1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "classfile/moduleEntry.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/compileTask.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/gcId.hpp"
  39 #include "gc/shared/gcLocker.inline.hpp"
  40 #include "gc/shared/workgroup.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "interpreter/oopMapCache.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "jvmtifiles/jvmtiEnv.hpp"
  46 #include "logging/log.hpp"
  47 #include "logging/logConfiguration.hpp"
  48 #include "logging/logStream.hpp"
  49 #include "memory/allocation.inline.hpp"
  50 #include "memory/iterator.hpp"
  51 #include "memory/metaspaceShared.hpp"
  52 #include "memory/oopFactory.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "memory/universe.hpp"
  55 #include "oops/access.inline.hpp"
  56 #include "oops/instanceKlass.hpp"
  57 #include "oops/objArrayOop.hpp"
  58 #include "oops/oop.inline.hpp"
  59 #include "oops/symbol.hpp"
  60 #include "oops/typeArrayOop.inline.hpp"
  61 #include "oops/verifyOopClosure.hpp"
  62 #include "prims/jvm_misc.hpp"
  63 #include "prims/jvmtiExport.hpp"
  64 #include "prims/jvmtiThreadState.hpp"
  65 #include "runtime/arguments.hpp"
  66 #include "runtime/atomic.hpp"
  67 #include "runtime/biasedLocking.hpp"
  68 #include "runtime/fieldDescriptor.inline.hpp"
  69 #include "runtime/flags/jvmFlagConstraintList.hpp"
  70 #include "runtime/flags/jvmFlagRangeList.hpp"
  71 #include "runtime/deoptimization.hpp"
  72 #include "runtime/frame.inline.hpp"
  73 #include "runtime/handles.inline.hpp"
  74 #include "runtime/handshake.hpp"
  75 #include "runtime/init.hpp"
  76 #include "runtime/interfaceSupport.inline.hpp"
  77 #include "runtime/java.hpp"
  78 #include "runtime/javaCalls.hpp"
  79 #include "runtime/jniHandles.inline.hpp"
  80 #include "runtime/jniPeriodicChecker.hpp"
  81 #include "runtime/memprofiler.hpp"
  82 #include "runtime/mutexLocker.hpp"
  83 #include "runtime/objectMonitor.hpp"
  84 #include "runtime/orderAccess.hpp"
  85 #include "runtime/osThread.hpp"
  86 #include "runtime/prefetch.inline.hpp"
  87 #include "runtime/safepoint.hpp"
  88 #include "runtime/safepointMechanism.inline.hpp"
  89 #include "runtime/safepointVerifiers.hpp"
  90 #include "runtime/serviceThread.hpp"
  91 #include "runtime/sharedRuntime.hpp"
  92 #include "runtime/statSampler.hpp"
  93 #include "runtime/stubRoutines.hpp"
  94 #include "runtime/sweeper.hpp"
  95 #include "runtime/task.hpp"
  96 #include "runtime/thread.inline.hpp"
  97 #include "runtime/threadCritical.hpp"
  98 #include "runtime/threadSMR.inline.hpp"
  99 #include "runtime/threadStatisticalInfo.hpp"
 100 #include "runtime/timer.hpp"
 101 #include "runtime/timerTrace.hpp"
 102 #include "runtime/vframe.inline.hpp"
 103 #include "runtime/vframeArray.hpp"
 104 #include "runtime/vframe_hp.hpp"
 105 #include "runtime/vmThread.hpp"
 106 #include "runtime/vmOperations.hpp"
 107 #include "runtime/vm_version.hpp"
 108 #include "services/attachListener.hpp"
 109 #include "services/management.hpp"
 110 #include "services/memTracker.hpp"
 111 #include "services/threadService.hpp"
 112 #include "utilities/align.hpp"
 113 #include "utilities/copy.hpp"
 114 #include "utilities/defaultStream.hpp"
 115 #include "utilities/dtrace.hpp"
 116 #include "utilities/events.hpp"
 117 #include "utilities/macros.hpp"
 118 #include "utilities/preserveException.hpp"
 119 #include "utilities/singleWriterSynchronizer.hpp"
 120 #include "utilities/vmError.hpp"
 121 #if INCLUDE_JVMCI
 122 #include "jvmci/jvmci.hpp"
 123 #include "jvmci/jvmciEnv.hpp"
 124 #endif
 125 #ifdef COMPILER1
 126 #include "c1/c1_Compiler.hpp"
 127 #endif
 128 #ifdef COMPILER2
 129 #include "opto/c2compiler.hpp"
 130 #include "opto/idealGraphPrinter.hpp"
 131 #endif
 132 #if INCLUDE_RTM_OPT
 133 #include "runtime/rtmLocking.hpp"
 134 #endif
 135 #if INCLUDE_JFR
 136 #include "jfr/jfr.hpp"
 137 #endif
 138 
 139 // Initialization after module runtime initialization
 140 void universe_post_module_init();  // must happen after call_initPhase2
 141 
 142 #ifdef DTRACE_ENABLED
 143 
 144 // Only bother with this argument setup if dtrace is available
 145 
 146   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 147   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 148 
 149   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 150     {                                                                      \
 151       ResourceMark rm(this);                                               \
 152       int len = 0;                                                         \
 153       const char* name = (javathread)->get_thread_name();                  \
 154       len = strlen(name);                                                  \
 155       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 156         (char *) name, len,                                                \
 157         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 158         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 159         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 160     }
 161 
 162 #else //  ndef DTRACE_ENABLED
 163 
 164   #define DTRACE_THREAD_PROBE(probe, javathread)
 165 
 166 #endif // ndef DTRACE_ENABLED
 167 
 168 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 169 // Current thread is maintained as a thread-local variable
 170 THREAD_LOCAL Thread* Thread::_thr_current = NULL;
 171 #endif
 172 
 173 // ======= Thread ========
 174 // Support for forcing alignment of thread objects for biased locking
 175 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 176   if (UseBiasedLocking) {
 177     const size_t alignment = markWord::biased_lock_alignment;
 178     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 179     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 180                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 181                                                          AllocFailStrategy::RETURN_NULL);
 182     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 183     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 184            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 185            "JavaThread alignment code overflowed allocated storage");
 186     if (aligned_addr != real_malloc_addr) {
 187       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 188                               p2i(real_malloc_addr),
 189                               p2i(aligned_addr));
 190     }
 191     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 192     return aligned_addr;
 193   } else {
 194     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 195                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 196   }
 197 }
 198 
 199 void Thread::operator delete(void* p) {
 200   if (UseBiasedLocking) {
 201     FreeHeap(((Thread*) p)->_real_malloc_address);
 202   } else {
 203     FreeHeap(p);
 204   }
 205 }
 206 
 207 void JavaThread::smr_delete() {
 208   if (_on_thread_list) {
 209     ThreadsSMRSupport::smr_delete(this);
 210   } else {
 211     delete this;
 212   }
 213 }
 214 
 215 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 216 // JavaThread
 217 
 218 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 219 
 220 Thread::Thread() {
 221 
 222   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 223 
 224   // stack and get_thread
 225   set_stack_base(NULL);
 226   set_stack_size(0);
 227   set_lgrp_id(-1);
 228   DEBUG_ONLY(clear_suspendible_thread();)
 229 
 230   // allocated data structures
 231   set_osthread(NULL);
 232   set_resource_area(new (mtThread)ResourceArea());
 233   DEBUG_ONLY(_current_resource_mark = NULL;)
 234   set_handle_area(new (mtThread) HandleArea(NULL));
 235   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 236   set_active_handles(NULL);
 237   set_free_handle_block(NULL);
 238   set_last_handle_mark(NULL);
 239   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 240 
 241   // Initial value of zero ==> never claimed.
 242   _threads_do_token = 0;
 243   _threads_hazard_ptr = NULL;
 244   _threads_list_ptr = NULL;
 245   _nested_threads_hazard_ptr_cnt = 0;
 246   _rcu_counter = 0;
 247 
 248   // the handle mark links itself to last_handle_mark
 249   new HandleMark(this);
 250 
 251   // plain initialization
 252   debug_only(_owned_locks = NULL;)
 253   NOT_PRODUCT(_no_safepoint_count = 0;)
 254   NOT_PRODUCT(_skip_gcalot = false;)
 255   _jvmti_env_iteration_count = 0;
 256   set_allocated_bytes(0);
 257   _vm_operation_started_count = 0;
 258   _vm_operation_completed_count = 0;
 259   _current_pending_monitor = NULL;
 260   _current_pending_monitor_is_from_java = true;
 261   _current_waiting_monitor = NULL;
 262   _current_pending_raw_monitor = NULL;
 263   _num_nested_signal = 0;
 264   om_free_list = NULL;
 265   om_free_count = 0;
 266   om_free_provision = 32;
 267   om_in_use_list = NULL;
 268   om_in_use_count = 0;
 269 
 270 #ifdef ASSERT
 271   _visited_for_critical_count = false;
 272 #endif
 273 
 274   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 275                          Monitor::_safepoint_check_sometimes);
 276   _suspend_flags = 0;
 277 
 278   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 279   _hashStateX = os::random();
 280   _hashStateY = 842502087;
 281   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 282   _hashStateW = 273326509;
 283 
 284   _OnTrap   = 0;
 285   _Stalled  = 0;
 286   _TypeTag  = 0x2BAD;
 287 
 288   // Many of the following fields are effectively final - immutable
 289   // Note that nascent threads can't use the Native Monitor-Mutex
 290   // construct until the _MutexEvent is initialized ...
 291   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 292   // we might instead use a stack of ParkEvents that we could provision on-demand.
 293   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 294   // and ::Release()
 295   _ParkEvent   = ParkEvent::Allocate(this);
 296   _MuxEvent    = ParkEvent::Allocate(this);
 297 
 298 #ifdef CHECK_UNHANDLED_OOPS
 299   if (CheckUnhandledOops) {
 300     _unhandled_oops = new UnhandledOops(this);
 301   }
 302 #endif // CHECK_UNHANDLED_OOPS
 303 #ifdef ASSERT
 304   if (UseBiasedLocking) {
 305     assert(is_aligned(this, markWord::biased_lock_alignment), "forced alignment of thread object failed");
 306     assert(this == _real_malloc_address ||
 307            this == align_up(_real_malloc_address, markWord::biased_lock_alignment),
 308            "bug in forced alignment of thread objects");
 309   }
 310 #endif // ASSERT
 311 
 312   // Notify the barrier set that a thread is being created. The initial
 313   // thread is created before the barrier set is available.  The call to
 314   // BarrierSet::on_thread_create() for this thread is therefore deferred
 315   // to BarrierSet::set_barrier_set().
 316   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 317   if (barrier_set != NULL) {
 318     barrier_set->on_thread_create(this);
 319   } else {
 320     // Only the main thread should be created before the barrier set
 321     // and that happens just before Thread::current is set. No other thread
 322     // can attach as the VM is not created yet, so they can't execute this code.
 323     // If the main thread creates other threads before the barrier set that is an error.
 324     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 325   }
 326 }
 327 
 328 void Thread::initialize_thread_current() {
 329 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 330   assert(_thr_current == NULL, "Thread::current already initialized");
 331   _thr_current = this;
 332 #endif
 333   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 334   ThreadLocalStorage::set_thread(this);
 335   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 336 }
 337 
 338 void Thread::clear_thread_current() {
 339   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 340 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 341   _thr_current = NULL;
 342 #endif
 343   ThreadLocalStorage::set_thread(NULL);
 344 }
 345 
 346 void Thread::record_stack_base_and_size() {
 347   // Note: at this point, Thread object is not yet initialized. Do not rely on
 348   // any members being initialized. Do not rely on Thread::current() being set.
 349   // If possible, refrain from doing anything which may crash or assert since
 350   // quite probably those crash dumps will be useless.
 351   set_stack_base(os::current_stack_base());
 352   assert(_stack_base != NULL, "current_stack_base failed for %s", name());
 353   set_stack_size(os::current_stack_size());
 354 
 355 #ifdef SOLARIS
 356   if (os::is_primordial_thread()) {
 357     os::Solaris::correct_stack_boundaries_for_primordial_thread(this);
 358   }
 359 #endif
 360 
 361   // Set stack limits after thread is initialized.
 362   if (is_Java_thread()) {
 363     ((JavaThread*) this)->set_stack_overflow_limit();
 364     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 365   }
 366 }
 367 
 368 #if INCLUDE_NMT
 369 void Thread::register_thread_stack_with_NMT() {
 370   MemTracker::record_thread_stack(stack_end(), stack_size());
 371 }
 372 #endif // INCLUDE_NMT
 373 
 374 void Thread::call_run() {
 375   DEBUG_ONLY(_run_state = CALL_RUN;)
 376 
 377   // At this point, Thread object should be fully initialized and
 378   // Thread::current() should be set.
