1 /*
   2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "logging/log.hpp"
  28 #include "logging/logStream.hpp"
  29 #include "jfr/jfrEvents.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/metaspaceShared.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/atomic.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/handles.inline.hpp"
  40 #include "runtime/interfaceSupport.inline.hpp"
  41 #include "runtime/mutexLocker.hpp"
  42 #include "runtime/objectMonitor.hpp"
  43 #include "runtime/objectMonitor.inline.hpp"
  44 #include "runtime/osThread.hpp"
  45 #include "runtime/safepointVerifiers.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "runtime/synchronizer.hpp"
  49 #include "runtime/thread.inline.hpp"
  50 #include "runtime/timer.hpp"
  51 #include "runtime/vframe.hpp"
  52 #include "runtime/vmThread.hpp"
  53 #include "utilities/align.hpp"
  54 #include "utilities/dtrace.hpp"
  55 #include "utilities/events.hpp"
  56 #include "utilities/preserveException.hpp"
  57 
  58 // The "core" versions of monitor enter and exit reside in this file.
  59 // The interpreter and compilers contain specialized transliterated
  60 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  61 // for instance.  If you make changes here, make sure to modify the
  62 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  63 //
  64 // -----------------------------------------------------------------------------
  65 
  66 #ifdef DTRACE_ENABLED
  67 
  68 // Only bother with this argument setup if dtrace is available
  69 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  70 
  71 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  72   char* bytes = NULL;                                                      \
  73   int len = 0;                                                             \
  74   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  75   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  76   if (klassname != NULL) {                                                 \
  77     bytes = (char*)klassname->bytes();                                     \
  78     len = klassname->utf8_length();                                        \
  79   }
  80 
  81 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  82   {                                                                        \
  83     if (DTraceMonitorProbes) {                                             \
  84       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  85       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  86                            (uintptr_t)(monitor), bytes, len, (millis));    \
  87     }                                                                      \
  88   }
  89 
  90 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
  91 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  92 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  93 
  94 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  95   {                                                                        \
  96     if (DTraceMonitorProbes) {                                             \
  97       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  98       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
  99                                     (uintptr_t)(monitor), bytes, len);     \
 100     }                                                                      \
 101   }
 102 
 103 #else //  ndef DTRACE_ENABLED
 104 
 105 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 106 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 107 
 108 #endif // ndef DTRACE_ENABLED
 109 
 110 // This exists only as a workaround of dtrace bug 6254741
 111 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 112   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 113   return 0;
 114 }
 115 
 116 #define NINFLATIONLOCKS 256
 117 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 118 
 119 // global list of blocks of monitors
 120 PaddedEnd<ObjectMonitor> * volatile ObjectSynchronizer::gBlockList = NULL;
 121 // global monitor free list
 122 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL;
 123 // global monitor in-use list, for moribund threads,
 124 // monitors they inflated need to be scanned for deflation
 125 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL;
 126 // count of entries in gOmInUseList
 127 int ObjectSynchronizer::gOmInUseCount = 0;
 128 
 129 static volatile intptr_t gListLock = 0;      // protects global monitor lists
 130 static volatile int gMonitorFreeCount  = 0;  // # on gFreeList
 131 static volatile int gMonitorPopulation = 0;  // # Extant -- in circulation
 132 
 133 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 134 
 135 
 136 // =====================> Quick functions
 137 
 138 // The quick_* forms are special fast-path variants used to improve
 139 // performance.  In the simplest case, a "quick_*" implementation could
 140 // simply return false, in which case the caller will perform the necessary
 141 // state transitions and call the slow-path form.
 142 // The fast-path is designed to handle frequently arising cases in an efficient
 143 // manner and is just a degenerate "optimistic" variant of the slow-path.
 144 // returns true  -- to indicate the call was satisfied.
 145 // returns false -- to indicate the call needs the services of the slow-path.
 146 // A no-loitering ordinance is in effect for code in the quick_* family
 147 // operators: safepoints or indefinite blocking (blocking that might span a
 148 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 149 // entry.
 150 //
 151 // Consider: An interesting optimization is to have the JIT recognize the
 152 // following common idiom:
 153 //   synchronized (someobj) { .... ; notify(); }
 154 // That is, we find a notify() or notifyAll() call that immediately precedes
 155 // the monitorexit operation.  In that case the JIT could fuse the operations
 156 // into a single notifyAndExit() runtime primitive.
 157 
 158 bool ObjectSynchronizer::quick_notify(oopDesc * obj, Thread * self, bool all) {
 159   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 160   assert(self->is_Java_thread(), "invariant");
 161   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 162   NoSafepointVerifier nsv;
 163   if (obj == NULL) return false;  // slow-path for invalid obj
 164   const markWord mark = obj->mark();
 165 
 166   if (mark.has_locker() && self->is_lock_owned((address)mark.locker())) {
 167     // Degenerate notify
 168     // stack-locked by caller so by definition the implied waitset is empty.
 169     return true;
 170   }
 171 
 172   if (mark.has_monitor()) {
 173     ObjectMonitor * const mon = mark.monitor();
 174     assert(oopDesc::equals((oop) mon->object(), obj), "invariant");
 175     if (mon->owner() != self) return false;  // slow-path for IMS exception
 176 
 177     if (mon->first_waiter() != NULL) {
 178       // We have one or more waiters. Since this is an inflated monitor
 179       // that we own, we can transfer one or more threads from the waitset
 180       // to the entrylist here and now, avoiding the slow-path.
 181       if (all) {
 182         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self);
 183       } else {
 184         DTRACE_MONITOR_PROBE(notify, mon, obj, self);
 185       }
 186       int tally = 0;
 187       do {
 188         mon->INotify(self);
 189         ++tally;
 190       } while (mon->first_waiter() != NULL && all);
 191       OM_PERFDATA_OP(Notifications, inc(tally));
 192     }
 193     return true;
 194   }
 195 
 196   // biased locking and any other IMS exception states take the slow-path
 197   return false;
 198 }
 199 
 200 
 201 // The LockNode emitted directly at the synchronization site would have
 202 // been too big if it were to have included support for the cases of inflated
 203 // recursive enter and exit, so they go here instead.
 204 // Note that we can't safely call AsyncPrintJavaStack() from within
 205 // quick_enter() as our thread state remains _in_Java.
 206 
 207 bool ObjectSynchronizer::quick_enter(oop obj, Thread * Self,
 208                                      BasicLock * lock) {
 209   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 210   assert(Self->is_Java_thread(), "invariant");
 211   assert(((JavaThread *) Self)->thread_state() == _thread_in_Java, "invariant");
 212   NoSafepointVerifier nsv;
 213   if (obj == NULL) return false;       // Need to throw NPE
 214   const markWord mark = obj->mark();
 215 
 216   if (mark.has_monitor()) {
 217     ObjectMonitor * const m = mark.monitor();
 218     assert(oopDesc::equals((oop) m->object(), obj), "invariant");
 219     Thread * const owner = (Thread *) m->_owner;
 220 
 221     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 222     // and observability
 223     // Case: light contention possibly amenable to TLE
 224     // Case: TLE inimical operations such as nested/recursive synchronization
 225 
 226     if (owner == Self) {
 227       m->_recursions++;
 228       return true;
 229     }
 230 
 231     // This Java Monitor is inflated so obj's header will never be
 232     // displaced to this thread's BasicLock. Make the displaced header
 233     // non-NULL so this BasicLock is not seen as recursive nor as
 234     // being locked. We do this unconditionally so that this thread's
 235     // BasicLock cannot be mis-interpreted by any stack walkers. For
 236     // performance reasons, stack walkers generally first check for
 237     // Biased Locking in the object's header, the second check is for
 238     // stack-locking in the object's header, the third check is for
 239     // recursive stack-locking in the displaced header in the BasicLock,
 240     // and last are the inflated Java Monitor (ObjectMonitor) checks.
 241     lock->set_displaced_header(markWord::unused_mark());
 242 
 243     if (owner == NULL && Atomic::replace_if_null(Self, &(m->_owner))) {
 244       assert(m->_recursions == 0, "invariant");
 245       return true;
 246     }
 247   }
 248 
 249   // Note that we could inflate in quick_enter.
 250   // This is likely a useful optimization
 251   // Critically, in quick_enter() we must not:
 252   // -- perform bias revocation, or
 253   // -- block indefinitely, or
 254   // -- reach a safepoint
 255 
 256   return false;        // revert to slow-path
 257 }
 258 
 259 // -----------------------------------------------------------------------------
 260 // Monitor Enter/Exit
 261 // The interpreter and compiler assembly code tries to lock using the fast path
 262 // of this algorithm. Make sure to update that code if the following function is
 263 // changed. The implementation is extremely sensitive to race condition. Be careful.
 264 
 265 void ObjectSynchronizer::enter(Handle obj, BasicLock* lock, TRAPS) {
 266   if (UseBiasedLocking) {
 267     if (!SafepointSynchronize::is_at_safepoint()) {
 268       BiasedLocking::revoke(obj, THREAD);
 269     } else {
 270       BiasedLocking::revoke_at_safepoint(obj);
 271     }
 272   }
 273 
 274   markWord mark = obj->mark();
 275   assert(!mark.has_bias_pattern(), "should not see bias pattern here");
 276 
 277   if (mark.is_neutral()) {
 278     // Anticipate successful CAS -- the ST of the displaced mark must
 279     // be visible <= the ST performed by the CAS.
 280     lock->set_displaced_header(mark);
 281     if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) {
 282       return;
 283     }
 284     // Fall through to inflate() ...
 285   } else if (mark.has_locker() &&
 286              THREAD->is_lock_owned((address)mark.locker())) {
 287     assert(lock != mark.locker(), "must not re-lock the same lock");
 288     assert(lock != (BasicLock*)obj->mark().value(), "don't relock with same BasicLock");
 289     lock->set_displaced_header(markWord::from_pointer(NULL));
 290     return;
 291   }
 292 
 293   // The object header will never be displaced to this lock,
 294   // so it does not matter what the value is, except that it
 295   // must be non-zero to avoid looking like a re-entrant lock,
 296   // and must not look locked either.
 297   lock->set_displaced_header(markWord::unused_mark());
 298   inflate(THREAD, obj(), inflate_cause_monitor_enter)->enter(THREAD);
 299 }
 300 
 301 void ObjectSynchronizer::exit(oop object, BasicLock* lock, TRAPS) {
 302   markWord mark = object->mark();
 303   // We cannot check for Biased Locking if we are racing an inflation.
 304   assert(mark == markWord::INFLATING() ||
 305          !mark.has_bias_pattern(), "should not see bias pattern here");
 306 
 307   markWord dhw = lock->displaced_header();
 308   if (dhw.value() == 0) {
 309     // If the displaced header is NULL, then this exit matches up with
 310     // a recursive enter. No real work to do here except for diagnostics.
