1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_CHAITIN_HPP
  26 #define SHARE_OPTO_CHAITIN_HPP
  27 
  28 #include "code/vmreg.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "opto/connode.hpp"
  31 #include "opto/live.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/matcher.hpp"
  34 #include "opto/phase.hpp"
  35 #include "opto/regalloc.hpp"
  36 #include "opto/regmask.hpp"
  37 
  38 class Matcher;
  39 class PhaseCFG;
  40 class PhaseLive;
  41 class PhaseRegAlloc;
  42 class PhaseChaitin;
  43 
  44 #define OPTO_DEBUG_SPLIT_FREQ  BLOCK_FREQUENCY(0.001)
  45 #define OPTO_LRG_HIGH_FREQ     BLOCK_FREQUENCY(0.25)
  46 
  47 //------------------------------LRG--------------------------------------------
  48 // Live-RanGe structure.
  49 class LRG : public ResourceObj {
  50   friend class VMStructs;
  51 public:
  52   static const uint AllStack_size = 0xFFFFF; // This mask size is used to tell that the mask of this LRG supports stack positions
  53   enum { SPILL_REG=29999 };     // Register number of a spilled LRG
  54 
  55   double _cost;                 // 2 for loads/1 for stores times block freq
  56   double _area;                 // Sum of all simultaneously live values
  57   double score() const;         // Compute score from cost and area
  58   double _maxfreq;              // Maximum frequency of any def or use
  59 
  60   Node *_def;                   // Check for multi-def live ranges
  61 #ifndef PRODUCT
  62   GrowableArray<Node*>* _defs;
  63 #endif
  64 
  65   uint _risk_bias;              // Index of LRG which we want to avoid color
  66   uint _copy_bias;              // Index of LRG which we want to share color
  67 
  68   uint _next;                   // Index of next LRG in linked list
  69   uint _prev;                   // Index of prev LRG in linked list
  70 private:
  71   uint _reg;                    // Chosen register; undefined if mask is plural
  72 public:
  73   // Return chosen register for this LRG.  Error if the LRG is not bound to
  74   // a single register.
  75   OptoReg::Name reg() const { return OptoReg::Name(_reg); }
  76   void set_reg( OptoReg::Name r ) { _reg = r; }
  77 
  78 private:
  79   uint _eff_degree;             // Effective degree: Sum of neighbors _num_regs
  80 public:
  81   int degree() const { assert( _degree_valid , "" ); return _eff_degree; }
  82   // Degree starts not valid and any change to the IFG neighbor
  83   // set makes it not valid.
  84   void set_degree( uint degree ) {
  85     _eff_degree = degree;
  86     debug_only(_degree_valid = 1;)
  87     assert(!_mask.is_AllStack() || (_mask.is_AllStack() && lo_degree()), "_eff_degree can't be bigger than AllStack_size - _num_regs if the mask supports stack registers");
  88   }
  89   // Made a change that hammered degree
  90   void invalid_degree() { debug_only(_degree_valid=0;) }
  91   // Incrementally modify degree.  If it was correct, it should remain correct
  92   void inc_degree( uint mod ) {
  93     _eff_degree += mod;
  94     assert(!_mask.is_AllStack() || (_mask.is_AllStack() && lo_degree()), "_eff_degree can't be bigger than AllStack_size - _num_regs if the mask supports stack registers");
  95   }
  96   // Compute the degree between 2 live ranges
  97   int compute_degree( LRG &l ) const;
  98   bool mask_is_nonempty_and_up() const {
  99     return mask().is_UP() && mask_size();
 100   }
 101   bool is_float_or_vector() const {
 102     return _is_float || _is_vector;
 103   }
 104 
 105 private:
 106   RegMask _mask;                // Allowed registers for this LRG
 107   uint _mask_size;              // cache of _mask.Size();
 108 public:
 109   int compute_mask_size() const { return _mask.is_AllStack() ? AllStack_size : _mask.Size(); }
 110   void set_mask_size( int size ) {
 111     assert((size == (int)AllStack_size) || (size == (int)_mask.Size()), "");
 112     _mask_size = size;
 113 #ifdef ASSERT
 114     _msize_valid=1;
 115     if (_is_vector) {
 116       assert(!_fat_proj, "sanity");
 117       assert(_mask.is_aligned_sets(_num_regs), "mask is not aligned, adjacent sets");
 118     } else if (_num_regs == 2 && !_fat_proj) {
 119       assert(_mask.is_aligned_pairs(), "mask is not aligned, adjacent pairs");
 120     }
 121 #endif
 122   }
 123   void compute_set_mask_size() { set_mask_size(compute_mask_size()); }
 124   int mask_size() const { assert( _msize_valid, "mask size not valid" );
 125                           return _mask_size; }
 126   // Get the last mask size computed, even if it does not match the
 127   // count of bits in the current mask.
