1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "opto/ad.hpp"
  27 #include "opto/compile.hpp"
  28 #include "opto/matcher.hpp"
  29 #include "opto/node.hpp"
  30 #include "opto/regmask.hpp"
  31 #include "utilities/population_count.hpp"
  32 #include "utilities/powerOfTwo.hpp"
  33 
  34 #define RM_SIZE _RM_SIZE /* a constant private to the class RegMask */
  35 
  36 //------------------------------dump-------------------------------------------
  37 
  38 #ifndef PRODUCT
  39 void OptoReg::dump(int r, outputStream *st) {
  40   switch (r) {
  41   case Special: st->print("r---"); break;
  42   case Bad:     st->print("rBAD"); break;
  43   default:
  44     if (r < _last_Mach_Reg) st->print("%s", Matcher::regName[r]);
  45     else st->print("rS%d",r);
  46     break;
  47   }
  48 }
  49 #endif
  50 
  51 
  52 //=============================================================================
  53 const RegMask RegMask::Empty(
  54 # define BODY(I) 0,
  55   FORALL_BODY
  56 # undef BODY
  57   0
  58 );
  59 
  60 //=============================================================================
  61 bool RegMask::is_vector(uint ireg) {
  62   return (ireg == Op_VecS || ireg == Op_VecD ||
  63           ireg == Op_VecX || ireg == Op_VecY || ireg == Op_VecZ );
  64 }
  65 
  66 int RegMask::num_registers(uint ireg) {
  67     switch(ireg) {
  68       case Op_VecZ:
  69         return 16;
  70       case Op_VecY:
  71         return 8;
  72       case Op_VecX:
  73         return 4;
  74       case Op_VecD:
  75       case Op_RegD:
  76       case Op_RegL:
  77 #ifdef _LP64
  78       case Op_RegP:
  79 #endif
  80         return 2;
  81     }
  82     // Op_VecS and the rest ideal registers.
  83     return 1;
  84 }
  85 
  86 // Clear out partial bits; leave only bit pairs
  87 void RegMask::clear_to_pairs() {
  88   assert(valid_watermarks(), "sanity");
  89   for (int i = _lwm; i <= _hwm; i++) {
  90     int bits = _A[i];
  91     bits &= ((bits & 0x55555555)<<1); // 1 hi-bit set for each pair
  92     bits |= (bits>>1);          // Smear 1 hi-bit into a pair
  93     _A[i] = bits;
  94   }
  95   assert(is_aligned_pairs(), "mask is not aligned, adjacent pairs");
  96 }
  97 
  98 bool RegMask::is_misaligned_pair() const {
  99   return Size() == 2 && !is_aligned_pairs();
 100 }
 101 
 102 bool RegMask::is_aligned_pairs() const {
 103   // Assert that the register mask contains only bit pairs.
 104   assert(valid_watermarks(), "sanity");
 105   for (int i = _lwm; i <= _hwm; i++) {
 106     int bits = _A[i];
 107     while (bits) {              // Check bits for pairing
 108       int bit = bits & -bits;   // Extract low bit
 109       // Low bit is not odd means its mis-aligned.
 110       if ((bit & 0x55555555) == 0) return false;
 111       bits -= bit;              // Remove bit from mask
 112       // Check for aligned adjacent bit
 113       if ((bits & (bit<<1)) == 0) return false;
 114       bits -= (bit<<1);         // Remove other halve of pair
 115     }
 116   }
 117   return true;
 118 }
 119 
 120 // Return TRUE if the mask contains a single bit
 121 bool RegMask::is_bound1() const {
 122   if (is_AllStack()) return false;
 123   return Size() == 1;
 124 }
 125 
 126 // Return TRUE if the mask contains an adjacent pair of bits and no other bits.
 127 bool RegMask::is_bound_pair() const {
 128   if (is_AllStack()) return false;
 129   int bit = -1;                 // Set to hold the one bit allowed
 130   assert(valid_watermarks(), "sanity");
 131   for (int i = _lwm; i <= _hwm; i++) {
 132     if (_A[i]) {                   // Found some bits
 133       if (bit != -1) return false; // Already had bits, so fail
 134       bit = _A[i] & -(_A[i]);      // Extract 1 bit from mask
 135       if ((bit << 1) != 0) {       // Bit pair stays in same word?
 136         if ((bit | (bit<<1)) != _A[i])
 137           return false;            // Require adjacent bit pair and no more bits
 138       } else {                     // Else its a split-pair case
 139         if(bit != _A[i]) return false; // Found many bits, so fail
 140         i++;                       // Skip iteration forward
 141         if (i > _hwm || _A[i] != 1)
 142           return false; // Require 1 lo bit in next word
 143       }
 144     }
 145   }
 146   // True for both the empty mask and for a bit pair
 147   return true;
 148 }
 149 
 150 // Test for a single adjacent set of ideal register's size.
