1 /*
   2  * Copyright (c) 1996, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 /*
  27  * (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved
  28  * (C) Copyright IBM Corp. 1996 - 1998 - All Rights Reserved
  29  *
  30  *   The original version of this source code and documentation is copyrighted
  31  * and owned by Taligent, Inc., a wholly-owned subsidiary of IBM. These
  32  * materials are provided under terms of a License Agreement between Taligent
  33  * and Sun. This technology is protected by multiple US and International
  34  * patents. This notice and attribution to Taligent may not be removed.
  35  *   Taligent is a registered trademark of Taligent, Inc.
  36  *
  37  */
  38 
  39 package java.text;
  40 
  41 import java.math.BigDecimal;
  42 import java.math.BigInteger;
  43 import java.math.RoundingMode;
  44 import sun.misc.FloatingDecimal;
  45 
  46 /**
  47  * Digit List. Private to DecimalFormat.
  48  * Handles the transcoding
  49  * between numeric values and strings of characters.  Only handles
  50  * non-negative numbers.  The division of labor between DigitList and
  51  * DecimalFormat is that DigitList handles the radix 10 representation
  52  * issues; DecimalFormat handles the locale-specific issues such as
  53  * positive/negative, grouping, decimal point, currency, and so on.
  54  *
  55  * A DigitList is really a representation of a floating point value.
  56  * It may be an integer value; we assume that a double has sufficient
  57  * precision to represent all digits of a long.
  58  *
  59  * The DigitList representation consists of a string of characters,
  60  * which are the digits radix 10, from '0' to '9'.  It also has a radix
  61  * 10 exponent associated with it.  The value represented by a DigitList
  62  * object can be computed by mulitplying the fraction f, where 0 <= f < 1,
  63  * derived by placing all the digits of the list to the right of the
  64  * decimal point, by 10^exponent.
  65  *
  66  * @see  Locale
  67  * @see  Format
  68  * @see  NumberFormat
  69  * @see  DecimalFormat
  70  * @see  ChoiceFormat
  71  * @see  MessageFormat
  72  * @author       Mark Davis, Alan Liu
  73  */
  74 final class DigitList implements Cloneable {
  75     /**
  76      * The maximum number of significant digits in an IEEE 754 double, that
  77      * is, in a Java double.  This must not be increased, or garbage digits
  78      * will be generated, and should not be decreased, or accuracy will be lost.
  79      */
  80     public static final int MAX_COUNT = 19; // == Long.toString(Long.MAX_VALUE).length()
  81 
  82     /**
  83      * These data members are intentionally public and can be set directly.
  84      *
  85      * The value represented is given by placing the decimal point before
  86      * digits[decimalAt].  If decimalAt is < 0, then leading zeros between
  87      * the decimal point and the first nonzero digit are implied.  If decimalAt
  88      * is > count, then trailing zeros between the digits[count-1] and the
  89      * decimal point are implied.
  90      *
  91      * Equivalently, the represented value is given by f * 10^decimalAt.  Here
  92      * f is a value 0.1 <= f < 1 arrived at by placing the digits in Digits to
  93      * the right of the decimal.
  94      *
  95      * DigitList is normalized, so if it is non-zero, figits[0] is non-zero.  We
  96      * don't allow denormalized numbers because our exponent is effectively of
  97      * unlimited magnitude.  The count value contains the number of significant
  98      * digits present in digits[].
  99      *
 100      * Zero is represented by any DigitList with count == 0 or with each digits[i]
 101      * for all i <= count == '0'.
 102      */
 103     public int decimalAt = 0;
 104     public int count = 0;
 105     public char[] digits = new char[MAX_COUNT];
 106 
 107     private char[] data;
 108     private RoundingMode roundingMode = RoundingMode.HALF_EVEN;
 109     private boolean isNegative = false;
 110 
 111     /**
 112      * Return true if the represented number is zero.
 113      */
 114     boolean isZero() {
 115         for (int i=0; i < count; ++i) {
 116             if (digits[i] != '0') {
 117                 return false;
 118             }
 119         }
 120         return true;
 121     }
 122 
 123     /**
 124      * Set the rounding mode
 125      */
 126     void setRoundingMode(RoundingMode r) {
 127         roundingMode = r;
 128     }
 129 
 130     /**
 131      * Clears out the digits.
 132      * Use before appending them.
