1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jvmtifiles/jvmtiEnv.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/oopFactory.hpp"
  38 #include "memory/universe.inline.hpp"
  39 #include "oops/instanceKlass.hpp"
  40 #include "oops/objArrayOop.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "oops/symbol.hpp"
  43 #include "prims/jvm_misc.hpp"
  44 #include "prims/jvmtiExport.hpp"
  45 #include "prims/jvmtiThreadState.hpp"
  46 #include "prims/privilegedStack.hpp"
  47 #include "runtime/aprofiler.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/biasedLocking.hpp"
  50 #include "runtime/deoptimization.hpp"
  51 #include "runtime/fprofiler.hpp"
  52 #include "runtime/frame.inline.hpp"
  53 #include "runtime/init.hpp"
  54 #include "runtime/interfaceSupport.hpp"
  55 #include "runtime/java.hpp"
  56 #include "runtime/javaCalls.hpp"
  57 #include "runtime/jniPeriodicChecker.hpp"
  58 #include "runtime/memprofiler.hpp"
  59 #include "runtime/mutexLocker.hpp"
  60 #include "runtime/objectMonitor.hpp"
  61 #include "runtime/osThread.hpp"
  62 #include "runtime/safepoint.hpp"
  63 #include "runtime/sharedRuntime.hpp"
  64 #include "runtime/statSampler.hpp"
  65 #include "runtime/stubRoutines.hpp"
  66 #include "runtime/task.hpp"
  67 #include "runtime/threadCritical.hpp"
  68 #include "runtime/threadLocalStorage.hpp"
  69 #include "runtime/vframe.hpp"
  70 #include "runtime/vframeArray.hpp"
  71 #include "runtime/vframe_hp.hpp"
  72 #include "runtime/vmThread.hpp"
  73 #include "runtime/vm_operations.hpp"
  74 #include "services/attachListener.hpp"
  75 #include "services/management.hpp"
  76 #include "services/threadService.hpp"
  77 #include "trace/traceEventTypes.hpp"
  78 #include "utilities/defaultStream.hpp"
  79 #include "utilities/dtrace.hpp"
  80 #include "utilities/events.hpp"
  81 #include "utilities/preserveException.hpp"
  82 #ifdef TARGET_OS_FAMILY_linux
  83 # include "os_linux.inline.hpp"
  84 # include "thread_linux.inline.hpp"
  85 #endif
  86 #ifdef TARGET_OS_FAMILY_solaris
  87 # include "os_solaris.inline.hpp"
  88 # include "thread_solaris.inline.hpp"
  89 #endif
  90 #ifdef TARGET_OS_FAMILY_windows
  91 # include "os_windows.inline.hpp"
  92 # include "thread_windows.inline.hpp"
  93 #endif
  94 #ifdef TARGET_OS_FAMILY_bsd
  95 # include "os_bsd.inline.hpp"
  96 # include "thread_bsd.inline.hpp"
  97 #endif
  98 #ifndef SERIALGC
  99 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
 100 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
 101 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
 102 #endif
 103 #ifdef COMPILER1
 104 #include "c1/c1_Compiler.hpp"
 105 #endif
 106 #ifdef COMPILER2
 107 #include "opto/c2compiler.hpp"
 108 #include "opto/idealGraphPrinter.hpp"
 109 #endif
 110 
 111 #ifdef DTRACE_ENABLED
 112 
 113 // Only bother with this argument setup if dtrace is available
 114 
 115 #ifndef USDT2
 116 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
 117 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
 118 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
 119   intptr_t, intptr_t, bool);
 120 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
 121   intptr_t, intptr_t, bool);
 122 
 123 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 124   {                                                                        \
 125     ResourceMark rm(this);                                                 \
 126     int len = 0;                                                           \
 127     const char* name = (javathread)->get_thread_name();                    \
 128     len = strlen(name);                                                    \
 129     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
 130       name, len,                                                           \
 131       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 132       (javathread)->osthread()->thread_id(),                               \
 133       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 134   }
 135 
 136 #else /* USDT2 */
 137 
 138 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
 139 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
 140 
 141 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 142   {                                                                        \
 143     ResourceMark rm(this);                                                 \
 144     int len = 0;                                                           \
 145     const char* name = (javathread)->get_thread_name();                    \
 146     len = strlen(name);                                                    \
 147     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
 148       (char *) name, len,                                                           \
 149       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 150       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
 151       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 152   }
 153 
 154 #endif /* USDT2 */
 155 
 156 #else //  ndef DTRACE_ENABLED
 157 
 158 #define DTRACE_THREAD_PROBE(probe, javathread)
 159 
 160 #endif // ndef DTRACE_ENABLED
 161 
 162 // Class hierarchy
 163 // - Thread
 164 //   - VMThread
 165 //   - WatcherThread
 166 //   - ConcurrentMarkSweepThread
 167 //   - JavaThread
 168 //     - CompilerThread
 169 
 170 // ======= Thread ========
 171 
 172 // Support for forcing alignment of thread objects for biased locking
 173 void* Thread::operator new(size_t size) {
 174   if (UseBiasedLocking) {
 175     const int alignment = markOopDesc::biased_lock_alignment;
 176     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 177     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
 178     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 179     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 180            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 181            "JavaThread alignment code overflowed allocated storage");
 182     if (TraceBiasedLocking) {
 183       if (aligned_addr != real_malloc_addr)
 184         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 185                       real_malloc_addr, aligned_addr);
 186     }
 187     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 188     return aligned_addr;
 189   } else {
 190     return CHeapObj::operator new(size);
 191   }
 192 }
 193 
 194 void Thread::operator delete(void* p) {
 195   if (UseBiasedLocking) {
 196     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 197     CHeapObj::operator delete(real_malloc_addr);
 198   } else {
 199     CHeapObj::operator delete(p);
 200   }
 201 }
 202 
 203 
 204 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 205 // JavaThread
 206 
 207 
 208 Thread::Thread() {
 209   // stack and get_thread
 210   set_stack_base(NULL);
 211   set_stack_size(0);
 212   set_self_raw_id(0);
 213   set_lgrp_id(-1);
 214 
 215   // allocated data structures
 216   set_osthread(NULL);
 217   set_resource_area(new ResourceArea());
 218   set_handle_area(new HandleArea(NULL));
 219   set_active_handles(NULL);
 220   set_free_handle_block(NULL);
 221   set_last_handle_mark(NULL);
 222 
 223   // This initial value ==> never claimed.
 224   _oops_do_parity = 0;
 225 
 226   // the handle mark links itself to last_handle_mark
 227   new HandleMark(this);
 228 
 229   // plain initialization
 230   debug_only(_owned_locks = NULL;)
 231   debug_only(_allow_allocation_count = 0;)
 232   NOT_PRODUCT(_allow_safepoint_count = 0;)
 233   NOT_PRODUCT(_skip_gcalot = false;)
 234   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
 235   _jvmti_env_iteration_count = 0;
 236   set_allocated_bytes(0);
 237   set_trace_buffer(NULL);
 238   _vm_operation_started_count = 0;
 239   _vm_operation_completed_count = 0;
 240   _current_pending_monitor = NULL;
 241   _current_pending_monitor_is_from_java = true;
 242   _current_waiting_monitor = NULL;
 243   _num_nested_signal = 0;
 244   omFreeList = NULL ;
 245   omFreeCount = 0 ;
 246   omFreeProvision = 32 ;
 247   omInUseList = NULL ;
 248   omInUseCount = 0 ;
 249 
 250   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 251   _suspend_flags = 0;
 252 
 253   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 254   _hashStateX = os::random() ;
 255   _hashStateY = 842502087 ;
 256   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 257   _hashStateW = 273326509 ;
 258 
 259   _OnTrap   = 0 ;
 260   _schedctl = NULL ;
 261   _Stalled  = 0 ;
 262   _TypeTag  = 0x2BAD ;
 263 
 264   // Many of the following fields are effectively final - immutable
 265   // Note that nascent threads can't use the Native Monitor-Mutex
 266   // construct until the _MutexEvent is initialized ...
 267   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 268   // we might instead use a stack of ParkEvents that we could provision on-demand.
 269   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 270   // and ::Release()
 271   _ParkEvent   = ParkEvent::Allocate (this) ;
 272   _SleepEvent  = ParkEvent::Allocate (this) ;
 273   _MutexEvent  = ParkEvent::Allocate (this) ;
 274   _MuxEvent    = ParkEvent::Allocate (this) ;
 275 
 276 #ifdef CHECK_UNHANDLED_OOPS
 277   if (CheckUnhandledOops) {
 278     _unhandled_oops = new UnhandledOops(this);
 279   }
 280 #endif // CHECK_UNHANDLED_OOPS
 281 #ifdef ASSERT
 282   if (UseBiasedLocking) {
 283     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 284     assert(this == _real_malloc_address ||
 285            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 286            "bug in forced alignment of thread objects");
 287   }
 288 #endif /* ASSERT */
 289 }
 290 
 291 void Thread::initialize_thread_local_storage() {
 292   // Note: Make sure this method only calls
 293   // non-blocking operations. Otherwise, it might not work
 294   // with the thread-startup/safepoint interaction.
 295 
 296   // During Java thread startup, safepoint code should allow this
 297   // method to complete because it may need to allocate memory to
 298   // store information for the new thread.
 299 
 300   // initialize structure dependent on thread local storage
 301   ThreadLocalStorage::set_thread(this);
 302 
 303   // set up any platform-specific state.
 304   os::initialize_thread();
 305 
 306 }
 307 
 308 void Thread::record_stack_base_and_size() {
 309   set_stack_base(os::current_stack_base());
 310   set_stack_size(os::current_stack_size());
 311 }
 312 
 313 
 314 Thread::~Thread() {
 315   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 316   ObjectSynchronizer::omFlush (this) ;
 317 
 318   // deallocate data structures
 319   delete resource_area();
 320   // since the handle marks are using the handle area, we have to deallocated the root
 321   // handle mark before deallocating the thread's handle area,
 322   assert(last_handle_mark() != NULL, "check we have an element");
 323   delete last_handle_mark();
 324   assert(last_handle_mark() == NULL, "check we have reached the end");
 325 
 326   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 327   // We NULL out the fields for good hygiene.
 328   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 329   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 330   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 331   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 332 
 333   delete handle_area();
 334 
 335   // osthread() can be NULL, if creation of thread failed.
 336   if (osthread() != NULL) os::free_thread(osthread());
 337 
 338   delete _SR_lock;
 339 
 340   // clear thread local storage if the Thread is deleting itself
 341   if (this == Thread::current()) {
 342     ThreadLocalStorage::set_thread(NULL);
 343   } else {
 344     // In the case where we're not the current thread, invalidate all the
 345     // caches in case some code tries to get the current thread or the
 346     // thread that was destroyed, and gets stale information.
 347     ThreadLocalStorage::invalidate_all();
 348   }
 349   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 350 }
 351 
 352 // NOTE: dummy function for assertion purpose.
 353 void Thread::run() {
 354   ShouldNotReachHere();
 355 }
 356 
 357 #ifdef ASSERT
 358 // Private method to check for dangling thread pointer
 359 void check_for_dangling_thread_pointer(Thread *thread) {
 360  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 361          "possibility of dangling Thread pointer");
 362 }
 363 #endif
 364 
 365 
 366 #ifndef PRODUCT
 367 // Tracing method for basic thread operations
 368 void Thread::trace(const char* msg, const Thread* const thread) {
 369   if (!TraceThreadEvents) return;
 370   ResourceMark rm;
 371   ThreadCritical tc;
 372   const char *name = "non-Java thread";
 373   int prio = -1;
 374   if (thread->is_Java_thread()
 375       && !thread->is_Compiler_thread()) {
 376     // The Threads_lock must be held to get information about
 377     // this thread but may not be in some situations when
 378     // tracing  thread events.
 379     bool release_Threads_lock = false;
 380     if (!Threads_lock->owned_by_self()) {
 381       Threads_lock->lock();
 382       release_Threads_lock = true;
 383     }
 384     JavaThread* jt = (JavaThread *)thread;
 385     name = (char *)jt->get_thread_name();
 386     oop thread_oop = jt->threadObj();
 387     if (thread_oop != NULL) {
 388       prio = java_lang_Thread::priority(thread_oop);
 389     }
 390     if (release_Threads_lock) {
 391       Threads_lock->unlock();
 392     }
 393   }
 394   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 395 }
 396 #endif
 397 
 398 
 399 ThreadPriority Thread::get_priority(const Thread* const thread) {
 400   trace("get priority", thread);
 401   ThreadPriority priority;
 402   // Can return an error!
 403   (void)os::get_priority(thread, priority);
 404   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 405   return priority;
 406 }
 407 
 408 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 409   trace("set priority", thread);
 410   debug_only(check_for_dangling_thread_pointer(thread);)
 411   // Can return an error!
 412   (void)os::set_priority(thread, priority);
 413 }
 414 
 415 
 416 void Thread::start(Thread* thread) {
 417   trace("start", thread);
 418   // Start is different from resume in that its safety is guaranteed by context or
 419   // being called from a Java method synchronized on the Thread object.
 420   if (!DisableStartThread) {
 421     if (thread->is_Java_thread()) {
 422       // Initialize the thread state to RUNNABLE before starting this thread.
 423       // Can not set it after the thread started because we do not know the
 424       // exact thread state at that time. It could be in MONITOR_WAIT or
 425       // in SLEEPING or some other state.
 426       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 427                                           java_lang_Thread::RUNNABLE);
 428     }
 429     os::start_thread(thread);
 430   }
 431 }
 432 
 433 // Enqueue a VM_Operation to do the job for us - sometime later
 434 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 435   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 436   VMThread::execute(vm_stop);
 437 }
 438 
 439 
 440 //
 441 // Check if an external suspend request has completed (or has been
 442 // cancelled). Returns true if the thread is externally suspended and
 443 // false otherwise.
 444 //
 445 // The bits parameter returns information about the code path through
 446 // the routine. Useful for debugging:
 447 //
 448 // set in is_ext_suspend_completed():
 449 // 0x00000001 - routine was entered
 450 // 0x00000010 - routine return false at end
 451 // 0x00000100 - thread exited (return false)
 452 // 0x00000200 - suspend request cancelled (return false)
 453 // 0x00000400 - thread suspended (return true)
 454 // 0x00001000 - thread is in a suspend equivalent state (return true)
 455 // 0x00002000 - thread is native and walkable (return true)
 456 // 0x00004000 - thread is native_trans and walkable (needed retry)
 457 //
 458 // set in wait_for_ext_suspend_completion():
 459 // 0x00010000 - routine was entered
 460 // 0x00020000 - suspend request cancelled before loop (return false)
 461 // 0x00040000 - thread suspended before loop (return true)
 462 // 0x00080000 - suspend request cancelled in loop (return false)
 463 // 0x00100000 - thread suspended in loop (return true)
 464 // 0x00200000 - suspend not completed during retry loop (return false)
 465 //
 466 
 467 // Helper class for tracing suspend wait debug bits.
 468 //
 469 // 0x00000100 indicates that the target thread exited before it could
 470 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 471 // 0x00080000 each indicate a cancelled suspend request so they don't
 472 // count as wait failures either.
 473 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 474 
 475 class TraceSuspendDebugBits : public StackObj {
 476  private:
 477   JavaThread * jt;
 478   bool         is_wait;
 479   bool         called_by_wait;  // meaningful when !is_wait
 480   uint32_t *   bits;
 481 
 482  public:
 483   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 484                         uint32_t *_bits) {
 485     jt             = _jt;
 486     is_wait        = _is_wait;
 487     called_by_wait = _called_by_wait;
 488     bits           = _bits;
 489   }
 490 
 491   ~TraceSuspendDebugBits() {
 492     if (!is_wait) {
 493 #if 1
 494       // By default, don't trace bits for is_ext_suspend_completed() calls.
 495       // That trace is very chatty.
 496       return;
 497 #else
 498       if (!called_by_wait) {
 499         // If tracing for is_ext_suspend_completed() is enabled, then only
 500         // trace calls to it from wait_for_ext_suspend_completion()
 501         return;
 502       }
 503 #endif
 504     }
 505 
 506     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 507       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 508         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 509         ResourceMark rm;
 510 
 511         tty->print_cr(
 512             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 513             jt->get_thread_name(), *bits);
 514 
 515         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 516       }
 517     }
 518   }
 519 };
 520 #undef DEBUG_FALSE_BITS
 521 
 522 
 523 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 524   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 525 
 526   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 527   bool do_trans_retry;           // flag to force the retry
 528 
 529   *bits |= 0x00000001;
 530 
 531   do {
 532     do_trans_retry = false;
 533 
 534     if (is_exiting()) {
 535       // Thread is in the process of exiting. This is always checked
 536       // first to reduce the risk of dereferencing a freed JavaThread.
 537       *bits |= 0x00000100;
 538       return false;
 539     }
 540 
 541     if (!is_external_suspend()) {
 542       // Suspend request is cancelled. This is always checked before
 543       // is_ext_suspended() to reduce the risk of a rogue resume
 544       // confusing the thread that made the suspend request.
 545       *bits |= 0x00000200;
 546       return false;
 547     }
 548 
 549     if (is_ext_suspended()) {
 550       // thread is suspended
 551       *bits |= 0x00000400;
 552       return true;
 553     }
 554 
 555     // Now that we no longer do hard suspends of threads running
 556     // native code, the target thread can be changing thread state
 557     // while we are in this routine:
 558     //
 559     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 560     //
 561     // We save a copy of the thread state as observed at this moment
 562     // and make our decision about suspend completeness based on the
 563     // copy. This closes the race where the thread state is seen as
 564     // _thread_in_native_trans in the if-thread_blocked check, but is
 565     // seen as _thread_blocked in if-thread_in_native_trans check.
 566     JavaThreadState save_state = thread_state();
 567 
 568     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 569       // If the thread's state is _thread_blocked and this blocking
 570       // condition is known to be equivalent to a suspend, then we can
 571       // consider the thread to be externally suspended. This means that
 572       // the code that sets _thread_blocked has been modified to do
 573       // self-suspension if the blocking condition releases. We also
 574       // used to check for CONDVAR_WAIT here, but that is now covered by
 575       // the _thread_blocked with self-suspension check.
 576       //
 577       // Return true since we wouldn't be here unless there was still an
 578       // external suspend request.