 151 bool RegMask::is_bound(uint ireg) const {
 152   if (is_vector(ireg)) {
 153     if (is_bound_set(num_registers(ireg)))
 154       return true;
 155   } else if (is_bound1() || is_bound_pair()) {
 156     return true;
 157   }
 158   return false;
 159 }
 160 
 161 // only indicies of power 2 are accessed, so index 3 is only filled in for storage.
 162 static int low_bits[5] = { 0x55555555, 0x11111111, 0x01010101, 0x00000000, 0x00010001 };
 163 
 164 // Find the lowest-numbered register set in the mask.  Return the
 165 // HIGHEST register number in the set, or BAD if no sets.
 166 // Works also for size 1.
 167 OptoReg::Name RegMask::find_first_set(const int size) const {
 168   assert(is_aligned_sets(size), "mask is not aligned, adjacent sets");
 169   assert(valid_watermarks(), "sanity");
 170   for (int i = _lwm; i <= _hwm; i++) {
 171     if (_A[i]) {                // Found some bits
 172       // Convert to bit number, return hi bit in pair
 173       return OptoReg::Name((i<<_LogWordBits) + find_lowest_bit(_A[i]) + (size - 1));
 174     }
 175   }
 176   return OptoReg::Bad;
 177 }
 178 
 179 // Clear out partial bits; leave only aligned adjacent bit pairs
 180 void RegMask::clear_to_sets(const int size) {
 181   if (size == 1) return;
 182   assert(2 <= size && size <= 16, "update low bits table");
 183   assert(is_power_of_2(size), "sanity");
 184   assert(valid_watermarks(), "sanity");
 185   int low_bits_mask = low_bits[size>>2];
 186   for (int i = _lwm; i <= _hwm; i++) {
 187     int bits = _A[i];
 188     int sets = (bits & low_bits_mask);
 189     for (int j = 1; j < size; j++) {
 190       sets = (bits & (sets<<1)); // filter bits which produce whole sets
 191     }
 192     sets |= (sets>>1);           // Smear 1 hi-bit into a set
 193     if (size > 2) {
 194       sets |= (sets>>2);         // Smear 2 hi-bits into a set
 195       if (size > 4) {
 196         sets |= (sets>>4);       // Smear 4 hi-bits into a set
 197         if (size > 8) {
 198           sets |= (sets>>8);     // Smear 8 hi-bits into a set
 199         }
 200       }
 201     }
 202     _A[i] = sets;
 203   }
 204   assert(is_aligned_sets(size), "mask is not aligned, adjacent sets");
 205 }
 206 
 207 // Smear out partial bits to aligned adjacent bit sets
 208 void RegMask::smear_to_sets(const int size) {
 209   if (size == 1) return;
 210   assert(2 <= size && size <= 16, "update low bits table");
 211   assert(is_power_of_2(size), "sanity");
 212   assert(valid_watermarks(), "sanity");
 213   int low_bits_mask = low_bits[size>>2];
 214   for (int i = _lwm; i <= _hwm; i++) {
 215     int bits = _A[i];
 216     int sets = 0;
 217     for (int j = 0; j < size; j++) {
 218       sets |= (bits & low_bits_mask);  // collect partial bits
 219       bits  = bits>>1;
 220     }
 221     sets |= (sets<<1);           // Smear 1 lo-bit  into a set
 222     if (size > 2) {
 223       sets |= (sets<<2);         // Smear 2 lo-bits into a set
 224       if (size > 4) {
 225         sets |= (sets<<4);       // Smear 4 lo-bits into a set
 226         if (size > 8) {
 227           sets |= (sets<<8);     // Smear 8 lo-bits into a set
 228         }
 229       }
 230     }
 231     _A[i] = sets;
 232   }
 233   assert(is_aligned_sets(size), "mask is not aligned, adjacent sets");
 234 }
 235 
 236 // Assert that the register mask contains only bit sets.
 237 bool RegMask::is_aligned_sets(const int size) const {
 238   if (size == 1) return true;
 239   assert(2 <= size && size <= 16, "update low bits table");
 240   assert(is_power_of_2(size), "sanity");
 241   int low_bits_mask = low_bits[size>>2];
 242   assert(valid_watermarks(), "sanity");
 243   for (int i = _lwm; i <= _hwm; i++) {
 244     int bits = _A[i];
 245     while (bits) {              // Check bits for pairing
 246       int bit = bits & -bits;   // Extract low bit
 247       // Low bit is not odd means its mis-aligned.
 248       if ((bit & low_bits_mask) == 0) return false;
 249       // Do extra work since (bit << size) may overflow.
 250       int hi_bit = bit << (size-1); // high bit
 251       int set = hi_bit + ((hi_bit-1) & ~(bit-1));
 252       // Check for aligned adjacent bits in this set
 253       if ((bits & set) != set) return false;
 254       bits -= set;  // Remove this set
 255     }
 256   }
 257   return true;
 258 }
 259 
 260 // Return TRUE if the mask contains one adjacent set of bits and no other bits.