 379 
 380   assert(Thread::current_or_null() != NULL, "current thread is unset");
 381   assert(Thread::current_or_null() == this, "current thread is wrong");
 382 
 383   // Perform common initialization actions
 384 
 385   register_thread_stack_with_NMT();
 386 
 387   JFR_ONLY(Jfr::on_thread_start(this);)
 388 
 389   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 390     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 391     os::current_thread_id(), p2i(stack_end()),
 392     p2i(stack_base()), stack_size()/1024);
 393 
 394   // Perform <ChildClass> initialization actions
 395   DEBUG_ONLY(_run_state = PRE_RUN;)
 396   this->pre_run();
 397 
 398   // Invoke <ChildClass>::run()
 399   DEBUG_ONLY(_run_state = RUN;)
 400   this->run();
 401   // Returned from <ChildClass>::run(). Thread finished.
 402 
 403   // Perform common tear-down actions
 404 
 405   assert(Thread::current_or_null() != NULL, "current thread is unset");
 406   assert(Thread::current_or_null() == this, "current thread is wrong");
 407 
 408   // Perform <ChildClass> tear-down actions
 409   DEBUG_ONLY(_run_state = POST_RUN;)
 410   this->post_run();
 411 
 412   // Note: at this point the thread object may already have deleted itself,
 413   // so from here on do not dereference *this*. Not all thread types currently
 414   // delete themselves when they terminate. But no thread should ever be deleted
 415   // asynchronously with respect to its termination - that is what _run_state can
 416   // be used to check.
 417 
 418   assert(Thread::current_or_null() == NULL, "current thread still present");
 419 }
 420 
 421 Thread::~Thread() {
 422 
 423   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 424   // get started due to errors etc. Any active thread should at least reach post_run
 425   // before it is deleted (usually in post_run()).
 426   assert(_run_state == PRE_CALL_RUN ||
 427          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 428          "_run_state=%d", (int)_run_state);
 429 
 430   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 431   // set might not be available if we encountered errors during bootstrapping.
 432   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 433   if (barrier_set != NULL) {
 434     barrier_set->on_thread_destroy(this);
 435   }
 436 
 437   // stack_base can be NULL if the thread is never started or exited before
 438   // record_stack_base_and_size called. Although, we would like to ensure
 439   // that all started threads do call record_stack_base_and_size(), there is
 440   // not proper way to enforce that.
 441 #if INCLUDE_NMT
 442   if (_stack_base != NULL) {
 443     MemTracker::release_thread_stack(stack_end(), stack_size());
 444 #ifdef ASSERT
 445     set_stack_base(NULL);
 446 #endif
 447   }
 448 #endif // INCLUDE_NMT
 449 
 450   // deallocate data structures
 451   delete resource_area();
 452   // since the handle marks are using the handle area, we have to deallocated the root
 453   // handle mark before deallocating the thread's handle area,
 454   assert(last_handle_mark() != NULL, "check we have an element");
 455   delete last_handle_mark();
 456   assert(last_handle_mark() == NULL, "check we have reached the end");
 457 
 458   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 459   // We NULL out the fields for good hygiene.
 460   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 461   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 462 
 463   delete handle_area();
 464   delete metadata_handles();
 465 
 466   // SR_handler uses this as a termination indicator -
 467   // needs to happen before os::free_thread()
 468   delete _SR_lock;
 469   _SR_lock = NULL;
 470 
 471   // osthread() can be NULL, if creation of thread failed.
 472   if (osthread() != NULL) os::free_thread(osthread());
 473 
 474   // Clear Thread::current if thread is deleting itself and it has not
 475   // already been done. This must be done before the memory is deallocated.
 476   // Needed to ensure JNI correctly detects non-attached threads.
 477   if (this == Thread::current_or_null()) {
 478     Thread::clear_thread_current();
 479   }
 480 
 481   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 482 }
 483 
 484 #ifdef ASSERT
 485 // A JavaThread is considered "dangling" if it is not the current
 486 // thread, has been added the Threads list, the system is not at a
 487 // safepoint and the Thread is not "protected".
 488 //
 489 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 490   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 491          !((JavaThread *) thread)->on_thread_list() ||
 492          SafepointSynchronize::is_at_safepoint() ||
 493          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 494          "possibility of dangling Thread pointer");
 495 }
 496 #endif
 497 
 498 ThreadPriority Thread::get_priority(const Thread* const thread) {
 499   ThreadPriority priority;
 500   // Can return an error!
 501   (void)os::get_priority(thread, priority);
 502   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 503   return priority;
 504 }
 505 
 506 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 507   debug_only(check_for_dangling_thread_pointer(thread);)
 508   // Can return an error!
 509   (void)os::set_priority(thread, priority);
 510 }
 511 
 512 
 513 void Thread::start(Thread* thread) {
 514   // Start is different from resume in that its safety is guaranteed by context or
 515   // being called from a Java method synchronized on the Thread object.
 516   if (!DisableStartThread) {
 517     if (thread->is_Java_thread()) {
 518       // Initialize the thread state to RUNNABLE before starting this thread.
 519       // Can not set it after the thread started because we do not know the
 520       // exact thread state at that time. It could be in MONITOR_WAIT or
 521       // in SLEEPING or some other state.
 522       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 523                                           java_lang_Thread::RUNNABLE);
 524     }
 525     os::start_thread(thread);
 526   }
 527 }
 528 
 529 class InstallAsyncExceptionClosure : public HandshakeClosure {
 530   Handle _throwable; // The Throwable thrown at the target Thread
 531 public:
 532   InstallAsyncExceptionClosure(Handle throwable) : HandshakeClosure("InstallAsyncException"), _throwable(throwable) {}
 533 
 534   void do_thread(Thread* thr) {
 535     JavaThread* target = (JavaThread*)thr;
 536     // Note that this now allows multiple ThreadDeath exceptions to be
 537     // thrown at a thread.
 538     // The target thread has run and has not exited yet.
 539     target->send_thread_stop(_throwable());
 540   }
 541 };
 542 
 543 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 544   Handle throwable(Thread::current(), java_throwable);
 545   JavaThread* target = java_lang_Thread::thread(java_thread);
 546   InstallAsyncExceptionClosure vm_stop(throwable);
 547   Handshake::execute(&vm_stop, target);
 548 }
 549 
 550 
 551 // Check if an external suspend request has completed (or has been
 552 // cancelled). Returns true if the thread is externally suspended and
 553 // false otherwise.
 554 //
 555 // The bits parameter returns information about the code path through
 556 // the routine. Useful for debugging:
 557 //
 558 // set in is_ext_suspend_completed():
 559 // 0x00000001 - routine was entered
 560 // 0x00000010 - routine return false at end
 561 // 0x00000100 - thread exited (return false)
 562 // 0x00000200 - suspend request cancelled (return false)
 563 // 0x00000400 - thread suspended (return true)
 564 // 0x00001000 - thread is in a suspend equivalent state (return true)
 565 // 0x00002000 - thread is native and walkable (return true)
 566 // 0x00004000 - thread is native_trans and walkable (needed retry)
 567 //
 568 // set in wait_for_ext_suspend_completion():
 569 // 0x00010000 - routine was entered
 570 // 0x00020000 - suspend request cancelled before loop (return false)
 571 // 0x00040000 - thread suspended before loop (return true)
 572 // 0x00080000 - suspend request cancelled in loop (return false)
 573 // 0x00100000 - thread suspended in loop (return true)
 574 // 0x00200000 - suspend not completed during retry loop (return false)
 575 
 576 // Helper class for tracing suspend wait debug bits.
 577 //
 578 // 0x00000100 indicates that the target thread exited before it could
 579 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 580 // 0x00080000 each indicate a cancelled suspend request so they don't
 581 // count as wait failures either.
 582 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 583 
 584 class TraceSuspendDebugBits : public StackObj {
 585  private:
 586   JavaThread * jt;
 587   bool         is_wait;
 588   bool         called_by_wait;  // meaningful when !is_wait
 589   uint32_t *   bits;
 590 
 591  public:
 592   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 593                         uint32_t *_bits) {
 594     jt             = _jt;
 595     is_wait        = _is_wait;
 596     called_by_wait = _called_by_wait;
 597     bits           = _bits;
 598   }
 599 
 600   ~TraceSuspendDebugBits() {
 601     if (!is_wait) {
 602 #if 1
 603       // By default, don't trace bits for is_ext_suspend_completed() calls.
 604       // That trace is very chatty.
 605       return;
 606 #else
 607       if (!called_by_wait) {
 608         // If tracing for is_ext_suspend_completed() is enabled, then only
 609         // trace calls to it from wait_for_ext_suspend_completion()
 610         return;
 611       }
 612 #endif
 613     }
 614 
 615     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 616       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 617         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 618         ResourceMark rm;
 619 
 620         tty->print_cr(
 621                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 622                       jt->get_thread_name(), *bits);
 623 
 624         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 625       }
 626     }
 627   }
 628 };
 629 #undef DEBUG_FALSE_BITS
 630 
 631 
 632 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 633                                           uint32_t *bits) {
 634   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 635 
 636   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 637   bool do_trans_retry;           // flag to force the retry
 638 
 639   *bits |= 0x00000001;
 640 
 641   do {
 642     do_trans_retry = false;
 643 
 644     if (is_exiting()) {
 645       // Thread is in the process of exiting. This is always checked
 646       // first to reduce the risk of dereferencing a freed JavaThread.
 647       *bits |= 0x00000100;
 648       return false;
 649     }
 650 
 651     if (!is_external_suspend()) {
 652       // Suspend request is cancelled. This is always checked before
 653       // is_ext_suspended() to reduce the risk of a rogue resume
 654       // confusing the thread that made the suspend request.
 655       *bits |= 0x00000200;
 656       return false;
 657     }
 658 
 659     if (is_ext_suspended()) {
 660       // thread is suspended
 661       *bits |= 0x00000400;
 662       return true;
 663     }
 664 
 665     // Now that we no longer do hard suspends of threads running
 666     // native code, the target thread can be changing thread state
 667     // while we are in this routine:
 668     //
 669     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 670     //
 671     // We save a copy of the thread state as observed at this moment
 672     // and make our decision about suspend completeness based on the
 673     // copy. This closes the race where the thread state is seen as
 674     // _thread_in_native_trans in the if-thread_blocked check, but is
 675     // seen as _thread_blocked in if-thread_in_native_trans check.
 676     JavaThreadState save_state = thread_state();
 677 
 678     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 679       // If the thread's state is _thread_blocked and this blocking
 680       // condition is known to be equivalent to a suspend, then we can
 681       // consider the thread to be externally suspended. This means that
 682       // the code that sets _thread_blocked has been modified to do
 683       // self-suspension if the blocking condition releases. We also
 684       // used to check for CONDVAR_WAIT here, but that is now covered by
 685       // the _thread_blocked with self-suspension check.
 686       //
 687       // Return true since we wouldn't be here unless there was still an
 688       // external suspend request.
 689       *bits |= 0x00001000;
 690       return true;
 691     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 692       // Threads running native code will self-suspend on native==>VM/Java
 693       // transitions. If its stack is walkable (should always be the case
 694       // unless this function is called before the actual java_suspend()
 695       // call), then the wait is done.
 696       *bits |= 0x00002000;
 697       return true;
 698     } else if (!called_by_wait && !did_trans_retry &&
 699                save_state == _thread_in_native_trans &&
 700                frame_anchor()->walkable()) {
 701       // The thread is transitioning from thread_in_native to another
 702       // thread state. check_safepoint_and_suspend_for_native_trans()
 703       // will force the thread to self-suspend. If it hasn't gotten
 704       // there yet we may have caught the thread in-between the native
 705       // code check above and the self-suspend. Lucky us. If we were
 706       // called by wait_for_ext_suspend_completion(), then it
 707       // will be doing the retries so we don't have to.
 708       //
 709       // Since we use the saved thread state in the if-statement above,
 710       // there is a chance that the thread has already transitioned to
 711       // _thread_blocked by the time we get here. In that case, we will
 712       // make a single unnecessary pass through the logic below. This
 713       // doesn't hurt anything since we still do the trans retry.
 714 
 715       *bits |= 0x00004000;
 716 
 717       // Once the thread leaves thread_in_native_trans for another
 718       // thread state, we break out of this retry loop. We shouldn't
 719       // need this flag to prevent us from getting back here, but
 720       // sometimes paranoia is good.
 721       did_trans_retry = true;
 722 
 723       // We wait for the thread to transition to a more usable state.