 579       *bits |= 0x00001000;
 580       return true;
 581     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 582       // Threads running native code will self-suspend on native==>VM/Java
 583       // transitions. If its stack is walkable (should always be the case
 584       // unless this function is called before the actual java_suspend()
 585       // call), then the wait is done.
 586       *bits |= 0x00002000;
 587       return true;
 588     } else if (!called_by_wait && !did_trans_retry &&
 589                save_state == _thread_in_native_trans &&
 590                frame_anchor()->walkable()) {
 591       // The thread is transitioning from thread_in_native to another
 592       // thread state. check_safepoint_and_suspend_for_native_trans()
 593       // will force the thread to self-suspend. If it hasn't gotten
 594       // there yet we may have caught the thread in-between the native
 595       // code check above and the self-suspend. Lucky us. If we were
 596       // called by wait_for_ext_suspend_completion(), then it
 597       // will be doing the retries so we don't have to.
 598       //
 599       // Since we use the saved thread state in the if-statement above,
 600       // there is a chance that the thread has already transitioned to
 601       // _thread_blocked by the time we get here. In that case, we will
 602       // make a single unnecessary pass through the logic below. This
 603       // doesn't hurt anything since we still do the trans retry.
 604 
 605       *bits |= 0x00004000;
 606 
 607       // Once the thread leaves thread_in_native_trans for another
 608       // thread state, we break out of this retry loop. We shouldn't
 609       // need this flag to prevent us from getting back here, but
 610       // sometimes paranoia is good.
 611       did_trans_retry = true;
 612 
 613       // We wait for the thread to transition to a more usable state.
 614       for (int i = 1; i <= SuspendRetryCount; i++) {
 615         // We used to do an "os::yield_all(i)" call here with the intention
 616         // that yielding would increase on each retry. However, the parameter
 617         // is ignored on Linux which means the yield didn't scale up. Waiting
 618         // on the SR_lock below provides a much more predictable scale up for
 619         // the delay. It also provides a simple/direct point to check for any
 620         // safepoint requests from the VMThread
 621 
 622         // temporarily drops SR_lock while doing wait with safepoint check
 623         // (if we're a JavaThread - the WatcherThread can also call this)
 624         // and increase delay with each retry
 625         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 626 
 627         // check the actual thread state instead of what we saved above
 628         if (thread_state() != _thread_in_native_trans) {
 629           // the thread has transitioned to another thread state so
 630           // try all the checks (except this one) one more time.
 631           do_trans_retry = true;
 632           break;
 633         }
 634       } // end retry loop
 635 
 636 
 637     }
 638   } while (do_trans_retry);
 639 
 640   *bits |= 0x00000010;
 641   return false;
 642 }
 643 
 644 //
 645 // Wait for an external suspend request to complete (or be cancelled).
 646 // Returns true if the thread is externally suspended and false otherwise.
 647 //
 648 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 649        uint32_t *bits) {
 650   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 651                              false /* !called_by_wait */, bits);
 652 
 653   // local flag copies to minimize SR_lock hold time
 654   bool is_suspended;
 655   bool pending;
 656   uint32_t reset_bits;
 657 
 658   // set a marker so is_ext_suspend_completed() knows we are the caller
 659   *bits |= 0x00010000;
 660 
 661   // We use reset_bits to reinitialize the bits value at the top of
 662   // each retry loop. This allows the caller to make use of any
 663   // unused bits for their own marking purposes.
 664   reset_bits = *bits;
 665 
 666   {
 667     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 668     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 669                                             delay, bits);
 670     pending = is_external_suspend();
 671   }
 672   // must release SR_lock to allow suspension to complete
 673 
 674   if (!pending) {
 675     // A cancelled suspend request is the only false return from
 676     // is_ext_suspend_completed() that keeps us from entering the
 677     // retry loop.
 678     *bits |= 0x00020000;
 679     return false;
 680   }
 681 
 682   if (is_suspended) {
 683     *bits |= 0x00040000;
 684     return true;
 685   }
 686 
 687   for (int i = 1; i <= retries; i++) {
 688     *bits = reset_bits;  // reinit to only track last retry
 689 
 690     // We used to do an "os::yield_all(i)" call here with the intention
 691     // that yielding would increase on each retry. However, the parameter
 692     // is ignored on Linux which means the yield didn't scale up. Waiting
 693     // on the SR_lock below provides a much more predictable scale up for
 694     // the delay. It also provides a simple/direct point to check for any
 695     // safepoint requests from the VMThread
 696 
 697     {
 698       MutexLocker ml(SR_lock());
 699       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 700       // can also call this)  and increase delay with each retry
 701       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 702 
 703       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 704                                               delay, bits);
 705 
 706       // It is possible for the external suspend request to be cancelled
 707       // (by a resume) before the actual suspend operation is completed.
 708       // Refresh our local copy to see if we still need to wait.
 709       pending = is_external_suspend();
 710     }
 711 
 712     if (!pending) {
 713       // A cancelled suspend request is the only false return from
 714       // is_ext_suspend_completed() that keeps us from staying in the
 715       // retry loop.
 716       *bits |= 0x00080000;
 717       return false;
 718     }
 719 
 720     if (is_suspended) {
 721       *bits |= 0x00100000;
 722       return true;
 723     }
 724   } // end retry loop
 725 
 726   // thread did not suspend after all our retries
 727   *bits |= 0x00200000;
 728   return false;
 729 }
 730 
 731 #ifndef PRODUCT
 732 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 733 
 734   // This should not need to be atomic as the only way for simultaneous
 735   // updates is via interrupts. Even then this should be rare or non-existant
 736   // and we don't care that much anyway.
 737 
 738   int index = _jmp_ring_index;
 739   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 740   _jmp_ring[index]._target = (intptr_t) target;
 741   _jmp_ring[index]._instruction = (intptr_t) instr;
 742   _jmp_ring[index]._file = file;
 743   _jmp_ring[index]._line = line;
 744 }
 745 #endif /* PRODUCT */
 746 
 747 // Called by flat profiler
 748 // Callers have already called wait_for_ext_suspend_completion
 749 // The assertion for that is currently too complex to put here:
 750 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 751   bool gotframe = false;
 752   // self suspension saves needed state.
 753   if (has_last_Java_frame() && _anchor.walkable()) {
 754      *_fr = pd_last_frame();
 755      gotframe = true;
 756   }
 757   return gotframe;
 758 }
 759 
 760 void Thread::interrupt(Thread* thread) {
 761   trace("interrupt", thread);
 762   debug_only(check_for_dangling_thread_pointer(thread);)
 763   os::interrupt(thread);
 764 }
 765 
 766 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 767   trace("is_interrupted", thread);
 768   debug_only(check_for_dangling_thread_pointer(thread);)
 769   // Note:  If clear_interrupted==false, this simply fetches and
 770   // returns the value of the field osthread()->interrupted().
 771   return os::is_interrupted(thread, clear_interrupted);
 772 }
 773 
 774 
 775 // GC Support
 776 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 777   jint thread_parity = _oops_do_parity;
 778   if (thread_parity != strong_roots_parity) {
 779     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 780     if (res == thread_parity) {
 781       return true;
 782     } else {
 783       guarantee(res == strong_roots_parity, "Or else what?");
 784       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 785          "Should only fail when parallel.");
 786       return false;
 787     }
 788   }
 789   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 790          "Should only fail when parallel.");
 791   return false;
 792 }
 793 
 794 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 795   active_handles()->oops_do(f);
 796   // Do oop for ThreadShadow
 797   f->do_oop((oop*)&_pending_exception);
 798   handle_area()->oops_do(f);
 799 }
 800 
 801 void Thread::nmethods_do(CodeBlobClosure* cf) {
 802   // no nmethods in a generic thread...
 803 }
 804 
 805 void Thread::print_on(outputStream* st) const {
 806   // get_priority assumes osthread initialized
 807   if (osthread() != NULL) {
 808     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
 809     osthread()->print_on(st);
 810   }
 811   debug_only(if (WizardMode) print_owned_locks_on(st);)
 812 }
 813 
 814 // Thread::print_on_error() is called by fatal error handler. Don't use
 815 // any lock or allocate memory.
 816 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 817   if      (is_VM_thread())                  st->print("VMThread");
 818   else if (is_Compiler_thread())            st->print("CompilerThread");
 819   else if (is_Java_thread())                st->print("JavaThread");
 820   else if (is_GC_task_thread())             st->print("GCTaskThread");
 821   else if (is_Watcher_thread())             st->print("WatcherThread");
 822   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 823   else st->print("Thread");
 824 
 825   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 826             _stack_base - _stack_size, _stack_base);
 827 
 828   if (osthread()) {
 829     st->print(" [id=%d]", osthread()->thread_id());
 830   }
 831 }
 832 
 833 #ifdef ASSERT
 834 void Thread::print_owned_locks_on(outputStream* st) const {
 835   Monitor *cur = _owned_locks;
 836   if (cur == NULL) {
 837     st->print(" (no locks) ");
 838   } else {
 839     st->print_cr(" Locks owned:");
 840     while(cur) {
 841       cur->print_on(st);
 842       cur = cur->next();
 843     }
 844   }
 845 }
 846 
 847 static int ref_use_count  = 0;
 848 
 849 bool Thread::owns_locks_but_compiled_lock() const {
 850   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 851     if (cur != Compile_lock) return true;
 852   }
 853   return false;
 854 }
 855 
 856 
 857 #endif
 858 
 859 #ifndef PRODUCT
 860 
 861 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 862 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 863 // no threads which allow_vm_block's are held
 864 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 865     // Check if current thread is allowed to block at a safepoint
 866     if (!(_allow_safepoint_count == 0))
 867       fatal("Possible safepoint reached by thread that does not allow it");
 868     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 869       fatal("LEAF method calling lock?");
 870     }
 871 
 872 #ifdef ASSERT
 873     if (potential_vm_operation && is_Java_thread()
 874         && !Universe::is_bootstrapping()) {
 875       // Make sure we do not hold any locks that the VM thread also uses.
 876       // This could potentially lead to deadlocks
 877       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 878         // Threads_lock is special, since the safepoint synchronization will not start before this is
 879         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 880         // since it is used to transfer control between JavaThreads and the VMThread
 881         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 882         if ( (cur->allow_vm_block() &&
 883               cur != Threads_lock &&
 884               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 885               cur != VMOperationRequest_lock &&
 886               cur != VMOperationQueue_lock) ||
 887               cur->rank() == Mutex::special) {
 888           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 889         }
 890       }
 891     }
 892 
 893     if (GCALotAtAllSafepoints) {
 894       // We could enter a safepoint here and thus have a gc
 895       InterfaceSupport::check_gc_alot();
 896     }
 897 #endif
 898 }
 899 #endif
 900 
 901 bool Thread::is_in_stack(address adr) const {
 902   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 903   address end = os::current_stack_pointer();
 904   if (stack_base() >= adr && adr >= end) return true;
 905 
 906   return false;
 907 }
 908 
 909 
 910 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 911 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 912 // used for compilation in the future. If that change is made, the need for these methods
 913 // should be revisited, and they should be removed if possible.
 914 
 915 bool Thread::is_lock_owned(address adr) const {
 916   return on_local_stack(adr);
 917 }
 918 
 919 bool Thread::set_as_starting_thread() {
 920  // NOTE: this must be called inside the main thread.
 921   return os::create_main_thread((JavaThread*)this);
 922 }
 923 
 924 static void initialize_class(Symbol* class_name, TRAPS) {
 925   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 926   instanceKlass::cast(klass)->initialize(CHECK);
 927 }
 928 
 929 
 930 // Creates the initial ThreadGroup
 931 static Handle create_initial_thread_group(TRAPS) {
 932   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 933   instanceKlassHandle klass (THREAD, k);
 934 
 935   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 936   {
 937     JavaValue result(T_VOID);
 938     JavaCalls::call_special(&result,
 939                             system_instance,
 940                             klass,
 941                             vmSymbols::object_initializer_name(),
 942                             vmSymbols::void_method_signature(),
 943                             CHECK_NH);
 944   }
 945   Universe::set_system_thread_group(system_instance());
 946 
 947   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 948   {
 949     JavaValue result(T_VOID);
 950     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 951     JavaCalls::call_special(&result,
 952                             main_instance,
 953                             klass,
 954                             vmSymbols::object_initializer_name(),
 955                             vmSymbols::threadgroup_string_void_signature(),
 956                             system_instance,
 957                             string,
 958                             CHECK_NH);
 959   }
 960   return main_instance;
 961 }
 962 
 963 // Creates the initial Thread
 964 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
 965   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 966   instanceKlassHandle klass (THREAD, k);
 967   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 968 
 969   java_lang_Thread::set_thread(thread_oop(), thread);
 970   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 971   thread->set_threadObj(thread_oop());
 972 
 973   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 974 
 975   JavaValue result(T_VOID);
 976   JavaCalls::call_special(&result, thread_oop,
 977                                    klass,
 978                                    vmSymbols::object_initializer_name(),
 979                                    vmSymbols::threadgroup_string_void_signature(),
 980                                    thread_group,
 981                                    string,
 982                                    CHECK_NULL);
 983   return thread_oop();
 984 }
 985 
 986 static void call_initializeSystemClass(TRAPS) {
 987   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
 988   instanceKlassHandle klass (THREAD, k);
 989 
 990   JavaValue result(T_VOID);
 991   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
 992                                          vmSymbols::void_method_signature(), CHECK);
 993 }
 994 
 995 // General purpose hook into Java code, run once when the VM is initialized.
 996 // The Java library method itself may be changed independently from the VM.
 997 static void call_postVMInitHook(TRAPS) {
 998   klassOop k = SystemDictionary::PostVMInitHook_klass();
 999   instanceKlassHandle klass (THREAD, k);
1000   if (klass.not_null()) {
1001     JavaValue result(T_VOID);
1002     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1003                                            vmSymbols::void_method_signature(),
1004                                            CHECK);
1005   }
1006 }
1007 
1008 static void reset_vm_info_property(TRAPS) {
1009   // the vm info string
1010   ResourceMark rm(THREAD);
1011   const char *vm_info = VM_Version::vm_info_string();
1012 
1013   // java.lang.System class
1014   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1015   instanceKlassHandle klass (THREAD, k);
1016 
1017   // setProperty arguments
1018   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1019   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1020 
1021   // return value
1022   JavaValue r(T_OBJECT);
1023 
1024   // public static String setProperty(String key, String value);
1025   JavaCalls::call_static(&r,
1026                          klass,
1027                          vmSymbols::setProperty_name(),
1028                          vmSymbols::string_string_string_signature(),
1029                          key_str,
1030                          value_str,
1031                          CHECK);
1032 }
1033 
1034 
1035 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1036   assert(thread_group.not_null(), "thread group should be specified");
1037   assert(threadObj() == NULL, "should only create Java thread object once");
1038 
1039   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1040   instanceKlassHandle klass (THREAD, k);
1041   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1042 
1043   java_lang_Thread::set_thread(thread_oop(), this);
1044   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1045   set_threadObj(thread_oop());
1046 
1047   JavaValue result(T_VOID);
1048   if (thread_name != NULL) {
1049     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1050     // Thread gets assigned specified name and null target
1051     JavaCalls::call_special(&result,
1052                             thread_oop,
1053                             klass,
1054                             vmSymbols::object_initializer_name(),
1055                             vmSymbols::threadgroup_string_void_signature(),
1056                             thread_group, // Argument 1
1057                             name,         // Argument 2
1058                             THREAD);
1059   } else {
1060     // Thread gets assigned name "Thread-nnn" and null target
1061     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1062     JavaCalls::call_special(&result,
1063                             thread_oop,
1064                             klass,
1065                             vmSymbols::object_initializer_name(),
1066                             vmSymbols::threadgroup_runnable_void_signature(),
1067                             thread_group, // Argument 1
1068                             Handle(),     // Argument 2
1069                             THREAD);
1070   }
1071 
1072 
1073   if (daemon) {
1074       java_lang_Thread::set_daemon(thread_oop());
1075   }
1076 
1077   if (HAS_PENDING_EXCEPTION) {
1078     return;
1079   }
1080 
1081   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1082   Handle threadObj(this, this->threadObj());
1083 
1084   JavaCalls::call_special(&result,
1085                          thread_group,
1086                          group,
1087                          vmSymbols::add_method_name(),
1088                          vmSymbols::thread_void_signature(),
1089                          threadObj,          // Arg 1
1090                          THREAD);
1091 
1092 
1093 }
1094 
1095 // NamedThread --  non-JavaThread subclasses with multiple
1096 // uniquely named instances should derive from this.
1097 NamedThread::NamedThread() : Thread() {
1098   _name = NULL;
1099   _processed_thread = NULL;
1100 }
1101 
1102 NamedThread::~NamedThread() {
1103   if (_name != NULL) {
1104     FREE_C_HEAP_ARRAY(char, _name);
1105     _name = NULL;
1106   }
1107 }
1108 
1109 void NamedThread::set_name(const char* format, ...) {
1110   guarantee(_name == NULL, "Only get to set name once.");
1111   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
1112   guarantee(_name != NULL, "alloc failure");
1113   va_list ap;
1114   va_start(ap, format);
1115   jio_vsnprintf(_name, max_name_len, format, ap);
1116   va_end(ap);
1117 }
1118 
1119 // ======= WatcherThread ========
1120 
1121 // The watcher thread exists to simulate timer interrupts.  It should
1122 // be replaced by an abstraction over whatever native support for
1123 // timer interrupts exists on the platform.
1124 
1125 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1126 volatile bool  WatcherThread::_should_terminate = false;
1127 
1128 WatcherThread::WatcherThread() : Thread() {
1129   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1130   if (os::create_thread(this, os::watcher_thread)) {
1131     _watcher_thread = this;
1132 
1133     // Set the watcher thread to the highest OS priority which should not be
1134     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1135     // is created. The only normal thread using this priority is the reference
1136     // handler thread, which runs for very short intervals only.
1137     // If the VMThread's priority is not lower than the WatcherThread profiling
1138     // will be inaccurate.
1139     os::set_priority(this, MaxPriority);
1140     if (!DisableStartThread) {
1141       os::start_thread(this);
1142     }
1143   }
1144 }
1145 
1146 void WatcherThread::run() {
1147   assert(this == watcher_thread(), "just checking");
1148 
1149   this->record_stack_base_and_size();
1150   this->initialize_thread_local_storage();
1151   this->set_active_handles(JNIHandleBlock::allocate_block());
1152   while(!_should_terminate) {
1153     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1154     assert(watcher_thread() == this,  "thread consistency check");
1155 
1156     // Calculate how long it'll be until the next PeriodicTask work
1157     // should be done, and sleep that amount of time.