 128   int get_invalid_mask_size() const { return _mask_size; }
 129   const RegMask &mask() const { return _mask; }
 130   void set_mask( const RegMask &rm ) { _mask = rm; debug_only(_msize_valid=0;)}
 131   void AND( const RegMask &rm ) { _mask.AND(rm); debug_only(_msize_valid=0;)}
 132   void SUBTRACT( const RegMask &rm ) { _mask.SUBTRACT(rm); debug_only(_msize_valid=0;)}
 133   void Clear()   { _mask.Clear()  ; debug_only(_msize_valid=1); _mask_size = 0; }
 134   void Set_All() { _mask.Set_All(); debug_only(_msize_valid=1); _mask_size = RegMask::CHUNK_SIZE; }
 135 
 136   void Insert( OptoReg::Name reg ) { _mask.Insert(reg);  debug_only(_msize_valid=0;) }
 137   void Remove( OptoReg::Name reg ) { _mask.Remove(reg);  debug_only(_msize_valid=0;) }
 138   void clear_to_sets()  { _mask.clear_to_sets(_num_regs); debug_only(_msize_valid=0;) }
 139 
 140   // Number of registers this live range uses when it colors
 141 private:
 142   uint16_t _num_regs;           // 2 for Longs and Doubles, 1 for all else
 143                                 // except _num_regs is kill count for fat_proj
 144 public:
 145   int num_regs() const { return _num_regs; }
 146   void set_num_regs( int reg ) { assert( _num_regs == reg || !_num_regs, "" ); _num_regs = reg; }
 147 
 148 private:
 149   // Number of physical registers this live range uses when it colors
 150   // Architecture and register-set dependent
 151   uint16_t _reg_pressure;
 152 public:
 153   void set_reg_pressure(int i)  { _reg_pressure = i; }
 154   int      reg_pressure() const { return _reg_pressure; }
 155 
 156   // How much 'wiggle room' does this live range have?
 157   // How many color choices can it make (scaled by _num_regs)?
 158   int degrees_of_freedom() const { return mask_size() - _num_regs; }
 159   // Bound LRGs have ZERO degrees of freedom.  We also count
 160   // must_spill as bound.
 161   bool is_bound  () const { return _is_bound; }
 162   // Negative degrees-of-freedom; even with no neighbors this
 163   // live range must spill.
 164   bool not_free() const { return degrees_of_freedom() <  0; }
 165   // Is this live range of "low-degree"?  Trivially colorable?
 166   bool lo_degree () const { return degree() <= degrees_of_freedom(); }
 167   // Is this live range just barely "low-degree"?  Trivially colorable?
 168   bool just_lo_degree () const { return degree() == degrees_of_freedom(); }
 169 
 170   uint   _is_oop:1,             // Live-range holds an oop
 171          _is_float:1,           // True if in float registers
 172          _is_vector:1,          // True if in vector registers
 173          _was_spilled1:1,       // True if prior spilling on def
 174          _was_spilled2:1,       // True if twice prior spilling on def
 175          _is_bound:1,           // live range starts life with no
 176                                 // degrees of freedom.
 177          _direct_conflict:1,    // True if def and use registers in conflict
 178          _must_spill:1,         // live range has lost all degrees of freedom
 179     // If _fat_proj is set, live range does NOT require aligned, adjacent
 180     // registers and has NO interferences.
 181     // If _fat_proj is clear, live range requires num_regs() to be a power of
 182     // 2, and it requires registers to form an aligned, adjacent set.