 724       for (int i = 1; i <= SuspendRetryCount; i++) {
 725         // We used to do an "os::yield_all(i)" call here with the intention
 726         // that yielding would increase on each retry. However, the parameter
 727         // is ignored on Linux which means the yield didn't scale up. Waiting
 728         // on the SR_lock below provides a much more predictable scale up for
 729         // the delay. It also provides a simple/direct point to check for any
 730         // safepoint requests from the VMThread
 731 
 732         // temporarily drops SR_lock while doing wait with safepoint check
 733         // (if we're a JavaThread - the WatcherThread can also call this)
 734         // and increase delay with each retry
 735         if (Thread::current()->is_Java_thread()) {
 736           SR_lock()->wait(i * delay);
 737         } else {
 738           SR_lock()->wait_without_safepoint_check(i * delay);
 739         }
 740 
 741         // check the actual thread state instead of what we saved above
 742         if (thread_state() != _thread_in_native_trans) {
 743           // the thread has transitioned to another thread state so
 744           // try all the checks (except this one) one more time.
 745           do_trans_retry = true;
 746           break;
 747         }
 748       } // end retry loop
 749 
 750 
 751     }
 752   } while (do_trans_retry);
 753 
 754   *bits |= 0x00000010;
 755   return false;
 756 }
 757 
 758 // Wait for an external suspend request to complete (or be cancelled).
 759 // Returns true if the thread is externally suspended and false otherwise.
 760 //
 761 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 762                                                  uint32_t *bits) {
 763   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 764                              false /* !called_by_wait */, bits);
 765 
 766   // local flag copies to minimize SR_lock hold time
 767   bool is_suspended;
 768   bool pending;
 769   uint32_t reset_bits;
 770 
 771   // set a marker so is_ext_suspend_completed() knows we are the caller
 772   *bits |= 0x00010000;
 773 
 774   // We use reset_bits to reinitialize the bits value at the top of
 775   // each retry loop. This allows the caller to make use of any
 776   // unused bits for their own marking purposes.
 777   reset_bits = *bits;
 778 
 779   {
 780     MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 781     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 782                                             delay, bits);
 783     pending = is_external_suspend();
 784   }
 785   // must release SR_lock to allow suspension to complete
 786 
 787   if (!pending) {
 788     // A cancelled suspend request is the only false return from
 789     // is_ext_suspend_completed() that keeps us from entering the
 790     // retry loop.
 791     *bits |= 0x00020000;
 792     return false;
 793   }
 794 
 795   if (is_suspended) {
 796     *bits |= 0x00040000;
 797     return true;
 798   }
 799 
 800   for (int i = 1; i <= retries; i++) {
 801     *bits = reset_bits;  // reinit to only track last retry
 802 
 803     // We used to do an "os::yield_all(i)" call here with the intention
 804     // that yielding would increase on each retry. However, the parameter
 805     // is ignored on Linux which means the yield didn't scale up. Waiting
 806     // on the SR_lock below provides a much more predictable scale up for
 807     // the delay. It also provides a simple/direct point to check for any
 808     // safepoint requests from the VMThread
 809 
 810     {
 811       Thread* t = Thread::current();
 812       MonitorLocker ml(SR_lock(),
 813                        t->is_Java_thread() ? Mutex::_safepoint_check_flag : Mutex::_no_safepoint_check_flag);
 814       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 815       // can also call this)  and increase delay with each retry
 816       ml.wait(i * delay);
 817 
 818       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 819                                               delay, bits);
 820 
 821       // It is possible for the external suspend request to be cancelled
 822       // (by a resume) before the actual suspend operation is completed.
 823       // Refresh our local copy to see if we still need to wait.
 824       pending = is_external_suspend();
 825     }
 826 
 827     if (!pending) {
 828       // A cancelled suspend request is the only false return from
 829       // is_ext_suspend_completed() that keeps us from staying in the
 830       // retry loop.
 831       *bits |= 0x00080000;
 832       return false;
 833     }
 834 
 835     if (is_suspended) {
 836       *bits |= 0x00100000;
 837       return true;
 838     }
 839   } // end retry loop
 840 
 841   // thread did not suspend after all our retries
 842   *bits |= 0x00200000;
 843   return false;
 844 }
 845 
 846 // Called from API entry points which perform stack walking. If the
 847 // associated JavaThread is the current thread, then wait_for_suspend
 848 // is not used. Otherwise, it determines if we should wait for the
 849 // "other" thread to complete external suspension. (NOTE: in future
 850 // releases the suspension mechanism should be reimplemented so this
 851 // is not necessary.)
 852 //
 853 bool
 854 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 855   if (this != JavaThread::current()) {
 856     // "other" threads require special handling.
 857     if (wait_for_suspend) {
 858       // We are allowed to wait for the external suspend to complete
 859       // so give the other thread a chance to get suspended.
 860       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 861                                            SuspendRetryDelay, bits)) {
 862         // Didn't make it so let the caller know.
 863         return false;
 864       }
 865     }
 866     // We aren't allowed to wait for the external suspend to complete
 867     // so if the other thread isn't externally suspended we need to
 868     // let the caller know.
 869     else if (!is_ext_suspend_completed_with_lock(bits)) {
 870       return false;
 871     }
 872   }
 873 
 874   return true;
 875 }
 876 
 877 // GC Support
 878 bool Thread::claim_par_threads_do(uintx claim_token) {
 879   uintx token = _threads_do_token;
 880   if (token != claim_token) {
 881     uintx res = Atomic::cmpxchg(&_threads_do_token, token, claim_token);
 882     if (res == token) {
 883       return true;
 884     }
 885     guarantee(res == claim_token, "invariant");
 886   }
 887   return false;
 888 }
 889 
 890 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 891   if (active_handles() != NULL) {
 892     active_handles()->oops_do(f);
 893   }
 894   // Do oop for ThreadShadow
 895   f->do_oop((oop*)&_pending_exception);
 896   handle_area()->oops_do(f);
 897 
 898   // We scan thread local monitor lists here, and the remaining global
 899   // monitors in ObjectSynchronizer::oops_do().
 900   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 901 }
 902 
 903 void Thread::metadata_handles_do(void f(Metadata*)) {
 904   // Only walk the Handles in Thread.
 905   if (metadata_handles() != NULL) {
 906     for (int i = 0; i< metadata_handles()->length(); i++) {
 907       f(metadata_handles()->at(i));
 908     }
 909   }
 910 }
 911 
 912 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 913   // get_priority assumes osthread initialized
 914   if (osthread() != NULL) {
 915     int os_prio;
 916     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 917       st->print("os_prio=%d ", os_prio);
 918     }
 919 
 920     st->print("cpu=%.2fms ",
 921               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 922               );
 923     st->print("elapsed=%.2fs ",
 924               _statistical_info.getElapsedTime() / 1000.0
 925               );
 926     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 927       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 928       st->print("allocated=" SIZE_FORMAT "%s ",
 929                 byte_size_in_proper_unit(allocated_bytes),
 930                 proper_unit_for_byte_size(allocated_bytes)
 931                 );
 932       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 933     }
 934 
 935     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 936     osthread()->print_on(st);
 937   }
 938   ThreadsSMRSupport::print_info_on(this, st);
 939   st->print(" ");
 940   debug_only(if (WizardMode) print_owned_locks_on(st);)
 941 }
 942 
 943 void Thread::print() const { print_on(tty); }
 944 
 945 // Thread::print_on_error() is called by fatal error handler. Don't use
 946 // any lock or allocate memory.
 947 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 948   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 949 
 950   if (is_VM_thread())                 { st->print("VMThread"); }
 951   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 952   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 953   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 954   else                                { st->print("Thread"); }
 955 
 956   if (is_Named_thread()) {
 957     st->print(" \"%s\"", name());
 958   }
 959 
 960   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 961             p2i(stack_end()), p2i(stack_base()));
 962 
 963   if (osthread()) {
 964     st->print(" [id=%d]", osthread()->thread_id());
 965   }
 966 
 967   ThreadsSMRSupport::print_info_on(this, st);
 968 }
 969 
 970 void Thread::print_value_on(outputStream* st) const {
 971   if (is_Named_thread()) {
 972     st->print(" \"%s\" ", name());
 973   }
 974   st->print(INTPTR_FORMAT, p2i(this));   // print address
 975 }
 976 
 977 #ifdef ASSERT
 978 void Thread::print_owned_locks_on(outputStream* st) const {
 979   Mutex* cur = _owned_locks;
 980   if (cur == NULL) {
 981     st->print(" (no locks) ");
 982   } else {
 983     st->print_cr(" Locks owned:");
 984     while (cur) {
 985       cur->print_on(st);
 986       cur = cur->next();
 987     }
 988   }
 989 }
 990 
 991 // Checks safepoint allowed and clears unhandled oops at potential safepoints.
 992 void Thread::check_possible_safepoint() {
 993   if (!is_Java_thread()) return;
 994 
 995   if (_no_safepoint_count > 0) {
 996     print_owned_locks();
 997     fatal("Possible safepoint reached by thread that does not allow it");
 998   }
 999 #ifdef CHECK_UNHANDLED_OOPS
1000   // Clear unhandled oops in JavaThreads so we get a crash right away.
1001   clear_unhandled_oops();
1002 #endif // CHECK_UNHANDLED_OOPS
1003 }
1004 
1005 void Thread::check_for_valid_safepoint_state() {
1006   if (!is_Java_thread()) return;
1007 
1008   // Check NoSafepointVerifier, which is implied by locks taken that can be
1009   // shared with the VM thread.  This makes sure that no locks with allow_vm_block
1010   // are held.
1011   check_possible_safepoint();
1012 
1013   if (((JavaThread*)this)->thread_state() != _thread_in_vm) {
1014     fatal("LEAF method calling lock?");
1015   }
1016 
1017   if (GCALotAtAllSafepoints) {
1018     // We could enter a safepoint here and thus have a gc
1019     InterfaceSupport::check_gc_alot();
1020   }
1021 }
1022 #endif // ASSERT
1023 
1024 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1025 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1026 // used for compilation in the future. If that change is made, the need for these methods
1027 // should be revisited, and they should be removed if possible.
1028 
1029 bool Thread::is_lock_owned(address adr) const {
1030   return is_in_full_stack(adr);
1031 }
1032 
1033 bool Thread::set_as_starting_thread() {
1034   assert(_starting_thread == NULL, "already initialized: "
1035          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
1036   // NOTE: this must be called inside the main thread.
1037   DEBUG_ONLY(_starting_thread = this;)
1038   return os::create_main_thread((JavaThread*)this);
1039 }
1040 
1041 static void initialize_class(Symbol* class_name, TRAPS) {
1042   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1043   InstanceKlass::cast(klass)->initialize(CHECK);
1044 }
1045 
1046 
1047 // Creates the initial ThreadGroup
1048 static Handle create_initial_thread_group(TRAPS) {
1049   Handle system_instance = JavaCalls::construct_new_instance(
1050                             SystemDictionary::ThreadGroup_klass(),
1051                             vmSymbols::void_method_signature(),
1052                             CHECK_NH);
1053   Universe::set_system_thread_group(system_instance());
1054 
1055   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1056   Handle main_instance = JavaCalls::construct_new_instance(
1057                             SystemDictionary::ThreadGroup_klass(),
1058                             vmSymbols::threadgroup_string_void_signature(),
1059                             system_instance,
1060                             string,
1061                             CHECK_NH);
1062   return main_instance;
1063 }
1064 
1065 // Creates the initial Thread
1066 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1067                                  TRAPS) {
1068   InstanceKlass* ik = SystemDictionary::Thread_klass();
1069   assert(ik->is_initialized(), "must be");
1070   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1071 
1072   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1073   // constructor calls Thread.current(), which must be set here for the
1074   // initial thread.