1158     size_t time_to_wait = PeriodicTask::time_to_wait();
1159 
1160     // we expect this to timeout - we only ever get unparked when
1161     // we should terminate
1162     {
1163       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1164 
1165       jlong prev_time = os::javaTimeNanos();
1166       for (;;) {
1167         int res= _SleepEvent->park(time_to_wait);
1168         if (res == OS_TIMEOUT || _should_terminate)
1169           break;
1170         // spurious wakeup of some kind
1171         jlong now = os::javaTimeNanos();
1172         time_to_wait -= (now - prev_time) / 1000000;
1173         if (time_to_wait <= 0)
1174           break;
1175         prev_time = now;
1176       }
1177     }
1178 
1179     if (is_error_reported()) {
1180       // A fatal error has happened, the error handler(VMError::report_and_die)
1181       // should abort JVM after creating an error log file. However in some
1182       // rare cases, the error handler itself might deadlock. Here we try to
1183       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1184       //
1185       // This code is in WatcherThread because WatcherThread wakes up
1186       // periodically so the fatal error handler doesn't need to do anything;
1187       // also because the WatcherThread is less likely to crash than other
1188       // threads.
1189 
1190       for (;;) {
1191         if (!ShowMessageBoxOnError
1192          && (OnError == NULL || OnError[0] == '\0')
1193          && Arguments::abort_hook() == NULL) {
1194              os::sleep(this, 2 * 60 * 1000, false);
1195              fdStream err(defaultStream::output_fd());
1196              err.print_raw_cr("# [ timer expired, abort... ]");
1197              // skip atexit/vm_exit/vm_abort hooks
1198              os::die();
1199         }
1200 
1201         // Wake up 5 seconds later, the fatal handler may reset OnError or
1202         // ShowMessageBoxOnError when it is ready to abort.
1203         os::sleep(this, 5 * 1000, false);
1204       }
1205     }
1206 
1207     PeriodicTask::real_time_tick(time_to_wait);
1208 
1209     // If we have no more tasks left due to dynamic disenrollment,
1210     // shut down the thread since we don't currently support dynamic enrollment
1211     if (PeriodicTask::num_tasks() == 0) {
1212       _should_terminate = true;
1213     }
1214   }
1215 
1216   // Signal that it is terminated
1217   {
1218     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1219     _watcher_thread = NULL;
1220     Terminator_lock->notify();
1221   }
1222 
1223   // Thread destructor usually does this..
1224   ThreadLocalStorage::set_thread(NULL);
1225 }
1226 
1227 void WatcherThread::start() {
1228   if (watcher_thread() == NULL) {
1229     _should_terminate = false;
1230     // Create the single instance of WatcherThread
1231     new WatcherThread();
1232   }
1233 }
1234 
1235 void WatcherThread::stop() {
1236   // it is ok to take late safepoints here, if needed
1237   MutexLocker mu(Terminator_lock);
1238   _should_terminate = true;
1239   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1240 
1241   Thread* watcher = watcher_thread();
1242   if (watcher != NULL)
1243     watcher->_SleepEvent->unpark();
1244 
1245   while(watcher_thread() != NULL) {
1246     // This wait should make safepoint checks, wait without a timeout,
1247     // and wait as a suspend-equivalent condition.
1248     //
1249     // Note: If the FlatProfiler is running, then this thread is waiting
1250     // for the WatcherThread to terminate and the WatcherThread, via the
1251     // FlatProfiler task, is waiting for the external suspend request on
1252     // this thread to complete. wait_for_ext_suspend_completion() will
1253     // eventually timeout, but that takes time. Making this wait a
1254     // suspend-equivalent condition solves that timeout problem.
1255     //
1256     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1257                           Mutex::_as_suspend_equivalent_flag);
1258   }
1259 }
1260 
1261 void WatcherThread::print_on(outputStream* st) const {
1262   st->print("\"%s\" ", name());
1263   Thread::print_on(st);
1264   st->cr();
1265 }
1266 
1267 // ======= JavaThread ========
1268 
1269 // A JavaThread is a normal Java thread
1270 
1271 void JavaThread::initialize() {
1272   // Initialize fields
1273 
1274   // Set the claimed par_id to -1 (ie not claiming any par_ids)
1275   set_claimed_par_id(-1);
1276 
1277   set_saved_exception_pc(NULL);
1278   set_threadObj(NULL);
1279   _anchor.clear();
1280   set_entry_point(NULL);
1281   set_jni_functions(jni_functions());
1282   set_callee_target(NULL);
1283   set_vm_result(NULL);
1284   set_vm_result_2(NULL);
1285   set_vframe_array_head(NULL);
1286   set_vframe_array_last(NULL);
1287   set_deferred_locals(NULL);
1288   set_deopt_mark(NULL);
1289   set_deopt_nmethod(NULL);
1290   clear_must_deopt_id();
1291   set_monitor_chunks(NULL);
1292   set_next(NULL);
1293   set_thread_state(_thread_new);
1294   _terminated = _not_terminated;
1295   _privileged_stack_top = NULL;
1296   _array_for_gc = NULL;
1297   _suspend_equivalent = false;
1298   _in_deopt_handler = 0;
1299   _doing_unsafe_access = false;
1300   _stack_guard_state = stack_guard_unused;
1301   _exception_oop = NULL;
1302   _exception_pc  = 0;
1303   _exception_handler_pc = 0;
1304   _is_method_handle_return = 0;
1305   _jvmti_thread_state= NULL;
1306   _should_post_on_exceptions_flag = JNI_FALSE;
1307   _jvmti_get_loaded_classes_closure = NULL;
1308   _interp_only_mode    = 0;
1309   _special_runtime_exit_condition = _no_async_condition;
1310   _pending_async_exception = NULL;
1311   _is_compiling = false;
1312   _thread_stat = NULL;
1313   _thread_stat = new ThreadStatistics();
1314   _blocked_on_compilation = false;
1315   _jni_active_critical = 0;
1316   _do_not_unlock_if_synchronized = false;
1317   _cached_monitor_info = NULL;
1318   _parker = Parker::Allocate(this) ;
1319 
1320 #ifndef PRODUCT
1321   _jmp_ring_index = 0;
1322   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1323     record_jump(NULL, NULL, NULL, 0);
1324   }
1325 #endif /* PRODUCT */
1326 
1327   set_thread_profiler(NULL);
1328   if (FlatProfiler::is_active()) {
1329     // This is where we would decide to either give each thread it's own profiler
1330     // or use one global one from FlatProfiler,
1331     // or up to some count of the number of profiled threads, etc.
1332     ThreadProfiler* pp = new ThreadProfiler();
1333     pp->engage();
1334     set_thread_profiler(pp);
1335   }
1336 
1337   // Setup safepoint state info for this thread
1338   ThreadSafepointState::create(this);
1339 
1340   debug_only(_java_call_counter = 0);
1341 
1342   // JVMTI PopFrame support
1343   _popframe_condition = popframe_inactive;
1344   _popframe_preserved_args = NULL;
1345   _popframe_preserved_args_size = 0;
1346 
1347   pd_initialize();
1348 }
1349 
1350 #ifndef SERIALGC
1351 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1352 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1353 #endif // !SERIALGC
1354 
1355 JavaThread::JavaThread(bool is_attaching_via_jni) :
1356   Thread()
1357 #ifndef SERIALGC
1358   , _satb_mark_queue(&_satb_mark_queue_set),
1359   _dirty_card_queue(&_dirty_card_queue_set)
1360 #endif // !SERIALGC
1361 {
1362   initialize();
1363   if (is_attaching_via_jni) {
1364     _jni_attach_state = _attaching_via_jni;
1365   } else {
1366     _jni_attach_state = _not_attaching_via_jni;
1367   }
1368   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1369 }
1370 
1371 bool JavaThread::reguard_stack(address cur_sp) {
1372   if (_stack_guard_state != stack_guard_yellow_disabled) {
1373     return true; // Stack already guarded or guard pages not needed.
1374   }
1375 
1376   if (register_stack_overflow()) {
1377     // For those architectures which have separate register and
1378     // memory stacks, we must check the register stack to see if
1379     // it has overflowed.
1380     return false;
1381   }
1382 
1383   // Java code never executes within the yellow zone: the latter is only
1384   // there to provoke an exception during stack banging.  If java code
1385   // is executing there, either StackShadowPages should be larger, or
1386   // some exception code in c1, c2 or the interpreter isn't unwinding
1387   // when it should.
1388   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1389 
1390   enable_stack_yellow_zone();
1391   return true;
1392 }
1393 
1394 bool JavaThread::reguard_stack(void) {
1395   return reguard_stack(os::current_stack_pointer());
1396 }
1397 
1398 
1399 void JavaThread::block_if_vm_exited() {
1400   if (_terminated == _vm_exited) {
1401     // _vm_exited is set at safepoint, and Threads_lock is never released
1402     // we will block here forever
1403     Threads_lock->lock_without_safepoint_check();
1404     ShouldNotReachHere();
1405   }
1406 }
1407 
1408 
1409 // Remove this ifdef when C1 is ported to the compiler interface.
1410 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1411 
1412 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1413   Thread()
1414 #ifndef SERIALGC
1415   , _satb_mark_queue(&_satb_mark_queue_set),
1416   _dirty_card_queue(&_dirty_card_queue_set)
1417 #endif // !SERIALGC
1418 {
1419   if (TraceThreadEvents) {
1420     tty->print_cr("creating thread %p", this);
1421   }
1422   initialize();
1423   _jni_attach_state = _not_attaching_via_jni;
1424   set_entry_point(entry_point);
1425   // Create the native thread itself.
1426   // %note runtime_23
1427   os::ThreadType thr_type = os::java_thread;
1428   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1429                                                      os::java_thread;
1430   os::create_thread(this, thr_type, stack_sz);
1431 
1432   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1433   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1434   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1435   // the exception consists of creating the exception object & initializing it, initialization
1436   // will leave the VM via a JavaCall and then all locks must be unlocked).
1437   //
1438   // The thread is still suspended when we reach here. Thread must be explicit started
1439   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1440   // by calling Threads:add. The reason why this is not done here, is because the thread
1441   // object must be fully initialized (take a look at JVM_Start)
1442 }
1443 
1444 JavaThread::~JavaThread() {
1445   if (TraceThreadEvents) {
1446       tty->print_cr("terminate thread %p", this);
1447   }
1448 
1449   // JSR166 -- return the parker to the free list
1450   Parker::Release(_parker);
1451   _parker = NULL ;
1452 
1453   // Free any remaining  previous UnrollBlock
1454   vframeArray* old_array = vframe_array_last();
1455 
1456   if (old_array != NULL) {
1457     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1458     old_array->set_unroll_block(NULL);
1459     delete old_info;
1460     delete old_array;
1461   }
1462 
1463   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1464   if (deferred != NULL) {
1465     // This can only happen if thread is destroyed before deoptimization occurs.
1466     assert(deferred->length() != 0, "empty array!");
1467     do {
1468       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1469       deferred->remove_at(0);
1470       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1471       delete dlv;
1472     } while (deferred->length() != 0);
1473     delete deferred;
1474   }
1475 
1476   // All Java related clean up happens in exit
1477   ThreadSafepointState::destroy(this);
1478   if (_thread_profiler != NULL) delete _thread_profiler;
1479   if (_thread_stat != NULL) delete _thread_stat;
1480 }
1481 
1482 
1483 // The first routine called by a new Java thread
1484 void JavaThread::run() {
1485   // initialize thread-local alloc buffer related fields
1486   this->initialize_tlab();
1487 
1488   // used to test validitity of stack trace backs
1489   this->record_base_of_stack_pointer();
1490 
1491   // Record real stack base and size.
1492   this->record_stack_base_and_size();
1493 
1494   // Initialize thread local storage; set before calling MutexLocker
1495   this->initialize_thread_local_storage();
1496 
1497   this->create_stack_guard_pages();
1498 
1499   this->cache_global_variables();
1500 
1501   // Thread is now sufficient initialized to be handled by the safepoint code as being
1502   // in the VM. Change thread state from _thread_new to _thread_in_vm
1503   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1504 
1505   assert(JavaThread::current() == this, "sanity check");
1506   assert(!Thread::current()->owns_locks(), "sanity check");
1507 
1508   DTRACE_THREAD_PROBE(start, this);
1509 
1510   // This operation might block. We call that after all safepoint checks for a new thread has
1511   // been completed.
1512   this->set_active_handles(JNIHandleBlock::allocate_block());
1513 
1514   if (JvmtiExport::should_post_thread_life()) {
1515     JvmtiExport::post_thread_start(this);
1516   }
1517 
1518   EVENT_BEGIN(TraceEventThreadStart, event);
1519   EVENT_COMMIT(event,
1520      EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
1521 
1522   // We call another function to do the rest so we are sure that the stack addresses used
1523   // from there will be lower than the stack base just computed
1524   thread_main_inner();
1525 
1526   // Note, thread is no longer valid at this point!
1527 }
1528 
1529 
1530 void JavaThread::thread_main_inner() {
1531   assert(JavaThread::current() == this, "sanity check");
1532   assert(this->threadObj() != NULL, "just checking");
1533 
1534   // Execute thread entry point unless this thread has a pending exception
1535   // or has been stopped before starting.
1536   // Note: Due to JVM_StopThread we can have pending exceptions already!
1537   if (!this->has_pending_exception() &&
1538       !java_lang_Thread::is_stillborn(this->threadObj())) {
1539     {
1540       ResourceMark rm(this);
1541       this->set_native_thread_name(this->get_thread_name());
1542     }
1543     HandleMark hm(this);
1544     this->entry_point()(this, this);
1545   }
1546 
1547   DTRACE_THREAD_PROBE(stop, this);
1548 
1549   this->exit(false);
1550   delete this;
1551 }
1552 
1553 
1554 static void ensure_join(JavaThread* thread) {
1555   // We do not need to grap the Threads_lock, since we are operating on ourself.
1556   Handle threadObj(thread, thread->threadObj());
1557   assert(threadObj.not_null(), "java thread object must exist");
1558   ObjectLocker lock(threadObj, thread);
1559   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1560   thread->clear_pending_exception();
1561   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1562   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1563   // Clear the native thread instance - this makes isAlive return false and allows the join()
1564   // to complete once we've done the notify_all below
1565   java_lang_Thread::set_thread(threadObj(), NULL);
1566   lock.notify_all(thread);
1567   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1568   thread->clear_pending_exception();
1569 }
1570 
1571 
1572 // For any new cleanup additions, please check to see if they need to be applied to
1573 // cleanup_failed_attach_current_thread as well.
1574 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1575   assert(this == JavaThread::current(),  "thread consistency check");
1576   if (!InitializeJavaLangSystem) return;
1577 
1578   HandleMark hm(this);
1579   Handle uncaught_exception(this, this->pending_exception());
1580   this->clear_pending_exception();
1581   Handle threadObj(this, this->threadObj());
1582   assert(threadObj.not_null(), "Java thread object should be created");
1583 
1584   if (get_thread_profiler() != NULL) {
1585     get_thread_profiler()->disengage();
1586     ResourceMark rm;
1587     get_thread_profiler()->print(get_thread_name());
1588   }
1589 
1590 
1591   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1592   {
1593     EXCEPTION_MARK;
1594 
1595     CLEAR_PENDING_EXCEPTION;
1596   }
1597   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1598   // has to be fixed by a runtime query method
1599   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1600     // JSR-166: change call from from ThreadGroup.uncaughtException to
1601     // java.lang.Thread.dispatchUncaughtException
1602     if (uncaught_exception.not_null()) {
1603       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1604       {
1605         EXCEPTION_MARK;
1606         // Check if the method Thread.dispatchUncaughtException() exists. If so
1607         // call it.  Otherwise we have an older library without the JSR-166 changes,
1608         // so call ThreadGroup.uncaughtException()
1609         KlassHandle recvrKlass(THREAD, threadObj->klass());
1610         CallInfo callinfo;
1611         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1612         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1613                                            vmSymbols::dispatchUncaughtException_name(),
1614                                            vmSymbols::throwable_void_signature(),
1615                                            KlassHandle(), false, false, THREAD);
1616         CLEAR_PENDING_EXCEPTION;
1617         methodHandle method = callinfo.selected_method();
1618         if (method.not_null()) {
1619           JavaValue result(T_VOID);
1620           JavaCalls::call_virtual(&result,
1621                                   threadObj, thread_klass,
1622                                   vmSymbols::dispatchUncaughtException_name(),
1623                                   vmSymbols::throwable_void_signature(),
1624                                   uncaught_exception,
1625                                   THREAD);
1626         } else {
1627           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1628           JavaValue result(T_VOID);
1629           JavaCalls::call_virtual(&result,
1630                                   group, thread_group,
1631                                   vmSymbols::uncaughtException_name(),
1632                                   vmSymbols::thread_throwable_void_signature(),
1633                                   threadObj,           // Arg 1
1634                                   uncaught_exception,  // Arg 2
1635                                   THREAD);
1636         }
1637         if (HAS_PENDING_EXCEPTION) {
1638           ResourceMark rm(this);
1639           jio_fprintf(defaultStream::error_stream(),
1640                 "\nException: %s thrown from the UncaughtExceptionHandler"
1641                 " in thread \"%s\"\n",
1642                 Klass::cast(pending_exception()->klass())->external_name(),
1643                 get_thread_name());
1644           CLEAR_PENDING_EXCEPTION;
1645         }
1646       }
1647     }
1648 
1649     // Called before the java thread exit since we want to read info
1650     // from java_lang_Thread object
1651     EVENT_BEGIN(TraceEventThreadEnd, event);
1652     EVENT_COMMIT(event,
1653         EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
1654 
1655     // Call after last event on thread
1656     EVENT_THREAD_EXIT(this);
1657 
1658     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1659     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1660     // is deprecated anyhow.
