of enc_class names, and their
1764 // parameters, specified in the encoding block), and they use the
1765 // opcode keyword to specify, in order, their primary, secondary, and
1766 // tertiary opcode.  Only the opcode sections which a particular
1767 // instruction needs for encoding need to be specified.
1768 encode %{
1769   // Build emit functions for each basic byte or larger field in the
1770   // intel encoding scheme (opcode, rm, sib, immediate), and call them
1771   // from C++ code in the enc_class source block.  Emit functions will
1772   // live in the main source block for now.  In future, we can
1773   // generalize this by adding a syntax that specifies the sizes of
1774   // fields in an order, so that the adlc can build the emit functions
1775   // automagically
1776 
1777   // Emit primary opcode
1778   enc_class OpcP
1779   %{
1780     emit_opcode(cbuf, $primary);
1781   %}
1782 
1783   // Emit secondary opcode
1784   enc_class OpcS
1785   %{
1786     emit_opcode(cbuf, $secondary);
1787   %}
1788 
1789   // Emit tertiary opcode
1790   enc_class OpcT
1791   %{
1792     emit_opcode(cbuf, $tertiary);
1793   %}
1794 
1795   // Emit opcode directly
1796   enc_class Opcode(immI d8)
1797   %{
1798     emit_opcode(cbuf, $d8$$constant);
1799   %}
1800 
1801   // Emit size prefix
1802   enc_class SizePrefix
1803   %{
1804     emit_opcode(cbuf, 0x66);
1805   %}
1806 
1807   enc_class reg(rRegI reg)
1808   %{
1809     emit_rm(cbuf, 0x3, 0, $reg$$reg & 7);
1810   %}
1811 
1812   enc_class reg_reg(rRegI dst, rRegI src)
1813   %{
1814     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
1815   %}
1816 
1817   enc_class opc_reg_reg(immI opcode, rRegI dst, rRegI src)
1818   %{
1819     emit_opcode(cbuf, $opcode$$constant);
1820     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
1821   %}
1822 
1823   enc_class cdql_enc(no_rax_rdx_RegI div)
1824   %{
1825     // Full implementation of Java idiv and irem; checks for
1826     // special case as described in JVM spec., p.243 & p.271.
1827     //
1828     //         normal case                           special case
1829     //
1830     // input : rax: dividend                         min_int
1831     //         reg: divisor                          -1
1832     //
1833     // output: rax: quotient  (= rax idiv reg)       min_int
1834     //         rdx: remainder (= rax irem reg)       0
1835     //
1836     //  Code sequnce:
1837     //
1838     //    0:   3d 00 00 00 80          cmp    $0x80000000,%eax
1839     //    5:   75 07/08                jne    e <normal>
1840     //    7:   33 d2                   xor    %edx,%edx
1841     //  [div >= 8 -> offset + 1]
1842     //  [REX_B]
1843     //    9:   83 f9 ff                cmp    $0xffffffffffffffff,$div
1844     //    c:   74 03/04                je     11 <done>
1845     // 000000000000000e <normal>:
1846     //    e:   99                      cltd
1847     //  [div >= 8 -> offset + 1]
1848     //  [REX_B]
1849     //    f:   f7 f9                   idiv   $div
1850     // 0000000000000011 <done>:
1851 
1852     // cmp    $0x80000000,%eax
1853     emit_opcode(cbuf, 0x3d);
1854     emit_d8(cbuf, 0x00);
1855     emit_d8(cbuf, 0x00);
1856     emit_d8(cbuf, 0x00);
1857     emit_d8(cbuf, 0x80);
1858 
1859     // jne    e <normal>
1860     emit_opcode(cbuf, 0x75);
1861     emit_d8(cbuf, $div$$reg < 8 ? 0x07 : 0x08);
1862 
1863     // xor    %edx,%edx
1864     emit_opcode(cbuf, 0x33);
1865     emit_d8(cbuf, 0xD2);
1866 
1867     // cmp    $0xffffffffffffffff,%ecx
1868     if ($div$$reg >= 8) {
1869       emit_opcode(cbuf, Assembler::REX_B);
1870     }
1871     emit_opcode(cbuf, 0x83);
1872     emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
1873     emit_d8(cbuf, 0xFF);
1874 
1875     // je     11 <done>
1876     emit_opcode(cbuf, 0x74);
1877     emit_d8(cbuf, $div$$reg < 8 ? 0x03 : 0x04);
1878 
1879     // <normal>
1880     // cltd
1881     emit_opcode(cbuf, 0x99);
1882 
1883     // idivl (note: must be emitted by the user of this rule)
1884     // <done>
1885   %}
1886 
1887   enc_class cdqq_enc(no_rax_rdx_RegL div)
1888   %{
1889     // Full implementation of Java ldiv and lrem; checks for
1890     // special case as described in JVM spec., p.243 & p.271.
1891     //
1892     //         normal case                           special case
1893     //
1894     // input : rax: dividend                         min_long
1895     //         reg: divisor                          -1
1896     //
1897     // output: rax: quotient  (= rax idiv reg)       min_long
1898     //         rdx: remainder (= rax irem reg)       0
1899     //
1900     //  Code sequnce:
1901     //
1902     //    0:   48 ba 00 00 00 00 00    mov    $0x8000000000000000,%rdx
1903     //    7:   00 00 80
1904     //    a:   48 39 d0                cmp    %rdx,%rax
1905     //    d:   75 08                   jne    17 <normal>
1906     //    f:   33 d2                   xor    %edx,%edx
1907     //   11:   48 83 f9 ff             cmp    $0xffffffffffffffff,$div
1908     //   15:   74 05                   je     1c <done>
1909     // 0000000000000017 <normal>:
1910     //   17:   48 99                   cqto
1911     //   19:   48 f7 f9                idiv   $div
1912     // 000000000000001c <done>:
1913 
1914     // mov    $0x8000000000000000,%rdx
1915     emit_opcode(cbuf, Assembler::REX_W);
1916     emit_opcode(cbuf, 0xBA);
1917     emit_d8(cbuf, 0x00);
1918     emit_d8(cbuf, 0x00);
1919     emit_d8(cbuf, 0x00);
1920     emit_d8(cbuf, 0x00);
1921     emit_d8(cbuf, 0x00);
1922     emit_d8(cbuf, 0x00);
1923     emit_d8(cbuf, 0x00);
1924     emit_d8(cbuf, 0x80);
1925 
1926     // cmp    %rdx,%rax
1927     emit_opcode(cbuf, Assembler::REX_W);
1928     emit_opcode(cbuf, 0x39);
1929     emit_d8(cbuf, 0xD0);
1930 
1931     // jne    17 <normal>
1932     emit_opcode(cbuf, 0x75);
1933     emit_d8(cbuf, 0x08);
1934 
1935     // xor    %edx,%edx
1936     emit_opcode(cbuf, 0x33);
1937     emit_d8(cbuf, 0xD2);
1938 
1939     // cmp    $0xffffffffffffffff,$div
1940     emit_opcode(cbuf, $div$$reg < 8 ? Assembler::REX_W : Assembler::REX_WB);
1941     emit_opcode(cbuf, 0x83);
1942     emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
1943     emit_d8(cbuf, 0xFF);
1944 
1945     // je     1e <done>
1946     emit_opcode(cbuf, 0x74);
1947     emit_d8(cbuf, 0x05);
1948 
1949     // <normal>
1950     // cqto
1951     emit_opcode(cbuf, Assembler::REX_W);
1952     emit_opcode(cbuf, 0x99);
1953 
1954     // idivq (note: must be emitted by the user of this rule)
1955     // <done>
1956   %}
1957 
1958   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1959   enc_class OpcSE(immI imm)
1960   %{
1961     // Emit primary opcode and set sign-extend bit
1962     // Check for 8-bit immediate, and set sign extend bit in opcode
1963     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
1964       emit_opcode(cbuf, $primary | 0x02);
1965     } else {
1966       // 32-bit immediate
1967       emit_opcode(cbuf, $primary);
1968     }
1969   %}
1970 
1971   enc_class OpcSErm(rRegI dst, immI imm)
1972   %{
1973     // OpcSEr/m
1974     int dstenc = $dst$$reg;
1975     if (dstenc >= 8) {
1976       emit_opcode(cbuf, Assembler::REX_B);
1977       dstenc -= 8;
1978     }
1979     // Emit primary opcode and set sign-extend bit
1980     // Check for 8-bit immediate, and set sign extend bit in opcode
1981     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
1982       emit_opcode(cbuf, $primary | 0x02);
1983     } else {
1984       // 32-bit immediate
1985       emit_opcode(cbuf, $primary);
1986     }
1987     // Emit r/m byte with secondary opcode, after primary opcode.
1988     emit_rm(cbuf, 0x3, $secondary, dstenc);
1989   %}
1990 
1991   enc_class OpcSErm_wide(rRegL dst, immI imm)
1992   %{
1993     // OpcSEr/m
1994     int dstenc = $dst$$reg;
1995     if (dstenc < 8) {
1996       emit_opcode(cbuf, Assembler::REX_W);
1997     } else {
1998       emit_opcode(cbuf, Assembler::REX_WB);
1999       dstenc -= 8;
2000     }
2001     // Emit primary opcode and set sign-extend bit
2002     // Check for 8-bit immediate, and set sign extend bit in opcode
2003     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2004       emit_opcode(cbuf, $primary | 0x02);
2005     } else {
2006       // 32-bit immediate
2007       emit_opcode(cbuf, $primary);
2008     }
2009     // Emit r/m byte with secondary opcode, after primary opcode.
2010     emit_rm(cbuf, 0x3, $secondary, dstenc);
2011   %}
2012 
2013   enc_class Con8or32(immI imm)
2014   %{
2015     // Check for 8-bit immediate, and set sign extend bit in opcode
2016     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2017       $$$emit8$imm$$constant;
2018     } else {
2019       // 32-bit immediate
2020       $$$emit32$imm$$constant;
2021     }
2022   %}
2023 
2024   enc_class opc2_reg(rRegI dst)
2025   %{
2026     // BSWAP
2027     emit_cc(cbuf, $secondary, $dst$$reg);
2028   %}
2029 
2030   enc_class opc3_reg(rRegI dst)
2031   %{
2032     // BSWAP
2033     emit_cc(cbuf, $tertiary, $dst$$reg);
2034   %}
2035 
2036   enc_class reg_opc(rRegI div)
2037   %{
2038     // INC, DEC, IDIV, IMOD, JMP indirect, ...
2039     emit_rm(cbuf, 0x3, $secondary, $div$$reg & 7);
2040   %}
2041 
2042   enc_class enc_cmov(cmpOp cop)
2043   %{
2044     // CMOV
2045     $$$emit8$primary;
2046     emit_cc(cbuf, $secondary, $cop$$cmpcode);
2047   %}
2048 
2049   enc_class enc_PartialSubtypeCheck()
2050   %{
2051     Register Rrdi = as_Register(RDI_enc); // result register
2052     Register Rrax = as_Register(RAX_enc); // super class
2053     Register Rrcx = as_Register(RCX_enc); // killed
2054     Register Rrsi = as_Register(RSI_enc); // sub class
2055     Label miss;
2056     const bool set_cond_codes = true;
2057 
2058     MacroAssembler _masm(&cbuf);
2059     __ check_klass_subtype_slow_path(Rrsi, Rrax, Rrcx, Rrdi,
2060                                      NULL, &miss,
2061                                      /*set_cond_codes:*/ true);
2062     if ($primary) {
2063       __ xorptr(Rrdi, Rrdi);
2064     }
2065     __ bind(miss);
2066   %}
2067 
2068   enc_class clear_avx %{
2069     debug_only(int off0 = cbuf.insts_size());
2070     if (generate_vzeroupper(Compile::current())) {
2071       // Clear upper bits of YMM registers to avoid AVX <-> SSE transition penalty
2072       // Clear upper bits of YMM registers when current compiled code uses
2073       // wide vectors to avoid AVX <-> SSE transition penalty during call.
2074       MacroAssembler _masm(&cbuf);
2075       __ vzeroupper();
2076     }
2077     debug_only(int off1 = cbuf.insts_size());
2078     assert(off1 - off0 == clear_avx_size(), "correct size prediction");
2079   %}
2080 
2081   enc_class Java_To_Runtime(method meth) %{
2082     // No relocation needed
2083     MacroAssembler _masm(&cbuf);
2084     __ mov64(r10, (int64_t) $meth$$method);
2085     __ call(r10);
2086   %}
2087 
2088   enc_class Java_To_Interpreter(method meth)
2089   %{
2090     // CALL Java_To_Interpreter
2091     // This is the instruction starting address for relocation info.
2092     cbuf.set_insts_mark();
2093     $$$emit8$primary;
2094     // CALL directly to the runtime
2095     emit_d32_reloc(cbuf,
2096                    (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2097                    runtime_call_Relocation::spec(),
2098                    RELOC_DISP32);
2099   %}
2100 
2101   enc_class Java_Static_Call(method meth)
2102   %{
2103     // JAVA STATIC CALL
2104     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to
2105     // determine who we intended to call.
2106     cbuf.set_insts_mark();
2107     $$$emit8$primary;
2108 
2109     if (!_method) {
2110       emit_d32_reloc(cbuf, (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2111                      runtime_call_Relocation::spec(),
2112                      RELOC_DISP32);
2113     } else {
2114       int method_index = resolved_method_index(cbuf);
2115       RelocationHolder rspec = _optimized_virtual ? opt_virtual_call_Relocation::spec(method_index)
2116                                                   : static_call_Relocation::spec(method_index);
2117       emit_d32_reloc(cbuf, (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2118                      rspec, RELOC_DISP32);
2119       // Emit stubs for static call.
2120       address mark = cbuf.insts_mark();
2121       address stub = CompiledStaticCall::emit_to_interp_stub(cbuf, mark);
2122       if (stub == NULL) {
2123         ciEnv::current()->record_failure("CodeCache is full");
2124         return;
2125       }
2126 #if INCLUDE_AOT
2127       CompiledStaticCall::emit_to_aot_stub(cbuf, mark);
2128 #endif
2129     }
2130   %}
2131 
2132   enc_class Java_Dynamic_Call(method meth) %{
2133     MacroAssembler _masm(&cbuf);
2134     __ ic_call((address)$meth$$method, resolved_method_index(cbuf));
2135   %}
2136 
2137   enc_class Java_Compiled_Call(method meth)
2138   %{
2139     // JAVA COMPILED CALL
2140     int disp = in_bytes(Method:: from_compiled_offset());
2141 
2142     // XXX XXX offset is 128 is 1.5 NON-PRODUCT !!!
2143     // assert(-0x80 <= disp && disp < 0x80, "compiled_code_offset isn't small");
2144 
2145     // callq *disp(%rax)
2146     cbuf.set_insts_mark();
2147     $$$emit8$primary;
2148     if (disp < 0x80) {
2149       emit_rm(cbuf, 0x01, $secondary, RAX_enc); // R/M byte
2150       emit_d8(cbuf, disp); // Displacement
2151     } else {
2152       emit_rm(cbuf, 0x02, $secondary, RAX_enc); // R/M byte
2153       emit_d32(cbuf, disp); // Displacement
2154     }
2155   %}
2156 
2157   enc_class reg_opc_imm(rRegI dst, immI8 shift)
2158   %{
2159     // SAL, SAR, SHR
2160     int dstenc = $dst$$reg;
2161     if (dstenc >= 8) {
2162       emit_opcode(cbuf, Assembler::REX_B);
2163       dstenc -= 8;
2164     }
2165     $$$emit8$primary;
2166     emit_rm(cbuf, 0x3, $secondary, dstenc);
2167     $$$emit8$shift$$constant;
2168   %}
2169 
2170   enc_class reg_opc_imm_wide(rRegL dst, immI8 shift)
2171   %{
2172     // SAL, SAR, SHR
2173     int dstenc = $dst$$reg;
2174     if (dstenc < 8) {
2175       emit_opcode(cbuf, Assembler::REX_W);
2176     } else {
2177       emit_opcode(cbuf, Assembler::REX_WB);
2178       dstenc -= 8;
2179     }
2180     $$$emit8$primary;
2181     emit_rm(cbuf, 0x3, $secondary, dstenc);
2182     $$$emit8$shift$$constant;
2183   %}
2184 
2185   enc_class load_immI(rRegI dst, immI src)
2186   %{
2187     int dstenc = $dst$$reg;
2188     if (dstenc >= 8) {
2189       emit_opcode(cbuf, Assembler::REX_B);
2190       dstenc -= 8;
2191     }
2192     emit_opcode(cbuf, 0xB8 | dstenc);
2193     $$$emit32$src$$constant;
2194   %}
2195 
2196   enc_class load_immL(rRegL dst, immL src)
2197   %{
2198     int dstenc = $dst$$reg;
2199     if (dstenc < 8) {
2200       emit_opcode(cbuf, Assembler::REX_W);
2201     } else {
2202       emit_opcode(cbuf, Assembler::REX_WB);
2203       dstenc -= 8;
2204     }
2205     emit_opcode(cbuf, 0xB8 | dstenc);
2206     emit_d64(cbuf, $src$$constant);
2207   %}
2208 
2209   enc_class load_immUL32(rRegL dst, immUL32 src)
2210   %{
2211     // same as load_immI, but this time we care about zeroes in the high word
2212     int dstenc = $dst$$reg;
2213     if (dstenc >= 8) {
2214       emit_opcode(cbuf, Assembler::REX_B);
2215       dstenc -= 8;
2216     }
2217     emit_opcode(cbuf, 0xB8 | dstenc);
2218     $$$emit32$src$$constant;
2219   %}
2220 
2221   enc_class load_immL32(rRegL dst, immL32 src)
2222   %{
2223     int dstenc = $dst$$reg;
2224     if (dstenc < 8) {
2225       emit_opcode(cbuf, Assembler::REX_W);
2226     } else {
2227       emit_opcode(cbuf, Assembler::REX_WB);
2228       dstenc -= 8;
2229     }
2230     emit_opcode(cbuf, 0xC7);
2231     emit_rm(cbuf, 0x03, 0x00, dstenc);
2232     $$$emit32$src$$constant;
2233   %}
2234 
2235   enc_class load_immP31(rRegP dst, immP32 src)
2236   %{
2237     // same as load_immI, but this time we care about zeroes in the high word
2238     int dstenc = $dst$$reg;
2239     if (dstenc >= 8) {
2240       emit_opcode(cbuf, Assembler::REX_B);
2241       dstenc -= 8;
2242     }
2243     emit_opcode(cbuf, 0xB8 | dstenc);
2244     $$$emit32$src$$constant;
2245   %}
2246 
2247   enc_class load_immP(rRegP dst, immP src)
2248   %{
2249     int dstenc = $dst$$reg;
2250     if (dstenc < 8) {
2251       emit_opcode(cbuf, Assembler::REX_W);
2252     } else {
2253       emit_opcode(cbuf, Assembler::REX_WB);
2254       dstenc -= 8;
2255     }
2256     emit_opcode(cbuf, 0xB8 | dstenc);
2257     // This next line should be generated from ADLC
2258     if ($src->constant_reloc() != relocInfo::none) {
2259       emit_d64_reloc(cbuf, $src$$constant, $src->constant_reloc(), RELOC_IMM64);
2260     } else {
2261       emit_d64(cbuf, $src$$constant);
2262     }
2263   %}
2264 
2265   enc_class Con32(immI src)
2266   %{
2267     // Output immediate
2268     $$$emit32$src$$constant;
2269   %}
2270 
2271   enc_class Con32F_as_bits(immF src)
2272   %{
2273     // Output Float immediate bits
2274     jfloat jf = $src$$constant;
2275     jint jf_as_bits = jint_cast(jf);
2276     emit_d32(cbuf, jf_as_bits);
2277   %}
2278 
2279   enc_class Con16(immI src)
2280   %{
2281     // Output immediate
2282     $$$emit16$src$$constant;
2283   %}
2284 
2285   // How is this different from Con32??? XXX
2286   enc_class Con_d32(immI src)
2287   %{
2288     emit_d32(cbuf,$src$$constant);
2289   %}
2290 
2291   enc_class conmemref (rRegP t1) %{    // Con32(storeImmI)
2292     // Output immediate memory reference
2293     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2294     emit_d32(cbuf, 0x00);
2295   %}
2296 
2297   enc_class lock_prefix()
2298   %{
2299     emit_opcode(cbuf, 0xF0); // lock
2300   %}
2301 
2302   enc_class REX_mem(memory mem)
2303   %{
2304     if ($mem$$base >= 8) {
2305       if ($mem$$index < 8) {
2306         emit_opcode(cbuf, Assembler::REX_B);
2307       } else {
2308         emit_opcode(cbuf, Assembler::REX_XB);
2309       }
2310     } else {
2311       if ($mem$$index >= 8) {
2312         emit_opcode(cbuf, Assembler::REX_X);
2313       }
2314     }
2315   %}
2316 
2317   enc_class REX_mem_wide(memory mem)
2318   %{
2319     if ($mem$$base >= 8) {
2320       if ($mem$$index < 8) {
2321         emit_opcode(cbuf, Assembler::REX_WB);
2322       } else {
2323         emit_opcode(cbuf, Assembler::REX_WXB);
2324       }
2325     } else {
2326       if ($mem$$index < 8) {
2327         emit_opcode(cbuf, Assembler::REX_W);
2328       } else {
2329         emit_opcode(cbuf, Assembler::REX_WX);
2330       }
2331     }
2332   %}
2333 
2334   // for byte regs
2335   enc_class REX_breg(rRegI reg)
2336   %{
2337     if ($reg$$reg >= 4) {
2338       emit_opcode(cbuf, $reg$$reg < 8 ? Assembler::REX : Assembler::REX_B);
2339     }
2340   %}
2341 
2342   // for byte regs
2343   enc_class REX_reg_breg(rRegI dst, rRegI src)
2344   %{
2345     if ($dst$$reg < 8) {
2346       if ($src$$reg >= 4) {
2347         emit_opcode(cbuf, $src$$reg < 8 ? Assembler::REX : Assembler::REX_B);
2348       }
2349     } else {
2350       if ($src$$reg < 8) {
2351         emit_opcode(cbuf, Assembler::REX_R);
2352       } else {
2353         emit_opcode(cbuf, Assembler::REX_RB);
2354       }
2355     }
2356   %}
2357 
2358   // for byte regs
2359   enc_class REX_breg_mem(rRegI reg, memory mem)
2360   %{
2361     if ($reg$$reg < 8) {
2362       if ($mem$$base < 8) {
2363         if ($mem$$index >= 8) {
2364           emit_opcode(cbuf, Assembler::REX_X);
2365         } else if ($reg$$reg >= 4) {
2366           emit_opcode(cbuf, Assembler::REX);
2367         }
2368       } else {
2369         if ($mem$$index < 8) {
2370           emit_opcode(cbuf, Assembler::REX_B);
2371         } else {
2372           emit_opcode(cbuf, Assembler::REX_XB);
2373         }
2374       }
2375     } else {
2376       if ($mem$$base < 8) {
2377         if ($mem$$index < 8) {
2378           emit_opcode(cbuf, Assembler::REX_R);
2379         } else {
2380           emit_opcode(cbuf, Assembler::REX_RX);
2381         }
2382       } else {
2383         if ($mem$$index < 8) {
2384           emit_opcode(cbuf, Assembler::REX_RB);
2385         } else {
2386           emit_opcode(cbuf, Assembler::REX_RXB);
2387         }
2388       }
2389     }
2390   %}
2391 
2392   enc_class REX_reg(rRegI reg)
2393   %{
2394     if ($reg$$reg >= 8) {
2395       emit_opcode(cbuf, Assembler::REX_B);
2396     }
2397   %}
2398 
2399   enc_class REX_reg_wide(rRegI reg)
2400   %{
2401     if ($reg$$reg < 8) {
2402       emit_opcode(cbuf, Assembler::REX_W);
2403     } else {
2404       emit_opcode(cbuf, Assembler::REX_WB);
2405     }
2406   %}
2407 
2408   enc_class REX_reg_reg(rRegI dst, rRegI src)
2409   %{
2410     if ($dst$$reg < 8) {
2411       if ($src$$reg >= 8) {
2412         emit_opcode(cbuf, Assembler::REX_B);
2413       }
2414     } else {
2415       if ($src$$reg < 8) {
2416         emit_opcode(cbuf, Assembler::REX_R);
2417       } else {
2418         emit_opcode(cbuf, Assembler::REX_RB);
2419       }
2420     }
2421   %}
2422 
2423   enc_class REX_reg_reg_wide(rRegI dst, rRegI src)
2424   %{
2425     if ($dst$$reg < 8) {
2426       if ($src$$reg < 8) {
2427         emit_opcode(cbuf, Assembler::REX_W);
2428       } else {
2429         emit_opcode(cbuf, Assembler::REX_WB);
2430       }
2431     } else {
2432       if ($src$$reg < 8) {
2433         emit_opcode(cbuf, Assembler::REX_WR);
2434       } else {
2435         emit_opcode(cbuf, Assembler::REX_WRB);
2436       }
2437     }
2438   %}
2439 
2440   enc_class REX_reg_mem(rRegI reg, memory mem)
2441   %{
2442     if ($reg$$reg < 8) {
2443       if ($mem$$base < 8) {
2444         if ($mem$$index >= 8) {
2445           emit_opcode(cbuf, Assembler::REX_X);
2446         }
2447       } else {
2448         if ($mem$$index < 8) {
2449           emit_opcode(cbuf, Assembler::REX_B);
2450         } else {
2451           emit_opcode(cbuf, Assembler::REX_XB);
2452         }
2453       }
2454     } else {
2455       if ($mem$$base < 8) {
2456         if ($mem$$index < 8) {
2457           emit_opcode(cbuf, Assembler::REX_R);
2458         } else {
2459           emit_opcode(cbuf, Assembler::REX_RX);
2460         }
2461       } else {
2462         if ($mem$$index < 8) {
2463           emit_opcode(cbuf, Assembler::REX_RB);
2464         } else {
2465           emit_opcode(cbuf, Assembler::REX_RXB);
2466         }
2467       }
2468     }
2469   %}
2470 
2471   enc_class REX_reg_mem_wide(rRegL reg, memory mem)
2472   %{
2473     if ($reg$$reg < 8) {
2474       if ($mem$$base < 8) {
2475         if ($mem$$index < 8) {
2476           emit_opcode(cbuf, Assembler::REX_W);
2477         } else {
2478           emit_opcode(cbuf, Assembler::REX_WX);
2479         }
2480       } else {
2481         if ($mem$$index < 8) {
2482           emit_opcode(cbuf, Assembler::REX_WB);
2483         } else {
2484           emit_opcode(cbuf, Assembler::REX_WXB);
2485         }
2486       }
2487     } else {
2488       if ($mem$$base < 8) {
2489         if ($mem$$index < 8) {
2490           emit_opcode(cbuf, Assembler::REX_WR);
2491         } else {
2492           emit_opcode(cbuf, Assembler::REX_WRX);
2493         }
2494       } else {
2495         if ($mem$$index < 8) {
2496           emit_opcode(cbuf, Assembler::REX_WRB);
2497         } else {
2498           emit_opcode(cbuf, Assembler::REX_WRXB);
2499         }
2500       }
2501     }
2502   %}
2503 
2504   enc_class reg_mem(rRegI ereg, memory mem)
2505   %{
2506     // High registers handle in encode_RegMem
2507     int reg = $ereg$$reg;
2508     int base = $mem$$base;
2509     int index = $mem$$index;
2510     int scale = $mem$$scale;
2511     int disp = $mem$$disp;
2512     relocInfo::relocType disp_reloc = $mem->disp_reloc();
2513 
2514     encode_RegMem(cbuf, reg, base, index, scale, disp, disp_reloc);
2515   %}
2516 
2517   enc_class RM_opc_mem(immI rm_opcode, memory mem)
2518   %{
2519     int rm_byte_opcode = $rm_opcode$$constant;
2520 
2521     // High registers handle in encode_RegMem
2522     int base = $mem$$base;
2523     int index = $mem$$index;
2524     int scale = $mem$$scale;
2525     int displace = $mem$$disp;
2526 
2527     relocInfo::relocType disp_reloc = $mem->disp_reloc();       // disp-as-oop when
2528                                             // working with static
2529                                             // globals
2530     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace,
2531                   disp_reloc);
2532   %}
2533 
2534   enc_class reg_lea(rRegI dst, rRegI src0, immI src1)
2535   %{
2536     int reg_encoding = $dst$$reg;
2537     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2538     int index        = 0x04;            // 0x04 indicates no index
2539     int scale        = 0x00;            // 0x00 indicates no scale
2540     int displace     = $src1$$constant; // 0x00 indicates no displacement
2541     relocInfo::relocType disp_reloc = relocInfo::none;
2542     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace,
2543                   disp_reloc);
2544   %}
2545 
2546   enc_class neg_reg(rRegI dst)
2547   %{
2548     int dstenc = $dst$$reg;
2549     if (dstenc >= 8) {
2550       emit_opcode(cbuf, Assembler::REX_B);
2551       dstenc -= 8;
2552     }
2553     // NEG $dst
2554     emit_opcode(cbuf, 0xF7);
2555     emit_rm(cbuf, 0x3, 0x03, dstenc);
2556   %}
2557 
2558   enc_class neg_reg_wide(rRegI dst)
2559   %{
2560     int dstenc = $dst$$reg;
2561     if (dstenc < 8) {
2562       emit_opcode(cbuf, Assembler::REX_W);
2563     } else {
2564       emit_opcode(cbuf, Assembler::REX_WB);
2565       dstenc -= 8;
2566     }
2567     // NEG $dst
2568     emit_opcode(cbuf, 0xF7);
2569     emit_rm(cbuf, 0x3, 0x03, dstenc);
2570   %}
2571 
2572   enc_class setLT_reg(rRegI dst)
2573   %{
2574     int dstenc = $dst$$reg;
2575     if (dstenc >= 8) {
2576       emit_opcode(cbuf, Assembler::REX_B);
2577       dstenc -= 8;
2578     } else if (dstenc >= 4) {
2579       emit_opcode(cbuf, Assembler::REX);
2580     }
2581     // SETLT $dst
2582     emit_opcode(cbuf, 0x0F);
2583     emit_opcode(cbuf, 0x9C);
2584     emit_rm(cbuf, 0x3, 0x0, dstenc);
2585   %}
2586 
2587   enc_class setNZ_reg(rRegI dst)
2588   %{
2589     int dstenc = $dst$$reg;
2590     if (dstenc >= 8) {
2591       emit_opcode(cbuf, Assembler::REX_B);
2592       dstenc -= 8;
2593     } else if (dstenc >= 4) {
2594       emit_opcode(cbuf, Assembler::REX);
2595     }
2596     // SETNZ $dst
2597     emit_opcode(cbuf, 0x0F);
2598     emit_opcode(cbuf, 0x95);
2599     emit_rm(cbuf, 0x3, 0x0, dstenc);
2600   %}
2601 
2602 
2603   // Compare the lonogs and set -1, 0, or 1 into dst
2604   enc_class cmpl3_flag(rRegL src1, rRegL src2, rRegI dst)
2605   %{
2606     int src1enc = $src1$$reg;
2607     int src2enc = $src2$$reg;
2608     int dstenc = $dst$$reg;
2609 
2610     // cmpq $src1, $src2
2611     if (src1enc < 8) {
2612       if (src2enc < 8) {
2613         emit_opcode(cbuf, Assembler::REX_W);
2614       } else {
2615         emit_opcode(cbuf, Assembler::REX_WB);
2616       }
2617     } else {
2618       if (src2enc < 8) {
2619         emit_opcode(cbuf, Assembler::REX_WR);
2620       } else {
2621         emit_opcode(cbuf, Assembler::REX_WRB);
2622       }
2623     }
2624     emit_opcode(cbuf, 0x3B);
2625     emit_rm(cbuf, 0x3, src1enc & 7, src2enc & 7);
2626 
2627     // movl $dst, -1
2628     if (dstenc >= 8) {
2629       emit_opcode(cbuf, Assembler::REX_B);
2630     }
2631     emit_opcode(cbuf, 0xB8 | (dstenc & 7));
2632     emit_d32(cbuf, -1);
2633 
2634     // jl,s done
2635     emit_opcode(cbuf, 0x7C);
2636     emit_d8(cbuf, dstenc < 4 ? 0x06 : 0x08);
2637 
2638     // setne $dst
2639     if (dstenc >= 4) {
2640       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_B);
2641     }
2642     emit_opcode(cbuf, 0x0F);
2643     emit_opcode(cbuf, 0x95);
2644     emit_opcode(cbuf, 0xC0 | (dstenc & 7));
2645 
2646     // movzbl $dst, $dst
2647     if (dstenc >= 4) {
2648       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_RB);
2649     }
2650     emit_opcode(cbuf, 0x0F);
2651     emit_opcode(cbuf, 0xB6);
2652     emit_rm(cbuf, 0x3, dstenc & 7, dstenc & 7);
2653   %}
2654 
2655   enc_class Push_ResultXD(regD dst) %{
2656     MacroAssembler _masm(&cbuf);
2657     __ fstp_d(Address(rsp, 0));
2658     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
2659     __ addptr(rsp, 8);
2660   %}
2661 
2662   enc_class Push_SrcXD(regD src) %{
2663     MacroAssembler _masm(&cbuf);
2664     __ subptr(rsp, 8);
2665     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2666     __ fld_d(Address(rsp, 0));
2667   %}
2668 
2669 
2670   enc_class enc_rethrow()
2671   %{
2672     cbuf.set_insts_mark();
2673     emit_opcode(cbuf, 0xE9); // jmp entry
2674     emit_d32_reloc(cbuf,
2675                    (int) (OptoRuntime::rethrow_stub() - cbuf.insts_end() - 4),
2676                    runtime_call_Relocation::spec(),
2677                    RELOC_DISP32);
2678   %}
2679 
2680 %}
2681 
2682 
2683 
2684 //----------FRAME--------------------------------------------------------------
2685 // Definition of frame structure and management information.
2686 //
2687 //  S T A C K   L A Y O U T    Allocators stack-slot number
2688 //                             |   (to get allocators register number
2689 //  G  Owned by    |        |  v    add OptoReg::stack0())
2690 //  r   CALLER     |        |
2691 //  o     |        +--------+      pad to even-align allocators stack-slot
2692 //  w     V        |  pad0  |        numbers; owned by CALLER
2693 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
2694 //  h     ^        |   in   |  5
2695 //        |        |  args  |  4   Holes in incoming args owned by SELF
2696 //  |     |        |        |  3
2697 //  |     |        +--------+
2698 //  V     |        | old out|      Empty on Intel, window on Sparc
2699 //        |    old |preserve|      Must be even aligned.
2700 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
2701 //        |        |   in   |  3   area for Intel ret address
2702 //     Owned by    |preserve|      Empty on Sparc.
2703 //       SELF      +--------+
2704 //        |        |  pad2  |  2   pad to align old SP
2705 //        |        +--------+  1
2706 //        |        | locks  |  0
2707 //        |        +--------+----> OptoReg::stack0(), even aligned
2708 //        |        |  pad1  | 11   pad to align new SP
2709 //        |        +--------+
2710 //        |        |        | 10
2711 //        |        | spills |  9   spills
2712 //        V        |        |  8   (pad0 slot for callee)
2713 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
2714 //        ^        |  out   |  7
2715 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
2716 //     Owned by    +--------+
2717 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
2718 //        |    new |preserve|      Must be even-aligned.
2719 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
2720 //        |        |        |
2721 //
2722 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
2723 //         known from SELF's arguments and the Java calling convention.
2724 //         Region 6-7 is determined per call site.
2725 // Note 2: If the calling convention leaves holes in the incoming argument
2726 //         area, those holes are owned by SELF.  Holes in the outgoing area
2727 //         are owned by the CALLEE.  Holes should not be nessecary in the
2728 //         incoming area, as the Java calling convention is completely under
2729 //         the control of the AD file.  Doubles can be sorted and packed to
2730 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
2731 //         varargs C calling conventions.
2732 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
2733 //         even aligned with pad0 as needed.
2734 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
2735 //         region 6-11 is even aligned; it may be padded out more so that
2736 //         the region from SP to FP meets the minimum stack alignment.
2737 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
2738 //         alignment.  Region 11, pad1, may be dynamically extended so that
2739 //         SP meets the minimum alignment.
2740 
2741 frame
2742 %{
2743   // What direction does stack grow in (assumed to be same for C & Java)
2744   stack_direction(TOWARDS_LOW);
2745 
2746   // These three registers define part of the calling convention
2747   // between compiled code and the interpreter.
2748   inline_cache_reg(RAX);                // Inline Cache Register
2749   interpreter_method_oop_reg(RBX);      // Method Oop Register when
2750                                         // calling interpreter
2751 
2752   // Optional: name the operand used by cisc-spilling to access
2753   // [stack_pointer + offset]
2754   cisc_spilling_operand_name(indOffset32);
2755 
2756   // Number of stack slots consumed by locking an object
2757   sync_stack_slots(2);
2758 
2759   // Compiled code's Frame Pointer
2760   frame_pointer(RSP);
2761 
2762   // Interpreter stores its frame pointer in a register which is
2763   // stored to the stack by I2CAdaptors.
2764   // I2CAdaptors convert from interpreted java to compiled java.
2765   interpreter_frame_pointer(RBP);
2766 
2767   // Stack alignment requirement
2768   stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes)
2769 
2770   // Number of stack slots between incoming argument block and the start of
2771   // a new frame.  The PROLOG must add this many slots to the stack.  The
2772   // EPILOG must remove this many slots.  amd64 needs two slots for
2773   // return address.
2774   in_preserve_stack_slots(4 + 2 * VerifyStackAtCalls);
2775 
2776   // Number of outgoing stack slots killed above the out_preserve_stack_slots
2777   // for calls to C.  Supports the var-args backing area for register parms.
2778   varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes/BytesPerInt);
2779 
2780   // The after-PROLOG location of the return address.  Location of
2781   // return address specifies a type (REG or STACK) and a number
2782   // representing the register number (i.e. - use a register name) or
2783   // stack slot.
2784   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
2785   // Otherwise, it is above the locks and verification slot and alignment word
2786   return_addr(STACK - 2 +
2787               align_up((Compile::current()->in_preserve_stack_slots() +
2788                         Compile::current()->fixed_slots()),
2789                        stack_alignment_in_slots()));
2790 
2791   // Body of function which returns an integer array locating
2792   // arguments either in registers or in stack slots.  Passed an array
2793   // of ideal registers called "sig" and a "length" count.  Stack-slot
2794   // offsets are based on outgoing arguments, i.e. a CALLER setting up
2795   // arguments for a CALLEE.  Incoming stack arguments are
2796   // automatically biased by the preserve_stack_slots field above.
2797 
2798   calling_convention
2799   %{
2800     // No difference between ingoing/outgoing just pass false
2801     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
2802   %}
2803 
2804   c_calling_convention
2805   %{
2806     // This is obviously always outgoing
2807     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
2808   %}
2809 
2810   // Location of compiled Java return values.  Same as C for now.
2811   return_value
2812   %{
2813     assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL,
2814            "only return normal values");
2815 
2816     static const int lo[Op_RegL + 1] = {
2817       0,
2818       0,
2819       RAX_num,  // Op_RegN
2820       RAX_num,  // Op_RegI
2821       RAX_num,  // Op_RegP
2822       XMM0_num, // Op_RegF
2823       XMM0_num, // Op_RegD
2824       RAX_num   // Op_RegL
2825     };
2826     static const int hi[Op_RegL + 1] = {
2827       0,
2828       0,
2829       OptoReg::Bad, // Op_RegN
2830       OptoReg::Bad, // Op_RegI
2831       RAX_H_num,    // Op_RegP
2832       OptoReg::Bad, // Op_RegF
2833       XMM0b_num,    // Op_RegD
2834       RAX_H_num     // Op_RegL
2835     };
2836     // Excluded flags and vector registers.
2837     assert(ARRAY_SIZE(hi) == _last_machine_leaf - 6, "missing type");
2838     return OptoRegPair(hi[ideal_reg], lo[ideal_reg]);
2839   %}
2840 %}
2841 
2842 //----------ATTRIBUTES---------------------------------------------------------
2843 //----------Operand Attributes-------------------------------------------------
2844 op_attrib op_cost(0);        // Required cost attribute
2845 
2846 //----------Instruction Attributes---------------------------------------------
2847 ins_attrib ins_cost(100);       // Required cost attribute
2848 ins_attrib ins_size(8);         // Required size attribute (in bits)
2849 ins_attrib ins_short_branch(0); // Required flag: is this instruction
2850                                 // a non-matching short branch variant
2851                                 // of some long branch?
2852 ins_attrib ins_alignment(1);    // Required alignment attribute (must
2853                                 // be a power of 2) specifies the
2854                                 // alignment that some part of the
2855                                 // instruction (not necessarily the
2856                                 // start) requires.  If > 1, a
2857                                 // compute_padding() function must be
2858                                 // provided for the instruction
2859 
2860 //----------OPERANDS-----------------------------------------------------------
2861 // Operand definitions must precede instruction definitions for correct parsing
2862 // in the ADLC because operands constitute user defined types which are used in
2863 // instruction definitions.
2864 
2865 //----------Simple Operands----------------------------------------------------
2866 // Immediate Operands
2867 // Integer Immediate
2868 operand immI()
2869 %{
2870   match(ConI);
2871 
2872   op_cost(10);
2873   format %{ %}
2874   interface(CONST_INTER);
2875 %}
2876 
2877 // Constant for test vs zero
2878 operand immI0()
2879 %{
2880   predicate(n->get_int() == 0);
2881   match(ConI);
2882 
2883   op_cost(0);
2884   format %{ %}
2885   interface(CONST_INTER);
2886 %}
2887 
2888 // Constant for increment
2889 operand immI1()
2890 %{
2891   predicate(n->get_int() == 1);
2892   match(ConI);
2893 
2894   op_cost(0);
2895   format %{ %}
2896   interface(CONST_INTER);
2897 %}
2898 
2899 // Constant for decrement
2900 operand immI_M1()
2901 %{
2902   predicate(n->get_int() == -1);
2903   match(ConI);
2904 
2905   op_cost(0);
2906   format %{ %}
2907   interface(CONST_INTER);
2908 %}
2909 
2910 // Valid scale values for addressing modes
2911 operand immI2()
2912 %{
2913   predicate(0 <= n->get_int() && (n->get_int() <= 3));
2914   match(ConI);
2915 
2916   format %{ %}
2917   interface(CONST_INTER);
2918 %}
2919 
2920 operand immI8()
2921 %{
2922   predicate((-0x80 <= n->get_int()) && (n->get_int() < 0x80));
2923   match(ConI);
2924 
2925   op_cost(5);
2926   format %{ %}
2927   interface(CONST_INTER);
2928 %}
2929 
2930 operand immU8()
2931 %{
2932   predicate((0 <= n->get_int()) && (n->get_int() <= 255));
2933   match(ConI);
2934 
2935   op_cost(5);
2936   format %{ %}
2937   interface(CONST_INTER);
2938 %}
2939 
2940 operand immI16()
2941 %{
2942   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
2943   match(ConI);
2944 
2945   op_cost(10);
2946   format %{ %}
2947   interface(CONST_INTER);
2948 %}
2949 
2950 // Int Immediate non-negative
2951 operand immU31()
2952 %{
2953   predicate(n->get_int() >= 0);
2954   match(ConI);
2955 
2956   op_cost(0);
2957   format %{ %}
2958   interface(CONST_INTER);
2959 %}
2960 
2961 // Constant for long shifts
2962 operand immI_32()
2963 %{
2964   predicate( n->get_int() == 32 );
2965   match(ConI);
2966 
2967   op_cost(0);
2968   format %{ %}
2969   interface(CONST_INTER);
2970 %}
2971 
2972 // Constant for long shifts
2973 operand immI_64()
2974 %{
2975   predicate( n->get_int() == 64 );
2976   match(ConI);
2977 
2978   op_cost(0);
2979   format %{ %}
2980   interface(CONST_INTER);
2981 %}
2982 
2983 // Pointer Immediate
2984 operand immP()
2985 %{
2986   match(ConP);
2987 
2988   op_cost(10);
2989   format %{ %}
2990   interface(CONST_INTER);
2991 %}
2992 
2993 // NULL Pointer Immediate
2994 operand immP0()
2995 %{
2996   predicate(n->get_ptr() == 0);
2997   match(ConP);
2998 
2999   op_cost(5);
3000   format %{ %}
3001   interface(CONST_INTER);
3002 %}
3003 
3004 // Pointer Immediate
3005 operand immN() %{
3006   match(ConN);
3007 
3008   op_cost(10);
3009   format %{ %}
3010   interface(CONST_INTER);
3011 %}
3012 
3013 operand immNKlass() %{
3014   match(ConNKlass);
3015 
3016   op_cost(10);
3017   format %{ %}
3018   interface(CONST_INTER);
3019 %}
3020 
3021 // NULL Pointer Immediate
3022 operand immN0() %{
3023   predicate(n->get_narrowcon() == 0);
3024   match(ConN);
3025 
3026   op_cost(5);
3027   format %{ %}
3028   interface(CONST_INTER);
3029 %}
3030 
3031 operand immP31()
3032 %{
3033   predicate(n->as_Type()->type()->reloc() == relocInfo::none
3034             && (n->get_ptr() >> 31) == 0);
3035   match(ConP);
3036 
3037   op_cost(5);
3038   format %{ %}
3039   interface(CONST_INTER);
3040 %}
3041 
3042 
3043 // Long Immediate
3044 operand immL()
3045 %{
3046   match(ConL);
3047 
3048   op_cost(20);
3049   format %{ %}
3050   interface(CONST_INTER);
3051 %}
3052 
3053 // Long Immediate 8-bit
3054 operand immL8()
3055 %{
3056   predicate(-0x80L <= n->get_long() && n->get_long() < 0x80L);
3057   match(ConL);
3058 
3059   op_cost(5);
3060   format %{ %}
3061   interface(CONST_INTER);
3062 %}
3063 
3064 // Long Immediate 32-bit unsigned
3065 operand immUL32()
3066 %{
3067   predicate(n->get_long() == (unsigned int) (n->get_long()));
3068   match(ConL);
3069 
3070   op_cost(10);
3071   format %{ %}
3072   interface(CONST_INTER);
3073 %}
3074 
3075 // Long Immediate 32-bit signed
3076 operand immL32()
3077 %{
3078   predicate(n->get_long() == (int) (n->get_long()));
3079   match(ConL);
3080 
3081   op_cost(15);
3082   format %{ %}
3083   interface(CONST_INTER);
3084 %}
3085 
3086 operand immL_Pow2()
3087 %{
3088   predicate(is_power_of_2((julong)n->get_long()));
3089   match(ConL);
3090 
3091   op_cost(15);
3092   format %{ %}
3093   interface(CONST_INTER);
3094 %}
3095 
3096 operand immL_NotPow2()
3097 %{
3098   predicate(is_power_of_2((julong)~n->get_long()));
3099   match(ConL);
3100 
3101   op_cost(15);
3102   format %{ %}
3103   interface(CONST_INTER);
3104 %}
3105 
3106 // Long Immediate zero
3107 operand immL0()
3108 %{
3109   predicate(n->get_long() == 0L);
3110   match(ConL);
3111 
3112   op_cost(10);
3113   format %{ %}
3114   interface(CONST_INTER);
3115 %}
3116 
3117 // Constant for increment
3118 operand immL1()
3119 %{
3120   predicate(n->get_long() == 1);
3121   match(ConL);
3122 
3123   format %{ %}
3124   interface(CONST_INTER);
3125 %}
3126 
3127 // Constant for decrement
3128 operand immL_M1()
3129 %{
3130   predicate(n->get_long() == -1);
3131   match(ConL);
3132 
3133   format %{ %}
3134   interface(CONST_INTER);
3135 %}
3136 
3137 // Long Immediate: the value 10
3138 operand immL10()
3139 %{
3140   predicate(n->get_long() == 10);
3141   match(ConL);
3142 
3143   format %{ %}
3144   interface(CONST_INTER);
3145 %}
3146 
3147 // Long immediate from 0 to 127.
3148 // Used for a shorter form of long mul by 10.