 183          _fat_proj:1,           //
 184          _was_lo:1,             // Was lo-degree prior to coalesce
 185          _msize_valid:1,        // _mask_size cache valid
 186          _degree_valid:1,       // _degree cache valid
 187          _has_copy:1,           // Adjacent to some copy instruction
 188          _at_risk:1;            // Simplify says this guy is at risk to spill
 189 
 190 
 191   // Alive if non-zero, dead if zero
 192   bool alive() const { return _def != NULL; }
 193   bool is_multidef() const { return _def == NodeSentinel; }
 194   bool is_singledef() const { return _def != NodeSentinel; }
 195 
 196 #ifndef PRODUCT
 197   void dump( ) const;
 198 #endif
 199 };
 200 
 201 //------------------------------IFG--------------------------------------------
 202 //                         InterFerence Graph
 203 // An undirected graph implementation.  Created with a fixed number of
 204 // vertices.  Edges can be added & tested.  Vertices can be removed, then
 205 // added back later with all edges intact.  Can add edges between one vertex
 206 // and a list of other vertices.  Can union vertices (and their edges)
 207 // together.  The IFG needs to be really really fast, and also fairly
 208 // abstract!  It needs abstraction so I can fiddle with the implementation to
 209 // get even more speed.
 210 class PhaseIFG : public Phase {
 211   friend class VMStructs;
 212   // Current implementation: a triangular adjacency list.
 213 
 214   // Array of adjacency-lists, indexed by live-range number
 215   IndexSet *_adjs;
 216 
 217   // Assertion bit for proper use of Squaring
 218   bool _is_square;
 219 
 220   // Live range structure goes here
 221   LRG *_lrgs;                   // Array of LRG structures
 222 
 223 public:
 224   // Largest live-range number
 225   uint _maxlrg;
 226 
 227   Arena *_arena;
 228 
 229   // Keep track of inserted and deleted Nodes
 230   VectorSet *_yanked;
 231 
 232   PhaseIFG( Arena *arena );
 233   void init( uint maxlrg );
 234 
 235   // Add edge between a and b.  Returns true if actually addded.
 236   int add_edge( uint a, uint b );
 237 
 238   // Test for edge existance
 239   int test_edge( uint a, uint b ) const;
 240 
 241   // Square-up matrix for faster Union
 242   void SquareUp();
 243 
 244   // Return number of LRG neighbors
 245   uint neighbor_cnt( uint a ) const { return _adjs[a].count(); }
 246   // Union edges of b into a on Squared-up matrix
 247   void Union( uint a, uint b );
 248   // Test for edge in Squared-up matrix
 249   int test_edge_sq( uint a, uint b ) const;
 250   // Yank a Node and all connected edges from the IFG.  Be prepared to
 251   // re-insert the yanked Node in reverse order of yanking.  Return a
 252   // list of neighbors (edges) yanked.
 253   IndexSet *remove_node( uint a );
 254   // Reinsert a yanked Node
 255   void re_insert( uint a );
 256   // Return set of neighbors
 257   IndexSet *neighbors( uint a ) const { return &_adjs[a]; }
 258 
 259 #ifndef PRODUCT
 260   // Dump the IFG
 261   void dump() const;
 262   void stats() const;
 263   void verify( const PhaseChaitin * ) const;
 264 #endif
 265 
 266   //--------------- Live Range Accessors
 267   LRG &lrgs(uint idx) const { assert(idx < _maxlrg, "oob"); return _lrgs[idx]; }
 268 
 269   // Compute and set effective degree.  Might be folded into SquareUp().
 270   void Compute_Effective_Degree();
 271 
 272   // Compute effective degree as the sum of neighbors' _sizes.
 273   int effective_degree( uint lidx ) const;
 274 };
 275 
 276 // The LiveRangeMap class is responsible for storing node to live range id mapping.
 277 // Each node is mapped to a live range id (a virtual register). Nodes that are
 278 // not considered for register allocation are given live range id 0.
 279 class LiveRangeMap {
 280 
 281 private:
 282 
 283   uint _max_lrg_id;
 284 
 285   // Union-find map.  Declared as a short for speed.