1075   java_lang_Thread::set_thread(thread_oop(), thread);
1076   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1077   thread->set_threadObj(thread_oop());
1078 
1079   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1080 
1081   JavaValue result(T_VOID);
1082   JavaCalls::call_special(&result, thread_oop,
1083                           ik,
1084                           vmSymbols::object_initializer_name(),
1085                           vmSymbols::threadgroup_string_void_signature(),
1086                           thread_group,
1087                           string,
1088                           CHECK_NULL);
1089   return thread_oop();
1090 }
1091 
1092 char java_runtime_name[128] = "";
1093 char java_runtime_version[128] = "";
1094 char java_runtime_vendor_version[128] = "";
1095 char java_runtime_vendor_vm_bug_url[128] = "";
1096 
1097 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1098 static const char* get_java_runtime_name(TRAPS) {
1099   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1100                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1101   fieldDescriptor fd;
1102   bool found = k != NULL &&
1103                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1104                                                         vmSymbols::string_signature(), &fd);
1105   if (found) {
1106     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1107     if (name_oop == NULL) {
1108       return NULL;
1109     }
1110     const char* name = java_lang_String::as_utf8_string(name_oop,
1111                                                         java_runtime_name,
1112                                                         sizeof(java_runtime_name));
1113     return name;
1114   } else {
1115     return NULL;
1116   }
1117 }
1118 
1119 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1120 static const char* get_java_runtime_version(TRAPS) {
1121   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1122                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1123   fieldDescriptor fd;
1124   bool found = k != NULL &&
1125                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1126                                                         vmSymbols::string_signature(), &fd);
1127   if (found) {
1128     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1129     if (name_oop == NULL) {
1130       return NULL;
1131     }
1132     const char* name = java_lang_String::as_utf8_string(name_oop,
1133                                                         java_runtime_version,
1134                                                         sizeof(java_runtime_version));
1135     return name;
1136   } else {
1137     return NULL;
1138   }
1139 }
1140 
1141 // extract the JRE vendor version from java.lang.VersionProps.VENDOR_VERSION
1142 static const char* get_java_runtime_vendor_version(TRAPS) {
1143   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1144                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1145   fieldDescriptor fd;
1146   bool found = k != NULL &&
1147                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_vendor_version_name(),
1148                                                         vmSymbols::string_signature(), &fd);
1149   if (found) {
1150     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1151     if (name_oop == NULL) {
1152       return NULL;
1153     }
1154     const char* name = java_lang_String::as_utf8_string(name_oop,
1155                                                         java_runtime_vendor_version,
1156                                                         sizeof(java_runtime_vendor_version));
1157     return name;
1158   } else {
1159     return NULL;
1160   }
1161 }
1162 
1163 // extract the JRE vendor VM bug URL from java.lang.VersionProps.VENDOR_URL_VM_BUG
1164 static const char* get_java_runtime_vendor_vm_bug_url(TRAPS) {
1165   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1166                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1167   fieldDescriptor fd;
1168   bool found = k != NULL &&
1169                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_vendor_vm_bug_url_name(),
1170                                                         vmSymbols::string_signature(), &fd);
1171   if (found) {
1172     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1173     if (name_oop == NULL) {
1174       return NULL;
1175     }
1176     const char* name = java_lang_String::as_utf8_string(name_oop,
1177                                                         java_runtime_vendor_vm_bug_url,
1178                                                         sizeof(java_runtime_vendor_vm_bug_url));
1179     return name;
1180   } else {
1181     return NULL;
1182   }
1183 }
1184 
1185 // General purpose hook into Java code, run once when the VM is initialized.
1186 // The Java library method itself may be changed independently from the VM.
1187 static void call_postVMInitHook(TRAPS) {
1188   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1189   if (klass != NULL) {
1190     JavaValue result(T_VOID);
1191     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1192                            vmSymbols::void_method_signature(),
1193                            CHECK);
1194   }
1195 }
1196 
1197 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1198                                     bool daemon, TRAPS) {
1199   assert(thread_group.not_null(), "thread group should be specified");
1200   assert(threadObj() == NULL, "should only create Java thread object once");
1201 
1202   InstanceKlass* ik = SystemDictionary::Thread_klass();
1203   assert(ik->is_initialized(), "must be");
1204   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1205 
1206   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1207   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1208   // constructor calls Thread.current(), which must be set here.
1209   java_lang_Thread::set_thread(thread_oop(), this);
1210   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1211   set_threadObj(thread_oop());
1212 
1213   JavaValue result(T_VOID);
1214   if (thread_name != NULL) {
1215     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1216     // Thread gets assigned specified name and null target
1217     JavaCalls::call_special(&result,
1218                             thread_oop,
1219                             ik,
1220                             vmSymbols::object_initializer_name(),
1221                             vmSymbols::threadgroup_string_void_signature(),
1222                             thread_group,
1223                             name,
1224                             THREAD);
1225   } else {
1226     // Thread gets assigned name "Thread-nnn" and null target
1227     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1228     JavaCalls::call_special(&result,
1229                             thread_oop,
1230                             ik,
1231                             vmSymbols::object_initializer_name(),
1232                             vmSymbols::threadgroup_runnable_void_signature(),
1233                             thread_group,
1234                             Handle(),
1235                             THREAD);
1236   }
1237 
1238 
1239   if (daemon) {
1240     java_lang_Thread::set_daemon(thread_oop());
1241   }
1242 
1243   if (HAS_PENDING_EXCEPTION) {
1244     return;
1245   }
1246 
1247   Klass* group = SystemDictionary::ThreadGroup_klass();
1248   Handle threadObj(THREAD, this->threadObj());
1249 
1250   JavaCalls::call_special(&result,
1251                           thread_group,
1252                           group,
1253                           vmSymbols::add_method_name(),
1254                           vmSymbols::thread_void_signature(),
1255                           threadObj,          // Arg 1
1256                           THREAD);
1257 }
1258 
1259 // List of all NonJavaThreads and safe iteration over that list.
1260 
1261 class NonJavaThread::List {
1262 public:
1263   NonJavaThread* volatile _head;
1264   SingleWriterSynchronizer _protect;
1265 
1266   List() : _head(NULL), _protect() {}
1267 };
1268 
1269 NonJavaThread::List NonJavaThread::_the_list;
1270 
1271 NonJavaThread::Iterator::Iterator() :
1272   _protect_enter(_the_list._protect.enter()),
1273   _current(Atomic::load_acquire(&_the_list._head))
1274 {}
1275 
1276 NonJavaThread::Iterator::~Iterator() {
1277   _the_list._protect.exit(_protect_enter);
1278 }
1279 
1280 void NonJavaThread::Iterator::step() {
1281   assert(!end(), "precondition");
1282   _current = Atomic::load_acquire(&_current->_next);
1283 }
1284 
1285 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1286   assert(BarrierSet::barrier_set() != NULL, "NonJavaThread created too soon!");
1287 }
1288 
1289 NonJavaThread::~NonJavaThread() { }
1290 
1291 void NonJavaThread::add_to_the_list() {
1292   MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1293   // Initialize BarrierSet-related data before adding to list.
1294   BarrierSet::barrier_set()->on_thread_attach(this);
1295   Atomic::release_store(&_next, _the_list._head);
1296   Atomic::release_store(&_the_list._head, this);
1297 }
1298 
1299 void NonJavaThread::remove_from_the_list() {
1300   {
1301     MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1302     // Cleanup BarrierSet-related data before removing from list.
1303     BarrierSet::barrier_set()->on_thread_detach(this);
1304     NonJavaThread* volatile* p = &_the_list._head;
1305     for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1306       if (t == this) {
1307         *p = _next;
1308         break;
1309       }
1310     }
1311   }
1312   // Wait for any in-progress iterators.  Concurrent synchronize is not
1313   // allowed, so do it while holding a dedicated lock.  Outside and distinct
1314   // from NJTList_lock in case an iteration attempts to lock it.
1315   MutexLocker ml(NonJavaThreadsListSync_lock, Mutex::_no_safepoint_check_flag);
1316   _the_list._protect.synchronize();
1317   _next = NULL;                 // Safe to drop the link now.
1318 }
1319 
1320 void NonJavaThread::pre_run() {
1321   add_to_the_list();
1322 
1323   // This is slightly odd in that NamedThread is a subclass, but
1324   // in fact name() is defined in Thread
1325   assert(this->name() != NULL, "thread name was not set before it was started");
1326   this->set_native_thread_name(this->name());
1327 }
1328 
1329 void NonJavaThread::post_run() {
1330   JFR_ONLY(Jfr::on_thread_exit(this);)
1331   remove_from_the_list();
1332   // Ensure thread-local-storage is cleared before termination.
1333   Thread::clear_thread_current();
1334 }
1335 
1336 // NamedThread --  non-JavaThread subclasses with multiple
1337 // uniquely named instances should derive from this.
1338 NamedThread::NamedThread() :
1339   NonJavaThread(),
1340   _name(NULL),
1341   _processed_thread(NULL),
1342   _gc_id(GCId::undefined())
1343 {}
1344 
1345 NamedThread::~NamedThread() {
1346   FREE_C_HEAP_ARRAY(char, _name);
1347 }
1348 
1349 void NamedThread::set_name(const char* format, ...) {
1350   guarantee(_name == NULL, "Only get to set name once.");
1351   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1352   va_list ap;
1353   va_start(ap, format);
1354   jio_vsnprintf(_name, max_name_len, format, ap);
1355   va_end(ap);
1356 }
1357 
1358 void NamedThread::print_on(outputStream* st) const {
1359   st->print("\"%s\" ", name());
1360   Thread::print_on(st);
1361   st->cr();
1362 }
1363 
1364 
1365 // ======= WatcherThread ========
1366 
1367 // The watcher thread exists to simulate timer interrupts.  It should
1368 // be replaced by an abstraction over whatever native support for
1369 // timer interrupts exists on the platform.
1370 
1371 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1372 bool WatcherThread::_startable = false;
1373 volatile bool  WatcherThread::_should_terminate = false;
1374 
1375 WatcherThread::WatcherThread() : NonJavaThread() {
1376   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1377   if (os::create_thread(this, os::watcher_thread)) {
1378     _watcher_thread = this;
1379 
1380     // Set the watcher thread to the highest OS priority which should not be
1381     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1382     // is created. The only normal thread using this priority is the reference
1383     // handler thread, which runs for very short intervals only.
1384     // If the VMThread's priority is not lower than the WatcherThread profiling
1385     // will be inaccurate.
1386     os::set_priority(this, MaxPriority);
1387     if (!DisableStartThread) {
1388       os::start_thread(this);
1389     }
1390   }
1391 }
1392 
1393 int WatcherThread::sleep() const {
1394   // The WatcherThread does not participate in the safepoint protocol
1395   // for the PeriodicTask_lock because it is not a JavaThread.
1396   MonitorLocker ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1397 
1398   if (_should_terminate) {
1399     // check for termination before we do any housekeeping or wait
1400     return 0;  // we did not sleep.
1401   }
1402 
1403   // remaining will be zero if there are no tasks,
1404   // causing the WatcherThread to sleep until a task is
1405   // enrolled
1406   int remaining = PeriodicTask::time_to_wait();
1407   int time_slept = 0;
1408 
1409   // we expect this to timeout - we only ever get unparked when
1410   // we should terminate or when a new task has been enrolled
1411   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1412 
1413   jlong time_before_loop = os::javaTimeNanos();
1414 
1415   while (true) {
1416     bool timedout = ml.wait(remaining);
1417     jlong now = os::javaTimeNanos();
1418 
1419     if (remaining == 0) {
1420       // if we didn't have any tasks we could have waited for a long time
1421       // consider the time_slept zero and reset time_before_loop
1422       time_slept = 0;
1423       time_before_loop = now;
1424     } else {
1425       // need to recalculate since we might have new tasks in _tasks
1426       time_slept = (int) ((now - time_before_loop) / 1000000);
1427     }
1428 
1429     // Change to task list or spurious wakeup of some kind
1430     if (timedout || _should_terminate) {
1431       break;
1432     }
1433 
1434     remaining = PeriodicTask::time_to_wait();
1435     if (remaining == 0) {
1436       // Last task was just disenrolled so loop around and wait until
1437       // another task gets enrolled
1438       continue;
1439     }
1440 
1441     remaining -= time_slept;
1442     if (remaining <= 0) {
1443       break;
1444     }
1445   }
1446 
1447   return time_slept;
1448 }
1449 
1450 void WatcherThread::run() {
1451   assert(this == watcher_thread(), "just checking");
1452 
1453   this->set_active_handles(JNIHandleBlock::allocate_block());
1454   while (true) {
1455     assert(watcher_thread() == Thread::current(), "thread consistency check");
1456     assert(watcher_thread() == this, "thread consistency check");
1457 
1458     // Calculate how long it'll be until the next PeriodicTask work
1459     // should be done, and sleep that amount of time.
1460     int time_waited = sleep();
1461 
1462     if (VMError::is_error_reported()) {
1463       // A fatal error has happened, the error handler(VMError::report_and_die)
1464       // should abort JVM after creating an error log file. However in some
1465       // rare cases, the error handler itself might deadlock. Here periodically
1466       // check for error reporting timeouts, and if it happens, just proceed to
1467       // abort the VM.
1468 
1469       // This code is in WatcherThread because WatcherThread wakes up
1470       // periodically so the fatal error handler doesn't need to do anything;
1471       // also because the WatcherThread is less likely to crash than other
1472       // threads.
1473 
1474       for (;;) {
1475         // Note: we use naked sleep in this loop because we want to avoid using
1476         // any kind of VM infrastructure which may be broken at this point.
1477         if (VMError::check_timeout()) {
1478           // We hit error reporting timeout. Error reporting was interrupted and
1479           // will be wrapping things up now (closing files etc). Give it some more
1480           // time, then quit the VM.