1661     { int count = 3;
1662       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1663         EXCEPTION_MARK;
1664         JavaValue result(T_VOID);
1665         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1666         JavaCalls::call_virtual(&result,
1667                               threadObj, thread_klass,
1668                               vmSymbols::exit_method_name(),
1669                               vmSymbols::void_method_signature(),
1670                               THREAD);
1671         CLEAR_PENDING_EXCEPTION;
1672       }
1673     }
1674 
1675     // notify JVMTI
1676     if (JvmtiExport::should_post_thread_life()) {
1677       JvmtiExport::post_thread_end(this);
1678     }
1679 
1680     // We have notified the agents that we are exiting, before we go on,
1681     // we must check for a pending external suspend request and honor it
1682     // in order to not surprise the thread that made the suspend request.
1683     while (true) {
1684       {
1685         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1686         if (!is_external_suspend()) {
1687           set_terminated(_thread_exiting);
1688           ThreadService::current_thread_exiting(this);
1689           break;
1690         }
1691         // Implied else:
1692         // Things get a little tricky here. We have a pending external
1693         // suspend request, but we are holding the SR_lock so we
1694         // can't just self-suspend. So we temporarily drop the lock
1695         // and then self-suspend.
1696       }
1697 
1698       ThreadBlockInVM tbivm(this);
1699       java_suspend_self();
1700 
1701       // We're done with this suspend request, but we have to loop around
1702       // and check again. Eventually we will get SR_lock without a pending
1703       // external suspend request and will be able to mark ourselves as
1704       // exiting.
1705     }
1706     // no more external suspends are allowed at this point
1707   } else {
1708     // before_exit() has already posted JVMTI THREAD_END events
1709   }
1710 
1711   // Notify waiters on thread object. This has to be done after exit() is called
1712   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1713   // group should have the destroyed bit set before waiters are notified).
1714   ensure_join(this);
1715   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1716 
1717   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1718   // held by this thread must be released.  A detach operation must only
1719   // get here if there are no Java frames on the stack.  Therefore, any
1720   // owned monitors at this point MUST be JNI-acquired monitors which are
1721   // pre-inflated and in the monitor cache.
1722   //
1723   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1724   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1725     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1726     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1727     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1728   }
1729 
1730   // These things needs to be done while we are still a Java Thread. Make sure that thread
1731   // is in a consistent state, in case GC happens
1732   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1733 
1734   if (active_handles() != NULL) {
1735     JNIHandleBlock* block = active_handles();
1736     set_active_handles(NULL);
1737     JNIHandleBlock::release_block(block);
1738   }
1739 
1740   if (free_handle_block() != NULL) {
1741     JNIHandleBlock* block = free_handle_block();
1742     set_free_handle_block(NULL);
1743     JNIHandleBlock::release_block(block);
1744   }
1745 
1746   // These have to be removed while this is still a valid thread.
1747   remove_stack_guard_pages();
1748 
1749   if (UseTLAB) {
1750     tlab().make_parsable(true);  // retire TLAB
1751   }
1752 
1753   if (JvmtiEnv::environments_might_exist()) {
1754     JvmtiExport::cleanup_thread(this);
1755   }
1756 
1757 #ifndef SERIALGC
1758   // We must flush G1-related buffers before removing a thread from
1759   // the list of active threads.
1760   if (UseG1GC) {
1761     flush_barrier_queues();
1762   }
1763 #endif
1764 
1765   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1766   Threads::remove(this);
1767 }
1768 
1769 #ifndef SERIALGC
1770 // Flush G1-related queues.
1771 void JavaThread::flush_barrier_queues() {
1772   satb_mark_queue().flush();
1773   dirty_card_queue().flush();
1774 }
1775 
1776 void JavaThread::initialize_queues() {
1777   assert(!SafepointSynchronize::is_at_safepoint(),
1778          "we should not be at a safepoint");
1779 
1780   ObjPtrQueue& satb_queue = satb_mark_queue();
1781   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1782   // The SATB queue should have been constructed with its active
1783   // field set to false.
1784   assert(!satb_queue.is_active(), "SATB queue should not be active");
1785   assert(satb_queue.is_empty(), "SATB queue should be empty");
1786   // If we are creating the thread during a marking cycle, we should
1787   // set the active field of the SATB queue to true.
1788   if (satb_queue_set.is_active()) {
1789     satb_queue.set_active(true);
1790   }
1791 
1792   DirtyCardQueue& dirty_queue = dirty_card_queue();
1793   // The dirty card queue should have been constructed with its
1794   // active field set to true.
1795   assert(dirty_queue.is_active(), "dirty card queue should be active");
1796 }
1797 #endif // !SERIALGC
1798 
1799 void JavaThread::cleanup_failed_attach_current_thread() {
1800   if (get_thread_profiler() != NULL) {
1801     get_thread_profiler()->disengage();
1802     ResourceMark rm;
1803     get_thread_profiler()->print(get_thread_name());
1804   }
1805 
1806   if (active_handles() != NULL) {
1807     JNIHandleBlock* block = active_handles();
1808     set_active_handles(NULL);
1809     JNIHandleBlock::release_block(block);
1810   }
1811 
1812   if (free_handle_block() != NULL) {
1813     JNIHandleBlock* block = free_handle_block();
1814     set_free_handle_block(NULL);
1815     JNIHandleBlock::release_block(block);
1816   }
1817 
1818   // These have to be removed while this is still a valid thread.
1819   remove_stack_guard_pages();
1820 
1821   if (UseTLAB) {
1822     tlab().make_parsable(true);  // retire TLAB, if any
1823   }
1824 
1825 #ifndef SERIALGC
1826   if (UseG1GC) {
1827     flush_barrier_queues();
1828   }
1829 #endif
1830 
1831   Threads::remove(this);
1832   delete this;
1833 }
1834 
1835 
1836 
1837 
1838 JavaThread* JavaThread::active() {
1839   Thread* thread = ThreadLocalStorage::thread();
1840   assert(thread != NULL, "just checking");
1841   if (thread->is_Java_thread()) {
1842     return (JavaThread*) thread;
1843   } else {
1844     assert(thread->is_VM_thread(), "this must be a vm thread");
1845     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1846     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1847     assert(ret->is_Java_thread(), "must be a Java thread");
1848     return ret;
1849   }
1850 }
1851 
1852 bool JavaThread::is_lock_owned(address adr) const {
1853   if (Thread::is_lock_owned(adr)) return true;
1854 
1855   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1856     if (chunk->contains(adr)) return true;
1857   }
1858 
1859   return false;
1860 }
1861 
1862 
1863 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1864   chunk->set_next(monitor_chunks());
1865   set_monitor_chunks(chunk);
1866 }
1867 
1868 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1869   guarantee(monitor_chunks() != NULL, "must be non empty");
1870   if (monitor_chunks() == chunk) {
1871     set_monitor_chunks(chunk->next());
1872   } else {
1873     MonitorChunk* prev = monitor_chunks();
1874     while (prev->next() != chunk) prev = prev->next();
1875     prev->set_next(chunk->next());
1876   }
1877 }
1878 
1879 // JVM support.
1880 
1881 // Note: this function shouldn't block if it's called in
1882 // _thread_in_native_trans state (such as from
1883 // check_special_condition_for_native_trans()).
1884 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1885 
1886   if (has_last_Java_frame() && has_async_condition()) {
1887     // If we are at a polling page safepoint (not a poll return)
1888     // then we must defer async exception because live registers
1889     // will be clobbered by the exception path. Poll return is
1890     // ok because the call we a returning from already collides
1891     // with exception handling registers and so there is no issue.
1892     // (The exception handling path kills call result registers but
1893     //  this is ok since the exception kills the result anyway).
1894 
1895     if (is_at_poll_safepoint()) {
1896       // if the code we are returning to has deoptimized we must defer
1897       // the exception otherwise live registers get clobbered on the
1898       // exception path before deoptimization is able to retrieve them.
1899       //
1900       RegisterMap map(this, false);
1901       frame caller_fr = last_frame().sender(&map);
1902       assert(caller_fr.is_compiled_frame(), "what?");
1903       if (caller_fr.is_deoptimized_frame()) {
1904         if (TraceExceptions) {
1905           ResourceMark rm;
1906           tty->print_cr("deferred async exception at compiled safepoint");
1907         }
1908         return;
1909       }
1910     }
1911   }
1912 
1913   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1914   if (condition == _no_async_condition) {
1915     // Conditions have changed since has_special_runtime_exit_condition()
1916     // was called:
1917     // - if we were here only because of an external suspend request,
1918     //   then that was taken care of above (or cancelled) so we are done
1919     // - if we were here because of another async request, then it has
1920     //   been cleared between the has_special_runtime_exit_condition()
1921     //   and now so again we are done
1922     return;
1923   }
1924 
1925   // Check for pending async. exception
1926   if (_pending_async_exception != NULL) {
1927     // Only overwrite an already pending exception, if it is not a threadDeath.
1928     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
1929 
1930       // We cannot call Exceptions::_throw(...) here because we cannot block
1931       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
1932 
1933       if (TraceExceptions) {
1934         ResourceMark rm;
1935         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
1936         if (has_last_Java_frame() ) {
1937           frame f = last_frame();
1938           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
1939         }
1940         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1941       }
1942       _pending_async_exception = NULL;
1943       clear_has_async_exception();
1944     }
1945   }
1946 
1947   if (check_unsafe_error &&
1948       condition == _async_unsafe_access_error && !has_pending_exception()) {
1949     condition = _no_async_condition;  // done
1950     switch (thread_state()) {
1951     case _thread_in_vm:
1952       {
1953         JavaThread* THREAD = this;
1954         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1955       }
1956     case _thread_in_native:
1957       {
1958         ThreadInVMfromNative tiv(this);
1959         JavaThread* THREAD = this;
1960         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1961       }
1962     case _thread_in_Java:
1963       {
1964         ThreadInVMfromJava tiv(this);
1965         JavaThread* THREAD = this;
1966         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
1967       }
1968     default:
1969       ShouldNotReachHere();
1970     }
1971   }
1972 
1973   assert(condition == _no_async_condition || has_pending_exception() ||
1974          (!check_unsafe_error && condition == _async_unsafe_access_error),
1975          "must have handled the async condition, if no exception");
1976 }
1977 
1978 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
1979   //
1980   // Check for pending external suspend. Internal suspend requests do
1981   // not use handle_special_runtime_exit_condition().
1982   // If JNIEnv proxies are allowed, don't self-suspend if the target
1983   // thread is not the current thread. In older versions of jdbx, jdbx
1984   // threads could call into the VM with another thread's JNIEnv so we
1985   // can be here operating on behalf of a suspended thread (4432884).
1986   bool do_self_suspend = is_external_suspend_with_lock();
1987   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
1988     //
1989     // Because thread is external suspended the safepoint code will count
1990     // thread as at a safepoint. This can be odd because we can be here
1991     // as _thread_in_Java which would normally transition to _thread_blocked
1992     // at a safepoint. We would like to mark the thread as _thread_blocked
1993     // before calling java_suspend_self like all other callers of it but
1994     // we must then observe proper safepoint protocol. (We can't leave
1995     // _thread_blocked with a safepoint in progress). However we can be
1996     // here as _thread_in_native_trans so we can't use a normal transition
1997     // constructor/destructor pair because they assert on that type of
1998     // transition. We could do something like:
1999     //
2000     // JavaThreadState state = thread_state();
2001     // set_thread_state(_thread_in_vm);
2002     // {
2003     //   ThreadBlockInVM tbivm(this);
2004     //   java_suspend_self()
2005     // }
2006     // set_thread_state(_thread_in_vm_trans);
2007     // if (safepoint) block;
2008     // set_thread_state(state);
2009     //
2010     // but that is pretty messy. Instead we just go with the way the
2011     // code has worked before and note that this is the only path to
2012     // java_suspend_self that doesn't put the thread in _thread_blocked
2013     // mode.
2014 
2015     frame_anchor()->make_walkable(this);
2016     java_suspend_self();
2017 
2018     // We might be here for reasons in addition to the self-suspend request
2019     // so check for other async requests.
2020   }
2021 
2022   if (check_asyncs) {
2023     check_and_handle_async_exceptions();
2024   }
2025 }
2026 
2027 void JavaThread::send_thread_stop(oop java_throwable)  {
2028   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2029   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2030   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2031 
2032   // Do not throw asynchronous exceptions against the compiler thread
2033   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2034   if (is_Compiler_thread()) return;
2035 
2036   {
2037     // Actually throw the Throwable against the target Thread - however
2038     // only if there is no thread death exception installed already.
2039     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2040       // If the topmost frame is a runtime stub, then we are calling into
2041       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2042       // must deoptimize the caller before continuing, as the compiled  exception handler table
2043       // may not be valid
2044       if (has_last_Java_frame()) {
2045         frame f = last_frame();
2046         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2047           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2048           RegisterMap reg_map(this, UseBiasedLocking);
2049           frame compiled_frame = f.sender(&reg_map);
2050           if (compiled_frame.can_be_deoptimized()) {
2051             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2052           }
2053         }
2054       }
2055 
2056       // Set async. pending exception in thread.
2057       set_pending_async_exception(java_throwable);
2058 
2059       if (TraceExceptions) {
2060        ResourceMark rm;
2061        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
2062       }
2063       // for AbortVMOnException flag
2064       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
2065     }
2066   }
2067 
2068 
2069   // Interrupt thread so it will wake up from a potential wait()
2070   Thread::interrupt(this);
2071 }
2072 
2073 // External suspension mechanism.
2074 //
2075 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2076 // to any VM_locks and it is at a transition
2077 // Self-suspension will happen on the transition out of the vm.
2078 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2079 //
2080 // Guarantees on return:
2081 //   + Target thread will not execute any new bytecode (that's why we need to
2082 //     force a safepoint)
2083 //   + Target thread will not enter any new monitors
2084 //
2085 void JavaThread::java_suspend() {
2086   { MutexLocker mu(Threads_lock);
2087     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2088        return;
2089     }
2090   }
2091 
2092   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2093     if (!is_external_suspend()) {
2094       // a racing resume has cancelled us; bail out now
2095       return;
2096     }
2097 
2098     // suspend is done
2099     uint32_t debug_bits = 0;
2100     // Warning: is_ext_suspend_completed() may temporarily drop the
2101     // SR_lock to allow the thread to reach a stable thread state if
2102     // it is currently in a transient thread state.
2103     if (is_ext_suspend_completed(false /* !called_by_wait */,
2104                                  SuspendRetryDelay, &debug_bits) ) {
2105       return;
2106     }
2107   }
2108 
2109   VM_ForceSafepoint vm_suspend;
2110   VMThread::execute(&vm_suspend);
2111 }
2112 
2113 // Part II of external suspension.
2114 // A JavaThread self suspends when it detects a pending external suspend
2115 // request. This is usually on transitions. It is also done in places
2116 // where continuing to the next transition would surprise the caller,
2117 // e.g., monitor entry.
2118 //
2119 // Returns the number of times that the thread self-suspended.
2120 //
2121 // Note: DO NOT call java_suspend_self() when you just want to block current
2122 //       thread. java_suspend_self() is the second stage of cooperative
2123 //       suspension for external suspend requests and should only be used
2124 //       to complete an external suspend request.
2125 //
2126 int JavaThread::java_suspend_self() {
2127   int ret = 0;
2128 
2129   // we are in the process of exiting so don't suspend
2130   if (is_exiting()) {
2131      clear_external_suspend();
2132      return ret;
2133   }
2134 
2135   assert(_anchor.walkable() ||
2136     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2137     "must have walkable stack");
2138 
2139   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2140 
2141   assert(!this->is_ext_suspended(),
2142     "a thread trying to self-suspend should not already be suspended");
2143 
2144   if (this->is_suspend_equivalent()) {
2145     // If we are self-suspending as a result of the lifting of a
2146     // suspend equivalent condition, then the suspend_equivalent
2147     // flag is not cleared until we set the ext_suspended flag so
2148     // that wait_for_ext_suspend_completion() returns consistent
2149     // results.
2150     this->clear_suspend_equivalent();
2151   }
2152 
2153   // A racing resume may have cancelled us before we grabbed SR_lock
2154   // above. Or another external suspend request could be waiting for us
2155   // by the time we return from SR_lock()->wait(). The thread
2156   // that requested the suspension may already be trying to walk our
2157   // stack and if we return now, we can change the stack out from under
2158   // it. This would be a "bad thing (TM)" and cause the stack walker
2159   // to crash. We stay self-suspended until there are no more pending
2160   // external suspend requests.
2161   while (is_external_suspend()) {
2162     ret++;
2163     this->set_ext_suspended();
2164 
2165     // _ext_suspended flag is cleared by java_resume()
2166     while (is_ext_suspended()) {
2167       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2168     }
2169   }
2170 
2171   return ret;
2172 }
2173 
2174 #ifdef ASSERT
2175 // verify the JavaThread has not yet been published in the Threads::list, and
2176 // hence doesn't need protection from concurrent access at this stage
2177 void JavaThread::verify_not_published() {
2178   if (!Threads_lock->owned_by_self()) {
2179    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2180    assert( !Threads::includes(this),
2181            "java thread shouldn't have been published yet!");
2182   }
2183   else {
2184    assert( !Threads::includes(this),
2185            "java thread shouldn't have been published yet!");
2186   }
2187 }
2188 #endif
2189 
2190 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2191 // progress or when _suspend_flags is non-zero.
2192 // Current thread needs to self-suspend if there is a suspend request and/or
2193 // block if a safepoint is in progress.
2194 // Async exception ISN'T checked.
2195 // Note only the ThreadInVMfromNative transition can call this function
2196 // directly and when thread state is _thread_in_native_trans
2197 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2198   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2199 
2200   JavaThread *curJT = JavaThread::current();
2201   bool do_self_suspend = thread->is_external_suspend();
2202 
2203   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2204 
2205   // If JNIEnv proxies are allowed, don't self-suspend if the target
2206   // thread is not the current thread. In older versions of jdbx, jdbx
2207   // threads could call into the VM with another thread's JNIEnv so we
2208   // can be here operating on behalf of a suspended thread (4432884).
2209   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2210     JavaThreadState state = thread->thread_state();
2211 
2212     // We mark this thread_blocked state as a suspend-equivalent so
2213     // that a caller to is_ext_suspend_completed() won't be confused.
2214     // The suspend-equivalent state is cleared by java_suspend_self().