 286   // Indexed by live-range number, it returns the compacted live-range number
 287   LRG_List _uf_map;
 288 
 289   // Map from Nodes to live ranges
 290   LRG_List _names;
 291 
 292   // Straight out of Tarjan's union-find algorithm
 293   uint find_compress(const Node *node) {
 294     uint lrg_id = find_compress(_names.at(node->_idx));
 295     _names.at_put(node->_idx, lrg_id);
 296     return lrg_id;
 297   }
 298 
 299   uint find_compress(uint lrg);
 300 
 301 public:
 302 
 303   const LRG_List& names() {
 304     return _names;
 305   }
 306 
 307   uint max_lrg_id() const {
 308     return _max_lrg_id;
 309   }
 310 
 311   void set_max_lrg_id(uint max_lrg_id) {
 312     _max_lrg_id = max_lrg_id;
 313   }
 314 
 315   uint size() const {
 316     return _names.length();
 317   }
 318 
 319   uint live_range_id(uint idx) const {
 320     return _names.at(idx);
 321   }
 322 
 323   uint live_range_id(const Node *node) const {
 324     return _names.at(node->_idx);
 325   }
 326 
 327   uint uf_live_range_id(uint lrg_id) const {
 328     return _uf_map.at(lrg_id);
 329   }
 330 
 331   void map(uint idx, uint lrg_id) {
 332     _names.at_put(idx, lrg_id);
 333   }
 334 
 335   void uf_map(uint dst_lrg_id, uint src_lrg_id) {
 336     _uf_map.at_put(dst_lrg_id, src_lrg_id);
 337   }
 338 
 339   void extend(uint idx, uint lrg_id) {
 340     _names.at_put_grow(idx, lrg_id);
 341   }
 342 
 343   void uf_extend(uint dst_lrg_id, uint src_lrg_id) {
 344     _uf_map.at_put_grow(dst_lrg_id, src_lrg_id);
 345   }
 346 
 347   LiveRangeMap(Arena* arena, uint unique)
 348   :  _max_lrg_id(0)
 349   , _uf_map(arena, unique, unique, 0)
 350   , _names(arena, unique, unique, 0) {}
 351 
 352   uint find_id( const Node *n ) {
 353     uint retval = live_range_id(n);
 354     assert(retval == find(n),"Invalid node to lidx mapping");
 355     return retval;
 356   }
 357 
 358   // Reset the Union-Find map to identity
 359   void reset_uf_map(uint max_lrg_id);
 360 
 361   // Make all Nodes map directly to their final live range; no need for
 362   // the Union-Find mapping after this call.
 363   void compress_uf_map_for_nodes();
 364 
 365   uint find(uint lidx) {
 366     uint uf_lidx = _uf_map.at(lidx);
 367     return (uf_lidx == lidx) ? uf_lidx : find_compress(lidx);
 368   }
 369 
 370   // Convert a Node into a Live Range Index - a lidx
 371   uint find(const Node *node) {
 372     uint lidx = live_range_id(node);
 373     uint uf_lidx = _uf_map.at(lidx);
 374     return (uf_lidx == lidx) ? uf_lidx : find_compress(node);
 375   }
 376 
 377   // Like Find above, but no path compress, so bad asymptotic behavior
 378   uint find_const(uint lrg) const;
 379 
 380   // Like Find above, but no path compress, so bad asymptotic behavior
 381   uint find_const(const Node *node) const {
 382     if(node->_idx >= (uint)_names.length()) {
 383       return 0; // not mapped, usual for debug dump
 384     }
 385     return find_const(_names.at(node->_idx));
 386   }
 387 };
 388 
 389 //------------------------------Chaitin----------------------------------------
 390 // Briggs-Chaitin style allocation, mostly.
 391 class PhaseChaitin : public PhaseRegAlloc {
 392   friend class VMStructs;
 393 
 394   int _trip_cnt;
 395   int _alternate;
 396 
 397   PhaseLive *_live;             // Liveness, used in the interference graph
 398   PhaseIFG *_ifg;               // Interference graph (for original chunk)
 399   VectorSet _spilled_once;      // Nodes that have been spilled
 400   VectorSet _spilled_twice;     // Nodes that have been spilled twice
 401 
 402   // Combine the Live Range Indices for these 2 Nodes into a single live
 403   // range.  Future requests for any Node in either live range will
 404   // return the live range index for the combined live range.
 405   void Union( const Node *src, const Node *dst );
 406 
 407   void new_lrg( const Node *x, uint lrg );
 408 
 409   // Compact live ranges, removing unused ones.  Return new maxlrg.