1481           os::naked_short_sleep(200);
1482           // Print a message to stderr.
1483           fdStream err(defaultStream::output_fd());
1484           err.print_raw_cr("# [ timer expired, abort... ]");
1485           // skip atexit/vm_exit/vm_abort hooks
1486           os::die();
1487         }
1488 
1489         // Wait a second, then recheck for timeout.
1490         os::naked_short_sleep(999);
1491       }
1492     }
1493 
1494     if (_should_terminate) {
1495       // check for termination before posting the next tick
1496       break;
1497     }
1498 
1499     PeriodicTask::real_time_tick(time_waited);
1500   }
1501 
1502   // Signal that it is terminated
1503   {
1504     MutexLocker mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1505     _watcher_thread = NULL;
1506     Terminator_lock->notify_all();
1507   }
1508 }
1509 
1510 void WatcherThread::start() {
1511   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1512 
1513   if (watcher_thread() == NULL && _startable) {
1514     _should_terminate = false;
1515     // Create the single instance of WatcherThread
1516     new WatcherThread();
1517   }
1518 }
1519 
1520 void WatcherThread::make_startable() {
1521   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1522   _startable = true;
1523 }
1524 
1525 void WatcherThread::stop() {
1526   {
1527     // Follow normal safepoint aware lock enter protocol since the
1528     // WatcherThread is stopped by another JavaThread.
1529     MutexLocker ml(PeriodicTask_lock);
1530     _should_terminate = true;
1531 
1532     WatcherThread* watcher = watcher_thread();
1533     if (watcher != NULL) {
1534       // unpark the WatcherThread so it can see that it should terminate
1535       watcher->unpark();
1536     }
1537   }
1538 
1539   MonitorLocker mu(Terminator_lock);
1540 
1541   while (watcher_thread() != NULL) {
1542     // This wait should make safepoint checks, wait without a timeout,
1543     // and wait as a suspend-equivalent condition.
1544     mu.wait(0, Mutex::_as_suspend_equivalent_flag);
1545   }
1546 }
1547 
1548 void WatcherThread::unpark() {
1549   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1550   PeriodicTask_lock->notify();
1551 }
1552 
1553 void WatcherThread::print_on(outputStream* st) const {
1554   st->print("\"%s\" ", name());
1555   Thread::print_on(st);
1556   st->cr();
1557 }
1558 
1559 // ======= JavaThread ========
1560 
1561 #if INCLUDE_JVMCI
1562 
1563 jlong* JavaThread::_jvmci_old_thread_counters;
1564 
1565 bool jvmci_counters_include(JavaThread* thread) {
1566   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1567 }
1568 
1569 void JavaThread::collect_counters(jlong* array, int length) {
1570   assert(length == JVMCICounterSize, "wrong value");
1571   for (int i = 0; i < length; i++) {
1572     array[i] = _jvmci_old_thread_counters[i];
1573   }
1574   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1575     if (jvmci_counters_include(tp)) {
1576       for (int i = 0; i < length; i++) {
1577         array[i] += tp->_jvmci_counters[i];
1578       }
1579     }
1580   }
1581 }
1582 
1583 // Attempt to enlarge the array for per thread counters.
1584 jlong* resize_counters_array(jlong* old_counters, int current_size, int new_size) {
1585   jlong* new_counters = NEW_C_HEAP_ARRAY(jlong, new_size, mtJVMCI);
1586   if (old_counters == NULL) {
1587     old_counters = new_counters;
1588     memset(old_counters, 0, sizeof(jlong) * new_size);
1589   } else {
1590     for (int i = 0; i < MIN2((int) current_size, new_size); i++) {
1591       new_counters[i] = old_counters[i];
1592     }
1593     if (new_size > current_size) {
1594       memset(new_counters + current_size, 0, sizeof(jlong) * (new_size - current_size));
1595     }
1596     FREE_C_HEAP_ARRAY(jlong, old_counters);
1597   }
1598   return new_counters;
1599 }
1600 
1601 // Attempt to enlarge the array for per thread counters.
1602 void JavaThread::resize_counters(int current_size, int new_size) {
1603   _jvmci_counters = resize_counters_array(_jvmci_counters, current_size, new_size);
1604 }
1605 
1606 class VM_JVMCIResizeCounters : public VM_Operation {
1607  private:
1608   int _new_size;
1609 
1610  public:
1611   VM_JVMCIResizeCounters(int new_size) : _new_size(new_size) { }
1612   VMOp_Type type()                  const        { return VMOp_JVMCIResizeCounters; }
1613   bool allow_nested_vm_operations() const        { return true; }
1614   void doit() {
1615     // Resize the old thread counters array
1616     jlong* new_counters = resize_counters_array(JavaThread::_jvmci_old_thread_counters, JVMCICounterSize, _new_size);
1617     JavaThread::_jvmci_old_thread_counters = new_counters;
1618 
1619     // Now resize each threads array
1620     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1621       tp->resize_counters(JVMCICounterSize, _new_size);
1622     }
1623     JVMCICounterSize = _new_size;
1624   }
1625 };
1626 
1627 void JavaThread::resize_all_jvmci_counters(int new_size) {
1628   VM_JVMCIResizeCounters op(new_size);
1629   VMThread::execute(&op);
1630 }
1631 
1632 #endif // INCLUDE_JVMCI
1633 
1634 // A JavaThread is a normal Java thread
1635 
1636 void JavaThread::initialize() {
1637   // Initialize fields
1638 
1639   set_saved_exception_pc(NULL);
1640   set_threadObj(NULL);
1641   _anchor.clear();
1642   set_entry_point(NULL);
1643   set_jni_functions(jni_functions());
1644   set_callee_target(NULL);
1645   set_vm_result(NULL);
1646   set_vm_result_2(NULL);
1647   set_vframe_array_head(NULL);
1648   set_vframe_array_last(NULL);
1649   set_deferred_locals(NULL);
1650   set_deopt_mark(NULL);
1651   set_deopt_compiled_method(NULL);
1652   set_monitor_chunks(NULL);
1653   _on_thread_list = false;
1654   _thread_state = _thread_new;
1655   _terminated = _not_terminated;
1656   _array_for_gc = NULL;
1657   _suspend_equivalent = false;
1658   _in_deopt_handler = 0;
1659   _doing_unsafe_access = false;
1660   _stack_guard_state = stack_guard_unused;
1661 #if INCLUDE_JVMCI
1662   _pending_monitorenter = false;
1663   _pending_deoptimization = -1;
1664   _pending_failed_speculation = 0;
1665   _pending_transfer_to_interpreter = false;
1666   _in_retryable_allocation = false;
1667   _jvmci._alternate_call_target = NULL;
1668   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1669   _jvmci_counters = NULL;
1670   if (JVMCICounterSize > 0) {
1671     resize_counters(0, (int) JVMCICounterSize);
1672   }
1673 #endif // INCLUDE_JVMCI
1674   _reserved_stack_activation = NULL;  // stack base not known yet
1675   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1676   _exception_pc  = 0;
1677   _exception_handler_pc = 0;
1678   _is_method_handle_return = 0;
1679   _jvmti_thread_state= NULL;
1680   _should_post_on_exceptions_flag = JNI_FALSE;
1681   _interp_only_mode    = 0;
1682   _special_runtime_exit_condition = _no_async_condition;
1683   _pending_async_exception = NULL;
1684   _thread_stat = NULL;
1685   _thread_stat = new ThreadStatistics();
1686   _jni_active_critical = 0;
1687   _pending_jni_exception_check_fn = NULL;
1688   _do_not_unlock_if_synchronized = false;
1689   _cached_monitor_info = NULL;
1690   _parker = Parker::Allocate(this);
1691   _SleepEvent = ParkEvent::Allocate(this);
1692   // Setup safepoint state info for this thread
1693   ThreadSafepointState::create(this);
1694 
1695   debug_only(_java_call_counter = 0);
1696 
1697   // JVMTI PopFrame support
1698   _popframe_condition = popframe_inactive;
1699   _popframe_preserved_args = NULL;
1700   _popframe_preserved_args_size = 0;
1701   _frames_to_pop_failed_realloc = 0;
1702 
1703   SafepointMechanism::initialize_header(this);
1704 
1705   _class_to_be_initialized = NULL;
1706 
1707   pd_initialize();
1708 }
1709 
1710 JavaThread::JavaThread(bool is_attaching_via_jni) :
1711                        Thread() {
1712   initialize();
1713   if (is_attaching_via_jni) {
1714     _jni_attach_state = _attaching_via_jni;
1715   } else {
1716     _jni_attach_state = _not_attaching_via_jni;
1717   }
1718   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1719 }
1720 
1721 
1722 // interrupt support
1723 
1724 void JavaThread::interrupt() {
1725   debug_only(check_for_dangling_thread_pointer(this);)
1726 
1727   // For Windows _interrupt_event
1728   osthread()->set_interrupted(true);
1729 
1730   // For Thread.sleep
1731   _SleepEvent->unpark();
1732 
1733   // For JSR166 LockSupport.park
1734   parker()->unpark();
1735 
1736   // For ObjectMonitor and JvmtiRawMonitor
1737   _ParkEvent->unpark();
1738 }
1739 
1740 
1741 bool JavaThread::is_interrupted(bool clear_interrupted) {
1742   debug_only(check_for_dangling_thread_pointer(this);)
1743 
1744   if (threadObj() == NULL) {
1745     // If there is no j.l.Thread then it is impossible to have
1746     // been interrupted. We can find NULL during VM initialization
1747     // or when a JNI thread is still in the process of attaching.
1748     // In such cases this must be the current thread.
1749     assert(this == Thread::current(), "invariant");
1750     return false;
1751   }
1752 
1753   bool interrupted = java_lang_Thread::interrupted(threadObj());
1754 
1755   // NOTE that since there is no "lock" around the interrupt and
1756   // is_interrupted operations, there is the possibility that the
1757   // interrupted flag will be "false" but that the
1758   // low-level events will be in the signaled state. This is
1759   // intentional. The effect of this is that Object.wait() and
1760   // LockSupport.park() will appear to have a spurious wakeup, which
1761   // is allowed and not harmful, and the possibility is so rare that
1762   // it is not worth the added complexity to add yet another lock.
1763   // For the sleep event an explicit reset is performed on entry
1764   // to JavaThread::sleep, so there is no early return. It has also been
1765   // recommended not to put the interrupted flag into the "event"
1766   // structure because it hides the issue.
1767   // Also, because there is no lock, we must only clear the interrupt
1768   // state if we are going to report that we were interrupted; otherwise
1769   // an interrupt that happens just after we read the field would be lost.
1770   if (interrupted && clear_interrupted) {
1771     assert(this == Thread::current(), "only the current thread can clear");
1772     java_lang_Thread::set_interrupted(threadObj(), false);
1773     osthread()->set_interrupted(false);
1774   }
1775 
1776   return interrupted;
1777 }
1778 
1779 bool JavaThread::reguard_stack(address cur_sp) {
1780   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1781       && _stack_guard_state != stack_guard_reserved_disabled) {
1782     return true; // Stack already guarded or guard pages not needed.
1783   }
1784 
1785   if (register_stack_overflow()) {
1786     // For those architectures which have separate register and
1787     // memory stacks, we must check the register stack to see if
1788     // it has overflowed.
1789     return false;
1790   }
1791 
1792   // Java code never executes within the yellow zone: the latter is only
1793   // there to provoke an exception during stack banging.  If java code
1794   // is executing there, either StackShadowPages should be larger, or
1795   // some exception code in c1, c2 or the interpreter isn't unwinding
1796   // when it should.
1797   guarantee(cur_sp > stack_reserved_zone_base(),
1798             "not enough space to reguard - increase StackShadowPages");
1799   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1800     enable_stack_yellow_reserved_zone();
1801     if (reserved_stack_activation() != stack_base()) {
1802       set_reserved_stack_activation(stack_base());
1803     }
1804   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1805     set_reserved_stack_activation(stack_base());
1806     enable_stack_reserved_zone();
1807   }
1808   return true;
1809 }
1810 
1811 bool JavaThread::reguard_stack(void) {
1812   return reguard_stack(os::current_stack_pointer());
1813 }
1814 
1815 void JavaThread::block_if_vm_exited() {
1816   if (_terminated == _vm_exited) {
1817     // _vm_exited is set at safepoint, and Threads_lock is never released
1818     // we will block here forever.
1819     // Here we can be doing a jump from a safe state to an unsafe state without
1820     // proper transition, but it happens after the final safepoint has begun.
1821     set_thread_state(_thread_in_vm);
1822     Threads_lock->lock();
1823     ShouldNotReachHere();
1824   }
1825 }
1826 
1827 
1828 // Remove this ifdef when C1 is ported to the compiler interface.