3149 operand immL_127()
3150 %{
3151   predicate(0 <= n->get_long() && n->get_long() < 0x80);
3152   match(ConL);
3153 
3154   op_cost(10);
3155   format %{ %}
3156   interface(CONST_INTER);
3157 %}
3158 
3159 // Long Immediate: low 32-bit mask
3160 operand immL_32bits()
3161 %{
3162   predicate(n->get_long() == 0xFFFFFFFFL);
3163   match(ConL);
3164   op_cost(20);
3165 
3166   format %{ %}
3167   interface(CONST_INTER);
3168 %}
3169 
3170 // Float Immediate zero
3171 operand immF0()
3172 %{
3173   predicate(jint_cast(n->getf()) == 0);
3174   match(ConF);
3175 
3176   op_cost(5);
3177   format %{ %}
3178   interface(CONST_INTER);
3179 %}
3180 
3181 // Float Immediate
3182 operand immF()
3183 %{
3184   match(ConF);
3185 
3186   op_cost(15);
3187   format %{ %}
3188   interface(CONST_INTER);
3189 %}
3190 
3191 // Double Immediate zero
3192 operand immD0()
3193 %{
3194   predicate(jlong_cast(n->getd()) == 0);
3195   match(ConD);
3196 
3197   op_cost(5);
3198   format %{ %}
3199   interface(CONST_INTER);
3200 %}
3201 
3202 // Double Immediate
3203 operand immD()
3204 %{
3205   match(ConD);
3206 
3207   op_cost(15);
3208   format %{ %}
3209   interface(CONST_INTER);
3210 %}
3211 
3212 // Immediates for special shifts (sign extend)
3213 
3214 // Constants for increment
3215 operand immI_16()
3216 %{
3217   predicate(n->get_int() == 16);
3218   match(ConI);
3219 
3220   format %{ %}
3221   interface(CONST_INTER);
3222 %}
3223 
3224 operand immI_24()
3225 %{
3226   predicate(n->get_int() == 24);
3227   match(ConI);
3228 
3229   format %{ %}
3230   interface(CONST_INTER);
3231 %}
3232 
3233 // Constant for byte-wide masking
3234 operand immI_255()
3235 %{
3236   predicate(n->get_int() == 255);
3237   match(ConI);
3238 
3239   format %{ %}
3240   interface(CONST_INTER);
3241 %}
3242 
3243 // Constant for short-wide masking
3244 operand immI_65535()
3245 %{
3246   predicate(n->get_int() == 65535);
3247   match(ConI);
3248 
3249   format %{ %}
3250   interface(CONST_INTER);
3251 %}
3252 
3253 // Constant for byte-wide masking
3254 operand immL_255()
3255 %{
3256   predicate(n->get_long() == 255);
3257   match(ConL);
3258 
3259   format %{ %}
3260   interface(CONST_INTER);
3261 %}
3262 
3263 // Constant for short-wide masking
3264 operand immL_65535()
3265 %{
3266   predicate(n->get_long() == 65535);
3267   match(ConL);
3268 
3269   format %{ %}
3270   interface(CONST_INTER);
3271 %}
3272 
3273 // Register Operands
3274 // Integer Register
3275 operand rRegI()
3276 %{
3277   constraint(ALLOC_IN_RC(int_reg));
3278   match(RegI);
3279 
3280   match(rax_RegI);
3281   match(rbx_RegI);
3282   match(rcx_RegI);
3283   match(rdx_RegI);
3284   match(rdi_RegI);
3285 
3286   format %{ %}
3287   interface(REG_INTER);
3288 %}
3289 
3290 // Special Registers
3291 operand rax_RegI()
3292 %{
3293   constraint(ALLOC_IN_RC(int_rax_reg));
3294   match(RegI);
3295   match(rRegI);
3296 
3297   format %{ "RAX" %}
3298   interface(REG_INTER);
3299 %}
3300 
3301 // Special Registers
3302 operand rbx_RegI()
3303 %{
3304   constraint(ALLOC_IN_RC(int_rbx_reg));
3305   match(RegI);
3306   match(rRegI);
3307 
3308   format %{ "RBX" %}
3309   interface(REG_INTER);
3310 %}
3311 
3312 operand rcx_RegI()
3313 %{
3314   constraint(ALLOC_IN_RC(int_rcx_reg));
3315   match(RegI);
3316   match(rRegI);
3317 
3318   format %{ "RCX" %}
3319   interface(REG_INTER);
3320 %}
3321 
3322 operand rdx_RegI()
3323 %{
3324   constraint(ALLOC_IN_RC(int_rdx_reg));
3325   match(RegI);
3326   match(rRegI);
3327 
3328   format %{ "RDX" %}
3329   interface(REG_INTER);
3330 %}
3331 
3332 operand rdi_RegI()
3333 %{
3334   constraint(ALLOC_IN_RC(int_rdi_reg));
3335   match(RegI);
3336   match(rRegI);
3337 
3338   format %{ "RDI" %}
3339   interface(REG_INTER);
3340 %}
3341 
3342 operand no_rax_rdx_RegI()
3343 %{
3344   constraint(ALLOC_IN_RC(int_no_rax_rdx_reg));
3345   match(RegI);
3346   match(rbx_RegI);
3347   match(rcx_RegI);
3348   match(rdi_RegI);
3349 
3350   format %{ %}
3351   interface(REG_INTER);
3352 %}
3353 
3354 // Pointer Register
3355 operand any_RegP()
3356 %{
3357   constraint(ALLOC_IN_RC(any_reg));
3358   match(RegP);
3359   match(rax_RegP);
3360   match(rbx_RegP);
3361   match(rdi_RegP);
3362   match(rsi_RegP);
3363   match(rbp_RegP);
3364   match(r15_RegP);
3365   match(rRegP);
3366 
3367   format %{ %}
3368   interface(REG_INTER);
3369 %}
3370 
3371 operand rRegP()
3372 %{
3373   constraint(ALLOC_IN_RC(ptr_reg));
3374   match(RegP);
3375   match(rax_RegP);
3376   match(rbx_RegP);
3377   match(rdi_RegP);
3378   match(rsi_RegP);
3379   match(rbp_RegP);  // See Q&A below about
3380   match(r15_RegP);  // r15_RegP and rbp_RegP.
3381 
3382   format %{ %}
3383   interface(REG_INTER);
3384 %}
3385 
3386 operand rRegN() %{
3387   constraint(ALLOC_IN_RC(int_reg));
3388   match(RegN);
3389 
3390   format %{ %}
3391   interface(REG_INTER);
3392 %}
3393 
3394 // Question: Why is r15_RegP (the read-only TLS register) a match for rRegP?
3395 // Answer: Operand match rules govern the DFA as it processes instruction inputs.
3396 // It's fine for an instruction input that expects rRegP to match a r15_RegP.
3397 // The output of an instruction is controlled by the allocator, which respects
3398 // register class masks, not match rules.  Unless an instruction mentions
3399 // r15_RegP or any_RegP explicitly as its output, r15 will not be considered
3400 // by the allocator as an input.
3401 // The same logic applies to rbp_RegP being a match for rRegP: If PreserveFramePointer==true,
3402 // the RBP is used as a proper frame pointer and is not included in ptr_reg. As a
3403 // result, RBP is not included in the output of the instruction either.
3404 
3405 operand no_rax_RegP()
3406 %{
3407   constraint(ALLOC_IN_RC(ptr_no_rax_reg));
3408   match(RegP);
3409   match(rbx_RegP);
3410   match(rsi_RegP);
3411   match(rdi_RegP);
3412 
3413   format %{ %}
3414   interface(REG_INTER);
3415 %}
3416 
3417 // This operand is not allowed to use RBP even if
3418 // RBP is not used to hold the frame pointer.
3419 operand no_rbp_RegP()
3420 %{
3421   constraint(ALLOC_IN_RC(ptr_reg_no_rbp));
3422   match(RegP);
3423   match(rbx_RegP);
3424   match(rsi_RegP);
3425   match(rdi_RegP);
3426 
3427   format %{ %}
3428   interface(REG_INTER);
3429 %}
3430 
3431 operand no_rax_rbx_RegP()
3432 %{
3433   constraint(ALLOC_IN_RC(ptr_no_rax_rbx_reg));
3434   match(RegP);
3435   match(rsi_RegP);
3436   match(rdi_RegP);
3437 
3438   format %{ %}
3439   interface(REG_INTER);
3440 %}
3441 
3442 // Special Registers
3443 // Return a pointer value
3444 operand rax_RegP()
3445 %{
3446   constraint(ALLOC_IN_RC(ptr_rax_reg));
3447   match(RegP);
3448   match(rRegP);
3449 
3450   format %{ %}
3451   interface(REG_INTER);
3452 %}
3453 
3454 // Special Registers
3455 // Return a compressed pointer value
3456 operand rax_RegN()
3457 %{
3458   constraint(ALLOC_IN_RC(int_rax_reg));
3459   match(RegN);
3460   match(rRegN);
3461 
3462   format %{ %}
3463   interface(REG_INTER);
3464 %}
3465 
3466 // Used in AtomicAdd
3467 operand rbx_RegP()
3468 %{
3469   constraint(ALLOC_IN_RC(ptr_rbx_reg));
3470   match(RegP);
3471   match(rRegP);
3472 
3473   format %{ %}
3474   interface(REG_INTER);
3475 %}
3476 
3477 operand rsi_RegP()
3478 %{
3479   constraint(ALLOC_IN_RC(ptr_rsi_reg));
3480   match(RegP);
3481   match(rRegP);
3482 
3483   format %{ %}
3484   interface(REG_INTER);
3485 %}
3486 
3487 operand rbp_RegP()
3488 %{
3489   constraint(ALLOC_IN_RC(ptr_rbp_reg));
3490   match(RegP);
3491   match(rRegP);
3492 
3493   format %{ %}
3494   interface(REG_INTER);
3495 %}
3496 
3497 // Used in rep stosq
3498 operand rdi_RegP()
3499 %{
3500   constraint(ALLOC_IN_RC(ptr_rdi_reg));
3501   match(RegP);
3502   match(rRegP);
3503 
3504   format %{ %}
3505   interface(REG_INTER);
3506 %}
3507 
3508 operand r15_RegP()
3509 %{
3510   constraint(ALLOC_IN_RC(ptr_r15_reg));
3511   match(RegP);
3512   match(rRegP);
3513 
3514   format %{ %}
3515   interface(REG_INTER);
3516 %}
3517 
3518 operand rRegL()
3519 %{
3520   constraint(ALLOC_IN_RC(long_reg));
3521   match(RegL);
3522   match(rax_RegL);
3523   match(rdx_RegL);
3524 
3525   format %{ %}
3526   interface(REG_INTER);
3527 %}
3528 
3529 // Special Registers
3530 operand no_rax_rdx_RegL()
3531 %{
3532   constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
3533   match(RegL);
3534   match(rRegL);
3535 
3536   format %{ %}
3537   interface(REG_INTER);
3538 %}
3539 
3540 operand no_rax_RegL()
3541 %{
3542   constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
3543   match(RegL);
3544   match(rRegL);
3545   match(rdx_RegL);
3546 
3547   format %{ %}
3548   interface(REG_INTER);
3549 %}
3550 
3551 operand rax_RegL()
3552 %{
3553   constraint(ALLOC_IN_RC(long_rax_reg));
3554   match(RegL);
3555   match(rRegL);
3556 
3557   format %{ "RAX" %}
3558   interface(REG_INTER);
3559 %}
3560 
3561 operand rcx_RegL()
3562 %{
3563   constraint(ALLOC_IN_RC(long_rcx_reg));
3564   match(RegL);
3565   match(rRegL);
3566 
3567   format %{ %}
3568   interface(REG_INTER);
3569 %}
3570 
3571 operand rdx_RegL()
3572 %{
3573   constraint(ALLOC_IN_RC(long_rdx_reg));
3574   match(RegL);
3575   match(rRegL);
3576 
3577   format %{ %}
3578   interface(REG_INTER);
3579 %}
3580 
3581 // Flags register, used as output of compare instructions
3582 operand rFlagsReg()
3583 %{
3584   constraint(ALLOC_IN_RC(int_flags));
3585   match(RegFlags);
3586 
3587   format %{ "RFLAGS" %}
3588   interface(REG_INTER);
3589 %}
3590 
3591 // Flags register, used as output of FLOATING POINT compare instructions
3592 operand rFlagsRegU()
3593 %{
3594   constraint(ALLOC_IN_RC(int_flags));
3595   match(RegFlags);
3596 
3597   format %{ "RFLAGS_U" %}
3598   interface(REG_INTER);
3599 %}
3600 
3601 operand rFlagsRegUCF() %{
3602   constraint(ALLOC_IN_RC(int_flags));
3603   match(RegFlags);
3604   predicate(false);
3605 
3606   format %{ "RFLAGS_U_CF" %}
3607   interface(REG_INTER);
3608 %}
3609 
3610 // Float register operands
3611 operand regF() %{
3612    constraint(ALLOC_IN_RC(float_reg));
3613    match(RegF);
3614 
3615    format %{ %}
3616    interface(REG_INTER);
3617 %}
3618 
3619 // Float register operands
3620 operand legRegF() %{
3621    constraint(ALLOC_IN_RC(float_reg_legacy));
3622    match(RegF);
3623 
3624    format %{ %}
3625    interface(REG_INTER);
3626 %}
3627 
3628 // Float register operands
3629 operand vlRegF() %{
3630    constraint(ALLOC_IN_RC(float_reg_vl));
3631    match(RegF);
3632 
3633    format %{ %}
3634    interface(REG_INTER);
3635 %}
3636 
3637 // Double register operands
3638 operand regD() %{
3639    constraint(ALLOC_IN_RC(double_reg));
3640    match(RegD);
3641 
3642    format %{ %}
3643    interface(REG_INTER);
3644 %}
3645 
3646 // Double register operands
3647 operand legRegD() %{
3648    constraint(ALLOC_IN_RC(double_reg_legacy));
3649    match(RegD);
3650 
3651    format %{ %}
3652    interface(REG_INTER);
3653 %}
3654 
3655 // Double register operands
3656 operand vlRegD() %{
3657    constraint(ALLOC_IN_RC(double_reg_vl));
3658    match(RegD);
3659 
3660    format %{ %}
3661    interface(REG_INTER);
3662 %}
3663 
3664 //----------Memory Operands----------------------------------------------------
3665 // Direct Memory Operand
3666 // operand direct(immP addr)
3667 // %{
3668 //   match(addr);
3669 
3670 //   format %{ "[$addr]" %}
3671 //   interface(MEMORY_INTER) %{
3672 //     base(0xFFFFFFFF);
3673 //     index(0x4);
3674 //     scale(0x0);
3675 //     disp($addr);
3676 //   %}
3677 // %}
3678 
3679 // Indirect Memory Operand
3680 operand indirect(any_RegP reg)
3681 %{
3682   constraint(ALLOC_IN_RC(ptr_reg));
3683   match(reg);
3684 
3685   format %{ "[$reg]" %}
3686   interface(MEMORY_INTER) %{
3687     base($reg);
3688     index(0x4);
3689     scale(0x0);
3690     disp(0x0);
3691   %}
3692 %}
3693 
3694 // Indirect Memory Plus Short Offset Operand
3695 operand indOffset8(any_RegP reg, immL8 off)
3696 %{
3697   constraint(ALLOC_IN_RC(ptr_reg));
3698   match(AddP reg off);
3699 
3700   format %{ "[$reg + $off (8-bit)]" %}
3701   interface(MEMORY_INTER) %{
3702     base($reg);
3703     index(0x4);
3704     scale(0x0);
3705     disp($off);
3706   %}
3707 %}
3708 
3709 // Indirect Memory Plus Long Offset Operand
3710 operand indOffset32(any_RegP reg, immL32 off)
3711 %{
3712   constraint(ALLOC_IN_RC(ptr_reg));
3713   match(AddP reg off);
3714 
3715   format %{ "[$reg + $off (32-bit)]" %}
3716   interface(MEMORY_INTER) %{
3717     base($reg);
3718     index(0x4);
3719     scale(0x0);
3720     disp($off);
3721   %}
3722 %}
3723 
3724 // Indirect Memory Plus Index Register Plus Offset Operand
3725 operand indIndexOffset(any_RegP reg, rRegL lreg, immL32 off)
3726 %{
3727   constraint(ALLOC_IN_RC(ptr_reg));
3728   match(AddP (AddP reg lreg) off);
3729 
3730   op_cost(10);
3731   format %{"[$reg + $off + $lreg]" %}
3732   interface(MEMORY_INTER) %{
3733     base($reg);
3734     index($lreg);
3735     scale(0x0);
3736     disp($off);
3737   %}
3738 %}
3739 
3740 // Indirect Memory Plus Index Register Plus Offset Operand
3741 operand indIndex(any_RegP reg, rRegL lreg)
3742 %{
3743   constraint(ALLOC_IN_RC(ptr_reg));
3744   match(AddP reg lreg);
3745 
3746   op_cost(10);
3747   format %{"[$reg + $lreg]" %}
3748   interface(MEMORY_INTER) %{
3749     base($reg);
3750     index($lreg);
3751     scale(0x0);
3752     disp(0x0);
3753   %}
3754 %}
3755 
3756 // Indirect Memory Times Scale Plus Index Register
3757 operand indIndexScale(any_RegP reg, rRegL lreg, immI2 scale)
3758 %{
3759   constraint(ALLOC_IN_RC(ptr_reg));
3760   match(AddP reg (LShiftL lreg scale));
3761 
3762   op_cost(10);
3763   format %{"[$reg + $lreg << $scale]" %}
3764   interface(MEMORY_INTER) %{
3765     base($reg);
3766     index($lreg);
3767     scale($scale);
3768     disp(0x0);
3769   %}
3770 %}
3771 
3772 operand indPosIndexScale(any_RegP reg, rRegI idx, immI2 scale)
3773 %{
3774   constraint(ALLOC_IN_RC(ptr_reg));
3775   predicate(n->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
3776   match(AddP reg (LShiftL (ConvI2L idx) scale));
3777 
3778   op_cost(10);
3779   format %{"[$reg + pos $idx << $scale]" %}
3780   interface(MEMORY_INTER) %{
3781     base($reg);
3782     index($idx);
3783     scale($scale);
3784     disp(0x0);
3785   %}
3786 %}
3787 
3788 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
3789 operand indIndexScaleOffset(any_RegP reg, immL32 off, rRegL lreg, immI2 scale)
3790 %{
3791   constraint(ALLOC_IN_RC(ptr_reg));
3792   match(AddP (AddP reg (LShiftL lreg scale)) off);
3793 
3794   op_cost(10);
3795   format %{"[$reg + $off + $lreg << $scale]" %}
3796   interface(MEMORY_INTER) %{
3797     base($reg);
3798     index($lreg);
3799     scale($scale);
3800     disp($off);
3801   %}
3802 %}
3803 
3804 // Indirect Memory Plus Positive Index Register Plus Offset Operand
3805 operand indPosIndexOffset(any_RegP reg, immL32 off, rRegI idx)
3806 %{
3807   constraint(ALLOC_IN_RC(ptr_reg));
3808   predicate(n->in(2)->in(3)->as_Type()->type()->is_long()->_lo >= 0);
3809   match(AddP (AddP reg (ConvI2L idx)) off);
3810 
3811   op_cost(10);
3812   format %{"[$reg + $off + $idx]" %}
3813   interface(MEMORY_INTER) %{
3814     base($reg);
3815     index($idx);
3816     scale(0x0);
3817     disp($off);
3818   %}
3819 %}
3820 
3821 // Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
3822 operand indPosIndexScaleOffset(any_RegP reg, immL32 off, rRegI idx, immI2 scale)
3823 %{
3824   constraint(ALLOC_IN_RC(ptr_reg));
3825   predicate(n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
3826   match(AddP (AddP reg (LShiftL (ConvI2L idx) scale)) off);
3827 
3828   op_cost(10);
3829   format %{"[$reg + $off + $idx << $scale]" %}
3830   interface(MEMORY_INTER) %{
3831     base($reg);
3832     index($idx);
3833     scale($scale);
3834     disp($off);
3835   %}
3836 %}
3837 
3838 // Indirect Narrow Oop Plus Offset Operand
3839 // Note: x86 architecture doesn't support "scale * index + offset" without a base
3840 // we can't free r12 even with CompressedOops::base() == NULL.
3841 operand indCompressedOopOffset(rRegN reg, immL32 off) %{
3842   predicate(UseCompressedOops && (CompressedOops::shift() == Address::times_8));
3843   constraint(ALLOC_IN_RC(ptr_reg));
3844   match(AddP (DecodeN reg) off);
3845 
3846   op_cost(10);
3847   format %{"[R12 + $reg << 3 + $off] (compressed oop addressing)" %}
3848   interface(MEMORY_INTER) %{
3849     base(0xc); // R12
3850     index($reg);
3851     scale(0x3);
3852     disp($off);
3853   %}
3854 %}
3855 
3856 // Indirect Memory Operand
3857 operand indirectNarrow(rRegN reg)
3858 %{
3859   predicate(CompressedOops::shift() == 0);
3860   constraint(ALLOC_IN_RC(ptr_reg));
3861   match(DecodeN reg);
3862 
3863   format %{ "[$reg]" %}
3864   interface(MEMORY_INTER) %{
3865     base($reg);
3866     index(0x4);
3867     scale(0x0);
3868     disp(0x0);
3869   %}
3870 %}
3871 
3872 // Indirect Memory Plus Short Offset Operand
3873 operand indOffset8Narrow(rRegN reg, immL8 off)
3874 %{
3875   predicate(CompressedOops::shift() == 0);
3876   constraint(ALLOC_IN_RC(ptr_reg));
3877   match(AddP (DecodeN reg) off);
3878 
3879   format %{ "[$reg + $off (8-bit)]" %}
3880   interface(MEMORY_INTER) %{
3881     base($reg);
3882     index(0x4);
3883     scale(0x0);
3884     disp($off);
3885   %}
3886 %}
3887 
3888 // Indirect Memory Plus Long Offset Operand
3889 operand indOffset32Narrow(rRegN reg, immL32 off)
3890 %{
3891   predicate(CompressedOops::shift() == 0);
3892   constraint(ALLOC_IN_RC(ptr_reg));
3893   match(AddP (DecodeN reg) off);
3894 
3895   format %{ "[$reg + $off (32-bit)]" %}
3896   interface(MEMORY_INTER) %{
3897     base($reg);
3898     index(0x4);
3899     scale(0x0);
3900     disp($off);
3901   %}
3902 %}
3903 
3904 // Indirect Memory Plus Index Register Plus Offset Operand
3905 operand indIndexOffsetNarrow(rRegN reg, rRegL lreg, immL32 off)
3906 %{
3907   predicate(CompressedOops::shift() == 0);
3908   constraint(ALLOC_IN_RC(ptr_reg));
3909   match(AddP (AddP (DecodeN reg) lreg) off);
3910 
3911   op_cost(10);
3912   format %{"[$reg + $off + $lreg]" %}
3913   interface(MEMORY_INTER) %{
3914     base($reg);
3915     index($lreg);
3916     scale(0x0);
3917     disp($off);
3918   %}
3919 %}
3920 
3921 // Indirect Memory Plus Index Register Plus Offset Operand
3922 operand indIndexNarrow(rRegN reg, rRegL lreg)
3923 %{
3924   predicate(CompressedOops::shift() == 0);
3925   constraint(ALLOC_IN_RC(ptr_reg));
3926   match(AddP (DecodeN reg) lreg);
3927 
3928   op_cost(10);
3929   format %{"[$reg + $lreg]" %}
3930   interface(MEMORY_INTER) %{
3931     base($reg);
3932     index($lreg);
3933     scale(0x0);
3934     disp(0x0);
3935   %}
3936 %}
3937 
3938 // Indirect Memory Times Scale Plus Index Register
3939 operand indIndexScaleNarrow(rRegN reg, rRegL lreg, immI2 scale)
3940 %{
3941   predicate(CompressedOops::shift() == 0);
3942   constraint(ALLOC_IN_RC(ptr_reg));
3943   match(AddP (DecodeN reg) (LShiftL lreg scale));
3944 
3945   op_cost(10);
3946   format %{"[$reg + $lreg << $scale]" %}
3947   interface(MEMORY_INTER) %{
3948     base($reg);
3949     index($lreg);
3950     scale($scale);
3951     disp(0x0);
3952   %}
3953 %}
3954 
3955 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
3956 operand indIndexScaleOffsetNarrow(rRegN reg, immL32 off, rRegL lreg, immI2 scale)
3957 %{
3958   predicate(CompressedOops::shift() == 0);
3959   constraint(ALLOC_IN_RC(ptr_reg));
3960   match(AddP (AddP (DecodeN reg) (LShiftL lreg scale)) off);
3961 
3962   op_cost(10);
3963   format %{"[$reg + $off + $lreg << $scale]" %}
3964   interface(MEMORY_INTER) %{
3965     base($reg);
3966     index($lreg);
3967     scale($scale);
3968     disp($off);
3969   %}
3970 %}
3971 
3972 // Indirect Memory Times Plus Positive Index Register Plus Offset Operand
3973 operand indPosIndexOffsetNarrow(rRegN reg, immL32 off, rRegI idx)
3974 %{
3975   constraint(ALLOC_IN_RC(ptr_reg));
3976   predicate(CompressedOops::shift() == 0 && n->in(2)->in(3)->as_Type()->type()->is_long()->_lo >= 0);
3977   match(AddP (AddP (DecodeN reg) (ConvI2L idx)) off);
3978 
3979   op_cost(10);
3980   format %{"[$reg + $off + $idx]" %}
3981   interface(MEMORY_INTER) %{
3982     base($reg);
3983     index($idx);
3984     scale(0x0);
3985     disp($off);
3986   %}
3987 %}
3988 
3989 // Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
3990 operand indPosIndexScaleOffsetNarrow(rRegN reg, immL32 off, rRegI idx, immI2 scale)
3991 %{
3992   constraint(ALLOC_IN_RC(ptr_reg));
3993   predicate(CompressedOops::shift() == 0 && n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
3994   match(AddP (AddP (DecodeN reg) (LShiftL (ConvI2L idx) scale)) off);
3995 
3996   op_cost(10);
3997   format %{"[$reg + $off + $idx << $scale]" %}
3998   interface(MEMORY_INTER) %{
3999     base($reg);
4000     index($idx);
4001     scale($scale);
4002     disp($off);
4003   %}
4004 %}
4005 
4006 //----------Special Memory Operands--------------------------------------------
4007 // Stack Slot Operand - This operand is used for loading and storing temporary
4008 //                      values on the stack where a match requires a value to
4009 //                      flow through memory.
4010 operand stackSlotP(sRegP reg)
4011 %{
4012   constraint(ALLOC_IN_RC(stack_slots));
4013   // No match rule because this operand is only generated in matching
4014 
4015   format %{ "[$reg]" %}
4016   interface(MEMORY_INTER) %{
4017     base(0x4);   // RSP
4018     index(0x4);  // No Index
4019     scale(0x0);  // No Scale
4020     disp($reg);  // Stack Offset
4021   %}
4022 %}
4023 
4024 operand stackSlotI(sRegI reg)
4025 %{
4026   constraint(ALLOC_IN_RC(stack_slots));
4027   // No match rule because this operand is only generated in matching
4028 
4029   format %{ "[$reg]" %}
4030   interface(MEMORY_INTER) %{
4031     base(0x4);   // RSP
4032     index(0x4);  // No Index
4033     scale(0x0);  // No Scale
4034     disp($reg);  // Stack Offset
4035   %}
4036 %}
4037 
4038 operand stackSlotF(sRegF reg)
4039 %{
4040   constraint(ALLOC_IN_RC(stack_slots));
4041   // No match rule because this operand is only generated in matching
4042 
4043   format %{ "[$reg]" %}
4044   interface(MEMORY_INTER) %{
4045     base(0x4);   // RSP
4046     index(0x4);  // No Index
4047     scale(0x0);  // No Scale
4048     disp($reg);  // Stack Offset
4049   %}
4050 %}
4051 
4052 operand stackSlotD(sRegD reg)
4053 %{
4054   constraint(ALLOC_IN_RC(stack_slots));
4055   // No match rule because this operand is only generated in matching
4056 
4057   format %{ "[$reg]" %}
4058   interface(MEMORY_INTER) %{
4059     base(0x4);   // RSP
4060     index(0x4);  // No Index
4061     scale(0x0);  // No Scale
4062     disp($reg);  // Stack Offset
4063   %}
4064 %}
4065 operand stackSlotL(sRegL reg)
4066 %{
4067   constraint(ALLOC_IN_RC(stack_slots));
4068   // No match rule because this operand is only generated in matching
4069 
4070   format %{ "[$reg]" %}
4071   interface(MEMORY_INTER) %{
4072     base(0x4);   // RSP
4073     index(0x4);  // No Index
4074     scale(0x0);  // No Scale
4075     disp($reg);  // Stack Offset
4076   %}
4077 %}
4078 
4079 //----------Conditional Branch Operands----------------------------------------
4080 // Comparison Op  - This is the operation of the comparison, and is limited to
4081 //                  the following set of codes:
4082 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4083 //
4084 // Other attributes of the comparison, such as unsignedness, are specified
4085 // by the comparison instruction that sets a condition code flags register.
4086 // That result is represented by a flags operand whose subtype is appropriate
4087 // to the unsignedness (etc.) of the comparison.
4088 //
4089 // Later, the instruction which matches both the Comparison Op (a Bool) and
4090 // the flags (produced by the Cmp) specifies the coding of the comparison op
4091 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4092 
4093 // Comparision Code
4094 operand cmpOp()
4095 %{
4096   match(Bool);
4097 
4098   format %{ "" %}
4099   interface(COND_INTER) %{
4100     equal(0x4, "e");
4101     not_equal(0x5, "ne");
4102     less(0xC, "l");
4103     greater_equal(0xD, "ge");
4104     less_equal(0xE, "le");
4105     greater(0xF, "g");
4106     overflow(0x0, "o");
4107     no_overflow(0x1, "no");
4108   %}
4109 %}
4110 
4111 // Comparison Code, unsigned compare.  Used by FP also, with
4112 // C2 (unordered) turned into GT or LT already.  The other bits
4113 // C0 and C3 are turned into Carry & Zero flags.
4114 operand cmpOpU()
4115 %{
4116   match(Bool);
4117 
4118   format %{ "" %}
4119   interface(COND_INTER) %{
4120     equal(0x4, "e");
4121     not_equal(0x5, "ne");
4122     less(0x2, "b");
4123     greater_equal(0x3, "nb");
4124     less_equal(0x6, "be");
4125     greater(0x7, "nbe");
4126     overflow(0x0, "o");
4127     no_overflow(0x1, "no");
4128   %}
4129 %}
4130 
4131 
4132 // Floating comparisons that don't require any fixup for the unordered case
4133 operand cmpOpUCF() %{
4134   match(Bool);
4135   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
4136             n->as_Bool()->_test._test == BoolTest::ge ||
4137             n->as_Bool()->_test._test == BoolTest::le ||
4138             n->as_Bool()->_test._test == BoolTest::gt);
4139   format %{ "" %}
4140   interface(COND_INTER) %{
4141     equal(0x4, "e");
4142     not_equal(0x5, "ne");
4143     less(0x2, "b");
4144     greater_equal(0x3, "nb");
4145     less_equal(0x6, "be");
4146     greater(0x7, "nbe");
4147     overflow(0x0, "o");
4148     no_overflow(0x1, "no");
4149   %}
4150 %}
4151 
4152 
4153 // Floating comparisons that can be fixed up with extra conditional jumps
4154 operand cmpOpUCF2() %{
4155   match(Bool);
4156   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
4157             n->as_Bool()->_test._test == BoolTest::eq);
4158   format %{ "" %}
4159   interface(COND_INTER) %{
4160     equal(0x4, "e");
4161     not_equal(0x5, "ne");
4162     less(0x2, "b");
4163     greater_equal(0x3, "nb");
4164     less_equal(0x6, "be");
4165     greater(0x7, "nbe");
4166     overflow(0x0, "o");
4167     no_overflow(0x1, "no");
4168   %}
4169 %}
4170 
4171 //----------OPERAND CLASSES----------------------------------------------------
4172 // Operand Classes are groups of operands that are used as to simplify
4173 // instruction definitions by not requiring the AD writer to specify separate
4174 // instructions for every form of operand when the instruction accepts
4175 // multiple operand types with the same basic encoding and format.  The classic
4176 // case of this is memory operands.
4177 
4178 opclass memory(indirect, indOffset8, indOffset32, indIndexOffset, indIndex,
4179                indIndexScale, indPosIndexScale, indIndexScaleOffset, indPosIndexOffset, indPosIndexScaleOffset,
4180                indCompressedOopOffset,
4181                indirectNarrow, indOffset8Narrow, indOffset32Narrow,
4182                indIndexOffsetNarrow, indIndexNarrow, indIndexScaleNarrow,
4183                indIndexScaleOffsetNarrow, indPosIndexOffsetNarrow, indPosIndexScaleOffsetNarrow);
4184 
4185 //----------PIPELINE-----------------------------------------------------------
4186 // Rules which define the behavior of the target architectures pipeline.
4187 pipeline %{
4188 
4189 //----------ATTRIBUTES---------------------------------------------------------
4190 attributes %{
4191   variable_size_instructions;        // Fixed size instructions
4192   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
4193   instruction_unit_size = 1;         // An instruction is 1 bytes long
4194   instruction_fetch_unit_size = 16;  // The processor fetches one line
4195   instruction_fetch_units = 1;       // of 16 bytes
4196 
4197   // List of nop instructions
4198   nops( MachNop );
4199 %}
4200 
4201 //----------RESOURCES----------------------------------------------------------
4202 // Resources are the functional units available to the machine
4203 
4204 // Generic P2/P3 pipeline
4205 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
4206 // 3 instructions decoded per cycle.
4207 // 2 load/store ops per cycle, 1 branch, 1 FPU,
4208 // 3 ALU op, only ALU0 handles mul instructions.
4209 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
4210            MS0, MS1, MS2, MEM = MS0 | MS1 | MS2,
4211            BR, FPU,
4212            ALU0, ALU1, ALU2, ALU = ALU0 | ALU1 | ALU2);
4213 
4214 //----------PIPELINE DESCRIPTION-----------------------------------------------
4215 // Pipeline Description specifies the stages in the machine's pipeline
4216 
4217 // Generic P2/P3 pipeline
4218 pipe_desc(S0, S1, S2, S3, S4, S5);
4219 
4220 //----------PIPELINE CLASSES---------------------------------------------------
4221 // Pipeline Classes describe the stages in which input and output are
4222 // referenced by the hardware pipeline.
4223 
4224 // Naming convention: ialu or fpu
4225 // Then: _reg
4226 // Then: _reg if there is a 2nd register
4227 // Then: _long if it's a pair of instructions implementing a long
4228 // Then: _fat if it requires the big decoder
4229 //   Or: _mem if it requires the big decoder and a memory unit.
4230 
4231 // Integer ALU reg operation
4232 pipe_class ialu_reg(rRegI dst)
4233 %{
4234     single_instruction;
4235     dst    : S4(write);
4236     dst    : S3(read);
4237     DECODE : S0;        // any decoder
4238     ALU    : S3;        // any alu
4239 %}
4240 
4241 // Long ALU reg operation
4242 pipe_class ialu_reg_long(rRegL dst)
4243 %{
4244     instruction_count(2);
4245     dst    : S4(write);
4246     dst    : S3(read);
4247     DECODE : S0(2);     // any 2 decoders
4248     ALU    : S3(2);     // both alus
4249 %}
4250 
4251 // Integer ALU reg operation using big decoder
4252 pipe_class ialu_reg_fat(rRegI dst)
4253 %{
4254     single_instruction;
4255     dst    : S4(write);
4256     dst    : S3(read);
4257     D0     : S0;        // big decoder only
4258     ALU    : S3;        // any alu
4259 %}
4260 
4261 // Long ALU reg operation using big decoder
4262 pipe_class ialu_reg_long_fat(rRegL dst)
4263 %{
4264     instruction_count(2);
4265     dst    : S4(write);
4266     dst    : S3(read);
4267     D0     : S0(2);     // big decoder only; twice
4268     ALU    : S3(2);     // any 2 alus
4269 %}
4270 
4271 // Integer ALU reg-reg operation
4272 pipe_class ialu_reg_reg(rRegI dst, rRegI src)
4273 %{
4274     single_instruction;
4275     dst    : S4(write);
4276     src    : S3(read);
4277     DECODE : S0;        // any decoder
4278     ALU    : S3;        // any alu
4279 %}
4280 
4281 // Long ALU reg-reg operation
4282 pipe_class ialu_reg_reg_long(rRegL dst, rRegL src)
4283 %{
4284     instruction_count(2);
4285     dst    : S4(write);
4286     src    : S3(read);
4287     DECODE : S0(2);     // any 2 decoders
4288     ALU    : S3(2);     // both alus
4289 %}
4290 
4291 // Integer ALU reg-reg operation
4292 pipe_class ialu_reg_reg_fat(rRegI dst, memory src)
4293 %{
4294     single_instruction;
4295     dst    : S4(write);
4296     src    : S3(read);
4297     D0     : S0;        // big decoder only
4298     ALU    : S3;        // any alu
4299 %}
4300 
4301 // Long ALU reg-reg operation
4302 pipe_class ialu_reg_reg_long_fat(rRegL dst, rRegL src)
4303 %{
4304     instruction_count(2);
4305     dst    : S4(write);
4306     src    : S3(read);
4307     D0     : S0(2);     // big decoder only; twice
4308     ALU    : S3(2);     // both alus
4309 %}
4310 
4311 // Integer ALU reg-mem operation
4312 pipe_class ialu_reg_mem(rRegI dst, memory mem)
4313 %{
4314     single_instruction;
4315     dst    : S5(write);
4316     mem    : S3(read);
4317     D0     : S0;        // big decoder only
4318     ALU    : S4;        // any alu
4319     MEM    : S3;        // any mem
4320 %}
4321 
4322 // Integer mem operation (prefetch)
4323 pipe_class ialu_mem(memory mem)
4324 %{
4325     single_instruction;
4326     mem    : S3(read);
4327     D0     : S0;        // big decoder only
4328     MEM    : S3;        // any mem
4329 %}
4330 
4331 // Integer Store to Memory
4332 pipe_class ialu_mem_reg(memory mem, rRegI src)
4333 %{
4334     single_instruction;
4335     mem    : S3(read);
4336     src    : S5(read);
4337     D0     : S0;        // big decoder only
4338     ALU    : S4;        // any alu
4339     MEM    : S3;
4340 %}
4341 
4342 // // Long Store to Memory
4343 // pipe_class ialu_mem_long_reg(memory mem, rRegL src)
4344 // %{
4345 //     instruction_count(2);
4346 //     mem    : S3(read);
4347 //     src    : S5(read);
4348 //     D0     : S0(2);          // big decoder only; twice
4349 //     ALU    : S4(2);     // any 2 alus
4350 //     MEM    : S3(2);  // Both mems
4351 // %}
4352 
4353 // Integer Store to Memory
4354 pipe_class ialu_mem_imm(memory mem)
4355 %{
4356     single_instruction;
4357     mem    : S3(read);
4358     D0     : S0;        // big decoder only
4359     ALU    : S4;        // any alu
4360     MEM    : S3;
4361 %}
4362 
4363 // Integer ALU0 reg-reg operation
4364 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src)
4365 %{
4366     single_instruction;
4367     dst    : S4(write);
4368     src    : S3(read);
4369     D0     : S0;        // Big decoder only
4370     ALU0   : S3;        // only alu0
4371 %}
4372 
4373 // Integer ALU0 reg-mem operation
4374 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem)
4375 %{
4376     single_instruction;
4377     dst    : S5(write);
4378     mem    : S3(read);
4379     D0     : S0;        // big decoder only
4380     ALU0   : S4;        // ALU0 only
4381     MEM    : S3;        // any mem
4382 %}
4383 
4384 // Integer ALU reg-reg operation
4385 pipe_class ialu_cr_reg_reg(rFlagsReg cr, rRegI src1, rRegI src2)
4386 %{
4387     single_instruction;
4388     cr     : S4(write);
4389     src1   : S3(read);
4390     src2   : S3(read);
4391     DECODE : S0;        // any decoder
4392     ALU    : S3;        // any alu
4393 %}
4394 
4395 // Integer ALU reg-imm operation
4396 pipe_class ialu_cr_reg_imm(rFlagsReg cr, rRegI src1)
4397 %{
4398     single_instruction;
4399     cr     : S4(write);
4400     src1   : S3(read);
4401     DECODE : S0;        // any decoder
4402     ALU    : S3;        // any alu
4403 %}
4404 
4405 // Integer ALU reg-mem operation
4406 pipe_class ialu_cr_reg_mem(rFlagsReg cr, rRegI src1, memory src2)
4407 %{
4408     single_instruction;
4409     cr     : S4(write);
4410     src1   : S3(read);
4411     src2   : S3(read);
4412     D0     : S0;        // big decoder only
4413     ALU    : S4;        // any alu
4414     MEM    : S3;
4415 %}
4416 
4417 // Conditional move reg-reg
4418 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y)
4419 %{
4420     instruction_count(4);
4421     y      : S4(read);
4422     q      : S3(read);
4423     p      : S3(read);
4424     DECODE : S0(4);     // any decoder
4425 %}
4426 
4427 // Conditional move reg-reg
4428 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, rFlagsReg cr)
4429 %{
4430     single_instruction;
4431     dst    : S4(write);
4432     src    : S3(read);
4433     cr     : S3(read);
4434     DECODE : S0;        // any decoder
4435 %}
4436 
4437 // Conditional move reg-mem
4438 pipe_class pipe_cmov_mem( rFlagsReg cr, rRegI dst, memory src)
4439 %{
4440     single_instruction;
4441     dst    : S4(write);
4442     src    : S3(read);
4443     cr     : S3(read);
4444     DECODE : S0;        // any decoder
4445     MEM    : S3;
4446 %}
4447 
4448 // Conditional move reg-reg long
4449 pipe_class pipe_cmov_reg_long( rFlagsReg cr, rRegL dst, rRegL src)
4450 %{
4451     single_instruction;
4452     dst    : S4(write);
4453     src    : S3(read);
4454     cr     : S3(read);
4455     DECODE : S0(2);     // any 2 decoders
4456 %}
4457 
4458 // XXX
4459 // // Conditional move double reg-reg
4460 // pipe_class pipe_cmovD_reg( rFlagsReg cr, regDPR1 dst, regD src)
4461 // %{
4462 //     single_instruction;
4463 //     dst    : S4(write);
4464 //     src    : S3(read);
4465 //     cr     : S3(read);
4466 //     DECODE : S0;     // any decoder
4467 // %}
4468 
4469 // Float reg-reg operation
4470 pipe_class fpu_reg(regD dst)
4471 %{
4472     instruction_count(2);
4473     dst    : S3(read);
4474     DECODE : S0(2);     // any 2 decoders
4475     FPU    : S3;
4476 %}
4477 
4478 // Float reg-reg operation
4479 pipe_class fpu_reg_reg(regD dst, regD src)
4480 %{
4481     instruction_count(2);
4482     dst    : S4(write);
4483     src    : S3(read);
4484     DECODE : S0(2);     // any 2 decoders
4485     FPU    : S3;
4486 %}
4487 
4488 // Float reg-reg operation
4489 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2)
4490 %{
4491     instruction_count(3);
4492     dst    : S4(write);
4493     src1   : S3(read);
4494     src2   : S3(read);
4495     DECODE : S0(3);     // any 3 decoders
4496     FPU    : S3(2);
4497 %}
4498 
4499 // Float reg-reg operation
4500 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3)
4501 %{
4502     instruction_count(4);
4503     dst    : S4(write);
4504     src1   : S3(read);
4505     src2   : S3(read);
4506     src3   : S3(read);
4507     DECODE : S0(4);     // any 3 decoders
4508     FPU    : S3(2);
4509 %}
4510 
4511 // Float reg-reg operation
4512 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3)
4513 %{
4514     instruction_count(4);
4515     dst    : S4(write);
4516     src1   : S3(read);
4517     src2   : S3(read);
4518     src3   : S3(read);
4519     DECODE : S1(3);     // any 3 decoders
4520     D0     : S0;        // Big decoder only
4521     FPU    : S3(2);
4522     MEM    : S3;
4523 %}
4524 
4525 // Float reg-mem operation
4526 pipe_class fpu_reg_mem(regD dst, memory mem)
4527 %{
4528     instruction_count(2);
4529     dst    : S5(write);
4530     mem    : S3(read);
4531     D0     : S0;        // big decoder only
4532     DECODE : S1;        // any decoder for FPU POP
4533     FPU    : S4;
4534     MEM    : S3;        // any mem
4535 %}
4536 
4537 // Float reg-mem operation
4538 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem)
4539 %{
4540     instruction_count(3);
4541     dst    : S5(write);
4542     src1   : S3(read);
4543     mem    : S3(read);
4544     D0     : S0;        // big decoder only
4545     DECODE : S1(2);     // any decoder for FPU POP
4546     FPU    : S4;
4547     MEM    : S3;        // any mem
4548 %}
4549 
4550 // Float mem-reg operation
4551 pipe_class fpu_mem_reg(memory mem, regD src)
4552 %{
4553     instruction_count(2);
4554     src    : S5(read);
4555     mem    : S3(read);
4556     DECODE : S0;        // any decoder for FPU PUSH
4557     D0     : S1;        // big decoder only
4558     FPU    : S4;
4559     MEM    : S3;        // any mem
4560 %}
4561 
4562 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2)
4563 %{
4564     instruction_count(3);
4565     src1   : S3(read);
4566     src2   : S3(read);
4567     mem    : S3(read);
4568     DECODE : S0(2);     // any decoder for FPU PUSH
4569     D0     : S1;        // big decoder only
4570     FPU    : S4;
4571     MEM    : S3;        // any mem
4572 %}
4573 
4574 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2)
4575 %{
4576     instruction_count(3);
4577     src1   : S3(read);
4578     src2   : S3(read);
4579     mem    : S4(read);
4580     DECODE : S0;        // any decoder for FPU PUSH
4581     D0     : S0(2);     // big decoder only
4582     FPU    : S4;
4583     MEM    : S3(2);     // any mem
4584 %}
4585 
4586 pipe_class fpu_mem_mem(memory dst, memory src1)
4587 %{
4588     instruction_count(2);
4589     src1   : S3(read);
4590     dst    : S4(read);
4591     D0     : S0(2);     // big decoder only
4592     MEM    : S3(2);     // any mem
4593 %}
4594 
4595 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2)
4596 %{
4597     instruction_count(3);
4598     src1   : S3(read);
4599     src2   : S3(read);
4600     dst    : S4(read);
4601     D0     : S0(3);     // big decoder only
4602     FPU    : S4;
4603     MEM    : S3(3);     // any mem
4604 %}
4605 
4606 pipe_class fpu_mem_reg_con(memory mem, regD src1)
4607 %{
4608     instruction_count(3);
4609     src1   : S4(read);
4610     mem    : S4(read);
4611     DECODE : S0;        // any decoder for FPU PUSH
4612     D0     : S0(2);     // big decoder only
4613     FPU    : S4;
4614     MEM    : S3(2);     // any mem
4615 %}
4616 
4617 // Float load constant
4618 pipe_class fpu_reg_con(regD dst)
4619 %{
4620     instruction_count(2);
4621     dst    : S5(write);
4622     D0     : S0;        // big decoder only for the load
4623     DECODE : S1;        // any decoder for FPU POP
4624     FPU    : S4;
4625     MEM    : S3;        // any mem
4626 %}
4627 
4628 // Float load constant
4629 pipe_class fpu_reg_reg_con(regD dst, regD src)
4630 %{
4631     instruction_count(3);
4632     dst    : S5(write);
4633     src    : S3(read);
4634     D0     : S0;        // big decoder only for the load
4635     DECODE : S1(2);     // any decoder for FPU POP
4636     FPU    : S4;
4637     MEM    : S3;        // any mem
4638 %}
4639 
4640 // UnConditional branch
4641 pipe_class pipe_jmp(label labl)
4642 %{
4643     single_instruction;
4644     BR   : S3;
4645 %}
4646 
4647 // Conditional branch
4648 pipe_class pipe_jcc(cmpOp cmp, rFlagsReg cr, label labl)
4649 %{
4650     single_instruction;
4651     cr    : S1(read);
4652     BR    : S3;
4653 %}
4654 
4655 // Allocation idiom
4656 pipe_class pipe_cmpxchg(rRegP dst, rRegP heap_ptr)
4657 %{
4658     instruction_count(1); force_serialization;
4659     fixed_latency(6);
4660     heap_ptr : S3(read);
4661     DECODE   : S0(3);
4662     D0       : S2;
4663     MEM      : S3;
4664     ALU      : S3(2);
4665     dst      : S5(write);
4666     BR       : S5;
4667 %}
4668 
4669 // Generic big/slow expanded idiom
4670 pipe_class pipe_slow()
4671 %{
4672     instruction_count(10); multiple_bundles; force_serialization;
4673     fixed_latency(100);
4674     D0  : S0(2);
4675     MEM : S3(2);
4676 %}
4677 
4678 // The real do-nothing guy
4679 pipe_class empty()
4680 %{
4681     instruction_count(0);
4682 %}
4683 
4684 // Define the class for the Nop node
4685 define
4686 %{
4687    MachNop = empty;
4688 %}
4689 
4690 %}
4691 
4692 //----------INSTRUCTIONS-------------------------------------------------------
4693 //
4694 // match      -- States which machine-independent subtree may be replaced
4695 //               by this instruction.
4696 // ins_cost   -- The estimated cost of this instruction is used by instruction
4697 //               selection to identify a minimum cost tree of machine
4698 //               instructions that matches a tree of machine-independent
4699 //               instructions.