 410   void compact();
 411 
 412   uint _lo_degree;              // Head of lo-degree LRGs list
 413   uint _lo_stk_degree;          // Head of lo-stk-degree LRGs list
 414   uint _hi_degree;              // Head of hi-degree LRGs list
 415   uint _simplified;             // Linked list head of simplified LRGs
 416 
 417   // Helper functions for Split()
 418   uint split_DEF(Node *def, Block *b, int loc, uint max, Node **Reachblock, Node **debug_defs, GrowableArray<uint> splits, int slidx );
 419   uint split_USE(MachSpillCopyNode::SpillType spill_type, Node *def, Block *b, Node *use, uint useidx, uint max, bool def_down, bool cisc_sp, GrowableArray<uint> splits, int slidx );
 420 
 421   //------------------------------clone_projs------------------------------------
 422   // After cloning some rematerialized instruction, clone any MachProj's that
 423   // follow it.  Example: Intel zero is XOR, kills flags.  Sparc FP constants
 424   // use G3 as an address temp.
 425   int clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id);
 426 
 427   int clone_projs(Block* b, uint idx, Node* orig, Node* copy, LiveRangeMap& lrg_map) {
 428     uint max_lrg_id = lrg_map.max_lrg_id();
 429     int found_projs = clone_projs(b, idx, orig, copy, max_lrg_id);
 430     if (found_projs > 0) {
 431       // max_lrg_id is updated during call above
 432       lrg_map.set_max_lrg_id(max_lrg_id);
 433     }
 434     return found_projs;
 435   }
 436 
 437   Node *split_Rematerialize(Node *def, Block *b, uint insidx, uint &maxlrg, GrowableArray<uint> splits,
 438                             int slidx, uint *lrg2reach, Node **Reachblock, bool walkThru);
 439   // True if lidx is used before any real register is def'd in the block
 440   bool prompt_use( Block *b, uint lidx );
 441   Node *get_spillcopy_wide(MachSpillCopyNode::SpillType spill_type, Node *def, Node *use, uint uidx );
 442   // Insert the spill at chosen location.  Skip over any intervening Proj's or
 443   // Phis.  Skip over a CatchNode and projs, inserting in the fall-through block
 444   // instead.  Update high-pressure indices.  Create a new live range.
 445   void insert_proj( Block *b, uint i, Node *spill, uint maxlrg );
 446 
 447   bool is_high_pressure( Block *b, LRG *lrg, uint insidx );
 448 
 449   uint _oldphi;                 // Node index which separates pre-allocation nodes
 450 
 451   Block **_blks;                // Array of blocks sorted by frequency for coalescing
 452 
 453   float _high_frequency_lrg;    // Frequency at which LRG will be spilled for debug info
 454 
 455 #ifndef PRODUCT
 456   bool _trace_spilling;
 457 #endif
 458 
 459 public:
 460   PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher, bool track_liveout_pressure);
 461   ~PhaseChaitin() {}
 462 
 463   LiveRangeMap _lrg_map;
 464 
 465   LRG &lrgs(uint idx) const { return _ifg->lrgs(idx); }
 466 
 467   // Do all the real work of allocate
 468   void Register_Allocate();
 469 
 470   float high_frequency_lrg() const { return _high_frequency_lrg; }
 471 
 472   // Used when scheduling info generated, not in general register allocation
 473   bool _scheduling_info_generated;
 474 
 475   void set_ifg(PhaseIFG &ifg) { _ifg = &ifg;  }
 476   void set_live(PhaseLive &live) { _live = &live; }
 477   PhaseLive* get_live() { return _live; }
 478 
 479   // Populate the live range maps with ssa info for scheduling
 480   void mark_ssa();
 481 
 482 #ifndef PRODUCT
 483   bool trace_spilling() const { return _trace_spilling; }
 484 #endif
 485 
 486 private:
 487   // De-SSA the world.  Assign registers to Nodes.  Use the same register for
 488   // all inputs to a PhiNode, effectively coalescing live ranges.  Insert
 489   // copies as needed.
 490   void de_ssa();
 491 
 492   // Add edge between reg and everything in the vector.
 493   // Use the RegMask information to trim the set of interferences.  Return the
 494   // count of edges added.
