1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_REGMASK_HPP
  26 #define SHARE_OPTO_REGMASK_HPP
  27 
  28 #include "code/vmreg.hpp"
  29 #include "opto/optoreg.hpp"
  30 #include "utilities/count_leading_zeros.hpp"
  31 #include "utilities/count_trailing_zeros.hpp"
  32 
  33 class LRG;
  34 
  35 //-------------Non-zero bit search methods used by RegMask---------------------
  36 // Find lowest 1, undefined if empty/0
  37 static int find_lowest_bit(uint32_t mask) {
  38   return count_trailing_zeros(mask);
  39 }
  40 // Find highest 1, undefined if empty/0
  41 static int find_highest_bit(uint32_t mask) {
  42   return count_leading_zeros(mask) ^ 31;
  43 }
  44 
  45 //------------------------------RegMask----------------------------------------
  46 // The ADL file describes how to print the machine-specific registers, as well
  47 // as any notion of register classes.  We provide a register mask, which is
  48 // just a collection of Register numbers.
  49 
  50 // The ADLC defines 2 macros, RM_SIZE and FORALL_BODY.
  51 // RM_SIZE is the size of a register mask in words.
  52 // FORALL_BODY replicates a BODY macro once per word in the register mask.
  53 // The usage is somewhat clumsy and limited to the regmask.[h,c]pp files.
  54 // However, it means the ADLC can redefine the unroll macro and all loops
  55 // over register masks will be unrolled by the correct amount.
  56 
  57 class RegMask {
  58   union {
  59     double _dummy_force_double_alignment[RM_SIZE>>1];
  60     // Array of Register Mask bits.  This array is large enough to cover
  61     // all the machine registers and all parameters that need to be passed
  62     // on the stack (stack registers) up to some interesting limit.  Methods
  63     // that need more parameters will NOT be compiled.  On Intel, the limit
  64     // is something like 90+ parameters.
  65     int _A[RM_SIZE];
  66   };
  67   // The low and high water marks represents the lowest and highest word
  68   // that might contain set register mask bits, respectively. We guarantee
  69   // that there are no bits in words outside this range, but any word at
  70   // and between the two marks can still be 0.
  71   int _lwm;
  72   int _hwm;
  73 
  74   enum {
  75     _WordBits    = BitsPerInt,
  76     _LogWordBits = LogBitsPerInt,
  77     _RM_SIZE     = RM_SIZE   // local constant, imported, then hidden by #undef
  78   };
  79 
  80  public:
  81   enum { CHUNK_SIZE = RM_SIZE*_WordBits };
  82 
  83   // SlotsPerLong is 2, since slots are 32 bits and longs are 64 bits.
  84   // Also, consider the maximum alignment size for a normally allocated
  85   // value.  Since we allocate register pairs but not register quads (at
  86   // present), this alignment is SlotsPerLong (== 2).  A normally
  87   // aligned allocated register is either a single register, or a pair
  88   // of adjacent registers, the lower-numbered being even.
  89   // See also is_aligned_Pairs() below, and the padding added before
  90   // Matcher::_new_SP to keep allocated pairs aligned properly.
  91   // If we ever go to quad-word allocations, SlotsPerQuad will become
  92   // the controlling alignment constraint.  Note that this alignment
  93   // requirement is internal to the allocator, and independent of any
  94   // particular platform.
  95   enum { SlotsPerLong = 2,
  96          SlotsPerVecA = 8,
  97          SlotsPerVecS = 1,
  98          SlotsPerVecD = 2,
  99          SlotsPerVecX = 4,
 100          SlotsPerVecY = 8,
 101          SlotsPerVecZ = 16,
 102          };
 103 
 104   // A constructor only used by the ADLC output.  All mask fields are filled
 105   // in directly.  Calls to this look something like RM(1,2,3,4);
 106   RegMask(
 107 #   define BODY(I) int a##I,
 108     FORALL_BODY
 109 #   undef BODY
 110     int dummy = 0) {
 111 #   define BODY(I) _A[I] = a##I;
 112     FORALL_BODY
 113 #   undef BODY
 114     _lwm = 0;
 115     _hwm = RM_SIZE - 1;
 116     while (_hwm > 0 && _A[_hwm] == 0) _hwm--;
 117     while ((_lwm < _hwm) && _A[_lwm] == 0) _lwm++;
 118     assert(valid_watermarks(), "post-condition");
 119   }
 120 
 121   // Handy copying constructor
 122   RegMask(RegMask *rm) {
 123     _hwm = rm->_hwm;
 124     _lwm = rm->_lwm;
 125     for (int i = 0; i < RM_SIZE; i++) {
 126       _A[i] = rm->_A[i];
 127     }
 128     assert(valid_watermarks(), "post-condition");
 129   }
 130 
 131   // Construct an empty mask
 132   RegMask() {
 133     Clear();
 134   }
 135 
 136   // Construct a mask with a single bit
 137   RegMask(OptoReg::Name reg) {
 138     Clear();
 139     Insert(reg);
 140   }
 141 
 142   // Check for register being in mask
 143   int Member(OptoReg::Name reg) const {
 144     assert(reg < CHUNK_SIZE, "");
 145     return _A[reg>>_LogWordBits] & (1<<(reg&(_WordBits-1)));
 146   }
 147 
 148   // The last bit in the register mask indicates that the mask should repeat
 149   // indefinitely with ONE bits.  Returns TRUE if mask is infinite or
 150   // unbounded in size.  Returns FALSE if mask is finite size.