4700 // format     -- A string providing the disassembly for this instruction.
4701 //               The value of an instruction's operand may be inserted
4702 //               by referring to it with a '$' prefix.
4703 // opcode     -- Three instruction opcodes may be provided.  These are referred
4704 //               to within an encode class as $primary, $secondary, and $tertiary
4705 //               rrspectively.  The primary opcode is commonly used to
4706 //               indicate the type of machine instruction, while secondary
4707 //               and tertiary are often used for prefix options or addressing
4708 //               modes.
4709 // ins_encode -- A list of encode classes with parameters. The encode class
4710 //               name must have been defined in an 'enc_class' specification
4711 //               in the encode section of the architecture description.
4712 
4713 
4714 //----------Load/Store/Move Instructions---------------------------------------
4715 //----------Load Instructions--------------------------------------------------
4716 
4717 // Load Byte (8 bit signed)
4718 instruct loadB(rRegI dst, memory mem)
4719 %{
4720   match(Set dst (LoadB mem));
4721 
4722   ins_cost(125);
4723   format %{ "movsbl  $dst, $mem\t# byte" %}
4724 
4725   ins_encode %{
4726     __ movsbl($dst$$Register, $mem$$Address);
4727   %}
4728 
4729   ins_pipe(ialu_reg_mem);
4730 %}
4731 
4732 // Load Byte (8 bit signed) into Long Register
4733 instruct loadB2L(rRegL dst, memory mem)
4734 %{
4735   match(Set dst (ConvI2L (LoadB mem)));
4736 
4737   ins_cost(125);
4738   format %{ "movsbq  $dst, $mem\t# byte -> long" %}
4739 
4740   ins_encode %{
4741     __ movsbq($dst$$Register, $mem$$Address);
4742   %}
4743 
4744   ins_pipe(ialu_reg_mem);
4745 %}
4746 
4747 // Load Unsigned Byte (8 bit UNsigned)
4748 instruct loadUB(rRegI dst, memory mem)
4749 %{
4750   match(Set dst (LoadUB mem));
4751 
4752   ins_cost(125);
4753   format %{ "movzbl  $dst, $mem\t# ubyte" %}
4754 
4755   ins_encode %{
4756     __ movzbl($dst$$Register, $mem$$Address);
4757   %}
4758 
4759   ins_pipe(ialu_reg_mem);
4760 %}
4761 
4762 // Load Unsigned Byte (8 bit UNsigned) into Long Register
4763 instruct loadUB2L(rRegL dst, memory mem)
4764 %{
4765   match(Set dst (ConvI2L (LoadUB mem)));
4766 
4767   ins_cost(125);
4768   format %{ "movzbq  $dst, $mem\t# ubyte -> long" %}
4769 
4770   ins_encode %{
4771     __ movzbq($dst$$Register, $mem$$Address);
4772   %}
4773 
4774   ins_pipe(ialu_reg_mem);
4775 %}
4776 
4777 // Load Unsigned Byte (8 bit UNsigned) with 32-bit mask into Long Register
4778 instruct loadUB2L_immI(rRegL dst, memory mem, immI mask, rFlagsReg cr) %{
4779   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
4780   effect(KILL cr);
4781 
4782   format %{ "movzbq  $dst, $mem\t# ubyte & 32-bit mask -> long\n\t"
4783             "andl    $dst, right_n_bits($mask, 8)" %}
4784   ins_encode %{
4785     Register Rdst = $dst$$Register;
4786     __ movzbq(Rdst, $mem$$Address);
4787     __ andl(Rdst, $mask$$constant & right_n_bits(8));
4788   %}
4789   ins_pipe(ialu_reg_mem);
4790 %}
4791 
4792 // Load Short (16 bit signed)
4793 instruct loadS(rRegI dst, memory mem)
4794 %{
4795   match(Set dst (LoadS mem));
4796 
4797   ins_cost(125);
4798   format %{ "movswl $dst, $mem\t# short" %}
4799 
4800   ins_encode %{
4801     __ movswl($dst$$Register, $mem$$Address);
4802   %}
4803 
4804   ins_pipe(ialu_reg_mem);
4805 %}
4806 
4807 // Load Short (16 bit signed) to Byte (8 bit signed)
4808 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
4809   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
4810 
4811   ins_cost(125);
4812   format %{ "movsbl $dst, $mem\t# short -> byte" %}
4813   ins_encode %{
4814     __ movsbl($dst$$Register, $mem$$Address);
4815   %}
4816   ins_pipe(ialu_reg_mem);
4817 %}
4818 
4819 // Load Short (16 bit signed) into Long Register
4820 instruct loadS2L(rRegL dst, memory mem)
4821 %{
4822   match(Set dst (ConvI2L (LoadS mem)));
4823 
4824   ins_cost(125);
4825   format %{ "movswq $dst, $mem\t# short -> long" %}
4826 
4827   ins_encode %{
4828     __ movswq($dst$$Register, $mem$$Address);
4829   %}
4830 
4831   ins_pipe(ialu_reg_mem);
4832 %}
4833 
4834 // Load Unsigned Short/Char (16 bit UNsigned)
4835 instruct loadUS(rRegI dst, memory mem)
4836 %{
4837   match(Set dst (LoadUS mem));
4838 
4839   ins_cost(125);
4840   format %{ "movzwl  $dst, $mem\t# ushort/char" %}
4841 
4842   ins_encode %{
4843     __ movzwl($dst$$Register, $mem$$Address);
4844   %}
4845 
4846   ins_pipe(ialu_reg_mem);
4847 %}
4848 
4849 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
4850 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
4851   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
4852 
4853   ins_cost(125);
4854   format %{ "movsbl $dst, $mem\t# ushort -> byte" %}
4855   ins_encode %{
4856     __ movsbl($dst$$Register, $mem$$Address);
4857   %}
4858   ins_pipe(ialu_reg_mem);
4859 %}
4860 
4861 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
4862 instruct loadUS2L(rRegL dst, memory mem)
4863 %{
4864   match(Set dst (ConvI2L (LoadUS mem)));
4865 
4866   ins_cost(125);
4867   format %{ "movzwq  $dst, $mem\t# ushort/char -> long" %}
4868 
4869   ins_encode %{
4870     __ movzwq($dst$$Register, $mem$$Address);
4871   %}
4872 
4873   ins_pipe(ialu_reg_mem);
4874 %}
4875 
4876 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
4877 instruct loadUS2L_immI_255(rRegL dst, memory mem, immI_255 mask) %{
4878   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
4879 
4880   format %{ "movzbq  $dst, $mem\t# ushort/char & 0xFF -> long" %}
4881   ins_encode %{
4882     __ movzbq($dst$$Register, $mem$$Address);
4883   %}
4884   ins_pipe(ialu_reg_mem);
4885 %}
4886 
4887 // Load Unsigned Short/Char (16 bit UNsigned) with 32-bit mask into Long Register
4888 instruct loadUS2L_immI(rRegL dst, memory mem, immI mask, rFlagsReg cr) %{
4889   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
4890   effect(KILL cr);
4891 
4892   format %{ "movzwq  $dst, $mem\t# ushort/char & 32-bit mask -> long\n\t"
4893             "andl    $dst, right_n_bits($mask, 16)" %}
4894   ins_encode %{
4895     Register Rdst = $dst$$Register;
4896     __ movzwq(Rdst, $mem$$Address);
4897     __ andl(Rdst, $mask$$constant & right_n_bits(16));
4898   %}
4899   ins_pipe(ialu_reg_mem);
4900 %}
4901 
4902 // Load Integer
4903 instruct loadI(rRegI dst, memory mem)
4904 %{
4905   match(Set dst (LoadI mem));
4906 
4907   ins_cost(125);
4908   format %{ "movl    $dst, $mem\t# int" %}
4909 
4910   ins_encode %{
4911     __ movl($dst$$Register, $mem$$Address);
4912   %}
4913 
4914   ins_pipe(ialu_reg_mem);
4915 %}
4916 
4917 // Load Integer (32 bit signed) to Byte (8 bit signed)
4918 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
4919   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
4920 
4921   ins_cost(125);
4922   format %{ "movsbl  $dst, $mem\t# int -> byte" %}
4923   ins_encode %{
4924     __ movsbl($dst$$Register, $mem$$Address);
4925   %}
4926   ins_pipe(ialu_reg_mem);
4927 %}
4928 
4929 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
4930 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
4931   match(Set dst (AndI (LoadI mem) mask));
4932 
4933   ins_cost(125);
4934   format %{ "movzbl  $dst, $mem\t# int -> ubyte" %}
4935   ins_encode %{
4936     __ movzbl($dst$$Register, $mem$$Address);
4937   %}
4938   ins_pipe(ialu_reg_mem);
4939 %}
4940 
4941 // Load Integer (32 bit signed) to Short (16 bit signed)
4942 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
4943   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
4944 
4945   ins_cost(125);
4946   format %{ "movswl  $dst, $mem\t# int -> short" %}
4947   ins_encode %{
4948     __ movswl($dst$$Register, $mem$$Address);
4949   %}
4950   ins_pipe(ialu_reg_mem);
4951 %}
4952 
4953 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
4954 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
4955   match(Set dst (AndI (LoadI mem) mask));
4956 
4957   ins_cost(125);
4958   format %{ "movzwl  $dst, $mem\t# int -> ushort/char" %}
4959   ins_encode %{
4960     __ movzwl($dst$$Register, $mem$$Address);
4961   %}
4962   ins_pipe(ialu_reg_mem);
4963 %}
4964 
4965 // Load Integer into Long Register
4966 instruct loadI2L(rRegL dst, memory mem)
4967 %{
4968   match(Set dst (ConvI2L (LoadI mem)));
4969 
4970   ins_cost(125);
4971   format %{ "movslq  $dst, $mem\t# int -> long" %}
4972 
4973   ins_encode %{
4974     __ movslq($dst$$Register, $mem$$Address);
4975   %}
4976 
4977   ins_pipe(ialu_reg_mem);
4978 %}
4979 
4980 // Load Integer with mask 0xFF into Long Register
4981 instruct loadI2L_immI_255(rRegL dst, memory mem, immI_255 mask) %{
4982   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
4983 
4984   format %{ "movzbq  $dst, $mem\t# int & 0xFF -> long" %}
4985   ins_encode %{
4986     __ movzbq($dst$$Register, $mem$$Address);
4987   %}
4988   ins_pipe(ialu_reg_mem);
4989 %}
4990 
4991 // Load Integer with mask 0xFFFF into Long Register
4992 instruct loadI2L_immI_65535(rRegL dst, memory mem, immI_65535 mask) %{
4993   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
4994 
4995   format %{ "movzwq  $dst, $mem\t# int & 0xFFFF -> long" %}
4996   ins_encode %{
4997     __ movzwq($dst$$Register, $mem$$Address);
4998   %}
4999   ins_pipe(ialu_reg_mem);
5000 %}
5001 
5002 // Load Integer with a 31-bit mask into Long Register
5003 instruct loadI2L_immU31(rRegL dst, memory mem, immU31 mask, rFlagsReg cr) %{
5004   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5005   effect(KILL cr);
5006 
5007   format %{ "movl    $dst, $mem\t# int & 31-bit mask -> long\n\t"
5008             "andl    $dst, $mask" %}
5009   ins_encode %{
5010     Register Rdst = $dst$$Register;
5011     __ movl(Rdst, $mem$$Address);
5012     __ andl(Rdst, $mask$$constant);
5013   %}
5014   ins_pipe(ialu_reg_mem);
5015 %}
5016 
5017 // Load Unsigned Integer into Long Register
5018 instruct loadUI2L(rRegL dst, memory mem, immL_32bits mask)
5019 %{
5020   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5021 
5022   ins_cost(125);
5023   format %{ "movl    $dst, $mem\t# uint -> long" %}
5024 
5025   ins_encode %{
5026     __ movl($dst$$Register, $mem$$Address);
5027   %}
5028 
5029   ins_pipe(ialu_reg_mem);
5030 %}
5031 
5032 // Load Long
5033 instruct loadL(rRegL dst, memory mem)
5034 %{
5035   match(Set dst (LoadL mem));
5036 
5037   ins_cost(125);
5038   format %{ "movq    $dst, $mem\t# long" %}
5039 
5040   ins_encode %{
5041     __ movq($dst$$Register, $mem$$Address);
5042   %}
5043 
5044   ins_pipe(ialu_reg_mem); // XXX
5045 %}
5046 
5047 // Load Range
5048 instruct loadRange(rRegI dst, memory mem)
5049 %{
5050   match(Set dst (LoadRange mem));
5051 
5052   ins_cost(125); // XXX
5053   format %{ "movl    $dst, $mem\t# range" %}
5054   opcode(0x8B);
5055   ins_encode(REX_reg_mem(dst, mem), OpcP, reg_mem(dst, mem));
5056   ins_pipe(ialu_reg_mem);
5057 %}
5058 
5059 // Load Pointer
5060 instruct loadP(rRegP dst, memory mem)
5061 %{
5062   match(Set dst (LoadP mem));
5063   predicate(n->as_Load()->barrier_data() == 0);
5064 
5065   ins_cost(125); // XXX
5066   format %{ "movq    $dst, $mem\t# ptr" %}
5067   opcode(0x8B);
5068   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5069   ins_pipe(ialu_reg_mem); // XXX
5070 %}
5071 
5072 // Load Compressed Pointer
5073 instruct loadN(rRegN dst, memory mem)
5074 %{
5075    match(Set dst (LoadN mem));
5076 
5077    ins_cost(125); // XXX
5078    format %{ "movl    $dst, $mem\t# compressed ptr" %}
5079    ins_encode %{
5080      __ movl($dst$$Register, $mem$$Address);
5081    %}
5082    ins_pipe(ialu_reg_mem); // XXX
5083 %}
5084 
5085 
5086 // Load Klass Pointer
5087 instruct loadKlass(rRegP dst, memory mem)
5088 %{
5089   match(Set dst (LoadKlass mem));
5090 
5091   ins_cost(125); // XXX
5092   format %{ "movq    $dst, $mem\t# class" %}
5093   opcode(0x8B);
5094   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5095   ins_pipe(ialu_reg_mem); // XXX
5096 %}
5097 
5098 // Load narrow Klass Pointer
5099 instruct loadNKlass(rRegN dst, memory mem)
5100 %{
5101   match(Set dst (LoadNKlass mem));
5102 
5103   ins_cost(125); // XXX
5104   format %{ "movl    $dst, $mem\t# compressed klass ptr" %}
5105   ins_encode %{
5106     __ movl($dst$$Register, $mem$$Address);
5107   %}
5108   ins_pipe(ialu_reg_mem); // XXX
5109 %}
5110 
5111 // Load Float
5112 instruct loadF(regF dst, memory mem)
5113 %{
5114   match(Set dst (LoadF mem));
5115 
5116   ins_cost(145); // XXX
5117   format %{ "movss   $dst, $mem\t# float" %}
5118   ins_encode %{
5119     __ movflt($dst$$XMMRegister, $mem$$Address);
5120   %}
5121   ins_pipe(pipe_slow); // XXX
5122 %}
5123 
5124 // Load Float
5125 instruct MoveF2VL(vlRegF dst, regF src) %{
5126   match(Set dst src);
5127   format %{ "movss $dst,$src\t! load float (4 bytes)" %}
5128   ins_encode %{
5129     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
5130   %}
5131   ins_pipe( fpu_reg_reg );
5132 %}
5133 
5134 // Load Float
5135 instruct MoveF2LEG(legRegF dst, regF src) %{
5136   match(Set dst src);
5137   format %{ "movss $dst,$src\t# if src != dst load float (4 bytes)" %}
5138   ins_encode %{
5139     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
5140   %}
5141   ins_pipe( fpu_reg_reg );
5142 %}
5143 
5144 // Load Float
5145 instruct MoveVL2F(regF dst, vlRegF src) %{
5146   match(Set dst src);
5147   format %{ "movss $dst,$src\t! load float (4 bytes)" %}
5148   ins_encode %{
5149     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
5150   %}
5151   ins_pipe( fpu_reg_reg );
5152 %}
5153 
5154 // Load Float
5155 instruct MoveLEG2F(regF dst, legRegF src) %{
5156   match(Set dst src);
5157   format %{ "movss $dst,$src\t# if src != dst load float (4 bytes)" %}
5158   ins_encode %{
5159     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
5160   %}
5161   ins_pipe( fpu_reg_reg );
5162 %}
5163 
5164 // Load Double
5165 instruct loadD_partial(regD dst, memory mem)
5166 %{
5167   predicate(!UseXmmLoadAndClearUpper);
5168   match(Set dst (LoadD mem));
5169 
5170   ins_cost(145); // XXX
5171   format %{ "movlpd  $dst, $mem\t# double" %}
5172   ins_encode %{
5173     __ movdbl($dst$$XMMRegister, $mem$$Address);
5174   %}
5175   ins_pipe(pipe_slow); // XXX
5176 %}
5177 
5178 instruct loadD(regD dst, memory mem)
5179 %{
5180   predicate(UseXmmLoadAndClearUpper);
5181   match(Set dst (LoadD mem));
5182 
5183   ins_cost(145); // XXX
5184   format %{ "movsd   $dst, $mem\t# double" %}
5185   ins_encode %{
5186     __ movdbl($dst$$XMMRegister, $mem$$Address);
5187   %}
5188   ins_pipe(pipe_slow); // XXX
5189 %}
5190 
5191 // Load Double
5192 instruct MoveD2VL(vlRegD dst, regD src) %{
5193   match(Set dst src);
5194   format %{ "movsd $dst,$src\t! load double (8 bytes)" %}
5195   ins_encode %{
5196     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
5197   %}
5198   ins_pipe( fpu_reg_reg );
5199 %}
5200 
5201 // Load Double
5202 instruct MoveD2LEG(legRegD dst, regD src) %{
5203   match(Set dst src);
5204   format %{ "movsd $dst,$src\t# if src != dst load double (8 bytes)" %}
5205   ins_encode %{
5206     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
5207   %}
5208   ins_pipe( fpu_reg_reg );
5209 %}
5210 
5211 // Load Double
5212 instruct MoveVL2D(regD dst, vlRegD src) %{
5213   match(Set dst src);
5214   format %{ "movsd $dst,$src\t! load double (8 bytes)" %}
5215   ins_encode %{
5216     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
5217   %}
5218   ins_pipe( fpu_reg_reg );
5219 %}
5220 
5221 // Load Double
5222 instruct MoveLEG2D(regD dst, legRegD src) %{
5223   match(Set dst src);
5224   format %{ "movsd $dst,$src\t# if src != dst load double (8 bytes)" %}
5225   ins_encode %{
5226     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
5227   %}
5228   ins_pipe( fpu_reg_reg );
5229 %}
5230 
5231 // Following pseudo code describes the algorithm for max[FD]:
5232 // Min algorithm is on similar lines
5233 //  btmp = (b < +0.0) ? a : b
5234 //  atmp = (b < +0.0) ? b : a
5235 //  Tmp  = Max_Float(atmp , btmp)
5236 //  Res  = (atmp == NaN) ? atmp : Tmp
5237 
5238 // max = java.lang.Math.max(float a, float b)
5239 instruct maxF_reg(legRegF dst, legRegF a, legRegF b, legRegF tmp, legRegF atmp, legRegF btmp) %{
5240   predicate(UseAVX > 0 && !n->is_reduction());
5241   match(Set dst (MaxF a b));
5242   effect(USE a, USE b, TEMP tmp, TEMP atmp, TEMP btmp);
5243   format %{
5244      "blendvps         $btmp,$b,$a,$b           \n\t"
5245      "blendvps         $atmp,$a,$b,$b           \n\t"
5246      "vmaxss           $tmp,$atmp,$btmp         \n\t"
5247      "cmpps.unordered  $btmp,$atmp,$atmp        \n\t"
5248      "blendvps         $dst,$tmp,$atmp,$btmp    \n\t"
5249   %}
5250   ins_encode %{
5251     int vector_len = Assembler::AVX_128bit;
5252     __ blendvps($btmp$$XMMRegister, $b$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, vector_len);
5253     __ blendvps($atmp$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $b$$XMMRegister, vector_len);
5254     __ vmaxss($tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister);
5255     __ cmpps($btmp$$XMMRegister, $atmp$$XMMRegister, $atmp$$XMMRegister, Assembler::_false, vector_len);
5256     __ blendvps($dst$$XMMRegister, $tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister, vector_len);
5257  %}
5258   ins_pipe( pipe_slow );
5259 %}
5260 
5261 instruct maxF_reduction_reg(legRegF dst, legRegF a, legRegF b, legRegF xmmt, rRegI tmp, rFlagsReg cr) %{
5262   predicate(UseAVX > 0 && n->is_reduction());
5263   match(Set dst (MaxF a b));
5264   effect(USE a, USE b, TEMP xmmt, TEMP tmp, KILL cr);
5265 
5266   format %{ "$dst = max($a, $b)\t# intrinsic (float)" %}
5267   ins_encode %{
5268     emit_fp_min_max(_masm, $dst$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $xmmt$$XMMRegister, $tmp$$Register,
5269                     false /*min*/, true /*single*/);
5270   %}
5271   ins_pipe( pipe_slow );
5272 %}
5273 
5274 // max = java.lang.Math.max(double a, double b)
5275 instruct maxD_reg(legRegD dst, legRegD a, legRegD b, legRegD tmp, legRegD atmp, legRegD btmp) %{
5276   predicate(UseAVX > 0 && !n->is_reduction());
5277   match(Set dst (MaxD a b));
5278   effect(USE a, USE b, TEMP atmp, TEMP btmp, TEMP tmp);
5279   format %{
5280      "blendvpd         $btmp,$b,$a,$b            \n\t"
5281      "blendvpd         $atmp,$a,$b,$b            \n\t"
5282      "vmaxsd           $tmp,$atmp,$btmp          \n\t"
5283      "cmppd.unordered  $btmp,$atmp,$atmp         \n\t"
5284      "blendvpd         $dst,$tmp,$atmp,$btmp     \n\t"
5285   %}
5286   ins_encode %{
5287     int vector_len = Assembler::AVX_128bit;
5288     __ blendvpd($btmp$$XMMRegister, $b$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, vector_len);
5289     __ blendvpd($atmp$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $b$$XMMRegister, vector_len);
5290     __ vmaxsd($tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister);
5291     __ cmppd($btmp$$XMMRegister, $atmp$$XMMRegister, $atmp$$XMMRegister, Assembler::_false, vector_len);
5292     __ blendvpd($dst$$XMMRegister, $tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister, vector_len);
5293   %}
5294   ins_pipe( pipe_slow );
5295 %}
5296 
5297 instruct maxD_reduction_reg(legRegD dst, legRegD a, legRegD b, legRegD xmmt, rRegL tmp, rFlagsReg cr) %{
5298   predicate(UseAVX > 0 && n->is_reduction());
5299   match(Set dst (MaxD a b));
5300   effect(USE a, USE b, TEMP xmmt, TEMP tmp, KILL cr);
5301 
5302   format %{ "$dst = max($a, $b)\t# intrinsic (double)" %}
5303   ins_encode %{
5304     emit_fp_min_max(_masm, $dst$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $xmmt$$XMMRegister, $tmp$$Register,
5305                     false /*min*/, false /*single*/);
5306   %}
5307   ins_pipe( pipe_slow );
5308 %}
5309 
5310 // min = java.lang.Math.min(float a, float b)
5311 instruct minF_reg(legRegF dst, legRegF a, legRegF b, legRegF tmp, legRegF atmp, legRegF btmp) %{
5312   predicate(UseAVX > 0 && !n->is_reduction());
5313   match(Set dst (MinF a b));
5314   effect(USE a, USE b, TEMP tmp, TEMP atmp, TEMP btmp);
5315   format %{
5316      "blendvps         $atmp,$a,$b,$a             \n\t"
5317      "blendvps         $btmp,$b,$a,$a             \n\t"
5318      "vminss           $tmp,$atmp,$btmp           \n\t"
5319      "cmpps.unordered  $btmp,$atmp,$atmp          \n\t"
5320      "blendvps         $dst,$tmp,$atmp,$btmp      \n\t"
5321   %}
5322   ins_encode %{
5323     int vector_len = Assembler::AVX_128bit;
5324     __ blendvps($atmp$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $a$$XMMRegister, vector_len);
5325     __ blendvps($btmp$$XMMRegister, $b$$XMMRegister, $a$$XMMRegister, $a$$XMMRegister, vector_len);
5326     __ vminss($tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister);
5327     __ cmpps($btmp$$XMMRegister, $atmp$$XMMRegister, $atmp$$XMMRegister, Assembler::_false, vector_len);
5328     __ blendvps($dst$$XMMRegister, $tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister, vector_len);
5329   %}
5330   ins_pipe( pipe_slow );
5331 %}
5332 
5333 instruct minF_reduction_reg(legRegF dst, legRegF a, legRegF b, legRegF xmmt, rRegI tmp, rFlagsReg cr) %{
5334   predicate(UseAVX > 0 && n->is_reduction());
5335   match(Set dst (MinF a b));
5336   effect(USE a, USE b, TEMP xmmt, TEMP tmp, KILL cr);
5337 
5338   format %{ "$dst = min($a, $b)\t# intrinsic (float)" %}
5339   ins_encode %{
5340     emit_fp_min_max(_masm, $dst$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $xmmt$$XMMRegister, $tmp$$Register,
5341                     true /*min*/, true /*single*/);
5342   %}
5343   ins_pipe( pipe_slow );
5344 %}
5345 
5346 // min = java.lang.Math.min(double a, double b)
5347 instruct minD_reg(legRegD dst, legRegD a, legRegD b, legRegD tmp, legRegD atmp, legRegD btmp) %{
5348   predicate(UseAVX > 0 && !n->is_reduction());
5349   match(Set dst (MinD a b));
5350   effect(USE a, USE b, TEMP tmp, TEMP atmp, TEMP btmp);
5351   format %{
5352      "blendvpd         $atmp,$a,$b,$a           \n\t"
5353      "blendvpd         $btmp,$b,$a,$a           \n\t"
5354      "vminsd           $tmp,$atmp,$btmp         \n\t"
5355      "cmppd.unordered  $btmp,$atmp,$atmp        \n\t"
5356      "blendvpd         $dst,$tmp,$atmp,$btmp    \n\t"
5357   %}
5358   ins_encode %{
5359     int vector_len = Assembler::AVX_128bit;
5360     __ blendvpd($atmp$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $a$$XMMRegister, vector_len);
5361     __ blendvpd($btmp$$XMMRegister, $b$$XMMRegister, $a$$XMMRegister, $a$$XMMRegister, vector_len);
5362     __ vminsd($tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister);
5363     __ cmppd($btmp$$XMMRegister, $atmp$$XMMRegister, $atmp$$XMMRegister, Assembler::_false, vector_len);
5364     __ blendvpd($dst$$XMMRegister, $tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister, vector_len);
5365   %}
5366   ins_pipe( pipe_slow );
5367 %}
5368 
5369 instruct minD_reduction_reg(legRegD dst, legRegD a, legRegD b, legRegD xmmt, rRegL tmp, rFlagsReg cr) %{
5370   predicate(UseAVX > 0 && n->is_reduction());
5371   match(Set dst (MinD a b));
5372   effect(USE a, USE b, TEMP xmmt, TEMP tmp, KILL cr);
5373 
5374   format %{ "$dst = min($a, $b)\t# intrinsic (double)" %}
5375   ins_encode %{
5376     emit_fp_min_max(_masm, $dst$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $xmmt$$XMMRegister, $tmp$$Register,
5377                     true /*min*/, false /*single*/);
5378   %}
5379   ins_pipe( pipe_slow );
5380 %}
5381 
5382 // Load Effective Address
5383 instruct leaP8(rRegP dst, indOffset8 mem)
5384 %{
5385   match(Set dst mem);
5386 
5387   ins_cost(110); // XXX
5388   format %{ "leaq    $dst, $mem\t# ptr 8" %}
5389   opcode(0x8D);
5390   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5391   ins_pipe(ialu_reg_reg_fat);
5392 %}
5393 
5394 instruct leaP32(rRegP dst, indOffset32 mem)
5395 %{
5396   match(Set dst mem);
5397 
5398   ins_cost(110);
5399   format %{ "leaq    $dst, $mem\t# ptr 32" %}
5400   opcode(0x8D);
5401   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5402   ins_pipe(ialu_reg_reg_fat);
5403 %}
5404 
5405 // instruct leaPIdx(rRegP dst, indIndex mem)
5406 // %{
5407 //   match(Set dst mem);
5408 
5409 //   ins_cost(110);
5410 //   format %{ "leaq    $dst, $mem\t# ptr idx" %}
5411 //   opcode(0x8D);
5412 //   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5413 //   ins_pipe(ialu_reg_reg_fat);
5414 // %}
5415 
5416 instruct leaPIdxOff(rRegP dst, indIndexOffset mem)
5417 %{
5418   match(Set dst mem);
5419 
5420   ins_cost(110);
5421   format %{ "leaq    $dst, $mem\t# ptr idxoff" %}
5422   opcode(0x8D);
5423   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5424   ins_pipe(ialu_reg_reg_fat);
5425 %}
5426 
5427 instruct leaPIdxScale(rRegP dst, indIndexScale mem)
5428 %{
5429   match(Set dst mem);
5430 
5431   ins_cost(110);
5432   format %{ "leaq    $dst, $mem\t# ptr idxscale" %}
5433   opcode(0x8D);
5434   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5435   ins_pipe(ialu_reg_reg_fat);
5436 %}
5437 
5438 instruct leaPPosIdxScale(rRegP dst, indPosIndexScale mem)
5439 %{
5440   match(Set dst mem);
5441 
5442   ins_cost(110);
5443   format %{ "leaq    $dst, $mem\t# ptr idxscale" %}
5444   opcode(0x8D);
5445   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5446   ins_pipe(ialu_reg_reg_fat);
5447 %}
5448 
5449 instruct leaPIdxScaleOff(rRegP dst, indIndexScaleOffset mem)
5450 %{
5451   match(Set dst mem);
5452 
5453   ins_cost(110);
5454   format %{ "leaq    $dst, $mem\t# ptr idxscaleoff" %}
5455   opcode(0x8D);
5456   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5457   ins_pipe(ialu_reg_reg_fat);
5458 %}
5459 
5460 instruct leaPPosIdxOff(rRegP dst, indPosIndexOffset mem)
5461 %{
5462   match(Set dst mem);
5463 
5464   ins_cost(110);
5465   format %{ "leaq    $dst, $mem\t# ptr posidxoff" %}
5466   opcode(0x8D);
5467   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5468   ins_pipe(ialu_reg_reg_fat);
5469 %}
5470 
5471 instruct leaPPosIdxScaleOff(rRegP dst, indPosIndexScaleOffset mem)
5472 %{
5473   match(Set dst mem);
5474 
5475   ins_cost(110);
5476   format %{ "leaq    $dst, $mem\t# ptr posidxscaleoff" %}
5477   opcode(0x8D);
5478   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5479   ins_pipe(ialu_reg_reg_fat);
5480 %}
5481 
5482 // Load Effective Address which uses Narrow (32-bits) oop
5483 instruct leaPCompressedOopOffset(rRegP dst, indCompressedOopOffset mem)
5484 %{
5485   predicate(UseCompressedOops && (CompressedOops::shift() != 0));
5486   match(Set dst mem);
5487 
5488   ins_cost(110);
5489   format %{ "leaq    $dst, $mem\t# ptr compressedoopoff32" %}
5490   opcode(0x8D);
5491   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5492   ins_pipe(ialu_reg_reg_fat);
5493 %}
5494 
5495 instruct leaP8Narrow(rRegP dst, indOffset8Narrow mem)
5496 %{
5497   predicate(CompressedOops::shift() == 0);
5498   match(Set dst mem);
5499 
5500   ins_cost(110); // XXX
5501   format %{ "leaq    $dst, $mem\t# ptr off8narrow" %}
5502   opcode(0x8D);
5503   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5504   ins_pipe(ialu_reg_reg_fat);
5505 %}
5506 
5507 instruct leaP32Narrow(rRegP dst, indOffset32Narrow mem)
5508 %{
5509   predicate(CompressedOops::shift() == 0);
5510   match(Set dst mem);
5511 
5512   ins_cost(110);
5513   format %{ "leaq    $dst, $mem\t# ptr off32narrow" %}
5514   opcode(0x8D);
5515   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5516   ins_pipe(ialu_reg_reg_fat);
5517 %}
5518 
5519 instruct leaPIdxOffNarrow(rRegP dst, indIndexOffsetNarrow mem)
5520 %{
5521   predicate(CompressedOops::shift() == 0);
5522   match(Set dst mem);
5523 
5524   ins_cost(110);
5525   format %{ "leaq    $dst, $mem\t# ptr idxoffnarrow" %}
5526   opcode(0x8D);
5527   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5528   ins_pipe(ialu_reg_reg_fat);
5529 %}
5530 
5531 instruct leaPIdxScaleNarrow(rRegP dst, indIndexScaleNarrow mem)
5532 %{
5533   predicate(CompressedOops::shift() == 0);
5534   match(Set dst mem);
5535 
5536   ins_cost(110);
5537   format %{ "leaq    $dst, $mem\t# ptr idxscalenarrow" %}
5538   opcode(0x8D);
5539   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5540   ins_pipe(ialu_reg_reg_fat);
5541 %}
5542 
5543 instruct leaPIdxScaleOffNarrow(rRegP dst, indIndexScaleOffsetNarrow mem)
5544 %{
5545   predicate(CompressedOops::shift() == 0);
5546   match(Set dst mem);
5547 
5548   ins_cost(110);
5549   format %{ "leaq    $dst, $mem\t# ptr idxscaleoffnarrow" %}
5550   opcode(0x8D);
5551   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5552   ins_pipe(ialu_reg_reg_fat);
5553 %}
5554 
5555 instruct leaPPosIdxOffNarrow(rRegP dst, indPosIndexOffsetNarrow mem)
5556 %{
5557   predicate(CompressedOops::shift() == 0);
5558   match(Set dst mem);
5559 
5560   ins_cost(110);
5561   format %{ "leaq    $dst, $mem\t# ptr posidxoffnarrow" %}
5562   opcode(0x8D);
5563   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5564   ins_pipe(ialu_reg_reg_fat);
5565 %}
5566 
5567 instruct leaPPosIdxScaleOffNarrow(rRegP dst, indPosIndexScaleOffsetNarrow mem)
5568 %{
5569   predicate(CompressedOops::shift() == 0);
5570   match(Set dst mem);
5571 
5572   ins_cost(110);
5573   format %{ "leaq    $dst, $mem\t# ptr posidxscaleoffnarrow" %}
5574   opcode(0x8D);
5575   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5576   ins_pipe(ialu_reg_reg_fat);
5577 %}
5578 
5579 instruct loadConI(rRegI dst, immI src)
5580 %{
5581   match(Set dst src);
5582 
5583   format %{ "movl    $dst, $src\t# int" %}
5584   ins_encode(load_immI(dst, src));
5585   ins_pipe(ialu_reg_fat); // XXX
5586 %}
5587 
5588 instruct loadConI0(rRegI dst, immI0 src, rFlagsReg cr)
5589 %{
5590   match(Set dst src);
5591   effect(KILL cr);
5592 
5593   ins_cost(50);
5594   format %{ "xorl    $dst, $dst\t# int" %}
5595   opcode(0x33); /* + rd */
5596   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5597   ins_pipe(ialu_reg);
5598 %}
5599 
5600 instruct loadConL(rRegL dst, immL src)
5601 %{
5602   match(Set dst src);
5603 
5604   ins_cost(150);
5605   format %{ "movq    $dst, $src\t# long" %}
5606   ins_encode(load_immL(dst, src));
5607   ins_pipe(ialu_reg);
5608 %}
5609 
5610 instruct loadConL0(rRegL dst, immL0 src, rFlagsReg cr)
5611 %{
5612   match(Set dst src);
5613   effect(KILL cr);
5614 
5615   ins_cost(50);
5616   format %{ "xorl    $dst, $dst\t# long" %}
5617   opcode(0x33); /* + rd */
5618   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5619   ins_pipe(ialu_reg); // XXX
5620 %}
5621 
5622 instruct loadConUL32(rRegL dst, immUL32 src)
5623 %{
5624   match(Set dst src);
5625 
5626   ins_cost(60);
5627   format %{ "movl    $dst, $src\t# long (unsigned 32-bit)" %}
5628   ins_encode(load_immUL32(dst, src));
5629   ins_pipe(ialu_reg);
5630 %}
5631 
5632 instruct loadConL32(rRegL dst, immL32 src)
5633 %{
5634   match(Set dst src);
5635 
5636   ins_cost(70);
5637   format %{ "movq    $dst, $src\t# long (32-bit)" %}
5638   ins_encode(load_immL32(dst, src));
5639   ins_pipe(ialu_reg);
5640 %}
5641 
5642 instruct loadConP(rRegP dst, immP con) %{
5643   match(Set dst con);
5644 
5645   format %{ "movq    $dst, $con\t# ptr" %}
5646   ins_encode(load_immP(dst, con));
5647   ins_pipe(ialu_reg_fat); // XXX
5648 %}
5649 
5650 instruct loadConP0(rRegP dst, immP0 src, rFlagsReg cr)
5651 %{
5652   match(Set dst src);
5653   effect(KILL cr);
5654 
5655   ins_cost(50);
5656   format %{ "xorl    $dst, $dst\t# ptr" %}
5657   opcode(0x33); /* + rd */
5658   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5659   ins_pipe(ialu_reg);
5660 %}
5661 
5662 instruct loadConP31(rRegP dst, immP31 src, rFlagsReg cr)
5663 %{
5664   match(Set dst src);
5665   effect(KILL cr);
5666 
5667   ins_cost(60);
5668   format %{ "movl    $dst, $src\t# ptr (positive 32-bit)" %}
5669   ins_encode(load_immP31(dst, src));
5670   ins_pipe(ialu_reg);
5671 %}
5672 
5673 instruct loadConF(regF dst, immF con) %{
5674   match(Set dst con);
5675   ins_cost(125);
5676   format %{ "movss   $dst, [$constantaddress]\t# load from constant table: float=$con" %}
5677   ins_encode %{
5678     __ movflt($dst$$XMMRegister, $constantaddress($con));
5679   %}
5680   ins_pipe(pipe_slow);
5681 %}
5682 
5683 instruct loadConN0(rRegN dst, immN0 src, rFlagsReg cr) %{
5684   match(Set dst src);
5685   effect(KILL cr);
5686   format %{ "xorq    $dst, $src\t# compressed NULL ptr" %}
5687   ins_encode %{
5688     __ xorq($dst$$Register, $dst$$Register);
5689   %}
5690   ins_pipe(ialu_reg);
5691 %}
5692 
5693 instruct loadConN(rRegN dst, immN src) %{
5694   match(Set dst src);
5695 
5696   ins_cost(125);
5697   format %{ "movl    $dst, $src\t# compressed ptr" %}
5698   ins_encode %{
5699     address con = (address)$src$$constant;
5700     if (con == NULL) {
5701       ShouldNotReachHere();
5702     } else {
5703       __ set_narrow_oop($dst$$Register, (jobject)$src$$constant);
5704     }
5705   %}
5706   ins_pipe(ialu_reg_fat); // XXX
5707 %}
5708 
5709 instruct loadConNKlass(rRegN dst, immNKlass src) %{
5710   match(Set dst src);
5711 
5712   ins_cost(125);
5713   format %{ "movl    $dst, $src\t# compressed klass ptr" %}
5714   ins_encode %{
5715     address con = (address)$src$$constant;
5716     if (con == NULL) {
5717       ShouldNotReachHere();
5718     } else {
5719       __ set_narrow_klass($dst$$Register, (Klass*)$src$$constant);
5720     }
5721   %}
5722   ins_pipe(ialu_reg_fat); // XXX
5723 %}
5724 
5725 instruct loadConF0(regF dst, immF0 src)
5726 %{
5727   match(Set dst src);
5728   ins_cost(100);
5729 
5730   format %{ "xorps   $dst, $dst\t# float 0.0" %}
5731   ins_encode %{
5732     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
5733   %}
5734   ins_pipe(pipe_slow);
5735 %}
5736 
5737 // Use the same format since predicate() can not be used here.
5738 instruct loadConD(regD dst, immD con) %{
5739   match(Set dst con);
5740   ins_cost(125);
5741   format %{ "movsd   $dst, [$constantaddress]\t# load from constant table: double=$con" %}
5742   ins_encode %{
5743     __ movdbl($dst$$XMMRegister, $constantaddress($con));
5744   %}
5745   ins_pipe(pipe_slow);
5746 %}
5747 
5748 instruct loadConD0(regD dst, immD0 src)
5749 %{
5750   match(Set dst src);
5751   ins_cost(100);
5752 
5753   format %{ "xorpd   $dst, $dst\t# double 0.0" %}
5754   ins_encode %{
5755     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
5756   %}
5757   ins_pipe(pipe_slow);
5758 %}
5759 
5760 instruct loadSSI(rRegI dst, stackSlotI src)
5761 %{
5762   match(Set dst src);
5763 
5764   ins_cost(125);
5765   format %{ "movl    $dst, $src\t# int stk" %}
5766   opcode(0x8B);
5767   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
5768   ins_pipe(ialu_reg_mem);
5769 %}
5770 
5771 instruct loadSSL(rRegL dst, stackSlotL src)
5772 %{
5773   match(Set dst src);
5774 
5775   ins_cost(125);
5776   format %{ "movq    $dst, $src\t# long stk" %}
5777   opcode(0x8B);
5778   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
5779   ins_pipe(ialu_reg_mem);
5780 %}
5781 
5782 instruct loadSSP(rRegP dst, stackSlotP src)
5783 %{
5784   match(Set dst src);
5785 
5786   ins_cost(125);
5787   format %{ "movq    $dst, $src\t# ptr stk" %}
5788   opcode(0x8B);
5789   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
5790   ins_pipe(ialu_reg_mem);
5791 %}
5792 
5793 instruct loadSSF(regF dst, stackSlotF src)
5794 %{
5795   match(Set dst src);
5796 
5797   ins_cost(125);
5798   format %{ "movss   $dst, $src\t# float stk" %}
5799   ins_encode %{
5800     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
5801   %}
5802   ins_pipe(pipe_slow); // XXX
5803 %}
5804 
5805 // Use the same format since predicate() can not be used here.
5806 instruct loadSSD(regD dst, stackSlotD src)
5807 %{
5808   match(Set dst src);
5809 
5810   ins_cost(125);
5811   format %{ "movsd   $dst, $src\t# double stk" %}
5812   ins_encode  %{
5813     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
5814   %}
5815   ins_pipe(pipe_slow); // XXX
5816 %}
5817 
5818 // Prefetch instructions for allocation.
5819 // Must be safe to execute with invalid address (cannot fault).
5820 
5821 instruct prefetchAlloc( memory mem ) %{
5822   predicate(AllocatePrefetchInstr==3);
5823   match(PrefetchAllocation mem);
5824   ins_cost(125);
5825 
5826   format %{ "PREFETCHW $mem\t# Prefetch allocation into level 1 cache and mark modified" %}
5827   ins_encode %{
5828     __ prefetchw($mem$$Address);
5829   %}
5830   ins_pipe(ialu_mem);
5831 %}
5832 
5833 instruct prefetchAllocNTA( memory mem ) %{
5834   predicate(AllocatePrefetchInstr==0);
5835   match(PrefetchAllocation mem);
5836   ins_cost(125);
5837 
5838   format %{ "PREFETCHNTA $mem\t# Prefetch allocation to non-temporal cache for write" %}
5839   ins_encode %{
5840     __ prefetchnta($mem$$Address);
5841   %}
5842   ins_pipe(ialu_mem);
5843 %}
5844 
5845 instruct prefetchAllocT0( memory mem ) %{
5846   predicate(AllocatePrefetchInstr==1);
5847   match(PrefetchAllocation mem);
5848   ins_cost(125);
5849 
5850   format %{ "PREFETCHT0 $mem\t# Prefetch allocation to level 1 and 2 caches for write" %}
5851   ins_encode %{
5852     __ prefetcht0($mem$$Address);
5853   %}
5854   ins_pipe(ialu_mem);
5855 %}
5856 
5857 instruct prefetchAllocT2( memory mem ) %{
5858   predicate(AllocatePrefetchInstr==2);
5859   match(PrefetchAllocation mem);
5860   ins_cost(125);
5861 
5862   format %{ "PREFETCHT2 $mem\t# Prefetch allocation to level 2 cache for write" %}
5863   ins_encode %{
5864     __ prefetcht2($mem$$Address);
5865   %}
5866   ins_pipe(ialu_mem);
5867 %}
5868 
5869 //----------Store Instructions-------------------------------------------------
5870 
5871 // Store Byte
5872 instruct storeB(memory mem, rRegI src)
5873 %{
5874   match(Set mem (StoreB mem src));
5875 
5876   ins_cost(125); // XXX
5877   format %{ "movb    $mem, $src\t# byte" %}
5878   opcode(0x88);
5879   ins_encode(REX_breg_mem(src, mem), OpcP, reg_mem(src, mem));
5880   ins_pipe(ialu_mem_reg);
5881 %}
5882 
5883 // Store Char/Short
5884 instruct storeC(memory mem, rRegI src)
5885 %{
5886   match(Set mem (StoreC mem src));
5887 
5888   ins_cost(125); // XXX
5889   format %{ "movw    $mem, $src\t# char/short" %}
5890   opcode(0x89);
5891   ins_encode(SizePrefix, REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
5892   ins_pipe(ialu_mem_reg);
5893 %}
5894 
5895 // Store Integer
5896 instruct storeI(memory mem, rRegI src)
5897 %{
5898   match(Set mem (StoreI mem src));
5899 
5900   ins_cost(125); // XXX
5901   format %{ "movl    $mem, $src\t# int" %}
5902   opcode(0x89);
5903   ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
5904   ins_pipe(ialu_mem_reg);
5905 %}
5906 
5907 // Store Long
5908 instruct storeL(memory mem, rRegL src)
5909 %{
5910   match(Set mem (StoreL mem src));
5911 
5912   ins_cost(125); // XXX
5913   format %{ "movq    $mem, $src\t# long" %}
5914   opcode(0x89);
5915   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
5916   ins_pipe(ialu_mem_reg); // XXX
5917 %}
5918 
5919 // Store Pointer
5920 instruct storeP(memory mem, any_RegP src)
5921 %{
5922   match(Set mem (StoreP mem src));
5923 
5924   ins_cost(125); // XXX
5925   format %{ "movq    $mem, $src\t# ptr" %}
5926   opcode(0x89);
5927   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
5928   ins_pipe(ialu_mem_reg);
5929 %}
5930 
5931 instruct storeImmP0(memory mem, immP0 zero)
5932 %{
5933   predicate(UseCompressedOops && (CompressedOops::base() == NULL));
5934   match(Set mem (StoreP mem zero));
5935 
5936   ins_cost(125); // XXX
5937   format %{ "movq    $mem, R12\t# ptr (R12_heapbase==0)" %}
5938   ins_encode %{
5939     __ movq($mem$$Address, r12);
5940   %}
5941   ins_pipe(ialu_mem_reg);
5942 %}
5943 
5944 // Store NULL Pointer, mark word, or other simple pointer constant.