 133      * Typically, you set a series of digits with append, then at the point
 134      * you hit the decimal point, you set myDigitList.decimalAt = myDigitList.count;
 135      * then go on appending digits.
 136      */
 137     public void clear () {
 138         decimalAt = 0;
 139         count = 0;
 140     }
 141 
 142     /**
 143      * Appends a digit to the list, extending the list when necessary.
 144      */
 145     public void append(char digit) {
 146         if (count == digits.length) {
 147             char[] data = new char[count + 100];
 148             System.arraycopy(digits, 0, data, 0, count);
 149             digits = data;
 150         }
 151         digits[count++] = digit;
 152     }
 153 
 154     /**
 155      * Utility routine to get the value of the digit list
 156      * If (count == 0) this throws a NumberFormatException, which
 157      * mimics Long.parseLong().
 158      */
 159     public final double getDouble() {
 160         if (count == 0) {
 161             return 0.0;
 162         }
 163 
 164         StringBuffer temp = getStringBuffer();
 165         temp.append('.');
 166         temp.append(digits, 0, count);
 167         temp.append('E');
 168         temp.append(decimalAt);
 169         return Double.parseDouble(temp.toString());
 170     }
 171 
 172     /**
 173      * Utility routine to get the value of the digit list.
 174      * If (count == 0) this returns 0, unlike Long.parseLong().
 175      */
 176     public final long getLong() {
 177         // for now, simple implementation; later, do proper IEEE native stuff
 178 
 179         if (count == 0) {
 180             return 0;
 181         }
 182 
 183         // We have to check for this, because this is the one NEGATIVE value
 184         // we represent.  If we tried to just pass the digits off to parseLong,
 185         // we'd get a parse failure.
 186         if (isLongMIN_VALUE()) {
 187             return Long.MIN_VALUE;
 188         }
 189 
 190         StringBuffer temp = getStringBuffer();
 191         temp.append(digits, 0, count);
 192         for (int i = count; i < decimalAt; ++i) {
 193             temp.append('0');
 194         }
 195         return Long.parseLong(temp.toString());
 196     }
 197 
 198     public final BigDecimal getBigDecimal() {
 199         if (count == 0) {
 200             if (decimalAt == 0) {
 201                 return BigDecimal.ZERO;
 202             } else {
 203                 return new BigDecimal("0E" + decimalAt);
 204             }
 205         }
 206 
 207        if (decimalAt == count) {
 208            return new BigDecimal(digits, 0, count);
 209        } else {
 210            return new BigDecimal(digits, 0, count).scaleByPowerOfTen(decimalAt - count);
 211        }
 212     }
 213 
 214     /**
 215      * Return true if the number represented by this object can fit into
 216      * a long.
 217      * @param isPositive true if this number should be regarded as positive
 218      * @param ignoreNegativeZero true if -0 should be regarded as identical to
 219      * +0; otherwise they are considered distinct
 220      * @return true if this number fits into a Java long
 221      */
 222     boolean fitsIntoLong(boolean isPositive, boolean ignoreNegativeZero) {
 223         // Figure out if the result will fit in a long.  We have to
 224         // first look for nonzero digits after the decimal point;
 225         // then check the size.  If the digit count is 18 or less, then
 226         // the value can definitely be represented as a long.  If it is 19
 227         // then it may be too large.
 228 
 229         // Trim trailing zeros.  This does not change the represented value.
 230         while (count > 0 && digits[count - 1] == '0') {
 231             --count;
 232         }
 233 
 234         if (count == 0) {
 235             // Positive zero fits into a long, but negative zero can only
 236             // be represented as a double. - bug 4162852
 237             return isPositive || ignoreNegativeZero;
 238         }
 239 
 240         if (decimalAt < count || decimalAt > MAX_COUNT) {
 241             return false;
 242         }
 243 
 244         if (decimalAt < MAX_COUNT) return true;
 245 
 246         // At this point we have decimalAt == count, and count == MAX_COUNT.
 247         // The number will overflow if it is larger than 9223372036854775807
 248         // or smaller than -9223372036854775808.
 249         for (int i=0; i<count; ++i) {
 250             char dig = digits[i], max = LONG_MIN_REP[i];
 251             if (dig > max) return false;
 252             if (dig < max) return true;
 253         }
 254 
 255         // At this point the first count digits match.  If decimalAt is less
 256         // than count, then the remaining digits are zero, and we return true.