1829 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1830 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1831 
1832 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1833                        Thread() {
1834   initialize();
1835   _jni_attach_state = _not_attaching_via_jni;
1836   set_entry_point(entry_point);
1837   // Create the native thread itself.
1838   // %note runtime_23
1839   os::ThreadType thr_type = os::java_thread;
1840   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1841                                                      os::java_thread;
1842   os::create_thread(this, thr_type, stack_sz);
1843   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1844   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1845   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1846   // the exception consists of creating the exception object & initializing it, initialization
1847   // will leave the VM via a JavaCall and then all locks must be unlocked).
1848   //
1849   // The thread is still suspended when we reach here. Thread must be explicit started
1850   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1851   // by calling Threads:add. The reason why this is not done here, is because the thread
1852   // object must be fully initialized (take a look at JVM_Start)
1853 }
1854 
1855 JavaThread::~JavaThread() {
1856 
1857   // JSR166 -- return the parker to the free list
1858   Parker::Release(_parker);
1859   _parker = NULL;
1860 
1861   // Return the sleep event to the free list
1862   ParkEvent::Release(_SleepEvent);
1863   _SleepEvent = NULL;
1864 
1865   // Free any remaining  previous UnrollBlock
1866   vframeArray* old_array = vframe_array_last();
1867 
1868   if (old_array != NULL) {
1869     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1870     old_array->set_unroll_block(NULL);
1871     delete old_info;
1872     delete old_array;
1873   }
1874 
1875   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1876   if (deferred != NULL) {
1877     // This can only happen if thread is destroyed before deoptimization occurs.
1878     assert(deferred->length() != 0, "empty array!");
1879     do {
1880       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1881       deferred->remove_at(0);
1882       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1883       delete dlv;
1884     } while (deferred->length() != 0);
1885     delete deferred;
1886   }
1887 
1888   // All Java related clean up happens in exit
1889   ThreadSafepointState::destroy(this);
1890   if (_thread_stat != NULL) delete _thread_stat;
1891 
1892 #if INCLUDE_JVMCI
1893   if (JVMCICounterSize > 0) {
1894     if (jvmci_counters_include(this)) {
1895       for (int i = 0; i < JVMCICounterSize; i++) {
1896         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1897       }
1898     }
1899     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1900   }
1901 #endif // INCLUDE_JVMCI
1902 }
1903 
1904 
1905 // First JavaThread specific code executed by a new Java thread.
1906 void JavaThread::pre_run() {
1907   // empty - see comments in run()
1908 }
1909 
1910 // The main routine called by a new Java thread. This isn't overridden
1911 // by subclasses, instead different subclasses define a different "entry_point"
1912 // which defines the actual logic for that kind of thread.
1913 void JavaThread::run() {
1914   // initialize thread-local alloc buffer related fields
1915   this->initialize_tlab();
1916 
1917   // Used to test validity of stack trace backs.
1918   // This can't be moved into pre_run() else we invalidate
1919   // the requirement that thread_main_inner is lower on
1920   // the stack. Consequently all the initialization logic
1921   // stays here in run() rather than pre_run().
1922   this->record_base_of_stack_pointer();
1923 
1924   this->create_stack_guard_pages();
1925 
1926   this->cache_global_variables();
1927 
1928   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1929   // in the VM. Change thread state from _thread_new to _thread_in_vm
1930   ThreadStateTransition::transition(this, _thread_new, _thread_in_vm);
1931   // Before a thread is on the threads list it is always safe, so after leaving the
1932   // _thread_new we should emit a instruction barrier. The distance to modified code
1933   // from here is probably far enough, but this is consistent and safe.
1934   OrderAccess::cross_modify_fence();
1935 
1936   assert(JavaThread::current() == this, "sanity check");
1937   assert(!Thread::current()->owns_locks(), "sanity check");
1938 
1939   DTRACE_THREAD_PROBE(start, this);
1940 
1941   // This operation might block. We call that after all safepoint checks for a new thread has
1942   // been completed.
1943   this->set_active_handles(JNIHandleBlock::allocate_block());
1944 
1945   if (JvmtiExport::should_post_thread_life()) {
1946     JvmtiExport::post_thread_start(this);
1947 
1948   }
1949 
1950   // We call another function to do the rest so we are sure that the stack addresses used
1951   // from there will be lower than the stack base just computed.
1952   thread_main_inner();
1953 }
1954 
1955 void JavaThread::thread_main_inner() {
1956   assert(JavaThread::current() == this, "sanity check");
1957   assert(this->threadObj() != NULL, "just checking");
1958 
1959   // Execute thread entry point unless this thread has a pending exception
1960   // or has been stopped before starting.
1961   // Note: Due to JVM_StopThread we can have pending exceptions already!
1962   if (!this->has_pending_exception() &&
1963       !java_lang_Thread::is_stillborn(this->threadObj())) {
1964     {
1965       ResourceMark rm(this);
1966       this->set_native_thread_name(this->get_thread_name());
1967     }
1968     HandleMark hm(this);
1969     this->entry_point()(this, this);
1970   }
1971 
1972   DTRACE_THREAD_PROBE(stop, this);
1973 
1974   // Cleanup is handled in post_run()
1975 }
1976 
1977 // Shared teardown for all JavaThreads
1978 void JavaThread::post_run() {
1979   this->exit(false);
1980   // Defer deletion to here to ensure 'this' is still referenceable in call_run
1981   // for any shared tear-down.
1982   this->smr_delete();
1983 }
1984 
1985 static void ensure_join(JavaThread* thread) {
1986   // We do not need to grab the Threads_lock, since we are operating on ourself.
1987   Handle threadObj(thread, thread->threadObj());
1988   assert(threadObj.not_null(), "java thread object must exist");
1989   ObjectLocker lock(threadObj, thread);
1990   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1991   thread->clear_pending_exception();
1992   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1993   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1994   // Clear the native thread instance - this makes isAlive return false and allows the join()
1995   // to complete once we've done the notify_all below
1996   java_lang_Thread::set_thread(threadObj(), NULL);
1997   lock.notify_all(thread);
1998   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1999   thread->clear_pending_exception();
2000 }
2001 
2002 static bool is_daemon(oop threadObj) {
2003   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
2004 }
2005 
2006 // For any new cleanup additions, please check to see if they need to be applied to
2007 // cleanup_failed_attach_current_thread as well.
2008 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
2009   assert(this == JavaThread::current(), "thread consistency check");
2010 
2011   elapsedTimer _timer_exit_phase1;
2012   elapsedTimer _timer_exit_phase2;
2013   elapsedTimer _timer_exit_phase3;
2014   elapsedTimer _timer_exit_phase4;
2015 
2016   if (log_is_enabled(Debug, os, thread, timer)) {
2017     _timer_exit_phase1.start();
2018   }
2019 
2020   HandleMark hm(this);
2021   Handle uncaught_exception(this, this->pending_exception());
2022   this->clear_pending_exception();
2023   Handle threadObj(this, this->threadObj());
2024   assert(threadObj.not_null(), "Java thread object should be created");
2025 
2026   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
2027   {
2028     EXCEPTION_MARK;
2029 
2030     CLEAR_PENDING_EXCEPTION;
2031   }
2032   if (!destroy_vm) {
2033     if (uncaught_exception.not_null()) {
2034       EXCEPTION_MARK;
2035       // Call method Thread.dispatchUncaughtException().
2036       Klass* thread_klass = SystemDictionary::Thread_klass();
2037       JavaValue result(T_VOID);
2038       JavaCalls::call_virtual(&result,
2039                               threadObj, thread_klass,
2040                               vmSymbols::dispatchUncaughtException_name(),
2041                               vmSymbols::throwable_void_signature(),
2042                               uncaught_exception,
2043                               THREAD);
2044       if (HAS_PENDING_EXCEPTION) {
2045         ResourceMark rm(this);
2046         jio_fprintf(defaultStream::error_stream(),
2047                     "\nException: %s thrown from the UncaughtExceptionHandler"
2048                     " in thread \"%s\"\n",
2049                     pending_exception()->klass()->external_name(),
2050                     get_thread_name());
2051         CLEAR_PENDING_EXCEPTION;
2052       }
2053     }
2054     JFR_ONLY(Jfr::on_java_thread_dismantle(this);)
2055 
2056     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
2057     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
2058     // is deprecated anyhow.
2059     if (!is_Compiler_thread()) {
2060       int count = 3;
2061       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
2062         EXCEPTION_MARK;
2063         JavaValue result(T_VOID);
2064         Klass* thread_klass = SystemDictionary::Thread_klass();
2065         JavaCalls::call_virtual(&result,
2066                                 threadObj, thread_klass,
2067                                 vmSymbols::exit_method_name(),
2068                                 vmSymbols::void_method_signature(),
2069                                 THREAD);
2070         CLEAR_PENDING_EXCEPTION;
2071       }
2072     }
2073     // notify JVMTI
2074     if (JvmtiExport::should_post_thread_life()) {
2075       JvmtiExport::post_thread_end(this);
2076     }
2077 
2078     // We have notified the agents that we are exiting, before we go on,
2079     // we must check for a pending external suspend request and honor it
2080     // in order to not surprise the thread that made the suspend request.
2081     while (true) {
2082       {
2083         MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2084         if (!is_external_suspend()) {
2085           set_terminated(_thread_exiting);
2086           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
2087           break;
2088         }
2089         // Implied else:
2090         // Things get a little tricky here. We have a pending external
2091         // suspend request, but we are holding the SR_lock so we
2092         // can't just self-suspend. So we temporarily drop the lock
2093         // and then self-suspend.
2094       }
2095 
2096       ThreadBlockInVM tbivm(this);
2097       java_suspend_self();
2098 
2099       // We're done with this suspend request, but we have to loop around
2100       // and check again. Eventually we will get SR_lock without a pending
2101       // external suspend request and will be able to mark ourselves as
2102       // exiting.
2103     }
2104     // no more external suspends are allowed at this point
2105   } else {
2106     assert(!is_terminated() && !is_exiting(), "must not be exiting");
2107     // before_exit() has already posted JVMTI THREAD_END events
2108   }
2109 
2110   if (log_is_enabled(Debug, os, thread, timer)) {
2111     _timer_exit_phase1.stop();
2112     _timer_exit_phase2.start();
2113   }
2114 
2115   // Capture daemon status before the thread is marked as terminated.
2116   bool daemon = is_daemon(threadObj());
2117 
2118   // Notify waiters on thread object. This has to be done after exit() is called
2119   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
2120   // group should have the destroyed bit set before waiters are notified).
2121   ensure_join(this);
2122   assert(!this->has_pending_exception(), "ensure_join should have cleared");
2123 
2124   if (log_is_enabled(Debug, os, thread, timer)) {
2125     _timer_exit_phase2.stop();
2126     _timer_exit_phase3.start();
2127   }
2128   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
2129   // held by this thread must be released. The spec does not distinguish
2130   // between JNI-acquired and regular Java monitors. We can only see
2131   // regular Java monitors here if monitor enter-exit matching is broken.
2132   //
2133   // ensure_join() ignores IllegalThreadStateExceptions, and so does
2134   // ObjectSynchronizer::release_monitors_owned_by_thread().
2135   if (exit_type == jni_detach) {
2136     // Sanity check even though JNI DetachCurrentThread() would have
2137     // returned JNI_ERR if there was a Java frame. JavaThread exit
2138     // should be done executing Java code by the time we get here.
2139     assert(!this->has_last_Java_frame(),
2140            "should not have a Java frame when detaching or exiting");
2141     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2142     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2143   }
2144 
2145   // These things needs to be done while we are still a Java Thread. Make sure that thread
2146   // is in a consistent state, in case GC happens
2147   JFR_ONLY(Jfr::on_thread_exit(this);)
2148 
2149   if (active_handles() != NULL) {
2150     JNIHandleBlock* block = active_handles();
2151     set_active_handles(NULL);
2152     JNIHandleBlock::release_block(block);
2153   }
2154 
2155   if (free_handle_block() != NULL) {
2156     JNIHandleBlock* block = free_handle_block();
2157     set_free_handle_block(NULL);
2158     JNIHandleBlock::release_block(block);
2159   }
2160 
2161   // These have to be removed while this is still a valid thread.
2162   remove_stack_guard_pages();
2163 
2164   if (UseTLAB) {
2165     tlab().retire();
2166   }
2167 
2168   if (JvmtiEnv::environments_might_exist()) {
2169     JvmtiExport::cleanup_thread(this);
2170   }
2171 
2172   // We must flush any deferred card marks and other various GC barrier
2173   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2174   // before removing a thread from the list of active threads.