 151   int is_AllStack() const { return _A[RM_SIZE-1] >> (_WordBits-1); }
 152 
 153   // Work around an -xO3 optimization problme in WS6U1. The old way:
 154   //   void set_AllStack() { _A[RM_SIZE-1] |= (1<<(_WordBits-1)); }
 155   // will cause _A[RM_SIZE-1] to be clobbered, not updated when set_AllStack()
 156   // follows an Insert() loop, like the one found in init_spill_mask(). Using
 157   // Insert() instead works because the index into _A in computed instead of
 158   // constant.  See bug 4665841.
 159   void set_AllStack() { Insert(OptoReg::Name(CHUNK_SIZE-1)); }
 160 
 161   // Test for being a not-empty mask.
 162   int is_NotEmpty() const {
 163     assert(valid_watermarks(), "sanity");
 164     int tmp = 0;
 165     for (int i = _lwm; i <= _hwm; i++) {
 166       tmp |= _A[i];
 167     }
 168     return tmp;
 169   }
 170 
 171   // Find lowest-numbered register from mask, or BAD if mask is empty.
 172   OptoReg::Name find_first_elem() const {
 173     assert(valid_watermarks(), "sanity");
 174     for (int i = _lwm; i <= _hwm; i++) {
 175       int bits = _A[i];
 176       if (bits) {
 177         return OptoReg::Name((i<<_LogWordBits) + find_lowest_bit(bits));
 178       }
 179     }
 180     return OptoReg::Name(OptoReg::Bad);
 181   }
 182 
 183   // Get highest-numbered register from mask, or BAD if mask is empty.
 184   OptoReg::Name find_last_elem() const {
 185     assert(valid_watermarks(), "sanity");
 186     for (int i = _hwm; i >= _lwm; i--) {
 187       int bits = _A[i];
 188       if (bits) {
 189         return OptoReg::Name((i<<_LogWordBits) + find_highest_bit(bits));
 190       }
 191     }
 192     return OptoReg::Name(OptoReg::Bad);
 193   }
 194 
 195   // Clear out partial bits; leave only aligned adjacent bit pairs.
 196   void clear_to_pairs();
 197 
 198 #ifdef ASSERT
 199   // Verify watermarks are sane, i.e., within bounds and that no
 200   // register words below or above the watermarks have bits set.
 201   bool valid_watermarks() const {
 202     assert(_hwm >= 0 && _hwm < RM_SIZE, "_hwm out of range: %d", _hwm);
 203     assert(_lwm >= 0 && _lwm < RM_SIZE, "_lwm out of range: %d", _lwm);
 204     for (int i = 0; i < _lwm; i++) {
 205       assert(_A[i] == 0, "_lwm too high: %d regs at: %d", _lwm, i);
 206     }
 207     for (int i = _hwm + 1; i < RM_SIZE; i++) {
 208       assert(_A[i] == 0, "_hwm too low: %d regs at: %d", _hwm, i);
 209     }
 210     return true;
 211   }
 212 #endif // !ASSERT
 213 
 214   // Test that the mask contains only aligned adjacent bit pairs
 215   bool is_aligned_pairs() const;
 216 
 217   // mask is a pair of misaligned registers
 218   bool is_misaligned_pair() const;
 219   // Test for single register
 220   bool is_bound1() const;
 221   // Test for a single adjacent pair
 222   bool is_bound_pair() const;
 223   // Test for a single adjacent set of ideal register's size.
 224   bool is_bound(uint ireg) const;
 225 
 226   // Check that whether given reg number with size is valid
 227   // for current regmask, where reg is the highest number.
 228   bool is_valid_reg(OptoReg::Name reg, const int size) const;
 229 
 230   // Find the lowest-numbered register set in the mask.  Return the
 231   // HIGHEST register number in the set, or BAD if no sets.
 232   // Assert that the mask contains only bit sets.
 233   OptoReg::Name find_first_set(LRG &lrg, const int size) const;
 234 
 235   // Clear out partial bits; leave only aligned adjacent bit sets of size.
 236   void clear_to_sets(const int size);
 237   // Smear out partial bits to aligned adjacent bit sets.
 238   void smear_to_sets(const int size);
 239   // Test that the mask contains only aligned adjacent bit sets
 240   bool is_aligned_sets(const int size) const;
 241 
 242   // Test for a single adjacent set
 243   int is_bound_set(const int size) const;
 244 
 245   static bool is_vector(uint ireg);
 246   static int num_registers(uint ireg);
 247   static int num_registers(uint ireg, LRG &lrg);
 248 
 249   // Fast overlap test.  Non-zero if any registers in common.