 257         if (count < decimalAt) return true;
 258 
 259         // Now we have a representation of Long.MIN_VALUE, without the leading
 260         // negative sign.  If this represents a positive value, then it does
 261         // not fit; otherwise it fits.
 262         return !isPositive;
 263     }
 264 
 265     /**
 266      * Set the digit list to a representation of the given double value.
 267      * This method supports fixed-point notation.
 268      * @param isNegative Boolean value indicating whether the number is negative.
 269      * @param source Value to be converted; must not be Inf, -Inf, Nan,
 270      * or a value <= 0.
 271      * @param maximumFractionDigits The most fractional digits which should
 272      * be converted.
 273      */
 274     final void set(boolean isNegative, double source, int maximumFractionDigits) {
 275         set(isNegative, source, maximumFractionDigits, true);
 276     }
 277 
 278     /**
 279      * Set the digit list to a representation of the given double value.
 280      * This method supports both fixed-point and exponential notation.
 281      * @param isNegative Boolean value indicating whether the number is negative.
 282      * @param source Value to be converted; must not be Inf, -Inf, Nan,
 283      * or a value <= 0.
 284      * @param maximumDigits The most fractional or total digits which should
 285      * be converted.
 286      * @param fixedPoint If true, then maximumDigits is the maximum
 287      * fractional digits to be converted.  If false, total digits.
 288      */
 289     final void set(boolean isNegative, double source, int maximumDigits, boolean fixedPoint) {
 290 
 291         FloatingDecimal.BinaryToASCIIConverter fdConverter  = FloatingDecimal.getBinaryToASCIIConverter(source);
 292         boolean hasBeenRoundedUp = fdConverter.digitsRoundedUp();
 293         boolean allDecimalDigits = fdConverter.decimalDigitsExact();
 294         assert !fdConverter.isExceptional();
 295         String digitsString = fdConverter.toJavaFormatString();
 296 
 297         set(isNegative, digitsString,
 298             hasBeenRoundedUp, allDecimalDigits,
 299             maximumDigits, fixedPoint);
 300     }
 301 
 302     /**
 303      * Generate a representation of the form DDDDD, DDDDD.DDDDD, or
 304      * DDDDDE+/-DDDDD.
 305      * @param roundedUp Boolean value indicating if the s digits were rounded-up.
 306      * @param allDecimalDigits Boolean value indicating if the digits in s are
 307      * an exact decimal representation of the double that was passed.
 308      */
 309     private void set(boolean isNegative, String s,
 310                      boolean roundedUp, boolean allDecimalDigits,
 311                      int maximumDigits, boolean fixedPoint) {
 312         this.isNegative = isNegative;
 313         int len = s.length();
 314         char[] source = getDataChars(len);
 315         s.getChars(0, len, source, 0);
 316 
 317         decimalAt = -1;
 318         count = 0;
 319         int exponent = 0;
 320         // Number of zeros between decimal point and first non-zero digit after
 321         // decimal point, for numbers < 1.
 322         int leadingZerosAfterDecimal = 0;
 323         boolean nonZeroDigitSeen = false;
 324 
 325         for (int i = 0; i < len; ) {
 326             char c = source[i++];
 327             if (c == '.') {
 328                 decimalAt = count;
 329             } else if (c == 'e' || c == 'E') {
 330                 exponent = parseInt(source, i, len);
 331                 break;
 332             } else {
 333                 if (!nonZeroDigitSeen) {
 334                     nonZeroDigitSeen = (c != '0');
 335                     if (!nonZeroDigitSeen && decimalAt != -1)
 336                         ++leadingZerosAfterDecimal;
 337                 }
 338                 if (nonZeroDigitSeen) {
 339                     digits[count++] = c;
 340                 }
 341             }
 342         }
 343         if (decimalAt == -1) {
 344             decimalAt = count;
 345         }
 346         if (nonZeroDigitSeen) {
 347             decimalAt += exponent - leadingZerosAfterDecimal;
 348         }
 349 
 350         if (fixedPoint) {
 351             // The negative of the exponent represents the number of leading
 352             // zeros between the decimal and the first non-zero digit, for
 353             // a value < 0.1 (e.g., for 0.00123, -decimalAt == 2).  If this
 354             // is more than the maximum fraction digits, then we have an underflow
 355             // for the printed representation.