 311 #ifndef PRODUCT
 312     if (mark != markWord::INFLATING()) {
 313       // Only do diagnostics if we are not racing an inflation. Simply
 314       // exiting a recursive enter of a Java Monitor that is being
 315       // inflated is safe; see the has_monitor() comment below.
 316       assert(!mark.is_neutral(), "invariant");
 317       assert(!mark.has_locker() ||
 318              THREAD->is_lock_owned((address)mark.locker()), "invariant");
 319       if (mark.has_monitor()) {
 320         // The BasicLock's displaced_header is marked as a recursive
 321         // enter and we have an inflated Java Monitor (ObjectMonitor).
 322         // This is a special case where the Java Monitor was inflated
 323         // after this thread entered the stack-lock recursively. When a
 324         // Java Monitor is inflated, we cannot safely walk the Java
 325         // Monitor owner's stack and update the BasicLocks because a
 326         // Java Monitor can be asynchronously inflated by a thread that
 327         // does not own the Java Monitor.
 328         ObjectMonitor * m = mark.monitor();
 329         assert(((oop)(m->object()))->mark() == mark, "invariant");
 330         assert(m->is_entered(THREAD), "invariant");
 331       }
 332     }
 333 #endif
 334     return;
 335   }
 336 
 337   if (mark == markWord::from_pointer(lock)) {
 338     // If the object is stack-locked by the current thread, try to
 339     // swing the displaced header from the BasicLock back to the mark.
 340     assert(dhw.is_neutral(), "invariant");
 341     if (object->cas_set_mark(dhw, mark) == mark) {
 342       return;
 343     }
 344   }
 345 
 346   // We have to take the slow-path of possible inflation and then exit.
 347   inflate(THREAD, object, inflate_cause_vm_internal)->exit(true, THREAD);
 348 }
 349 
 350 // -----------------------------------------------------------------------------
 351 // Class Loader  support to workaround deadlocks on the class loader lock objects
 352 // Also used by GC
 353 // complete_exit()/reenter() are used to wait on a nested lock
 354 // i.e. to give up an outer lock completely and then re-enter
 355 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 356 //  1) complete_exit lock1 - saving recursion count
 357 //  2) wait on lock2
 358 //  3) when notified on lock2, unlock lock2
 359 //  4) reenter lock1 with original recursion count
 360 //  5) lock lock2
 361 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 362 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 363   if (UseBiasedLocking) {
 364     BiasedLocking::revoke(obj, THREAD);
 365     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 366   }
 367 
 368   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal);
 369 
 370   return monitor->complete_exit(THREAD);
 371 }
 372 
 373 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 374 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
 375   if (UseBiasedLocking) {
 376     BiasedLocking::revoke(obj, THREAD);
 377     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 378   }
 379 
 380   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal);
 381 
 382   monitor->reenter(recursion, THREAD);
 383 }
 384 // -----------------------------------------------------------------------------
 385 // JNI locks on java objects
 386 // NOTE: must use heavy weight monitor to handle jni monitor enter
 387 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 388   // the current locking is from JNI instead of Java code
 389   if (UseBiasedLocking) {
 390     BiasedLocking::revoke(obj, THREAD);
 391     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 392   }
 393   THREAD->set_current_pending_monitor_is_from_java(false);
 394   inflate(THREAD, obj(), inflate_cause_jni_enter)->enter(THREAD);
 395   THREAD->set_current_pending_monitor_is_from_java(true);
 396 }
 397 
 398 // NOTE: must use heavy weight monitor to handle jni monitor exit
 399 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 400   if (UseBiasedLocking) {
 401     Handle h_obj(THREAD, obj);
 402     BiasedLocking::revoke(h_obj, THREAD);
 403     obj = h_obj();
 404   }
 405   assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 406 
 407   ObjectMonitor* monitor = inflate(THREAD, obj, inflate_cause_jni_exit);
 408   // If this thread has locked the object, exit the monitor. We
 409   // intentionally do not use CHECK here because we must exit the
 410   // monitor even if an exception is pending.
 411   if (monitor->check_owner(THREAD)) {
 412     monitor->exit(true, THREAD);
 413   }
 414 }
 415 
 416 // -----------------------------------------------------------------------------
 417 // Internal VM locks on java objects
 418 // standard constructor, allows locking failures
 419 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
 420   _dolock = doLock;
 421   _thread = thread;
 422   _thread->check_for_valid_safepoint_state(false);
 423   _obj = obj;
 424 
 425   if (_dolock) {
 426     ObjectSynchronizer::enter(_obj, &_lock, _thread);
 427   }
 428 }
 429 
 430 ObjectLocker::~ObjectLocker() {
 431   if (_dolock) {
 432     ObjectSynchronizer::exit(_obj(), &_lock, _thread);
 433   }
 434 }
 435 
 436 
 437 // -----------------------------------------------------------------------------
 438 //  Wait/Notify/NotifyAll
 439 // NOTE: must use heavy weight monitor to handle wait()
 440 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 441   if (UseBiasedLocking) {
 442     BiasedLocking::revoke(obj, THREAD);
 443     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 444   }
 445   if (millis < 0) {
 446     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 447   }
 448   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_wait);
 449 
 450   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 451   monitor->wait(millis, true, THREAD);
 452 
 453   // This dummy call is in place to get around dtrace bug 6254741.  Once
 454   // that's fixed we can uncomment the following line, remove the call
 455   // and change this function back into a "void" func.
 456   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 457   return dtrace_waited_probe(monitor, obj, THREAD);
 458 }
 459 
 460 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) {
 461   if (UseBiasedLocking) {
 462     BiasedLocking::revoke(obj, THREAD);
 463     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 464   }
 465   if (millis < 0) {
 466     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 467   }
 468   inflate(THREAD, obj(), inflate_cause_wait)->wait(millis, false, THREAD);
 469 }
 470 
 471 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 472   if (UseBiasedLocking) {
 473     BiasedLocking::revoke(obj, THREAD);
 474     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 475   }
 476 
 477   markWord mark = obj->mark();
 478   if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) {
 479     return;
 480   }
 481   inflate(THREAD, obj(), inflate_cause_notify)->notify(THREAD);
 482 }
 483 
 484 // NOTE: see comment of notify()
 485 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 486   if (UseBiasedLocking) {
 487     BiasedLocking::revoke(obj, THREAD);
 488     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 489   }
 490 
 491   markWord mark = obj->mark();
 492   if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) {
 493     return;
 494   }
 495   inflate(THREAD, obj(), inflate_cause_notify)->notifyAll(THREAD);
 496 }
 497 
 498 // -----------------------------------------------------------------------------
 499 // Hash Code handling
 500 //
 501 // Performance concern:
 502 // OrderAccess::storestore() calls release() which at one time stored 0
 503 // into the global volatile OrderAccess::dummy variable. This store was
 504 // unnecessary for correctness. Many threads storing into a common location
 505 // causes considerable cache migration or "sloshing" on large SMP systems.
 506 // As such, I avoided using OrderAccess::storestore(). In some cases
 507 // OrderAccess::fence() -- which incurs local latency on the executing
 508 // processor -- is a better choice as it scales on SMP systems.
 509 //
 510 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 511 // a discussion of coherency costs. Note that all our current reference
 512 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 513 // x64, and SPARC.
 514 //
 515 // As a general policy we use "volatile" to control compiler-based reordering
 516 // and explicit fences (barriers) to control for architectural reordering
 517 // performed by the CPU(s) or platform.
 518 
 519 struct SharedGlobals {
 520   char         _pad_prefix[DEFAULT_CACHE_LINE_SIZE];
 521   // These are highly shared mostly-read variables.
 522   // To avoid false-sharing they need to be the sole occupants of a cache line.
 523   volatile int stwRandom;
 524   volatile int stwCycle;
 525   DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 526   // Hot RW variable -- Sequester to avoid false-sharing
 527   volatile int hcSequence;
 528   DEFINE_PAD_MINUS_SIZE(2, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int));
 529 };
 530 
 531 static SharedGlobals GVars;
 532 static int MonitorScavengeThreshold = 1000000;
 533 static volatile int ForceMonitorScavenge = 0; // Scavenge required and pending
 534 
 535 static markWord ReadStableMark(oop obj) {
 536   markWord mark = obj->mark();
 537   if (!mark.is_being_inflated()) {
 538     return mark;       // normal fast-path return
 539   }
 540 
 541   int its = 0;
 542   for (;;) {
 543     markWord mark = obj->mark();
 544     if (!mark.is_being_inflated()) {
 545       return mark;    // normal fast-path return
 546     }
 547 
 548     // The object is being inflated by some other thread.
 549     // The caller of ReadStableMark() must wait for inflation to complete.
 550     // Avoid live-lock
 551     // TODO: consider calling SafepointSynchronize::do_call_back() while
 552     // spinning to see if there's a safepoint pending.  If so, immediately
 553     // yielding or blocking would be appropriate.  Avoid spinning while
 554     // there is a safepoint pending.
 555     // TODO: add inflation contention performance counters.
 556     // TODO: restrict the aggregate number of spinners.
 557 
 558     ++its;
 559     if (its > 10000 || !os::is_MP()) {
 560       if (its & 1) {
 561         os::naked_yield();
 562       } else {
 563         // Note that the following code attenuates the livelock problem but is not
 564         // a complete remedy.  A more complete solution would require that the inflating
 565         // thread hold the associated inflation lock.  The following code simply restricts
 566         // the number of spinners to at most one.  We'll have N-2 threads blocked
 567         // on the inflationlock, 1 thread holding the inflation lock and using
 568         // a yield/park strategy, and 1 thread in the midst of inflation.
 569         // A more refined approach would be to change the encoding of INFLATING
 570         // to allow encapsulation of a native thread pointer.  Threads waiting for
 571         // inflation to complete would use CAS to push themselves onto a singly linked
 572         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 573         // and calling park().  When inflation was complete the thread that accomplished inflation
 574         // would detach the list and set the markword to inflated with a single CAS and
 575         // then for each thread on the list, set the flag and unpark() the thread.
 576         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 577         // wakes at most one thread whereas we need to wake the entire list.
 578         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 579         int YieldThenBlock = 0;
 580         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 581         assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 582         Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
 583         while (obj->mark() == markWord::INFLATING()) {
 584           // Beware: NakedYield() is advisory and has almost no effect on some platforms
 585           // so we periodically call Self->_ParkEvent->park(1).
 586           // We use a mixed spin/yield/block mechanism.
 587           if ((YieldThenBlock++) >= 16) {
 588             Thread::current()->_ParkEvent->park(1);
 589           } else {
 590             os::naked_yield();
 591           }
 592         }
 593         Thread::muxRelease(gInflationLocks + ix);
 594       }
 595     } else {
 596       SpinPause();       // SMP-polite spinning
 597     }
 598   }
 599 }
 600 
 601 // hashCode() generation :
 602 //
 603 // Possibilities:
 604 // * MD5Digest of {obj,stwRandom}
 605 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
 606 // * A DES- or AES-style SBox[] mechanism
 607 // * One of the Phi-based schemes, such as:
 608 //   2654435761 = 2^32 * Phi (golden ratio)
 609 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
 610 // * A variation of Marsaglia's shift-xor RNG scheme.