 250   int overlap(const RegMask &rm) const {
 251     assert(valid_watermarks() && rm.valid_watermarks(), "sanity");
 252     int hwm = MIN2(_hwm, rm._hwm);
 253     int lwm = MAX2(_lwm, rm._lwm);
 254     int result = 0;
 255     for (int i = lwm; i <= hwm; i++) {
 256       result |= _A[i] & rm._A[i];
 257     }
 258     return result;
 259   }
 260 
 261   // Special test for register pressure based splitting
 262   // UP means register only, Register plus stack, or stack only is DOWN
 263   bool is_UP() const;
 264 
 265   // Clear a register mask
 266   void Clear() {
 267     _lwm = RM_SIZE - 1;
 268     _hwm = 0;
 269     memset(_A, 0, sizeof(int)*RM_SIZE);
 270     assert(valid_watermarks(), "sanity");
 271   }
 272 
 273   // Fill a register mask with 1's
 274   void Set_All() {
 275     _lwm = 0;
 276     _hwm = RM_SIZE - 1;
 277     memset(_A, 0xFF, sizeof(int)*RM_SIZE);
 278     assert(valid_watermarks(), "sanity");
 279   }
 280 
 281   // Insert register into mask
 282   void Insert(OptoReg::Name reg) {
 283     assert(reg < CHUNK_SIZE, "sanity");
 284     assert(valid_watermarks(), "pre-condition");
 285     int index = reg>>_LogWordBits;
 286     if (index > _hwm) _hwm = index;
 287     if (index < _lwm) _lwm = index;
 288     _A[index] |= (1<<(reg&(_WordBits-1)));
 289     assert(valid_watermarks(), "post-condition");
 290   }
 291 
 292   // Remove register from mask
 293   void Remove(OptoReg::Name reg) {
 294     assert(reg < CHUNK_SIZE, "");
 295     _A[reg>>_LogWordBits] &= ~(1<<(reg&(_WordBits-1)));
 296   }
 297 
 298   // OR 'rm' into 'this'
 299   void OR(const RegMask &rm) {
 300     assert(valid_watermarks() && rm.valid_watermarks(), "sanity");
 301     // OR widens the live range
 302     if (_lwm > rm._lwm) _lwm = rm._lwm;
 303     if (_hwm < rm._hwm) _hwm = rm._hwm;
 304     for (int i = _lwm; i <= _hwm; i++) {
 305       _A[i] |= rm._A[i];
 306     }
 307     assert(valid_watermarks(), "sanity");
 308   }
 309 
 310   // AND 'rm' into 'this'
 311   void AND(const RegMask &rm) {
 312     assert(valid_watermarks() && rm.valid_watermarks(), "sanity");
 313     // Do not evaluate words outside the current watermark range, as they are
 314     // already zero and an &= would not change that
 315     for (int i = _lwm; i <= _hwm; i++) {
 316       _A[i] &= rm._A[i];
 317     }
 318     // Narrow the watermarks if &rm spans a narrower range.
 319     // Update after to ensure non-overlapping words are zeroed out.
 320     if (_lwm < rm._lwm) _lwm = rm._lwm;
 321     if (_hwm > rm._hwm) _hwm = rm._hwm;
 322   }
 323 
 324   // Subtract 'rm' from 'this'
 325   void SUBTRACT(const RegMask &rm) {
 326     assert(valid_watermarks() && rm.valid_watermarks(), "sanity");
 327     int hwm = MIN2(_hwm, rm._hwm);
 328     int lwm = MAX2(_lwm, rm._lwm);
 329     for (int i = lwm; i <= hwm; i++) {
 330       _A[i] &= ~rm._A[i];
 331     }
 332   }
 333 
 334   // Compute size of register mask: number of bits
 335   uint Size() const;
 336 
 337 #ifndef PRODUCT
 338   void print() const { dump(); }
 339   void dump(outputStream *st = tty) const; // Print a mask
 340 #endif
 341 
 342   static const RegMask Empty;   // Common empty mask
 343 
 344   static bool can_represent(OptoReg::Name reg) {
 345     // NOTE: -1 in computation reflects the usage of the last
 346     //       bit of the regmask as an infinite stack flag and
 347     //       -7 is to keep mask aligned for largest value (VecZ).
 348     return (int)reg < (int)(CHUNK_SIZE-1);
 349   }
 350   static bool can_represent_arg(OptoReg::Name reg) {
 351     // NOTE: -SlotsPerVecZ in computation reflects the need
 352     //       to keep mask aligned for largest value (VecZ).
 353     return (int)reg < (int)(CHUNK_SIZE-SlotsPerVecZ);
 354   }
 355 };
 356 
 357 // Do not use this constant directly in client code!
 358 #undef RM_SIZE
 359 
 360 #endif // SHARE_OPTO_REGMASK_HPP