5945 instruct storeImmP(memory mem, immP31 src)
5946 %{
5947   match(Set mem (StoreP mem src));
5948 
5949   ins_cost(150); // XXX
5950   format %{ "movq    $mem, $src\t# ptr" %}
5951   opcode(0xC7); /* C7 /0 */
5952   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
5953   ins_pipe(ialu_mem_imm);
5954 %}
5955 
5956 // Store Compressed Pointer
5957 instruct storeN(memory mem, rRegN src)
5958 %{
5959   match(Set mem (StoreN mem src));
5960 
5961   ins_cost(125); // XXX
5962   format %{ "movl    $mem, $src\t# compressed ptr" %}
5963   ins_encode %{
5964     __ movl($mem$$Address, $src$$Register);
5965   %}
5966   ins_pipe(ialu_mem_reg);
5967 %}
5968 
5969 instruct storeNKlass(memory mem, rRegN src)
5970 %{
5971   match(Set mem (StoreNKlass mem src));
5972 
5973   ins_cost(125); // XXX
5974   format %{ "movl    $mem, $src\t# compressed klass ptr" %}
5975   ins_encode %{
5976     __ movl($mem$$Address, $src$$Register);
5977   %}
5978   ins_pipe(ialu_mem_reg);
5979 %}
5980 
5981 instruct storeImmN0(memory mem, immN0 zero)
5982 %{
5983   predicate(CompressedOops::base() == NULL);
5984   match(Set mem (StoreN mem zero));
5985 
5986   ins_cost(125); // XXX
5987   format %{ "movl    $mem, R12\t# compressed ptr (R12_heapbase==0)" %}
5988   ins_encode %{
5989     __ movl($mem$$Address, r12);
5990   %}
5991   ins_pipe(ialu_mem_reg);
5992 %}
5993 
5994 instruct storeImmN(memory mem, immN src)
5995 %{
5996   match(Set mem (StoreN mem src));
5997 
5998   ins_cost(150); // XXX
5999   format %{ "movl    $mem, $src\t# compressed ptr" %}
6000   ins_encode %{
6001     address con = (address)$src$$constant;
6002     if (con == NULL) {
6003       __ movl($mem$$Address, (int32_t)0);
6004     } else {
6005       __ set_narrow_oop($mem$$Address, (jobject)$src$$constant);
6006     }
6007   %}
6008   ins_pipe(ialu_mem_imm);
6009 %}
6010 
6011 instruct storeImmNKlass(memory mem, immNKlass src)
6012 %{
6013   match(Set mem (StoreNKlass mem src));
6014 
6015   ins_cost(150); // XXX
6016   format %{ "movl    $mem, $src\t# compressed klass ptr" %}
6017   ins_encode %{
6018     __ set_narrow_klass($mem$$Address, (Klass*)$src$$constant);
6019   %}
6020   ins_pipe(ialu_mem_imm);
6021 %}
6022 
6023 // Store Integer Immediate
6024 instruct storeImmI0(memory mem, immI0 zero)
6025 %{
6026   predicate(UseCompressedOops && (CompressedOops::base() == NULL));
6027   match(Set mem (StoreI mem zero));
6028 
6029   ins_cost(125); // XXX
6030   format %{ "movl    $mem, R12\t# int (R12_heapbase==0)" %}
6031   ins_encode %{
6032     __ movl($mem$$Address, r12);
6033   %}
6034   ins_pipe(ialu_mem_reg);
6035 %}
6036 
6037 instruct storeImmI(memory mem, immI src)
6038 %{
6039   match(Set mem (StoreI mem src));
6040 
6041   ins_cost(150);
6042   format %{ "movl    $mem, $src\t# int" %}
6043   opcode(0xC7); /* C7 /0 */
6044   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
6045   ins_pipe(ialu_mem_imm);
6046 %}
6047 
6048 // Store Long Immediate
6049 instruct storeImmL0(memory mem, immL0 zero)
6050 %{
6051   predicate(UseCompressedOops && (CompressedOops::base() == NULL));
6052   match(Set mem (StoreL mem zero));
6053 
6054   ins_cost(125); // XXX
6055   format %{ "movq    $mem, R12\t# long (R12_heapbase==0)" %}
6056   ins_encode %{
6057     __ movq($mem$$Address, r12);
6058   %}
6059   ins_pipe(ialu_mem_reg);
6060 %}
6061 
6062 instruct storeImmL(memory mem, immL32 src)
6063 %{
6064   match(Set mem (StoreL mem src));
6065 
6066   ins_cost(150);
6067   format %{ "movq    $mem, $src\t# long" %}
6068   opcode(0xC7); /* C7 /0 */
6069   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
6070   ins_pipe(ialu_mem_imm);
6071 %}
6072 
6073 // Store Short/Char Immediate
6074 instruct storeImmC0(memory mem, immI0 zero)
6075 %{
6076   predicate(UseCompressedOops && (CompressedOops::base() == NULL));
6077   match(Set mem (StoreC mem zero));
6078 
6079   ins_cost(125); // XXX
6080   format %{ "movw    $mem, R12\t# short/char (R12_heapbase==0)" %}
6081   ins_encode %{
6082     __ movw($mem$$Address, r12);
6083   %}
6084   ins_pipe(ialu_mem_reg);
6085 %}
6086 
6087 instruct storeImmI16(memory mem, immI16 src)
6088 %{
6089   predicate(UseStoreImmI16);
6090   match(Set mem (StoreC mem src));
6091 
6092   ins_cost(150);
6093   format %{ "movw    $mem, $src\t# short/char" %}
6094   opcode(0xC7); /* C7 /0 Same as 32 store immediate with prefix */
6095   ins_encode(SizePrefix, REX_mem(mem), OpcP, RM_opc_mem(0x00, mem),Con16(src));
6096   ins_pipe(ialu_mem_imm);
6097 %}
6098 
6099 // Store Byte Immediate
6100 instruct storeImmB0(memory mem, immI0 zero)
6101 %{
6102   predicate(UseCompressedOops && (CompressedOops::base() == NULL));
6103   match(Set mem (StoreB mem zero));
6104 
6105   ins_cost(125); // XXX
6106   format %{ "movb    $mem, R12\t# short/char (R12_heapbase==0)" %}
6107   ins_encode %{
6108     __ movb($mem$$Address, r12);
6109   %}
6110   ins_pipe(ialu_mem_reg);
6111 %}
6112 
6113 instruct storeImmB(memory mem, immI8 src)
6114 %{
6115   match(Set mem (StoreB mem src));
6116 
6117   ins_cost(150); // XXX
6118   format %{ "movb    $mem, $src\t# byte" %}
6119   opcode(0xC6); /* C6 /0 */
6120   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
6121   ins_pipe(ialu_mem_imm);
6122 %}
6123 
6124 // Store CMS card-mark Immediate
6125 instruct storeImmCM0_reg(memory mem, immI0 zero)
6126 %{
6127   predicate(UseCompressedOops && (CompressedOops::base() == NULL));
6128   match(Set mem (StoreCM mem zero));
6129 
6130   ins_cost(125); // XXX
6131   format %{ "movb    $mem, R12\t# CMS card-mark byte 0 (R12_heapbase==0)" %}
6132   ins_encode %{
6133     __ movb($mem$$Address, r12);
6134   %}
6135   ins_pipe(ialu_mem_reg);
6136 %}
6137 
6138 instruct storeImmCM0(memory mem, immI0 src)
6139 %{
6140   match(Set mem (StoreCM mem src));
6141 
6142   ins_cost(150); // XXX
6143   format %{ "movb    $mem, $src\t# CMS card-mark byte 0" %}
6144   opcode(0xC6); /* C6 /0 */
6145   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
6146   ins_pipe(ialu_mem_imm);
6147 %}
6148 
6149 // Store Float
6150 instruct storeF(memory mem, regF src)
6151 %{
6152   match(Set mem (StoreF mem src));
6153 
6154   ins_cost(95); // XXX
6155   format %{ "movss   $mem, $src\t# float" %}
6156   ins_encode %{
6157     __ movflt($mem$$Address, $src$$XMMRegister);
6158   %}
6159   ins_pipe(pipe_slow); // XXX
6160 %}
6161 
6162 // Store immediate Float value (it is faster than store from XMM register)
6163 instruct storeF0(memory mem, immF0 zero)
6164 %{
6165   predicate(UseCompressedOops && (CompressedOops::base() == NULL));
6166   match(Set mem (StoreF mem zero));
6167 
6168   ins_cost(25); // XXX
6169   format %{ "movl    $mem, R12\t# float 0. (R12_heapbase==0)" %}
6170   ins_encode %{
6171     __ movl($mem$$Address, r12);
6172   %}
6173   ins_pipe(ialu_mem_reg);
6174 %}
6175 
6176 instruct storeF_imm(memory mem, immF src)
6177 %{
6178   match(Set mem (StoreF mem src));
6179 
6180   ins_cost(50);
6181   format %{ "movl    $mem, $src\t# float" %}
6182   opcode(0xC7); /* C7 /0 */
6183   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
6184   ins_pipe(ialu_mem_imm);
6185 %}
6186 
6187 // Store Double
6188 instruct storeD(memory mem, regD src)
6189 %{
6190   match(Set mem (StoreD mem src));
6191 
6192   ins_cost(95); // XXX
6193   format %{ "movsd   $mem, $src\t# double" %}
6194   ins_encode %{
6195     __ movdbl($mem$$Address, $src$$XMMRegister);
6196   %}
6197   ins_pipe(pipe_slow); // XXX
6198 %}
6199 
6200 // Store immediate double 0.0 (it is faster than store from XMM register)
6201 instruct storeD0_imm(memory mem, immD0 src)
6202 %{
6203   predicate(!UseCompressedOops || (CompressedOops::base() != NULL));
6204   match(Set mem (StoreD mem src));
6205 
6206   ins_cost(50);
6207   format %{ "movq    $mem, $src\t# double 0." %}
6208   opcode(0xC7); /* C7 /0 */
6209   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
6210   ins_pipe(ialu_mem_imm);
6211 %}
6212 
6213 instruct storeD0(memory mem, immD0 zero)
6214 %{
6215   predicate(UseCompressedOops && (CompressedOops::base() == NULL));
6216   match(Set mem (StoreD mem zero));
6217 
6218   ins_cost(25); // XXX
6219   format %{ "movq    $mem, R12\t# double 0. (R12_heapbase==0)" %}
6220   ins_encode %{
6221     __ movq($mem$$Address, r12);
6222   %}
6223   ins_pipe(ialu_mem_reg);
6224 %}
6225 
6226 instruct storeSSI(stackSlotI dst, rRegI src)
6227 %{
6228   match(Set dst src);
6229 
6230   ins_cost(100);
6231   format %{ "movl    $dst, $src\t# int stk" %}
6232   opcode(0x89);
6233   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
6234   ins_pipe( ialu_mem_reg );
6235 %}
6236 
6237 instruct storeSSL(stackSlotL dst, rRegL src)
6238 %{
6239   match(Set dst src);
6240 
6241   ins_cost(100);
6242   format %{ "movq    $dst, $src\t# long stk" %}
6243   opcode(0x89);
6244   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
6245   ins_pipe(ialu_mem_reg);
6246 %}
6247 
6248 instruct storeSSP(stackSlotP dst, rRegP src)
6249 %{
6250   match(Set dst src);
6251 
6252   ins_cost(100);
6253   format %{ "movq    $dst, $src\t# ptr stk" %}
6254   opcode(0x89);
6255   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
6256   ins_pipe(ialu_mem_reg);
6257 %}
6258 
6259 instruct storeSSF(stackSlotF dst, regF src)
6260 %{
6261   match(Set dst src);
6262 
6263   ins_cost(95); // XXX
6264   format %{ "movss   $dst, $src\t# float stk" %}
6265   ins_encode %{
6266     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
6267   %}
6268   ins_pipe(pipe_slow); // XXX
6269 %}
6270 
6271 instruct storeSSD(stackSlotD dst, regD src)
6272 %{
6273   match(Set dst src);
6274 
6275   ins_cost(95); // XXX
6276   format %{ "movsd   $dst, $src\t# double stk" %}
6277   ins_encode %{
6278     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
6279   %}
6280   ins_pipe(pipe_slow); // XXX
6281 %}
6282 
6283 instruct cacheWB(indirect addr)
6284 %{
6285   predicate(VM_Version::supports_data_cache_line_flush());
6286   match(CacheWB addr);
6287 
6288   ins_cost(100);
6289   format %{"cache wb $addr" %}
6290   ins_encode %{
6291     assert($addr->index_position() < 0, "should be");
6292     assert($addr$$disp == 0, "should be");
6293     __ cache_wb(Address($addr$$base$$Register, 0));
6294   %}
6295   ins_pipe(pipe_slow); // XXX
6296 %}
6297 
6298 instruct cacheWBPreSync()
6299 %{
6300   predicate(VM_Version::supports_data_cache_line_flush());
6301   match(CacheWBPreSync);
6302 
6303   ins_cost(100);
6304   format %{"cache wb presync" %}
6305   ins_encode %{
6306     __ cache_wbsync(true);
6307   %}
6308   ins_pipe(pipe_slow); // XXX
6309 %}
6310 
6311 instruct cacheWBPostSync()
6312 %{
6313   predicate(VM_Version::supports_data_cache_line_flush());
6314   match(CacheWBPostSync);
6315 
6316   ins_cost(100);
6317   format %{"cache wb postsync" %}
6318   ins_encode %{
6319     __ cache_wbsync(false);
6320   %}
6321   ins_pipe(pipe_slow); // XXX
6322 %}
6323 
6324 //----------BSWAP Instructions-------------------------------------------------
6325 instruct bytes_reverse_int(rRegI dst) %{
6326   match(Set dst (ReverseBytesI dst));
6327 
6328   format %{ "bswapl  $dst" %}
6329   opcode(0x0F, 0xC8);  /*Opcode 0F /C8 */
6330   ins_encode( REX_reg(dst), OpcP, opc2_reg(dst) );
6331   ins_pipe( ialu_reg );
6332 %}
6333 
6334 instruct bytes_reverse_long(rRegL dst) %{
6335   match(Set dst (ReverseBytesL dst));
6336 
6337   format %{ "bswapq  $dst" %}
6338   opcode(0x0F, 0xC8); /* Opcode 0F /C8 */
6339   ins_encode( REX_reg_wide(dst), OpcP, opc2_reg(dst) );
6340   ins_pipe( ialu_reg);
6341 %}
6342 
6343 instruct bytes_reverse_unsigned_short(rRegI dst, rFlagsReg cr) %{
6344   match(Set dst (ReverseBytesUS dst));
6345   effect(KILL cr);
6346 
6347   format %{ "bswapl  $dst\n\t"
6348             "shrl    $dst,16\n\t" %}
6349   ins_encode %{
6350     __ bswapl($dst$$Register);
6351     __ shrl($dst$$Register, 16);
6352   %}
6353   ins_pipe( ialu_reg );
6354 %}
6355 
6356 instruct bytes_reverse_short(rRegI dst, rFlagsReg cr) %{
6357   match(Set dst (ReverseBytesS dst));
6358   effect(KILL cr);
6359 
6360   format %{ "bswapl  $dst\n\t"
6361             "sar     $dst,16\n\t" %}
6362   ins_encode %{
6363     __ bswapl($dst$$Register);
6364     __ sarl($dst$$Register, 16);
6365   %}
6366   ins_pipe( ialu_reg );
6367 %}
6368 
6369 //---------- Zeros Count Instructions ------------------------------------------
6370 
6371 instruct countLeadingZerosI(rRegI dst, rRegI src, rFlagsReg cr) %{
6372   predicate(UseCountLeadingZerosInstruction);
6373   match(Set dst (CountLeadingZerosI src));
6374   effect(KILL cr);
6375 
6376   format %{ "lzcntl  $dst, $src\t# count leading zeros (int)" %}
6377   ins_encode %{
6378     __ lzcntl($dst$$Register, $src$$Register);
6379   %}
6380   ins_pipe(ialu_reg);
6381 %}
6382 
6383 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, rFlagsReg cr) %{
6384   predicate(!UseCountLeadingZerosInstruction);
6385   match(Set dst (CountLeadingZerosI src));
6386   effect(KILL cr);
6387 
6388   format %{ "bsrl    $dst, $src\t# count leading zeros (int)\n\t"
6389             "jnz     skip\n\t"
6390             "movl    $dst, -1\n"
6391       "skip:\n\t"
6392             "negl    $dst\n\t"
6393             "addl    $dst, 31" %}
6394   ins_encode %{
6395     Register Rdst = $dst$$Register;
6396     Register Rsrc = $src$$Register;
6397     Label skip;
6398     __ bsrl(Rdst, Rsrc);
6399     __ jccb(Assembler::notZero, skip);
6400     __ movl(Rdst, -1);
6401     __ bind(skip);
6402     __ negl(Rdst);
6403     __ addl(Rdst, BitsPerInt - 1);
6404   %}
6405   ins_pipe(ialu_reg);
6406 %}
6407 
6408 instruct countLeadingZerosL(rRegI dst, rRegL src, rFlagsReg cr) %{
6409   predicate(UseCountLeadingZerosInstruction);
6410   match(Set dst (CountLeadingZerosL src));
6411   effect(KILL cr);
6412 
6413   format %{ "lzcntq  $dst, $src\t# count leading zeros (long)" %}
6414   ins_encode %{
6415     __ lzcntq($dst$$Register, $src$$Register);
6416   %}
6417   ins_pipe(ialu_reg);
6418 %}
6419 
6420 instruct countLeadingZerosL_bsr(rRegI dst, rRegL src, rFlagsReg cr) %{
6421   predicate(!UseCountLeadingZerosInstruction);
6422   match(Set dst (CountLeadingZerosL src));
6423   effect(KILL cr);
6424 
6425   format %{ "bsrq    $dst, $src\t# count leading zeros (long)\n\t"
6426             "jnz     skip\n\t"
6427             "movl    $dst, -1\n"
6428       "skip:\n\t"
6429             "negl    $dst\n\t"
6430             "addl    $dst, 63" %}
6431   ins_encode %{
6432     Register Rdst = $dst$$Register;
6433     Register Rsrc = $src$$Register;
6434     Label skip;
6435     __ bsrq(Rdst, Rsrc);
6436     __ jccb(Assembler::notZero, skip);
6437     __ movl(Rdst, -1);
6438     __ bind(skip);
6439     __ negl(Rdst);
6440     __ addl(Rdst, BitsPerLong - 1);
6441   %}
6442   ins_pipe(ialu_reg);
6443 %}
6444 
6445 instruct countTrailingZerosI(rRegI dst, rRegI src, rFlagsReg cr) %{
6446   predicate(UseCountTrailingZerosInstruction);
6447   match(Set dst (CountTrailingZerosI src));
6448   effect(KILL cr);
6449 
6450   format %{ "tzcntl    $dst, $src\t# count trailing zeros (int)" %}
6451   ins_encode %{
6452     __ tzcntl($dst$$Register, $src$$Register);
6453   %}
6454   ins_pipe(ialu_reg);
6455 %}
6456 
6457 instruct countTrailingZerosI_bsf(rRegI dst, rRegI src, rFlagsReg cr) %{
6458   predicate(!UseCountTrailingZerosInstruction);
6459   match(Set dst (CountTrailingZerosI src));
6460   effect(KILL cr);
6461 
6462   format %{ "bsfl    $dst, $src\t# count trailing zeros (int)\n\t"
6463             "jnz     done\n\t"
6464             "movl    $dst, 32\n"
6465       "done:" %}
6466   ins_encode %{
6467     Register Rdst = $dst$$Register;
6468     Label done;
6469     __ bsfl(Rdst, $src$$Register);
6470     __ jccb(Assembler::notZero, done);
6471     __ movl(Rdst, BitsPerInt);
6472     __ bind(done);
6473   %}
6474   ins_pipe(ialu_reg);
6475 %}
6476 
6477 instruct countTrailingZerosL(rRegI dst, rRegL src, rFlagsReg cr) %{
6478   predicate(UseCountTrailingZerosInstruction);
6479   match(Set dst (CountTrailingZerosL src));
6480   effect(KILL cr);
6481 
6482   format %{ "tzcntq    $dst, $src\t# count trailing zeros (long)" %}
6483   ins_encode %{
6484     __ tzcntq($dst$$Register, $src$$Register);
6485   %}
6486   ins_pipe(ialu_reg);
6487 %}
6488 
6489 instruct countTrailingZerosL_bsf(rRegI dst, rRegL src, rFlagsReg cr) %{
6490   predicate(!UseCountTrailingZerosInstruction);
6491   match(Set dst (CountTrailingZerosL src));
6492   effect(KILL cr);
6493 
6494   format %{ "bsfq    $dst, $src\t# count trailing zeros (long)\n\t"
6495             "jnz     done\n\t"
6496             "movl    $dst, 64\n"
6497       "done:" %}
6498   ins_encode %{
6499     Register Rdst = $dst$$Register;
6500     Label done;
6501     __ bsfq(Rdst, $src$$Register);
6502     __ jccb(Assembler::notZero, done);
6503     __ movl(Rdst, BitsPerLong);
6504     __ bind(done);
6505   %}
6506   ins_pipe(ialu_reg);
6507 %}
6508 
6509 
6510 //---------- Population Count Instructions -------------------------------------
6511 
6512 instruct popCountI(rRegI dst, rRegI src, rFlagsReg cr) %{
6513   predicate(UsePopCountInstruction);
6514   match(Set dst (PopCountI src));
6515   effect(KILL cr);
6516 
6517   format %{ "popcnt  $dst, $src" %}
6518   ins_encode %{
6519     __ popcntl($dst$$Register, $src$$Register);
6520   %}
6521   ins_pipe(ialu_reg);
6522 %}
6523 
6524 instruct popCountI_mem(rRegI dst, memory mem, rFlagsReg cr) %{
6525   predicate(UsePopCountInstruction);
6526   match(Set dst (PopCountI (LoadI mem)));
6527   effect(KILL cr);
6528 
6529   format %{ "popcnt  $dst, $mem" %}
6530   ins_encode %{
6531     __ popcntl($dst$$Register, $mem$$Address);
6532   %}
6533   ins_pipe(ialu_reg);
6534 %}
6535 
6536 // Note: Long.bitCount(long) returns an int.
6537 instruct popCountL(rRegI dst, rRegL src, rFlagsReg cr) %{
6538   predicate(UsePopCountInstruction);
6539   match(Set dst (PopCountL src));
6540   effect(KILL cr);
6541 
6542   format %{ "popcnt  $dst, $src" %}
6543   ins_encode %{
6544     __ popcntq($dst$$Register, $src$$Register);
6545   %}
6546   ins_pipe(ialu_reg);
6547 %}
6548 
6549 // Note: Long.bitCount(long) returns an int.
6550 instruct popCountL_mem(rRegI dst, memory mem, rFlagsReg cr) %{
6551   predicate(UsePopCountInstruction);
6552   match(Set dst (PopCountL (LoadL mem)));
6553   effect(KILL cr);
6554 
6555   format %{ "popcnt  $dst, $mem" %}
6556   ins_encode %{
6557     __ popcntq($dst$$Register, $mem$$Address);
6558   %}
6559   ins_pipe(ialu_reg);
6560 %}
6561 
6562 
6563 //----------MemBar Instructions-----------------------------------------------
6564 // Memory barrier flavors
6565 
6566 instruct membar_acquire()
6567 %{
6568   match(MemBarAcquire);
6569   match(LoadFence);
6570   ins_cost(0);
6571 
6572   size(0);
6573   format %{ "MEMBAR-acquire ! (empty encoding)" %}
6574   ins_encode();
6575   ins_pipe(empty);
6576 %}
6577 
6578 instruct membar_acquire_lock()
6579 %{
6580   match(MemBarAcquireLock);
6581   ins_cost(0);
6582 
6583   size(0);
6584   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
6585   ins_encode();
6586   ins_pipe(empty);
6587 %}
6588 
6589 instruct membar_release()
6590 %{
6591   match(MemBarRelease);
6592   match(StoreFence);
6593   ins_cost(0);
6594 
6595   size(0);
6596   format %{ "MEMBAR-release ! (empty encoding)" %}
6597   ins_encode();
6598   ins_pipe(empty);
6599 %}
6600 
6601 instruct membar_release_lock()
6602 %{
6603   match(MemBarReleaseLock);
6604   ins_cost(0);
6605 
6606   size(0);
6607   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
6608   ins_encode();
6609   ins_pipe(empty);
6610 %}
6611 
6612 instruct membar_volatile(rFlagsReg cr) %{
6613   match(MemBarVolatile);
6614   effect(KILL cr);
6615   ins_cost(400);
6616 
6617   format %{
6618     $$template
6619     $$emit$$"lock addl [rsp + #0], 0\t! membar_volatile"
6620   %}
6621   ins_encode %{
6622     __ membar(Assembler::StoreLoad);
6623   %}
6624   ins_pipe(pipe_slow);
6625 %}
6626 
6627 instruct unnecessary_membar_volatile()
6628 %{
6629   match(MemBarVolatile);
6630   predicate(Matcher::post_store_load_barrier(n));
6631   ins_cost(0);
6632 
6633   size(0);
6634   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
6635   ins_encode();
6636   ins_pipe(empty);
6637 %}
6638 
6639 instruct membar_storestore() %{
6640   match(MemBarStoreStore);
6641   ins_cost(0);
6642 
6643   size(0);
6644   format %{ "MEMBAR-storestore (empty encoding)" %}
6645   ins_encode( );
6646   ins_pipe(empty);
6647 %}
6648 
6649 //----------Move Instructions--------------------------------------------------
6650 
6651 instruct castX2P(rRegP dst, rRegL src)
6652 %{
6653   match(Set dst (CastX2P src));
6654 
6655   format %{ "movq    $dst, $src\t# long->ptr" %}
6656   ins_encode %{
6657     if ($dst$$reg != $src$$reg) {
6658       __ movptr($dst$$Register, $src$$Register);
6659     }
6660   %}
6661   ins_pipe(ialu_reg_reg); // XXX
6662 %}
6663 
6664 instruct castP2X(rRegL dst, rRegP src)
6665 %{
6666   match(Set dst (CastP2X src));
6667 
6668   format %{ "movq    $dst, $src\t# ptr -> long" %}
6669   ins_encode %{
6670     if ($dst$$reg != $src$$reg) {
6671       __ movptr($dst$$Register, $src$$Register);
6672     }
6673   %}
6674   ins_pipe(ialu_reg_reg); // XXX
6675 %}
6676 
6677 // Convert oop into int for vectors alignment masking
6678 instruct convP2I(rRegI dst, rRegP src)
6679 %{
6680   match(Set dst (ConvL2I (CastP2X src)));
6681 
6682   format %{ "movl    $dst, $src\t# ptr -> int" %}
6683   ins_encode %{
6684     __ movl($dst$$Register, $src$$Register);
6685   %}
6686   ins_pipe(ialu_reg_reg); // XXX
6687 %}
6688 
6689 // Convert compressed oop into int for vectors alignment masking
6690 // in case of 32bit oops (heap < 4Gb).
6691 instruct convN2I(rRegI dst, rRegN src)
6692 %{
6693   predicate(CompressedOops::shift() == 0);
6694   match(Set dst (ConvL2I (CastP2X (DecodeN src))));
6695 
6696   format %{ "movl    $dst, $src\t# compressed ptr -> int" %}
6697   ins_encode %{
6698     __ movl($dst$$Register, $src$$Register);
6699   %}
6700   ins_pipe(ialu_reg_reg); // XXX
6701 %}
6702 
6703 // Convert oop pointer into compressed form
6704 instruct encodeHeapOop(rRegN dst, rRegP src, rFlagsReg cr) %{
6705   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6706   match(Set dst (EncodeP src));
6707   effect(KILL cr);
6708   format %{ "encode_heap_oop $dst,$src" %}
6709   ins_encode %{
6710     Register s = $src$$Register;
6711     Register d = $dst$$Register;
6712     if (s != d) {
6713       __ movq(d, s);
6714     }
6715     __ encode_heap_oop(d);
6716   %}
6717   ins_pipe(ialu_reg_long);
6718 %}
6719 
6720 instruct encodeHeapOop_not_null(rRegN dst, rRegP src, rFlagsReg cr) %{
6721   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6722   match(Set dst (EncodeP src));
6723   effect(KILL cr);
6724   format %{ "encode_heap_oop_not_null $dst,$src" %}
6725   ins_encode %{
6726     __ encode_heap_oop_not_null($dst$$Register, $src$$Register);
6727   %}
6728   ins_pipe(ialu_reg_long);
6729 %}
6730 
6731 instruct decodeHeapOop(rRegP dst, rRegN src, rFlagsReg cr) %{
6732   predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull &&
6733             n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant);
6734   match(Set dst (DecodeN src));
6735   effect(KILL cr);
6736   format %{ "decode_heap_oop $dst,$src" %}
6737   ins_encode %{
6738     Register s = $src$$Register;
6739     Register d = $dst$$Register;
6740     if (s != d) {
6741       __ movq(d, s);
6742     }
6743     __ decode_heap_oop(d);
6744   %}
6745   ins_pipe(ialu_reg_long);
6746 %}
6747 
6748 instruct decodeHeapOop_not_null(rRegP dst, rRegN src, rFlagsReg cr) %{
6749   predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull ||
6750             n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant);
6751   match(Set dst (DecodeN src));
6752   effect(KILL cr);
6753   format %{ "decode_heap_oop_not_null $dst,$src" %}
6754   ins_encode %{
6755     Register s = $src$$Register;
6756     Register d = $dst$$Register;
6757     if (s != d) {
6758       __ decode_heap_oop_not_null(d, s);
6759     } else {
6760       __ decode_heap_oop_not_null(d);
6761     }
6762   %}
6763   ins_pipe(ialu_reg_long);
6764 %}
6765 
6766 instruct encodeKlass_not_null(rRegN dst, rRegP src, rFlagsReg cr) %{
6767   match(Set dst (EncodePKlass src));
6768   effect(TEMP dst, KILL cr);
6769   format %{ "encode_and_move_klass_not_null $dst,$src" %}
6770   ins_encode %{
6771     __ encode_and_move_klass_not_null($dst$$Register, $src$$Register);
6772   %}
6773   ins_pipe(ialu_reg_long);
6774 %}
6775 
6776 instruct decodeKlass_not_null(rRegP dst, rRegN src, rFlagsReg cr) %{
6777   match(Set dst (DecodeNKlass src));
6778   effect(TEMP dst, KILL cr);
6779   format %{ "decode_and_move_klass_not_null $dst,$src" %}
6780   ins_encode %{
6781     __ decode_and_move_klass_not_null($dst$$Register, $src$$Register);
6782   %}
6783   ins_pipe(ialu_reg_long);
6784 %}
6785 
6786 //----------Conditional Move---------------------------------------------------
6787 // Jump
6788 // dummy instruction for generating temp registers
6789 instruct jumpXtnd_offset(rRegL switch_val, immI2 shift, rRegI dest) %{
6790   match(Jump (LShiftL switch_val shift));
6791   ins_cost(350);
6792   predicate(false);
6793   effect(TEMP dest);
6794 
6795   format %{ "leaq    $dest, [$constantaddress]\n\t"
6796             "jmp     [$dest + $switch_val << $shift]\n\t" %}
6797   ins_encode %{
6798     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6799     // to do that and the compiler is using that register as one it can allocate.
6800     // So we build it all by hand.
6801     // Address index(noreg, switch_reg, (Address::ScaleFactor)$shift$$constant);
6802     // ArrayAddress dispatch(table, index);
6803     Address dispatch($dest$$Register, $switch_val$$Register, (Address::ScaleFactor) $shift$$constant);
6804     __ lea($dest$$Register, $constantaddress);
6805     __ jmp(dispatch);
6806   %}
6807   ins_pipe(pipe_jmp);
6808 %}
6809 
6810 instruct jumpXtnd_addr(rRegL switch_val, immI2 shift, immL32 offset, rRegI dest) %{
6811   match(Jump (AddL (LShiftL switch_val shift) offset));
6812   ins_cost(350);
6813   effect(TEMP dest);
6814 
6815   format %{ "leaq    $dest, [$constantaddress]\n\t"
6816             "jmp     [$dest + $switch_val << $shift + $offset]\n\t" %}
6817   ins_encode %{
6818     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6819     // to do that and the compiler is using that register as one it can allocate.
6820     // So we build it all by hand.
6821     // Address index(noreg, switch_reg, (Address::ScaleFactor) $shift$$constant, (int) $offset$$constant);
6822     // ArrayAddress dispatch(table, index);
6823     Address dispatch($dest$$Register, $switch_val$$Register, (Address::ScaleFactor) $shift$$constant, (int) $offset$$constant);
6824     __ lea($dest$$Register, $constantaddress);
6825     __ jmp(dispatch);
6826   %}
6827   ins_pipe(pipe_jmp);
6828 %}
6829 
6830 instruct jumpXtnd(rRegL switch_val, rRegI dest) %{
6831   match(Jump switch_val);
6832   ins_cost(350);
6833   effect(TEMP dest);
6834 
6835   format %{ "leaq    $dest, [$constantaddress]\n\t"
6836             "jmp     [$dest + $switch_val]\n\t" %}
6837   ins_encode %{
6838     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6839     // to do that and the compiler is using that register as one it can allocate.
6840     // So we build it all by hand.
6841     // Address index(noreg, switch_reg, Address::times_1);
6842     // ArrayAddress dispatch(table, index);
6843     Address dispatch($dest$$Register, $switch_val$$Register, Address::times_1);
6844     __ lea($dest$$Register, $constantaddress);
6845     __ jmp(dispatch);
6846   %}
6847   ins_pipe(pipe_jmp);
6848 %}
6849 
6850 // Conditional move
6851 instruct cmovI_reg(rRegI dst, rRegI src, rFlagsReg cr, cmpOp cop)
6852 %{
6853   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6854 
6855   ins_cost(200); // XXX
6856   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
6857   opcode(0x0F, 0x40);
6858   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6859   ins_pipe(pipe_cmov_reg);
6860 %}
6861 
6862 instruct cmovI_regU(cmpOpU cop, rFlagsRegU cr, rRegI dst, rRegI src) %{
6863   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6864 
6865   ins_cost(200); // XXX
6866   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
6867   opcode(0x0F, 0x40);
6868   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6869   ins_pipe(pipe_cmov_reg);
6870 %}
6871 
6872 instruct cmovI_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, rRegI src) %{
6873   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6874   ins_cost(200);
6875   expand %{
6876     cmovI_regU(cop, cr, dst, src);
6877   %}
6878 %}
6879 
6880 // Conditional move
6881 instruct cmovI_mem(cmpOp cop, rFlagsReg cr, rRegI dst, memory src) %{
6882   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6883 
6884   ins_cost(250); // XXX
6885   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
6886   opcode(0x0F, 0x40);
6887   ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
6888   ins_pipe(pipe_cmov_mem);
6889 %}
6890 
6891 // Conditional move
6892 instruct cmovI_memU(cmpOpU cop, rFlagsRegU cr, rRegI dst, memory src)
6893 %{
6894   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6895 
6896   ins_cost(250); // XXX
6897   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
6898   opcode(0x0F, 0x40);
6899   ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
6900   ins_pipe(pipe_cmov_mem);
6901 %}
6902 
6903 instruct cmovI_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, memory src) %{
6904   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6905   ins_cost(250);
6906   expand %{
6907     cmovI_memU(cop, cr, dst, src);
6908   %}
6909 %}
6910 
6911 // Conditional move
6912 instruct cmovN_reg(rRegN dst, rRegN src, rFlagsReg cr, cmpOp cop)
6913 %{
6914   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
6915 
6916   ins_cost(200); // XXX
6917   format %{ "cmovl$cop $dst, $src\t# signed, compressed ptr" %}
6918   opcode(0x0F, 0x40);
6919   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6920   ins_pipe(pipe_cmov_reg);
6921 %}
6922 
6923 // Conditional move
6924 instruct cmovN_regU(cmpOpU cop, rFlagsRegU cr, rRegN dst, rRegN src)
6925 %{
6926   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
6927 
6928   ins_cost(200); // XXX
6929   format %{ "cmovl$cop $dst, $src\t# unsigned, compressed ptr" %}
6930   opcode(0x0F, 0x40);
6931   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6932   ins_pipe(pipe_cmov_reg);
6933 %}
6934 
6935 instruct cmovN_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegN dst, rRegN src) %{
6936   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
6937   ins_cost(200);
6938   expand %{
6939     cmovN_regU(cop, cr, dst, src);
6940   %}
6941 %}
6942 
6943 // Conditional move
6944 instruct cmovP_reg(rRegP dst, rRegP src, rFlagsReg cr, cmpOp cop)
6945 %{
6946   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6947 
6948   ins_cost(200); // XXX
6949   format %{ "cmovq$cop $dst, $src\t# signed, ptr" %}
6950   opcode(0x0F, 0x40);
6951   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
6952   ins_pipe(pipe_cmov_reg);  // XXX
6953 %}
6954 
6955 // Conditional move
6956 instruct cmovP_regU(cmpOpU cop, rFlagsRegU cr, rRegP dst, rRegP src)
6957 %{
6958   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6959 
6960   ins_cost(200); // XXX
6961   format %{ "cmovq$cop $dst, $src\t# unsigned, ptr" %}
6962   opcode(0x0F, 0x40);
6963   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
6964   ins_pipe(pipe_cmov_reg); // XXX
6965 %}
6966 
6967 instruct cmovP_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegP dst, rRegP src) %{
6968   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6969   ins_cost(200);
6970   expand %{
6971     cmovP_regU(cop, cr, dst, src);
6972   %}
6973 %}
6974 
6975 // DISABLED: Requires the ADLC to emit a bottom_type call that
6976 // correctly meets the two pointer arguments; one is an incoming
6977 // register but the other is a memory operand.  ALSO appears to
6978 // be buggy with implicit null checks.
6979 //
6980 //// Conditional move
6981 //instruct cmovP_mem(cmpOp cop, rFlagsReg cr, rRegP dst, memory src)
6982 //%{
6983 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
6984 //  ins_cost(250);
6985 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
6986 //  opcode(0x0F,0x40);
6987 //  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
6988 //  ins_pipe( pipe_cmov_mem );
6989 //%}
6990 //
6991 //// Conditional move
6992 //instruct cmovP_memU(cmpOpU cop, rFlagsRegU cr, rRegP dst, memory src)
6993 //%{
6994 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
6995 //  ins_cost(250);
6996 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
6997 //  opcode(0x0F,0x40);
6998 //  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
6999 //  ins_pipe( pipe_cmov_mem );
7000 //%}
7001 
7002 instruct cmovL_reg(cmpOp cop, rFlagsReg cr, rRegL dst, rRegL src)
7003 %{
7004   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7005 
7006   ins_cost(200); // XXX
7007   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
7008   opcode(0x0F, 0x40);
7009   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
7010   ins_pipe(pipe_cmov_reg);  // XXX
7011 %}
7012 
7013 instruct cmovL_mem(cmpOp cop, rFlagsReg cr, rRegL dst, memory src)
7014 %{
7015   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
7016 
7017   ins_cost(200); // XXX
7018   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
7019   opcode(0x0F, 0x40);
7020   ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
7021   ins_pipe(pipe_cmov_mem);  // XXX
7022 %}
7023 
7024 instruct cmovL_regU(cmpOpU cop, rFlagsRegU cr, rRegL dst, rRegL src)
7025 %{
7026   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7027 
7028   ins_cost(200); // XXX
7029   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
7030   opcode(0x0F, 0x40);
7031   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
7032   ins_pipe(pipe_cmov_reg); // XXX
7033 %}
7034 
7035 instruct cmovL_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, rRegL src) %{
7036   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7037   ins_cost(200);
7038   expand %{
7039     cmovL_regU(cop, cr, dst, src);
7040   %}
7041 %}
7042 
7043 instruct cmovL_memU(cmpOpU cop, rFlagsRegU cr, rRegL dst, memory src)
7044 %{
7045   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
7046 
7047   ins_cost(200); // XXX
7048   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
7049   opcode(0x0F, 0x40);
7050   ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
7051   ins_pipe(pipe_cmov_mem); // XXX
7052 %}
7053 
7054 instruct cmovL_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, memory src) %{
7055   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
7056   ins_cost(200);
7057   expand %{
7058     cmovL_memU(cop, cr, dst, src);
7059   %}
7060 %}
7061 
7062 instruct cmovF_reg(cmpOp cop, rFlagsReg cr, regF dst, regF src)
7063 %{
7064   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7065 
7066   ins_cost(200); // XXX
7067   format %{ "jn$cop    skip\t# signed cmove float\n\t"
7068             "movss     $dst, $src\n"
7069     "skip:" %}
7070   ins_encode %{
7071     Label Lskip;
7072     // Invert sense of branch from sense of CMOV
7073     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7074     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7075     __ bind(Lskip);
7076   %}
7077   ins_pipe(pipe_slow);
7078 %}
7079 
7080 // instruct cmovF_mem(cmpOp cop, rFlagsReg cr, regF dst, memory src)
7081 // %{
7082 //   match(Set dst (CMoveF (Binary cop cr) (Binary dst (LoadL src))));
7083 
7084 //   ins_cost(200); // XXX
7085 //   format %{ "jn$cop    skip\t# signed cmove float\n\t"
7086 //             "movss     $dst, $src\n"
7087 //     "skip:" %}
7088 //   ins_encode(enc_cmovf_mem_branch(cop, dst, src));
7089 //   ins_pipe(pipe_slow);
7090 // %}
7091 
7092 instruct cmovF_regU(cmpOpU cop, rFlagsRegU cr, regF dst, regF src)
7093 %{
7094   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7095 
7096   ins_cost(200); // XXX
7097   format %{ "jn$cop    skip\t# unsigned cmove float\n\t"
7098             "movss     $dst, $src\n"
7099     "skip:" %}
7100   ins_encode %{
7101     Label Lskip;
7102     // Invert sense of branch from sense of CMOV
7103     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7104     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7105     __ bind(Lskip);
7106   %}
7107   ins_pipe(pipe_slow);
7108 %}
7109 
7110 instruct cmovF_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regF dst, regF src) %{
7111   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7112   ins_cost(200);
7113   expand %{
7114     cmovF_regU(cop, cr, dst, src);
7115   %}
7116 %}
7117 
7118 instruct cmovD_reg(cmpOp cop, rFlagsReg cr, regD dst, regD src)
7119 %{
7120   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7121 
7122   ins_cost(200); // XXX
7123   format %{ "jn$cop    skip\t# signed cmove double\n\t"
7124             "movsd     $dst, $src\n"
7125     "skip:" %}
7126   ins_encode %{
7127     Label Lskip;
7128     // Invert sense of branch from sense of CMOV
7129     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7130     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7131     __ bind(Lskip);
7132   %}
7133   ins_pipe(pipe_slow);
7134 %}
7135 
7136 instruct cmovD_regU(cmpOpU cop, rFlagsRegU cr, regD dst, regD src)
7137 %{
7138   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7139 
7140   ins_cost(200); // XXX
7141   format %{ "jn$cop    skip\t# unsigned cmove double\n\t"
7142             "movsd     $dst, $src\n"
7143     "skip:" %}
7144   ins_encode %{
7145     Label Lskip;
7146     // Invert sense of branch from sense of CMOV
7147     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7148     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7149     __ bind(Lskip);
7150   %}
7151   ins_pipe(pipe_slow);
7152 %}
7153 
7154 instruct cmovD_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regD dst, regD src) %{
7155   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7156   ins_cost(200);
7157   expand %{
7158     cmovD_regU(cop, cr, dst, src);
7159   %}
7160 %}
7161 
7162 //----------Arithmetic Instructions--------------------------------------------
7163 //----------Addition Instructions----------------------------------------------
7164 
7165 instruct addI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
7166 %{
7167   match(Set dst (AddI dst src));
7168   effect(KILL cr);
7169 
7170   format %{ "addl    $dst, $src\t# int" %}
7171   opcode(0x03);
7172   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
7173   ins_pipe(ialu_reg_reg);
7174 %}
7175 
7176 instruct addI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
7177 %{
7178   match(Set dst (AddI dst src));
7179   effect(KILL cr);
7180 
7181   format %{ "addl    $dst, $src\t# int" %}
7182   opcode(0x81, 0x00); /* /0 id */
7183   ins_encode(OpcSErm(dst, src), Con8or32(src));
7184   ins_pipe( ialu_reg );
7185 %}
7186 
7187 instruct addI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
7188 %{
7189   match(Set dst (AddI dst (LoadI src)));
7190   effect(KILL cr);
7191 
7192   ins_cost(125); // XXX
7193   format %{ "addl    $dst, $src\t# int" %}
7194   opcode(0x03);
7195   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
7196   ins_pipe(ialu_reg_mem);
7197 %}
7198 
7199 instruct addI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
7200 %{
7201   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7202   effect(KILL cr);
7203 
7204   ins_cost(150); // XXX
7205   format %{ "addl    $dst, $src\t# int" %}
7206   opcode(0x01); /* Opcode 01 /r */
7207   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
7208   ins_pipe(ialu_mem_reg);
7209 %}
7210 
7211 instruct addI_mem_imm(memory dst, immI src, rFlagsReg cr)
7212 %{
7213   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7214   effect(KILL cr);
7215 
7216   ins_cost(125); // XXX
7217   format %{ "addl    $dst, $src\t# int" %}
7218   opcode(0x81); /* Opcode 81 /0 id */
7219   ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
7220   ins_pipe(ialu_mem_imm);
7221 %}
7222 
7223 instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
7224 %{
7225   predicate(UseIncDec);
7226   match(Set dst (AddI dst src));
7227   effect(KILL cr);
7228 
7229   format %{ "incl    $dst\t# int" %}
7230   opcode(0xFF, 0x00); // FF /0
7231   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7232   ins_pipe(ialu_reg);
7233 %}
7234 
7235 instruct incI_mem(memory dst, immI1 src, rFlagsReg cr)
7236 %{
7237   predicate(UseIncDec);
7238   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7239   effect(KILL cr);
7240 
7241   ins_cost(125); // XXX
7242   format %{ "incl    $dst\t# int" %}
7243   opcode(0xFF); /* Opcode FF /0 */
7244   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x00, dst));
7245   ins_pipe(ialu_mem_imm);
7246 %}
7247 
7248 // XXX why does that use AddI
7249 instruct decI_rReg(rRegI dst, immI_M1 src, rFlagsReg cr)
7250 %{
7251   predicate(UseIncDec);
7252   match(Set dst (AddI dst src));
7253   effect(KILL cr);
7254 
7255   format %{ "decl    $dst\t# int" %}
7256   opcode(0xFF, 0x01); // FF /1
7257   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7258   ins_pipe(ialu_reg);
7259 %}
7260 
7261 // XXX why does that use AddI
7262 instruct decI_mem(memory dst, immI_M1 src, rFlagsReg cr)
7263 %{
7264   predicate(UseIncDec);
7265   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7266   effect(KILL cr);
7267 
7268   ins_cost(125); // XXX
7269   format %{ "decl    $dst\t# int" %}
7270   opcode(0xFF); /* Opcode FF /1 */
7271   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x01, dst));
7272   ins_pipe(ialu_mem_imm);
7273 %}
7274 
7275 instruct leaI_rReg_immI(rRegI dst, rRegI src0, immI src1)
7276 %{
7277   match(Set dst (AddI src0 src1));
7278 
7279   ins_cost(110);
7280   format %{ "addr32 leal $dst, [$src0 + $src1]\t# int" %}
7281   opcode(0x8D); /* 0x8D /r */
7282   ins_encode(Opcode(0x67), REX_reg_reg(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
7283   ins_pipe(ialu_reg_reg);
7284 %}
7285 
7286 instruct addL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
7287 %{
7288   match(Set dst (AddL dst src));
7289   effect(KILL cr);
7290 
7291   format %{ "addq    $dst, $src\t# long" %}
7292   opcode(0x03);
7293   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7294   ins_pipe(ialu_reg_reg);
7295 %}
7296 
7297 instruct addL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
7298 %{
7299   match(Set dst (AddL dst src));
7300   effect(KILL cr);
7301 
7302   format %{ "addq    $dst, $src\t# long" %}
7303   opcode(0x81, 0x00); /* /0 id */
7304   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
7305   ins_pipe( ialu_reg );
7306 %}
7307 
7308 instruct addL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
7309 %{
7310   match(Set dst (AddL dst (LoadL src)));
7311   effect(KILL cr);
7312 
7313   ins_cost(125); // XXX
7314   format %{ "addq    $dst, $src\t# long" %}
7315   opcode(0x03);
7316   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
7317   ins_pipe(ialu_reg_mem);
7318 %}
7319 
7320 instruct addL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
7321 %{
7322   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7323   effect(KILL cr);
7324 
7325   ins_cost(150); // XXX
7326   format %{ "addq    $dst, $src\t# long" %}
7327   opcode(0x01); /* Opcode 01 /r */
7328   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
7329   ins_pipe(ialu_mem_reg);
7330 %}
7331 
7332 instruct addL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
7333 %{
7334   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7335   effect(KILL cr);
7336 
7337   ins_cost(125); // XXX
7338   format %{ "addq    $dst, $src\t# long" %}
7339   opcode(0x81); /* Opcode 81 /0 id */
7340   ins_encode(REX_mem_wide(dst),
7341              OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
7342   ins_pipe(ialu_mem_imm);
7343 %}
7344 
7345 instruct incL_rReg(rRegI dst, immL1 src, rFlagsReg cr)
7346 %{
7347   predicate(UseIncDec);
7348   match(Set dst (AddL dst src));
7349   effect(KILL cr);
7350 
7351   format %{ "incq    $dst\t# long" %}
7352   opcode(0xFF, 0x00); // FF /0
7353   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
7354   ins_pipe(ialu_reg);
7355 %}
7356 
7357 instruct incL_mem(memory dst, immL1 src, rFlagsReg cr)
7358 %{
7359   predicate(UseIncDec);
7360   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7361   effect(KILL cr);
7362 
7363   ins_cost(125); // XXX
7364   format %{ "incq    $dst\t# long" %}
7365   opcode(0xFF); /* Opcode FF /0 */
7366   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x00, dst));
7367   ins_pipe(ialu_mem_imm);
7368 %}
7369 
7370 // XXX why does that use AddL
7371 instruct decL_rReg(rRegL dst, immL_M1 src, rFlagsReg cr)
7372 %{
7373   predicate(UseIncDec);
7374   match(Set dst (AddL dst src));
7375   effect(KILL cr);
7376 
7377   format %{ "decq    $dst\t# long" %}
7378   opcode(0xFF, 0x01); // FF /1
7379   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
7380   ins_pipe(ialu_reg);
7381 %}
7382 
7383 // XXX why does that use AddL
7384 instruct decL_mem(memory dst, immL_M1 src, rFlagsReg cr)
7385 %{
7386   predicate(UseIncDec);
7387   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7388   effect(KILL cr);
7389 
7390   ins_cost(125); // XXX
7391   format %{ "decq    $dst\t# long" %}
7392   opcode(0xFF); /* Opcode FF /1 */
7393   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x01, dst));
7394   ins_pipe(ialu_mem_imm);
7395 %}
7396 
7397 instruct leaL_rReg_immL(rRegL dst, rRegL src0, immL32 src1)
7398 %{
7399   match(Set dst (AddL src0 src1));
7400 
7401   ins_cost(110);
7402   format %{ "leaq    $dst, [$src0 + $src1]\t# long" %}
7403   opcode(0x8D); /* 0x8D /r */
7404   ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
7405   ins_pipe(ialu_reg_reg);
7406 %}
7407 
7408 instruct addP_rReg(rRegP dst, rRegL src, rFlagsReg cr)
7409 %{
7410   match(Set dst (AddP dst src));
7411   effect(KILL cr);
7412 
7413   format %{ "addq    $dst, $src\t# ptr" %}
7414   opcode(0x03);
7415   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7416   ins_pipe(ialu_reg_reg);
7417 %}
7418 
7419 instruct addP_rReg_imm(rRegP dst, immL32 src, rFlagsReg cr)
7420 %{
7421   match(Set dst (AddP dst src));
7422   effect(KILL cr);
7423 
7424   format %{ "addq    $dst, $src\t# ptr" %}
7425   opcode(0x81, 0x00); /* /0 id */
7426   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
7427   ins_pipe( ialu_reg );
7428 %}
7429 
7430 // XXX addP mem ops ????