 611 // * (obj ^ stwRandom) is appealing, but can result
 612 //   in undesirable regularity in the hashCode values of adjacent objects
 613 //   (objects allocated back-to-back, in particular).  This could potentially
 614 //   result in hashtable collisions and reduced hashtable efficiency.
 615 //   There are simple ways to "diffuse" the middle address bits over the
 616 //   generated hashCode values:
 617 
 618 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
 619   intptr_t value = 0;
 620   if (hashCode == 0) {
 621     // This form uses global Park-Miller RNG.
 622     // On MP system we'll have lots of RW access to a global, so the
 623     // mechanism induces lots of coherency traffic.
 624     value = os::random();
 625   } else if (hashCode == 1) {
 626     // This variation has the property of being stable (idempotent)
 627     // between STW operations.  This can be useful in some of the 1-0
 628     // synchronization schemes.
 629     intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3;
 630     value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom;
 631   } else if (hashCode == 2) {
 632     value = 1;            // for sensitivity testing
 633   } else if (hashCode == 3) {
 634     value = ++GVars.hcSequence;
 635   } else if (hashCode == 4) {
 636     value = cast_from_oop<intptr_t>(obj);
 637   } else {
 638     // Marsaglia's xor-shift scheme with thread-specific state
 639     // This is probably the best overall implementation -- we'll
 640     // likely make this the default in future releases.
 641     unsigned t = Self->_hashStateX;
 642     t ^= (t << 11);
 643     Self->_hashStateX = Self->_hashStateY;
 644     Self->_hashStateY = Self->_hashStateZ;
 645     Self->_hashStateZ = Self->_hashStateW;
 646     unsigned v = Self->_hashStateW;
 647     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 648     Self->_hashStateW = v;
 649     value = v;
 650   }
 651 
 652   value &= markWord::hash_mask;
 653   if (value == 0) value = 0xBAD;
 654   assert(value != markWord::no_hash, "invariant");
 655   return value;
 656 }
 657 
 658 intptr_t ObjectSynchronizer::FastHashCode(Thread * Self, oop obj) {
 659   if (UseBiasedLocking) {
 660     // NOTE: many places throughout the JVM do not expect a safepoint
 661     // to be taken here, in particular most operations on perm gen
 662     // objects. However, we only ever bias Java instances and all of
 663     // the call sites of identity_hash that might revoke biases have
 664     // been checked to make sure they can handle a safepoint. The
 665     // added check of the bias pattern is to avoid useless calls to
 666     // thread-local storage.
 667     if (obj->mark().has_bias_pattern()) {
 668       // Handle for oop obj in case of STW safepoint
 669       Handle hobj(Self, obj);
 670       // Relaxing assertion for bug 6320749.
 671       assert(Universe::verify_in_progress() ||
 672              !SafepointSynchronize::is_at_safepoint(),
 673              "biases should not be seen by VM thread here");
 674       BiasedLocking::revoke(hobj, JavaThread::current());
 675       obj = hobj();
 676       assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 677     }
 678   }
 679 
 680   // hashCode() is a heap mutator ...
 681   // Relaxing assertion for bug 6320749.
 682   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 683          !SafepointSynchronize::is_at_safepoint(), "invariant");
 684   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 685          Self->is_Java_thread() , "invariant");
 686   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 687          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 688 
 689   ObjectMonitor* monitor = NULL;
 690   markWord temp, test;
 691   intptr_t hash;
 692   markWord mark = ReadStableMark(obj);
 693 
 694   // object should remain ineligible for biased locking
 695   assert(!mark.has_bias_pattern(), "invariant");
 696 
 697   if (mark.is_neutral()) {
 698     hash = mark.hash();               // this is a normal header
 699     if (hash != 0) {                  // if it has hash, just return it
 700       return hash;
 701     }
 702     hash = get_next_hash(Self, obj);  // allocate a new hash code
 703     temp = mark.copy_set_hash(hash);  // merge the hash code into header
 704     // use (machine word version) atomic operation to install the hash
 705     test = obj->cas_set_mark(temp, mark);
 706     if (test == mark) {
 707       return hash;
 708     }
 709     // If atomic operation failed, we must inflate the header
 710     // into heavy weight monitor. We could add more code here
 711     // for fast path, but it does not worth the complexity.
 712   } else if (mark.has_monitor()) {
 713     monitor = mark.monitor();
 714     temp = monitor->header();
 715     assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
 716     hash = temp.hash();
 717     if (hash != 0) {
 718       return hash;
 719     }
 720     // Skip to the following code to reduce code size
 721   } else if (Self->is_lock_owned((address)mark.locker())) {
 722     temp = mark.displaced_mark_helper(); // this is a lightweight monitor owned
 723     assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
 724     hash = temp.hash();                  // by current thread, check if the displaced
 725     if (hash != 0) {                     // header contains hash code
 726       return hash;
 727     }
 728     // WARNING:
 729     // The displaced header in the BasicLock on a thread's stack
 730     // is strictly immutable. It CANNOT be changed in ANY cases.
 731     // So we have to inflate the stack lock into an ObjectMonitor
 732     // even if the current thread owns the lock. The BasicLock on
 733     // a thread's stack can be asynchronously read by other threads
 734     // during an inflate() call so any change to that stack memory
 735     // may not propagate to other threads correctly.
 736   }
 737 
 738   // Inflate the monitor to set hash code
 739   monitor = inflate(Self, obj, inflate_cause_hash_code);
 740   // Load displaced header and check it has hash code
 741   mark = monitor->header();
 742   assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
 743   hash = mark.hash();
 744   if (hash == 0) {
 745     hash = get_next_hash(Self, obj);
 746     temp = mark.copy_set_hash(hash); // merge hash code into header
 747     assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
 748     uintptr_t v = Atomic::cmpxchg(temp.value(), (volatile uintptr_t*)monitor->header_addr(), mark.value());
 749     test = markWord(v);
 750     if (test != mark) {
 751       // The only update to the ObjectMonitor's header/dmw field
 752       // is to merge in the hash code. If someone adds a new usage
 753       // of the header/dmw field, please update this code.
 754       hash = test.hash();
 755       assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value());
 756       assert(hash != 0, "Trivial unexpected object/monitor header usage.");
 757     }
 758   }
 759   // We finally get the hash
 760   return hash;
 761 }
 762 
 763 // Deprecated -- use FastHashCode() instead.
 764 
 765 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 766   return FastHashCode(Thread::current(), obj());
 767 }
 768 
 769 
 770 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
 771                                                    Handle h_obj) {
 772   if (UseBiasedLocking) {
 773     BiasedLocking::revoke(h_obj, thread);
 774     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
 775   }
 776 
 777   assert(thread == JavaThread::current(), "Can only be called on current thread");
 778   oop obj = h_obj();
 779 
 780   markWord mark = ReadStableMark(obj);
 781 
 782   // Uncontended case, header points to stack
 783   if (mark.has_locker()) {
 784     return thread->is_lock_owned((address)mark.locker());
 785   }
 786   // Contended case, header points to ObjectMonitor (tagged pointer)
 787   if (mark.has_monitor()) {
 788     ObjectMonitor* monitor = mark.monitor();
 789     return monitor->is_entered(thread) != 0;
 790   }
 791   // Unlocked case, header in place
 792   assert(mark.is_neutral(), "sanity check");
 793   return false;
 794 }
 795 
 796 // Be aware of this method could revoke bias of the lock object.
 797 // This method queries the ownership of the lock handle specified by 'h_obj'.
 798 // If the current thread owns the lock, it returns owner_self. If no
 799 // thread owns the lock, it returns owner_none. Otherwise, it will return
 800 // owner_other.
 801 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
 802 (JavaThread *self, Handle h_obj) {
 803   // The caller must beware this method can revoke bias, and
 804   // revocation can result in a safepoint.
 805   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 806   assert(self->thread_state() != _thread_blocked, "invariant");
 807 
 808   // Possible mark states: neutral, biased, stack-locked, inflated
 809 
 810   if (UseBiasedLocking && h_obj()->mark().has_bias_pattern()) {
 811     // CASE: biased
 812     BiasedLocking::revoke(h_obj, self);
 813     assert(!h_obj->mark().has_bias_pattern(),
 814            "biases should be revoked by now");
 815   }
 816 
 817   assert(self == JavaThread::current(), "Can only be called on current thread");
 818   oop obj = h_obj();
 819   markWord mark = ReadStableMark(obj);
 820 
 821   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
 822   if (mark.has_locker()) {
 823     return self->is_lock_owned((address)mark.locker()) ?
 824       owner_self : owner_other;
 825   }
 826 
 827   // CASE: inflated. Mark (tagged pointer) points to an ObjectMonitor.
 828   // The Object:ObjectMonitor relationship is stable as long as we're
 829   // not at a safepoint.
 830   if (mark.has_monitor()) {
 831     void * owner = mark.monitor()->_owner;
 832     if (owner == NULL) return owner_none;
 833     return (owner == self ||
 834             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
 835   }
 836 
 837   // CASE: neutral
 838   assert(mark.is_neutral(), "sanity check");
 839   return owner_none;           // it's unlocked
 840 }
 841 
 842 // FIXME: jvmti should call this
 843 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
 844   if (UseBiasedLocking) {
 845     if (SafepointSynchronize::is_at_safepoint()) {
 846       BiasedLocking::revoke_at_safepoint(h_obj);
 847     } else {
 848       BiasedLocking::revoke(h_obj, JavaThread::current());
 849     }
 850     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
 851   }
 852 
 853   oop obj = h_obj();
 854   address owner = NULL;
 855 
 856   markWord mark = ReadStableMark(obj);
 857 
 858   // Uncontended case, header points to stack
 859   if (mark.has_locker()) {
 860     owner = (address) mark.locker();
 861   }
 862 
 863   // Contended case, header points to ObjectMonitor (tagged pointer)
 864   else if (mark.has_monitor()) {
 865     ObjectMonitor* monitor = mark.monitor();
 866     assert(monitor != NULL, "monitor should be non-null");
 867     owner = (address) monitor->owner();
 868   }
 869 
 870   if (owner != NULL) {
 871     // owning_thread_from_monitor_owner() may also return NULL here
 872     return Threads::owning_thread_from_monitor_owner(t_list, owner);
 873   }
 874 
 875   // Unlocked case, header in place
 876   // Cannot have assertion since this object may have been
 877   // locked by another thread when reaching here.
 878   // assert(mark.is_neutral(), "sanity check");
 879 
 880   return NULL;
 881 }
 882 
 883 // Visitors ...