2215     thread->set_suspend_equivalent();
2216 
2217     // If the safepoint code sees the _thread_in_native_trans state, it will
2218     // wait until the thread changes to other thread state. There is no
2219     // guarantee on how soon we can obtain the SR_lock and complete the
2220     // self-suspend request. It would be a bad idea to let safepoint wait for
2221     // too long. Temporarily change the state to _thread_blocked to
2222     // let the VM thread know that this thread is ready for GC. The problem
2223     // of changing thread state is that safepoint could happen just after
2224     // java_suspend_self() returns after being resumed, and VM thread will
2225     // see the _thread_blocked state. We must check for safepoint
2226     // after restoring the state and make sure we won't leave while a safepoint
2227     // is in progress.
2228     thread->set_thread_state(_thread_blocked);
2229     thread->java_suspend_self();
2230     thread->set_thread_state(state);
2231     // Make sure new state is seen by VM thread
2232     if (os::is_MP()) {
2233       if (UseMembar) {
2234         // Force a fence between the write above and read below
2235         OrderAccess::fence();
2236       } else {
2237         // Must use this rather than serialization page in particular on Windows
2238         InterfaceSupport::serialize_memory(thread);
2239       }
2240     }
2241   }
2242 
2243   if (SafepointSynchronize::do_call_back()) {
2244     // If we are safepointing, then block the caller which may not be
2245     // the same as the target thread (see above).
2246     SafepointSynchronize::block(curJT);
2247   }
2248 
2249   if (thread->is_deopt_suspend()) {
2250     thread->clear_deopt_suspend();
2251     RegisterMap map(thread, false);
2252     frame f = thread->last_frame();
2253     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2254       f = f.sender(&map);
2255     }
2256     if (f.id() == thread->must_deopt_id()) {
2257       thread->clear_must_deopt_id();
2258       f.deoptimize(thread);
2259     } else {
2260       fatal("missed deoptimization!");
2261     }
2262   }
2263 }
2264 
2265 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2266 // progress or when _suspend_flags is non-zero.
2267 // Current thread needs to self-suspend if there is a suspend request and/or
2268 // block if a safepoint is in progress.
2269 // Also check for pending async exception (not including unsafe access error).
2270 // Note only the native==>VM/Java barriers can call this function and when
2271 // thread state is _thread_in_native_trans.
2272 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2273   check_safepoint_and_suspend_for_native_trans(thread);
2274 
2275   if (thread->has_async_exception()) {
2276     // We are in _thread_in_native_trans state, don't handle unsafe
2277     // access error since that may block.
2278     thread->check_and_handle_async_exceptions(false);
2279   }
2280 }
2281 
2282 // This is a variant of the normal
2283 // check_special_condition_for_native_trans with slightly different
2284 // semantics for use by critical native wrappers.  It does all the
2285 // normal checks but also performs the transition back into
2286 // thread_in_Java state.  This is required so that critical natives
2287 // can potentially block and perform a GC if they are the last thread
2288 // exiting the GC_locker.
2289 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2290   check_special_condition_for_native_trans(thread);
2291 
2292   // Finish the transition
2293   thread->set_thread_state(_thread_in_Java);
2294 
2295   if (thread->do_critical_native_unlock()) {
2296     ThreadInVMfromJavaNoAsyncException tiv(thread);
2297     GC_locker::unlock_critical(thread);
2298     thread->clear_critical_native_unlock();
2299   }
2300 }
2301 
2302 // We need to guarantee the Threads_lock here, since resumes are not
2303 // allowed during safepoint synchronization
2304 // Can only resume from an external suspension
2305 void JavaThread::java_resume() {
2306   assert_locked_or_safepoint(Threads_lock);
2307 
2308   // Sanity check: thread is gone, has started exiting or the thread
2309   // was not externally suspended.
2310   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2311     return;
2312   }
2313 
2314   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2315 
2316   clear_external_suspend();
2317 
2318   if (is_ext_suspended()) {
2319     clear_ext_suspended();
2320     SR_lock()->notify_all();
2321   }
2322 }
2323 
2324 void JavaThread::create_stack_guard_pages() {
2325   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2326   address low_addr = stack_base() - stack_size();
2327   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2328 
2329   int allocate = os::allocate_stack_guard_pages();
2330   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2331 
2332   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2333     warning("Attempt to allocate stack guard pages failed.");
2334     return;
2335   }
2336 
2337   if (os::guard_memory((char *) low_addr, len)) {
2338     _stack_guard_state = stack_guard_enabled;
2339   } else {
2340     warning("Attempt to protect stack guard pages failed.");
2341     if (os::uncommit_memory((char *) low_addr, len)) {
2342       warning("Attempt to deallocate stack guard pages failed.");
2343     }
2344   }
2345 }
2346 
2347 void JavaThread::remove_stack_guard_pages() {
2348   if (_stack_guard_state == stack_guard_unused) return;
2349   address low_addr = stack_base() - stack_size();
2350   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2351 
2352   if (os::allocate_stack_guard_pages()) {
2353     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2354       _stack_guard_state = stack_guard_unused;
2355     } else {
2356       warning("Attempt to deallocate stack guard pages failed.");
2357     }
2358   } else {
2359     if (_stack_guard_state == stack_guard_unused) return;
2360     if (os::unguard_memory((char *) low_addr, len)) {
2361       _stack_guard_state = stack_guard_unused;
2362     } else {
2363         warning("Attempt to unprotect stack guard pages failed.");
2364     }
2365   }
2366 }
2367 
2368 void JavaThread::enable_stack_yellow_zone() {
2369   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2370   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2371 
2372   // The base notation is from the stacks point of view, growing downward.
2373   // We need to adjust it to work correctly with guard_memory()
2374   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2375 
2376   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2377   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2378 
2379   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2380     _stack_guard_state = stack_guard_enabled;
2381   } else {
2382     warning("Attempt to guard stack yellow zone failed.");
2383   }
2384   enable_register_stack_guard();
2385 }
2386 
2387 void JavaThread::disable_stack_yellow_zone() {
2388   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2389   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2390 
2391   // Simply return if called for a thread that does not use guard pages.
2392   if (_stack_guard_state == stack_guard_unused) return;
2393 
2394   // The base notation is from the stacks point of view, growing downward.
2395   // We need to adjust it to work correctly with guard_memory()
2396   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2397 
2398   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2399     _stack_guard_state = stack_guard_yellow_disabled;
2400   } else {
2401     warning("Attempt to unguard stack yellow zone failed.");
2402   }
2403   disable_register_stack_guard();
2404 }
2405 
2406 void JavaThread::enable_stack_red_zone() {
2407   // The base notation is from the stacks point of view, growing downward.
2408   // We need to adjust it to work correctly with guard_memory()
2409   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2410   address base = stack_red_zone_base() - stack_red_zone_size();
2411 
2412   guarantee(base < stack_base(),"Error calculating stack red zone");
2413   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2414 
2415   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2416     warning("Attempt to guard stack red zone failed.");
2417   }
2418 }
2419 
2420 void JavaThread::disable_stack_red_zone() {
2421   // The base notation is from the stacks point of view, growing downward.
2422   // We need to adjust it to work correctly with guard_memory()
2423   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2424   address base = stack_red_zone_base() - stack_red_zone_size();
2425   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2426     warning("Attempt to unguard stack red zone failed.");
2427   }
2428 }
2429 
2430 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2431   // ignore is there is no stack
2432   if (!has_last_Java_frame()) return;
2433   // traverse the stack frames. Starts from top frame.
2434   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2435     frame* fr = fst.current();
2436     f(fr, fst.register_map());
2437   }
2438 }
2439 
2440 
2441 #ifndef PRODUCT
2442 // Deoptimization
2443 // Function for testing deoptimization
2444 void JavaThread::deoptimize() {
2445   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2446   StackFrameStream fst(this, UseBiasedLocking);
2447   bool deopt = false;           // Dump stack only if a deopt actually happens.
2448   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2449   // Iterate over all frames in the thread and deoptimize
2450   for(; !fst.is_done(); fst.next()) {
2451     if(fst.current()->can_be_deoptimized()) {
2452 
2453       if (only_at) {
2454         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2455         // consists of comma or carriage return separated numbers so
2456         // search for the current bci in that string.
2457         address pc = fst.current()->pc();
2458         nmethod* nm =  (nmethod*) fst.current()->cb();
2459         ScopeDesc* sd = nm->scope_desc_at( pc);
2460         char buffer[8];
2461         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2462         size_t len = strlen(buffer);
2463         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2464         while (found != NULL) {
2465           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2466               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2467             // Check that the bci found is bracketed by terminators.
2468             break;
2469           }
2470           found = strstr(found + 1, buffer);
2471         }
2472         if (!found) {
2473           continue;
2474         }
2475       }
2476 
2477       if (DebugDeoptimization && !deopt) {
2478         deopt = true; // One-time only print before deopt
2479         tty->print_cr("[BEFORE Deoptimization]");
2480         trace_frames();
2481         trace_stack();
2482       }
2483       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2484     }
2485   }
2486 
2487   if (DebugDeoptimization && deopt) {
2488     tty->print_cr("[AFTER Deoptimization]");
2489     trace_frames();
2490   }
2491 }
2492 
2493 
2494 // Make zombies
2495 void JavaThread::make_zombies() {
2496   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2497     if (fst.current()->can_be_deoptimized()) {
2498       // it is a Java nmethod
2499       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2500       nm->make_not_entrant();
2501     }
2502   }
2503 }
2504 #endif // PRODUCT
2505 
2506 
2507 void JavaThread::deoptimized_wrt_marked_nmethods() {
2508   if (!has_last_Java_frame()) return;
2509   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2510   StackFrameStream fst(this, UseBiasedLocking);
2511   for(; !fst.is_done(); fst.next()) {
2512     if (fst.current()->should_be_deoptimized()) {
2513       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2514     }
2515   }
2516 }
2517 
2518 
2519 // GC support
2520 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2521 
2522 void JavaThread::gc_epilogue() {
2523   frames_do(frame_gc_epilogue);
2524 }
2525 
2526 
2527 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2528 
2529 void JavaThread::gc_prologue() {
2530   frames_do(frame_gc_prologue);
2531 }
2532 
2533 // If the caller is a NamedThread, then remember, in the current scope,
2534 // the given JavaThread in its _processed_thread field.
2535 class RememberProcessedThread: public StackObj {
2536   NamedThread* _cur_thr;
2537 public:
2538   RememberProcessedThread(JavaThread* jthr) {
2539     Thread* thread = Thread::current();
2540     if (thread->is_Named_thread()) {
2541       _cur_thr = (NamedThread *)thread;
2542       _cur_thr->set_processed_thread(jthr);
2543     } else {
2544       _cur_thr = NULL;
2545     }
2546   }
2547 
2548   ~RememberProcessedThread() {
2549     if (_cur_thr) {
2550       _cur_thr->set_processed_thread(NULL);
2551     }
2552   }
2553 };
2554 
2555 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2556   // Verify that the deferred card marks have been flushed.
2557   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2558 
2559   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2560   // since there may be more than one thread using each ThreadProfiler.
2561 
2562   // Traverse the GCHandles
2563   Thread::oops_do(f, cf);
2564 
2565   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2566           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2567 
2568   if (has_last_Java_frame()) {
2569     // Record JavaThread to GC thread
2570     RememberProcessedThread rpt(this);
2571 
2572     // Traverse the privileged stack
2573     if (_privileged_stack_top != NULL) {
2574       _privileged_stack_top->oops_do(f);
2575     }
2576 
2577     // traverse the registered growable array
2578     if (_array_for_gc != NULL) {
2579       for (int index = 0; index < _array_for_gc->length(); index++) {
2580         f->do_oop(_array_for_gc->adr_at(index));
2581       }
2582     }
2583 
2584     // Traverse the monitor chunks
2585     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2586       chunk->oops_do(f);
2587     }
2588 
2589     // Traverse the execution stack
2590     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2591       fst.current()->oops_do(f, cf, fst.register_map());
2592     }
2593   }
2594 
2595   // callee_target is never live across a gc point so NULL it here should
2596   // it still contain a methdOop.
2597 
2598   set_callee_target(NULL);
2599 
2600   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2601   // If we have deferred set_locals there might be oops waiting to be
2602   // written
2603   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2604   if (list != NULL) {
2605     for (int i = 0; i < list->length(); i++) {
2606       list->at(i)->oops_do(f);
2607     }
2608   }
2609 
2610   // Traverse instance variables at the end since the GC may be moving things
2611   // around using this function
2612   f->do_oop((oop*) &_threadObj);
2613   f->do_oop((oop*) &_vm_result);
2614   f->do_oop((oop*) &_vm_result_2);
2615   f->do_oop((oop*) &_exception_oop);
2616   f->do_oop((oop*) &_pending_async_exception);
2617 
2618   if (jvmti_thread_state() != NULL) {
2619     jvmti_thread_state()->oops_do(f);
2620   }
2621 }
2622 
2623 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2624   Thread::nmethods_do(cf);  // (super method is a no-op)
2625 
2626   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2627           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2628 
2629   if (has_last_Java_frame()) {
2630     // Traverse the execution stack
2631     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2632       fst.current()->nmethods_do(cf);
2633     }
2634   }
2635 }
2636 
2637 // Printing
2638 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2639   switch (_thread_state) {
2640   case _thread_uninitialized:     return "_thread_uninitialized";
2641   case _thread_new:               return "_thread_new";
2642   case _thread_new_trans:         return "_thread_new_trans";
2643   case _thread_in_native:         return "_thread_in_native";
2644   case _thread_in_native_trans:   return "_thread_in_native_trans";
2645   case _thread_in_vm:             return "_thread_in_vm";
2646   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2647   case _thread_in_Java:           return "_thread_in_Java";
2648   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2649   case _thread_blocked:           return "_thread_blocked";
2650   case _thread_blocked_trans:     return "_thread_blocked_trans";
2651   default:                        return "unknown thread state";
2652   }
2653 }
2654 
2655 #ifndef PRODUCT
2656 void JavaThread::print_thread_state_on(outputStream *st) const {
2657   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2658 };
2659 void JavaThread::print_thread_state() const {
2660   print_thread_state_on(tty);
2661 };
2662 #endif // PRODUCT
2663 
2664 // Called by Threads::print() for VM_PrintThreads operation
2665 void JavaThread::print_on(outputStream *st) const {
2666   st->print("\"%s\" ", get_thread_name());
2667   oop thread_oop = threadObj();
2668   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2669   Thread::print_on(st);
2670   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2671   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2672   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2673     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2674   }
2675 #ifndef PRODUCT
2676   print_thread_state_on(st);
2677   _safepoint_state->print_on(st);
2678 #endif // PRODUCT
2679 }
2680 
2681 // Called by fatal error handler. The difference between this and
2682 // JavaThread::print() is that we can't grab lock or allocate memory.
2683 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2684   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2685   oop thread_obj = threadObj();
2686   if (thread_obj != NULL) {
2687      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2688   }
2689   st->print(" [");
2690   st->print("%s", _get_thread_state_name(_thread_state));
2691   if (osthread()) {
2692     st->print(", id=%d", osthread()->thread_id());
2693   }
2694   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2695             _stack_base - _stack_size, _stack_base);
2696   st->print("]");
2697   return;
2698 }
2699 
2700 // Verification
2701 
2702 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2703 
2704 void JavaThread::verify() {
2705   // Verify oops in the thread.
2706   oops_do(&VerifyOopClosure::verify_oop, NULL);
2707 
2708   // Verify the stack frames.
2709   frames_do(frame_verify);
2710 }
2711 
2712 // CR 6300358 (sub-CR 2137150)
2713 // Most callers of this method assume that it can't return NULL but a
2714 // thread may not have a name whilst it is in the process of attaching to
2715 // the VM - see CR 6412693, and there are places where a JavaThread can be
2716 // seen prior to having it's threadObj set (eg JNI attaching threads and
2717 // if vm exit occurs during initialization). These cases can all be accounted
2718 // for such that this method never returns NULL.
2719 const char* JavaThread::get_thread_name() const {
2720 #ifdef ASSERT
2721   // early safepoints can hit while current thread does not yet have TLS
2722   if (!SafepointSynchronize::is_at_safepoint()) {
2723     Thread *cur = Thread::current();
2724     if (!(cur->is_Java_thread() && cur == this)) {
2725       // Current JavaThreads are allowed to get their own name without
2726       // the Threads_lock.
2727       assert_locked_or_safepoint(Threads_lock);
2728     }
2729   }
2730 #endif // ASSERT
2731     return get_thread_name_string();
2732 }
2733 
2734 // Returns a non-NULL representation of this thread's name, or a suitable
2735 // descriptive string if there is no set name
2736 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2737   const char* name_str;
2738   oop thread_obj = threadObj();
2739   if (thread_obj != NULL) {
2740     typeArrayOop name = java_lang_Thread::name(thread_obj);
2741     if (name != NULL) {
2742       if (buf == NULL) {
2743         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2744       }
2745       else {
2746         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2747       }
2748     }
2749     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2750       name_str = "<no-name - thread is attaching>";
2751     }
2752     else {
2753       name_str = Thread::name();
2754     }
2755   }
2756   else {
2757     name_str = Thread::name();
2758   }
2759   assert(name_str != NULL, "unexpected NULL thread name");
2760   return name_str;
2761 }
2762 
2763 
2764 const char* JavaThread::get_threadgroup_name() const {
2765   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2766   oop thread_obj = threadObj();
2767   if (thread_obj != NULL) {
2768     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2769     if (thread_group != NULL) {
2770       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2771       // ThreadGroup.name can be null
2772       if (name != NULL) {
2773         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2774         return str;
2775       }
2776     }
2777   }
2778   return NULL;
2779 }
2780 
2781 const char* JavaThread::get_parent_name() const {
2782   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2783   oop thread_obj = threadObj();
2784   if (thread_obj != NULL) {
2785     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2786     if (thread_group != NULL) {
2787       oop parent = java_lang_ThreadGroup::parent(thread_group);
2788       if (parent != NULL) {
2789         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2790         // ThreadGroup.name can be null
2791         if (name != NULL) {
2792           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2793           return str;
2794         }
2795       }
2796     }
2797   }
2798   return NULL;
2799 }
2800 
2801 ThreadPriority JavaThread::java_priority() const {
2802   oop thr_oop = threadObj();
2803   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2804   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2805   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2806   return priority;
2807 }
2808 
2809 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2810 
2811   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2812   // Link Java Thread object <-> C++ Thread
2813 
2814   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2815   // and put it into a new Handle.  The Handle "thread_oop" can then
2816   // be used to pass the C++ thread object to other methods.
2817 
2818   // Set the Java level thread object (jthread) field of the
2819   // new thread (a JavaThread *) to C++ thread object using the
2820   // "thread_oop" handle.