 495   void interfere_with_live(uint lid, IndexSet* liveout);
 496 #ifdef ASSERT
 497   // Count register pressure for asserts
 498   uint count_int_pressure(IndexSet* liveout);
 499   uint count_float_pressure(IndexSet* liveout);
 500 #endif
 501 
 502   // Build the interference graph using virtual registers only.
 503   // Used for aggressive coalescing.
 504   void build_ifg_virtual( );
 505 
 506   // used when computing the register pressure for each block in the CFG. This
 507   // is done during IFG creation.
 508   class Pressure {
 509       // keeps track of the register pressure at the current
 510       // instruction (used when stepping backwards in the block)
 511       uint _current_pressure;
 512 
 513       // keeps track of the instruction index of the first low to high register pressure
 514       // transition (starting from the top) in the block
 515       // if high_pressure_index == 0 then the whole block is high pressure
 516       // if high_pressure_index = b.end_idx() + 1 then the whole block is low pressure
 517       uint _high_pressure_index;
 518 
 519       // stores the highest pressure we find
 520       uint _final_pressure;
 521 
 522       // number of live ranges that constitute high register pressure
 523       uint _high_pressure_limit;
 524 
 525       // initial pressure observed
 526       uint _start_pressure;
 527 
 528     public:
 529 
 530       // lower the register pressure and look for a low to high pressure
 531       // transition
 532       void lower(LRG& lrg, uint& location) {
 533         _current_pressure -= lrg.reg_pressure();
 534         if (_current_pressure == _high_pressure_limit) {
 535           _high_pressure_index = location;
 536         }
 537       }
 538 
 539       // raise the pressure and store the pressure if it's the biggest
 540       // pressure so far
 541       void raise(LRG &lrg) {
 542         _current_pressure += lrg.reg_pressure();
 543         if (_current_pressure > _final_pressure) {
 544           _final_pressure = _current_pressure;
 545         }
 546       }
 547 
 548       void init(int limit) {
 549         _current_pressure = 0;
 550         _high_pressure_index = 0;
 551         _final_pressure = 0;
 552         _high_pressure_limit = limit;
 553         _start_pressure = 0;
 554       }
 555 
 556       uint high_pressure_index() const {
 557         return _high_pressure_index;
 558       }
 559 
 560       uint final_pressure() const {
 561         return _final_pressure;
 562       }
 563 
 564       uint start_pressure() const {
 565         return _start_pressure;
 566       }
 567 
 568       uint current_pressure() const {
 569         return _current_pressure;
 570       }
 571 
 572       uint high_pressure_limit() const {
 573         return _high_pressure_limit;
 574       }
 575 
 576       void lower_high_pressure_index() {
 577         _high_pressure_index--;
 578       }
 579 
 580       void set_high_pressure_index_to_block_start() {
 581         _high_pressure_index = 0;
 582       }
 583 
 584       void set_start_pressure(int value) {
 585         _start_pressure = value;
 586         _final_pressure = value;
 587       }
 588 
 589       void set_current_pressure(int value) {
 590         _current_pressure = value;
 591       }
 592 
 593       void check_pressure_at_fatproj(uint fatproj_location, RegMask& fatproj_mask) {
 594         // this pressure is only valid at this instruction, i.e. we don't need to lower
 595         // the register pressure since the fat proj was never live before (going backwards)
 596         uint new_pressure = current_pressure() + fatproj_mask.Size();
 597         if (new_pressure > final_pressure()) {
 598           _final_pressure = new_pressure;
 599         }
 600 
 601         // if we were at a low pressure and now and the fat proj is at high pressure, record the fat proj location
 602         // as coming from a low to high (to low again)
 603         if (current_pressure() <= high_pressure_limit() && new_pressure > high_pressure_limit()) {
 604           _high_pressure_index = fatproj_location;
 605         }
 606       }
 607 
 608       Pressure(uint high_pressure_index, uint high_pressure_limit)
 609         : _current_pressure(0)
 610         , _high_pressure_index(high_pressure_index)
 611         , _final_pressure(0)
 612         , _high_pressure_limit(high_pressure_limit)
 613         , _start_pressure(0) {}
 614   };
 615 
 616   void check_for_high_pressure_transition_at_fatproj(uint& block_reg_pressure, uint location, LRG& lrg, Pressure& pressure, const int op_regtype);
 617   void add_input_to_liveout(Block* b, Node* n, IndexSet* liveout, double cost, Pressure& int_pressure, Pressure& float_pressure);
 618   void compute_initial_block_pressure(Block* b, IndexSet* liveout, Pressure& int_pressure, Pressure& float_pressure, double cost);
 619   bool remove_node_if_not_used(Block* b, uint location, Node* n, uint lid, IndexSet* liveout);
 620   void assign_high_score_to_immediate_copies(Block* b, Node* n, LRG& lrg, uint next_inst, uint last_inst);
 621   void remove_interference_from_copy(Block* b, uint location, uint lid_copy, IndexSet* liveout, double cost, Pressure& int_pressure, Pressure& float_pressure);
 622   void remove_bound_register_from_interfering_live_ranges(LRG& lrg, IndexSet* liveout, uint& must_spill);
 623   void check_for_high_pressure_block(Pressure& pressure);
 624   void adjust_high_pressure_index(Block* b, uint& hrp_index, Pressure& pressure);
 625 
 626   // Build the interference graph using physical registers when available.