 884 
 885 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 886   PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
 887   while (block != NULL) {
 888     assert(block->object() == CHAINMARKER, "must be a block header");
 889     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 890       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
 891       oop object = (oop)mid->object();
 892       if (object != NULL) {
 893         closure->do_monitor(mid);
 894       }
 895     }
 896     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
 897   }
 898 }
 899 
 900 // Get the next block in the block list.
 901 static inline PaddedEnd<ObjectMonitor>* next(PaddedEnd<ObjectMonitor>* block) {
 902   assert(block->object() == CHAINMARKER, "must be a block header");
 903   block = (PaddedEnd<ObjectMonitor>*) block->FreeNext;
 904   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
 905   return block;
 906 }
 907 
 908 static bool monitors_used_above_threshold() {
 909   if (gMonitorPopulation == 0) {
 910     return false;
 911   }
 912   int monitors_used = gMonitorPopulation - gMonitorFreeCount;
 913   int monitor_usage = (monitors_used * 100LL) / gMonitorPopulation;
 914   return monitor_usage > MonitorUsedDeflationThreshold;
 915 }
 916 
 917 bool ObjectSynchronizer::is_cleanup_needed() {
 918   if (MonitorUsedDeflationThreshold > 0) {
 919     return monitors_used_above_threshold();
 920   }
 921   return false;
 922 }
 923 
 924 void ObjectSynchronizer::oops_do(OopClosure* f) {
 925   // We only scan the global used list here (for moribund threads), and
 926   // the thread-local monitors in Thread::oops_do().
 927   global_used_oops_do(f);
 928 }
 929 
 930 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
 931   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 932   list_oops_do(gOmInUseList, f);
 933 }
 934 
 935 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
 936   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 937   list_oops_do(thread->omInUseList, f);
 938 }
 939 
 940 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) {
 941   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 942   ObjectMonitor* mid;
 943   for (mid = list; mid != NULL; mid = mid->FreeNext) {
 944     if (mid->object() != NULL) {
 945       f->do_oop((oop*)mid->object_addr());
 946     }
 947   }
 948 }
 949 
 950 
 951 // -----------------------------------------------------------------------------
 952 // ObjectMonitor Lifecycle
 953 // -----------------------
 954 // Inflation unlinks monitors from the global gFreeList and
 955 // associates them with objects.  Deflation -- which occurs at
 956 // STW-time -- disassociates idle monitors from objects.  Such
 957 // scavenged monitors are returned to the gFreeList.
 958 //
 959 // The global list is protected by gListLock.  All the critical sections
 960 // are short and operate in constant-time.
 961 //
 962 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
 963 //
 964 // Lifecycle:
 965 // --   unassigned and on the global free list
 966 // --   unassigned and on a thread's private omFreeList
 967 // --   assigned to an object.  The object is inflated and the mark refers
 968 //      to the objectmonitor.
 969 
 970 
 971 // Constraining monitor pool growth via MonitorBound ...
 972 //
 973 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
 974 // the rate of scavenging is driven primarily by GC.  As such,  we can find
 975 // an inordinate number of monitors in circulation.
 976 // To avoid that scenario we can artificially induce a STW safepoint
 977 // if the pool appears to be growing past some reasonable bound.
 978 // Generally we favor time in space-time tradeoffs, but as there's no
 979 // natural back-pressure on the # of extant monitors we need to impose some
 980 // type of limit.  Beware that if MonitorBound is set to too low a value
 981 // we could just loop. In addition, if MonitorBound is set to a low value
 982 // we'll incur more safepoints, which are harmful to performance.
 983 // See also: GuaranteedSafepointInterval
 984 //
 985 // The current implementation uses asynchronous VM operations.
 986 
 987 static void InduceScavenge(Thread * Self, const char * Whence) {
 988   // Induce STW safepoint to trim monitors
 989   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
 990   // More precisely, trigger an asynchronous STW safepoint as the number
 991   // of active monitors passes the specified threshold.
 992   // TODO: assert thread state is reasonable
 993 
 994   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
 995     // Induce a 'null' safepoint to scavenge monitors
 996     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
 997     // to the VMthread and have a lifespan longer than that of this activation record.
 998     // The VMThread will delete the op when completed.
 999     VMThread::execute(new VM_ScavengeMonitors());
1000   }
1001 }
1002 
1003 ObjectMonitor* ObjectSynchronizer::omAlloc(Thread * Self) {
1004   // A large MAXPRIVATE value reduces both list lock contention
1005   // and list coherency traffic, but also tends to increase the
1006   // number of objectMonitors in circulation as well as the STW
1007   // scavenge costs.  As usual, we lean toward time in space-time
1008   // tradeoffs.
1009   const int MAXPRIVATE = 1024;
1010   stringStream ss;
1011   for (;;) {
1012     ObjectMonitor * m;
1013 
1014     // 1: try to allocate from the thread's local omFreeList.
1015     // Threads will attempt to allocate first from their local list, then
1016     // from the global list, and only after those attempts fail will the thread
1017     // attempt to instantiate new monitors.   Thread-local free lists take
1018     // heat off the gListLock and improve allocation latency, as well as reducing
1019     // coherency traffic on the shared global list.
1020     m = Self->omFreeList;
1021     if (m != NULL) {
1022       Self->omFreeList = m->FreeNext;
1023       Self->omFreeCount--;
1024       guarantee(m->object() == NULL, "invariant");
1025       m->FreeNext = Self->omInUseList;
1026       Self->omInUseList = m;
1027       Self->omInUseCount++;
1028       return m;
1029     }
1030 
1031     // 2: try to allocate from the global gFreeList
1032     // CONSIDER: use muxTry() instead of muxAcquire().
1033     // If the muxTry() fails then drop immediately into case 3.
1034     // If we're using thread-local free lists then try
1035     // to reprovision the caller's free list.
1036     if (gFreeList != NULL) {
1037       // Reprovision the thread's omFreeList.
1038       // Use bulk transfers to reduce the allocation rate and heat
1039       // on various locks.
1040       Thread::muxAcquire(&gListLock, "omAlloc(1)");
1041       for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL;) {
1042         gMonitorFreeCount--;
1043         ObjectMonitor * take = gFreeList;
1044         gFreeList = take->FreeNext;
1045         guarantee(take->object() == NULL, "invariant");
1046         take->Recycle();
1047         omRelease(Self, take, false);
1048       }
1049       Thread::muxRelease(&gListLock);
1050       Self->omFreeProvision += 1 + (Self->omFreeProvision/2);
1051       if (Self->omFreeProvision > MAXPRIVATE) Self->omFreeProvision = MAXPRIVATE;
1052 
1053       const int mx = MonitorBound;
1054       if (mx > 0 && (gMonitorPopulation-gMonitorFreeCount) > mx) {
1055         // We can't safely induce a STW safepoint from omAlloc() as our thread
1056         // state may not be appropriate for such activities and callers may hold
1057         // naked oops, so instead we defer the action.
1058         InduceScavenge(Self, "omAlloc");
1059       }
1060       continue;
1061     }
1062 
1063     // 3: allocate a block of new ObjectMonitors
1064     // Both the local and global free lists are empty -- resort to malloc().
1065     // In the current implementation objectMonitors are TSM - immortal.
1066     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1067     // each ObjectMonitor to start at the beginning of a cache line,
1068     // so we use align_up().
1069     // A better solution would be to use C++ placement-new.
1070     // BEWARE: As it stands currently, we don't run the ctors!
1071     assert(_BLOCKSIZE > 1, "invariant");
1072     size_t neededsize = sizeof(PaddedEnd<ObjectMonitor>) * _BLOCKSIZE;
1073     PaddedEnd<ObjectMonitor> * temp;
1074     size_t aligned_size = neededsize + (DEFAULT_CACHE_LINE_SIZE - 1);
1075     void* real_malloc_addr = (void *)NEW_C_HEAP_ARRAY(char, aligned_size,
1076                                                       mtInternal);
1077     temp = (PaddedEnd<ObjectMonitor> *)
1078              align_up(real_malloc_addr, DEFAULT_CACHE_LINE_SIZE);
1079 
1080     // NOTE: (almost) no way to recover if allocation failed.
1081     // We might be able to induce a STW safepoint and scavenge enough
1082     // objectMonitors to permit progress.
1083     if (temp == NULL) {
1084       vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR,
1085                             "Allocate ObjectMonitors");
1086     }
1087     (void)memset((void *) temp, 0, neededsize);
1088 
1089     // Format the block.
1090     // initialize the linked list, each monitor points to its next
1091     // forming the single linked free list, the very first monitor
1092     // will points to next block, which forms the block list.
1093     // The trick of using the 1st element in the block as gBlockList
1094     // linkage should be reconsidered.  A better implementation would
1095     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1096 
1097     for (int i = 1; i < _BLOCKSIZE; i++) {
1098       temp[i].FreeNext = (ObjectMonitor *)&temp[i+1];
1099     }
1100 
1101     // terminate the last monitor as the end of list
1102     temp[_BLOCKSIZE - 1].FreeNext = NULL;
1103 
1104     // Element [0] is reserved for global list linkage
1105     temp[0].set_object(CHAINMARKER);
1106 
1107     // Consider carving out this thread's current request from the
1108     // block in hand.  This avoids some lock traffic and redundant
1109     // list activity.
1110 
1111     // Acquire the gListLock to manipulate gBlockList and gFreeList.
1112     // An Oyama-Taura-Yonezawa scheme might be more efficient.
1113     Thread::muxAcquire(&gListLock, "omAlloc(2)");
1114     gMonitorPopulation += _BLOCKSIZE-1;
1115     gMonitorFreeCount += _BLOCKSIZE-1;
1116 
1117     // Add the new block to the list of extant blocks (gBlockList).
1118     // The very first objectMonitor in a block is reserved and dedicated.
1119     // It serves as blocklist "next" linkage.
1120     temp[0].FreeNext = gBlockList;
1121     // There are lock-free uses of gBlockList so make sure that
1122     // the previous stores happen before we update gBlockList.
1123     OrderAccess::release_store(&gBlockList, temp);
1124 
1125     // Add the new string of objectMonitors to the global free list
1126     temp[_BLOCKSIZE - 1].FreeNext = gFreeList;
1127     gFreeList = temp + 1;
1128     Thread::muxRelease(&gListLock);
1129   }
1130 }
1131 
1132 // Place "m" on the caller's private per-thread omFreeList.
1133 // In practice there's no need to clamp or limit the number of
1134 // monitors on a thread's omFreeList as the only time we'll call
1135 // omRelease is to return a monitor to the free list after a CAS
1136 // attempt failed.  This doesn't allow unbounded #s of monitors to
1137 // accumulate on a thread's free list.
1138 //
1139 // Key constraint: all ObjectMonitors on a thread's free list and the global
1140 // free list must have their object field set to null. This prevents the
1141 // scavenger -- deflate_monitor_list() -- from reclaiming them.