2821 
2822   // Set the thread field (a JavaThread *) of the
2823   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2824 
2825   Handle thread_oop(Thread::current(),
2826                     JNIHandles::resolve_non_null(jni_thread));
2827   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
2828     "must be initialized");
2829   set_threadObj(thread_oop());
2830   java_lang_Thread::set_thread(thread_oop(), this);
2831 
2832   if (prio == NoPriority) {
2833     prio = java_lang_Thread::priority(thread_oop());
2834     assert(prio != NoPriority, "A valid priority should be present");
2835   }
2836 
2837   // Push the Java priority down to the native thread; needs Threads_lock
2838   Thread::set_priority(this, prio);
2839 
2840   // Add the new thread to the Threads list and set it in motion.
2841   // We must have threads lock in order to call Threads::add.
2842   // It is crucial that we do not block before the thread is
2843   // added to the Threads list for if a GC happens, then the java_thread oop
2844   // will not be visited by GC.
2845   Threads::add(this);
2846 }
2847 
2848 oop JavaThread::current_park_blocker() {
2849   // Support for JSR-166 locks
2850   oop thread_oop = threadObj();
2851   if (thread_oop != NULL &&
2852       JDK_Version::current().supports_thread_park_blocker()) {
2853     return java_lang_Thread::park_blocker(thread_oop);
2854   }
2855   return NULL;
2856 }
2857 
2858 
2859 void JavaThread::print_stack_on(outputStream* st) {
2860   if (!has_last_Java_frame()) return;
2861   ResourceMark rm;
2862   HandleMark   hm;
2863 
2864   RegisterMap reg_map(this);
2865   vframe* start_vf = last_java_vframe(&reg_map);
2866   int count = 0;
2867   for (vframe* f = start_vf; f; f = f->sender() ) {
2868     if (f->is_java_frame()) {
2869       javaVFrame* jvf = javaVFrame::cast(f);
2870       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2871 
2872       // Print out lock information
2873       if (JavaMonitorsInStackTrace) {
2874         jvf->print_lock_info_on(st, count);
2875       }
2876     } else {
2877       // Ignore non-Java frames
2878     }
2879 
2880     // Bail-out case for too deep stacks
2881     count++;
2882     if (MaxJavaStackTraceDepth == count) return;
2883   }
2884 }
2885 
2886 
2887 // JVMTI PopFrame support
2888 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2889   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2890   if (in_bytes(size_in_bytes) != 0) {
2891     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
2892     _popframe_preserved_args_size = in_bytes(size_in_bytes);
2893     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2894   }
2895 }
2896 
2897 void* JavaThread::popframe_preserved_args() {
2898   return _popframe_preserved_args;
2899 }
2900 
2901 ByteSize JavaThread::popframe_preserved_args_size() {
2902   return in_ByteSize(_popframe_preserved_args_size);
2903 }
2904 
2905 WordSize JavaThread::popframe_preserved_args_size_in_words() {
2906   int sz = in_bytes(popframe_preserved_args_size());
2907   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2908   return in_WordSize(sz / wordSize);
2909 }
2910 
2911 void JavaThread::popframe_free_preserved_args() {
2912   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2913   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
2914   _popframe_preserved_args = NULL;
2915   _popframe_preserved_args_size = 0;
2916 }
2917 
2918 #ifndef PRODUCT
2919 
2920 void JavaThread::trace_frames() {
2921   tty->print_cr("[Describe stack]");
2922   int frame_no = 1;
2923   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2924     tty->print("  %d. ", frame_no++);
2925     fst.current()->print_value_on(tty,this);
2926     tty->cr();
2927   }
2928 }
2929 
2930 class PrintAndVerifyOopClosure: public OopClosure {
2931  protected:
2932   template <class T> inline void do_oop_work(T* p) {
2933     oop obj = oopDesc::load_decode_heap_oop(p);
2934     if (obj == NULL) return;
2935     tty->print(INTPTR_FORMAT ": ", p);
2936     if (obj->is_oop_or_null()) {
2937       if (obj->is_objArray()) {
2938         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
2939       } else {
2940         obj->print();
2941       }
2942     } else {
2943       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
2944     }
2945     tty->cr();
2946   }
2947  public:
2948   virtual void do_oop(oop* p) { do_oop_work(p); }
2949   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
2950 };
2951 
2952 
2953 static void oops_print(frame* f, const RegisterMap *map) {
2954   PrintAndVerifyOopClosure print;
2955   f->print_value();
2956   f->oops_do(&print, NULL, (RegisterMap*)map);
2957 }
2958 
2959 // Print our all the locations that contain oops and whether they are
2960 // valid or not.  This useful when trying to find the oldest frame
2961 // where an oop has gone bad since the frame walk is from youngest to
2962 // oldest.
2963 void JavaThread::trace_oops() {
2964   tty->print_cr("[Trace oops]");
2965   frames_do(oops_print);
2966 }
2967 
2968 
2969 #ifdef ASSERT
2970 // Print or validate the layout of stack frames
2971 void JavaThread::print_frame_layout(int depth, bool validate_only) {
2972   ResourceMark rm;
2973   PRESERVE_EXCEPTION_MARK;
2974   FrameValues values;
2975   int frame_no = 0;
2976   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
2977     fst.current()->describe(values, ++frame_no);
2978     if (depth == frame_no) break;
2979   }
2980   if (validate_only) {
2981     values.validate();
2982   } else {
2983     tty->print_cr("[Describe stack layout]");
2984     values.print(this);
2985   }
2986 }
2987 #endif
2988 
2989 void JavaThread::trace_stack_from(vframe* start_vf) {
2990   ResourceMark rm;
2991   int vframe_no = 1;
2992   for (vframe* f = start_vf; f; f = f->sender() ) {
2993     if (f->is_java_frame()) {
2994       javaVFrame::cast(f)->print_activation(vframe_no++);
2995     } else {
2996       f->print();
2997     }
2998     if (vframe_no > StackPrintLimit) {
2999       tty->print_cr("...<more frames>...");
3000       return;
3001     }
3002   }
3003 }
3004 
3005 
3006 void JavaThread::trace_stack() {
3007   if (!has_last_Java_frame()) return;
3008   ResourceMark rm;
3009   HandleMark   hm;
3010   RegisterMap reg_map(this);
3011   trace_stack_from(last_java_vframe(&reg_map));
3012 }
3013 
3014 
3015 #endif // PRODUCT
3016 
3017 
3018 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3019   assert(reg_map != NULL, "a map must be given");
3020   frame f = last_frame();
3021   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3022     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3023   }
3024   return NULL;
3025 }
3026 
3027 
3028 klassOop JavaThread::security_get_caller_class(int depth) {
3029   vframeStream vfst(this);
3030   vfst.security_get_caller_frame(depth);
3031   if (!vfst.at_end()) {
3032     return vfst.method()->method_holder();
3033   }
3034   return NULL;
3035 }
3036 
3037 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3038   assert(thread->is_Compiler_thread(), "must be compiler thread");
3039   CompileBroker::compiler_thread_loop();
3040 }
3041 
3042 // Create a CompilerThread
3043 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3044 : JavaThread(&compiler_thread_entry) {
3045   _env   = NULL;
3046   _log   = NULL;
3047   _task  = NULL;
3048   _queue = queue;
3049   _counters = counters;
3050   _buffer_blob = NULL;
3051   _scanned_nmethod = NULL;
3052 
3053 #ifndef PRODUCT
3054   _ideal_graph_printer = NULL;
3055 #endif
3056 }
3057 
3058 void CompilerThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3059   JavaThread::oops_do(f, cf);
3060   if (_scanned_nmethod != NULL && cf != NULL) {
3061     // Safepoints can occur when the sweeper is scanning an nmethod so
3062     // process it here to make sure it isn't unloaded in the middle of
3063     // a scan.
3064     cf->do_code_blob(_scanned_nmethod);
3065   }
3066 }
3067 
3068 // ======= Threads ========
3069 
3070 // The Threads class links together all active threads, and provides
3071 // operations over all threads.  It is protected by its own Mutex
3072 // lock, which is also used in other contexts to protect thread
3073 // operations from having the thread being operated on from exiting
3074 // and going away unexpectedly (e.g., safepoint synchronization)
3075 
3076 JavaThread* Threads::_thread_list = NULL;
3077 int         Threads::_number_of_threads = 0;
3078 int         Threads::_number_of_non_daemon_threads = 0;
3079 int         Threads::_return_code = 0;
3080 size_t      JavaThread::_stack_size_at_create = 0;
3081 
3082 // All JavaThreads
3083 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3084 
3085 void os_stream();
3086 
3087 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3088 void Threads::threads_do(ThreadClosure* tc) {
3089   assert_locked_or_safepoint(Threads_lock);
3090   // ALL_JAVA_THREADS iterates through all JavaThreads
3091   ALL_JAVA_THREADS(p) {
3092     tc->do_thread(p);
3093   }
3094   // Someday we could have a table or list of all non-JavaThreads.
3095   // For now, just manually iterate through them.
3096   tc->do_thread(VMThread::vm_thread());
3097   Universe::heap()->gc_threads_do(tc);
3098   WatcherThread *wt = WatcherThread::watcher_thread();
3099   // Strictly speaking, the following NULL check isn't sufficient to make sure
3100   // the data for WatcherThread is still valid upon being examined. However,
3101   // considering that WatchThread terminates when the VM is on the way to
3102   // exit at safepoint, the chance of the above is extremely small. The right
3103   // way to prevent termination of WatcherThread would be to acquire
3104   // Terminator_lock, but we can't do that without violating the lock rank
3105   // checking in some cases.
3106   if (wt != NULL)
3107     tc->do_thread(wt);
3108 
3109   // If CompilerThreads ever become non-JavaThreads, add them here
3110 }
3111 
3112 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3113 
3114   extern void JDK_Version_init();
3115 
3116   // Check version
3117   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3118 
3119   // Initialize the output stream module
3120   ostream_init();
3121 
3122   // Process java launcher properties.
3123   Arguments::process_sun_java_launcher_properties(args);
3124 
3125   // Initialize the os module before using TLS
3126   os::init();
3127 
3128   // Initialize system properties.
3129   Arguments::init_system_properties();
3130 
3131   // So that JDK version can be used as a discrimintor when parsing arguments
3132   JDK_Version_init();
3133 
3134   // Update/Initialize System properties after JDK version number is known
3135   Arguments::init_version_specific_system_properties();
3136 
3137   // Parse arguments
3138   jint parse_result = Arguments::parse(args);
3139   if (parse_result != JNI_OK) return parse_result;
3140 
3141   if (PauseAtStartup) {
3142     os::pause();
3143   }
3144 
3145 #ifndef USDT2
3146   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3147 #else /* USDT2 */
3148   HOTSPOT_VM_INIT_BEGIN();
3149 #endif /* USDT2 */
3150 
3151   // Record VM creation timing statistics
3152   TraceVmCreationTime create_vm_timer;
3153   create_vm_timer.start();
3154 
3155   // Timing (must come after argument parsing)
3156   TraceTime timer("Create VM", TraceStartupTime);
3157 
3158   // Initialize the os module after parsing the args
3159   jint os_init_2_result = os::init_2();
3160   if (os_init_2_result != JNI_OK) return os_init_2_result;
3161 
3162   // Initialize output stream logging
3163   ostream_init_log();
3164 
3165   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3166   // Must be before create_vm_init_agents()
3167   if (Arguments::init_libraries_at_startup()) {
3168     convert_vm_init_libraries_to_agents();
3169   }
3170 
3171   // Launch -agentlib/-agentpath and converted -Xrun agents
3172   if (Arguments::init_agents_at_startup()) {
3173     create_vm_init_agents();
3174   }
3175 
3176   // Initialize Threads state
3177   _thread_list = NULL;
3178   _number_of_threads = 0;
3179   _number_of_non_daemon_threads = 0;
3180 
3181   // Initialize TLS
3182   ThreadLocalStorage::init();
3183 
3184   // Initialize global data structures and create system classes in heap
3185   vm_init_globals();
3186 
3187   // Attach the main thread to this os thread
3188   JavaThread* main_thread = new JavaThread();
3189   main_thread->set_thread_state(_thread_in_vm);
3190   // must do this before set_active_handles and initialize_thread_local_storage
3191   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3192   // change the stack size recorded here to one based on the java thread
3193   // stacksize. This adjusted size is what is used to figure the placement
3194   // of the guard pages.
3195   main_thread->record_stack_base_and_size();
3196   main_thread->initialize_thread_local_storage();
3197 
3198   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3199 
3200   if (!main_thread->set_as_starting_thread()) {
3201     vm_shutdown_during_initialization(
3202       "Failed necessary internal allocation. Out of swap space");
3203     delete main_thread;
3204     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3205     return JNI_ENOMEM;
3206   }
3207 
3208   // Enable guard page *after* os::create_main_thread(), otherwise it would
3209   // crash Linux VM, see notes in os_linux.cpp.
3210   main_thread->create_stack_guard_pages();
3211 
3212   // Initialize Java-Level synchronization subsystem
3213   ObjectMonitor::Initialize() ;
3214 
3215   // Initialize global modules
3216   jint status = init_globals();
3217   if (status != JNI_OK) {
3218     delete main_thread;
3219     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3220     return status;
3221   }
3222 
3223   // Must be run after init_ft which initializes ft_enabled
3224   if (TRACE_INITIALIZE() != JNI_OK) {
3225     vm_exit_during_initialization("Failed to initialize tracing backend");
3226   }
3227 
3228   // Should be done after the heap is fully created
3229   main_thread->cache_global_variables();
3230 
3231   HandleMark hm;
3232 
3233   { MutexLocker mu(Threads_lock);
3234     Threads::add(main_thread);
3235   }
3236 
3237   // Any JVMTI raw monitors entered in onload will transition into
3238   // real raw monitor. VM is setup enough here for raw monitor enter.
3239   JvmtiExport::transition_pending_onload_raw_monitors();
3240 
3241   if (VerifyBeforeGC &&
3242       Universe::heap()->total_collections() >= VerifyGCStartAt) {
3243     Universe::heap()->prepare_for_verify();
3244     Universe::verify();   // make sure we're starting with a clean slate
3245   }
3246 
3247   // Create the VMThread
3248   { TraceTime timer("Start VMThread", TraceStartupTime);
3249     VMThread::create();
3250     Thread* vmthread = VMThread::vm_thread();
3251 
3252     if (!os::create_thread(vmthread, os::vm_thread))
3253       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3254 
3255     // Wait for the VM thread to become ready, and VMThread::run to initialize
3256     // Monitors can have spurious returns, must always check another state flag
3257     {
3258       MutexLocker ml(Notify_lock);
3259       os::start_thread(vmthread);
3260       while (vmthread->active_handles() == NULL) {
3261         Notify_lock->wait();
3262       }
3263     }
3264   }
3265 
3266   assert (Universe::is_fully_initialized(), "not initialized");
3267   EXCEPTION_MARK;
3268 
3269   // At this point, the Universe is initialized, but we have not executed
3270   // any byte code.  Now is a good time (the only time) to dump out the
3271   // internal state of the JVM for sharing.
3272 
3273   if (DumpSharedSpaces) {
3274     Universe::heap()->preload_and_dump(CHECK_0);
3275     ShouldNotReachHere();
3276   }
3277 
3278   // Always call even when there are not JVMTI environments yet, since environments
3279   // may be attached late and JVMTI must track phases of VM execution
3280   JvmtiExport::enter_start_phase();
3281 
3282   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3283   JvmtiExport::post_vm_start();
3284 
3285   {
3286     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3287 
3288     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3289       create_vm_init_libraries();
3290     }
3291 
3292     if (InitializeJavaLangString) {
3293       initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3294     } else {
3295       warning("java.lang.String not initialized");
3296     }
3297 
3298     if (AggressiveOpts) {
3299       {
3300         // Forcibly initialize java/util/HashMap and mutate the private
3301         // static final "frontCacheEnabled" field before we start creating instances
3302 #ifdef ASSERT
3303         klassOop tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3304         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3305 #endif
3306         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3307         KlassHandle k = KlassHandle(THREAD, k_o);
3308         guarantee(k.not_null(), "Must find java/util/HashMap");
3309         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3310         ik->initialize(CHECK_0);
3311         fieldDescriptor fd;
3312         // Possible we might not find this field; if so, don't break
3313         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3314           k()->java_mirror()->bool_field_put(fd.offset(), true);
3315         }
3316       }
3317 
3318       if (UseStringCache) {
3319         // Forcibly initialize java/lang/StringValue and mutate the private
3320         // static final "stringCacheEnabled" field before we start creating instances
3321         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3322         // Possible that StringValue isn't present: if so, silently don't break
3323         if (k_o != NULL) {
3324           KlassHandle k = KlassHandle(THREAD, k_o);
3325           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3326           ik->initialize(CHECK_0);
3327           fieldDescriptor fd;
3328           // Possible we might not find this field: if so, silently don't break
3329           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3330             k()->java_mirror()->bool_field_put(fd.offset(), true);
3331           }
3332         }
3333       }
3334     }
3335 
3336     // Initialize java_lang.System (needed before creating the thread)
3337     if (InitializeJavaLangSystem) {
3338       initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3339       initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3340       Handle thread_group = create_initial_thread_group(CHECK_0);
3341       Universe::set_main_thread_group(thread_group());
3342       initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3343       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3344       main_thread->set_threadObj(thread_object);
3345       // Set thread status to running since main thread has
3346       // been started and running.
3347       java_lang_Thread::set_thread_status(thread_object,
3348                                           java_lang_Thread::RUNNABLE);
3349 
3350       // The VM preresolve methods to these classes. Make sure that get initialized
3351       initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3352       initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3353       // The VM creates & returns objects of this class. Make sure it's initialized.
3354       initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3355       call_initializeSystemClass(CHECK_0);
3356     } else {
3357       warning("java.lang.System not initialized");
3358     }
3359 
3360     // an instance of OutOfMemory exception has been allocated earlier
3361     if (InitializeJavaLangExceptionsErrors) {
3362       initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3363       initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3364       initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3365       initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3366       initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3367       initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3368       initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3369     } else {
3370       warning("java.lang.OutOfMemoryError has not been initialized");
3371       warning("java.lang.NullPointerException has not been initialized");
3372       warning("java.lang.ClassCastException has not been initialized");
3373       warning("java.lang.ArrayStoreException has not been initialized");
3374       warning("java.lang.ArithmeticException has not been initialized");
3375       warning("java.lang.StackOverflowError has not been initialized");
3376     }
3377   }
3378 
3379   // See        : bugid 4211085.