7431 
7432 instruct leaP_rReg_imm(rRegP dst, rRegP src0, immL32 src1)
7433 %{
7434   match(Set dst (AddP src0 src1));
7435 
7436   ins_cost(110);
7437   format %{ "leaq    $dst, [$src0 + $src1]\t# ptr" %}
7438   opcode(0x8D); /* 0x8D /r */
7439   ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1));// XXX
7440   ins_pipe(ialu_reg_reg);
7441 %}
7442 
7443 instruct checkCastPP(rRegP dst)
7444 %{
7445   match(Set dst (CheckCastPP dst));
7446 
7447   size(0);
7448   format %{ "# checkcastPP of $dst" %}
7449   ins_encode(/* empty encoding */);
7450   ins_pipe(empty);
7451 %}
7452 
7453 instruct castPP(rRegP dst)
7454 %{
7455   match(Set dst (CastPP dst));
7456 
7457   size(0);
7458   format %{ "# castPP of $dst" %}
7459   ins_encode(/* empty encoding */);
7460   ins_pipe(empty);
7461 %}
7462 
7463 instruct castII(rRegI dst)
7464 %{
7465   match(Set dst (CastII dst));
7466 
7467   size(0);
7468   format %{ "# castII of $dst" %}
7469   ins_encode(/* empty encoding */);
7470   ins_cost(0);
7471   ins_pipe(empty);
7472 %}
7473 
7474 // LoadP-locked same as a regular LoadP when used with compare-swap
7475 instruct loadPLocked(rRegP dst, memory mem)
7476 %{
7477   match(Set dst (LoadPLocked mem));
7478 
7479   ins_cost(125); // XXX
7480   format %{ "movq    $dst, $mem\t# ptr locked" %}
7481   opcode(0x8B);
7482   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
7483   ins_pipe(ialu_reg_mem); // XXX
7484 %}
7485 
7486 // Conditional-store of the updated heap-top.
7487 // Used during allocation of the shared heap.
7488 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
7489 
7490 instruct storePConditional(memory heap_top_ptr,
7491                            rax_RegP oldval, rRegP newval,
7492                            rFlagsReg cr)
7493 %{
7494   predicate(n->as_LoadStore()->barrier_data() == 0);
7495   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
7496 
7497   format %{ "cmpxchgq $heap_top_ptr, $newval\t# (ptr) "
7498             "If rax == $heap_top_ptr then store $newval into $heap_top_ptr" %}
7499   opcode(0x0F, 0xB1);
7500   ins_encode(lock_prefix,
7501              REX_reg_mem_wide(newval, heap_top_ptr),
7502              OpcP, OpcS,
7503              reg_mem(newval, heap_top_ptr));
7504   ins_pipe(pipe_cmpxchg);
7505 %}
7506 
7507 // Conditional-store of an int value.
7508 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
7509 instruct storeIConditional(memory mem, rax_RegI oldval, rRegI newval, rFlagsReg cr)
7510 %{
7511   match(Set cr (StoreIConditional mem (Binary oldval newval)));
7512   effect(KILL oldval);
7513 
7514   format %{ "cmpxchgl $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
7515   opcode(0x0F, 0xB1);
7516   ins_encode(lock_prefix,
7517              REX_reg_mem(newval, mem),
7518              OpcP, OpcS,
7519              reg_mem(newval, mem));
7520   ins_pipe(pipe_cmpxchg);
7521 %}
7522 
7523 // Conditional-store of a long value.
7524 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
7525 instruct storeLConditional(memory mem, rax_RegL oldval, rRegL newval, rFlagsReg cr)
7526 %{
7527   match(Set cr (StoreLConditional mem (Binary oldval newval)));
7528   effect(KILL oldval);
7529 
7530   format %{ "cmpxchgq $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
7531   opcode(0x0F, 0xB1);
7532   ins_encode(lock_prefix,
7533              REX_reg_mem_wide(newval, mem),
7534              OpcP, OpcS,
7535              reg_mem(newval, mem));
7536   ins_pipe(pipe_cmpxchg);
7537 %}
7538 
7539 
7540 // XXX No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7541 instruct compareAndSwapP(rRegI res,
7542                          memory mem_ptr,
7543                          rax_RegP oldval, rRegP newval,
7544                          rFlagsReg cr)
7545 %{
7546   predicate(VM_Version::supports_cx8() && n->as_LoadStore()->barrier_data() == 0);
7547   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7548   match(Set res (WeakCompareAndSwapP mem_ptr (Binary oldval newval)));
7549   effect(KILL cr, KILL oldval);
7550 
7551   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7552             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7553             "sete    $res\n\t"
7554             "movzbl  $res, $res" %}
7555   opcode(0x0F, 0xB1);
7556   ins_encode(lock_prefix,
7557              REX_reg_mem_wide(newval, mem_ptr),
7558              OpcP, OpcS,
7559              reg_mem(newval, mem_ptr),
7560              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7561              REX_reg_breg(res, res), // movzbl
7562              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7563   ins_pipe( pipe_cmpxchg );
7564 %}
7565 
7566 instruct compareAndSwapL(rRegI res,
7567                          memory mem_ptr,
7568                          rax_RegL oldval, rRegL newval,
7569                          rFlagsReg cr)
7570 %{
7571   predicate(VM_Version::supports_cx8());
7572   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7573   match(Set res (WeakCompareAndSwapL mem_ptr (Binary oldval newval)));
7574   effect(KILL cr, KILL oldval);
7575 
7576   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7577             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7578             "sete    $res\n\t"
7579             "movzbl  $res, $res" %}
7580   opcode(0x0F, 0xB1);
7581   ins_encode(lock_prefix,
7582              REX_reg_mem_wide(newval, mem_ptr),
7583              OpcP, OpcS,
7584              reg_mem(newval, mem_ptr),
7585              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7586              REX_reg_breg(res, res), // movzbl
7587              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7588   ins_pipe( pipe_cmpxchg );
7589 %}
7590 
7591 instruct compareAndSwapI(rRegI res,
7592                          memory mem_ptr,
7593                          rax_RegI oldval, rRegI newval,
7594                          rFlagsReg cr)
7595 %{
7596   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7597   match(Set res (WeakCompareAndSwapI mem_ptr (Binary oldval newval)));
7598   effect(KILL cr, KILL oldval);
7599 
7600   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7601             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7602             "sete    $res\n\t"
7603             "movzbl  $res, $res" %}
7604   opcode(0x0F, 0xB1);
7605   ins_encode(lock_prefix,
7606              REX_reg_mem(newval, mem_ptr),
7607              OpcP, OpcS,
7608              reg_mem(newval, mem_ptr),
7609              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7610              REX_reg_breg(res, res), // movzbl
7611              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7612   ins_pipe( pipe_cmpxchg );
7613 %}
7614 
7615 instruct compareAndSwapB(rRegI res,
7616                          memory mem_ptr,
7617                          rax_RegI oldval, rRegI newval,
7618                          rFlagsReg cr)
7619 %{
7620   match(Set res (CompareAndSwapB mem_ptr (Binary oldval newval)));
7621   match(Set res (WeakCompareAndSwapB mem_ptr (Binary oldval newval)));
7622   effect(KILL cr, KILL oldval);
7623 
7624   format %{ "cmpxchgb $mem_ptr,$newval\t# "
7625             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7626             "sete    $res\n\t"
7627             "movzbl  $res, $res" %}
7628   opcode(0x0F, 0xB0);
7629   ins_encode(lock_prefix,
7630              REX_breg_mem(newval, mem_ptr),
7631              OpcP, OpcS,
7632              reg_mem(newval, mem_ptr),
7633              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7634              REX_reg_breg(res, res), // movzbl
7635              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7636   ins_pipe( pipe_cmpxchg );
7637 %}
7638 
7639 instruct compareAndSwapS(rRegI res,
7640                          memory mem_ptr,
7641                          rax_RegI oldval, rRegI newval,
7642                          rFlagsReg cr)
7643 %{
7644   match(Set res (CompareAndSwapS mem_ptr (Binary oldval newval)));
7645   match(Set res (WeakCompareAndSwapS mem_ptr (Binary oldval newval)));
7646   effect(KILL cr, KILL oldval);
7647 
7648   format %{ "cmpxchgw $mem_ptr,$newval\t# "
7649             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7650             "sete    $res\n\t"
7651             "movzbl  $res, $res" %}
7652   opcode(0x0F, 0xB1);
7653   ins_encode(lock_prefix,
7654              SizePrefix,
7655              REX_reg_mem(newval, mem_ptr),
7656              OpcP, OpcS,
7657              reg_mem(newval, mem_ptr),
7658              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7659              REX_reg_breg(res, res), // movzbl
7660              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7661   ins_pipe( pipe_cmpxchg );
7662 %}
7663 
7664 instruct compareAndSwapN(rRegI res,
7665                           memory mem_ptr,
7666                           rax_RegN oldval, rRegN newval,
7667                           rFlagsReg cr) %{
7668   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7669   match(Set res (WeakCompareAndSwapN mem_ptr (Binary oldval newval)));
7670   effect(KILL cr, KILL oldval);
7671 
7672   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7673             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7674             "sete    $res\n\t"
7675             "movzbl  $res, $res" %}
7676   opcode(0x0F, 0xB1);
7677   ins_encode(lock_prefix,
7678              REX_reg_mem(newval, mem_ptr),
7679              OpcP, OpcS,
7680              reg_mem(newval, mem_ptr),
7681              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7682              REX_reg_breg(res, res), // movzbl
7683              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7684   ins_pipe( pipe_cmpxchg );
7685 %}
7686 
7687 instruct compareAndExchangeB(
7688                          memory mem_ptr,
7689                          rax_RegI oldval, rRegI newval,
7690                          rFlagsReg cr)
7691 %{
7692   match(Set oldval (CompareAndExchangeB mem_ptr (Binary oldval newval)));
7693   effect(KILL cr);
7694 
7695   format %{ "cmpxchgb $mem_ptr,$newval\t# "
7696             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
7697   opcode(0x0F, 0xB0);
7698   ins_encode(lock_prefix,
7699              REX_breg_mem(newval, mem_ptr),
7700              OpcP, OpcS,
7701              reg_mem(newval, mem_ptr) // lock cmpxchg
7702              );
7703   ins_pipe( pipe_cmpxchg );
7704 %}
7705 
7706 instruct compareAndExchangeS(
7707                          memory mem_ptr,
7708                          rax_RegI oldval, rRegI newval,
7709                          rFlagsReg cr)
7710 %{
7711   match(Set oldval (CompareAndExchangeS mem_ptr (Binary oldval newval)));
7712   effect(KILL cr);
7713 
7714   format %{ "cmpxchgw $mem_ptr,$newval\t# "
7715             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
7716   opcode(0x0F, 0xB1);
7717   ins_encode(lock_prefix,
7718              SizePrefix,
7719              REX_reg_mem(newval, mem_ptr),
7720              OpcP, OpcS,
7721              reg_mem(newval, mem_ptr) // lock cmpxchg
7722              );
7723   ins_pipe( pipe_cmpxchg );
7724 %}
7725 
7726 instruct compareAndExchangeI(
7727                          memory mem_ptr,
7728                          rax_RegI oldval, rRegI newval,
7729                          rFlagsReg cr)
7730 %{
7731   match(Set oldval (CompareAndExchangeI mem_ptr (Binary oldval newval)));
7732   effect(KILL cr);
7733 
7734   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7735             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
7736   opcode(0x0F, 0xB1);
7737   ins_encode(lock_prefix,
7738              REX_reg_mem(newval, mem_ptr),
7739              OpcP, OpcS,
7740              reg_mem(newval, mem_ptr) // lock cmpxchg
7741              );
7742   ins_pipe( pipe_cmpxchg );
7743 %}
7744 
7745 instruct compareAndExchangeL(
7746                          memory mem_ptr,
7747                          rax_RegL oldval, rRegL newval,
7748                          rFlagsReg cr)
7749 %{
7750   predicate(VM_Version::supports_cx8());
7751   match(Set oldval (CompareAndExchangeL mem_ptr (Binary oldval newval)));
7752   effect(KILL cr);
7753 
7754   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7755             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
7756   opcode(0x0F, 0xB1);
7757   ins_encode(lock_prefix,
7758              REX_reg_mem_wide(newval, mem_ptr),
7759              OpcP, OpcS,
7760              reg_mem(newval, mem_ptr)  // lock cmpxchg
7761             );
7762   ins_pipe( pipe_cmpxchg );
7763 %}
7764 
7765 instruct compareAndExchangeN(
7766                           memory mem_ptr,
7767                           rax_RegN oldval, rRegN newval,
7768                           rFlagsReg cr) %{
7769   match(Set oldval (CompareAndExchangeN mem_ptr (Binary oldval newval)));
7770   effect(KILL cr);
7771 
7772   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7773             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t" %}
7774   opcode(0x0F, 0xB1);
7775   ins_encode(lock_prefix,
7776              REX_reg_mem(newval, mem_ptr),
7777              OpcP, OpcS,
7778              reg_mem(newval, mem_ptr)  // lock cmpxchg
7779           );
7780   ins_pipe( pipe_cmpxchg );
7781 %}
7782 
7783 instruct compareAndExchangeP(
7784                          memory mem_ptr,
7785                          rax_RegP oldval, rRegP newval,
7786                          rFlagsReg cr)
7787 %{
7788   predicate(VM_Version::supports_cx8() && n->as_LoadStore()->barrier_data() == 0);
7789   match(Set oldval (CompareAndExchangeP mem_ptr (Binary oldval newval)));
7790   effect(KILL cr);
7791 
7792   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7793             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t" %}
7794   opcode(0x0F, 0xB1);
7795   ins_encode(lock_prefix,
7796              REX_reg_mem_wide(newval, mem_ptr),
7797              OpcP, OpcS,
7798              reg_mem(newval, mem_ptr)  // lock cmpxchg
7799           );
7800   ins_pipe( pipe_cmpxchg );
7801 %}
7802 
7803 instruct xaddB_no_res( memory mem, Universe dummy, immI add, rFlagsReg cr) %{
7804   predicate(n->as_LoadStore()->result_not_used());
7805   match(Set dummy (GetAndAddB mem add));
7806   effect(KILL cr);
7807   format %{ "ADDB  [$mem],$add" %}
7808   ins_encode %{
7809     __ lock();
7810     __ addb($mem$$Address, $add$$constant);
7811   %}
7812   ins_pipe( pipe_cmpxchg );
7813 %}
7814 
7815 instruct xaddB( memory mem, rRegI newval, rFlagsReg cr) %{
7816   match(Set newval (GetAndAddB mem newval));
7817   effect(KILL cr);
7818   format %{ "XADDB  [$mem],$newval" %}
7819   ins_encode %{
7820     __ lock();
7821     __ xaddb($mem$$Address, $newval$$Register);
7822   %}
7823   ins_pipe( pipe_cmpxchg );
7824 %}
7825 
7826 instruct xaddS_no_res( memory mem, Universe dummy, immI add, rFlagsReg cr) %{
7827   predicate(n->as_LoadStore()->result_not_used());
7828   match(Set dummy (GetAndAddS mem add));
7829   effect(KILL cr);
7830   format %{ "ADDW  [$mem],$add" %}
7831   ins_encode %{
7832     __ lock();
7833     __ addw($mem$$Address, $add$$constant);
7834   %}
7835   ins_pipe( pipe_cmpxchg );
7836 %}
7837 
7838 instruct xaddS( memory mem, rRegI newval, rFlagsReg cr) %{
7839   match(Set newval (GetAndAddS mem newval));
7840   effect(KILL cr);
7841   format %{ "XADDW  [$mem],$newval" %}
7842   ins_encode %{
7843     __ lock();
7844     __ xaddw($mem$$Address, $newval$$Register);
7845   %}
7846   ins_pipe( pipe_cmpxchg );
7847 %}
7848 
7849 instruct xaddI_no_res( memory mem, Universe dummy, immI add, rFlagsReg cr) %{
7850   predicate(n->as_LoadStore()->result_not_used());
7851   match(Set dummy (GetAndAddI mem add));
7852   effect(KILL cr);
7853   format %{ "ADDL  [$mem],$add" %}
7854   ins_encode %{
7855     __ lock();
7856     __ addl($mem$$Address, $add$$constant);
7857   %}
7858   ins_pipe( pipe_cmpxchg );
7859 %}
7860 
7861 instruct xaddI( memory mem, rRegI newval, rFlagsReg cr) %{
7862   match(Set newval (GetAndAddI mem newval));
7863   effect(KILL cr);
7864   format %{ "XADDL  [$mem],$newval" %}
7865   ins_encode %{
7866     __ lock();
7867     __ xaddl($mem$$Address, $newval$$Register);
7868   %}
7869   ins_pipe( pipe_cmpxchg );
7870 %}
7871 
7872 instruct xaddL_no_res( memory mem, Universe dummy, immL32 add, rFlagsReg cr) %{
7873   predicate(n->as_LoadStore()->result_not_used());
7874   match(Set dummy (GetAndAddL mem add));
7875   effect(KILL cr);
7876   format %{ "ADDQ  [$mem],$add" %}
7877   ins_encode %{
7878     __ lock();
7879     __ addq($mem$$Address, $add$$constant);
7880   %}
7881   ins_pipe( pipe_cmpxchg );
7882 %}
7883 
7884 instruct xaddL( memory mem, rRegL newval, rFlagsReg cr) %{
7885   match(Set newval (GetAndAddL mem newval));
7886   effect(KILL cr);
7887   format %{ "XADDQ  [$mem],$newval" %}
7888   ins_encode %{
7889     __ lock();
7890     __ xaddq($mem$$Address, $newval$$Register);
7891   %}
7892   ins_pipe( pipe_cmpxchg );
7893 %}
7894 
7895 instruct xchgB( memory mem, rRegI newval) %{
7896   match(Set newval (GetAndSetB mem newval));
7897   format %{ "XCHGB  $newval,[$mem]" %}
7898   ins_encode %{
7899     __ xchgb($newval$$Register, $mem$$Address);
7900   %}
7901   ins_pipe( pipe_cmpxchg );
7902 %}
7903 
7904 instruct xchgS( memory mem, rRegI newval) %{
7905   match(Set newval (GetAndSetS mem newval));
7906   format %{ "XCHGW  $newval,[$mem]" %}
7907   ins_encode %{
7908     __ xchgw($newval$$Register, $mem$$Address);
7909   %}
7910   ins_pipe( pipe_cmpxchg );
7911 %}
7912 
7913 instruct xchgI( memory mem, rRegI newval) %{
7914   match(Set newval (GetAndSetI mem newval));
7915   format %{ "XCHGL  $newval,[$mem]" %}
7916   ins_encode %{
7917     __ xchgl($newval$$Register, $mem$$Address);
7918   %}
7919   ins_pipe( pipe_cmpxchg );
7920 %}
7921 
7922 instruct xchgL( memory mem, rRegL newval) %{
7923   match(Set newval (GetAndSetL mem newval));
7924   format %{ "XCHGL  $newval,[$mem]" %}
7925   ins_encode %{
7926     __ xchgq($newval$$Register, $mem$$Address);
7927   %}
7928   ins_pipe( pipe_cmpxchg );
7929 %}
7930 
7931 instruct xchgP( memory mem, rRegP newval) %{
7932   match(Set newval (GetAndSetP mem newval));
7933   predicate(n->as_LoadStore()->barrier_data() == 0);
7934   format %{ "XCHGQ  $newval,[$mem]" %}
7935   ins_encode %{
7936     __ xchgq($newval$$Register, $mem$$Address);
7937   %}
7938   ins_pipe( pipe_cmpxchg );
7939 %}
7940 
7941 instruct xchgN( memory mem, rRegN newval) %{
7942   match(Set newval (GetAndSetN mem newval));
7943   format %{ "XCHGL  $newval,$mem]" %}
7944   ins_encode %{
7945     __ xchgl($newval$$Register, $mem$$Address);
7946   %}
7947   ins_pipe( pipe_cmpxchg );
7948 %}
7949 
7950 //----------Abs Instructions-------------------------------------------
7951 
7952 // Integer Absolute Instructions
7953 instruct absI_rReg(rRegI dst, rRegI src, rRegI tmp, rFlagsReg cr)
7954 %{
7955   match(Set dst (AbsI src));
7956   effect(TEMP dst, TEMP tmp, KILL cr);
7957   format %{ "movl $tmp, $src\n\t"
7958             "sarl $tmp, 31\n\t"
7959             "movl $dst, $src\n\t"
7960             "xorl $dst, $tmp\n\t"
7961             "subl $dst, $tmp\n"
7962           %}
7963   ins_encode %{
7964     __ movl($tmp$$Register, $src$$Register);
7965     __ sarl($tmp$$Register, 31);
7966     __ movl($dst$$Register, $src$$Register);
7967     __ xorl($dst$$Register, $tmp$$Register);
7968     __ subl($dst$$Register, $tmp$$Register);
7969   %}
7970 
7971   ins_pipe(ialu_reg_reg);
7972 %}
7973 
7974 // Long Absolute Instructions
7975 instruct absL_rReg(rRegL dst, rRegL src, rRegL tmp, rFlagsReg cr)
7976 %{
7977   match(Set dst (AbsL src));
7978   effect(TEMP dst, TEMP tmp, KILL cr);
7979   format %{ "movq $tmp, $src\n\t"
7980             "sarq $tmp, 63\n\t"
7981             "movq $dst, $src\n\t"
7982             "xorq $dst, $tmp\n\t"
7983             "subq $dst, $tmp\n"
7984           %}
7985   ins_encode %{
7986     __ movq($tmp$$Register, $src$$Register);
7987     __ sarq($tmp$$Register, 63);
7988     __ movq($dst$$Register, $src$$Register);
7989     __ xorq($dst$$Register, $tmp$$Register);
7990     __ subq($dst$$Register, $tmp$$Register);
7991   %}
7992 
7993   ins_pipe(ialu_reg_reg);
7994 %}
7995 
7996 //----------Subtraction Instructions-------------------------------------------
7997 
7998 // Integer Subtraction Instructions
7999 instruct subI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
8000 %{
8001   match(Set dst (SubI dst src));
8002   effect(KILL cr);
8003 
8004   format %{ "subl    $dst, $src\t# int" %}
8005   opcode(0x2B);
8006   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
8007   ins_pipe(ialu_reg_reg);
8008 %}
8009 
8010 instruct subI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
8011 %{
8012   match(Set dst (SubI dst src));
8013   effect(KILL cr);
8014 
8015   format %{ "subl    $dst, $src\t# int" %}
8016   opcode(0x81, 0x05);  /* Opcode 81 /5 */
8017   ins_encode(OpcSErm(dst, src), Con8or32(src));
8018   ins_pipe(ialu_reg);
8019 %}
8020 
8021 instruct subI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
8022 %{
8023   match(Set dst (SubI dst (LoadI src)));
8024   effect(KILL cr);
8025 
8026   ins_cost(125);
8027   format %{ "subl    $dst, $src\t# int" %}
8028   opcode(0x2B);
8029   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
8030   ins_pipe(ialu_reg_mem);
8031 %}
8032 
8033 instruct subI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
8034 %{
8035   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
8036   effect(KILL cr);
8037 
8038   ins_cost(150);
8039   format %{ "subl    $dst, $src\t# int" %}
8040   opcode(0x29); /* Opcode 29 /r */
8041   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
8042   ins_pipe(ialu_mem_reg);
8043 %}
8044 
8045 instruct subI_mem_imm(memory dst, immI src, rFlagsReg cr)
8046 %{
8047   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
8048   effect(KILL cr);
8049 
8050   ins_cost(125); // XXX
8051   format %{ "subl    $dst, $src\t# int" %}
8052   opcode(0x81); /* Opcode 81 /5 id */
8053   ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
8054   ins_pipe(ialu_mem_imm);
8055 %}
8056 
8057 instruct subL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
8058 %{
8059   match(Set dst (SubL dst src));
8060   effect(KILL cr);
8061 
8062   format %{ "subq    $dst, $src\t# long" %}
8063   opcode(0x2B);
8064   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
8065   ins_pipe(ialu_reg_reg);
8066 %}
8067 
8068 instruct subL_rReg_imm(rRegI dst, immL32 src, rFlagsReg cr)
8069 %{
8070   match(Set dst (SubL dst src));
8071   effect(KILL cr);
8072 
8073   format %{ "subq    $dst, $src\t# long" %}
8074   opcode(0x81, 0x05);  /* Opcode 81 /5 */
8075   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
8076   ins_pipe(ialu_reg);
8077 %}
8078 
8079 instruct subL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
8080 %{
8081   match(Set dst (SubL dst (LoadL src)));
8082   effect(KILL cr);
8083 
8084   ins_cost(125);
8085   format %{ "subq    $dst, $src\t# long" %}
8086   opcode(0x2B);
8087   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
8088   ins_pipe(ialu_reg_mem);
8089 %}
8090 
8091 instruct subL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
8092 %{
8093   match(Set dst (StoreL dst (SubL (LoadL dst) src)));
8094   effect(KILL cr);
8095 
8096   ins_cost(150);
8097   format %{ "subq    $dst, $src\t# long" %}
8098   opcode(0x29); /* Opcode 29 /r */
8099   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
8100   ins_pipe(ialu_mem_reg);
8101 %}
8102 
8103 instruct subL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
8104 %{
8105   match(Set dst (StoreL dst (SubL (LoadL dst) src)));
8106   effect(KILL cr);
8107 
8108   ins_cost(125); // XXX
8109   format %{ "subq    $dst, $src\t# long" %}
8110   opcode(0x81); /* Opcode 81 /5 id */
8111   ins_encode(REX_mem_wide(dst),
8112              OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
8113   ins_pipe(ialu_mem_imm);
8114 %}
8115 
8116 // Subtract from a pointer
8117 // XXX hmpf???
8118 instruct subP_rReg(rRegP dst, rRegI src, immI0 zero, rFlagsReg cr)
8119 %{
8120   match(Set dst (AddP dst (SubI zero src)));
8121   effect(KILL cr);
8122 
8123   format %{ "subq    $dst, $src\t# ptr - int" %}
8124   opcode(0x2B);
8125   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
8126   ins_pipe(ialu_reg_reg);
8127 %}
8128 
8129 instruct negI_rReg(rRegI dst, immI0 zero, rFlagsReg cr)
8130 %{
8131   match(Set dst (SubI zero dst));
8132   effect(KILL cr);
8133 
8134   format %{ "negl    $dst\t# int" %}
8135   opcode(0xF7, 0x03);  // Opcode F7 /3
8136   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8137   ins_pipe(ialu_reg);
8138 %}
8139 
8140 instruct negI_mem(memory dst, immI0 zero, rFlagsReg cr)
8141 %{
8142   match(Set dst (StoreI dst (SubI zero (LoadI dst))));
8143   effect(KILL cr);
8144 
8145   format %{ "negl    $dst\t# int" %}
8146   opcode(0xF7, 0x03);  // Opcode F7 /3
8147   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8148   ins_pipe(ialu_reg);
8149 %}
8150 
8151 instruct negL_rReg(rRegL dst, immL0 zero, rFlagsReg cr)
8152 %{
8153   match(Set dst (SubL zero dst));
8154   effect(KILL cr);
8155 
8156   format %{ "negq    $dst\t# long" %}
8157   opcode(0xF7, 0x03);  // Opcode F7 /3
8158   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8159   ins_pipe(ialu_reg);
8160 %}
8161 
8162 instruct negL_mem(memory dst, immL0 zero, rFlagsReg cr)
8163 %{
8164   match(Set dst (StoreL dst (SubL zero (LoadL dst))));
8165   effect(KILL cr);
8166 
8167   format %{ "negq    $dst\t# long" %}
8168   opcode(0xF7, 0x03);  // Opcode F7 /3
8169   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8170   ins_pipe(ialu_reg);
8171 %}
8172 
8173 //----------Multiplication/Division Instructions-------------------------------
8174 // Integer Multiplication Instructions
8175 // Multiply Register
8176 
8177 instruct mulI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
8178 %{
8179   match(Set dst (MulI dst src));
8180   effect(KILL cr);
8181 
8182   ins_cost(300);
8183   format %{ "imull   $dst, $src\t# int" %}
8184   opcode(0x0F, 0xAF);
8185   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8186   ins_pipe(ialu_reg_reg_alu0);
8187 %}
8188 
8189 instruct mulI_rReg_imm(rRegI dst, rRegI src, immI imm, rFlagsReg cr)
8190 %{
8191   match(Set dst (MulI src imm));
8192   effect(KILL cr);
8193 
8194   ins_cost(300);
8195   format %{ "imull   $dst, $src, $imm\t# int" %}
8196   opcode(0x69); /* 69 /r id */
8197   ins_encode(REX_reg_reg(dst, src),
8198              OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
8199   ins_pipe(ialu_reg_reg_alu0);
8200 %}
8201 
8202 instruct mulI_mem(rRegI dst, memory src, rFlagsReg cr)
8203 %{
8204   match(Set dst (MulI dst (LoadI src)));
8205   effect(KILL cr);
8206 
8207   ins_cost(350);
8208   format %{ "imull   $dst, $src\t# int" %}
8209   opcode(0x0F, 0xAF);
8210   ins_encode(REX_reg_mem(dst, src), OpcP, OpcS, reg_mem(dst, src));
8211   ins_pipe(ialu_reg_mem_alu0);
8212 %}
8213 
8214 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, rFlagsReg cr)
8215 %{
8216   match(Set dst (MulI (LoadI src) imm));
8217   effect(KILL cr);
8218 
8219   ins_cost(300);
8220   format %{ "imull   $dst, $src, $imm\t# int" %}
8221   opcode(0x69); /* 69 /r id */
8222   ins_encode(REX_reg_mem(dst, src),
8223              OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
8224   ins_pipe(ialu_reg_mem_alu0);
8225 %}
8226 
8227 instruct mulAddS2I_rReg(rRegI dst, rRegI src1, rRegI src2, rRegI src3, rFlagsReg cr)
8228 %{
8229   match(Set dst (MulAddS2I (Binary dst src1) (Binary src2 src3)));
8230   effect(KILL cr, KILL src2);
8231 
8232   expand %{ mulI_rReg(dst, src1, cr);
8233            mulI_rReg(src2, src3, cr);
8234            addI_rReg(dst, src2, cr); %}
8235 %}
8236 
8237 instruct mulL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
8238 %{
8239   match(Set dst (MulL dst src));
8240   effect(KILL cr);
8241 
8242   ins_cost(300);
8243   format %{ "imulq   $dst, $src\t# long" %}
8244   opcode(0x0F, 0xAF);
8245   ins_encode(REX_reg_reg_wide(dst, src), OpcP, OpcS, reg_reg(dst, src));
8246   ins_pipe(ialu_reg_reg_alu0);
8247 %}
8248 
8249 instruct mulL_rReg_imm(rRegL dst, rRegL src, immL32 imm, rFlagsReg cr)
8250 %{
8251   match(Set dst (MulL src imm));
8252   effect(KILL cr);
8253 
8254   ins_cost(300);
8255   format %{ "imulq   $dst, $src, $imm\t# long" %}
8256   opcode(0x69); /* 69 /r id */
8257   ins_encode(REX_reg_reg_wide(dst, src),
8258              OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
8259   ins_pipe(ialu_reg_reg_alu0);
8260 %}
8261 
8262 instruct mulL_mem(rRegL dst, memory src, rFlagsReg cr)
8263 %{
8264   match(Set dst (MulL dst (LoadL src)));
8265   effect(KILL cr);
8266 
8267   ins_cost(350);
8268   format %{ "imulq   $dst, $src\t# long" %}
8269   opcode(0x0F, 0xAF);
8270   ins_encode(REX_reg_mem_wide(dst, src), OpcP, OpcS, reg_mem(dst, src));
8271   ins_pipe(ialu_reg_mem_alu0);
8272 %}
8273 
8274 instruct mulL_mem_imm(rRegL dst, memory src, immL32 imm, rFlagsReg cr)
8275 %{
8276   match(Set dst (MulL (LoadL src) imm));
8277   effect(KILL cr);
8278 
8279   ins_cost(300);
8280   format %{ "imulq   $dst, $src, $imm\t# long" %}
8281   opcode(0x69); /* 69 /r id */
8282   ins_encode(REX_reg_mem_wide(dst, src),
8283              OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
8284   ins_pipe(ialu_reg_mem_alu0);
8285 %}
8286 
8287 instruct mulHiL_rReg(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
8288 %{
8289   match(Set dst (MulHiL src rax));
8290   effect(USE_KILL rax, KILL cr);
8291 
8292   ins_cost(300);
8293   format %{ "imulq   RDX:RAX, RAX, $src\t# mulhi" %}
8294   opcode(0xF7, 0x5); /* Opcode F7 /5 */
8295   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
8296   ins_pipe(ialu_reg_reg_alu0);
8297 %}
8298 
8299 instruct divI_rReg(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
8300                    rFlagsReg cr)
8301 %{
8302   match(Set rax (DivI rax div));
8303   effect(KILL rdx, KILL cr);
8304 
8305   ins_cost(30*100+10*100); // XXX
8306   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
8307             "jne,s   normal\n\t"
8308             "xorl    rdx, rdx\n\t"
8309             "cmpl    $div, -1\n\t"
8310             "je,s    done\n"
8311     "normal: cdql\n\t"
8312             "idivl   $div\n"
8313     "done:"        %}
8314   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8315   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
8316   ins_pipe(ialu_reg_reg_alu0);
8317 %}
8318 
8319 instruct divL_rReg(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
8320                    rFlagsReg cr)
8321 %{
8322   match(Set rax (DivL rax div));
8323   effect(KILL rdx, KILL cr);
8324 
8325   ins_cost(30*100+10*100); // XXX
8326   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
8327             "cmpq    rax, rdx\n\t"
8328             "jne,s   normal\n\t"
8329             "xorl    rdx, rdx\n\t"
8330             "cmpq    $div, -1\n\t"
8331             "je,s    done\n"
8332     "normal: cdqq\n\t"
8333             "idivq   $div\n"
8334     "done:"        %}
8335   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8336   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
8337   ins_pipe(ialu_reg_reg_alu0);
8338 %}
8339 
8340 // Integer DIVMOD with Register, both quotient and mod results
8341 instruct divModI_rReg_divmod(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
8342                              rFlagsReg cr)
8343 %{
8344   match(DivModI rax div);
8345   effect(KILL cr);
8346 
8347   ins_cost(30*100+10*100); // XXX
8348   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
8349             "jne,s   normal\n\t"
8350             "xorl    rdx, rdx\n\t"
8351             "cmpl    $div, -1\n\t"
8352             "je,s    done\n"
8353     "normal: cdql\n\t"
8354             "idivl   $div\n"
8355     "done:"        %}
8356   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8357   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
8358   ins_pipe(pipe_slow);
8359 %}
8360 
8361 // Long DIVMOD with Register, both quotient and mod results
8362 instruct divModL_rReg_divmod(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
8363                              rFlagsReg cr)
8364 %{
8365   match(DivModL rax div);
8366   effect(KILL cr);
8367 
8368   ins_cost(30*100+10*100); // XXX
8369   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
8370             "cmpq    rax, rdx\n\t"
8371             "jne,s   normal\n\t"
8372             "xorl    rdx, rdx\n\t"
8373             "cmpq    $div, -1\n\t"
8374             "je,s    done\n"
8375     "normal: cdqq\n\t"
8376             "idivq   $div\n"
8377     "done:"        %}
8378   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8379   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
8380   ins_pipe(pipe_slow);
8381 %}
8382 
8383 //----------- DivL-By-Constant-Expansions--------------------------------------
8384 // DivI cases are handled by the compiler
8385 
8386 // Magic constant, reciprocal of 10
8387 instruct loadConL_0x6666666666666667(rRegL dst)
8388 %{
8389   effect(DEF dst);
8390 
8391   format %{ "movq    $dst, #0x666666666666667\t# Used in div-by-10" %}
8392   ins_encode(load_immL(dst, 0x6666666666666667));
8393   ins_pipe(ialu_reg);
8394 %}
8395 
8396 instruct mul_hi(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
8397 %{
8398   effect(DEF dst, USE src, USE_KILL rax, KILL cr);
8399 
8400   format %{ "imulq   rdx:rax, rax, $src\t# Used in div-by-10" %}
8401   opcode(0xF7, 0x5); /* Opcode F7 /5 */
8402   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
8403   ins_pipe(ialu_reg_reg_alu0);
8404 %}
8405 
8406 instruct sarL_rReg_63(rRegL dst, rFlagsReg cr)
8407 %{
8408   effect(USE_DEF dst, KILL cr);
8409 
8410   format %{ "sarq    $dst, #63\t# Used in div-by-10" %}
8411   opcode(0xC1, 0x7); /* C1 /7 ib */
8412   ins_encode(reg_opc_imm_wide(dst, 0x3F));
8413   ins_pipe(ialu_reg);
8414 %}
8415 
8416 instruct sarL_rReg_2(rRegL dst, rFlagsReg cr)
8417 %{
8418   effect(USE_DEF dst, KILL cr);
8419 
8420   format %{ "sarq    $dst, #2\t# Used in div-by-10" %}
8421   opcode(0xC1, 0x7); /* C1 /7 ib */
8422   ins_encode(reg_opc_imm_wide(dst, 0x2));
8423   ins_pipe(ialu_reg);
8424 %}
8425 
8426 instruct divL_10(rdx_RegL dst, no_rax_RegL src, immL10 div)
8427 %{
8428   match(Set dst (DivL src div));
8429 
8430   ins_cost((5+8)*100);
8431   expand %{
8432     rax_RegL rax;                     // Killed temp
8433     rFlagsReg cr;                     // Killed
8434     loadConL_0x6666666666666667(rax); // movq  rax, 0x6666666666666667
8435     mul_hi(dst, src, rax, cr);        // mulq  rdx:rax <= rax * $src
8436     sarL_rReg_63(src, cr);            // sarq  src, 63
8437     sarL_rReg_2(dst, cr);             // sarq  rdx, 2
8438     subL_rReg(dst, src, cr);          // subl  rdx, src
8439   %}
8440 %}
8441 
8442 //-----------------------------------------------------------------------------
8443 
8444 instruct modI_rReg(rdx_RegI rdx, rax_RegI rax, no_rax_rdx_RegI div,
8445                    rFlagsReg cr)
8446 %{
8447   match(Set rdx (ModI rax div));
8448   effect(KILL rax, KILL cr);
8449 
8450   ins_cost(300); // XXX
8451   format %{ "cmpl    rax, 0x80000000\t# irem\n\t"
8452             "jne,s   normal\n\t"
8453             "xorl    rdx, rdx\n\t"
8454             "cmpl    $div, -1\n\t"
8455             "je,s    done\n"
8456     "normal: cdql\n\t"
8457             "idivl   $div\n"
8458     "done:"        %}
8459   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8460   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
8461   ins_pipe(ialu_reg_reg_alu0);
8462 %}
8463 
8464 instruct modL_rReg(rdx_RegL rdx, rax_RegL rax, no_rax_rdx_RegL div,
8465                    rFlagsReg cr)
8466 %{
8467   match(Set rdx (ModL rax div));
8468   effect(KILL rax, KILL cr);
8469 
8470   ins_cost(300); // XXX
8471   format %{ "movq    rdx, 0x8000000000000000\t# lrem\n\t"
8472             "cmpq    rax, rdx\n\t"
8473             "jne,s   normal\n\t"
8474             "xorl    rdx, rdx\n\t"
8475             "cmpq    $div, -1\n\t"
8476             "je,s    done\n"
8477     "normal: cdqq\n\t"
8478             "idivq   $div\n"
8479     "done:"        %}
8480   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8481   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
8482   ins_pipe(ialu_reg_reg_alu0);
8483 %}
8484 
8485 // Integer Shift Instructions
8486 // Shift Left by one
8487 instruct salI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
8488 %{
8489   match(Set dst (LShiftI dst shift));
8490   effect(KILL cr);
8491 
8492   format %{ "sall    $dst, $shift" %}
8493   opcode(0xD1, 0x4); /* D1 /4 */
8494   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8495   ins_pipe(ialu_reg);
8496 %}
8497 
8498 // Shift Left by one
8499 instruct salI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8500 %{
8501   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
8502   effect(KILL cr);
8503 
8504   format %{ "sall    $dst, $shift\t" %}
8505   opcode(0xD1, 0x4); /* D1 /4 */
8506   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8507   ins_pipe(ialu_mem_imm);
8508 %}
8509 
8510 // Shift Left by 8-bit immediate
8511 instruct salI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8512 %{
8513   match(Set dst (LShiftI dst shift));
8514   effect(KILL cr);
8515 
8516   format %{ "sall    $dst, $shift" %}
8517   opcode(0xC1, 0x4); /* C1 /4 ib */
8518   ins_encode(reg_opc_imm(dst, shift));
8519   ins_pipe(ialu_reg);
8520 %}
8521 
8522 // Shift Left by 8-bit immediate
8523 instruct salI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8524 %{
8525   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
8526   effect(KILL cr);
8527 
8528   format %{ "sall    $dst, $shift" %}
8529   opcode(0xC1, 0x4); /* C1 /4 ib */
8530   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8531   ins_pipe(ialu_mem_imm);
8532 %}
8533 
8534 // Shift Left by variable
8535 instruct salI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8536 %{
8537   match(Set dst (LShiftI dst shift));
8538   effect(KILL cr);
8539 
8540   format %{ "sall    $dst, $shift" %}
8541   opcode(0xD3, 0x4); /* D3 /4 */
8542   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8543   ins_pipe(ialu_reg_reg);
8544 %}
8545 
8546 // Shift Left by variable
8547 instruct salI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8548 %{
8549   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
8550   effect(KILL cr);
8551 
8552   format %{ "sall    $dst, $shift" %}
8553   opcode(0xD3, 0x4); /* D3 /4 */
8554   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8555   ins_pipe(ialu_mem_reg);
8556 %}
8557 
8558 // Arithmetic shift right by one
8559 instruct sarI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
8560 %{
8561   match(Set dst (RShiftI dst shift));
8562   effect(KILL cr);
8563 
8564   format %{ "sarl    $dst, $shift" %}
8565   opcode(0xD1, 0x7); /* D1 /7 */
8566   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8567   ins_pipe(ialu_reg);
8568 %}
8569 
8570 // Arithmetic shift right by one
8571 instruct sarI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8572 %{
8573   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8574   effect(KILL cr);
8575 
8576   format %{ "sarl    $dst, $shift" %}
8577   opcode(0xD1, 0x7); /* D1 /7 */
8578   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8579   ins_pipe(ialu_mem_imm);
8580 %}
8581 
8582 // Arithmetic Shift Right by 8-bit immediate
8583 instruct sarI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8584 %{
8585   match(Set dst (RShiftI dst shift));
8586   effect(KILL cr);
8587 
8588   format %{ "sarl    $dst, $shift" %}
8589   opcode(0xC1, 0x7); /* C1 /7 ib */
8590   ins_encode(reg_opc_imm(dst, shift));
8591   ins_pipe(ialu_mem_imm);
8592 %}
8593 
8594 // Arithmetic Shift Right by 8-bit immediate
8595 instruct sarI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8596 %{
8597   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8598   effect(KILL cr);
8599 
8600   format %{ "sarl    $dst, $shift" %}
8601   opcode(0xC1, 0x7); /* C1 /7 ib */
8602   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8603   ins_pipe(ialu_mem_imm);
8604 %}
8605 
8606 // Arithmetic Shift Right by variable
8607 instruct sarI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8608 %{
8609   match(Set dst (RShiftI dst shift));
8610   effect(KILL cr);
8611 
8612   format %{ "sarl    $dst, $shift" %}
8613   opcode(0xD3, 0x7); /* D3 /7 */
8614   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8615   ins_pipe(ialu_reg_reg);
8616 %}
8617 
8618 // Arithmetic Shift Right by variable
8619 instruct sarI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8620 %{
8621   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8622   effect(KILL cr);
8623 
8624   format %{ "sarl    $dst, $shift" %}
8625   opcode(0xD3, 0x7); /* D3 /7 */
8626   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8627   ins_pipe(ialu_mem_reg);
8628 %}
8629 
8630 // Logical shift right by one
8631 instruct shrI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
8632 %{
8633   match(Set dst (URShiftI dst shift));
8634   effect(KILL cr);
8635 
8636   format %{ "shrl    $dst, $shift" %}
8637   opcode(0xD1, 0x5); /* D1 /5 */
8638   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8639   ins_pipe(ialu_reg);
8640 %}
8641 
8642 // Logical shift right by one
8643 instruct shrI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8644 %{
8645   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8646   effect(KILL cr);
8647 
8648   format %{ "shrl    $dst, $shift" %}
8649   opcode(0xD1, 0x5); /* D1 /5 */
8650   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8651   ins_pipe(ialu_mem_imm);
8652 %}
8653 
8654 // Logical Shift Right by 8-bit immediate
8655 instruct shrI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8656 %{
8657   match(Set dst (URShiftI dst shift));
8658   effect(KILL cr);
8659 
8660   format %{ "shrl    $dst, $shift" %}
8661   opcode(0xC1, 0x5); /* C1 /5 ib */
8662   ins_encode(reg_opc_imm(dst, shift));
8663   ins_pipe(ialu_reg);
8664 %}
8665 
8666 // Logical Shift Right by 8-bit immediate
8667 instruct shrI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8668 %{
8669   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8670   effect(KILL cr);
8671 
8672   format %{ "shrl    $dst, $shift" %}
8673   opcode(0xC1, 0x5); /* C1 /5 ib */
8674   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8675   ins_pipe(ialu_mem_imm);
8676 %}
8677 
8678 // Logical Shift Right by variable
8679 instruct shrI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8680 %{
8681   match(Set dst (URShiftI dst shift));
8682   effect(KILL cr);
8683 
8684   format %{ "shrl    $dst, $shift" %}
8685   opcode(0xD3, 0x5); /* D3 /5 */
8686   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8687   ins_pipe(ialu_reg_reg);
8688 %}
8689 
8690 // Logical Shift Right by variable
8691 instruct shrI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8692 %{
8693   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8694   effect(KILL cr);
8695 
8696   format %{ "shrl    $dst, $shift" %}
8697   opcode(0xD3, 0x5); /* D3 /5 */
8698   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8699   ins_pipe(ialu_mem_reg);
8700 %}
8701 
8702 // Long Shift Instructions
8703 // Shift Left by one
8704 instruct salL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8705 %{
8706   match(Set dst (LShiftL dst shift));
8707   effect(KILL cr);
8708 
8709   format %{ "salq    $dst, $shift" %}
8710   opcode(0xD1, 0x4); /* D1 /4 */
8711   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8712   ins_pipe(ialu_reg);
8713 %}
8714 
8715 // Shift Left by one
8716 instruct salL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8717 %{
8718   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8719   effect(KILL cr);
8720 
8721   format %{ "salq    $dst, $shift" %}
8722   opcode(0xD1, 0x4); /* D1 /4 */
8723   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8724   ins_pipe(ialu_mem_imm);
8725 %}
8726 
8727 // Shift Left by 8-bit immediate
8728 instruct salL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8729 %{
8730   match(Set dst (LShiftL dst shift));
8731   effect(KILL cr);
8732 
8733   format %{ "salq    $dst, $shift" %}
8734   opcode(0xC1, 0x4); /* C1 /4 ib */
8735   ins_encode(reg_opc_imm_wide(dst, shift));
8736   ins_pipe(ialu_reg);
8737 %}
8738 
8739 // Shift Left by 8-bit immediate
8740 instruct salL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8741 %{
8742   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8743   effect(KILL cr);
8744 
8745   format %{ "salq    $dst, $shift" %}
8746   opcode(0xC1, 0x4); /* C1 /4 ib */
8747   ins_encode(REX_mem_wide(dst), OpcP,
8748              RM_opc_mem(secondary, dst), Con8or32(shift));
8749   ins_pipe(ialu_mem_imm);
8750 %}
8751 
8752 // Shift Left by variable
8753 instruct salL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8754 %{
8755   match(Set dst (LShiftL dst shift));
8756   effect(KILL cr);
8757 
8758   format %{ "salq    $dst, $shift" %}
8759   opcode(0xD3, 0x4); /* D3 /4 */
8760   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8761   ins_pipe(ialu_reg_reg);
8762 %}
8763 
8764 // Shift Left by variable
8765 instruct salL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8766 %{
8767   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8768   effect(KILL cr);
8769 
8770   format %{ "salq    $dst, $shift" %}
8771   opcode(0xD3, 0x4); /* D3 /4 */
8772   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8773   ins_pipe(ialu_mem_reg);
8774 %}
8775 
8776 // Arithmetic shift right by one
8777 instruct sarL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8778 %{
8779   match(Set dst (RShiftL dst shift));
8780   effect(KILL cr);
8781 
8782   format %{ "sarq    $dst, $shift" %}
8783   opcode(0xD1, 0x7); /* D1 /7 */
8784   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8785   ins_pipe(ialu_reg);
8786 %}
8787 
8788 // Arithmetic shift right by one
8789 instruct sarL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8790 %{
8791   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8792   effect(KILL cr);
8793 
8794   format %{ "sarq    $dst, $shift" %}
8795   opcode(0xD1, 0x7); /* D1 /7 */
8796   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8797   ins_pipe(ialu_mem_imm);
8798 %}
8799 
8800 // Arithmetic Shift Right by 8-bit immediate
8801 instruct sarL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8802 %{
8803   match(Set dst (RShiftL dst shift));
8804   effect(KILL cr);
8805 
8806   format %{ "sarq    $dst, $shift" %}
8807   opcode(0xC1, 0x7); /* C1 /7 ib */
8808   ins_encode(reg_opc_imm_wide(dst, shift));
8809   ins_pipe(ialu_mem_imm);
8810 %}
8811 
8812 // Arithmetic Shift Right by 8-bit immediate
8813 instruct sarL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8814 %{
8815   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8816   effect(KILL cr);
8817 
8818   format %{ "sarq    $dst, $shift" %}
8819   opcode(0xC1, 0x7); /* C1 /7 ib */
8820   ins_encode(REX_mem_wide(dst), OpcP,
8821              RM_opc_mem(secondary, dst), Con8or32(shift));
8822   ins_pipe(ialu_mem_imm);
8823 %}
8824 
8825 // Arithmetic Shift Right by variable
8826 instruct sarL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8827 %{
8828   match(Set dst (RShiftL dst shift));
8829   effect(KILL cr);
8830 
8831   format %{ "sarq    $dst, $shift" %}
8832   opcode(0xD3, 0x7); /* D3 /7 */
8833   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8834   ins_pipe(ialu_reg_reg);
8835 %}
8836 
8837 // Arithmetic Shift Right by variable
8838 instruct sarL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8839 %{
8840   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8841   effect(KILL cr);
8842 
8843   format %{ "sarq    $dst, $shift" %}
8844   opcode(0xD3, 0x7); /* D3 /7 */
8845   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8846   ins_pipe(ialu_mem_reg);
8847 %}
8848 
8849 // Logical shift right by one
8850 instruct shrL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8851 %{
8852   match(Set dst (URShiftL dst shift));
8853   effect(KILL cr);
8854 
8855   format %{ "shrq    $dst, $shift" %}
8856   opcode(0xD1, 0x5); /* D1 /5 */
8857   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst ));
8858   ins_pipe(ialu_reg);
8859 %}
8860 
8861 // Logical shift right by one
8862 instruct shrL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8863 %{
8864   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8865   effect(KILL cr);
8866 
8867   format %{ "shrq    $dst, $shift" %}
8868   opcode(0xD1, 0x5); /* D1 /5 */
8869   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8870   ins_pipe(ialu_mem_imm);
8871 %}
8872 
8873 // Logical Shift Right by 8-bit immediate
8874 instruct shrL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8875 %{
8876   match(Set dst (URShiftL dst shift));
8877   effect(KILL cr);
8878 
8879   format %{ "shrq    $dst, $shift" %}
8880   opcode(0xC1, 0x5); /* C1 /5 ib */
8881   ins_encode(reg_opc_imm_wide(dst, shift));
8882   ins_pipe(ialu_reg);
8883 %}
8884 
8885 
8886 // Logical Shift Right by 8-bit immediate
8887 instruct shrL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8888 %{
8889   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8890   effect(KILL cr);
8891 
8892   format %{ "shrq    $dst, $shift" %}
8893   opcode(0xC1, 0x5); /* C1 /5 ib */
8894   ins_encode(REX_mem_wide(dst), OpcP,
8895              RM_opc_mem(secondary, dst), Con8or32(shift));
8896   ins_pipe(ialu_mem_imm);
8897 %}
8898 
8899 // Logical Shift Right by variable
8900 instruct shrL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8901 %{
8902   match(Set dst (URShiftL dst shift));
8903   effect(KILL cr);
8904 
8905   format %{ "shrq    $dst, $shift" %}
8906   opcode(0xD3, 0x5); /* D3 /5 */
8907   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8908   ins_pipe(ialu_reg_reg);
8909 %}
8910 
8911 // Logical Shift Right by variable
8912 instruct shrL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8913 %{
8914   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8915   effect(KILL cr);
8916 
8917   format %{ "shrq    $dst, $shift" %}
8918   opcode(0xD3, 0x5); /* D3 /5 */
8919   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8920   ins_pipe(ialu_mem_reg);
8921 %}
8922 
8923 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
8924 // This idiom is used by the compiler for the i2b bytecode.