1142 
1143 void ObjectSynchronizer::omRelease(Thread * Self, ObjectMonitor * m,
1144                                    bool fromPerThreadAlloc) {
1145   guarantee(m->header().value() == 0, "invariant");
1146   guarantee(m->object() == NULL, "invariant");
1147   stringStream ss;
1148   guarantee((m->is_busy() | m->_recursions) == 0, "freeing in-use monitor: "
1149             "%s, recursions=" INTPTR_FORMAT, m->is_busy_to_string(&ss),
1150             m->_recursions);
1151   // Remove from omInUseList
1152   if (fromPerThreadAlloc) {
1153     ObjectMonitor* cur_mid_in_use = NULL;
1154     bool extracted = false;
1155     for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; cur_mid_in_use = mid, mid = mid->FreeNext) {
1156       if (m == mid) {
1157         // extract from per-thread in-use list
1158         if (mid == Self->omInUseList) {
1159           Self->omInUseList = mid->FreeNext;
1160         } else if (cur_mid_in_use != NULL) {
1161           cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1162         }
1163         extracted = true;
1164         Self->omInUseCount--;
1165         break;
1166       }
1167     }
1168     assert(extracted, "Should have extracted from in-use list");
1169   }
1170 
1171   // FreeNext is used for both omInUseList and omFreeList, so clear old before setting new
1172   m->FreeNext = Self->omFreeList;
1173   Self->omFreeList = m;
1174   Self->omFreeCount++;
1175 }
1176 
1177 // Return the monitors of a moribund thread's local free list to
1178 // the global free list.  Typically a thread calls omFlush() when
1179 // it's dying.  We could also consider having the VM thread steal
1180 // monitors from threads that have not run java code over a few
1181 // consecutive STW safepoints.  Relatedly, we might decay
1182 // omFreeProvision at STW safepoints.
1183 //
1184 // Also return the monitors of a moribund thread's omInUseList to
1185 // a global gOmInUseList under the global list lock so these
1186 // will continue to be scanned.
1187 //
1188 // We currently call omFlush() from Threads::remove() _before the thread
1189 // has been excised from the thread list and is no longer a mutator.
1190 // This means that omFlush() cannot run concurrently with a safepoint and
1191 // interleave with the deflate_idle_monitors scavenge operator. In particular,
1192 // this ensures that the thread's monitors are scanned by a GC safepoint,
1193 // either via Thread::oops_do() (if safepoint happens before omFlush()) or via
1194 // ObjectSynchronizer::oops_do() (if it happens after omFlush() and the thread's
1195 // monitors have been transferred to the global in-use list).
1196 
1197 void ObjectSynchronizer::omFlush(Thread * Self) {
1198   ObjectMonitor * list = Self->omFreeList;  // Null-terminated SLL
1199   ObjectMonitor * tail = NULL;
1200   int tally = 0;
1201   if (list != NULL) {
1202     ObjectMonitor * s;
1203     // The thread is going away. Set 'tail' to the last per-thread free
1204     // monitor which will be linked to gFreeList below under the gListLock.
1205     stringStream ss;
1206     for (s = list; s != NULL; s = s->FreeNext) {
1207       tally++;
1208       tail = s;
1209       guarantee(s->object() == NULL, "invariant");
1210       guarantee(!s->is_busy(), "must be !is_busy: %s", s->is_busy_to_string(&ss));
1211     }
1212     guarantee(tail != NULL, "invariant");
1213     assert(Self->omFreeCount == tally, "free-count off");
1214     Self->omFreeList = NULL;
1215     Self->omFreeCount = 0;
1216   }
1217 
1218   ObjectMonitor * inUseList = Self->omInUseList;
1219   ObjectMonitor * inUseTail = NULL;
1220   int inUseTally = 0;
1221   if (inUseList != NULL) {
1222     ObjectMonitor *cur_om;
1223     // The thread is going away, however the omInUseList inflated
1224     // monitors may still be in-use by other threads.
1225     // Link them to inUseTail, which will be linked into the global in-use list
1226     // gOmInUseList below, under the gListLock
1227     for (cur_om = inUseList; cur_om != NULL; cur_om = cur_om->FreeNext) {
1228       inUseTail = cur_om;
1229       inUseTally++;
1230     }
1231     guarantee(inUseTail != NULL, "invariant");
1232     assert(Self->omInUseCount == inUseTally, "in-use count off");
1233     Self->omInUseList = NULL;
1234     Self->omInUseCount = 0;
1235   }
1236 
1237   Thread::muxAcquire(&gListLock, "omFlush");
1238   if (tail != NULL) {
1239     tail->FreeNext = gFreeList;
1240     gFreeList = list;
1241     gMonitorFreeCount += tally;
1242   }
1243 
1244   if (inUseTail != NULL) {
1245     inUseTail->FreeNext = gOmInUseList;
1246     gOmInUseList = inUseList;
1247     gOmInUseCount += inUseTally;
1248   }
1249 
1250   Thread::muxRelease(&gListLock);
1251 
1252   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1253   LogStreamHandle(Info, monitorinflation) lsh_info;
1254   LogStream * ls = NULL;
1255   if (log_is_enabled(Debug, monitorinflation)) {
1256     ls = &lsh_debug;
1257   } else if ((tally != 0 || inUseTally != 0) &&
1258              log_is_enabled(Info, monitorinflation)) {
1259     ls = &lsh_info;
1260   }
1261   if (ls != NULL) {
1262     ls->print_cr("omFlush: jt=" INTPTR_FORMAT ", free_monitor_tally=%d"
1263                  ", in_use_monitor_tally=%d" ", omFreeProvision=%d",
1264                  p2i(Self), tally, inUseTally, Self->omFreeProvision);
1265   }
1266 }
1267 
1268 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1269                                        const oop obj,
1270                                        ObjectSynchronizer::InflateCause cause) {
1271   assert(event != NULL, "invariant");
1272   assert(event->should_commit(), "invariant");
1273   event->set_monitorClass(obj->klass());
1274   event->set_address((uintptr_t)(void*)obj);
1275   event->set_cause((u1)cause);
1276   event->commit();
1277 }
1278 
1279 // Fast path code shared by multiple functions
1280 void ObjectSynchronizer::inflate_helper(oop obj) {
1281   markWord mark = obj->mark();
1282   if (mark.has_monitor()) {
1283     assert(ObjectSynchronizer::verify_objmon_isinpool(mark.monitor()), "monitor is invalid");
1284     assert(mark.monitor()->header().is_neutral(), "monitor must record a good object header");
1285     return;
1286   }
1287   inflate(Thread::current(), obj, inflate_cause_vm_internal);
1288 }
1289 
1290 ObjectMonitor* ObjectSynchronizer::inflate(Thread * Self,
1291                                            oop object,
1292                                            const InflateCause cause) {
1293   // Inflate mutates the heap ...
1294   // Relaxing assertion for bug 6320749.
1295   assert(Universe::verify_in_progress() ||
1296          !SafepointSynchronize::is_at_safepoint(), "invariant");
1297 
1298   EventJavaMonitorInflate event;
1299 
1300   for (;;) {
1301     const markWord mark = object->mark();
1302     assert(!mark.has_bias_pattern(), "invariant");
1303 
1304     // The mark can be in one of the following states:
1305     // *  Inflated     - just return
1306     // *  Stack-locked - coerce it to inflated
1307     // *  INFLATING    - busy wait for conversion to complete
1308     // *  Neutral      - aggressively inflate the object.
1309     // *  BIASED       - Illegal.  We should never see this
1310 
1311     // CASE: inflated
1312     if (mark.has_monitor()) {
1313       ObjectMonitor * inf = mark.monitor();
1314       markWord dmw = inf->header();
1315       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1316       assert(oopDesc::equals((oop) inf->object(), object), "invariant");
1317       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1318       return inf;
1319     }
1320 
1321     // CASE: inflation in progress - inflating over a stack-lock.
1322     // Some other thread is converting from stack-locked to inflated.
1323     // Only that thread can complete inflation -- other threads must wait.
1324     // The INFLATING value is transient.
1325     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1326     // We could always eliminate polling by parking the thread on some auxiliary list.
1327     if (mark == markWord::INFLATING()) {
1328       ReadStableMark(object);
1329       continue;
1330     }
1331 
1332     // CASE: stack-locked
1333     // Could be stack-locked either by this thread or by some other thread.
1334     //
1335     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1336     // to install INFLATING into the mark word.  We originally installed INFLATING,
1337     // allocated the objectmonitor, and then finally STed the address of the
1338     // objectmonitor into the mark.  This was correct, but artificially lengthened
1339     // the interval in which INFLATED appeared in the mark, thus increasing
1340     // the odds of inflation contention.
1341     //
1342     // We now use per-thread private objectmonitor free lists.
1343     // These list are reprovisioned from the global free list outside the
1344     // critical INFLATING...ST interval.  A thread can transfer
1345     // multiple objectmonitors en-mass from the global free list to its local free list.
1346     // This reduces coherency traffic and lock contention on the global free list.
1347     // Using such local free lists, it doesn't matter if the omAlloc() call appears
1348     // before or after the CAS(INFLATING) operation.
1349     // See the comments in omAlloc().
1350 
1351     LogStreamHandle(Trace, monitorinflation) lsh;
1352 
1353     if (mark.has_locker()) {
1354       ObjectMonitor * m = omAlloc(Self);
1355       // Optimistically prepare the objectmonitor - anticipate successful CAS
1356       // We do this before the CAS in order to minimize the length of time
1357       // in which INFLATING appears in the mark.
1358       m->Recycle();
1359       m->_Responsible  = NULL;
1360       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1361 
1362       markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark);
1363       if (cmp != mark) {
1364         omRelease(Self, m, true);
1365         continue;       // Interference -- just retry
1366       }
1367 
1368       // We've successfully installed INFLATING (0) into the mark-word.
1369       // This is the only case where 0 will appear in a mark-word.
1370       // Only the singular thread that successfully swings the mark-word
1371       // to 0 can perform (or more precisely, complete) inflation.
1372       //
1373       // Why do we CAS a 0 into the mark-word instead of just CASing the
1374       // mark-word from the stack-locked value directly to the new inflated state?
1375       // Consider what happens when a thread unlocks a stack-locked object.
1376       // It attempts to use CAS to swing the displaced header value from the
1377       // on-stack basiclock back into the object header.  Recall also that the
1378       // header value (hash code, etc) can reside in (a) the object header, or
1379       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1380       // header in an objectMonitor.  The inflate() routine must copy the header
1381       // value from the basiclock on the owner's stack to the objectMonitor, all
1382       // the while preserving the hashCode stability invariants.  If the owner
1383       // decides to release the lock while the value is 0, the unlock will fail
1384       // and control will eventually pass from slow_exit() to inflate.  The owner
1385       // will then spin, waiting for the 0 value to disappear.   Put another way,
1386       // the 0 causes the owner to stall if the owner happens to try to
1387       // drop the lock (restoring the header from the basiclock to the object)
1388       // while inflation is in-progress.  This protocol avoids races that might
1389       // would otherwise permit hashCode values to change or "flicker" for an object.