2175   BarrierSet::barrier_set()->on_thread_detach(this);
2176 
2177   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2178     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2179     os::current_thread_id());
2180 
2181   if (log_is_enabled(Debug, os, thread, timer)) {
2182     _timer_exit_phase3.stop();
2183     _timer_exit_phase4.start();
2184   }
2185   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2186   Threads::remove(this, daemon);
2187 
2188   if (log_is_enabled(Debug, os, thread, timer)) {
2189     _timer_exit_phase4.stop();
2190     ResourceMark rm(this);
2191     log_debug(os, thread, timer)("name='%s'"
2192                                  ", exit-phase1=" JLONG_FORMAT
2193                                  ", exit-phase2=" JLONG_FORMAT
2194                                  ", exit-phase3=" JLONG_FORMAT
2195                                  ", exit-phase4=" JLONG_FORMAT,
2196                                  get_thread_name(),
2197                                  _timer_exit_phase1.milliseconds(),
2198                                  _timer_exit_phase2.milliseconds(),
2199                                  _timer_exit_phase3.milliseconds(),
2200                                  _timer_exit_phase4.milliseconds());
2201   }
2202 }
2203 
2204 void JavaThread::cleanup_failed_attach_current_thread(bool is_daemon) {
2205   if (active_handles() != NULL) {
2206     JNIHandleBlock* block = active_handles();
2207     set_active_handles(NULL);
2208     JNIHandleBlock::release_block(block);
2209   }
2210 
2211   if (free_handle_block() != NULL) {
2212     JNIHandleBlock* block = free_handle_block();
2213     set_free_handle_block(NULL);
2214     JNIHandleBlock::release_block(block);
2215   }
2216 
2217   // These have to be removed while this is still a valid thread.
2218   remove_stack_guard_pages();
2219 
2220   if (UseTLAB) {
2221     tlab().retire();
2222   }
2223 
2224   BarrierSet::barrier_set()->on_thread_detach(this);
2225 
2226   Threads::remove(this, is_daemon);
2227   this->smr_delete();
2228 }
2229 
2230 JavaThread* JavaThread::active() {
2231   Thread* thread = Thread::current();
2232   if (thread->is_Java_thread()) {
2233     return (JavaThread*) thread;
2234   } else {
2235     assert(thread->is_VM_thread(), "this must be a vm thread");
2236     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2237     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2238     assert(ret->is_Java_thread(), "must be a Java thread");
2239     return ret;
2240   }
2241 }
2242 
2243 bool JavaThread::is_lock_owned(address adr) const {
2244   if (Thread::is_lock_owned(adr)) return true;
2245 
2246   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2247     if (chunk->contains(adr)) return true;
2248   }
2249 
2250   return false;
2251 }
2252 
2253 
2254 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2255   chunk->set_next(monitor_chunks());
2256   set_monitor_chunks(chunk);
2257 }
2258 
2259 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2260   guarantee(monitor_chunks() != NULL, "must be non empty");
2261   if (monitor_chunks() == chunk) {
2262     set_monitor_chunks(chunk->next());
2263   } else {
2264     MonitorChunk* prev = monitor_chunks();
2265     while (prev->next() != chunk) prev = prev->next();
2266     prev->set_next(chunk->next());
2267   }
2268 }
2269 
2270 // JVM support.
2271 
2272 // Note: this function shouldn't block if it's called in
2273 // _thread_in_native_trans state (such as from
2274 // check_special_condition_for_native_trans()).
2275 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2276 
2277   if (has_last_Java_frame() && has_async_condition()) {
2278     // If we are at a polling page safepoint (not a poll return)
2279     // then we must defer async exception because live registers
2280     // will be clobbered by the exception path. Poll return is
2281     // ok because the call we a returning from already collides
2282     // with exception handling registers and so there is no issue.
2283     // (The exception handling path kills call result registers but
2284     //  this is ok since the exception kills the result anyway).
2285 
2286     if (is_at_poll_safepoint()) {
2287       // if the code we are returning to has deoptimized we must defer
2288       // the exception otherwise live registers get clobbered on the
2289       // exception path before deoptimization is able to retrieve them.
2290       //
2291       RegisterMap map(this, false);
2292       frame caller_fr = last_frame().sender(&map);
2293       assert(caller_fr.is_compiled_frame(), "what?");
2294       if (caller_fr.is_deoptimized_frame()) {
2295         log_info(exceptions)("deferred async exception at compiled safepoint");
2296         return;
2297       }
2298     }
2299   }
2300 
2301   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2302   if (condition == _no_async_condition) {
2303     // Conditions have changed since has_special_runtime_exit_condition()
2304     // was called:
2305     // - if we were here only because of an external suspend request,
2306     //   then that was taken care of above (or cancelled) so we are done
2307     // - if we were here because of another async request, then it has
2308     //   been cleared between the has_special_runtime_exit_condition()
2309     //   and now so again we are done
2310     return;
2311   }
2312 
2313   // Check for pending async. exception
2314   if (_pending_async_exception != NULL) {
2315     // Only overwrite an already pending exception, if it is not a threadDeath.
2316     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2317 
2318       // We cannot call Exceptions::_throw(...) here because we cannot block
2319       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2320 
2321       LogTarget(Info, exceptions) lt;
2322       if (lt.is_enabled()) {
2323         ResourceMark rm;
2324         LogStream ls(lt);
2325         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2326           if (has_last_Java_frame()) {
2327             frame f = last_frame();
2328            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2329           }
2330         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2331       }
2332       _pending_async_exception = NULL;
2333       clear_has_async_exception();
2334     }
2335   }
2336 
2337   if (check_unsafe_error &&
2338       condition == _async_unsafe_access_error && !has_pending_exception()) {
2339     condition = _no_async_condition;  // done
2340     switch (thread_state()) {
2341     case _thread_in_vm: {
2342       JavaThread* THREAD = this;
2343       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2344     }
2345     case _thread_in_native: {
2346       ThreadInVMfromNative tiv(this);
2347       JavaThread* THREAD = this;
2348       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2349     }
2350     case _thread_in_Java: {
2351       ThreadInVMfromJava tiv(this);
2352       JavaThread* THREAD = this;
2353       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2354     }
2355     default:
2356       ShouldNotReachHere();
2357     }
2358   }
2359 
2360   assert(condition == _no_async_condition || has_pending_exception() ||
2361          (!check_unsafe_error && condition == _async_unsafe_access_error),
2362          "must have handled the async condition, if no exception");
2363 }
2364 
2365 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2366 
2367   // Check for pending external suspend.
2368   if (is_external_suspend_with_lock()) {
2369     frame_anchor()->make_walkable(this);
2370     java_suspend_self_with_safepoint_check();
2371   }
2372 
2373   // We might be here for reasons in addition to the self-suspend request
2374   // so check for other async requests.
2375   if (check_asyncs) {
2376     check_and_handle_async_exceptions();
2377   }
2378 
2379   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2380 }
2381 
2382 void JavaThread::send_thread_stop(oop java_throwable)  {
2383   ResourceMark rm;
2384   assert(Thread::current()->is_VM_thread() || Thread::current() == this, "should be in the vm thread");
2385 
2386   // Do not throw asynchronous exceptions against the compiler thread
2387   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2388   if (!can_call_java()) return;
2389 
2390   {
2391     // Actually throw the Throwable against the target Thread - however
2392     // only if there is no thread death exception installed already.
2393     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2394       // If the topmost frame is a runtime stub, then we are calling into
2395       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2396       // must deoptimize the caller before continuing, as the compiled  exception handler table
2397       // may not be valid
2398       if (has_last_Java_frame()) {
2399         frame f = last_frame();
2400         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2401           RegisterMap reg_map(this, false);
2402           frame compiled_frame = f.sender(&reg_map);
2403           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2404             Deoptimization::deoptimize(this, compiled_frame);
2405           }
2406         }
2407       }
2408 
2409       // Set async. pending exception in thread.
2410       set_pending_async_exception(java_throwable);
2411 
2412       if (log_is_enabled(Info, exceptions)) {
2413          ResourceMark rm;
2414         log_info(exceptions)("Pending Async. exception installed of type: %s",
2415                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2416       }
2417       // for AbortVMOnException flag
2418       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2419     }
2420   }
2421 
2422 
2423   // Interrupt thread so it will wake up from a potential wait()/sleep()/park()
2424   java_lang_Thread::set_interrupted(threadObj(), true);
2425   this->interrupt();
2426 }
2427 
2428 // External suspension mechanism.
2429 //
2430 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2431 // to any VM_locks and it is at a transition
2432 // Self-suspension will happen on the transition out of the vm.
2433 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2434 //
2435 // Guarantees on return:
2436 //   + Target thread will not execute any new bytecode (that's why we need to
2437 //     force a safepoint)
2438 //   + Target thread will not enter any new monitors
2439 //
2440 void JavaThread::java_suspend() {
2441   ThreadsListHandle tlh;
2442   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2443     return;
2444   }
2445 
2446   { MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2447     if (!is_external_suspend()) {
2448       // a racing resume has cancelled us; bail out now
2449       return;
2450     }
2451 
2452     // suspend is done
2453     uint32_t debug_bits = 0;
2454     // Warning: is_ext_suspend_completed() may temporarily drop the
2455     // SR_lock to allow the thread to reach a stable thread state if
2456     // it is currently in a transient thread state.
2457     if (is_ext_suspend_completed(false /* !called_by_wait */,
2458                                  SuspendRetryDelay, &debug_bits)) {
2459       return;
2460     }
2461   }
2462 
2463   if (Thread::current() == this) {
2464     // Safely self-suspend.
2465     // If we don't do this explicitly it will implicitly happen
2466     // before we transition back to Java, and on some other thread-state
2467     // transition paths, but not as we exit a JVM TI SuspendThread call.
2468     // As SuspendThread(current) must not return (until resumed) we must
2469     // self-suspend here.
2470     ThreadBlockInVM tbivm(this);
2471     java_suspend_self();
2472   } else {
2473     VM_ThreadSuspend vm_suspend;
2474     VMThread::execute(&vm_suspend);
2475   }
2476 }
2477 
2478 // Part II of external suspension.
2479 // A JavaThread self suspends when it detects a pending external suspend
2480 // request. This is usually on transitions. It is also done in places
2481 // where continuing to the next transition would surprise the caller,
2482 // e.g., monitor entry.
2483 //
2484 // Returns the number of times that the thread self-suspended.
2485 //
2486 // Note: DO NOT call java_suspend_self() when you just want to block current
2487 //       thread. java_suspend_self() is the second stage of cooperative
2488 //       suspension for external suspend requests and should only be used
2489 //       to complete an external suspend request.
2490 //
2491 int JavaThread::java_suspend_self() {
2492   assert(thread_state() == _thread_blocked, "wrong state for java_suspend_self()");
2493   int ret = 0;
2494 
2495   // we are in the process of exiting so don't suspend
2496   if (is_exiting()) {
2497     clear_external_suspend();
2498     return ret;
2499   }
2500 
2501   assert(_anchor.walkable() ||
2502          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2503          "must have walkable stack");
2504 
2505   MonitorLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2506 
2507   assert(!this->is_ext_suspended(),
2508          "a thread trying to self-suspend should not already be suspended");
2509 
2510   if (this->is_suspend_equivalent()) {
2511     // If we are self-suspending as a result of the lifting of a
2512     // suspend equivalent condition, then the suspend_equivalent
2513     // flag is not cleared until we set the ext_suspended flag so
2514     // that wait_for_ext_suspend_completion() returns consistent
2515     // results.
2516     this->clear_suspend_equivalent();
2517   }
2518 
2519   // A racing resume may have cancelled us before we grabbed SR_lock
2520   // above. Or another external suspend request could be waiting for us
2521   // by the time we return from SR_lock()->wait(). The thread
2522   // that requested the suspension may already be trying to walk our
2523   // stack and if we return now, we can change the stack out from under
2524   // it. This would be a "bad thing (TM)" and cause the stack walker
2525   // to crash. We stay self-suspended until there are no more pending
2526   // external suspend requests.
2527   while (is_external_suspend()) {
2528     ret++;
2529     this->set_ext_suspended();
2530 
2531     // _ext_suspended flag is cleared by java_resume()
2532     while (is_ext_suspended()) {
2533       ml.wait();
2534     }
2535   }
2536   return ret;
2537 }
2538 
2539 // Helper routine to set up the correct thread state before calling java_suspend_self.
2540 // This is called when regular thread-state transition helpers can't be used because
2541 // we can be in various states, in particular _thread_in_native_trans.