 356             if (-decimalAt > maximumDigits) {
 357                 // Handle an underflow to zero when we round something like
 358                 // 0.0009 to 2 fractional digits.
 359                 count = 0;
 360                 return;
 361             } else if (-decimalAt == maximumDigits) {
 362                 // If we round 0.0009 to 3 fractional digits, then we have to
 363                 // create a new one digit in the least significant location.
 364                 if (shouldRoundUp(0, roundedUp, allDecimalDigits)) {
 365                     count = 1;
 366                     ++decimalAt;
 367                     digits[0] = '1';
 368                 } else {
 369                     count = 0;
 370                 }
 371                 return;
 372             }
 373             // else fall through
 374         }
 375 
 376         // Eliminate trailing zeros.
 377         while (count > 1 && digits[count - 1] == '0') {
 378             --count;
 379         }
 380 
 381         // Eliminate digits beyond maximum digits to be displayed.
 382         // Round up if appropriate.
 383         round(fixedPoint ? (maximumDigits + decimalAt) : maximumDigits,
 384               roundedUp, allDecimalDigits);
 385     }
 386 
 387     /**
 388      * Round the representation to the given number of digits.
 389      * @param maximumDigits The maximum number of digits to be shown.
 390      * @param alreadyRounded Boolean indicating if rounding up already happened.
 391      * @param allDecimalDigits Boolean indicating if the digits provide an exact
 392      * representation of the value.
 393      *
 394      * Upon return, count will be less than or equal to maximumDigits.
 395      */
 396     private final void round(int maximumDigits,
 397                              boolean alreadyRounded,
 398                              boolean allDecimalDigits) {
 399         // Eliminate digits beyond maximum digits to be displayed.
 400         // Round up if appropriate.
 401         if (maximumDigits >= 0 && maximumDigits < count) {
 402             if (shouldRoundUp(maximumDigits, alreadyRounded, allDecimalDigits)) {
 403                 // Rounding up involved incrementing digits from LSD to MSD.
 404                 // In most cases this is simple, but in a worst case situation
 405                 // (9999..99) we have to adjust the decimalAt value.
 406                 for (;;) {
 407                     --maximumDigits;
 408                     if (maximumDigits < 0) {
 409                         // We have all 9's, so we increment to a single digit
 410                         // of one and adjust the exponent.
 411                         digits[0] = '1';
 412                         ++decimalAt;
 413                         maximumDigits = 0; // Adjust the count
 414                         break;
 415                     }
 416 
 417                     ++digits[maximumDigits];
 418                     if (digits[maximumDigits] <= '9') break;
 419                     // digits[maximumDigits] = '0'; // Unnecessary since we'll truncate this
 420                 }
 421                 ++maximumDigits; // Increment for use as count
 422             }
 423             count = maximumDigits;
 424 
 425             // Eliminate trailing zeros.
 426             while (count > 1 && digits[count-1] == '0') {
 427                 --count;
 428             }
 429         }
 430     }
 431 
 432 
 433     /**
 434      * Return true if truncating the representation to the given number
 435      * of digits will result in an increment to the last digit.  This
 436      * method implements the rounding modes defined in the
 437      * java.math.RoundingMode class.
 438      * [bnf]
 439      * @param maximumDigits the number of digits to keep, from 0 to
 440      * <code>count-1</code>.  If 0, then all digits are rounded away, and
 441      * this method returns true if a one should be generated (e.g., formatting
 442      * 0.09 with "#.#").
 443      * @exception ArithmeticException if rounding is needed with rounding
 444      *            mode being set to RoundingMode.UNNECESSARY
 445      * @return true if digit <code>maximumDigits-1</code> should be
 446      * incremented
 447      */
 448     private boolean shouldRoundUp(int maximumDigits,
 449                                   boolean alreadyRounded,
 450                                   boolean allDecimalDigits) {
 451         if (maximumDigits < count) {
 452             /*
 453              * To avoid erroneous double-rounding or truncation when converting
 454              * a binary double value to text, information about the exactness
 455              * of the conversion result in FloatingDecimal, as well as any
 456              * rounding done, is needed in this class.
 457              *
 458              * - For the  HALF_DOWN, HALF_EVEN, HALF_UP rounding rules below:
 459              *   In the case of formating float or double, We must take into
 460              *   account what FloatingDecimal has done in the binary to decimal
 461              *   conversion.