1390       // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable.
1391       // 0 serves as a "BUSY" inflate-in-progress indicator.
1392 
1393 
1394       // fetch the displaced mark from the owner's stack.
1395       // The owner can't die or unwind past the lock while our INFLATING
1396       // object is in the mark.  Furthermore the owner can't complete
1397       // an unlock on the object, either.
1398       markWord dmw = mark.displaced_mark_helper();
1399       // Catch if the object's header is not neutral (not locked and
1400       // not marked is what we care about here).
1401       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1402 
1403       // Setup monitor fields to proper values -- prepare the monitor
1404       m->set_header(dmw);
1405 
1406       // Optimization: if the mark.locker stack address is associated
1407       // with this thread we could simply set m->_owner = Self.
1408       // Note that a thread can inflate an object
1409       // that it has stack-locked -- as might happen in wait() -- directly
1410       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1411       m->set_owner(mark.locker());
1412       m->set_object(object);
1413       // TODO-FIXME: assert BasicLock->dhw != 0.
1414 
1415       // Must preserve store ordering. The monitor state must
1416       // be stable at the time of publishing the monitor address.
1417       guarantee(object->mark() == markWord::INFLATING(), "invariant");
1418       object->release_set_mark(markWord::encode(m));
1419 
1420       // Hopefully the performance counters are allocated on distinct cache lines
1421       // to avoid false sharing on MP systems ...
1422       OM_PERFDATA_OP(Inflations, inc());
1423       if (log_is_enabled(Trace, monitorinflation)) {
1424         ResourceMark rm(Self);
1425         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1426                      INTPTR_FORMAT ", type='%s'", p2i(object),
1427                      object->mark().value(), object->klass()->external_name());
1428       }
1429       if (event.should_commit()) {
1430         post_monitor_inflate_event(&event, object, cause);
1431       }
1432       return m;
1433     }
1434 
1435     // CASE: neutral
1436     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1437     // If we know we're inflating for entry it's better to inflate by swinging a
1438     // pre-locked objectMonitor pointer into the object header.   A successful
1439     // CAS inflates the object *and* confers ownership to the inflating thread.
1440     // In the current implementation we use a 2-step mechanism where we CAS()
1441     // to inflate and then CAS() again to try to swing _owner from NULL to Self.
1442     // An inflateTry() method that we could call from enter() would be useful.
1443 
1444     // Catch if the object's header is not neutral (not locked and
1445     // not marked is what we care about here).
1446     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1447     ObjectMonitor * m = omAlloc(Self);
1448     // prepare m for installation - set monitor to initial state
1449     m->Recycle();
1450     m->set_header(mark);
1451     m->set_object(object);
1452     m->_Responsible  = NULL;
1453     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1454 
1455     if (object->cas_set_mark(markWord::encode(m), mark) != mark) {
1456       m->set_header(markWord::zero());
1457       m->set_object(NULL);
1458       m->Recycle();
1459       omRelease(Self, m, true);
1460       m = NULL;
1461       continue;
1462       // interference - the markword changed - just retry.
1463       // The state-transitions are one-way, so there's no chance of
1464       // live-lock -- "Inflated" is an absorbing state.
1465     }
1466 
1467     // Hopefully the performance counters are allocated on distinct
1468     // cache lines to avoid false sharing on MP systems ...
1469     OM_PERFDATA_OP(Inflations, inc());
1470     if (log_is_enabled(Trace, monitorinflation)) {
1471       ResourceMark rm(Self);
1472       lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark="
1473                    INTPTR_FORMAT ", type='%s'", p2i(object),
1474                    object->mark().value(), object->klass()->external_name());
1475     }
1476     if (event.should_commit()) {
1477       post_monitor_inflate_event(&event, object, cause);
1478     }
1479     return m;
1480   }
1481 }
1482 
1483 
1484 // We maintain a list of in-use monitors for each thread.
1485 //
1486 // deflate_thread_local_monitors() scans a single thread's in-use list, while
1487 // deflate_idle_monitors() scans only a global list of in-use monitors which
1488 // is populated only as a thread dies (see omFlush()).
1489 //
1490 // These operations are called at all safepoints, immediately after mutators
1491 // are stopped, but before any objects have moved. Collectively they traverse
1492 // the population of in-use monitors, deflating where possible. The scavenged
1493 // monitors are returned to the global monitor free list.
1494 //
1495 // Beware that we scavenge at *every* stop-the-world point. Having a large
1496 // number of monitors in-use could negatively impact performance. We also want
1497 // to minimize the total # of monitors in circulation, as they incur a small
1498 // footprint penalty.
1499 //
1500 // Perversely, the heap size -- and thus the STW safepoint rate --
1501 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1502 // which in turn can mean large(r) numbers of ObjectMonitors in circulation.
1503 // This is an unfortunate aspect of this design.
1504 
1505 // Deflate a single monitor if not in-use
1506 // Return true if deflated, false if in-use
1507 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1508                                          ObjectMonitor** freeHeadp,
1509                                          ObjectMonitor** freeTailp) {
1510   bool deflated;
1511   // Normal case ... The monitor is associated with obj.
1512   const markWord mark = obj->mark();
1513   guarantee(mark == markWord::encode(mid), "should match: mark="
1514             INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, mark.value(),
1515             markWord::encode(mid).value());
1516   // Make sure that mark.monitor() and markWord::encode() agree:
1517   guarantee(mark.monitor() == mid, "should match: monitor()=" INTPTR_FORMAT
1518             ", mid=" INTPTR_FORMAT, p2i(mark.monitor()), p2i(mid));
1519   const markWord dmw = mid->header();
1520   guarantee(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1521 
1522   if (mid->is_busy()) {
1523     deflated = false;
1524   } else {
1525     // Deflate the monitor if it is no longer being used
1526     // It's idle - scavenge and return to the global free list
1527     // plain old deflation ...
1528     if (log_is_enabled(Trace, monitorinflation)) {
1529       ResourceMark rm;
1530       log_trace(monitorinflation)("deflate_monitor: "
1531                                   "object=" INTPTR_FORMAT ", mark="
1532                                   INTPTR_FORMAT ", type='%s'", p2i(obj),
1533                                   mark.value(), obj->klass()->external_name());
1534     }
1535 
1536     // Restore the header back to obj
1537     obj->release_set_mark(dmw);
1538     mid->clear();
1539 
1540     assert(mid->object() == NULL, "invariant: object=" INTPTR_FORMAT,
1541            p2i(mid->object()));
1542 
1543     // Move the object to the working free list defined by freeHeadp, freeTailp
1544     if (*freeHeadp == NULL) *freeHeadp = mid;
1545     if (*freeTailp != NULL) {
1546       ObjectMonitor * prevtail = *freeTailp;
1547       assert(prevtail->FreeNext == NULL, "cleaned up deflated?");
1548       prevtail->FreeNext = mid;
1549     }
1550     *freeTailp = mid;
1551     deflated = true;
1552   }
1553   return deflated;
1554 }
1555 
1556 // Walk a given monitor list, and deflate idle monitors
1557 // The given list could be a per-thread list or a global list
1558 // Caller acquires gListLock as needed.
1559 //
1560 // In the case of parallel processing of thread local monitor lists,
1561 // work is done by Threads::parallel_threads_do() which ensures that
1562 // each Java thread is processed by exactly one worker thread, and
1563 // thus avoid conflicts that would arise when worker threads would
1564 // process the same monitor lists concurrently.
1565 //
1566 // See also ParallelSPCleanupTask and
1567 // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and
1568 // Threads::parallel_java_threads_do() in thread.cpp.
1569 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** listHeadp,
1570                                              ObjectMonitor** freeHeadp,
1571                                              ObjectMonitor** freeTailp) {
1572   ObjectMonitor* mid;
1573   ObjectMonitor* next;
1574   ObjectMonitor* cur_mid_in_use = NULL;
1575   int deflated_count = 0;
1576 
1577   for (mid = *listHeadp; mid != NULL;) {
1578     oop obj = (oop) mid->object();
1579     if (obj != NULL && deflate_monitor(mid, obj, freeHeadp, freeTailp)) {
1580       // if deflate_monitor succeeded,
1581       // extract from per-thread in-use list
1582       if (mid == *listHeadp) {
1583         *listHeadp = mid->FreeNext;
1584       } else if (cur_mid_in_use != NULL) {
1585         cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1586       }
1587       next = mid->FreeNext;
1588       mid->FreeNext = NULL;  // This mid is current tail in the freeHeadp list
1589       mid = next;
1590       deflated_count++;
1591     } else {
1592       cur_mid_in_use = mid;
1593       mid = mid->FreeNext;
1594     }
1595   }
1596   return deflated_count;
1597 }
1598 
1599 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
1600   counters->nInuse = 0;              // currently associated with objects
1601   counters->nInCirculation = 0;      // extant
1602   counters->nScavenged = 0;          // reclaimed (global and per-thread)
1603   counters->perThreadScavenged = 0;  // per-thread scavenge total
1604   counters->perThreadTimes = 0.0;    // per-thread scavenge times
1605 }
1606 
1607 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
1608   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1609   bool deflated = false;
1610 
1611   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
1612   ObjectMonitor * freeTailp = NULL;
1613   elapsedTimer timer;
1614 
1615   if (log_is_enabled(Info, monitorinflation)) {
1616     timer.start();
1617   }
1618 
1619   // Prevent omFlush from changing mids in Thread dtor's during deflation
1620   // And in case the vm thread is acquiring a lock during a safepoint
1621   // See e.g. 6320749
1622   Thread::muxAcquire(&gListLock, "deflate_idle_monitors");
1623 
1624   // Note: the thread-local monitors lists get deflated in
1625   // a separate pass. See deflate_thread_local_monitors().
1626 
1627   // For moribund threads, scan gOmInUseList
1628   int deflated_count = 0;
1629   if (gOmInUseList) {
1630     counters->nInCirculation += gOmInUseCount;
1631     deflated_count = deflate_monitor_list((ObjectMonitor **)&gOmInUseList, &freeHeadp, &freeTailp);
1632     gOmInUseCount -= deflated_count;
1633     counters->nScavenged += deflated_count;
1634     counters->nInuse += gOmInUseCount;
1635   }
1636 
1637   // Move the scavenged monitors back to the global free list.
1638   if (freeHeadp != NULL) {
1639     guarantee(freeTailp != NULL && counters->nScavenged > 0, "invariant");
1640     assert(freeTailp->FreeNext == NULL, "invariant");
1641     // constant-time list splice - prepend scavenged segment to gFreeList
1642     freeTailp->FreeNext = gFreeList;
1643     gFreeList = freeHeadp;
1644   }
1645   Thread::muxRelease(&gListLock);
1646   timer.stop();
1647 
1648   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1649   LogStreamHandle(Info, monitorinflation) lsh_info;
1650   LogStream * ls = NULL;
1651   if (log_is_enabled(Debug, monitorinflation)) {
1652     ls = &lsh_debug;
1653   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
1654     ls = &lsh_info;
1655   }
1656   if (ls != NULL) {
1657     ls->print_cr("deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
1658   }
1659 }
1660 
1661 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
1662   // Report the cumulative time for deflating each thread's idle
1663   // monitors. Note: if the work is split among more than one
1664   // worker thread, then the reported time will likely be more
1665   // than a beginning to end measurement of the phase.