 261 // Works also for size 1.
 262 int RegMask::is_bound_set(const int size) const {
 263   if (is_AllStack()) return false;
 264   assert(1 <= size && size <= 16, "update low bits table");
 265   assert(valid_watermarks(), "sanity");
 266   int bit = -1;                 // Set to hold the one bit allowed
 267   for (int i = _lwm; i <= _hwm; i++) {
 268     if (_A[i] ) {               // Found some bits
 269       if (bit != -1)
 270        return false;            // Already had bits, so fail
 271       bit = _A[i] & -_A[i];     // Extract low bit from mask
 272       int hi_bit = bit << (size-1); // high bit
 273       if (hi_bit != 0) {        // Bit set stays in same word?
 274         int set = hi_bit + ((hi_bit-1) & ~(bit-1));
 275         if (set != _A[i])
 276           return false;         // Require adjacent bit set and no more bits
 277       } else {                  // Else its a split-set case
 278         if (((-1) & ~(bit-1)) != _A[i])
 279           return false;         // Found many bits, so fail
 280         i++;                    // Skip iteration forward and check high part
 281         // The lower (32-size) bits should be 0 since it is split case.
 282         int clear_bit_size = 32-size;
 283         int shift_back_size = 32-clear_bit_size;
 284         int set = bit>>clear_bit_size;
 285         set = set & -set; // Remove sign extension.
 286         set = (((set << size) - 1) >> shift_back_size);
 287         if (i > _hwm || _A[i] != set)
 288           return false; // Require expected low bits in next word
 289       }
 290     }
 291   }
 292   // True for both the empty mask and for a bit set
 293   return true;
 294 }
 295 
 296 // UP means register only, Register plus stack, or stack only is DOWN
 297 bool RegMask::is_UP() const {
 298   // Quick common case check for DOWN (any stack slot is legal)
 299   if (is_AllStack())
 300     return false;
 301   // Slower check for any stack bits set (also DOWN)
 302   if (overlap(Matcher::STACK_ONLY_mask))
 303     return false;
 304   // Not DOWN, so must be UP
 305   return true;
 306 }
 307 
 308 // Compute size of register mask in bits
 309 uint RegMask::Size() const {
 310   uint sum = 0;
 311   assert(valid_watermarks(), "sanity");
 312   for (int i = _lwm; i <= _hwm; i++) {
 313     sum += population_count((unsigned)_A[i]);
 314   }
 315   return sum;
 316 }
 317 
 318 #ifndef PRODUCT
 319 void RegMask::dump(outputStream *st) const {
 320   st->print("[");
 321   RegMask rm = *this;           // Structure copy into local temp
 322 
 323   OptoReg::Name start = rm.find_first_elem(); // Get a register
 324   if (OptoReg::is_valid(start)) { // Check for empty mask
 325     rm.Remove(start);           // Yank from mask
 326     OptoReg::dump(start, st);   // Print register
 327     OptoReg::Name last = start;
 328 
 329     // Now I have printed an initial register.
 330     // Print adjacent registers as "rX-rZ" instead of "rX,rY,rZ".
 331     // Begin looping over the remaining registers.
 332     while (1) {                 //
 333       OptoReg::Name reg = rm.find_first_elem(); // Get a register
 334       if (!OptoReg::is_valid(reg))
 335         break;                  // Empty mask, end loop
 336       rm.Remove(reg);           // Yank from mask
 337 
 338       if (last+1 == reg) {      // See if they are adjacent
 339         // Adjacent registers just collect into long runs, no printing.
 340         last = reg;
 341       } else {                  // Ending some kind of run
 342         if (start == last) {    // 1-register run; no special printing
 343         } else if (start+1 == last) {
 344           st->print(",");       // 2-register run; print as "rX,rY"
 345           OptoReg::dump(last, st);
 346         } else {                // Multi-register run; print as "rX-rZ"
 347           st->print("-");
 348           OptoReg::dump(last, st);
 349         }
 350         st->print(",");         // Seperate start of new run
 351         start = last = reg;     // Start a new register run
 352         OptoReg::dump(start, st); // Print register
 353       } // End of if ending a register run or not
 354     } // End of while regmask not empty
 355 
 356     if (start == last) {        // 1-register run; no special printing
 357     } else if (start+1 == last) {
 358       st->print(",");           // 2-register run; print as "rX,rY"
 359       OptoReg::dump(last, st);
 360     } else {                    // Multi-register run; print as "rX-rZ"
 361       st->print("-");
 362       OptoReg::dump(last, st);
 363     }
 364     if (rm.is_AllStack()) st->print("...");
 365   }
 366   st->print("]");
 367 }
 368 #endif