 462              *
 463              *   Considering the tie cases, FloatingDecimal may round-up the
 464              *   value (returning decimal digits equal to tie when it is below),
 465              *   or "truncate" the value to the tie while value is above it,
 466              *   or provide the exact decimal digits when the binary value can be
 467              *   converted exactly to its decimal representation given formating
 468              *   rules of FloatingDecimal ( we have thus an exact decimal
 469              *   representation of the binary value).
 470              *
 471              *   - If the double binary value was converted exactly as a decimal
 472              *     value, then DigitList code must apply the expected rounding
 473              *     rule.
 474              *
 475              *   - If FloatingDecimal already rounded up the decimal value,
 476              *     DigitList should neither round up the value again in any of
 477              *     the three rounding modes above.
 478              *
 479              *   - If FloatingDecimal has truncated the decimal value to
 480              *     an ending '5' digit, DigitList should round up the value in
 481              *     all of the three rounding modes above.
 482              *
 483              *
 484              *   This has to be considered only if digit at maximumDigits index
 485              *   is exactly the last one in the set of digits, otherwise there are
 486              *   remaining digits after that position and we don't have to consider
 487              *   what FloatingDecimal did.
 488              *
 489              * - Other rounding modes are not impacted by these tie cases.
 490              *
 491              * - For other numbers that are always converted to exact digits
 492              *   (like BigInteger, Long, ...), the passed alreadyRounded boolean
 493              *   have to be  set to false, and allDecimalDigits has to be set to
 494              *   true in the upper DigitList call stack, providing the right state
 495              *   for those situations..
 496              */
 497 
 498             switch(roundingMode) {
 499             case UP:
 500                 for (int i=maximumDigits; i<count; ++i) {
 501                     if (digits[i] != '0') {
 502                         return true;
 503                     }
 504                 }
 505                 break;
 506             case DOWN:
 507                 break;
 508             case CEILING:
 509                 for (int i=maximumDigits; i<count; ++i) {
 510                     if (digits[i] != '0') {
 511                         return !isNegative;
 512                     }
 513                 }
 514                 break;
 515             case FLOOR:
 516                 for (int i=maximumDigits; i<count; ++i) {
 517                     if (digits[i] != '0') {
 518                         return isNegative;
 519                     }
 520                 }
 521                 break;
 522             case HALF_UP:
 523                 if (digits[maximumDigits] >= '5') {
 524                     // We should not round up if the rounding digits position is
 525                     // exactly the last index and if digits were already rounded.
 526                     if ((maximumDigits == (count - 1)) &&
 527                         (alreadyRounded))
 528                         return false;
 529 
 530                     // Value was exactly at or was above tie. We must round up.
 531                     return true;
 532                 }
 533                 break;
 534             case HALF_DOWN:
 535                 if (digits[maximumDigits] > '5') {
 536                     return true;
 537                 } else if (digits[maximumDigits] == '5' ) {
 538                     if (maximumDigits == (count - 1)) {
 539                         // The rounding position is exactly the last index.
 540                         if (allDecimalDigits || alreadyRounded)
 541                             /* FloatingDecimal rounded up (value was below tie),
 542                              * or provided the exact list of digits (value was
 543                              * an exact tie). We should not round up, following
 544                              * the HALF_DOWN rounding rule.
 545                              */
 546                             return false;
 547                         else
 548                             // Value was above the tie, we must round up.
 549                             return true;
 550                     }
 551 
 552                     // We must round up if it gives a non null digit after '5'.
 553                     for (int i=maximumDigits+1; i<count; ++i) {
 554                         if (digits[i] != '0') {
 555                             return true;
 556                         }
 557                     }
 558                 }
 559                 break;
 560             case HALF_EVEN:
 561                 // Implement IEEE half-even rounding
 562                 if (digits[maximumDigits] > '5') {
 563                     return true;
 564                 } else if (digits[maximumDigits] == '5' ) {
 565                     if (maximumDigits == (count - 1)) {
 566                         // the rounding position is exactly the last index :
 567                         if (alreadyRounded)
 568                             // If FloatingDecimal rounded up (value was below tie),
 569                             // then we should not round up again.
 570                             return false;
 571 
 572                         if (!allDecimalDigits)
 573                             // Otherwise if the digits don't represent exact value,
 574                             // value was above tie and FloatingDecimal truncated
 575                             // digits to tie. We must round up.