1666   log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d", counters->perThreadTimes, counters->perThreadScavenged);
1667 
1668   gMonitorFreeCount += counters->nScavenged;
1669 
1670   if (log_is_enabled(Debug, monitorinflation)) {
1671     // exit_globals()'s call to audit_and_print_stats() is done
1672     // at the Info level.
1673     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
1674   } else if (log_is_enabled(Info, monitorinflation)) {
1675     Thread::muxAcquire(&gListLock, "finish_deflate_idle_monitors");
1676     log_info(monitorinflation)("gMonitorPopulation=%d, gOmInUseCount=%d, "
1677                                "gMonitorFreeCount=%d", gMonitorPopulation,
1678                                gOmInUseCount, gMonitorFreeCount);
1679     Thread::muxRelease(&gListLock);
1680   }
1681 
1682   ForceMonitorScavenge = 0;    // Reset
1683 
1684   OM_PERFDATA_OP(Deflations, inc(counters->nScavenged));
1685   OM_PERFDATA_OP(MonExtant, set_value(counters->nInCirculation));
1686 
1687   GVars.stwRandom = os::random();
1688   GVars.stwCycle++;
1689 }
1690 
1691 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
1692   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1693 
1694   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
1695   ObjectMonitor * freeTailp = NULL;
1696   elapsedTimer timer;
1697 
1698   if (log_is_enabled(Info, safepoint, cleanup) ||
1699       log_is_enabled(Info, monitorinflation)) {
1700     timer.start();
1701   }
1702 
1703   int deflated_count = deflate_monitor_list(thread->omInUseList_addr(), &freeHeadp, &freeTailp);
1704 
1705   Thread::muxAcquire(&gListLock, "deflate_thread_local_monitors");
1706 
1707   // Adjust counters
1708   counters->nInCirculation += thread->omInUseCount;
1709   thread->omInUseCount -= deflated_count;
1710   counters->nScavenged += deflated_count;
1711   counters->nInuse += thread->omInUseCount;
1712   counters->perThreadScavenged += deflated_count;
1713 
1714   // Move the scavenged monitors back to the global free list.
1715   if (freeHeadp != NULL) {
1716     guarantee(freeTailp != NULL && deflated_count > 0, "invariant");
1717     assert(freeTailp->FreeNext == NULL, "invariant");
1718 
1719     // constant-time list splice - prepend scavenged segment to gFreeList
1720     freeTailp->FreeNext = gFreeList;
1721     gFreeList = freeHeadp;
1722   }
1723 
1724   timer.stop();
1725   // Safepoint logging cares about cumulative perThreadTimes and
1726   // we'll capture most of the cost, but not the muxRelease() which
1727   // should be cheap.
1728   counters->perThreadTimes += timer.seconds();
1729 
1730   Thread::muxRelease(&gListLock);
1731 
1732   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1733   LogStreamHandle(Info, monitorinflation) lsh_info;
1734   LogStream * ls = NULL;
1735   if (log_is_enabled(Debug, monitorinflation)) {
1736     ls = &lsh_debug;
1737   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
1738     ls = &lsh_info;
1739   }
1740   if (ls != NULL) {
1741     ls->print_cr("jt=" INTPTR_FORMAT ": deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(thread), timer.seconds(), deflated_count);
1742   }
1743 }
1744 
1745 // Monitor cleanup on JavaThread::exit
1746 
1747 // Iterate through monitor cache and attempt to release thread's monitors
1748 // Gives up on a particular monitor if an exception occurs, but continues
1749 // the overall iteration, swallowing the exception.
1750 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1751  private:
1752   TRAPS;
1753 
1754  public:
1755   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
1756   void do_monitor(ObjectMonitor* mid) {
1757     if (mid->owner() == THREAD) {
1758       (void)mid->complete_exit(CHECK);
1759     }
1760   }
1761 };
1762 
1763 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
1764 // ignored.  This is meant to be called during JNI thread detach which assumes
1765 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1766 // Scanning the extant monitor list can be time consuming.
1767 // A simple optimization is to add a per-thread flag that indicates a thread
1768 // called jni_monitorenter() during its lifetime.
1769 //
1770 // Instead of No_Savepoint_Verifier it might be cheaper to
1771 // use an idiom of the form:
1772 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1773 //   <code that must not run at safepoint>
1774 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1775 // Since the tests are extremely cheap we could leave them enabled
1776 // for normal product builds.
1777 
1778 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
1779   assert(THREAD == JavaThread::current(), "must be current Java thread");
1780   NoSafepointVerifier nsv;
1781   ReleaseJavaMonitorsClosure rjmc(THREAD);
1782   Thread::muxAcquire(&gListLock, "release_monitors_owned_by_thread");
1783   ObjectSynchronizer::monitors_iterate(&rjmc);
1784   Thread::muxRelease(&gListLock);
1785   THREAD->clear_pending_exception();
1786 }
1787 
1788 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
1789   switch (cause) {
1790     case inflate_cause_vm_internal:    return "VM Internal";
1791     case inflate_cause_monitor_enter:  return "Monitor Enter";
1792     case inflate_cause_wait:           return "Monitor Wait";
1793     case inflate_cause_notify:         return "Monitor Notify";
1794     case inflate_cause_hash_code:      return "Monitor Hash Code";
1795     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
1796     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
1797     default:
1798       ShouldNotReachHere();
1799   }
1800   return "Unknown";
1801 }
1802 
1803 //------------------------------------------------------------------------------
1804 // Debugging code
1805 
1806 u_char* ObjectSynchronizer::get_gvars_addr() {
1807   return (u_char*)&GVars;
1808 }
1809 
1810 u_char* ObjectSynchronizer::get_gvars_hcSequence_addr() {
1811   return (u_char*)&GVars.hcSequence;
1812 }
1813 
1814 size_t ObjectSynchronizer::get_gvars_size() {
1815   return sizeof(SharedGlobals);
1816 }
1817 
1818 u_char* ObjectSynchronizer::get_gvars_stwRandom_addr() {
1819   return (u_char*)&GVars.stwRandom;
1820 }
1821 
1822 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) {
1823   assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant");
1824 
1825   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1826   LogStreamHandle(Info, monitorinflation) lsh_info;
1827   LogStreamHandle(Trace, monitorinflation) lsh_trace;
1828   LogStream * ls = NULL;
1829   if (log_is_enabled(Trace, monitorinflation)) {
1830     ls = &lsh_trace;
1831   } else if (log_is_enabled(Debug, monitorinflation)) {
1832     ls = &lsh_debug;
1833   } else if (log_is_enabled(Info, monitorinflation)) {
1834     ls = &lsh_info;
1835   }
1836   assert(ls != NULL, "sanity check");
1837 
1838   if (!on_exit) {
1839     // Not at VM exit so grab the global list lock.
1840     Thread::muxAcquire(&gListLock, "audit_and_print_stats");
1841   }
1842 
1843   // Log counts for the global and per-thread monitor lists:
1844   int chkMonitorPopulation = log_monitor_list_counts(ls);
1845   int error_cnt = 0;
1846 
1847   ls->print_cr("Checking global lists:");
1848 
1849   // Check gMonitorPopulation:
1850   if (gMonitorPopulation == chkMonitorPopulation) {
1851     ls->print_cr("gMonitorPopulation=%d equals chkMonitorPopulation=%d",
1852                  gMonitorPopulation, chkMonitorPopulation);
1853   } else {
1854     ls->print_cr("ERROR: gMonitorPopulation=%d is not equal to "
1855                  "chkMonitorPopulation=%d", gMonitorPopulation,
1856                  chkMonitorPopulation);
1857     error_cnt++;
1858   }
1859 
1860   // Check gOmInUseList and gOmInUseCount:
1861   chk_global_in_use_list_and_count(ls, &error_cnt);
1862 
1863   // Check gFreeList and gMonitorFreeCount:
1864   chk_global_free_list_and_count(ls, &error_cnt);
1865 
1866   if (!on_exit) {
1867     Thread::muxRelease(&gListLock);
1868   }
1869 
1870   ls->print_cr("Checking per-thread lists:");
1871 
1872   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1873     // Check omInUseList and omInUseCount:
1874     chk_per_thread_in_use_list_and_count(jt, ls, &error_cnt);
1875 
1876     // Check omFreeList and omFreeCount:
1877     chk_per_thread_free_list_and_count(jt, ls, &error_cnt);
1878   }
1879 
1880   if (error_cnt == 0) {
1881     ls->print_cr("No errors found in monitor list checks.");
1882   } else {
1883     log_error(monitorinflation)("found monitor list errors: error_cnt=%d", error_cnt);
1884   }
1885 
1886   if ((on_exit && log_is_enabled(Info, monitorinflation)) ||
1887       (!on_exit && log_is_enabled(Trace, monitorinflation))) {
1888     // When exiting this log output is at the Info level. When called
1889     // at a safepoint, this log output is at the Trace level since
1890     // there can be a lot of it.
1891     log_in_use_monitor_details(ls, on_exit);
1892   }
1893 
1894   ls->flush();
1895 
1896   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
1897 }
1898 
1899 // Check a free monitor entry; log any errors.
1900 void ObjectSynchronizer::chk_free_entry(JavaThread * jt, ObjectMonitor * n,
1901                                         outputStream * out, int *error_cnt_p) {
1902   stringStream ss;
1903   if (n->is_busy()) {
1904     if (jt != NULL) {
1905       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
1906                     ": free per-thread monitor must not be busy: %s", p2i(jt),
1907                     p2i(n), n->is_busy_to_string(&ss));
1908     } else {
1909       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
1910                     "must not be busy: %s", p2i(n), n->is_busy_to_string(&ss));
1911     }
1912     *error_cnt_p = *error_cnt_p + 1;
1913   }
1914   if (n->header().value() != 0) {
1915     if (jt != NULL) {
1916       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
1917                     ": free per-thread monitor must have NULL _header "
1918                     "field: _header=" INTPTR_FORMAT, p2i(jt), p2i(n),
1919                     n->header().value());
1920     } else {
1921       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
1922                     "must have NULL _header field: _header=" INTPTR_FORMAT,
1923                     p2i(n), n->header().value());
1924     }
1925     *error_cnt_p = *error_cnt_p + 1;
1926   }
1927   if (n->object() != NULL) {
1928     if (jt != NULL) {
1929       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
1930                     ": free per-thread monitor must have NULL _object "
1931                     "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n),
1932                     p2i(n->object()));
1933     } else {
1934       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
1935                     "must have NULL _object field: _object=" INTPTR_FORMAT,
1936                     p2i(n), p2i(n->object()));
1937     }
1938     *error_cnt_p = *error_cnt_p + 1;
1939   }
1940 }
1941 
1942 // Check the global free list and count; log the results of the checks.