3380   // Background : the static initializer of java.lang.Compiler tries to read
3381   //              property"java.compiler" and read & write property "java.vm.info".
3382   //              When a security manager is installed through the command line
3383   //              option "-Djava.security.manager", the above properties are not
3384   //              readable and the static initializer for java.lang.Compiler fails
3385   //              resulting in a NoClassDefFoundError.  This can happen in any
3386   //              user code which calls methods in java.lang.Compiler.
3387   // Hack :       the hack is to pre-load and initialize this class, so that only
3388   //              system domains are on the stack when the properties are read.
3389   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3390   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3391   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3392   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3393   //              Once that is done, we should remove this hack.
3394   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3395 
3396   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3397   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3398   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3399   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3400   // This should also be taken out as soon as 4211383 gets fixed.
3401   reset_vm_info_property(CHECK_0);
3402 
3403   quicken_jni_functions();
3404 
3405   // Set flag that basic initialization has completed. Used by exceptions and various
3406   // debug stuff, that does not work until all basic classes have been initialized.
3407   set_init_completed();
3408 
3409 #ifndef USDT2
3410   HS_DTRACE_PROBE(hotspot, vm__init__end);
3411 #else /* USDT2 */
3412   HOTSPOT_VM_INIT_END();
3413 #endif /* USDT2 */
3414 
3415   // record VM initialization completion time
3416   Management::record_vm_init_completed();
3417 
3418   // Compute system loader. Note that this has to occur after set_init_completed, since
3419   // valid exceptions may be thrown in the process.
3420   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3421   // set_init_completed has just been called, causing exceptions not to be shortcut
3422   // anymore. We call vm_exit_during_initialization directly instead.
3423   SystemDictionary::compute_java_system_loader(THREAD);
3424   if (HAS_PENDING_EXCEPTION) {
3425     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3426   }
3427 
3428 #ifndef SERIALGC
3429   // Support for ConcurrentMarkSweep. This should be cleaned up
3430   // and better encapsulated. The ugly nested if test would go away
3431   // once things are properly refactored. XXX YSR
3432   if (UseConcMarkSweepGC || UseG1GC) {
3433     if (UseConcMarkSweepGC) {
3434       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3435     } else {
3436       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3437     }
3438     if (HAS_PENDING_EXCEPTION) {
3439       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3440     }
3441   }
3442 #endif // SERIALGC
3443 
3444   // Always call even when there are not JVMTI environments yet, since environments
3445   // may be attached late and JVMTI must track phases of VM execution
3446   JvmtiExport::enter_live_phase();
3447 
3448   // Signal Dispatcher needs to be started before VMInit event is posted
3449   os::signal_init();
3450 
3451   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3452   if (!DisableAttachMechanism) {
3453     if (StartAttachListener || AttachListener::init_at_startup()) {
3454       AttachListener::init();
3455     }
3456   }
3457 
3458   // Launch -Xrun agents
3459   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3460   // back-end can launch with -Xdebug -Xrunjdwp.
3461   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3462     create_vm_init_libraries();
3463   }
3464 
3465   if (!TRACE_START()) {
3466     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3467   }
3468 
3469   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3470   JvmtiExport::post_vm_initialized();
3471 
3472   if (CleanChunkPoolAsync) {
3473     Chunk::start_chunk_pool_cleaner_task();
3474   }
3475 
3476   // initialize compiler(s)
3477   CompileBroker::compilation_init();
3478 
3479   Management::initialize(THREAD);
3480   if (HAS_PENDING_EXCEPTION) {
3481     // management agent fails to start possibly due to
3482     // configuration problem and is responsible for printing
3483     // stack trace if appropriate. Simply exit VM.
3484     vm_exit(1);
3485   }
3486 
3487   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3488   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3489   if (MemProfiling)                   MemProfiler::engage();
3490   StatSampler::engage();
3491   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3492 
3493   BiasedLocking::init();
3494 
3495   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3496     call_postVMInitHook(THREAD);
3497     // The Java side of PostVMInitHook.run must deal with all
3498     // exceptions and provide means of diagnosis.
3499     if (HAS_PENDING_EXCEPTION) {
3500       CLEAR_PENDING_EXCEPTION;
3501     }
3502   }
3503 
3504   // Start up the WatcherThread if there are any periodic tasks
3505   // NOTE:  All PeriodicTasks should be registered by now. If they
3506   //   aren't, late joiners might appear to start slowly (we might
3507   //   take a while to process their first tick).
3508   if (PeriodicTask::num_tasks() > 0) {
3509     WatcherThread::start();
3510   }
3511 
3512   // Give os specific code one last chance to start
3513   os::init_3();
3514 
3515   create_vm_timer.end();
3516   return JNI_OK;
3517 }
3518 
3519 // type for the Agent_OnLoad and JVM_OnLoad entry points
3520 extern "C" {
3521   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3522 }
3523 // Find a command line agent library and return its entry point for
3524 //         -agentlib:  -agentpath:   -Xrun
3525 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3526 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3527   OnLoadEntry_t on_load_entry = NULL;
3528   void *library = agent->os_lib();  // check if we have looked it up before
3529 
3530   if (library == NULL) {
3531     char buffer[JVM_MAXPATHLEN];
3532     char ebuf[1024];
3533     const char *name = agent->name();
3534     const char *msg = "Could not find agent library ";
3535 
3536     if (agent->is_absolute_path()) {
3537       library = os::dll_load(name, ebuf, sizeof ebuf);
3538       if (library == NULL) {
3539         const char *sub_msg = " in absolute path, with error: ";
3540         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3541         char *buf = NEW_C_HEAP_ARRAY(char, len);
3542         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3543         // If we can't find the agent, exit.
3544         vm_exit_during_initialization(buf, NULL);
3545         FREE_C_HEAP_ARRAY(char, buf);
3546       }
3547     } else {
3548       // Try to load the agent from the standard dll directory
3549       os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3550       library = os::dll_load(buffer, ebuf, sizeof ebuf);
3551 #ifdef KERNEL
3552       // Download instrument dll
3553       if (library == NULL && strcmp(name, "instrument") == 0) {
3554         char *props = Arguments::get_kernel_properties();
3555         char *home  = Arguments::get_java_home();
3556         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3557                       " sun.jkernel.DownloadManager -download client_jvm";
3558         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3559         char *cmd = NEW_C_HEAP_ARRAY(char, length);
3560         jio_snprintf(cmd, length, fmt, home, props);
3561         int status = os::fork_and_exec(cmd);
3562         FreeHeap(props);
3563         if (status == -1) {
3564           warning(cmd);
3565           vm_exit_during_initialization("fork_and_exec failed: %s",
3566                                          strerror(errno));
3567         }
3568         FREE_C_HEAP_ARRAY(char, cmd);
3569         // when this comes back the instrument.dll should be where it belongs.
3570         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3571       }
3572 #endif // KERNEL
3573       if (library == NULL) { // Try the local directory
3574         char ns[1] = {0};
3575         os::dll_build_name(buffer, sizeof(buffer), ns, name);
3576         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3577         if (library == NULL) {
3578           const char *sub_msg = " on the library path, with error: ";
3579           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3580           char *buf = NEW_C_HEAP_ARRAY(char, len);
3581           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3582           // If we can't find the agent, exit.
3583           vm_exit_during_initialization(buf, NULL);
3584           FREE_C_HEAP_ARRAY(char, buf);
3585         }
3586       }
3587     }
3588     agent->set_os_lib(library);
3589   }
3590 
3591   // Find the OnLoad function.
3592   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3593     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
3594     if (on_load_entry != NULL) break;
3595   }
3596   return on_load_entry;
3597 }
3598 
3599 // Find the JVM_OnLoad entry point
3600 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3601   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3602   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3603 }
3604 
3605 // Find the Agent_OnLoad entry point
3606 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3607   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3608   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3609 }
3610 
3611 // For backwards compatibility with -Xrun
3612 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3613 // treated like -agentpath:
3614 // Must be called before agent libraries are created
3615 void Threads::convert_vm_init_libraries_to_agents() {
3616   AgentLibrary* agent;
3617   AgentLibrary* next;
3618 
3619   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3620     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3621     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3622 
3623     // If there is an JVM_OnLoad function it will get called later,
3624     // otherwise see if there is an Agent_OnLoad
3625     if (on_load_entry == NULL) {
3626       on_load_entry = lookup_agent_on_load(agent);
3627       if (on_load_entry != NULL) {
3628         // switch it to the agent list -- so that Agent_OnLoad will be called,
3629         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3630         Arguments::convert_library_to_agent(agent);
3631       } else {
3632         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3633       }
3634     }
3635   }
3636 }
3637 
3638 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3639 // Invokes Agent_OnLoad
3640 // Called very early -- before JavaThreads exist
3641 void Threads::create_vm_init_agents() {
3642   extern struct JavaVM_ main_vm;
3643   AgentLibrary* agent;
3644 
3645   JvmtiExport::enter_onload_phase();
3646   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3647     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3648 
3649     if (on_load_entry != NULL) {
3650       // Invoke the Agent_OnLoad function
3651       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3652       if (err != JNI_OK) {
3653         vm_exit_during_initialization("agent library failed to init", agent->name());
3654       }
3655     } else {
3656       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3657     }
3658   }
3659   JvmtiExport::enter_primordial_phase();
3660 }
3661 
3662 extern "C" {
3663   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3664 }
3665 
3666 void Threads::shutdown_vm_agents() {
3667   // Send any Agent_OnUnload notifications
3668   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3669   extern struct JavaVM_ main_vm;
3670   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3671 
3672     // Find the Agent_OnUnload function.
3673     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3674       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3675                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3676 
3677       // Invoke the Agent_OnUnload function
3678       if (unload_entry != NULL) {
3679         JavaThread* thread = JavaThread::current();
3680         ThreadToNativeFromVM ttn(thread);
3681         HandleMark hm(thread);
3682         (*unload_entry)(&main_vm);
3683         break;
3684       }
3685     }
3686   }
3687 }
3688 
3689 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3690 // Invokes JVM_OnLoad
3691 void Threads::create_vm_init_libraries() {
3692   extern struct JavaVM_ main_vm;
3693   AgentLibrary* agent;
3694 
3695   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3696     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3697 
3698     if (on_load_entry != NULL) {
3699       // Invoke the JVM_OnLoad function
3700       JavaThread* thread = JavaThread::current();
3701       ThreadToNativeFromVM ttn(thread);
3702       HandleMark hm(thread);
3703       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3704       if (err != JNI_OK) {
3705         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3706       }
3707     } else {
3708       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3709     }
3710   }
3711 }
3712 
3713 // Last thread running calls java.lang.Shutdown.shutdown()
3714 void JavaThread::invoke_shutdown_hooks() {
3715   HandleMark hm(this);
3716 
3717   // We could get here with a pending exception, if so clear it now.
3718   if (this->has_pending_exception()) {
3719     this->clear_pending_exception();
3720   }
3721 
3722   EXCEPTION_MARK;
3723   klassOop k =
3724     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3725                                       THREAD);
3726   if (k != NULL) {
3727     // SystemDictionary::resolve_or_null will return null if there was
3728     // an exception.  If we cannot load the Shutdown class, just don't
3729     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3730     // and finalizers (if runFinalizersOnExit is set) won't be run.
3731     // Note that if a shutdown hook was registered or runFinalizersOnExit
3732     // was called, the Shutdown class would have already been loaded
3733     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3734     instanceKlassHandle shutdown_klass (THREAD, k);
3735     JavaValue result(T_VOID);
3736     JavaCalls::call_static(&result,
3737                            shutdown_klass,
3738                            vmSymbols::shutdown_method_name(),
3739                            vmSymbols::void_method_signature(),
3740                            THREAD);
3741   }
3742   CLEAR_PENDING_EXCEPTION;
3743 }
3744 
3745 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3746 // the program falls off the end of main(). Another VM exit path is through
3747 // vm_exit() when the program calls System.exit() to return a value or when
3748 // there is a serious error in VM. The two shutdown paths are not exactly
3749 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3750 // and VM_Exit op at VM level.
3751 //
3752 // Shutdown sequence:
3753 //   + Wait until we are the last non-daemon thread to execute
3754 //     <-- every thing is still working at this moment -->
3755 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3756 //        shutdown hooks, run finalizers if finalization-on-exit
3757 //   + Call before_exit(), prepare for VM exit
3758 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3759 //        currently the only user of this mechanism is File.deleteOnExit())
3760 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3761 //        post thread end and vm death events to JVMTI,
3762 //        stop signal thread
3763 //   + Call JavaThread::exit(), it will:
3764 //      > release JNI handle blocks, remove stack guard pages
3765 //      > remove this thread from Threads list
3766 //     <-- no more Java code from this thread after this point -->
3767 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3768 //     the compiler threads at safepoint
3769 //     <-- do not use anything that could get blocked by Safepoint -->
3770 //   + Disable tracing at JNI/JVM barriers
3771 //   + Set _vm_exited flag for threads that are still running native code
3772 //   + Delete this thread
3773 //   + Call exit_globals()
3774 //      > deletes tty
3775 //      > deletes PerfMemory resources
3776 //   + Return to caller
3777 
3778 bool Threads::destroy_vm() {
3779   JavaThread* thread = JavaThread::current();
3780 
3781   // Wait until we are the last non-daemon thread to execute
3782   { MutexLocker nu(Threads_lock);
3783     while (Threads::number_of_non_daemon_threads() > 1 )
3784       // This wait should make safepoint checks, wait without a timeout,
3785       // and wait as a suspend-equivalent condition.
3786       //
3787       // Note: If the FlatProfiler is running and this thread is waiting
3788       // for another non-daemon thread to finish, then the FlatProfiler
3789       // is waiting for the external suspend request on this thread to
3790       // complete. wait_for_ext_suspend_completion() will eventually
3791       // timeout, but that takes time. Making this wait a suspend-
3792       // equivalent condition solves that timeout problem.
3793       //
3794       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3795                          Mutex::_as_suspend_equivalent_flag);
3796   }
3797 
3798   // Hang forever on exit if we are reporting an error.
3799   if (ShowMessageBoxOnError && is_error_reported()) {
3800     os::infinite_sleep();
3801   }
3802   os::wait_for_keypress_at_exit();
3803 
3804   if (JDK_Version::is_jdk12x_version()) {
3805     // We are the last thread running, so check if finalizers should be run.
3806     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3807     HandleMark rm(thread);
3808     Universe::run_finalizers_on_exit();
3809   } else {
3810     // run Java level shutdown hooks
3811     thread->invoke_shutdown_hooks();
3812   }
3813 
3814   before_exit(thread);
3815 
3816   thread->exit(true);
3817 
3818   // Stop VM thread.
3819   {
3820     // 4945125 The vm thread comes to a safepoint during exit.
3821     // GC vm_operations can get caught at the safepoint, and the
3822     // heap is unparseable if they are caught. Grab the Heap_lock
3823     // to prevent this. The GC vm_operations will not be able to
3824     // queue until after the vm thread is dead.
3825     // After this point, we'll never emerge out of the safepoint before
3826     // the VM exits, so concurrent GC threads do not need to be explicitly
3827     // stopped; they remain inactive until the process exits.
3828     // Note: some concurrent G1 threads may be running during a safepoint,
3829     // but these will not be accessing the heap, just some G1-specific side
3830     // data structures that are not accessed by any other threads but them
3831     // after this point in a terminal safepoint.
3832 
3833     MutexLocker ml(Heap_lock);
3834 
3835     VMThread::wait_for_vm_thread_exit();
3836     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3837     VMThread::destroy();
3838   }
3839 
3840   // clean up ideal graph printers
3841 #if defined(COMPILER2) && !defined(PRODUCT)
3842   IdealGraphPrinter::clean_up();
3843 #endif
3844 
3845   // Now, all Java threads are gone except daemon threads. Daemon threads
3846   // running Java code or in VM are stopped by the Safepoint. However,
3847   // daemon threads executing native code are still running.  But they
3848   // will be stopped at native=>Java/VM barriers. Note that we can't
3849   // simply kill or suspend them, as it is inherently deadlock-prone.
3850 
3851 #ifndef PRODUCT
3852   // disable function tracing at JNI/JVM barriers
3853   TraceJNICalls = false;
3854   TraceJVMCalls = false;
3855   TraceRuntimeCalls = false;
3856 #endif
3857 
3858   VM_Exit::set_vm_exited();
3859 
3860   notify_vm_shutdown();
3861 
3862   delete thread;
3863 
3864   // exit_globals() will delete tty
3865   exit_globals();
3866 
3867   return true;
3868 }
3869 
3870 
3871 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3872   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3873   return is_supported_jni_version(version);
3874 }
3875 
3876 
3877 jboolean Threads::is_supported_jni_version(jint version) {
3878   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3879   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3880   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3881   return JNI_FALSE;
3882 }
3883 
3884 
3885 void Threads::add(JavaThread* p, bool force_daemon) {
3886   // The threads lock must be owned at this point
3887   assert_locked_or_safepoint(Threads_lock);
3888 
3889   // See the comment for this method in thread.hpp for its purpose and
3890   // why it is called here.
3891   p->initialize_queues();
3892   p->set_next(_thread_list);
3893   _thread_list = p;
3894   _number_of_threads++;
3895   oop threadObj = p->threadObj();
3896   bool daemon = true;
3897   // Bootstrapping problem: threadObj can be null for initial
3898   // JavaThread (or for threads attached via JNI)
3899   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3900     _number_of_non_daemon_threads++;
3901     daemon = false;
3902   }
3903 
3904   ThreadService::add_thread(p, daemon);
3905 
3906   // Possible GC point.
3907   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
3908 }
3909 
3910 void Threads::remove(JavaThread* p) {
3911   // Extra scope needed for Thread_lock, so we can check
3912   // that we do not remove thread without safepoint code notice
3913   { MutexLocker ml(Threads_lock);
3914 
3915     assert(includes(p), "p must be present");
3916 
3917     JavaThread* current = _thread_list;
3918     JavaThread* prev    = NULL;
3919 
3920     while (current != p) {
3921       prev    = current;
3922       current = current->next();
3923     }
3924 
3925     if (prev) {
3926       prev->set_next(current->next());
3927     } else {
3928       _thread_list = p->next();
3929     }
3930     _number_of_threads--;
3931     oop threadObj = p->threadObj();
3932     bool daemon = true;
3933     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
3934       _number_of_non_daemon_threads--;
3935       daemon = false;
3936 
3937       // Only one thread left, do a notify on the Threads_lock so a thread waiting
3938       // on destroy_vm will wake up.