 627   // That is, if 2 live ranges are simultaneously alive but in their
 628   // acceptable register sets do not overlap, then they do not interfere.
 629   uint build_ifg_physical( ResourceArea *a );
 630 
 631 public:
 632   // Gather LiveRanGe information, including register masks and base pointer/
 633   // derived pointer relationships.
 634   void gather_lrg_masks( bool mod_cisc_masks );
 635 
 636   // user visible pressure variables for scheduling
 637   Pressure _sched_int_pressure;
 638   Pressure _sched_float_pressure;
 639   Pressure _scratch_int_pressure;
 640   Pressure _scratch_float_pressure;
 641 
 642   // Pressure functions for user context
 643   void lower_pressure(Block* b, uint location, LRG& lrg, IndexSet* liveout, Pressure& int_pressure, Pressure& float_pressure);
 644   void raise_pressure(Block* b, LRG& lrg, Pressure& int_pressure, Pressure& float_pressure);
 645   void compute_entry_block_pressure(Block* b);
 646   void compute_exit_block_pressure(Block* b);
 647   void print_pressure_info(Pressure& pressure, const char *str);
 648 
 649 private:
 650   // Force the bases of derived pointers to be alive at GC points.
 651   bool stretch_base_pointer_live_ranges( ResourceArea *a );
 652   // Helper to stretch above; recursively discover the base Node for
 653   // a given derived Node.  Easy for AddP-related machine nodes, but
 654   // needs to be recursive for derived Phis.
 655   Node *find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg );
 656 
 657   // Set the was-lo-degree bit.  Conservative coalescing should not change the
 658   // colorability of the graph.  If any live range was of low-degree before
 659   // coalescing, it should Simplify.  This call sets the was-lo-degree bit.
 660   void set_was_low();
 661 
 662   // Init LRG caching of degree, numregs.  Init lo_degree list.
 663   void cache_lrg_info( );
 664 
 665   // Simplify the IFG by removing LRGs of low degree
 666   void Simplify();
 667 
 668   // Select colors by re-inserting edges into the IFG.
 669   // Return TRUE if any spills occurred.
 670   uint Select( );
 671   // Helper function for select which allows biased coloring
 672   OptoReg::Name choose_color( LRG &lrg, int chunk );
 673   // Helper function which implements biasing heuristic
 674   OptoReg::Name bias_color( LRG &lrg, int chunk );
 675 
 676   // Split uncolorable live ranges
 677   // Return new number of live ranges
 678   uint Split(uint maxlrg, ResourceArea* split_arena);
 679 
 680   // Set the 'spilled_once' or 'spilled_twice' flag on a node.
 681   void set_was_spilled( Node *n );
 682 
 683   // Convert ideal spill-nodes into machine loads & stores
 684   // Set C->failing when fixup spills could not complete, node limit exceeded.
 685   void fixup_spills();
 686 
 687   // Post-Allocation peephole copy removal
 688   void post_allocate_copy_removal();
 689   Node *skip_copies( Node *c );
 690   // Replace the old node with the current live version of that value
 691   // and yank the old value if it's dead.