 576                             return true;
 577                         else {
 578                             // This is an exact tie value, and FloatingDecimal
 579                             // provided all of the exact digits. We thus apply
 580                             // HALF_EVEN rounding rule.
 581                             return ((maximumDigits > 0) &&
 582                                     (digits[maximumDigits-1] % 2 != 0));
 583                         }
 584                     } else {
 585                         // Rounds up if it gives a non null digit after '5'
 586                         for (int i=maximumDigits+1; i<count; ++i) {
 587                             if (digits[i] != '0')
 588                                 return true;
 589                         }
 590                     }
 591                 }
 592                 break;
 593             case UNNECESSARY:
 594                 for (int i=maximumDigits; i<count; ++i) {
 595                     if (digits[i] != '0') {
 596                         throw new ArithmeticException(
 597                             "Rounding needed with the rounding mode being set to RoundingMode.UNNECESSARY");
 598                     }
 599                 }
 600                 break;
 601             default:
 602                 assert false;
 603             }
 604         }
 605         return false;
 606     }
 607 
 608     /**
 609      * Utility routine to set the value of the digit list from a long
 610      */
 611     final void set(boolean isNegative, long source) {
 612         set(isNegative, source, 0);
 613     }
 614 
 615     /**
 616      * Set the digit list to a representation of the given long value.
 617      * @param isNegative Boolean value indicating whether the number is negative.
 618      * @param source Value to be converted; must be >= 0 or ==
 619      * Long.MIN_VALUE.
 620      * @param maximumDigits The most digits which should be converted.
 621      * If maximumDigits is lower than the number of significant digits
 622      * in source, the representation will be rounded.  Ignored if <= 0.
 623      */
 624     final void set(boolean isNegative, long source, int maximumDigits) {
 625         this.isNegative = isNegative;
 626 
 627         // This method does not expect a negative number. However,
 628         // "source" can be a Long.MIN_VALUE (-9223372036854775808),
 629         // if the number being formatted is a Long.MIN_VALUE.  In that
 630         // case, it will be formatted as -Long.MIN_VALUE, a number
 631         // which is outside the legal range of a long, but which can
 632         // be represented by DigitList.
 633         if (source <= 0) {
 634             if (source == Long.MIN_VALUE) {
 635                 decimalAt = count = MAX_COUNT;
 636                 System.arraycopy(LONG_MIN_REP, 0, digits, 0, count);
 637             } else {
 638                 decimalAt = count = 0; // Values <= 0 format as zero
 639             }
 640         } else {
 641             // Rewritten to improve performance.  I used to call
 642             // Long.toString(), which was about 4x slower than this code.
 643             int left = MAX_COUNT;
 644             int right;
 645             while (source > 0) {
 646                 digits[--left] = (char)('0' + (source % 10));
 647                 source /= 10;
 648             }
 649             decimalAt = MAX_COUNT - left;
 650             // Don't copy trailing zeros.  We are guaranteed that there is at
 651             // least one non-zero digit, so we don't have to check lower bounds.
 652             for (right = MAX_COUNT - 1; digits[right] == '0'; --right)
 653                 ;
 654             count = right - left + 1;
 655             System.arraycopy(digits, left, digits, 0, count);
 656         }
 657         if (maximumDigits > 0) round(maximumDigits, false, true);
 658     }
 659 
 660     /**
 661      * Set the digit list to a representation of the given BigDecimal value.
 662      * This method supports both fixed-point and exponential notation.
 663      * @param isNegative Boolean value indicating whether the number is negative.
 664      * @param source Value to be converted; must not be a value <= 0.
 665      * @param maximumDigits The most fractional or total digits which should
 666      * be converted.
 667      * @param fixedPoint If true, then maximumDigits is the maximum
 668      * fractional digits to be converted.  If false, total digits.
 669      */
 670     final void set(boolean isNegative, BigDecimal source, int maximumDigits, boolean fixedPoint) {
 671         String s = source.toString();
 672         extendDigits(s.length());
 673 
 674         set(isNegative, s,
 675             false, true,
 676             maximumDigits, fixedPoint);
 677     }
 678 
 679     /**
 680      * Set the digit list to a representation of the given BigInteger value.
 681      * @param isNegative Boolean value indicating whether the number is negative.
 682      * @param source Value to be converted; must be >= 0.
 683      * @param maximumDigits The most digits which should be converted.