3939       if (number_of_non_daemon_threads() == 1)
3940         Threads_lock->notify_all();
3941     }
3942     ThreadService::remove_thread(p, daemon);
3943 
3944     // Make sure that safepoint code disregard this thread. This is needed since
3945     // the thread might mess around with locks after this point. This can cause it
3946     // to do callbacks into the safepoint code. However, the safepoint code is not aware
3947     // of this thread since it is removed from the queue.
3948     p->set_terminated_value();
3949   } // unlock Threads_lock
3950 
3951   // Since Events::log uses a lock, we grab it outside the Threads_lock
3952   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
3953 }
3954 
3955 // Threads_lock must be held when this is called (or must be called during a safepoint)
3956 bool Threads::includes(JavaThread* p) {
3957   assert(Threads_lock->is_locked(), "sanity check");
3958   ALL_JAVA_THREADS(q) {
3959     if (q == p ) {
3960       return true;
3961     }
3962   }
3963   return false;
3964 }
3965 
3966 // Operations on the Threads list for GC.  These are not explicitly locked,
3967 // but the garbage collector must provide a safe context for them to run.
3968 // In particular, these things should never be called when the Threads_lock
3969 // is held by some other thread. (Note: the Safepoint abstraction also
3970 // uses the Threads_lock to gurantee this property. It also makes sure that
3971 // all threads gets blocked when exiting or starting).
3972 
3973 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3974   ALL_JAVA_THREADS(p) {
3975     p->oops_do(f, cf);
3976   }
3977   VMThread::vm_thread()->oops_do(f, cf);
3978 }
3979 
3980 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
3981   // Introduce a mechanism allowing parallel threads to claim threads as
3982   // root groups.  Overhead should be small enough to use all the time,
3983   // even in sequential code.
3984   SharedHeap* sh = SharedHeap::heap();
3985   // Cannot yet substitute active_workers for n_par_threads
3986   // because of G1CollectedHeap::verify() use of
3987   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
3988   // turn off parallelism in process_strong_roots while active_workers
3989   // is being used for parallelism elsewhere.
3990   bool is_par = sh->n_par_threads() > 0;
3991   assert(!is_par ||
3992          (SharedHeap::heap()->n_par_threads() ==
3993           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
3994   int cp = SharedHeap::heap()->strong_roots_parity();
3995   ALL_JAVA_THREADS(p) {
3996     if (p->claim_oops_do(is_par, cp)) {
3997       p->oops_do(f, cf);
3998     }
3999   }
4000   VMThread* vmt = VMThread::vm_thread();
4001   if (vmt->claim_oops_do(is_par, cp)) {
4002     vmt->oops_do(f, cf);
4003   }
4004 }
4005 
4006 #ifndef SERIALGC
4007 // Used by ParallelScavenge
4008 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4009   ALL_JAVA_THREADS(p) {
4010     q->enqueue(new ThreadRootsTask(p));
4011   }
4012   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4013 }
4014 
4015 // Used by Parallel Old
4016 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4017   ALL_JAVA_THREADS(p) {
4018     q->enqueue(new ThreadRootsMarkingTask(p));
4019   }
4020   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4021 }
4022 #endif // SERIALGC
4023 
4024 void Threads::nmethods_do(CodeBlobClosure* cf) {
4025   ALL_JAVA_THREADS(p) {
4026     p->nmethods_do(cf);
4027   }
4028   VMThread::vm_thread()->nmethods_do(cf);
4029 }
4030 
4031 void Threads::gc_epilogue() {
4032   ALL_JAVA_THREADS(p) {
4033     p->gc_epilogue();
4034   }
4035 }
4036 
4037 void Threads::gc_prologue() {
4038   ALL_JAVA_THREADS(p) {
4039     p->gc_prologue();
4040   }
4041 }
4042 
4043 void Threads::deoptimized_wrt_marked_nmethods() {
4044   ALL_JAVA_THREADS(p) {
4045     p->deoptimized_wrt_marked_nmethods();
4046   }
4047 }
4048 
4049 
4050 // Get count Java threads that are waiting to enter the specified monitor.
4051 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4052   address monitor, bool doLock) {
4053   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4054     "must grab Threads_lock or be at safepoint");
4055   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4056 
4057   int i = 0;
4058   {
4059     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4060     ALL_JAVA_THREADS(p) {
4061       if (p->is_Compiler_thread()) continue;
4062 
4063       address pending = (address)p->current_pending_monitor();
4064       if (pending == monitor) {             // found a match
4065         if (i < count) result->append(p);   // save the first count matches
4066         i++;
4067       }
4068     }
4069   }
4070   return result;
4071 }
4072 
4073 
4074 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4075   assert(doLock ||
4076          Threads_lock->owned_by_self() ||
4077          SafepointSynchronize::is_at_safepoint(),
4078          "must grab Threads_lock or be at safepoint");
4079 
4080   // NULL owner means not locked so we can skip the search
4081   if (owner == NULL) return NULL;
4082 
4083   {
4084     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4085     ALL_JAVA_THREADS(p) {
4086       // first, see if owner is the address of a Java thread
4087       if (owner == (address)p) return p;
4088     }
4089   }
4090   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
4091   if (UseHeavyMonitors) return NULL;
4092 
4093   //
4094   // If we didn't find a matching Java thread and we didn't force use of
4095   // heavyweight monitors, then the owner is the stack address of the
4096   // Lock Word in the owning Java thread's stack.
4097   //
4098   JavaThread* the_owner = NULL;
4099   {
4100     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4101     ALL_JAVA_THREADS(q) {
4102       if (q->is_lock_owned(owner)) {
4103         the_owner = q;
4104         break;
4105       }
4106     }
4107   }
4108   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
4109   return the_owner;
4110 }
4111 
4112 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4113 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4114   char buf[32];
4115   st->print_cr(os::local_time_string(buf, sizeof(buf)));
4116 
4117   st->print_cr("Full thread dump %s (%s %s):",
4118                 Abstract_VM_Version::vm_name(),
4119                 Abstract_VM_Version::vm_release(),
4120                 Abstract_VM_Version::vm_info_string()
4121                );
4122   st->cr();
4123 
4124 #ifndef SERIALGC
4125   // Dump concurrent locks
4126   ConcurrentLocksDump concurrent_locks;
4127   if (print_concurrent_locks) {
4128     concurrent_locks.dump_at_safepoint();
4129   }
4130 #endif // SERIALGC
4131 
4132   ALL_JAVA_THREADS(p) {
4133     ResourceMark rm;
4134     p->print_on(st);
4135     if (print_stacks) {
4136       if (internal_format) {
4137         p->trace_stack();
4138       } else {
4139         p->print_stack_on(st);
4140       }
4141     }
4142     st->cr();
4143 #ifndef SERIALGC
4144     if (print_concurrent_locks) {
4145       concurrent_locks.print_locks_on(p, st);
4146     }
4147 #endif // SERIALGC
4148   }
4149 
4150   VMThread::vm_thread()->print_on(st);
4151   st->cr();
4152   Universe::heap()->print_gc_threads_on(st);
4153   WatcherThread* wt = WatcherThread::watcher_thread();
4154   if (wt != NULL) wt->print_on(st);
4155   st->cr();
4156   CompileBroker::print_compiler_threads_on(st);
4157   st->flush();
4158 }
4159 
4160 // Threads::print_on_error() is called by fatal error handler. It's possible
4161 // that VM is not at safepoint and/or current thread is inside signal handler.
4162 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4163 // memory (even in resource area), it might deadlock the error handler.
4164 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4165   bool found_current = false;
4166   st->print_cr("Java Threads: ( => current thread )");
4167   ALL_JAVA_THREADS(thread) {
4168     bool is_current = (current == thread);
4169     found_current = found_current || is_current;
4170 
4171     st->print("%s", is_current ? "=>" : "  ");
4172 
4173     st->print(PTR_FORMAT, thread);
4174     st->print(" ");
4175     thread->print_on_error(st, buf, buflen);
4176     st->cr();
4177   }
4178   st->cr();
4179 
4180   st->print_cr("Other Threads:");
4181   if (VMThread::vm_thread()) {
4182     bool is_current = (current == VMThread::vm_thread());
4183     found_current = found_current || is_current;
4184     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4185 
4186     st->print(PTR_FORMAT, VMThread::vm_thread());
4187     st->print(" ");
4188     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4189     st->cr();
4190   }
4191   WatcherThread* wt = WatcherThread::watcher_thread();
4192   if (wt != NULL) {
4193     bool is_current = (current == wt);
4194     found_current = found_current || is_current;
4195     st->print("%s", is_current ? "=>" : "  ");
4196 
4197     st->print(PTR_FORMAT, wt);
4198     st->print(" ");
4199     wt->print_on_error(st, buf, buflen);
4200     st->cr();
4201   }
4202   if (!found_current) {
4203     st->cr();
4204     st->print("=>" PTR_FORMAT " (exited) ", current);
4205     current->print_on_error(st, buf, buflen);
4206     st->cr();
4207   }
4208 }
4209 
4210 // Internal SpinLock and Mutex
4211 // Based on ParkEvent
4212 
4213 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4214 //
4215 // We employ SpinLocks _only for low-contention, fixed-length
4216 // short-duration critical sections where we're concerned
4217 // about native mutex_t or HotSpot Mutex:: latency.
4218 // The mux construct provides a spin-then-block mutual exclusion
4219 // mechanism.
4220 //
4221 // Testing has shown that contention on the ListLock guarding gFreeList
4222 // is common.  If we implement ListLock as a simple SpinLock it's common
4223 // for the JVM to devolve to yielding with little progress.  This is true
4224 // despite the fact that the critical sections protected by ListLock are
4225 // extremely short.
4226 //
4227 // TODO-FIXME: ListLock should be of type SpinLock.
4228 // We should make this a 1st-class type, integrated into the lock
4229 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4230 // should have sufficient padding to avoid false-sharing and excessive
4231 // cache-coherency traffic.
4232 
4233 
4234 typedef volatile int SpinLockT ;
4235 
4236 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4237   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4238      return ;   // normal fast-path return
4239   }
4240 
4241   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4242   TEVENT (SpinAcquire - ctx) ;
4243   int ctr = 0 ;
4244   int Yields = 0 ;
4245   for (;;) {
4246      while (*adr != 0) {
4247         ++ctr ;
4248         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4249            if (Yields > 5) {
4250              // Consider using a simple NakedSleep() instead.
4251              // Then SpinAcquire could be called by non-JVM threads
4252              Thread::current()->_ParkEvent->park(1) ;
4253            } else {
4254              os::NakedYield() ;
4255              ++Yields ;
4256            }
4257         } else {
4258            SpinPause() ;
4259         }
4260      }
4261      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4262   }
4263 }
4264 
4265 void Thread::SpinRelease (volatile int * adr) {
4266   assert (*adr != 0, "invariant") ;
4267   OrderAccess::fence() ;      // guarantee at least release consistency.
4268   // Roach-motel semantics.
4269   // It's safe if subsequent LDs and STs float "up" into the critical section,
4270   // but prior LDs and STs within the critical section can't be allowed
4271   // to reorder or float past the ST that releases the lock.
4272   *adr = 0 ;
4273 }
4274 
4275 // muxAcquire and muxRelease:
4276 //
4277 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4278 //    The LSB of the word is set IFF the lock is held.
4279 //    The remainder of the word points to the head of a singly-linked list
4280 //    of threads blocked on the lock.
4281 //
4282 // *  The current implementation of muxAcquire-muxRelease uses its own
4283 //    dedicated Thread._MuxEvent instance.  If we're interested in
4284 //    minimizing the peak number of extant ParkEvent instances then
4285 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4286 //    as certain invariants were satisfied.  Specifically, care would need
4287 //    to be taken with regards to consuming unpark() "permits".
4288 //    A safe rule of thumb is that a thread would never call muxAcquire()
4289 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4290 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4291 //    consume an unpark() permit intended for monitorenter, for instance.
4292 //    One way around this would be to widen the restricted-range semaphore
4293 //    implemented in park().  Another alternative would be to provide
4294 //    multiple instances of the PlatformEvent() for each thread.  One
4295 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4296 //
4297 // *  Usage:
4298 //    -- Only as leaf locks
4299 //    -- for short-term locking only as muxAcquire does not perform
4300 //       thread state transitions.
4301 //
4302 // Alternatives:
4303 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4304 //    but with parking or spin-then-park instead of pure spinning.
4305 // *  Use Taura-Oyama-Yonenzawa locks.
4306 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4307 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4308 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4309 //    acquiring threads use timers (ParkTimed) to detect and recover from
4310 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4311 //    boundaries by using placement-new.
4312 // *  Augment MCS with advisory back-link fields maintained with CAS().
4313 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4314 //    The validity of the backlinks must be ratified before we trust the value.
4315 //    If the backlinks are invalid the exiting thread must back-track through the
4316 //    the forward links, which are always trustworthy.
4317 // *  Add a successor indication.  The LockWord is currently encoded as
4318 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4319 //    to provide the usual futile-wakeup optimization.
4320 //    See RTStt for details.
4321 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4322 //
4323 
4324 
4325 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4326 enum MuxBits { LOCKBIT = 1 } ;
4327 
4328 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4329   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4330   if (w == 0) return ;
4331   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4332      return ;
4333   }
4334 
4335   TEVENT (muxAcquire - Contention) ;
4336   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4337   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4338   for (;;) {
4339      int its = (os::is_MP() ? 100 : 0) + 1 ;
4340 
4341      // Optional spin phase: spin-then-park strategy
4342      while (--its >= 0) {
4343        w = *Lock ;
4344        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4345           return ;
4346        }
4347      }
4348 
4349      Self->reset() ;
4350      Self->OnList = intptr_t(Lock) ;
4351      // The following fence() isn't _strictly necessary as the subsequent
4352      // CAS() both serializes execution and ratifies the fetched *Lock value.
4353      OrderAccess::fence();
4354      for (;;) {
4355         w = *Lock ;
4356         if ((w & LOCKBIT) == 0) {
4357             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4358                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4359                 return ;
4360             }
4361             continue ;      // Interference -- *Lock changed -- Just retry
4362         }
4363         assert (w & LOCKBIT, "invariant") ;
4364         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4365         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4366      }
4367 
4368      while (Self->OnList != 0) {
4369         Self->park() ;
4370      }
4371   }
4372 }
4373 
4374 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4375   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4376   if (w == 0) return ;
4377   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4378     return ;
4379   }
4380 
4381   TEVENT (muxAcquire - Contention) ;
4382   ParkEvent * ReleaseAfter = NULL ;
4383   if (ev == NULL) {
4384     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4385   }
4386   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4387   for (;;) {
4388     guarantee (ev->OnList == 0, "invariant") ;
4389     int its = (os::is_MP() ? 100 : 0) + 1 ;
4390 
4391     // Optional spin phase: spin-then-park strategy
4392     while (--its >= 0) {
4393       w = *Lock ;
4394       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4395         if (ReleaseAfter != NULL) {
4396           ParkEvent::Release (ReleaseAfter) ;
4397         }
4398         return ;
4399       }
4400     }
4401 
4402     ev->reset() ;
4403     ev->OnList = intptr_t(Lock) ;
4404     // The following fence() isn't _strictly necessary as the subsequent
4405     // CAS() both serializes execution and ratifies the fetched *Lock value.
4406     OrderAccess::fence();
4407     for (;;) {
4408       w = *Lock ;
4409       if ((w & LOCKBIT) == 0) {
4410         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4411           ev->OnList = 0 ;
4412           // We call ::Release while holding the outer lock, thus
4413           // artificially lengthening the critical section.
4414           // Consider deferring the ::Release() until the subsequent unlock(),
4415           // after we've dropped the outer lock.
4416           if (ReleaseAfter != NULL) {
4417             ParkEvent::Release (ReleaseAfter) ;
4418           }
4419           return ;
4420         }
4421         continue ;      // Interference -- *Lock changed -- Just retry
4422       }
4423       assert (w & LOCKBIT, "invariant") ;
4424       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4425       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4426     }
4427 
4428     while (ev->OnList != 0) {
4429       ev->park() ;
4430     }
4431   }
4432 }
4433 
4434 // Release() must extract a successor from the list and then wake that thread.
4435 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4436 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4437 // Release() would :
4438 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4439 // (B) Extract a successor from the private list "in-hand"
4440 // (C) attempt to CAS() the residual back into *Lock over null.
4441 //     If there were any newly arrived threads and the CAS() would fail.
4442 //     In that case Release() would detach the RATs, re-merge the list in-hand
4443 //     with the RATs and repeat as needed.  Alternately, Release() might
4444 //     detach and extract a successor, but then pass the residual list to the wakee.
4445 //     The wakee would be responsible for reattaching and remerging before it
4446 //     competed for the lock.
4447 //
4448 // Both "pop" and DMR are immune from ABA corruption -- there can be
4449 // multiple concurrent pushers, but only one popper or detacher.
4450 // This implementation pops from the head of the list.  This is unfair,
4451 // but tends to provide excellent throughput as hot threads remain hot.
4452 // (We wake recently run threads first).
4453 
4454 void Thread::muxRelease (volatile intptr_t * Lock)  {
4455   for (;;) {
4456     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4457     assert (w & LOCKBIT, "invariant") ;
4458     if (w == LOCKBIT) return ;
4459     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4460     assert (List != NULL, "invariant") ;
4461     assert (List->OnList == intptr_t(Lock), "invariant") ;
4462     ParkEvent * nxt = List->ListNext ;
4463 
4464     // The following CAS() releases the lock and pops the head element.
4465     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4466       continue ;
4467     }
4468     List->OnList = 0 ;
4469     OrderAccess::fence() ;
4470     List->unpark () ;
4471     return ;
4472   }
4473 }
4474 
4475 
4476 void Threads::verify() {
4477   ALL_JAVA_THREADS(p) {
4478     p->verify();
4479   }
4480   VMThread* thread = VMThread::vm_thread();
4481   if (thread != NULL) thread->verify();
4482 }