8925 instruct i2b(rRegI dst, rRegI src, immI_24 twentyfour)
8926 %{
8927   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
8928 
8929   format %{ "movsbl  $dst, $src\t# i2b" %}
8930   opcode(0x0F, 0xBE);
8931   ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8932   ins_pipe(ialu_reg_reg);
8933 %}
8934 
8935 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
8936 // This idiom is used by the compiler the i2s bytecode.
8937 instruct i2s(rRegI dst, rRegI src, immI_16 sixteen)
8938 %{
8939   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
8940 
8941   format %{ "movswl  $dst, $src\t# i2s" %}
8942   opcode(0x0F, 0xBF);
8943   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8944   ins_pipe(ialu_reg_reg);
8945 %}
8946 
8947 // ROL/ROR instructions
8948 
8949 // Rotate left by constant.
8950 instruct rolI_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8951 %{
8952   predicate(n->bottom_type()->basic_type() == T_INT);
8953   match(Set dst (RotateLeft dst shift));
8954   effect(KILL cr);
8955   format %{ "roll    $dst, $shift" %}
8956   ins_encode %{
8957     __ roll($dst$$Register, $shift$$constant);
8958   %}
8959   ins_pipe(ialu_reg);
8960 %}
8961 
8962 // Rotate Left by variable
8963 instruct rolI_rReg_Var(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8964 %{
8965   predicate(n->bottom_type()->basic_type() == T_INT);
8966   match(Set dst (RotateLeft dst shift));
8967   effect(KILL cr);
8968   format %{ "roll    $dst, $shift" %}
8969   ins_encode %{
8970     __ roll($dst$$Register);
8971   %}
8972   ins_pipe(ialu_reg_reg);
8973 %}
8974 
8975 // Rotate Right by constant.
8976 instruct rorI_immI8_legacy(rRegI dst, immI8 shift, rFlagsReg cr)
8977 %{
8978   predicate(!VM_Version::supports_bmi2() && n->bottom_type()->basic_type() == T_INT);
8979   match(Set dst (RotateRight dst shift));
8980   effect(KILL cr);
8981   format %{ "rorl    $dst, $shift" %}
8982   ins_encode %{
8983     __ rorl($dst$$Register, $shift$$constant);
8984   %}
8985   ins_pipe(ialu_reg);
8986 %}
8987 
8988 // Rotate Right by constant.
8989 instruct rorI_immI8(rRegI dst, immI8 shift)
8990 %{
8991   predicate(VM_Version::supports_bmi2() && n->bottom_type()->basic_type() == T_INT);
8992   match(Set dst (RotateRight dst shift));
8993   format %{ "rorxd     $dst, $shift" %}
8994   ins_encode %{
8995     __ rorxd($dst$$Register, $dst$$Register, $shift$$constant);
8996   %}
8997   ins_pipe(ialu_reg_reg);
8998 %}
8999 
9000 // Rotate Right by variable
9001 instruct rorI_rReg_Var(rRegI dst, rcx_RegI shift, rFlagsReg cr)
9002 %{
9003   predicate(n->bottom_type()->basic_type() == T_INT);
9004   match(Set dst (RotateRight dst shift));
9005   effect(KILL cr);
9006   format %{ "rorl    $dst, $shift" %}
9007   ins_encode %{
9008     __ rorl($dst$$Register);
9009   %}
9010   ins_pipe(ialu_reg_reg);
9011 %}
9012 
9013 
9014 // Rotate Left by constant.
9015 instruct rolL_immI8(rRegL dst, immI8 shift, rFlagsReg cr)
9016 %{
9017   predicate(n->bottom_type()->basic_type() == T_LONG);
9018   match(Set dst (RotateLeft dst shift));
9019   effect(KILL cr);
9020   format %{ "rolq    $dst, $shift" %}
9021   ins_encode %{
9022     __ rolq($dst$$Register, $shift$$constant);
9023   %}
9024   ins_pipe(ialu_reg);
9025 %}
9026 
9027 // Rotate Left by variable
9028 instruct rolL_rReg_Var(rRegL dst, rcx_RegI shift, rFlagsReg cr)
9029 %{
9030   predicate(n->bottom_type()->basic_type() == T_LONG);
9031   match(Set dst (RotateLeft dst shift));
9032   effect(KILL cr);
9033   format %{ "rolq    $dst, $shift" %}
9034   ins_encode %{
9035     __ rolq($dst$$Register);
9036   %}
9037   ins_pipe(ialu_reg_reg);
9038 %}
9039 
9040 
9041 // Rotate Right by constant.
9042 instruct rorL_immI8_legacy(rRegL dst, immI8 shift, rFlagsReg cr)
9043 %{
9044   predicate(!VM_Version::supports_bmi2() && n->bottom_type()->basic_type() == T_LONG);
9045   match(Set dst (RotateRight dst shift));
9046   effect(KILL cr);
9047   format %{ "rorq    $dst, $shift" %}
9048   ins_encode %{
9049     __ rorq($dst$$Register, $shift$$constant);
9050   %}
9051   ins_pipe(ialu_reg);
9052 %}
9053 
9054 
9055 // Rotate Right by constant
9056 instruct rorL_immI8(rRegL dst, immI8 shift)
9057 %{
9058   predicate(VM_Version::supports_bmi2() && n->bottom_type()->basic_type() == T_LONG);
9059   match(Set dst (RotateRight dst shift));
9060   format %{ "rorxq    $dst, $shift" %}
9061   ins_encode %{
9062     __ rorxq($dst$$Register, $dst$$Register, $shift$$constant);
9063   %}
9064   ins_pipe(ialu_reg_reg);
9065 %}
9066 
9067 // Rotate Right by variable
9068 instruct rorL_rReg_Var(rRegL dst, rcx_RegI shift, rFlagsReg cr)
9069 %{
9070   predicate(n->bottom_type()->basic_type() == T_LONG);
9071   match(Set dst (RotateRight dst shift));
9072   effect(KILL cr);
9073   format %{ "rorq    $dst, $shift" %}
9074   ins_encode %{
9075     __ rorq($dst$$Register);
9076   %}
9077   ins_pipe(ialu_reg_reg);
9078 %}
9079 
9080 
9081 // Logical Instructions
9082 
9083 // Integer Logical Instructions
9084 
9085 // And Instructions
9086 // And Register with Register
9087 instruct andI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
9088 %{
9089   match(Set dst (AndI dst src));
9090   effect(KILL cr);
9091 
9092   format %{ "andl    $dst, $src\t# int" %}
9093   opcode(0x23);
9094   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
9095   ins_pipe(ialu_reg_reg);
9096 %}
9097 
9098 // And Register with Immediate 255
9099 instruct andI_rReg_imm255(rRegI dst, immI_255 src)
9100 %{
9101   match(Set dst (AndI dst src));
9102 
9103   format %{ "movzbl  $dst, $dst\t# int & 0xFF" %}
9104   opcode(0x0F, 0xB6);
9105   ins_encode(REX_reg_breg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9106   ins_pipe(ialu_reg);
9107 %}
9108 
9109 // And Register with Immediate 255 and promote to long
9110 instruct andI2L_rReg_imm255(rRegL dst, rRegI src, immI_255 mask)
9111 %{
9112   match(Set dst (ConvI2L (AndI src mask)));
9113 
9114   format %{ "movzbl  $dst, $src\t# int & 0xFF -> long" %}
9115   opcode(0x0F, 0xB6);
9116   ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
9117   ins_pipe(ialu_reg);
9118 %}
9119 
9120 // And Register with Immediate 65535
9121 instruct andI_rReg_imm65535(rRegI dst, immI_65535 src)
9122 %{
9123   match(Set dst (AndI dst src));
9124 
9125   format %{ "movzwl  $dst, $dst\t# int & 0xFFFF" %}
9126   opcode(0x0F, 0xB7);
9127   ins_encode(REX_reg_reg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9128   ins_pipe(ialu_reg);
9129 %}
9130 
9131 // And Register with Immediate 65535 and promote to long
9132 instruct andI2L_rReg_imm65535(rRegL dst, rRegI src, immI_65535 mask)
9133 %{
9134   match(Set dst (ConvI2L (AndI src mask)));
9135 
9136   format %{ "movzwl  $dst, $src\t# int & 0xFFFF -> long" %}
9137   opcode(0x0F, 0xB7);
9138   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
9139   ins_pipe(ialu_reg);
9140 %}
9141 
9142 // And Register with Immediate
9143 instruct andI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
9144 %{
9145   match(Set dst (AndI dst src));
9146   effect(KILL cr);
9147 
9148   format %{ "andl    $dst, $src\t# int" %}
9149   opcode(0x81, 0x04); /* Opcode 81 /4 */
9150   ins_encode(OpcSErm(dst, src), Con8or32(src));
9151   ins_pipe(ialu_reg);
9152 %}
9153 
9154 // And Register with Memory
9155 instruct andI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
9156 %{
9157   match(Set dst (AndI dst (LoadI src)));
9158   effect(KILL cr);
9159 
9160   ins_cost(125);
9161   format %{ "andl    $dst, $src\t# int" %}
9162   opcode(0x23);
9163   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
9164   ins_pipe(ialu_reg_mem);
9165 %}
9166 
9167 // And Memory with Register
9168 instruct andB_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9169 %{
9170   match(Set dst (StoreB dst (AndI (LoadB dst) src)));
9171   effect(KILL cr);
9172 
9173   ins_cost(150);
9174   format %{ "andb    $dst, $src\t# byte" %}
9175   opcode(0x20);
9176   ins_encode(REX_breg_mem(src, dst), OpcP, reg_mem(src, dst));
9177   ins_pipe(ialu_mem_reg);
9178 %}
9179 
9180 instruct andI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9181 %{
9182   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
9183   effect(KILL cr);
9184 
9185   ins_cost(150);
9186   format %{ "andl    $dst, $src\t# int" %}
9187   opcode(0x21); /* Opcode 21 /r */
9188   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
9189   ins_pipe(ialu_mem_reg);
9190 %}
9191 
9192 // And Memory with Immediate
9193 instruct andI_mem_imm(memory dst, immI src, rFlagsReg cr)
9194 %{
9195   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
9196   effect(KILL cr);
9197 
9198   ins_cost(125);
9199   format %{ "andl    $dst, $src\t# int" %}
9200   opcode(0x81, 0x4); /* Opcode 81 /4 id */
9201   ins_encode(REX_mem(dst), OpcSE(src),
9202              RM_opc_mem(secondary, dst), Con8or32(src));
9203   ins_pipe(ialu_mem_imm);
9204 %}
9205 
9206 // BMI1 instructions
9207 instruct andnI_rReg_rReg_mem(rRegI dst, rRegI src1, memory src2, immI_M1 minus_1, rFlagsReg cr) %{
9208   match(Set dst (AndI (XorI src1 minus_1) (LoadI src2)));
9209   predicate(UseBMI1Instructions);
9210   effect(KILL cr);
9211 
9212   ins_cost(125);
9213   format %{ "andnl  $dst, $src1, $src2" %}
9214 
9215   ins_encode %{
9216     __ andnl($dst$$Register, $src1$$Register, $src2$$Address);
9217   %}
9218   ins_pipe(ialu_reg_mem);
9219 %}
9220 
9221 instruct andnI_rReg_rReg_rReg(rRegI dst, rRegI src1, rRegI src2, immI_M1 minus_1, rFlagsReg cr) %{
9222   match(Set dst (AndI (XorI src1 minus_1) src2));
9223   predicate(UseBMI1Instructions);
9224   effect(KILL cr);
9225 
9226   format %{ "andnl  $dst, $src1, $src2" %}
9227 
9228   ins_encode %{
9229     __ andnl($dst$$Register, $src1$$Register, $src2$$Register);
9230   %}
9231   ins_pipe(ialu_reg);
9232 %}
9233 
9234 instruct blsiI_rReg_rReg(rRegI dst, rRegI src, immI0 imm_zero, rFlagsReg cr) %{
9235   match(Set dst (AndI (SubI imm_zero src) src));
9236   predicate(UseBMI1Instructions);
9237   effect(KILL cr);
9238 
9239   format %{ "blsil  $dst, $src" %}
9240 
9241   ins_encode %{
9242     __ blsil($dst$$Register, $src$$Register);
9243   %}
9244   ins_pipe(ialu_reg);
9245 %}
9246 
9247 instruct blsiI_rReg_mem(rRegI dst, memory src, immI0 imm_zero, rFlagsReg cr) %{
9248   match(Set dst (AndI (SubI imm_zero (LoadI src) ) (LoadI src) ));
9249   predicate(UseBMI1Instructions);
9250   effect(KILL cr);
9251 
9252   ins_cost(125);
9253   format %{ "blsil  $dst, $src" %}
9254 
9255   ins_encode %{
9256     __ blsil($dst$$Register, $src$$Address);
9257   %}
9258   ins_pipe(ialu_reg_mem);
9259 %}
9260 
9261 instruct blsmskI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, rFlagsReg cr)
9262 %{
9263   match(Set dst (XorI (AddI (LoadI src) minus_1) (LoadI src) ) );
9264   predicate(UseBMI1Instructions);
9265   effect(KILL cr);
9266 
9267   ins_cost(125);
9268   format %{ "blsmskl $dst, $src" %}
9269 
9270   ins_encode %{
9271     __ blsmskl($dst$$Register, $src$$Address);
9272   %}
9273   ins_pipe(ialu_reg_mem);
9274 %}
9275 
9276 instruct blsmskI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, rFlagsReg cr)
9277 %{
9278   match(Set dst (XorI (AddI src minus_1) src));
9279   predicate(UseBMI1Instructions);
9280   effect(KILL cr);
9281 
9282   format %{ "blsmskl $dst, $src" %}
9283 
9284   ins_encode %{
9285     __ blsmskl($dst$$Register, $src$$Register);
9286   %}
9287 
9288   ins_pipe(ialu_reg);
9289 %}
9290 
9291 instruct blsrI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, rFlagsReg cr)
9292 %{
9293   match(Set dst (AndI (AddI src minus_1) src) );
9294   predicate(UseBMI1Instructions);
9295   effect(KILL cr);
9296 
9297   format %{ "blsrl  $dst, $src" %}
9298 
9299   ins_encode %{
9300     __ blsrl($dst$$Register, $src$$Register);
9301   %}
9302 
9303   ins_pipe(ialu_reg_mem);
9304 %}
9305 
9306 instruct blsrI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, rFlagsReg cr)
9307 %{
9308   match(Set dst (AndI (AddI (LoadI src) minus_1) (LoadI src) ) );
9309   predicate(UseBMI1Instructions);
9310   effect(KILL cr);
9311 
9312   ins_cost(125);
9313   format %{ "blsrl  $dst, $src" %}
9314 
9315   ins_encode %{
9316     __ blsrl($dst$$Register, $src$$Address);
9317   %}
9318 
9319   ins_pipe(ialu_reg);
9320 %}
9321 
9322 // Or Instructions
9323 // Or Register with Register
9324 instruct orI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
9325 %{
9326   match(Set dst (OrI dst src));
9327   effect(KILL cr);
9328 
9329   format %{ "orl     $dst, $src\t# int" %}
9330   opcode(0x0B);
9331   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
9332   ins_pipe(ialu_reg_reg);
9333 %}
9334 
9335 // Or Register with Immediate
9336 instruct orI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
9337 %{
9338   match(Set dst (OrI dst src));
9339   effect(KILL cr);
9340 
9341   format %{ "orl     $dst, $src\t# int" %}
9342   opcode(0x81, 0x01); /* Opcode 81 /1 id */
9343   ins_encode(OpcSErm(dst, src), Con8or32(src));
9344   ins_pipe(ialu_reg);
9345 %}
9346 
9347 // Or Register with Memory
9348 instruct orI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
9349 %{
9350   match(Set dst (OrI dst (LoadI src)));
9351   effect(KILL cr);
9352 
9353   ins_cost(125);
9354   format %{ "orl     $dst, $src\t# int" %}
9355   opcode(0x0B);
9356   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
9357   ins_pipe(ialu_reg_mem);
9358 %}
9359 
9360 // Or Memory with Register
9361 instruct orB_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9362 %{
9363   match(Set dst (StoreB dst (OrI (LoadB dst) src)));
9364   effect(KILL cr);
9365 
9366   ins_cost(150);
9367   format %{ "orb    $dst, $src\t# byte" %}
9368   opcode(0x08);
9369   ins_encode(REX_breg_mem(src, dst), OpcP, reg_mem(src, dst));
9370   ins_pipe(ialu_mem_reg);
9371 %}
9372 
9373 instruct orI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9374 %{
9375   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9376   effect(KILL cr);
9377 
9378   ins_cost(150);
9379   format %{ "orl     $dst, $src\t# int" %}
9380   opcode(0x09); /* Opcode 09 /r */
9381   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
9382   ins_pipe(ialu_mem_reg);
9383 %}
9384 
9385 // Or Memory with Immediate
9386 instruct orI_mem_imm(memory dst, immI src, rFlagsReg cr)
9387 %{
9388   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9389   effect(KILL cr);
9390 
9391   ins_cost(125);
9392   format %{ "orl     $dst, $src\t# int" %}
9393   opcode(0x81, 0x1); /* Opcode 81 /1 id */
9394   ins_encode(REX_mem(dst), OpcSE(src),
9395              RM_opc_mem(secondary, dst), Con8or32(src));
9396   ins_pipe(ialu_mem_imm);
9397 %}
9398 
9399 // Xor Instructions
9400 // Xor Register with Register
9401 instruct xorI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
9402 %{
9403   match(Set dst (XorI dst src));
9404   effect(KILL cr);
9405 
9406   format %{ "xorl    $dst, $src\t# int" %}
9407   opcode(0x33);
9408   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
9409   ins_pipe(ialu_reg_reg);
9410 %}
9411 
9412 // Xor Register with Immediate -1
9413 instruct xorI_rReg_im1(rRegI dst, immI_M1 imm) %{
9414   match(Set dst (XorI dst imm));
9415 
9416   format %{ "not    $dst" %}
9417   ins_encode %{
9418      __ notl($dst$$Register);
9419   %}
9420   ins_pipe(ialu_reg);
9421 %}
9422 
9423 // Xor Register with Immediate
9424 instruct xorI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
9425 %{
9426   match(Set dst (XorI dst src));
9427   effect(KILL cr);
9428 
9429   format %{ "xorl    $dst, $src\t# int" %}
9430   opcode(0x81, 0x06); /* Opcode 81 /6 id */
9431   ins_encode(OpcSErm(dst, src), Con8or32(src));
9432   ins_pipe(ialu_reg);
9433 %}
9434 
9435 // Xor Register with Memory
9436 instruct xorI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
9437 %{
9438   match(Set dst (XorI dst (LoadI src)));
9439   effect(KILL cr);
9440 
9441   ins_cost(125);
9442   format %{ "xorl    $dst, $src\t# int" %}
9443   opcode(0x33);
9444   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
9445   ins_pipe(ialu_reg_mem);
9446 %}
9447 
9448 // Xor Memory with Register
9449 instruct xorB_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9450 %{
9451   match(Set dst (StoreB dst (XorI (LoadB dst) src)));
9452   effect(KILL cr);
9453 
9454   ins_cost(150);
9455   format %{ "xorb    $dst, $src\t# byte" %}
9456   opcode(0x30);
9457   ins_encode(REX_breg_mem(src, dst), OpcP, reg_mem(src, dst));
9458   ins_pipe(ialu_mem_reg);
9459 %}
9460 
9461 instruct xorI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9462 %{
9463   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9464   effect(KILL cr);
9465 
9466   ins_cost(150);
9467   format %{ "xorl    $dst, $src\t# int" %}
9468   opcode(0x31); /* Opcode 31 /r */
9469   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
9470   ins_pipe(ialu_mem_reg);
9471 %}
9472 
9473 // Xor Memory with Immediate
9474 instruct xorI_mem_imm(memory dst, immI src, rFlagsReg cr)
9475 %{
9476   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9477   effect(KILL cr);
9478 
9479   ins_cost(125);
9480   format %{ "xorl    $dst, $src\t# int" %}
9481   opcode(0x81, 0x6); /* Opcode 81 /6 id */
9482   ins_encode(REX_mem(dst), OpcSE(src),
9483              RM_opc_mem(secondary, dst), Con8or32(src));
9484   ins_pipe(ialu_mem_imm);
9485 %}
9486 
9487 
9488 // Long Logical Instructions
9489 
9490 // And Instructions
9491 // And Register with Register
9492 instruct andL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
9493 %{
9494   match(Set dst (AndL dst src));
9495   effect(KILL cr);
9496 
9497   format %{ "andq    $dst, $src\t# long" %}
9498   opcode(0x23);
9499   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9500   ins_pipe(ialu_reg_reg);
9501 %}
9502 
9503 // And Register with Immediate 255
9504 instruct andL_rReg_imm255(rRegL dst, immL_255 src)
9505 %{
9506   match(Set dst (AndL dst src));
9507 
9508   format %{ "movzbq  $dst, $dst\t# long & 0xFF" %}
9509   opcode(0x0F, 0xB6);
9510   ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9511   ins_pipe(ialu_reg);
9512 %}
9513 
9514 // And Register with Immediate 65535
9515 instruct andL_rReg_imm65535(rRegL dst, immL_65535 src)
9516 %{
9517   match(Set dst (AndL dst src));
9518 
9519   format %{ "movzwq  $dst, $dst\t# long & 0xFFFF" %}
9520   opcode(0x0F, 0xB7);
9521   ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9522   ins_pipe(ialu_reg);
9523 %}
9524 
9525 // And Register with Immediate
9526 instruct andL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
9527 %{
9528   match(Set dst (AndL dst src));
9529   effect(KILL cr);
9530 
9531   format %{ "andq    $dst, $src\t# long" %}
9532   opcode(0x81, 0x04); /* Opcode 81 /4 */
9533   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
9534   ins_pipe(ialu_reg);
9535 %}
9536 
9537 // And Register with Memory
9538 instruct andL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
9539 %{
9540   match(Set dst (AndL dst (LoadL src)));
9541   effect(KILL cr);
9542 
9543   ins_cost(125);
9544   format %{ "andq    $dst, $src\t# long" %}
9545   opcode(0x23);
9546   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
9547   ins_pipe(ialu_reg_mem);
9548 %}
9549 
9550 // And Memory with Register
9551 instruct andL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
9552 %{
9553   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
9554   effect(KILL cr);
9555 
9556   ins_cost(150);
9557   format %{ "andq    $dst, $src\t# long" %}
9558   opcode(0x21); /* Opcode 21 /r */
9559   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
9560   ins_pipe(ialu_mem_reg);
9561 %}
9562 
9563 // And Memory with Immediate
9564 instruct andL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
9565 %{
9566   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
9567   effect(KILL cr);
9568 
9569   ins_cost(125);
9570   format %{ "andq    $dst, $src\t# long" %}
9571   opcode(0x81, 0x4); /* Opcode 81 /4 id */
9572   ins_encode(REX_mem_wide(dst), OpcSE(src),
9573              RM_opc_mem(secondary, dst), Con8or32(src));
9574   ins_pipe(ialu_mem_imm);
9575 %}
9576 
9577 instruct btrL_mem_imm(memory dst, immL_NotPow2 con, rFlagsReg cr)
9578 %{
9579   // con should be a pure 64-bit immediate given that not(con) is a power of 2
9580   // because AND/OR works well enough for 8/32-bit values.
9581   predicate(log2_long(~n->in(3)->in(2)->get_long()) > 30);
9582 
9583   match(Set dst (StoreL dst (AndL (LoadL dst) con)));
9584   effect(KILL cr);
9585 
9586   ins_cost(125);
9587   format %{ "btrq    $dst, log2(not($con))\t# long" %}
9588   ins_encode %{
9589     __ btrq($dst$$Address, log2_long(~$con$$constant));
9590   %}
9591   ins_pipe(ialu_mem_imm);
9592 %}
9593 
9594 // BMI1 instructions
9595 instruct andnL_rReg_rReg_mem(rRegL dst, rRegL src1, memory src2, immL_M1 minus_1, rFlagsReg cr) %{
9596   match(Set dst (AndL (XorL src1 minus_1) (LoadL src2)));
9597   predicate(UseBMI1Instructions);
9598   effect(KILL cr);
9599 
9600   ins_cost(125);
9601   format %{ "andnq  $dst, $src1, $src2" %}
9602 
9603   ins_encode %{
9604     __ andnq($dst$$Register, $src1$$Register, $src2$$Address);
9605   %}
9606   ins_pipe(ialu_reg_mem);
9607 %}
9608 
9609 instruct andnL_rReg_rReg_rReg(rRegL dst, rRegL src1, rRegL src2, immL_M1 minus_1, rFlagsReg cr) %{
9610   match(Set dst (AndL (XorL src1 minus_1) src2));
9611   predicate(UseBMI1Instructions);
9612   effect(KILL cr);
9613 
9614   format %{ "andnq  $dst, $src1, $src2" %}
9615 
9616   ins_encode %{
9617   __ andnq($dst$$Register, $src1$$Register, $src2$$Register);
9618   %}
9619   ins_pipe(ialu_reg_mem);
9620 %}
9621 
9622 instruct blsiL_rReg_rReg(rRegL dst, rRegL src, immL0 imm_zero, rFlagsReg cr) %{
9623   match(Set dst (AndL (SubL imm_zero src) src));
9624   predicate(UseBMI1Instructions);
9625   effect(KILL cr);
9626 
9627   format %{ "blsiq  $dst, $src" %}
9628 
9629   ins_encode %{
9630     __ blsiq($dst$$Register, $src$$Register);
9631   %}
9632   ins_pipe(ialu_reg);
9633 %}
9634 
9635 instruct blsiL_rReg_mem(rRegL dst, memory src, immL0 imm_zero, rFlagsReg cr) %{
9636   match(Set dst (AndL (SubL imm_zero (LoadL src) ) (LoadL src) ));
9637   predicate(UseBMI1Instructions);
9638   effect(KILL cr);
9639 
9640   ins_cost(125);
9641   format %{ "blsiq  $dst, $src" %}
9642 
9643   ins_encode %{
9644     __ blsiq($dst$$Register, $src$$Address);
9645   %}
9646   ins_pipe(ialu_reg_mem);
9647 %}
9648 
9649 instruct blsmskL_rReg_mem(rRegL dst, memory src, immL_M1 minus_1, rFlagsReg cr)
9650 %{
9651   match(Set dst (XorL (AddL (LoadL src) minus_1) (LoadL src) ) );
9652   predicate(UseBMI1Instructions);
9653   effect(KILL cr);
9654 
9655   ins_cost(125);
9656   format %{ "blsmskq $dst, $src" %}
9657 
9658   ins_encode %{
9659     __ blsmskq($dst$$Register, $src$$Address);
9660   %}
9661   ins_pipe(ialu_reg_mem);
9662 %}
9663 
9664 instruct blsmskL_rReg_rReg(rRegL dst, rRegL src, immL_M1 minus_1, rFlagsReg cr)
9665 %{
9666   match(Set dst (XorL (AddL src minus_1) src));
9667   predicate(UseBMI1Instructions);
9668   effect(KILL cr);
9669 
9670   format %{ "blsmskq $dst, $src" %}
9671 
9672   ins_encode %{
9673     __ blsmskq($dst$$Register, $src$$Register);
9674   %}
9675 
9676   ins_pipe(ialu_reg);
9677 %}
9678 
9679 instruct blsrL_rReg_rReg(rRegL dst, rRegL src, immL_M1 minus_1, rFlagsReg cr)
9680 %{
9681   match(Set dst (AndL (AddL src minus_1) src) );
9682   predicate(UseBMI1Instructions);
9683   effect(KILL cr);
9684 
9685   format %{ "blsrq  $dst, $src" %}
9686 
9687   ins_encode %{
9688     __ blsrq($dst$$Register, $src$$Register);
9689   %}
9690 
9691   ins_pipe(ialu_reg);
9692 %}
9693 
9694 instruct blsrL_rReg_mem(rRegL dst, memory src, immL_M1 minus_1, rFlagsReg cr)
9695 %{
9696   match(Set dst (AndL (AddL (LoadL src) minus_1) (LoadL src)) );
9697   predicate(UseBMI1Instructions);
9698   effect(KILL cr);
9699 
9700   ins_cost(125);
9701   format %{ "blsrq  $dst, $src" %}
9702 
9703   ins_encode %{
9704     __ blsrq($dst$$Register, $src$$Address);
9705   %}
9706 
9707   ins_pipe(ialu_reg);
9708 %}
9709 
9710 // Or Instructions
9711 // Or Register with Register
9712 instruct orL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
9713 %{
9714   match(Set dst (OrL dst src));
9715   effect(KILL cr);
9716 
9717   format %{ "orq     $dst, $src\t# long" %}
9718   opcode(0x0B);
9719   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9720   ins_pipe(ialu_reg_reg);
9721 %}
9722 
9723 // Use any_RegP to match R15 (TLS register) without spilling.
9724 instruct orL_rReg_castP2X(rRegL dst, any_RegP src, rFlagsReg cr) %{
9725   match(Set dst (OrL dst (CastP2X src)));
9726   effect(KILL cr);
9727 
9728   format %{ "orq     $dst, $src\t# long" %}
9729   opcode(0x0B);
9730   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9731   ins_pipe(ialu_reg_reg);
9732 %}
9733 
9734 
9735 // Or Register with Immediate
9736 instruct orL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
9737 %{
9738   match(Set dst (OrL dst src));
9739   effect(KILL cr);
9740 
9741   format %{ "orq     $dst, $src\t# long" %}
9742   opcode(0x81, 0x01); /* Opcode 81 /1 id */
9743   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
9744   ins_pipe(ialu_reg);
9745 %}
9746 
9747 // Or Register with Memory
9748 instruct orL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
9749 %{
9750   match(Set dst (OrL dst (LoadL src)));
9751   effect(KILL cr);
9752 
9753   ins_cost(125);
9754   format %{ "orq     $dst, $src\t# long" %}
9755   opcode(0x0B);
9756   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
9757   ins_pipe(ialu_reg_mem);
9758 %}
9759 
9760 // Or Memory with Register
9761 instruct orL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
9762 %{
9763   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
9764   effect(KILL cr);
9765 
9766   ins_cost(150);
9767   format %{ "orq     $dst, $src\t# long" %}
9768   opcode(0x09); /* Opcode 09 /r */
9769   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
9770   ins_pipe(ialu_mem_reg);
9771 %}
9772 
9773 // Or Memory with Immediate
9774 instruct orL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
9775 %{
9776   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
9777   effect(KILL cr);
9778 
9779   ins_cost(125);
9780   format %{ "orq     $dst, $src\t# long" %}
9781   opcode(0x81, 0x1); /* Opcode 81 /1 id */
9782   ins_encode(REX_mem_wide(dst), OpcSE(src),
9783              RM_opc_mem(secondary, dst), Con8or32(src));
9784   ins_pipe(ialu_mem_imm);
9785 %}
9786 
9787 instruct btsL_mem_imm(memory dst, immL_Pow2 con, rFlagsReg cr)
9788 %{
9789   // con should be a pure 64-bit power of 2 immediate
9790   // because AND/OR works well enough for 8/32-bit values.