1943 void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out,
1944                                                         int *error_cnt_p) {
1945   int chkMonitorFreeCount = 0;
1946   for (ObjectMonitor * n = gFreeList; n != NULL; n = n->FreeNext) {
1947     chk_free_entry(NULL /* jt */, n, out, error_cnt_p);
1948     chkMonitorFreeCount++;
1949   }
1950   if (gMonitorFreeCount == chkMonitorFreeCount) {
1951     out->print_cr("gMonitorFreeCount=%d equals chkMonitorFreeCount=%d",
1952                   gMonitorFreeCount, chkMonitorFreeCount);
1953   } else {
1954     out->print_cr("ERROR: gMonitorFreeCount=%d is not equal to "
1955                   "chkMonitorFreeCount=%d", gMonitorFreeCount,
1956                   chkMonitorFreeCount);
1957     *error_cnt_p = *error_cnt_p + 1;
1958   }
1959 }
1960 
1961 // Check the global in-use list and count; log the results of the checks.
1962 void ObjectSynchronizer::chk_global_in_use_list_and_count(outputStream * out,
1963                                                           int *error_cnt_p) {
1964   int chkOmInUseCount = 0;
1965   for (ObjectMonitor * n = gOmInUseList; n != NULL; n = n->FreeNext) {
1966     chk_in_use_entry(NULL /* jt */, n, out, error_cnt_p);
1967     chkOmInUseCount++;
1968   }
1969   if (gOmInUseCount == chkOmInUseCount) {
1970     out->print_cr("gOmInUseCount=%d equals chkOmInUseCount=%d", gOmInUseCount,
1971                   chkOmInUseCount);
1972   } else {
1973     out->print_cr("ERROR: gOmInUseCount=%d is not equal to chkOmInUseCount=%d",
1974                   gOmInUseCount, chkOmInUseCount);
1975     *error_cnt_p = *error_cnt_p + 1;
1976   }
1977 }
1978 
1979 // Check an in-use monitor entry; log any errors.
1980 void ObjectSynchronizer::chk_in_use_entry(JavaThread * jt, ObjectMonitor * n,
1981                                           outputStream * out, int *error_cnt_p) {
1982   if (n->header().value() == 0) {
1983     if (jt != NULL) {
1984       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
1985                     ": in-use per-thread monitor must have non-NULL _header "
1986                     "field.", p2i(jt), p2i(n));
1987     } else {
1988       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
1989                     "must have non-NULL _header field.", p2i(n));
1990     }
1991     *error_cnt_p = *error_cnt_p + 1;
1992   }
1993   if (n->object() == NULL) {
1994     if (jt != NULL) {
1995       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
1996                     ": in-use per-thread monitor must have non-NULL _object "
1997                     "field.", p2i(jt), p2i(n));
1998     } else {
1999       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
2000                     "must have non-NULL _object field.", p2i(n));
2001     }
2002     *error_cnt_p = *error_cnt_p + 1;
2003   }
2004   const oop obj = (oop)n->object();
2005   const markWord mark = obj->mark();
2006   if (!mark.has_monitor()) {
2007     if (jt != NULL) {
2008       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2009                     ": in-use per-thread monitor's object does not think "
2010                     "it has a monitor: obj=" INTPTR_FORMAT ", mark="
2011                     INTPTR_FORMAT,  p2i(jt), p2i(n), p2i(obj), mark.value());
2012     } else {
2013       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
2014                     "monitor's object does not think it has a monitor: obj="
2015                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
2016                     p2i(obj), mark.value());
2017     }
2018     *error_cnt_p = *error_cnt_p + 1;
2019   }
2020   ObjectMonitor * const obj_mon = mark.monitor();
2021   if (n != obj_mon) {
2022     if (jt != NULL) {
2023       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2024                     ": in-use per-thread monitor's object does not refer "
2025                     "to the same monitor: obj=" INTPTR_FORMAT ", mark="
2026                     INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(jt),
2027                     p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
2028     } else {
2029       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
2030                     "monitor's object does not refer to the same monitor: obj="
2031                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
2032                     INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
2033     }
2034     *error_cnt_p = *error_cnt_p + 1;
2035   }
2036 }
2037 
2038 // Check the thread's free list and count; log the results of the checks.
2039 void ObjectSynchronizer::chk_per_thread_free_list_and_count(JavaThread *jt,
2040                                                             outputStream * out,
2041                                                             int *error_cnt_p) {
2042   int chkOmFreeCount = 0;
2043   for (ObjectMonitor * n = jt->omFreeList; n != NULL; n = n->FreeNext) {
2044     chk_free_entry(jt, n, out, error_cnt_p);
2045     chkOmFreeCount++;
2046   }
2047   if (jt->omFreeCount == chkOmFreeCount) {
2048     out->print_cr("jt=" INTPTR_FORMAT ": omFreeCount=%d equals "
2049                   "chkOmFreeCount=%d", p2i(jt), jt->omFreeCount, chkOmFreeCount);
2050   } else {
2051     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": omFreeCount=%d is not "
2052                   "equal to chkOmFreeCount=%d", p2i(jt), jt->omFreeCount,
2053                   chkOmFreeCount);
2054     *error_cnt_p = *error_cnt_p + 1;
2055   }
2056 }
2057 
2058 // Check the thread's in-use list and count; log the results of the checks.
2059 void ObjectSynchronizer::chk_per_thread_in_use_list_and_count(JavaThread *jt,
2060                                                               outputStream * out,
2061                                                               int *error_cnt_p) {
2062   int chkOmInUseCount = 0;
2063   for (ObjectMonitor * n = jt->omInUseList; n != NULL; n = n->FreeNext) {
2064     chk_in_use_entry(jt, n, out, error_cnt_p);
2065     chkOmInUseCount++;
2066   }
2067   if (jt->omInUseCount == chkOmInUseCount) {
2068     out->print_cr("jt=" INTPTR_FORMAT ": omInUseCount=%d equals "
2069                   "chkOmInUseCount=%d", p2i(jt), jt->omInUseCount,
2070                   chkOmInUseCount);
2071   } else {
2072     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": omInUseCount=%d is not "
2073                   "equal to chkOmInUseCount=%d", p2i(jt), jt->omInUseCount,
2074                   chkOmInUseCount);
2075     *error_cnt_p = *error_cnt_p + 1;
2076   }
2077 }
2078 
2079 // Log details about ObjectMonitors on the in-use lists. The 'BHL'
2080 // flags indicate why the entry is in-use, 'object' and 'object type'
2081 // indicate the associated object and its type.
2082 void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out,
2083                                                     bool on_exit) {
2084   if (!on_exit) {
2085     // Not at VM exit so grab the global list lock.
2086     Thread::muxAcquire(&gListLock, "log_in_use_monitor_details");
2087   }
2088 
2089   stringStream ss;
2090   if (gOmInUseCount > 0) {
2091     out->print_cr("In-use global monitor info:");
2092     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2093     out->print_cr("%18s  %s  %18s  %18s",
2094                   "monitor", "BHL", "object", "object type");
2095     out->print_cr("==================  ===  ==================  ==================");
2096     for (ObjectMonitor * n = gOmInUseList; n != NULL; n = n->FreeNext) {
2097       const oop obj = (oop) n->object();
2098       const markWord mark = n->header();
2099       ResourceMark rm;
2100       out->print(INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT "  %s", p2i(n),
2101                  n->is_busy() != 0, mark.hash() != 0, n->owner() != NULL,
2102                  p2i(obj), obj->klass()->external_name());
2103       if (n->is_busy() != 0) {
2104         out->print(" (%s)", n->is_busy_to_string(&ss));
2105         ss.reset();
2106       }
2107       out->cr();
2108     }
2109   }
2110 
2111   if (!on_exit) {
2112     Thread::muxRelease(&gListLock);
2113   }
2114 
2115   out->print_cr("In-use per-thread monitor info:");
2116   out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2117   out->print_cr("%18s  %18s  %s  %18s  %18s",
2118                 "jt", "monitor", "BHL", "object", "object type");
2119   out->print_cr("==================  ==================  ===  ==================  ==================");
2120   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2121     for (ObjectMonitor * n = jt->omInUseList; n != NULL; n = n->FreeNext) {
2122       const oop obj = (oop) n->object();
2123       const markWord mark = n->header();
2124       ResourceMark rm;
2125       out->print(INTPTR_FORMAT "  " INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT
2126                  "  %s", p2i(jt), p2i(n), n->is_busy() != 0,
2127                  mark.hash() != 0, n->owner() != NULL, p2i(obj),
2128                  obj->klass()->external_name());
2129       if (n->is_busy() != 0) {
2130         out->print(" (%s)", n->is_busy_to_string(&ss));
2131         ss.reset();
2132       }
2133       out->cr();
2134     }
2135   }
2136 
2137   out->flush();
2138 }
2139 
2140 // Log counts for the global and per-thread monitor lists and return
2141 // the population count.
2142 int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) {
2143   int popCount = 0;
2144   out->print_cr("%18s  %10s  %10s  %10s",
2145                 "Global Lists:", "InUse", "Free", "Total");
2146   out->print_cr("==================  ==========  ==========  ==========");
2147   out->print_cr("%18s  %10d  %10d  %10d", "",
2148                 gOmInUseCount, gMonitorFreeCount, gMonitorPopulation);
2149   popCount += gOmInUseCount + gMonitorFreeCount;
2150 
2151   out->print_cr("%18s  %10s  %10s  %10s",
2152                 "Per-Thread Lists:", "InUse", "Free", "Provision");
2153   out->print_cr("==================  ==========  ==========  ==========");
2154 
2155   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2156     out->print_cr(INTPTR_FORMAT "  %10d  %10d  %10d", p2i(jt),
2157                   jt->omInUseCount, jt->omFreeCount, jt->omFreeProvision);
2158     popCount += jt->omInUseCount + jt->omFreeCount;
2159   }
2160   return popCount;
2161 }
2162 
2163 #ifndef PRODUCT
2164 
2165 // Check if monitor belongs to the monitor cache
2166 // The list is grow-only so it's *relatively* safe to traverse
2167 // the list of extant blocks without taking a lock.
2168 
2169 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
2170   PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
2171   while (block != NULL) {
2172     assert(block->object() == CHAINMARKER, "must be a block header");
2173     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
2174       address mon = (address)monitor;
2175       address blk = (address)block;
2176       size_t diff = mon - blk;
2177       assert((diff % sizeof(PaddedEnd<ObjectMonitor>)) == 0, "must be aligned");
2178       return 1;
2179     }
2180     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
2181   }
2182   return 0;
2183 }
2184 
2185 #endif