 684      * If maximumDigits is lower than the number of significant digits
 685      * in source, the representation will be rounded.  Ignored if <= 0.
 686      */
 687     final void set(boolean isNegative, BigInteger source, int maximumDigits) {
 688         this.isNegative = isNegative;
 689         String s = source.toString();
 690         int len = s.length();
 691         extendDigits(len);
 692         s.getChars(0, len, digits, 0);
 693 
 694         decimalAt = len;
 695         int right;
 696         for (right = len - 1; right >= 0 && digits[right] == '0'; --right)
 697             ;
 698         count = right + 1;
 699 
 700         if (maximumDigits > 0) {
 701             round(maximumDigits, false, true);
 702         }
 703     }
 704 
 705     /**
 706      * equality test between two digit lists.
 707      */
 708     public boolean equals(Object obj) {
 709         if (this == obj)                      // quick check
 710             return true;
 711         if (!(obj instanceof DigitList))         // (1) same object?
 712             return false;
 713         DigitList other = (DigitList) obj;
 714         if (count != other.count ||
 715         decimalAt != other.decimalAt)
 716             return false;
 717         for (int i = 0; i < count; i++)
 718             if (digits[i] != other.digits[i])
 719                 return false;
 720         return true;
 721     }
 722 
 723     /**
 724      * Generates the hash code for the digit list.
 725      */
 726     public int hashCode() {
 727         int hashcode = decimalAt;
 728 
 729         for (int i = 0; i < count; i++) {
 730             hashcode = hashcode * 37 + digits[i];
 731         }
 732 
 733         return hashcode;
 734     }
 735 
 736     /**
 737      * Creates a copy of this object.
 738      * @return a clone of this instance.
 739      */
 740     public Object clone() {
 741         try {
 742             DigitList other = (DigitList) super.clone();
 743             char[] newDigits = new char[digits.length];
 744             System.arraycopy(digits, 0, newDigits, 0, digits.length);
 745             other.digits = newDigits;
 746             other.tempBuffer = null;
 747             return other;
 748         } catch (CloneNotSupportedException e) {
 749             throw new InternalError(e);
 750         }
 751     }
 752 
 753     /**
 754      * Returns true if this DigitList represents Long.MIN_VALUE;
 755      * false, otherwise.  This is required so that getLong() works.
 756      */
 757     private boolean isLongMIN_VALUE() {
 758         if (decimalAt != count || count != MAX_COUNT) {
 759             return false;
 760         }
 761 
 762         for (int i = 0; i < count; ++i) {
 763             if (digits[i] != LONG_MIN_REP[i]) return false;
 764         }
 765 
 766         return true;
 767     }
 768 
 769     private static final int parseInt(char[] str, int offset, int strLen) {
 770         char c;
 771         boolean positive = true;
 772         if ((c = str[offset]) == '-') {
 773             positive = false;
 774             offset++;
 775         } else if (c == '+') {
 776             offset++;
 777         }
 778 
 779         int value = 0;
 780         while (offset < strLen) {
 781             c = str[offset++];
 782             if (c >= '0' && c <= '9') {
 783                 value = value * 10 + (c - '0');
 784             } else {
 785                 break;
 786             }
 787         }
 788         return positive ? value : -value;
 789     }
 790 
 791     // The digit part of -9223372036854775808L
 792     private static final char[] LONG_MIN_REP = "9223372036854775808".toCharArray();
 793 
 794     public String toString() {
 795         if (isZero()) {
 796             return "0";
 797         }
 798         StringBuffer buf = getStringBuffer();
 799         buf.append("0.");
 800         buf.append(digits, 0, count);
 801         buf.append("x10^");
 802         buf.append(decimalAt);
 803         return buf.toString();
 804     }
 805 
 806     private StringBuffer tempBuffer;
 807 
 808     private StringBuffer getStringBuffer() {
 809         if (tempBuffer == null) {
 810             tempBuffer = new StringBuffer(MAX_COUNT);
 811         } else {
 812             tempBuffer.setLength(0);
 813         }
 814         return tempBuffer;
 815     }
 816 
 817     private void extendDigits(int len) {
 818         if (len > digits.length) {
 819             digits = new char[len];
 820         }
 821     }
 822 
 823     private final char[] getDataChars(int length) {
 824         if (data == null || data.length < length) {
 825             data = new char[length];
 826         }
 827         return data;
 828     }
 829 }