9791   predicate(log2_long(n->in(3)->in(2)->get_long()) > 31);
9792 
9793   match(Set dst (StoreL dst (OrL (LoadL dst) con)));
9794   effect(KILL cr);
9795 
9796   ins_cost(125);
9797   format %{ "btsq    $dst, log2($con)\t# long" %}
9798   ins_encode %{
9799     __ btsq($dst$$Address, log2_long((julong)$con$$constant));
9800   %}
9801   ins_pipe(ialu_mem_imm);
9802 %}
9803 
9804 // Xor Instructions
9805 // Xor Register with Register
9806 instruct xorL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
9807 %{
9808   match(Set dst (XorL dst src));
9809   effect(KILL cr);
9810 
9811   format %{ "xorq    $dst, $src\t# long" %}
9812   opcode(0x33);
9813   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9814   ins_pipe(ialu_reg_reg);
9815 %}
9816 
9817 // Xor Register with Immediate -1
9818 instruct xorL_rReg_im1(rRegL dst, immL_M1 imm) %{
9819   match(Set dst (XorL dst imm));
9820 
9821   format %{ "notq   $dst" %}
9822   ins_encode %{
9823      __ notq($dst$$Register);
9824   %}
9825   ins_pipe(ialu_reg);
9826 %}
9827 
9828 // Xor Register with Immediate
9829 instruct xorL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
9830 %{
9831   match(Set dst (XorL dst src));
9832   effect(KILL cr);
9833 
9834   format %{ "xorq    $dst, $src\t# long" %}
9835   opcode(0x81, 0x06); /* Opcode 81 /6 id */
9836   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
9837   ins_pipe(ialu_reg);
9838 %}
9839 
9840 // Xor Register with Memory
9841 instruct xorL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
9842 %{
9843   match(Set dst (XorL dst (LoadL src)));
9844   effect(KILL cr);
9845 
9846   ins_cost(125);
9847   format %{ "xorq    $dst, $src\t# long" %}
9848   opcode(0x33);
9849   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
9850   ins_pipe(ialu_reg_mem);
9851 %}
9852 
9853 // Xor Memory with Register
9854 instruct xorL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
9855 %{
9856   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
9857   effect(KILL cr);
9858 
9859   ins_cost(150);
9860   format %{ "xorq    $dst, $src\t# long" %}
9861   opcode(0x31); /* Opcode 31 /r */
9862   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
9863   ins_pipe(ialu_mem_reg);
9864 %}
9865 
9866 // Xor Memory with Immediate
9867 instruct xorL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
9868 %{
9869   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
9870   effect(KILL cr);
9871 
9872   ins_cost(125);
9873   format %{ "xorq    $dst, $src\t# long" %}
9874   opcode(0x81, 0x6); /* Opcode 81 /6 id */
9875   ins_encode(REX_mem_wide(dst), OpcSE(src),
9876              RM_opc_mem(secondary, dst), Con8or32(src));
9877   ins_pipe(ialu_mem_imm);
9878 %}
9879 
9880 // Convert Int to Boolean
9881 instruct convI2B(rRegI dst, rRegI src, rFlagsReg cr)
9882 %{
9883   match(Set dst (Conv2B src));
9884   effect(KILL cr);
9885 
9886   format %{ "testl   $src, $src\t# ci2b\n\t"
9887             "setnz   $dst\n\t"
9888             "movzbl  $dst, $dst" %}
9889   ins_encode(REX_reg_reg(src, src), opc_reg_reg(0x85, src, src), // testl
9890              setNZ_reg(dst),
9891              REX_reg_breg(dst, dst), // movzbl
9892              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
9893   ins_pipe(pipe_slow); // XXX
9894 %}
9895 
9896 // Convert Pointer to Boolean
9897 instruct convP2B(rRegI dst, rRegP src, rFlagsReg cr)
9898 %{
9899   match(Set dst (Conv2B src));
9900   effect(KILL cr);
9901 
9902   format %{ "testq   $src, $src\t# cp2b\n\t"
9903             "setnz   $dst\n\t"
9904             "movzbl  $dst, $dst" %}
9905   ins_encode(REX_reg_reg_wide(src, src), opc_reg_reg(0x85, src, src), // testq
9906              setNZ_reg(dst),
9907              REX_reg_breg(dst, dst), // movzbl
9908              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
9909   ins_pipe(pipe_slow); // XXX
9910 %}
9911 
9912 instruct cmpLTMask(rRegI dst, rRegI p, rRegI q, rFlagsReg cr)
9913 %{
9914   match(Set dst (CmpLTMask p q));
9915   effect(KILL cr);
9916 
9917   ins_cost(400);
9918   format %{ "cmpl    $p, $q\t# cmpLTMask\n\t"
9919             "setlt   $dst\n\t"
9920             "movzbl  $dst, $dst\n\t"
9921             "negl    $dst" %}
9922   ins_encode(REX_reg_reg(p, q), opc_reg_reg(0x3B, p, q), // cmpl
9923              setLT_reg(dst),
9924              REX_reg_breg(dst, dst), // movzbl
9925              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst),
9926              neg_reg(dst));
9927   ins_pipe(pipe_slow);
9928 %}
9929 
9930 instruct cmpLTMask0(rRegI dst, immI0 zero, rFlagsReg cr)
9931 %{
9932   match(Set dst (CmpLTMask dst zero));
9933   effect(KILL cr);
9934 
9935   ins_cost(100);
9936   format %{ "sarl    $dst, #31\t# cmpLTMask0" %}
9937   ins_encode %{
9938   __ sarl($dst$$Register, 31);
9939   %}
9940   ins_pipe(ialu_reg);
9941 %}
9942 
9943 /* Better to save a register than avoid a branch */
9944 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y, rFlagsReg cr)
9945 %{
9946   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
9947   effect(KILL cr);
9948   ins_cost(300);
9949   format %{ "subl    $p,$q\t# cadd_cmpLTMask\n\t"
9950             "jge     done\n\t"
9951             "addl    $p,$y\n"
9952             "done:   " %}
9953   ins_encode %{
9954     Register Rp = $p$$Register;
9955     Register Rq = $q$$Register;
9956     Register Ry = $y$$Register;
9957     Label done;
9958     __ subl(Rp, Rq);
9959     __ jccb(Assembler::greaterEqual, done);
9960     __ addl(Rp, Ry);
9961     __ bind(done);
9962   %}
9963   ins_pipe(pipe_cmplt);
9964 %}
9965 
9966 /* Better to save a register than avoid a branch */
9967 instruct and_cmpLTMask(rRegI p, rRegI q, rRegI y, rFlagsReg cr)
9968 %{
9969   match(Set y (AndI (CmpLTMask p q) y));
9970   effect(KILL cr);
9971 
9972   ins_cost(300);
9973 
9974   format %{ "cmpl    $p, $q\t# and_cmpLTMask\n\t"
9975             "jlt     done\n\t"
9976             "xorl    $y, $y\n"
9977             "done:   " %}
9978   ins_encode %{
9979     Register Rp = $p$$Register;
9980     Register Rq = $q$$Register;
9981     Register Ry = $y$$Register;
9982     Label done;
9983     __ cmpl(Rp, Rq);
9984     __ jccb(Assembler::less, done);
9985     __ xorl(Ry, Ry);
9986     __ bind(done);
9987   %}
9988   ins_pipe(pipe_cmplt);
9989 %}
9990 
9991 
9992 //---------- FP Instructions------------------------------------------------
9993 
9994 instruct cmpF_cc_reg(rFlagsRegU cr, regF src1, regF src2)
9995 %{
9996   match(Set cr (CmpF src1 src2));
9997 
9998   ins_cost(145);
9999   format %{ "ucomiss $src1, $src2\n\t"
10000             "jnp,s   exit\n\t"
10001             "pushfq\t# saw NaN, set CF\n\t"
10002             "andq    [rsp], #0xffffff2b\n\t"
10003             "popfq\n"
10004     "exit:" %}
10005   ins_encode %{
10006     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10007     emit_cmpfp_fixup(_masm);
10008   %}
10009   ins_pipe(pipe_slow);
10010 %}
10011 
10012 instruct cmpF_cc_reg_CF(rFlagsRegUCF cr, regF src1, regF src2) %{
10013   match(Set cr (CmpF src1 src2));
10014 
10015   ins_cost(100);
10016   format %{ "ucomiss $src1, $src2" %}
10017   ins_encode %{
10018     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10019   %}
10020   ins_pipe(pipe_slow);
10021 %}
10022 
10023 instruct cmpF_cc_mem(rFlagsRegU cr, regF src1, memory src2)
10024 %{
10025   match(Set cr (CmpF src1 (LoadF src2)));
10026 
10027   ins_cost(145);
10028   format %{ "ucomiss $src1, $src2\n\t"
10029             "jnp,s   exit\n\t"
10030             "pushfq\t# saw NaN, set CF\n\t"
10031             "andq    [rsp], #0xffffff2b\n\t"
10032             "popfq\n"
10033     "exit:" %}
10034   ins_encode %{
10035     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10036     emit_cmpfp_fixup(_masm);
10037   %}
10038   ins_pipe(pipe_slow);
10039 %}
10040 
10041 instruct cmpF_cc_memCF(rFlagsRegUCF cr, regF src1, memory src2) %{
10042   match(Set cr (CmpF src1 (LoadF src2)));
10043 
10044   ins_cost(100);
10045   format %{ "ucomiss $src1, $src2" %}
10046   ins_encode %{
10047     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10048   %}
10049   ins_pipe(pipe_slow);
10050 %}
10051 
10052 instruct cmpF_cc_imm(rFlagsRegU cr, regF src, immF con) %{
10053   match(Set cr (CmpF src con));
10054 
10055   ins_cost(145);
10056   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con\n\t"
10057             "jnp,s   exit\n\t"
10058             "pushfq\t# saw NaN, set CF\n\t"
10059             "andq    [rsp], #0xffffff2b\n\t"
10060             "popfq\n"
10061     "exit:" %}
10062   ins_encode %{
10063     __ ucomiss($src$$XMMRegister, $constantaddress($con));
10064     emit_cmpfp_fixup(_masm);
10065   %}
10066   ins_pipe(pipe_slow);
10067 %}
10068 
10069 instruct cmpF_cc_immCF(rFlagsRegUCF cr, regF src, immF con) %{
10070   match(Set cr (CmpF src con));
10071   ins_cost(100);
10072   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con" %}
10073   ins_encode %{
10074     __ ucomiss($src$$XMMRegister, $constantaddress($con));
10075   %}
10076   ins_pipe(pipe_slow);
10077 %}
10078 
10079 instruct cmpD_cc_reg(rFlagsRegU cr, regD src1, regD src2)
10080 %{
10081   match(Set cr (CmpD src1 src2));
10082 
10083   ins_cost(145);
10084   format %{ "ucomisd $src1, $src2\n\t"
10085             "jnp,s   exit\n\t"
10086             "pushfq\t# saw NaN, set CF\n\t"
10087             "andq    [rsp], #0xffffff2b\n\t"
10088             "popfq\n"
10089     "exit:" %}
10090   ins_encode %{
10091     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
10092     emit_cmpfp_fixup(_masm);
10093   %}
10094   ins_pipe(pipe_slow);
10095 %}
10096 
10097 instruct cmpD_cc_reg_CF(rFlagsRegUCF cr, regD src1, regD src2) %{
10098   match(Set cr (CmpD src1 src2));
10099 
10100   ins_cost(100);
10101   format %{ "ucomisd $src1, $src2 test" %}
10102   ins_encode %{
10103     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
10104   %}
10105   ins_pipe(pipe_slow);
10106 %}
10107 
10108 instruct cmpD_cc_mem(rFlagsRegU cr, regD src1, memory src2)
10109 %{
10110   match(Set cr (CmpD src1 (LoadD src2)));
10111 
10112   ins_cost(145);
10113   format %{ "ucomisd $src1, $src2\n\t"
10114             "jnp,s   exit\n\t"
10115             "pushfq\t# saw NaN, set CF\n\t"
10116             "andq    [rsp], #0xffffff2b\n\t"
10117             "popfq\n"
10118     "exit:" %}
10119   ins_encode %{
10120     __ ucomisd($src1$$XMMRegister, $src2$$Address);
10121     emit_cmpfp_fixup(_masm);
10122   %}
10123   ins_pipe(pipe_slow);
10124 %}
10125 
10126 instruct cmpD_cc_memCF(rFlagsRegUCF cr, regD src1, memory src2) %{
10127   match(Set cr (CmpD src1 (LoadD src2)));
10128 
10129   ins_cost(100);
10130   format %{ "ucomisd $src1, $src2" %}
10131   ins_encode %{
10132     __ ucomisd($src1$$XMMRegister, $src2$$Address);
10133   %}
10134   ins_pipe(pipe_slow);
10135 %}
10136 
10137 instruct cmpD_cc_imm(rFlagsRegU cr, regD src, immD con) %{
10138   match(Set cr (CmpD src con));
10139 
10140   ins_cost(145);
10141   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con\n\t"
10142             "jnp,s   exit\n\t"
10143             "pushfq\t# saw NaN, set CF\n\t"
10144             "andq    [rsp], #0xffffff2b\n\t"
10145             "popfq\n"
10146     "exit:" %}
10147   ins_encode %{
10148     __ ucomisd($src$$XMMRegister, $constantaddress($con));
10149     emit_cmpfp_fixup(_masm);
10150   %}
10151   ins_pipe(pipe_slow);
10152 %}
10153 
10154 instruct cmpD_cc_immCF(rFlagsRegUCF cr, regD src, immD con) %{
10155   match(Set cr (CmpD src con));
10156   ins_cost(100);
10157   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con" %}
10158   ins_encode %{
10159     __ ucomisd($src$$XMMRegister, $constantaddress($con));
10160   %}
10161   ins_pipe(pipe_slow);
10162 %}
10163 
10164 // Compare into -1,0,1
10165 instruct cmpF_reg(rRegI dst, regF src1, regF src2, rFlagsReg cr)
10166 %{
10167   match(Set dst (CmpF3 src1 src2));
10168   effect(KILL cr);
10169 
10170   ins_cost(275);
10171   format %{ "ucomiss $src1, $src2\n\t"
10172             "movl    $dst, #-1\n\t"
10173             "jp,s    done\n\t"
10174             "jb,s    done\n\t"
10175             "setne   $dst\n\t"
10176             "movzbl  $dst, $dst\n"
10177     "done:" %}
10178   ins_encode %{
10179     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10180     emit_cmpfp3(_masm, $dst$$Register);
10181   %}
10182   ins_pipe(pipe_slow);
10183 %}
10184 
10185 // Compare into -1,0,1
10186 instruct cmpF_mem(rRegI dst, regF src1, memory src2, rFlagsReg cr)
10187 %{
10188   match(Set dst (CmpF3 src1 (LoadF src2)));
10189   effect(KILL cr);
10190 
10191   ins_cost(275);
10192   format %{ "ucomiss $src1, $src2\n\t"
10193             "movl    $dst, #-1\n\t"
10194             "jp,s    done\n\t"
10195             "jb,s    done\n\t"
10196             "setne   $dst\n\t"
10197             "movzbl  $dst, $dst\n"
10198     "done:" %}
10199   ins_encode %{
10200     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10201     emit_cmpfp3(_masm, $dst$$Register);
10202   %}
10203   ins_pipe(pipe_slow);
10204 %}
10205 
10206 // Compare into -1,0,1
10207 instruct cmpF_imm(rRegI dst, regF src, immF con, rFlagsReg cr) %{
10208   match(Set dst (CmpF3 src con));
10209   effect(KILL cr);
10210 
10211   ins_cost(275);
10212   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con\n\t"
10213             "movl    $dst, #-1\n\t"
10214             "jp,s    done\n\t"
10215             "jb,s    done\n\t"
10216             "setne   $dst\n\t"
10217             "movzbl  $dst, $dst\n"
10218     "done:" %}
10219   ins_encode %{
10220     __ ucomiss($src$$XMMRegister, $constantaddress($con));
10221     emit_cmpfp3(_masm, $dst$$Register);
10222   %}
10223   ins_pipe(pipe_slow);
10224 %}
10225 
10226 // Compare into -1,0,1
10227 instruct cmpD_reg(rRegI dst, regD src1, regD src2, rFlagsReg cr)
10228 %{
10229   match(Set dst (CmpD3 src1 src2));
10230   effect(KILL cr);
10231 
10232   ins_cost(275);
10233   format %{ "ucomisd $src1, $src2\n\t"
10234             "movl    $dst, #-1\n\t"
10235             "jp,s    done\n\t"
10236             "jb,s    done\n\t"
10237             "setne   $dst\n\t"
10238             "movzbl  $dst, $dst\n"
10239     "done:" %}
10240   ins_encode %{
10241     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
10242     emit_cmpfp3(_masm, $dst$$Register);
10243   %}
10244   ins_pipe(pipe_slow);
10245 %}
10246 
10247 // Compare into -1,0,1
10248 instruct cmpD_mem(rRegI dst, regD src1, memory src2, rFlagsReg cr)
10249 %{
10250   match(Set dst (CmpD3 src1 (LoadD src2)));
10251   effect(KILL cr);
10252 
10253   ins_cost(275);
10254   format %{ "ucomisd $src1, $src2\n\t"
10255             "movl    $dst, #-1\n\t"
10256             "jp,s    done\n\t"
10257             "jb,s    done\n\t"
10258             "setne   $dst\n\t"
10259             "movzbl  $dst, $dst\n"
10260     "done:" %}
10261   ins_encode %{
10262     __ ucomisd($src1$$XMMRegister, $src2$$Address);
10263     emit_cmpfp3(_masm, $dst$$Register);
10264   %}
10265   ins_pipe(pipe_slow);
10266 %}
10267 
10268 // Compare into -1,0,1
10269 instruct cmpD_imm(rRegI dst, regD src, immD con, rFlagsReg cr) %{
10270   match(Set dst (CmpD3 src con));
10271   effect(KILL cr);
10272 
10273   ins_cost(275);
10274   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con\n\t"
10275             "movl    $dst, #-1\n\t"
10276             "jp,s    done\n\t"
10277             "jb,s    done\n\t"
10278             "setne   $dst\n\t"
10279             "movzbl  $dst, $dst\n"
10280     "done:" %}
10281   ins_encode %{
10282     __ ucomisd($src$$XMMRegister, $constantaddress($con));
10283     emit_cmpfp3(_masm, $dst$$Register);
10284   %}
10285   ins_pipe(pipe_slow);
10286 %}
10287 
10288 //----------Arithmetic Conversion Instructions---------------------------------
10289 
10290 instruct convF2D_reg_reg(regD dst, regF src)
10291 %{
10292   match(Set dst (ConvF2D src));
10293 
10294   format %{ "cvtss2sd $dst, $src" %}
10295   ins_encode %{
10296     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
10297   %}
10298   ins_pipe(pipe_slow); // XXX
10299 %}
10300 
10301 instruct convF2D_reg_mem(regD dst, memory src)
10302 %{
10303   match(Set dst (ConvF2D (LoadF src)));
10304 
10305   format %{ "cvtss2sd $dst, $src" %}
10306   ins_encode %{
10307     __ cvtss2sd ($dst$$XMMRegister, $src$$Address);
10308   %}
10309   ins_pipe(pipe_slow); // XXX
10310 %}
10311 
10312 instruct convD2F_reg_reg(regF dst, regD src)
10313 %{
10314   match(Set dst (ConvD2F src));
10315 
10316   format %{ "cvtsd2ss $dst, $src" %}
10317   ins_encode %{
10318     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
10319   %}
10320   ins_pipe(pipe_slow); // XXX
10321 %}
10322 
10323 instruct convD2F_reg_mem(regF dst, memory src)
10324 %{
10325   match(Set dst (ConvD2F (LoadD src)));
10326 
10327   format %{ "cvtsd2ss $dst, $src" %}
10328   ins_encode %{
10329     __ cvtsd2ss ($dst$$XMMRegister, $src$$Address);
10330   %}
10331   ins_pipe(pipe_slow); // XXX
10332 %}
10333 
10334 // XXX do mem variants
10335 instruct convF2I_reg_reg(rRegI dst, regF src, rFlagsReg cr)
10336 %{
10337   match(Set dst (ConvF2I src));
10338   effect(KILL cr);
10339   format %{ "convert_f2i $dst,$src" %}
10340   ins_encode %{
10341     __ convert_f2i($dst$$Register, $src$$XMMRegister);
10342   %}
10343   ins_pipe(pipe_slow);
10344 %}
10345 
10346 instruct convF2L_reg_reg(rRegL dst, regF src, rFlagsReg cr)
10347 %{
10348   match(Set dst (ConvF2L src));
10349   effect(KILL cr);
10350   format %{ "convert_f2l $dst,$src"%}
10351   ins_encode %{
10352     __ convert_f2l($dst$$Register, $src$$XMMRegister);
10353   %}
10354   ins_pipe(pipe_slow);
10355 %}
10356 
10357 instruct convD2I_reg_reg(rRegI dst, regD src, rFlagsReg cr)
10358 %{
10359   match(Set dst (ConvD2I src));
10360   effect(KILL cr);
10361   format %{ "convert_d2i $dst,$src"%}
10362   ins_encode %{
10363     __ convert_d2i($dst$$Register, $src$$XMMRegister);
10364   %}
10365   ins_pipe(pipe_slow);
10366 %}
10367 
10368 instruct convD2L_reg_reg(rRegL dst, regD src, rFlagsReg cr)
10369 %{
10370   match(Set dst (ConvD2L src));
10371   effect(KILL cr);
10372   format %{ "convert_d2l $dst,$src"%}
10373   ins_encode %{
10374     __ convert_d2l($dst$$Register, $src$$XMMRegister);
10375   %}
10376   ins_pipe(pipe_slow);
10377 %}
10378 
10379 instruct convI2F_reg_reg(regF dst, rRegI src)
10380 %{
10381   predicate(!UseXmmI2F);
10382   match(Set dst (ConvI2F src));
10383 
10384   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
10385   ins_encode %{
10386     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
10387   %}
10388   ins_pipe(pipe_slow); // XXX
10389 %}
10390 
10391 instruct convI2F_reg_mem(regF dst, memory src)
10392 %{
10393   match(Set dst (ConvI2F (LoadI src)));
10394 
10395   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
10396   ins_encode %{
10397     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Address);
10398   %}
10399   ins_pipe(pipe_slow); // XXX
10400 %}
10401 
10402 instruct convI2D_reg_reg(regD dst, rRegI src)
10403 %{
10404   predicate(!UseXmmI2D);
10405   match(Set dst (ConvI2D src));
10406 
10407   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
10408   ins_encode %{
10409     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
10410   %}
10411   ins_pipe(pipe_slow); // XXX
10412 %}
10413 
10414 instruct convI2D_reg_mem(regD dst, memory src)
10415 %{
10416   match(Set dst (ConvI2D (LoadI src)));
10417 
10418   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
10419   ins_encode %{
10420     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Address);
10421   %}
10422   ins_pipe(pipe_slow); // XXX
10423 %}
10424 
10425 instruct convXI2F_reg(regF dst, rRegI src)
10426 %{
10427   predicate(UseXmmI2F);
10428   match(Set dst (ConvI2F src));
10429 
10430   format %{ "movdl $dst, $src\n\t"
10431             "cvtdq2psl $dst, $dst\t# i2f" %}
10432   ins_encode %{
10433     __ movdl($dst$$XMMRegister, $src$$Register);
10434     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
10435   %}
10436   ins_pipe(pipe_slow); // XXX
10437 %}
10438 
10439 instruct convXI2D_reg(regD dst, rRegI src)
10440 %{
10441   predicate(UseXmmI2D);
10442   match(Set dst (ConvI2D src));
10443 
10444   format %{ "movdl $dst, $src\n\t"
10445             "cvtdq2pdl $dst, $dst\t# i2d" %}
10446   ins_encode %{
10447     __ movdl($dst$$XMMRegister, $src$$Register);
10448     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
10449   %}
10450   ins_pipe(pipe_slow); // XXX
10451 %}
10452 
10453 instruct convL2F_reg_reg(regF dst, rRegL src)
10454 %{
10455   match(Set dst (ConvL2F src));
10456 
10457   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
10458   ins_encode %{
10459     __ cvtsi2ssq ($dst$$XMMRegister, $src$$Register);
10460   %}
10461   ins_pipe(pipe_slow); // XXX
10462 %}
10463 
10464 instruct convL2F_reg_mem(regF dst, memory src)
10465 %{
10466   match(Set dst (ConvL2F (LoadL src)));
10467 
10468   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
10469   ins_encode %{
10470     __ cvtsi2ssq ($dst$$XMMRegister, $src$$Address);
10471   %}
10472   ins_pipe(pipe_slow); // XXX
10473 %}
10474 
10475 instruct convL2D_reg_reg(regD dst, rRegL src)
10476 %{
10477   match(Set dst (ConvL2D src));
10478 
10479   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
10480   ins_encode %{
10481     __ cvtsi2sdq ($dst$$XMMRegister, $src$$Register);
10482   %}
10483   ins_pipe(pipe_slow); // XXX
10484 %}
10485 
10486 instruct convL2D_reg_mem(regD dst, memory src)
10487 %{
10488   match(Set dst (ConvL2D (LoadL src)));
10489 
10490   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
10491   ins_encode %{
10492     __ cvtsi2sdq ($dst$$XMMRegister, $src$$Address);
10493   %}
10494   ins_pipe(pipe_slow); // XXX
10495 %}
10496 
10497 instruct convI2L_reg_reg(rRegL dst, rRegI src)
10498 %{
10499   match(Set dst (ConvI2L src));
10500 
10501   ins_cost(125);
10502   format %{ "movslq  $dst, $src\t# i2l" %}
10503   ins_encode %{
10504     __ movslq($dst$$Register, $src$$Register);
10505   %}
10506   ins_pipe(ialu_reg_reg);
10507 %}
10508 
10509 // instruct convI2L_reg_reg_foo(rRegL dst, rRegI src)
10510 // %{
10511 //   match(Set dst (ConvI2L src));
10512 // //   predicate(_kids[0]->_leaf->as_Type()->type()->is_int()->_lo >= 0 &&
10513 // //             _kids[0]->_leaf->as_Type()->type()->is_int()->_hi >= 0);
10514 //   predicate(((const TypeNode*) n)->type()->is_long()->_hi ==
10515 //             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_hi &&
10516 //             ((const TypeNode*) n)->type()->is_long()->_lo ==
10517 //             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_lo);
10518 
10519 //   format %{ "movl    $dst, $src\t# unsigned i2l" %}
10520 //   ins_encode(enc_copy(dst, src));
10521 // //   opcode(0x63); // needs REX.W
10522 // //   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst,src));
10523 //   ins_pipe(ialu_reg_reg);
10524 // %}
10525 
10526 // Zero-extend convert int to long
10527 instruct convI2L_reg_reg_zex(rRegL dst, rRegI src, immL_32bits mask)
10528 %{
10529   match(Set dst (AndL (ConvI2L src) mask));
10530 
10531   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
10532   ins_encode %{
10533     if ($dst$$reg != $src$$reg) {
10534       __ movl($dst$$Register, $src$$Register);
10535     }
10536   %}
10537   ins_pipe(ialu_reg_reg);
10538 %}
10539 
10540 // Zero-extend convert int to long
10541 instruct convI2L_reg_mem_zex(rRegL dst, memory src, immL_32bits mask)
10542 %{
10543   match(Set dst (AndL (ConvI2L (LoadI src)) mask));
10544 
10545   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
10546   ins_encode %{
10547     __ movl($dst$$Register, $src$$Address);
10548   %}
10549   ins_pipe(ialu_reg_mem);
10550 %}
10551 
10552 instruct zerox_long_reg_reg(rRegL dst, rRegL src, immL_32bits mask)
10553 %{
10554   match(Set dst (AndL src mask));
10555 
10556   format %{ "movl    $dst, $src\t# zero-extend long" %}
10557   ins_encode %{
10558     __ movl($dst$$Register, $src$$Register);
10559   %}
10560   ins_pipe(ialu_reg_reg);
10561 %}
10562 
10563 instruct convL2I_reg_reg(rRegI dst, rRegL src)
10564 %{
10565   match(Set dst (ConvL2I src));
10566 
10567   format %{ "movl    $dst, $src\t# l2i" %}
10568   ins_encode %{
10569     __ movl($dst$$Register, $src$$Register);
10570   %}
10571   ins_pipe(ialu_reg_reg);
10572 %}
10573 
10574 
10575 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
10576   match(Set dst (MoveF2I src));
10577   effect(DEF dst, USE src);
10578 
10579   ins_cost(125);
10580   format %{ "movl    $dst, $src\t# MoveF2I_stack_reg" %}
10581   ins_encode %{
10582     __ movl($dst$$Register, Address(rsp, $src$$disp));
10583   %}
10584   ins_pipe(ialu_reg_mem);
10585 %}
10586 
10587 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
10588   match(Set dst (MoveI2F src));
10589   effect(DEF dst, USE src);
10590 
10591   ins_cost(125);
10592   format %{ "movss   $dst, $src\t# MoveI2F_stack_reg" %}
10593   ins_encode %{
10594     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
10595   %}
10596   ins_pipe(pipe_slow);
10597 %}
10598 
10599 instruct MoveD2L_stack_reg(rRegL dst, stackSlotD src) %{
10600   match(Set dst (MoveD2L src));
10601   effect(DEF dst, USE src);
10602 
10603   ins_cost(125);
10604   format %{ "movq    $dst, $src\t# MoveD2L_stack_reg" %}
10605   ins_encode %{
10606     __ movq($dst$$Register, Address(rsp, $src$$disp));
10607   %}
10608   ins_pipe(ialu_reg_mem);
10609 %}
10610 
10611 instruct MoveL2D_stack_reg_partial(regD dst, stackSlotL src) %{
10612   predicate(!UseXmmLoadAndClearUpper);
10613   match(Set dst (MoveL2D src));
10614   effect(DEF dst, USE src);
10615 
10616   ins_cost(125);
10617   format %{ "movlpd  $dst, $src\t# MoveL2D_stack_reg" %}
10618   ins_encode %{
10619     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
10620   %}
10621   ins_pipe(pipe_slow);
10622 %}
10623 
10624 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
10625   predicate(UseXmmLoadAndClearUpper);
10626   match(Set dst (MoveL2D src));
10627   effect(DEF dst, USE src);
10628 
10629   ins_cost(125);
10630   format %{ "movsd   $dst, $src\t# MoveL2D_stack_reg" %}
10631   ins_encode %{
10632     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
10633   %}
10634   ins_pipe(pipe_slow);
10635 %}
10636 
10637 
10638 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
10639   match(Set dst (MoveF2I src));
10640   effect(DEF dst, USE src);
10641 
10642   ins_cost(95); // XXX
10643   format %{ "movss   $dst, $src\t# MoveF2I_reg_stack" %}
10644   ins_encode %{
10645     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
10646   %}
10647   ins_pipe(pipe_slow);
10648 %}
10649 
10650 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
10651   match(Set dst (MoveI2F src));
10652   effect(DEF dst, USE src);
10653 
10654   ins_cost(100);
10655   format %{ "movl    $dst, $src\t# MoveI2F_reg_stack" %}
10656   ins_encode %{
10657     __ movl(Address(rsp, $dst$$disp), $src$$Register);
10658   %}
10659   ins_pipe( ialu_mem_reg );
10660 %}
10661 
10662 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
10663   match(Set dst (MoveD2L src));
10664   effect(DEF dst, USE src);
10665 
10666   ins_cost(95); // XXX
10667   format %{ "movsd   $dst, $src\t# MoveL2D_reg_stack" %}
10668   ins_encode %{
10669     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
10670   %}
10671   ins_pipe(pipe_slow);
10672 %}
10673 
10674 instruct MoveL2D_reg_stack(stackSlotD dst, rRegL src) %{
10675   match(Set dst (MoveL2D src));
10676   effect(DEF dst, USE src);
10677 
10678   ins_cost(100);
10679   format %{ "movq    $dst, $src\t# MoveL2D_reg_stack" %}
10680   ins_encode %{
10681     __ movq(Address(rsp, $dst$$disp), $src$$Register);
10682   %}
10683   ins_pipe(ialu_mem_reg);
10684 %}
10685 
10686 instruct MoveF2I_reg_reg(rRegI dst, regF src) %{
10687   match(Set dst (MoveF2I src));
10688   effect(DEF dst, USE src);
10689   ins_cost(85);
10690   format %{ "movd    $dst,$src\t# MoveF2I" %}
10691   ins_encode %{
10692     __ movdl($dst$$Register, $src$$XMMRegister);
10693   %}
10694   ins_pipe( pipe_slow );
10695 %}
10696 
10697 instruct MoveD2L_reg_reg(rRegL dst, regD src) %{
10698   match(Set dst (MoveD2L src));
10699   effect(DEF dst, USE src);
10700   ins_cost(85);
10701   format %{ "movd    $dst,$src\t# MoveD2L" %}
10702   ins_encode %{
10703     __ movdq($dst$$Register, $src$$XMMRegister);
10704   %}
10705   ins_pipe( pipe_slow );
10706 %}
10707 
10708 instruct MoveI2F_reg_reg(regF dst, rRegI src) %{
10709   match(Set dst (MoveI2F src));
10710   effect(DEF dst, USE src);
10711   ins_cost(100);
10712   format %{ "movd    $dst,$src\t# MoveI2F" %}
10713   ins_encode %{
10714     __ movdl($dst$$XMMRegister, $src$$Register);
10715   %}
10716   ins_pipe( pipe_slow );
10717 %}
10718 
10719 instruct MoveL2D_reg_reg(regD dst, rRegL src) %{
10720   match(Set dst (MoveL2D src));
10721   effect(DEF dst, USE src);
10722   ins_cost(100);
10723   format %{ "movd    $dst,$src\t# MoveL2D" %}
10724   ins_encode %{
10725      __ movdq($dst$$XMMRegister, $src$$Register);
10726   %}
10727   ins_pipe( pipe_slow );
10728 %}
10729 
10730 
10731 // =======================================================================
10732 // fast clearing of an array
10733 instruct rep_stos(rcx_RegL cnt, rdi_RegP base, regD tmp, rax_RegI zero,
10734                   Universe dummy, rFlagsReg cr)
10735 %{
10736   predicate(!((ClearArrayNode*)n)->is_large());
10737   match(Set dummy (ClearArray cnt base));
10738   effect(USE_KILL cnt, USE_KILL base, TEMP tmp, KILL zero, KILL cr);
10739 
10740   format %{ $$template
10741     $$emit$$"xorq    rax, rax\t# ClearArray:\n\t"
10742     $$emit$$"cmp     InitArrayShortSize,rcx\n\t"
10743     $$emit$$"jg      LARGE\n\t"
10744     $$emit$$"dec     rcx\n\t"
10745     $$emit$$"js      DONE\t# Zero length\n\t"
10746     $$emit$$"mov     rax,(rdi,rcx,8)\t# LOOP\n\t"
10747     $$emit$$"dec     rcx\n\t"
10748     $$emit$$"jge     LOOP\n\t"
10749     $$emit$$"jmp     DONE\n\t"
10750     $$emit$$"# LARGE:\n\t"
10751     if (UseFastStosb) {
10752        $$emit$$"shlq    rcx,3\t# Convert doublewords to bytes\n\t"
10753        $$emit$$"rep     stosb\t# Store rax to *rdi++ while rcx--\n\t"
10754     } else if (UseXMMForObjInit) {
10755        $$emit$$"mov     rdi,rax\n\t"
10756        $$emit$$"vpxor   ymm0,ymm0,ymm0\n\t"
10757        $$emit$$"jmpq    L_zero_64_bytes\n\t"
10758        $$emit$$"# L_loop:\t# 64-byte LOOP\n\t"
10759        $$emit$$"vmovdqu ymm0,(rax)\n\t"
10760        $$emit$$"vmovdqu ymm0,0x20(rax)\n\t"
10761        $$emit$$"add     0x40,rax\n\t"
10762        $$emit$$"# L_zero_64_bytes:\n\t"
10763        $$emit$$"sub     0x8,rcx\n\t"
10764        $$emit$$"jge     L_loop\n\t"
10765        $$emit$$"add     0x4,rcx\n\t"
10766        $$emit$$"jl      L_tail\n\t"
10767        $$emit$$"vmovdqu ymm0,(rax)\n\t"
10768        $$emit$$"add     0x20,rax\n\t"
10769        $$emit$$"sub     0x4,rcx\n\t"
10770        $$emit$$"# L_tail:\t# Clearing tail bytes\n\t"
10771        $$emit$$"add     0x4,rcx\n\t"
10772        $$emit$$"jle     L_end\n\t"
10773        $$emit$$"dec     rcx\n\t"
10774        $$emit$$"# L_sloop:\t# 8-byte short loop\n\t"
10775        $$emit$$"vmovq   xmm0,(rax)\n\t"
10776        $$emit$$"add     0x8,rax\n\t"
10777        $$emit$$"dec     rcx\n\t"
10778        $$emit$$"jge     L_sloop\n\t"
10779        $$emit$$"# L_end:\n\t"
10780     } else {
10781        $$emit$$"rep     stosq\t# Store rax to *rdi++ while rcx--\n\t"
10782     }
10783     $$emit$$"# DONE"
10784   %}
10785   ins_encode %{
10786     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register,
10787                  $tmp$$XMMRegister, false);
10788   %}
10789   ins_pipe(pipe_slow);
10790 %}
10791 
10792 instruct rep_stos_large(rcx_RegL cnt, rdi_RegP base, regD tmp, rax_RegI zero,
10793                         Universe dummy, rFlagsReg cr)
10794 %{
10795   predicate(((ClearArrayNode*)n)->is_large());
10796   match(Set dummy (ClearArray cnt base));
10797   effect(USE_KILL cnt, USE_KILL base, TEMP tmp, KILL zero, KILL cr);
10798 
10799   format %{ $$template
10800     if (UseFastStosb) {
10801        $$emit$$"xorq    rax, rax\t# ClearArray:\n\t"
10802        $$emit$$"shlq    rcx,3\t# Convert doublewords to bytes\n\t"
10803        $$emit$$"rep     stosb\t# Store rax to *rdi++ while rcx--"
10804     } else if (UseXMMForObjInit) {
10805        $$emit$$"mov     rdi,rax\t# ClearArray:\n\t"
10806        $$emit$$"vpxor   ymm0,ymm0,ymm0\n\t"
10807        $$emit$$"jmpq    L_zero_64_bytes\n\t"
10808        $$emit$$"# L_loop:\t# 64-byte LOOP\n\t"
10809        $$emit$$"vmovdqu ymm0,(rax)\n\t"
10810        $$emit$$"vmovdqu ymm0,0x20(rax)\n\t"
10811        $$emit$$"add     0x40,rax\n\t"
10812        $$emit$$"# L_zero_64_bytes:\n\t"
10813        $$emit$$"sub     0x8,rcx\n\t"
10814        $$emit$$"jge     L_loop\n\t"
10815        $$emit$$"add     0x4,rcx\n\t"
10816        $$emit$$"jl      L_tail\n\t"
10817        $$emit$$"vmovdqu ymm0,(rax)\n\t"
10818        $$emit$$"add     0x20,rax\n\t"
10819        $$emit$$"sub     0x4,rcx\n\t"
10820        $$emit$$"# L_tail:\t# Clearing tail bytes\n\t"
10821        $$emit$$"add     0x4,rcx\n\t"
10822        $$emit$$"jle     L_end\n\t"
10823        $$emit$$"dec     rcx\n\t"
10824        $$emit$$"# L_sloop:\t# 8-byte short loop\n\t"
10825        $$emit$$"vmovq   xmm0,(rax)\n\t"
10826        $$emit$$"add     0x8,rax\n\t"
10827        $$emit$$"dec     rcx\n\t"
10828        $$emit$$"jge     L_sloop\n\t"
10829        $$emit$$"# L_end:\n\t"
10830     } else {
10831        $$emit$$"xorq    rax, rax\t# ClearArray:\n\t"
10832        $$emit$$"rep     stosq\t# Store rax to *rdi++ while rcx--"
10833     }
10834   %}
10835   ins_encode %{
10836     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register,
10837                  $tmp$$XMMRegister, true);
10838   %}
10839   ins_pipe(pipe_slow);
10840 %}
10841 
10842 instruct string_compareL(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
10843                          rax_RegI result, legRegD tmp1, rFlagsReg cr)
10844 %{
10845   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LL);
10846   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10847   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
10848 
10849   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
10850   ins_encode %{
10851     __ string_compare($str1$$Register, $str2$$Register,
10852                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
10853                       $tmp1$$XMMRegister, StrIntrinsicNode::LL);
10854   %}
10855   ins_pipe( pipe_slow );
10856 %}
10857 
10858 instruct string_compareU(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
10859                          rax_RegI result, legRegD tmp1, rFlagsReg cr)
10860 %{
10861   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UU);
10862   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10863   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
10864 
10865   format %{ "String Compare char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
10866   ins_encode %{
10867     __ string_compare($str1$$Register, $str2$$Register,
10868                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
10869                       $tmp1$$XMMRegister, StrIntrinsicNode::UU);
10870   %}
10871   ins_pipe( pipe_slow );
10872 %}
10873 
10874 instruct string_compareLU(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
10875                           rax_RegI result, legRegD tmp1, rFlagsReg cr)
10876 %{
10877   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LU);
10878   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10879   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
10880 
10881   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
10882   ins_encode %{
10883     __ string_compare($str1$$Register, $str2$$Register,
10884                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
10885                       $tmp1$$XMMRegister, StrIntrinsicNode::LU);
10886   %}
10887   ins_pipe( pipe_slow );
10888 %}
10889 
10890 instruct string_compareUL(rsi_RegP str1, rdx_RegI cnt1, rdi_RegP str2, rcx_RegI cnt2,
10891                           rax_RegI result, legRegD tmp1, rFlagsReg cr)
10892 %{
10893   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UL);
10894   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10895   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
10896 
10897   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
10898   ins_encode %{
10899     __ string_compare($str2$$Register, $str1$$Register,
10900                       $cnt2$$Register, $cnt1$$Register, $result$$Register,
10901                       $tmp1$$XMMRegister, StrIntrinsicNode::UL);
10902   %}
10903   ins_pipe( pipe_slow );
10904 %}
10905 
10906 // fast search of substring with known size.
10907 instruct string_indexof_conL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, immI int_cnt2,
10908                              rbx_RegI result, legRegD tmp_vec, rax_RegI cnt2, rcx_RegI tmp, rFlagsReg cr)
10909 %{
10910   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL));
10911   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
10912   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
10913 
10914   format %{ "String IndexOf byte[] $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $tmp_vec, $cnt1, $cnt2, $tmp" %}
10915   ins_encode %{
10916     int icnt2 = (int)$int_cnt2$$constant;
10917     if (icnt2 >= 16) {
10918       // IndexOf for constant substrings with size >= 16 elements
10919       // which don't need to be loaded through stack.
10920       __ string_indexofC8($str1$$Register, $str2$$Register,
10921                           $cnt1$$Register, $cnt2$$Register,
10922                           icnt2, $result$$Register,
10923                           $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::LL);
10924     } else {
10925       // Small strings are loaded through stack if they cross page boundary.
10926       __ string_indexof($str1$$Register, $str2$$Register,
10927                         $cnt1$$Register, $cnt2$$Register,
10928                         icnt2, $result$$Register,
10929                         $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::LL);
10930     }
10931   %}
10932   ins_pipe( pipe_slow );
10933 %}
10934 
10935 // fast search of substring with known size.
10936 instruct string_indexof_conU(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, immI int_cnt2,
10937                              rbx_RegI result, legRegD tmp_vec, rax_RegI cnt2, rcx_RegI tmp, rFlagsReg cr)
10938 %{
10939   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU));
10940   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
10941   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
10942 
10943   format %{ "String IndexOf char[] $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $tmp_vec, $cnt1, $cnt2, $tmp" %}
10944   ins_encode %{
10945     int icnt2 = (int)$int_cnt2$$constant;
10946     if (icnt2 >= 8) {
10947       // IndexOf for constant substrings with size >= 8 elements
10948       // which don't need to be loaded through stack.
10949       __ string_indexofC8($str1$$Register, $str2$$Register,
10950                           $cnt1$$Register, $cnt2$$Register,
10951                           icnt2, $result$$Register,
10952                           $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UU);
10953     } else {
10954       // Small strings are loaded through stack if they cross page boundary.
10955       __ string_indexof($str1$$Register, $str2$$Register,
10956                         $cnt1$$Register, $cnt2$$Register,
10957                         icnt2, $result$$Register,
10958                         $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UU);
10959     }
10960   %}
10961   ins_pipe( pipe_slow );
10962 %}
10963 
10964 // fast search of substring with known size.
10965 instruct string_indexof_conUL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, immI int_cnt2,
10966                               rbx_RegI result, legRegD tmp_vec, rax_RegI cnt2, rcx_RegI tmp, rFlagsReg cr)
10967 %{
10968   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL));
10969   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
10970   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
10971 
10972   format %{ "String IndexOf char[] $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $tmp_vec, $cnt1, $cnt2, $tmp" %}
10973   ins_encode %{
10974     int icnt2 = (int)$int_cnt2$$constant;
10975     if (icnt2 >= 8) {
10976       // IndexOf for constant substrings with size >= 8 elements
10977       // which don't need to be loaded through stack.
10978       __ string_indexofC8($str1$$Register, $str2$$Register,
10979                           $cnt1$$Register, $cnt2$$Register,
10980                           icnt2, $result$$Register,
10981                           $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UL);
10982     } else {
10983       // Small strings are loaded through stack if they cross page boundary.
10984       __ string_indexof($str1$$Register, $str2$$Register,
10985                         $cnt1$$Register, $cnt2$$Register,
10986                         icnt2, $result$$Register,
10987                         $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UL);
10988     }
10989   %}
10990   ins_pipe( pipe_slow );
10991 %}
10992 
10993 instruct string_indexofL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, rax_RegI cnt2,
10994                          rbx_RegI result, legRegD tmp_vec, rcx_RegI tmp, rFlagsReg cr)
10995 %{
10996   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL));
10997   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
10998   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
10999 
11000   format %{ "String IndexOf byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11001   ins_encode %{
11002     __ string_indexof($str1$$Register, $str2$$Register,
11003                       $cnt1$$Register, $cnt2$$Register,
11004                       (-1), $result$$Register,
11005                       $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::LL);
11006   %}
11007   ins_pipe( pipe_slow );
11008 %}
11009 
11010 instruct string_indexofU(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, rax_RegI cnt2,
11011                          rbx_RegI result, legRegD tmp_vec, rcx_RegI tmp, rFlagsReg cr)
11012 %{
11013   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU));
11014   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11015   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11016 
11017   format %{ "String IndexOf char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11018   ins_encode %{
11019     __ string_indexof($str1$$Register, $str2$$Register,
11020                       $cnt1$$Register, $cnt2$$Register,
11021                       (-1), $result$$Register,
11022                       $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UU);
11023   %}
11024   ins_pipe( pipe_slow );
11025 %}
11026 
11027 instruct string_indexofUL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, rax_RegI cnt2,
11028                           rbx_RegI result, legRegD tmp_vec, rcx_RegI tmp, rFlagsReg cr)
11029 %{
11030   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL));
11031   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11032   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11033 
11034   format %{ "String IndexOf char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11035   ins_encode %{
11036     __ string_indexof($str1$$Register, $str2$$Register,
11037                       $cnt1$$Register, $cnt2$$Register,
11038                       (-1), $result$$Register,
11039                       $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UL);
11040   %}
11041   ins_pipe( pipe_slow );
11042 %}
11043 
11044 instruct string_indexofU_char(rdi_RegP str1, rdx_RegI cnt1, rax_RegI ch,
11045                               rbx_RegI result, legRegD tmp_vec1, legRegD tmp_vec2, legRegD tmp_vec3, rcx_RegI tmp, rFlagsReg cr)
11046 %{
11047   predicate(UseSSE42Intrinsics);
11048   match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
11049   effect(TEMP tmp_vec1, TEMP tmp_vec2, TEMP tmp_vec3, USE_KILL str1, USE_KILL cnt1, USE_KILL ch, TEMP tmp, KILL cr);
11050   format %{ "String IndexOf char[] $str1,$cnt1,$ch -> $result   // KILL all" %}
11051   ins_encode %{
11052     __ string_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register, $result$$Register,
11053                            $tmp_vec1$$XMMRegister, $tmp_vec2$$XMMRegister, $tmp_vec3$$XMMRegister, $tmp$$Register);
11054   %}
11055   ins_pipe( pipe_slow );
11056 %}
11057 
11058 // fast string equals
11059 instruct string_equals(rdi_RegP str1, rsi_RegP str2, rcx_RegI cnt, rax_RegI result,
11060                        legRegD tmp1, legRegD tmp2, rbx_RegI tmp3, rFlagsReg cr)
11061 %{
11062   match(Set result (StrEquals (Binary str1 str2) cnt));
11063   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
11064 
11065   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
11066   ins_encode %{
11067     __ arrays_equals(false, $str1$$Register, $str2$$Register,
11068                      $cnt$$Register, $result$$Register, $tmp3$$Register,
11069                      $tmp1$$XMMRegister, $tmp2$$XMMRegister, false /* char */);
11070   %}
11071   ins_pipe( pipe_slow );
11072 %}
11073 
11074 // fast array equals
11075 instruct array_equalsB(rdi_RegP ary1, rsi_RegP ary2, rax_RegI result,
11076                        legRegD tmp1, legRegD tmp2, rcx_RegI tmp3, rbx_RegI tmp4, rFlagsReg cr)
11077 %{
11078   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL);
11079   match(Set result (AryEq ary1 ary2));
11080   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
11081 
11082   format %{ "Array Equals byte[] $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
11083   ins_encode %{
11084     __ arrays_equals(true, $ary1$$Register, $ary2$$Register,
11085                      $tmp3$$Register, $result$$Register, $tmp4$$Register,
11086                      $tmp1$$XMMRegister, $tmp2$$XMMRegister, false /* char */);
11087   %}
11088   ins_pipe( pipe_slow );
11089 %}
11090 
11091 instruct array_equalsC(rdi_RegP ary1, rsi_RegP ary2, rax_RegI result,
11092                        legRegD tmp1, legRegD tmp2, rcx_RegI tmp3, rbx_RegI tmp4, rFlagsReg cr)
11093 %{
11094   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU);
11095   match(Set result (AryEq ary1 ary2));
11096   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
11097 
11098   format %{ "Array Equals char[] $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
11099   ins_encode %{
11100     __ arrays_equals(true, $ary1$$Register, $ary2$$Register,
11101                      $tmp3$$Register, $result$$Register, $tmp4$$Register,
11102                      $tmp1$$XMMRegister, $tmp2$$XMMRegister, true /* char */);
11103   %}
11104   ins_pipe( pipe_slow );
11105 %}
11106 
11107 instruct has_negatives(rsi_RegP ary1, rcx_RegI len, rax_RegI result,
11108                        legRegD tmp1, legRegD tmp2, rbx_RegI tmp3, rFlagsReg cr)
11109 %{
11110   match(Set result (HasNegatives ary1 len));
11111   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL len, KILL tmp3, KILL cr);
11112 
11113   format %{ "has negatives byte[] $ary1,$len -> $result   // KILL $tmp1, $tmp2, $tmp3" %}
11114   ins_encode %{
11115     __ has_negatives($ary1$$Register, $len$$Register,
11116                      $result$$Register, $tmp3$$Register,
11117                      $tmp1$$XMMRegister, $tmp2$$XMMRegister);
11118   %}
11119   ins_pipe( pipe_slow );
11120 %}
11121 
11122 // fast char[] to byte[] compression
11123 instruct string_compress(rsi_RegP src, rdi_RegP dst, rdx_RegI len, legRegD tmp1, legRegD tmp2, legRegD tmp3, legRegD tmp4,
11124                          rcx_RegI tmp5, rax_RegI result, rFlagsReg cr) %{
11125   match(Set result (StrCompressedCopy src (Binary dst len)));
11126   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
11127 
11128   format %{ "String Compress $src,$dst -> $result    // KILL RAX, RCX, RDX" %}
11129   ins_encode %{
11130     __ char_array_compress($src$$Register, $dst$$Register, $len$$Register,
11131                            $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
11132                            $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
11133   %}
11134   ins_pipe( pipe_slow );
11135 %}
11136 
11137 // fast byte[] to char[] inflation
11138 instruct string_inflate(Universe dummy, rsi_RegP src, rdi_RegP dst, rdx_RegI len,
11139                         legRegD tmp1, rcx_RegI tmp2, rFlagsReg cr) %{
11140   match(Set dummy (StrInflatedCopy src (Binary dst len)));
11141   effect(TEMP tmp1, TEMP tmp2, USE_KILL src, USE_KILL dst, USE_KILL len, KILL cr);
11142 
11143   format %{ "String Inflate $src,$dst    // KILL $tmp1, $tmp2" %}
11144   ins_encode %{
11145     __ byte_array_inflate($src$$Register, $dst$$Register, $len$$Register,
11146                           $tmp1$$XMMRegister, $tmp2$$Register);
11147   %}
11148   ins_pipe( pipe_slow );
11149 %}
11150 
11151 // encode char[] to byte[] in ISO_8859_1
11152 instruct encode_iso_array(rsi_RegP src, rdi_RegP dst, rdx_RegI len,
11153                           legRegD tmp1, legRegD tmp2, legRegD tmp3, legRegD tmp4,
11154                           rcx_RegI tmp5, rax_RegI result, rFlagsReg cr) %{
11155   match(Set result (EncodeISOArray src (Binary dst len)));
11156   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
11157 
11158   format %{ "Encode array $src,$dst,$len -> $result    // KILL RCX, RDX, $tmp1, $tmp2, $tmp3, $tmp4, RSI, RDI " %}
11159   ins_encode %{
11160     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
11161                         $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
11162                         $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
11163   %}
11164   ins_pipe( pipe_slow );
11165 %}
11166 
11167 //----------Overflow Math Instructions-----------------------------------------
11168 
11169 instruct overflowAddI_rReg(rFlagsReg cr, rax_RegI op1, rRegI op2)
11170 %{
11171   match(Set cr (OverflowAddI op1 op2));
11172   effect(DEF cr, USE_KILL op1, USE op2);
11173 
11174   format %{ "addl    $op1, $op2\t# overflow check int" %}
11175 
11176   ins_encode %{
11177     __ addl($op1$$Register, $op2$$Register);
11178   %}
11179   ins_pipe(ialu_reg_reg);
11180 %}
11181 
11182 instruct overflowAddI_rReg_imm(rFlagsReg cr, rax_RegI op1, immI op2)
11183 %{
11184   match(Set cr (OverflowAddI op1 op2));
11185   effect(DEF cr, USE_KILL op1, USE op2);
11186 
11187   format %{ "addl    $op1, $op2\t# overflow check int" %}
11188 
11189   ins_encode %{
11190     __ addl($op1$$Register, $op2$$constant);
11191   %}
11192   ins_pipe(ialu_reg_reg);
11193 %}
11194 
11195 instruct overflowAddL_rReg(rFlagsReg cr, rax_RegL op1, rRegL op2)
11196 %{
11197   match(Set cr (OverflowAddL op1 op2));
11198   effect(DEF cr, USE_KILL op1, USE op2);
11199 
11200   format %{ "addq    $op1, $op2\t# overflow check long" %}
11201   ins_encode %{
11202     __ addq($op1$$Register, $op2$$Register);
11203   %}
11204   ins_pipe(ialu_reg_reg);
11205 %}
11206 
11207 instruct overflowAddL_rReg_imm(rFlagsReg cr, rax_RegL op1, immL32 op2)
11208 %{
11209   match(Set cr (OverflowAddL op1 op2));
11210   effect(DEF cr, USE_KILL op1, USE op2);
11211 
11212   format %{ "addq    $op1, $op2\t# overflow check long" %}
11213   ins_encode %{
11214     __ addq($op1$$Register, $op2$$constant);
11215   %}
11216   ins_pipe(ialu_reg_reg);
11217 %}
11218 
11219 instruct overflowSubI_rReg(rFlagsReg cr, rRegI op1, rRegI op2)
11220 %{
11221   match(Set cr (OverflowSubI op1 op2));
11222 
11223   format %{ "cmpl    $op1, $op2\t# overflow check int" %}
11224   ins_encode %{
11225     __ cmpl($op1$$Register, $op2$$Register);
11226   %}
11227   ins_pipe(ialu_reg_reg);
11228 %}
11229 
11230 instruct overflowSubI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2)
11231 %{
11232   match(Set cr (OverflowSubI op1 op2));
11233 
11234   format %{ "cmpl    $op1, $op2\t# overflow check int" %}
11235   ins_encode %{
11236     __ cmpl($op1$$Register, $op2$$constant);
11237   %}
11238   ins_pipe(ialu_reg_reg);
11239 %}
11240 
11241 instruct overflowSubL_rReg(rFlagsReg cr, rRegL op1, rRegL op2)
11242 %{
11243   match(Set cr (OverflowSubL op1 op2));
11244 
11245   format %{ "cmpq    $op1, $op2\t# overflow check long" %}
11246   ins_encode %{
11247     __ cmpq($op1$$Register, $op2$$Register);
11248   %}
11249   ins_pipe(ialu_reg_reg);
11250 %}
11251 
11252 instruct overflowSubL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2)
11253 %{
11254   match(Set cr (OverflowSubL op1 op2));
11255 
11256   format %{ "cmpq    $op1, $op2\t# overflow check long" %}
11257   ins_encode %{
11258     __ cmpq($op1$$Register, $op2$$constant);
11259   %}
11260   ins_pipe(ialu_reg_reg);
11261 %}
11262 
11263 instruct overflowNegI_rReg(rFlagsReg cr, immI0 zero, rax_RegI op2)
11264 %{
11265   match(Set cr (OverflowSubI zero op2));
11266   effect(DEF cr, USE_KILL op2);
11267 
11268   format %{ "negl    $op2\t# overflow check int" %}
11269   ins_encode %{
11270     __ negl($op2$$Register);
11271   %}
11272   ins_pipe(ialu_reg_reg);
11273 %}
11274 
11275 instruct overflowNegL_rReg(rFlagsReg cr, immL0 zero, rax_RegL op2)
11276 %{
11277   match(Set cr (OverflowSubL zero op2));
11278   effect(DEF cr, USE_KILL op2);
11279 
11280   format %{ "negq    $op2\t# overflow check long" %}
11281   ins_encode %{
11282     __ negq($op2$$Register);
11283   %}
11284   ins_pipe(ialu_reg_reg);
11285 %}
11286 
11287 instruct overflowMulI_rReg(rFlagsReg cr, rax_RegI op1, rRegI op2)
11288 %{
11289   match(Set cr (OverflowMulI op1 op2));
11290   effect(DEF cr, USE_KILL op1, USE op2);
11291 
11292   format %{ "imull    $op1, $op2\t# overflow check int" %}
11293   ins_encode %{
11294     __ imull($op1$$Register, $op2$$Register);
11295   %}
11296   ins_pipe(ialu_reg_reg_alu0);
11297 %}
11298 
11299 instruct overflowMulI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2, rRegI tmp)
11300 %{
11301   match(Set cr (OverflowMulI op1 op2));
11302   effect(DEF cr, TEMP tmp, USE op1, USE op2);
11303 
11304   format %{ "imull    $tmp, $op1, $op2\t# overflow check int" %}
11305   ins_encode %{
11306     __ imull($tmp$$Register, $op1$$Register, $op2$$constant);
11307   %}
11308   ins_pipe(ialu_reg_reg_alu0);
11309 %}
11310 
11311 instruct overflowMulL_rReg(rFlagsReg cr, rax_RegL op1, rRegL op2)
11312 %{
11313   match(Set cr (OverflowMulL op1 op2));
11314   effect(DEF cr, USE_KILL op1, USE op2);
11315 
11316   format %{ "imulq    $op1, $op2\t# overflow check long" %}
11317   ins_encode %{
11318     __ imulq($op1$$Register, $op2$$Register);
11319   %}
11320   ins_pipe(ialu_reg_reg_alu0);
11321 %}
11322 
11323 instruct overflowMulL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2, rRegL tmp)
11324 %{
11325   match(Set cr (OverflowMulL op1 op2));
11326   effect(DEF cr, TEMP tmp, USE op1, USE op2);
11327 
11328   format %{ "imulq    $tmp, $op1, $op2\t# overflow check long" %}
11329   ins_encode %{
11330     __ imulq($tmp$$Register, $op1$$Register, $op2$$constant);
11331   %}
11332   ins_pipe(ialu_reg_reg_alu0);
11333 %}
11334 
11335 
11336 //----------Control Flow Instructions------------------------------------------
11337 // Signed compare Instructions
11338 
11339 // XXX more variants!!