 692   int replace_and_yank_if_dead( Node *old, OptoReg::Name nreg,
 693       Block *current_block, Node_List& value, Node_List& regnd ) {
 694     Node* v = regnd[nreg];
 695     assert(v->outcnt() != 0, "no dead values");
 696     old->replace_by(v);
 697     return yank_if_dead(old, current_block, &value, &regnd);
 698   }
 699 
 700   int yank_if_dead( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
 701     return yank_if_dead_recurse(old, old, current_block, value, regnd);
 702   }
 703   int yank_if_dead_recurse(Node *old, Node *orig_old, Block *current_block,
 704       Node_List *value, Node_List *regnd);
 705   int yank( Node *old, Block *current_block, Node_List *value, Node_List *regnd );
 706   int elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List &regnd, bool can_change_regs );
 707   int use_prior_register( Node *copy, uint idx, Node *def, Block *current_block, Node_List &value, Node_List &regnd );
 708   bool may_be_copy_of_callee( Node *def ) const;
 709 
 710   // If nreg already contains the same constant as val then eliminate it
 711   bool eliminate_copy_of_constant(Node* val, Node* n,
 712       Block *current_block, Node_List& value, Node_List &regnd,
 713       OptoReg::Name nreg, OptoReg::Name nreg2);
 714   // Extend the node to LRG mapping
 715   void add_reference( const Node *node, const Node *old_node);
 716 
 717   // Record the first use of a def in the block for a register.
 718   class RegDefUse {
 719     Node* _def;
 720     Node* _first_use;
 721   public:
 722     RegDefUse() : _def(NULL), _first_use(NULL) { }
 723     Node* def() const       { return _def;       }
 724     Node* first_use() const { return _first_use; }
 725 
 726     void update(Node* def, Node* use) {
 727       if (_def != def) {
 728         _def = def;
 729         _first_use = use;
 730       }
 731     }
 732     void clear() {
 733       _def = NULL;
 734       _first_use = NULL;
 735     }
 736   };
 737   typedef GrowableArray<RegDefUse> RegToDefUseMap;
 738   int possibly_merge_multidef(Node *n, uint k, Block *block, RegToDefUseMap& reg2defuse);
 739 
 740   // Merge nodes that are a part of a multidef lrg and produce the same value within a block.
 741   void merge_multidefs();
 742 
 743 private:
 744 
 745   static int _final_loads, _final_stores, _final_copies, _final_memoves;
 746   static double _final_load_cost, _final_store_cost, _final_copy_cost, _final_memove_cost;
 747   static int _conserv_coalesce, _conserv_coalesce_pair;
 748   static int _conserv_coalesce_trie, _conserv_coalesce_quad;
 749   static int _post_alloc;
 750   static int _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce;
 751   static int _used_cisc_instructions, _unused_cisc_instructions;
 752   static int _allocator_attempts, _allocator_successes;
 753 
 754 #ifdef ASSERT
 755   // Verify that base pointers and derived pointers are still sane
 756   void verify_base_ptrs(ResourceArea* a) const;
 757   void verify(ResourceArea* a, bool verify_ifg = false) const;
 758 #endif // ASSERT
 759 
 760 #ifndef PRODUCT
 761   static uint _high_pressure, _low_pressure;
 762 
 763   void dump() const;
 764   void dump(const Node* n) const;
 765   void dump(const Block* b) const;
 766   void dump_degree_lists() const;
 767   void dump_simplified() const;
 768   void dump_lrg(uint lidx, bool defs_only) const;
 769   void dump_lrg(uint lidx) const {
 770     // dump defs and uses by default
 771     dump_lrg(lidx, false);
 772   }
 773   void dump_bb(uint pre_order) const;
 774   void dump_for_spill_split_recycle() const;
 775 
 776 public:
 777   void dump_frame() const;
 778   char *dump_register(const Node* n, char* buf) const;
 779 private:
 780   static void print_chaitin_statistics();
 781 #endif // not PRODUCT
 782   friend class PhaseCoalesce;
 783   friend class PhaseAggressiveCoalesce;
 784   friend class PhaseConservativeCoalesce;
 785 };
 786 
 787 #endif // SHARE_OPTO_CHAITIN_HPP