11340 instruct compI_rReg(rFlagsReg cr, rRegI op1, rRegI op2)
11341 %{
11342   match(Set cr (CmpI op1 op2));
11343   effect(DEF cr, USE op1, USE op2);
11344 
11345   format %{ "cmpl    $op1, $op2" %}
11346   opcode(0x3B);  /* Opcode 3B /r */
11347   ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
11348   ins_pipe(ialu_cr_reg_reg);
11349 %}
11350 
11351 instruct compI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2)
11352 %{
11353   match(Set cr (CmpI op1 op2));
11354 
11355   format %{ "cmpl    $op1, $op2" %}
11356   opcode(0x81, 0x07); /* Opcode 81 /7 */
11357   ins_encode(OpcSErm(op1, op2), Con8or32(op2));
11358   ins_pipe(ialu_cr_reg_imm);
11359 %}
11360 
11361 instruct compI_rReg_mem(rFlagsReg cr, rRegI op1, memory op2)
11362 %{
11363   match(Set cr (CmpI op1 (LoadI op2)));
11364 
11365   ins_cost(500); // XXX
11366   format %{ "cmpl    $op1, $op2" %}
11367   opcode(0x3B); /* Opcode 3B /r */
11368   ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
11369   ins_pipe(ialu_cr_reg_mem);
11370 %}
11371 
11372 instruct testI_reg(rFlagsReg cr, rRegI src, immI0 zero)
11373 %{
11374   match(Set cr (CmpI src zero));
11375 
11376   format %{ "testl   $src, $src" %}
11377   opcode(0x85);
11378   ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
11379   ins_pipe(ialu_cr_reg_imm);
11380 %}
11381 
11382 instruct testI_reg_imm(rFlagsReg cr, rRegI src, immI con, immI0 zero)
11383 %{
11384   match(Set cr (CmpI (AndI src con) zero));
11385 
11386   format %{ "testl   $src, $con" %}
11387   opcode(0xF7, 0x00);
11388   ins_encode(REX_reg(src), OpcP, reg_opc(src), Con32(con));
11389   ins_pipe(ialu_cr_reg_imm);
11390 %}
11391 
11392 instruct testI_reg_mem(rFlagsReg cr, rRegI src, memory mem, immI0 zero)
11393 %{
11394   match(Set cr (CmpI (AndI src (LoadI mem)) zero));
11395 
11396   format %{ "testl   $src, $mem" %}
11397   opcode(0x85);
11398   ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
11399   ins_pipe(ialu_cr_reg_mem);
11400 %}
11401 
11402 // Unsigned compare Instructions; really, same as signed except they
11403 // produce an rFlagsRegU instead of rFlagsReg.
11404 instruct compU_rReg(rFlagsRegU cr, rRegI op1, rRegI op2)
11405 %{
11406   match(Set cr (CmpU op1 op2));
11407 
11408   format %{ "cmpl    $op1, $op2\t# unsigned" %}
11409   opcode(0x3B); /* Opcode 3B /r */
11410   ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
11411   ins_pipe(ialu_cr_reg_reg);
11412 %}
11413 
11414 instruct compU_rReg_imm(rFlagsRegU cr, rRegI op1, immI op2)
11415 %{
11416   match(Set cr (CmpU op1 op2));
11417 
11418   format %{ "cmpl    $op1, $op2\t# unsigned" %}
11419   opcode(0x81,0x07); /* Opcode 81 /7 */
11420   ins_encode(OpcSErm(op1, op2), Con8or32(op2));
11421   ins_pipe(ialu_cr_reg_imm);
11422 %}
11423 
11424 instruct compU_rReg_mem(rFlagsRegU cr, rRegI op1, memory op2)
11425 %{
11426   match(Set cr (CmpU op1 (LoadI op2)));
11427 
11428   ins_cost(500); // XXX
11429   format %{ "cmpl    $op1, $op2\t# unsigned" %}
11430   opcode(0x3B); /* Opcode 3B /r */
11431   ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
11432   ins_pipe(ialu_cr_reg_mem);
11433 %}
11434 
11435 // // // Cisc-spilled version of cmpU_rReg
11436 // //instruct compU_mem_rReg(rFlagsRegU cr, memory op1, rRegI op2)
11437 // //%{
11438 // //  match(Set cr (CmpU (LoadI op1) op2));
11439 // //
11440 // //  format %{ "CMPu   $op1,$op2" %}
11441 // //  ins_cost(500);
11442 // //  opcode(0x39);  /* Opcode 39 /r */
11443 // //  ins_encode( OpcP, reg_mem( op1, op2) );
11444 // //%}
11445 
11446 instruct testU_reg(rFlagsRegU cr, rRegI src, immI0 zero)
11447 %{
11448   match(Set cr (CmpU src zero));
11449 
11450   format %{ "testl   $src, $src\t# unsigned" %}
11451   opcode(0x85);
11452   ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
11453   ins_pipe(ialu_cr_reg_imm);
11454 %}
11455 
11456 instruct compP_rReg(rFlagsRegU cr, rRegP op1, rRegP op2)
11457 %{
11458   match(Set cr (CmpP op1 op2));
11459 
11460   format %{ "cmpq    $op1, $op2\t# ptr" %}
11461   opcode(0x3B); /* Opcode 3B /r */
11462   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
11463   ins_pipe(ialu_cr_reg_reg);
11464 %}
11465 
11466 instruct compP_rReg_mem(rFlagsRegU cr, rRegP op1, memory op2)
11467 %{
11468   match(Set cr (CmpP op1 (LoadP op2)));
11469   predicate(n->in(2)->as_Load()->barrier_data() == 0);
11470 
11471   ins_cost(500); // XXX
11472   format %{ "cmpq    $op1, $op2\t# ptr" %}
11473   opcode(0x3B); /* Opcode 3B /r */
11474   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
11475   ins_pipe(ialu_cr_reg_mem);
11476 %}
11477 
11478 // // // Cisc-spilled version of cmpP_rReg
11479 // //instruct compP_mem_rReg(rFlagsRegU cr, memory op1, rRegP op2)
11480 // //%{
11481 // //  match(Set cr (CmpP (LoadP op1) op2));
11482 // //
11483 // //  format %{ "CMPu   $op1,$op2" %}
11484 // //  ins_cost(500);
11485 // //  opcode(0x39);  /* Opcode 39 /r */
11486 // //  ins_encode( OpcP, reg_mem( op1, op2) );
11487 // //%}
11488 
11489 // XXX this is generalized by compP_rReg_mem???
11490 // Compare raw pointer (used in out-of-heap check).
11491 // Only works because non-oop pointers must be raw pointers
11492 // and raw pointers have no anti-dependencies.
11493 instruct compP_mem_rReg(rFlagsRegU cr, rRegP op1, memory op2)
11494 %{
11495   predicate(n->in(2)->in(2)->bottom_type()->reloc() == relocInfo::none &&
11496             n->in(2)->as_Load()->barrier_data() == 0);
11497   match(Set cr (CmpP op1 (LoadP op2)));
11498 
11499   format %{ "cmpq    $op1, $op2\t# raw ptr" %}
11500   opcode(0x3B); /* Opcode 3B /r */
11501   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
11502   ins_pipe(ialu_cr_reg_mem);
11503 %}
11504 
11505 // This will generate a signed flags result. This should be OK since
11506 // any compare to a zero should be eq/neq.
11507 instruct testP_reg(rFlagsReg cr, rRegP src, immP0 zero)
11508 %{
11509   match(Set cr (CmpP src zero));
11510 
11511   format %{ "testq   $src, $src\t# ptr" %}
11512   opcode(0x85);
11513   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
11514   ins_pipe(ialu_cr_reg_imm);
11515 %}
11516 
11517 // This will generate a signed flags result. This should be OK since
11518 // any compare to a zero should be eq/neq.
11519 instruct testP_mem(rFlagsReg cr, memory op, immP0 zero)
11520 %{
11521   predicate((!UseCompressedOops || (CompressedOops::base() != NULL)) &&
11522             n->in(1)->as_Load()->barrier_data() == 0);
11523   match(Set cr (CmpP (LoadP op) zero));
11524 
11525   ins_cost(500); // XXX
11526   format %{ "testq   $op, 0xffffffffffffffff\t# ptr" %}
11527   opcode(0xF7); /* Opcode F7 /0 */
11528   ins_encode(REX_mem_wide(op),
11529              OpcP, RM_opc_mem(0x00, op), Con_d32(0xFFFFFFFF));
11530   ins_pipe(ialu_cr_reg_imm);
11531 %}
11532 
11533 instruct testP_mem_reg0(rFlagsReg cr, memory mem, immP0 zero)
11534 %{
11535   predicate(UseCompressedOops && (CompressedOops::base() == NULL) &&
11536             n->in(1)->as_Load()->barrier_data() == 0);
11537   match(Set cr (CmpP (LoadP mem) zero));
11538 
11539   format %{ "cmpq    R12, $mem\t# ptr (R12_heapbase==0)" %}
11540   ins_encode %{
11541     __ cmpq(r12, $mem$$Address);
11542   %}
11543   ins_pipe(ialu_cr_reg_mem);
11544 %}
11545 
11546 instruct compN_rReg(rFlagsRegU cr, rRegN op1, rRegN op2)
11547 %{
11548   match(Set cr (CmpN op1 op2));
11549 
11550   format %{ "cmpl    $op1, $op2\t# compressed ptr" %}
11551   ins_encode %{ __ cmpl($op1$$Register, $op2$$Register); %}
11552   ins_pipe(ialu_cr_reg_reg);
11553 %}
11554 
11555 instruct compN_rReg_mem(rFlagsRegU cr, rRegN src, memory mem)
11556 %{
11557   match(Set cr (CmpN src (LoadN mem)));
11558 
11559   format %{ "cmpl    $src, $mem\t# compressed ptr" %}
11560   ins_encode %{
11561     __ cmpl($src$$Register, $mem$$Address);
11562   %}
11563   ins_pipe(ialu_cr_reg_mem);
11564 %}
11565 
11566 instruct compN_rReg_imm(rFlagsRegU cr, rRegN op1, immN op2) %{
11567   match(Set cr (CmpN op1 op2));
11568 
11569   format %{ "cmpl    $op1, $op2\t# compressed ptr" %}
11570   ins_encode %{
11571     __ cmp_narrow_oop($op1$$Register, (jobject)$op2$$constant);
11572   %}
11573   ins_pipe(ialu_cr_reg_imm);
11574 %}
11575 
11576 instruct compN_mem_imm(rFlagsRegU cr, memory mem, immN src)
11577 %{
11578   match(Set cr (CmpN src (LoadN mem)));
11579 
11580   format %{ "cmpl    $mem, $src\t# compressed ptr" %}
11581   ins_encode %{
11582     __ cmp_narrow_oop($mem$$Address, (jobject)$src$$constant);
11583   %}
11584   ins_pipe(ialu_cr_reg_mem);
11585 %}
11586 
11587 instruct compN_rReg_imm_klass(rFlagsRegU cr, rRegN op1, immNKlass op2) %{
11588   match(Set cr (CmpN op1 op2));
11589 
11590   format %{ "cmpl    $op1, $op2\t# compressed klass ptr" %}
11591   ins_encode %{
11592     __ cmp_narrow_klass($op1$$Register, (Klass*)$op2$$constant);
11593   %}
11594   ins_pipe(ialu_cr_reg_imm);
11595 %}
11596 
11597 instruct compN_mem_imm_klass(rFlagsRegU cr, memory mem, immNKlass src)
11598 %{
11599   match(Set cr (CmpN src (LoadNKlass mem)));
11600 
11601   format %{ "cmpl    $mem, $src\t# compressed klass ptr" %}
11602   ins_encode %{
11603     __ cmp_narrow_klass($mem$$Address, (Klass*)$src$$constant);
11604   %}
11605   ins_pipe(ialu_cr_reg_mem);
11606 %}
11607 
11608 instruct testN_reg(rFlagsReg cr, rRegN src, immN0 zero) %{
11609   match(Set cr (CmpN src zero));
11610 
11611   format %{ "testl   $src, $src\t# compressed ptr" %}
11612   ins_encode %{ __ testl($src$$Register, $src$$Register); %}
11613   ins_pipe(ialu_cr_reg_imm);
11614 %}
11615 
11616 instruct testN_mem(rFlagsReg cr, memory mem, immN0 zero)
11617 %{
11618   predicate(CompressedOops::base() != NULL);
11619   match(Set cr (CmpN (LoadN mem) zero));
11620 
11621   ins_cost(500); // XXX
11622   format %{ "testl   $mem, 0xffffffff\t# compressed ptr" %}
11623   ins_encode %{
11624     __ cmpl($mem$$Address, (int)0xFFFFFFFF);
11625   %}
11626   ins_pipe(ialu_cr_reg_mem);
11627 %}
11628 
11629 instruct testN_mem_reg0(rFlagsReg cr, memory mem, immN0 zero)
11630 %{
11631   predicate(CompressedOops::base() == NULL);
11632   match(Set cr (CmpN (LoadN mem) zero));
11633 
11634   format %{ "cmpl    R12, $mem\t# compressed ptr (R12_heapbase==0)" %}
11635   ins_encode %{
11636     __ cmpl(r12, $mem$$Address);
11637   %}
11638   ins_pipe(ialu_cr_reg_mem);
11639 %}
11640 
11641 // Yanked all unsigned pointer compare operations.
11642 // Pointer compares are done with CmpP which is already unsigned.
11643 
11644 instruct compL_rReg(rFlagsReg cr, rRegL op1, rRegL op2)
11645 %{
11646   match(Set cr (CmpL op1 op2));
11647 
11648   format %{ "cmpq    $op1, $op2" %}
11649   opcode(0x3B);  /* Opcode 3B /r */
11650   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
11651   ins_pipe(ialu_cr_reg_reg);
11652 %}
11653 
11654 instruct compL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2)
11655 %{
11656   match(Set cr (CmpL op1 op2));
11657 
11658   format %{ "cmpq    $op1, $op2" %}
11659   opcode(0x81, 0x07); /* Opcode 81 /7 */
11660   ins_encode(OpcSErm_wide(op1, op2), Con8or32(op2));
11661   ins_pipe(ialu_cr_reg_imm);
11662 %}
11663 
11664 instruct compL_rReg_mem(rFlagsReg cr, rRegL op1, memory op2)
11665 %{
11666   match(Set cr (CmpL op1 (LoadL op2)));
11667 
11668   format %{ "cmpq    $op1, $op2" %}
11669   opcode(0x3B); /* Opcode 3B /r */
11670   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
11671   ins_pipe(ialu_cr_reg_mem);
11672 %}
11673 
11674 instruct testL_reg(rFlagsReg cr, rRegL src, immL0 zero)
11675 %{
11676   match(Set cr (CmpL src zero));
11677 
11678   format %{ "testq   $src, $src" %}
11679   opcode(0x85);
11680   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
11681   ins_pipe(ialu_cr_reg_imm);
11682 %}
11683 
11684 instruct testL_reg_imm(rFlagsReg cr, rRegL src, immL32 con, immL0 zero)
11685 %{
11686   match(Set cr (CmpL (AndL src con) zero));
11687 
11688   format %{ "testq   $src, $con\t# long" %}
11689   opcode(0xF7, 0x00);
11690   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src), Con32(con));
11691   ins_pipe(ialu_cr_reg_imm);
11692 %}
11693 
11694 instruct testL_reg_mem(rFlagsReg cr, rRegL src, memory mem, immL0 zero)
11695 %{
11696   match(Set cr (CmpL (AndL src (LoadL mem)) zero));
11697 
11698   format %{ "testq   $src, $mem" %}
11699   opcode(0x85);
11700   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
11701   ins_pipe(ialu_cr_reg_mem);
11702 %}
11703 
11704 instruct testL_reg_mem2(rFlagsReg cr, rRegP src, memory mem, immL0 zero)
11705 %{
11706   match(Set cr (CmpL (AndL (CastP2X src) (LoadL mem)) zero));
11707 
11708   format %{ "testq   $src, $mem" %}
11709   opcode(0x85);
11710   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
11711   ins_pipe(ialu_cr_reg_mem);
11712 %}
11713 
11714 // Manifest a CmpL result in an integer register.  Very painful.
11715 // This is the test to avoid.
11716 instruct cmpL3_reg_reg(rRegI dst, rRegL src1, rRegL src2, rFlagsReg flags)
11717 %{
11718   match(Set dst (CmpL3 src1 src2));
11719   effect(KILL flags);
11720 
11721   ins_cost(275); // XXX
11722   format %{ "cmpq    $src1, $src2\t# CmpL3\n\t"
11723             "movl    $dst, -1\n\t"
11724             "jl,s    done\n\t"
11725             "setne   $dst\n\t"
11726             "movzbl  $dst, $dst\n\t"
11727     "done:" %}
11728   ins_encode(cmpl3_flag(src1, src2, dst));
11729   ins_pipe(pipe_slow);
11730 %}
11731 
11732 // Unsigned long compare Instructions; really, same as signed long except they
11733 // produce an rFlagsRegU instead of rFlagsReg.
11734 instruct compUL_rReg(rFlagsRegU cr, rRegL op1, rRegL op2)
11735 %{
11736   match(Set cr (CmpUL op1 op2));
11737 
11738   format %{ "cmpq    $op1, $op2\t# unsigned" %}
11739   opcode(0x3B);  /* Opcode 3B /r */
11740   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
11741   ins_pipe(ialu_cr_reg_reg);
11742 %}
11743 
11744 instruct compUL_rReg_imm(rFlagsRegU cr, rRegL op1, immL32 op2)
11745 %{
11746   match(Set cr (CmpUL op1 op2));
11747 
11748   format %{ "cmpq    $op1, $op2\t# unsigned" %}
11749   opcode(0x81, 0x07); /* Opcode 81 /7 */
11750   ins_encode(OpcSErm_wide(op1, op2), Con8or32(op2));
11751   ins_pipe(ialu_cr_reg_imm);
11752 %}
11753 
11754 instruct compUL_rReg_mem(rFlagsRegU cr, rRegL op1, memory op2)
11755 %{
11756   match(Set cr (CmpUL op1 (LoadL op2)));
11757 
11758   format %{ "cmpq    $op1, $op2\t# unsigned" %}
11759   opcode(0x3B); /* Opcode 3B /r */
11760   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
11761   ins_pipe(ialu_cr_reg_mem);
11762 %}
11763 
11764 instruct testUL_reg(rFlagsRegU cr, rRegL src, immL0 zero)
11765 %{
11766   match(Set cr (CmpUL src zero));
11767 
11768   format %{ "testq   $src, $src\t# unsigned" %}
11769   opcode(0x85);
11770   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
11771   ins_pipe(ialu_cr_reg_imm);
11772 %}
11773 
11774 instruct compB_mem_imm(rFlagsReg cr, memory mem, immI8 imm)
11775 %{
11776   match(Set cr (CmpI (LoadB mem) imm));
11777 
11778   ins_cost(125);
11779   format %{ "cmpb    $mem, $imm" %}
11780   ins_encode %{ __ cmpb($mem$$Address, $imm$$constant); %}
11781   ins_pipe(ialu_cr_reg_mem);
11782 %}
11783 
11784 instruct testUB_mem_imm(rFlagsReg cr, memory mem, immU8 imm, immI0 zero)
11785 %{
11786   match(Set cr (CmpI (AndI (LoadUB mem) imm) zero));
11787 
11788   ins_cost(125);
11789   format %{ "testb   $mem, $imm\t# ubyte" %}
11790   ins_encode %{ __ testb($mem$$Address, $imm$$constant); %}
11791   ins_pipe(ialu_cr_reg_mem);
11792 %}
11793 
11794 instruct testB_mem_imm(rFlagsReg cr, memory mem, immI8 imm, immI0 zero)
11795 %{
11796   match(Set cr (CmpI (AndI (LoadB mem) imm) zero));
11797 
11798   ins_cost(125);
11799   format %{ "testb   $mem, $imm\t# byte" %}
11800   ins_encode %{ __ testb($mem$$Address, $imm$$constant); %}
11801   ins_pipe(ialu_cr_reg_mem);
11802 %}
11803 
11804 //----------Max and Min--------------------------------------------------------
11805 // Min Instructions
11806 
11807 instruct cmovI_reg_g(rRegI dst, rRegI src, rFlagsReg cr)
11808 %{
11809   effect(USE_DEF dst, USE src, USE cr);
11810 
11811   format %{ "cmovlgt $dst, $src\t# min" %}
11812   opcode(0x0F, 0x4F);
11813   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
11814   ins_pipe(pipe_cmov_reg);
11815 %}
11816 
11817 
11818 instruct minI_rReg(rRegI dst, rRegI src)
11819 %{
11820   match(Set dst (MinI dst src));
11821 
11822   ins_cost(200);
11823   expand %{
11824     rFlagsReg cr;
11825     compI_rReg(cr, dst, src);
11826     cmovI_reg_g(dst, src, cr);
11827   %}
11828 %}
11829 
11830 instruct cmovI_reg_l(rRegI dst, rRegI src, rFlagsReg cr)
11831 %{
11832   effect(USE_DEF dst, USE src, USE cr);
11833 
11834   format %{ "cmovllt $dst, $src\t# max" %}
11835   opcode(0x0F, 0x4C);
11836   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
11837   ins_pipe(pipe_cmov_reg);
11838 %}
11839 
11840 
11841 instruct maxI_rReg(rRegI dst, rRegI src)
11842 %{
11843   match(Set dst (MaxI dst src));
11844 
11845   ins_cost(200);
11846   expand %{
11847     rFlagsReg cr;
11848     compI_rReg(cr, dst, src);
11849     cmovI_reg_l(dst, src, cr);
11850   %}
11851 %}
11852 
11853 // ============================================================================
11854 // Branch Instructions
11855 
11856 // Jump Direct - Label defines a relative address from JMP+1
11857 instruct jmpDir(label labl)
11858 %{
11859   match(Goto);
11860   effect(USE labl);
11861 
11862   ins_cost(300);
11863   format %{ "jmp     $labl" %}
11864   size(5);
11865   ins_encode %{
11866     Label* L = $labl$$label;
11867     __ jmp(*L, false); // Always long jump
11868   %}
11869   ins_pipe(pipe_jmp);
11870 %}
11871 
11872 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11873 instruct jmpCon(cmpOp cop, rFlagsReg cr, label labl)
11874 %{
11875   match(If cop cr);
11876   effect(USE labl);
11877 
11878   ins_cost(300);
11879   format %{ "j$cop     $labl" %}
11880   size(6);
11881   ins_encode %{
11882     Label* L = $labl$$label;
11883     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11884   %}
11885   ins_pipe(pipe_jcc);
11886 %}
11887 
11888 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11889 instruct jmpLoopEnd(cmpOp cop, rFlagsReg cr, label labl)
11890 %{
11891   predicate(!n->has_vector_mask_set());
11892   match(CountedLoopEnd cop cr);
11893   effect(USE labl);
11894 
11895   ins_cost(300);
11896   format %{ "j$cop     $labl\t# loop end" %}
11897   size(6);
11898   ins_encode %{
11899     Label* L = $labl$$label;
11900     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11901   %}
11902   ins_pipe(pipe_jcc);
11903 %}
11904 
11905 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11906 instruct jmpLoopEndU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
11907   predicate(!n->has_vector_mask_set());
11908   match(CountedLoopEnd cop cmp);
11909   effect(USE labl);
11910 
11911   ins_cost(300);
11912   format %{ "j$cop,u   $labl\t# loop end" %}
11913   size(6);
11914   ins_encode %{
11915     Label* L = $labl$$label;
11916     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11917   %}
11918   ins_pipe(pipe_jcc);
11919 %}
11920 
11921 instruct jmpLoopEndUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
11922   predicate(!n->has_vector_mask_set());
11923   match(CountedLoopEnd cop cmp);
11924   effect(USE labl);
11925 
11926   ins_cost(200);
11927   format %{ "j$cop,u   $labl\t# loop end" %}
11928   size(6);
11929   ins_encode %{
11930     Label* L = $labl$$label;
11931     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11932   %}
11933   ins_pipe(pipe_jcc);
11934 %}
11935 
11936 // mask version
11937 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11938 instruct jmpLoopEnd_and_restoreMask(cmpOp cop, rFlagsReg cr, label labl)
11939 %{
11940   predicate(n->has_vector_mask_set());
11941   match(CountedLoopEnd cop cr);
11942   effect(USE labl);
11943 
11944   ins_cost(400);
11945   format %{ "j$cop     $labl\t# loop end\n\t"
11946             "restorevectmask \t# vector mask restore for loops" %}
11947   size(10);
11948   ins_encode %{
11949     Label* L = $labl$$label;
11950     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11951     __ restorevectmask();
11952   %}
11953   ins_pipe(pipe_jcc);
11954 %}
11955 
11956 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11957 instruct jmpLoopEndU_and_restoreMask(cmpOpU cop, rFlagsRegU cmp, label labl) %{
11958   predicate(n->has_vector_mask_set());
11959   match(CountedLoopEnd cop cmp);
11960   effect(USE labl);
11961 
11962   ins_cost(400);
11963   format %{ "j$cop,u   $labl\t# loop end\n\t"
11964             "restorevectmask \t# vector mask restore for loops" %}
11965   size(10);
11966   ins_encode %{
11967     Label* L = $labl$$label;
11968     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11969     __ restorevectmask();
11970   %}
11971   ins_pipe(pipe_jcc);
11972 %}
11973 
11974 instruct jmpLoopEndUCF_and_restoreMask(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
11975   predicate(n->has_vector_mask_set());
11976   match(CountedLoopEnd cop cmp);
11977   effect(USE labl);
11978 
11979   ins_cost(300);
11980   format %{ "j$cop,u   $labl\t# loop end\n\t"
11981             "restorevectmask \t# vector mask restore for loops" %}
11982   size(10);
11983   ins_encode %{
11984     Label* L = $labl$$label;
11985     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11986     __ restorevectmask();
11987   %}
11988   ins_pipe(pipe_jcc);
11989 %}
11990 
11991 // Jump Direct Conditional - using unsigned comparison
11992 instruct jmpConU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
11993   match(If cop cmp);
11994   effect(USE labl);
11995 
11996   ins_cost(300);
11997   format %{ "j$cop,u   $labl" %}
11998   size(6);
11999   ins_encode %{
12000     Label* L = $labl$$label;
12001     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12002   %}
12003   ins_pipe(pipe_jcc);
12004 %}
12005 
12006 instruct jmpConUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12007   match(If cop cmp);
12008   effect(USE labl);
12009 
12010   ins_cost(200);
12011   format %{ "j$cop,u   $labl" %}
12012   size(6);
12013   ins_encode %{
12014     Label* L = $labl$$label;
12015     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12016   %}
12017   ins_pipe(pipe_jcc);
12018 %}
12019 
12020 instruct jmpConUCF2(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
12021   match(If cop cmp);
12022   effect(USE labl);
12023 
12024   ins_cost(200);
12025   format %{ $$template
12026     if ($cop$$cmpcode == Assembler::notEqual) {
12027       $$emit$$"jp,u    $labl\n\t"
12028       $$emit$$"j$cop,u   $labl"
12029     } else {
12030       $$emit$$"jp,u    done\n\t"
12031       $$emit$$"j$cop,u   $labl\n\t"
12032       $$emit$$"done:"
12033     }
12034   %}
12035   ins_encode %{
12036     Label* l = $labl$$label;
12037     if ($cop$$cmpcode == Assembler::notEqual) {
12038       __ jcc(Assembler::parity, *l, false);
12039       __ jcc(Assembler::notEqual, *l, false);
12040     } else if ($cop$$cmpcode == Assembler::equal) {
12041       Label done;
12042       __ jccb(Assembler::parity, done);
12043       __ jcc(Assembler::equal, *l, false);
12044       __ bind(done);
12045     } else {
12046        ShouldNotReachHere();
12047     }
12048   %}
12049   ins_pipe(pipe_jcc);
12050 %}
12051 
12052 // ============================================================================
12053 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary
12054 // superklass array for an instance of the superklass.  Set a hidden
12055 // internal cache on a hit (cache is checked with exposed code in
12056 // gen_subtype_check()).  Return NZ for a miss or zero for a hit.  The
12057 // encoding ALSO sets flags.
12058 
12059 instruct partialSubtypeCheck(rdi_RegP result,
12060                              rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
12061                              rFlagsReg cr)
12062 %{
12063   match(Set result (PartialSubtypeCheck sub super));
12064   effect(KILL rcx, KILL cr);
12065 
12066   ins_cost(1100);  // slightly larger than the next version
12067   format %{ "movq    rdi, [$sub + in_bytes(Klass::secondary_supers_offset())]\n\t"
12068             "movl    rcx, [rdi + Array<Klass*>::length_offset_in_bytes()]\t# length to scan\n\t"
12069             "addq    rdi, Array<Klass*>::base_offset_in_bytes()\t# Skip to start of data; set NZ in case count is zero\n\t"
12070             "repne   scasq\t# Scan *rdi++ for a match with rax while rcx--\n\t"
12071             "jne,s   miss\t\t# Missed: rdi not-zero\n\t"
12072             "movq    [$sub + in_bytes(Klass::secondary_super_cache_offset())], $super\t# Hit: update cache\n\t"
12073             "xorq    $result, $result\t\t Hit: rdi zero\n\t"
12074     "miss:\t" %}
12075 
12076   opcode(0x1); // Force a XOR of RDI
12077   ins_encode(enc_PartialSubtypeCheck());
12078   ins_pipe(pipe_slow);
12079 %}
12080 
12081 instruct partialSubtypeCheck_vs_Zero(rFlagsReg cr,
12082                                      rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
12083                                      immP0 zero,
12084                                      rdi_RegP result)
12085 %{
12086   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
12087   effect(KILL rcx, KILL result);
12088 
12089   ins_cost(1000);
12090   format %{ "movq    rdi, [$sub + in_bytes(Klass::secondary_supers_offset())]\n\t"
12091             "movl    rcx, [rdi + Array<Klass*>::length_offset_in_bytes()]\t# length to scan\n\t"
12092             "addq    rdi, Array<Klass*>::base_offset_in_bytes()\t# Skip to start of data; set NZ in case count is zero\n\t"
12093             "repne   scasq\t# Scan *rdi++ for a match with rax while cx-- != 0\n\t"
12094             "jne,s   miss\t\t# Missed: flags nz\n\t"
12095             "movq    [$sub + in_bytes(Klass::secondary_super_cache_offset())], $super\t# Hit: update cache\n\t"
12096     "miss:\t" %}
12097 
12098   opcode(0x0); // No need to XOR RDI
12099   ins_encode(enc_PartialSubtypeCheck());
12100   ins_pipe(pipe_slow);
12101 %}
12102 
12103 // ============================================================================
12104 // Branch Instructions -- short offset versions
12105 //
12106 // These instructions are used to replace jumps of a long offset (the default
12107 // match) with jumps of a shorter offset.  These instructions are all tagged
12108 // with the ins_short_branch attribute, which causes the ADLC to suppress the
12109 // match rules in general matching.  Instead, the ADLC generates a conversion
12110 // method in the MachNode which can be used to do in-place replacement of the
12111 // long variant with the shorter variant.  The compiler will determine if a
12112 // branch can be taken by the is_short_branch_offset() predicate in the machine
12113 // specific code section of the file.
12114 
12115 // Jump Direct - Label defines a relative address from JMP+1
12116 instruct jmpDir_short(label labl) %{
12117   match(Goto);
12118   effect(USE labl);
12119 
12120   ins_cost(300);
12121   format %{ "jmp,s   $labl" %}
12122   size(2);
12123   ins_encode %{
12124     Label* L = $labl$$label;
12125     __ jmpb(*L);
12126   %}
12127   ins_pipe(pipe_jmp);
12128   ins_short_branch(1);
12129 %}
12130 
12131 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12132 instruct jmpCon_short(cmpOp cop, rFlagsReg cr, label labl) %{
12133   match(If cop cr);
12134   effect(USE labl);
12135 
12136   ins_cost(300);
12137   format %{ "j$cop,s   $labl" %}
12138   size(2);
12139   ins_encode %{
12140     Label* L = $labl$$label;
12141     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12142   %}
12143   ins_pipe(pipe_jcc);
12144   ins_short_branch(1);
12145 %}
12146 
12147 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12148 instruct jmpLoopEnd_short(cmpOp cop, rFlagsReg cr, label labl) %{
12149   match(CountedLoopEnd cop cr);
12150   effect(USE labl);
12151 
12152   ins_cost(300);
12153   format %{ "j$cop,s   $labl\t# loop end" %}
12154   size(2);
12155   ins_encode %{
12156     Label* L = $labl$$label;
12157     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12158   %}
12159   ins_pipe(pipe_jcc);
12160   ins_short_branch(1);
12161 %}
12162 
12163 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12164 instruct jmpLoopEndU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12165   match(CountedLoopEnd cop cmp);
12166   effect(USE labl);
12167 
12168   ins_cost(300);
12169   format %{ "j$cop,us  $labl\t# loop end" %}
12170   size(2);
12171   ins_encode %{
12172     Label* L = $labl$$label;
12173     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12174   %}
12175   ins_pipe(pipe_jcc);
12176   ins_short_branch(1);
12177 %}
12178 
12179 instruct jmpLoopEndUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12180   match(CountedLoopEnd cop cmp);
12181   effect(USE labl);
12182 
12183   ins_cost(300);
12184   format %{ "j$cop,us  $labl\t# loop end" %}
12185   size(2);
12186   ins_encode %{
12187     Label* L = $labl$$label;
12188     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12189   %}
12190   ins_pipe(pipe_jcc);
12191   ins_short_branch(1);
12192 %}
12193 
12194 // Jump Direct Conditional - using unsigned comparison
12195 instruct jmpConU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12196   match(If cop cmp);
12197   effect(USE labl);
12198 
12199   ins_cost(300);
12200   format %{ "j$cop,us  $labl" %}
12201   size(2);
12202   ins_encode %{
12203     Label* L = $labl$$label;
12204     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12205   %}
12206   ins_pipe(pipe_jcc);
12207   ins_short_branch(1);
12208 %}
12209 
12210 instruct jmpConUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12211   match(If cop cmp);
12212   effect(USE labl);
12213 
12214   ins_cost(300);
12215   format %{ "j$cop,us  $labl" %}
12216   size(2);
12217   ins_encode %{
12218     Label* L = $labl$$label;
12219     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12220   %}
12221   ins_pipe(pipe_jcc);
12222   ins_short_branch(1);
12223 %}
12224 
12225 instruct jmpConUCF2_short(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
12226   match(If cop cmp);
12227   effect(USE labl);
12228 
12229   ins_cost(300);
12230   format %{ $$template
12231     if ($cop$$cmpcode == Assembler::notEqual) {
12232       $$emit$$"jp,u,s  $labl\n\t"
12233       $$emit$$"j$cop,u,s  $labl"
12234     } else {
12235       $$emit$$"jp,u,s  done\n\t"
12236       $$emit$$"j$cop,u,s  $labl\n\t"
12237       $$emit$$"done:"
12238     }
12239   %}
12240   size(4);
12241   ins_encode %{
12242     Label* l = $labl$$label;
12243     if ($cop$$cmpcode == Assembler::notEqual) {
12244       __ jccb(Assembler::parity, *l);
12245       __ jccb(Assembler::notEqual, *l);
12246     } else if ($cop$$cmpcode == Assembler::equal) {
12247       Label done;
12248       __ jccb(Assembler::parity, done);
12249       __ jccb(Assembler::equal, *l);
12250       __ bind(done);
12251     } else {
12252        ShouldNotReachHere();
12253     }
12254   %}
12255   ins_pipe(pipe_jcc);
12256   ins_short_branch(1);
12257 %}
12258 
12259 // ============================================================================
12260 // inlined locking and unlocking
12261 
12262 instruct cmpFastLockRTM(rFlagsReg cr, rRegP object, rbx_RegP box, rax_RegI tmp, rdx_RegI scr, rRegI cx1, rRegI cx2) %{
12263   predicate(Compile::current()->use_rtm());
12264   match(Set cr (FastLock object box));
12265   effect(TEMP tmp, TEMP scr, TEMP cx1, TEMP cx2, USE_KILL box);
12266   ins_cost(300);
12267   format %{ "fastlock $object,$box\t! kills $box,$tmp,$scr,$cx1,$cx2" %}
12268   ins_encode %{
12269     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
12270                  $scr$$Register, $cx1$$Register, $cx2$$Register,
12271                  _counters, _rtm_counters, _stack_rtm_counters,
12272                  ((Method*)(ra_->C->method()->constant_encoding()))->method_data(),
12273                  true, ra_->C->profile_rtm());
12274   %}
12275   ins_pipe(pipe_slow);
12276 %}
12277 
12278 instruct cmpFastLock(rFlagsReg cr, rRegP object, rbx_RegP box, rax_RegI tmp, rRegP scr, rRegP cx1) %{
12279   predicate(!Compile::current()->use_rtm());
12280   match(Set cr (FastLock object box));
12281   effect(TEMP tmp, TEMP scr, TEMP cx1, USE_KILL box);
12282   ins_cost(300);
12283   format %{ "fastlock $object,$box\t! kills $box,$tmp,$scr" %}
12284   ins_encode %{
12285     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
12286                  $scr$$Register, $cx1$$Register, noreg, _counters, NULL, NULL, NULL, false, false);
12287   %}
12288   ins_pipe(pipe_slow);
12289 %}
12290 
12291 instruct cmpFastUnlock(rFlagsReg cr, rRegP object, rax_RegP box, rRegP tmp) %{
12292   match(Set cr (FastUnlock object box));
12293   effect(TEMP tmp, USE_KILL box);
12294   ins_cost(300);
12295   format %{ "fastunlock $object,$box\t! kills $box,$tmp" %}
12296   ins_encode %{
12297     __ fast_unlock($object$$Register, $box$$Register, $tmp$$Register, ra_->C->use_rtm());
12298   %}
12299   ins_pipe(pipe_slow);
12300 %}
12301 
12302 
12303 // ============================================================================
12304 // Safepoint Instructions
12305 instruct safePoint_poll_tls(rFlagsReg cr, rRegP poll)
12306 %{
12307   match(SafePoint poll);
12308   effect(KILL cr, USE poll);
12309 
12310   format %{ "testl   rax, [$poll]\t"
12311             "# Safepoint: poll for GC" %}
12312   ins_cost(125);
12313   size(4); /* setting an explicit size will cause debug builds to assert if size is incorrect */
12314   ins_encode %{
12315     __ relocate(relocInfo::poll_type);
12316     address pre_pc = __ pc();
12317     __ testl(rax, Address($poll$$Register, 0));
12318     assert(nativeInstruction_at(pre_pc)->is_safepoint_poll(), "must emit test %%eax [reg]");
12319   %}
12320   ins_pipe(ialu_reg_mem);
12321 %}
12322 
12323 // ============================================================================
12324 // Procedure Call/Return Instructions
12325 // Call Java Static Instruction
12326 // Note: If this code changes, the corresponding ret_addr_offset() and
12327 //       compute_padding() functions will have to be adjusted.
12328 instruct CallStaticJavaDirect(method meth) %{
12329   match(CallStaticJava);
12330   effect(USE meth);
12331 
12332   ins_cost(300);
12333   format %{ "call,static " %}
12334   opcode(0xE8); /* E8 cd */
12335   ins_encode(clear_avx, Java_Static_Call(meth), call_epilog);
12336   ins_pipe(pipe_slow);
12337   ins_alignment(4);
12338 %}
12339 
12340 // Call Java Dynamic Instruction
12341 // Note: If this code changes, the corresponding ret_addr_offset() and
12342 //       compute_padding() functions will have to be adjusted.
12343 instruct CallDynamicJavaDirect(method meth)
12344 %{
12345   match(CallDynamicJava);
12346   effect(USE meth);
12347 
12348   ins_cost(300);
12349   format %{ "movq    rax, #Universe::non_oop_word()\n\t"
12350             "call,dynamic " %}
12351   ins_encode(clear_avx, Java_Dynamic_Call(meth), call_epilog);
12352   ins_pipe(pipe_slow);
12353   ins_alignment(4);
12354 %}
12355 
12356 // Call Runtime Instruction
12357 instruct CallRuntimeDirect(method meth)
12358 %{
12359   match(CallRuntime);
12360   effect(USE meth);
12361 
12362   ins_cost(300);
12363   format %{ "call,runtime " %}
12364   ins_encode(clear_avx, Java_To_Runtime(meth));
12365   ins_pipe(pipe_slow);
12366 %}
12367 
12368 // Call runtime without safepoint
12369 instruct CallLeafDirect(method meth)
12370 %{
12371   match(CallLeaf);
12372   effect(USE meth);
12373 
12374   ins_cost(300);
12375   format %{ "call_leaf,runtime " %}
12376   ins_encode(clear_avx, Java_To_Runtime(meth));
12377   ins_pipe(pipe_slow);
12378 %}
12379 
12380 // Call runtime without safepoint
12381 instruct CallLeafNoFPDirect(method meth)
12382 %{
12383   match(CallLeafNoFP);
12384   effect(USE meth);
12385 
12386   ins_cost(300);
12387   format %{ "call_leaf_nofp,runtime " %}
12388   ins_encode(clear_avx, Java_To_Runtime(meth));
12389   ins_pipe(pipe_slow);
12390 %}
12391 
12392 // Return Instruction
12393 // Remove the return address & jump to it.
12394 // Notice: We always emit a nop after a ret to make sure there is room
12395 // for safepoint patching
12396 instruct Ret()
12397 %{
12398   match(Return);
12399 
12400   format %{ "ret" %}
12401   opcode(0xC3);
12402   ins_encode(OpcP);
12403   ins_pipe(pipe_jmp);
12404 %}
12405 
12406 // Tail Call; Jump from runtime stub to Java code.
12407 // Also known as an 'interprocedural jump'.
12408 // Target of jump will eventually return to caller.
12409 // TailJump below removes the return address.
12410 instruct TailCalljmpInd(no_rbp_RegP jump_target, rbx_RegP method_ptr)
12411 %{
12412   match(TailCall jump_target method_ptr);
12413 
12414   ins_cost(300);
12415   format %{ "jmp     $jump_target\t# rbx holds method" %}
12416   opcode(0xFF, 0x4); /* Opcode FF /4 */
12417   ins_encode(REX_reg(jump_target), OpcP, reg_opc(jump_target));
12418   ins_pipe(pipe_jmp);
12419 %}
12420 
12421 // Tail Jump; remove the return address; jump to target.
12422 // TailCall above leaves the return address around.
12423 instruct tailjmpInd(no_rbp_RegP jump_target, rax_RegP ex_oop)
12424 %{
12425   match(TailJump jump_target ex_oop);
12426 
12427   ins_cost(300);
12428   format %{ "popq    rdx\t# pop return address\n\t"
12429             "jmp     $jump_target" %}
12430   opcode(0xFF, 0x4); /* Opcode FF /4 */
12431   ins_encode(Opcode(0x5a), // popq rdx
12432              REX_reg(jump_target), OpcP, reg_opc(jump_target));
12433   ins_pipe(pipe_jmp);
12434 %}
12435 
12436 // Create exception oop: created by stack-crawling runtime code.
12437 // Created exception is now available to this handler, and is setup
12438 // just prior to jumping to this handler.  No code emitted.
12439 instruct CreateException(rax_RegP ex_oop)
12440 %{
12441   match(Set ex_oop (CreateEx));
12442 
12443   size(0);
12444   // use the following format syntax
12445   format %{ "# exception oop is in rax; no code emitted" %}
12446   ins_encode();
12447   ins_pipe(empty);
12448 %}
12449 
12450 // Rethrow exception:
12451 // The exception oop will come in the first argument position.
12452 // Then JUMP (not call) to the rethrow stub code.
12453 instruct RethrowException()
12454 %{
12455   match(Rethrow);
12456 
12457   // use the following format syntax
12458   format %{ "jmp     rethrow_stub" %}
12459   ins_encode(enc_rethrow);
12460   ins_pipe(pipe_jmp);
12461 %}
12462 
12463 // ============================================================================
12464 // This name is KNOWN by the ADLC and cannot be changed.
12465 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
12466 // for this guy.
12467 instruct tlsLoadP(r15_RegP dst) %{
12468   match(Set dst (ThreadLocal));
12469   effect(DEF dst);
12470 
12471   size(0);
12472   format %{ "# TLS is in R15" %}
12473   ins_encode( /*empty encoding*/ );
12474   ins_pipe(ialu_reg_reg);
12475 %}
12476 
12477 
12478 //----------PEEPHOLE RULES-----------------------------------------------------
12479 // These must follow all instruction definitions as they use the names
12480 // defined in the instructions definitions.
12481 //
12482 // peepmatch ( root_instr_name [preceding_instruction]* );
12483 //
12484 // peepconstraint %{
12485 // (instruction_number.operand_name relational_op instruction_number.operand_name
12486 //  [, ...] );
12487 // // instruction numbers are zero-based using left to right order in peepmatch
12488 //
12489 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
12490 // // provide an instruction_number.operand_name for each operand that appears
12491 // // in the replacement instruction's match rule
12492 //
12493 // ---------VM FLAGS---------------------------------------------------------
12494 //
12495 // All peephole optimizations can be turned off using -XX:-OptoPeephole
12496 //
12497 // Each peephole rule is given an identifying number starting with zero and
12498 // increasing by one in the order seen by the parser.  An individual peephole
12499 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
12500 // on the command-line.
12501 //
12502 // ---------CURRENT LIMITATIONS----------------------------------------------
12503 //
12504 // Only match adjacent instructions in same basic block
12505 // Only equality constraints
12506 // Only constraints between operands, not (0.dest_reg == RAX_enc)
12507 // Only one replacement instruction
12508 //
12509 // ---------EXAMPLE----------------------------------------------------------
12510 //
12511 // // pertinent parts of existing instructions in architecture description
12512 // instruct movI(rRegI dst, rRegI src)
12513 // %{
12514 //   match(Set dst (CopyI src));
12515 // %}
12516 //
12517 // instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
12518 // %{
12519 //   match(Set dst (AddI dst src));
12520 //   effect(KILL cr);
12521 // %}
12522 //
12523 // // Change (inc mov) to lea
12524 // peephole %{
12525 //   // increment preceeded by register-register move
12526 //   peepmatch ( incI_rReg movI );
12527 //   // require that the destination register of the increment
12528 //   // match the destination register of the move
12529 //   peepconstraint ( 0.dst == 1.dst );
12530 //   // construct a replacement instruction that sets
12531 //   // the destination to ( move's source register + one )
12532 //   peepreplace ( leaI_rReg_immI( 0.dst 1.src 0.src ) );
12533 // %}
12534 //
12535 
12536 // Implementation no longer uses movX instructions since
12537 // machine-independent system no longer uses CopyX nodes.
12538 //
12539 // peephole
12540 // %{
12541 //   peepmatch (incI_rReg movI);
12542 //   peepconstraint (0.dst == 1.dst);
12543 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
12544 // %}
12545 
12546 // peephole
12547 // %{
12548 //   peepmatch (decI_rReg movI);
12549 //   peepconstraint (0.dst == 1.dst);
12550 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
12551 // %}
12552 
12553 // peephole
12554 // %{
12555 //   peepmatch (addI_rReg_imm movI);
12556 //   peepconstraint (0.dst == 1.dst);
12557 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
12558 // %}
12559 
12560 // peephole
12561 // %{
12562 //   peepmatch (incL_rReg movL);
12563 //   peepconstraint (0.dst == 1.dst);
12564 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
12565 // %}
12566 
12567 // peephole
12568 // %{
12569 //   peepmatch (decL_rReg movL);
12570 //   peepconstraint (0.dst == 1.dst);
12571 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
12572 // %}
12573 
12574 // peephole
12575 // %{
12576 //   peepmatch (addL_rReg_imm movL);
12577 //   peepconstraint (0.dst == 1.dst);
12578 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
12579 // %}
12580 
12581 // peephole
12582 // %{
12583 //   peepmatch (addP_rReg_imm movP);
12584 //   peepconstraint (0.dst == 1.dst);
12585 //   peepreplace (leaP_rReg_imm(0.dst 1.src 0.src));
12586 // %}
12587 
12588 // // Change load of spilled value to only a spill
12589 // instruct storeI(memory mem, rRegI src)
12590 // %{
12591 //   match(Set mem (StoreI mem src));
12592 // %}
12593 //
12594 // instruct loadI(rRegI dst, memory mem)
12595 // %{
12596 //   match(Set dst (LoadI mem));
12597 // %}
12598 //
12599 
12600 peephole
12601 %{
12602   peepmatch (loadI storeI);
12603   peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
12604   peepreplace (storeI(1.mem 1.mem 1.src));
12605 %}
12606 
12607 peephole
12608 %{
12609   peepmatch (loadL storeL);
12610   peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
12611   peepreplace (storeL(1.mem 1.mem 1.src));
12612 %}
12613 
12614 //----------SMARTSPILL RULES---------------------------------------------------
12615 // These must follow all instruction definitions as they use the names
12616 // defined in the instructions definitions.