2542 // Because this thread is external suspended the safepoint code will count it as at
2543 // a safepoint, regardless of what its actual current thread-state is. But
2544 // is_ext_suspend_completed() may be waiting to see a thread transition from
2545 // _thread_in_native_trans to _thread_blocked. So we set the thread state directly
2546 // to _thread_blocked. The problem with setting thread state directly is that a
2547 // safepoint could happen just after java_suspend_self() returns after being resumed,
2548 // and the VM thread will see the _thread_blocked state. So we must check for a safepoint
2549 // after restoring the state to make sure we won't leave while a safepoint is in progress.
2550 // However, not all initial-states are allowed when performing a safepoint check, as we
2551 // should never be blocking at a safepoint whilst in those states. Of these 'bad' states
2552 // only _thread_in_native is possible when executing this code (based on our two callers).
2553 // A thread that is _thread_in_native is already safepoint-safe and so it doesn't matter
2554 // whether the VMThread sees the _thread_blocked state, or the _thread_in_native state,
2555 // and so we don't need the explicit safepoint check.
2556 
2557 void JavaThread::java_suspend_self_with_safepoint_check() {
2558   assert(this == Thread::current(), "invariant");
2559   JavaThreadState state = thread_state();
2560   set_thread_state(_thread_blocked);
2561   java_suspend_self();
2562   set_thread_state_fence(state);
2563   // Since we are not using a regular thread-state transition helper here,
2564   // we must manually emit the instruction barrier after leaving a safe state.
2565   OrderAccess::cross_modify_fence();
2566   if (state != _thread_in_native) {
2567     SafepointMechanism::block_if_requested(this);
2568   }
2569 }
2570 
2571 #ifdef ASSERT
2572 // Verify the JavaThread has not yet been published in the Threads::list, and
2573 // hence doesn't need protection from concurrent access at this stage.
2574 void JavaThread::verify_not_published() {
2575   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2576   // since an unpublished JavaThread doesn't participate in the
2577   // Thread-SMR protocol for keeping a ThreadsList alive.
2578   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2579 }
2580 #endif
2581 
2582 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2583 // progress or when _suspend_flags is non-zero.
2584 // Current thread needs to self-suspend if there is a suspend request and/or
2585 // block if a safepoint is in progress.
2586 // Async exception ISN'T checked.
2587 // Note only the ThreadInVMfromNative transition can call this function
2588 // directly and when thread state is _thread_in_native_trans
2589 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2590   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2591 
2592   assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2593 
2594   if (thread->is_external_suspend()) {
2595     thread->java_suspend_self_with_safepoint_check();
2596   } else {
2597     SafepointMechanism::block_if_requested(thread);
2598   }
2599 
2600   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2601 }
2602 
2603 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2604 // progress or when _suspend_flags is non-zero.
2605 // Current thread needs to self-suspend if there is a suspend request and/or
2606 // block if a safepoint is in progress.
2607 // Also check for pending async exception (not including unsafe access error).
2608 // Note only the native==>VM/Java barriers can call this function and when
2609 // thread state is _thread_in_native_trans.
2610 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2611   check_safepoint_and_suspend_for_native_trans(thread);
2612 
2613   if (thread->has_async_exception()) {
2614     // We are in _thread_in_native_trans state, don't handle unsafe
2615     // access error since that may block.
2616     thread->check_and_handle_async_exceptions(false);
2617   }
2618 }
2619 
2620 // This is a variant of the normal
2621 // check_special_condition_for_native_trans with slightly different
2622 // semantics for use by critical native wrappers.  It does all the
2623 // normal checks but also performs the transition back into
2624 // thread_in_Java state.  This is required so that critical natives
2625 // can potentially block and perform a GC if they are the last thread
2626 // exiting the GCLocker.
2627 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2628   check_special_condition_for_native_trans(thread);
2629 
2630   // Finish the transition
2631   thread->set_thread_state(_thread_in_Java);
2632 
2633   if (thread->do_critical_native_unlock()) {
2634     ThreadInVMfromJavaNoAsyncException tiv(thread);
2635     GCLocker::unlock_critical(thread);
2636     thread->clear_critical_native_unlock();
2637   }
2638 }
2639 
2640 // We need to guarantee the Threads_lock here, since resumes are not
2641 // allowed during safepoint synchronization
2642 // Can only resume from an external suspension
2643 void JavaThread::java_resume() {
2644   assert_locked_or_safepoint(Threads_lock);
2645 
2646   // Sanity check: thread is gone, has started exiting or the thread
2647   // was not externally suspended.
2648   ThreadsListHandle tlh;
2649   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2650     return;
2651   }
2652 
2653   MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2654 
2655   clear_external_suspend();
2656 
2657   if (is_ext_suspended()) {
2658     clear_ext_suspended();
2659     SR_lock()->notify_all();
2660   }
2661 }
2662 
2663 size_t JavaThread::_stack_red_zone_size = 0;
2664 size_t JavaThread::_stack_yellow_zone_size = 0;
2665 size_t JavaThread::_stack_reserved_zone_size = 0;
2666 size_t JavaThread::_stack_shadow_zone_size = 0;
2667 
2668 void JavaThread::create_stack_guard_pages() {
2669   if (!os::uses_stack_guard_pages() ||
2670       _stack_guard_state != stack_guard_unused ||
2671       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2672       log_info(os, thread)("Stack guard page creation for thread "
2673                            UINTX_FORMAT " disabled", os::current_thread_id());
2674     return;
2675   }
2676   address low_addr = stack_end();
2677   size_t len = stack_guard_zone_size();
2678 
2679   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2680   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2681 
2682   int must_commit = os::must_commit_stack_guard_pages();
2683   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2684 
2685   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2686     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2687     return;
2688   }
2689 
2690   if (os::guard_memory((char *) low_addr, len)) {
2691     _stack_guard_state = stack_guard_enabled;
2692   } else {
2693     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2694       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2695     if (os::uncommit_memory((char *) low_addr, len)) {
2696       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2697     }
2698     return;
2699   }
2700 
2701   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2702     PTR_FORMAT "-" PTR_FORMAT ".",
2703     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2704 }
2705 
2706 void JavaThread::remove_stack_guard_pages() {
2707   assert(Thread::current() == this, "from different thread");
2708   if (_stack_guard_state == stack_guard_unused) return;
2709   address low_addr = stack_end();
2710   size_t len = stack_guard_zone_size();
2711 
2712   if (os::must_commit_stack_guard_pages()) {
2713     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2714       _stack_guard_state = stack_guard_unused;
2715     } else {
2716       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2717         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2718       return;
2719     }
2720   } else {
2721     if (_stack_guard_state == stack_guard_unused) return;
2722     if (os::unguard_memory((char *) low_addr, len)) {
2723       _stack_guard_state = stack_guard_unused;
2724     } else {
2725       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2726         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2727       return;
2728     }
2729   }
2730 
2731   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2732     PTR_FORMAT "-" PTR_FORMAT ".",
2733     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2734 }
2735 
2736 void JavaThread::enable_stack_reserved_zone() {
2737   assert(_stack_guard_state == stack_guard_reserved_disabled, "inconsistent state");
2738 
2739   // The base notation is from the stack's point of view, growing downward.
2740   // We need to adjust it to work correctly with guard_memory()
2741   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2742 
2743   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2744   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2745 
2746   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2747     _stack_guard_state = stack_guard_enabled;
2748   } else {
2749     warning("Attempt to guard stack reserved zone failed.");
2750   }
2751   enable_register_stack_guard();
2752 }
2753 
2754 void JavaThread::disable_stack_reserved_zone() {
2755   assert(_stack_guard_state == stack_guard_enabled, "inconsistent state");
2756 
2757   // Simply return if called for a thread that does not use guard pages.
2758   if (_stack_guard_state != stack_guard_enabled) return;
2759 
2760   // The base notation is from the stack's point of view, growing downward.
2761   // We need to adjust it to work correctly with guard_memory()
2762   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2763 
2764   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2765     _stack_guard_state = stack_guard_reserved_disabled;
2766   } else {
2767     warning("Attempt to unguard stack reserved zone failed.");
2768   }
2769   disable_register_stack_guard();
2770 }
2771 
2772 void JavaThread::enable_stack_yellow_reserved_zone() {
2773   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2774   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2775 
2776   // The base notation is from the stacks point of view, growing downward.
2777   // We need to adjust it to work correctly with guard_memory()
2778   address base = stack_red_zone_base();
2779 
2780   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2781   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2782 
2783   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2784     _stack_guard_state = stack_guard_enabled;
2785   } else {
2786     warning("Attempt to guard stack yellow zone failed.");
2787   }
2788   enable_register_stack_guard();
2789 }
2790 
2791 void JavaThread::disable_stack_yellow_reserved_zone() {
2792   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2793   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2794 
2795   // Simply return if called for a thread that does not use guard pages.
2796   if (_stack_guard_state == stack_guard_unused) return;
2797 
2798   // The base notation is from the stacks point of view, growing downward.
2799   // We need to adjust it to work correctly with guard_memory()
2800   address base = stack_red_zone_base();
2801 
2802   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2803     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2804   } else {
2805     warning("Attempt to unguard stack yellow zone failed.");
2806   }
2807   disable_register_stack_guard();
2808 }
2809 
2810 void JavaThread::enable_stack_red_zone() {
2811   // The base notation is from the stacks point of view, growing downward.
2812   // We need to adjust it to work correctly with guard_memory()
2813   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2814   address base = stack_red_zone_base() - stack_red_zone_size();
2815 
2816   guarantee(base < stack_base(), "Error calculating stack red zone");
2817   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2818 
2819   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2820     warning("Attempt to guard stack red zone failed.");
2821   }
2822 }
2823 
2824 void JavaThread::disable_stack_red_zone() {
2825   // The base notation is from the stacks point of view, growing downward.
2826   // We need to adjust it to work correctly with guard_memory()
2827   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2828   address base = stack_red_zone_base() - stack_red_zone_size();
2829   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2830     warning("Attempt to unguard stack red zone failed.");
2831   }
2832 }
2833 
2834 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2835   // ignore is there is no stack
2836   if (!has_last_Java_frame()) return;
2837   // traverse the stack frames. Starts from top frame.
2838   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2839     frame* fr = fst.current();
2840     f(fr, fst.register_map());
2841   }
2842 }
2843 
2844 
2845 #ifndef PRODUCT
2846 // Deoptimization
2847 // Function for testing deoptimization
2848 void JavaThread::deoptimize() {
2849   StackFrameStream fst(this, false);
2850   bool deopt = false;           // Dump stack only if a deopt actually happens.
2851   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2852   // Iterate over all frames in the thread and deoptimize
2853   for (; !fst.is_done(); fst.next()) {
2854     if (fst.current()->can_be_deoptimized()) {
2855 
2856       if (only_at) {
2857         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2858         // consists of comma or carriage return separated numbers so
2859         // search for the current bci in that string.
2860         address pc = fst.current()->pc();
2861         nmethod* nm =  (nmethod*) fst.current()->cb();
2862         ScopeDesc* sd = nm->scope_desc_at(pc);
2863         char buffer[8];
2864         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2865         size_t len = strlen(buffer);
2866         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2867         while (found != NULL) {
2868           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2869               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2870             // Check that the bci found is bracketed by terminators.
2871             break;
2872           }
2873           found = strstr(found + 1, buffer);
2874         }
2875         if (!found) {
2876           continue;
2877         }
2878       }
2879 
2880       if (DebugDeoptimization && !deopt) {
2881         deopt = true; // One-time only print before deopt
2882         tty->print_cr("[BEFORE Deoptimization]");
2883         trace_frames();
2884         trace_stack();
2885       }
2886       Deoptimization::deoptimize(this, *fst.current());
2887     }
2888   }
2889 
2890   if (DebugDeoptimization && deopt) {
2891     tty->print_cr("[AFTER Deoptimization]");
2892     trace_frames();
2893   }
2894 }
2895 
2896 
2897 // Make zombies
2898 void JavaThread::make_zombies() {
2899   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2900     if (fst.current()->can_be_deoptimized()) {
2901       // it is a Java nmethod
2902       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2903       nm->make_not_entrant();
2904     }
2905   }
2906 }
2907 #endif // PRODUCT
2908 
2909 
2910 void JavaThread::deoptimize_marked_methods() {
2911   if (!has_last_Java_frame()) return;
2912   StackFrameStream fst(this, false);
2913   for (; !fst.is_done(); fst.next()) {
2914     if (fst.current()->should_be_deoptimized()) {
2915       Deoptimization::deoptimize(this, *fst.current());
2916     }
2917   }
2918 }
2919 
2920 // If the caller is a NamedThread, then remember, in the current scope,
2921 // the given JavaThread in its _processed_thread field.
2922 class RememberProcessedThread: public StackObj {
2923   NamedThread* _cur_thr;
2924  public:
2925   RememberProcessedThread(JavaThread* jthr) {
2926     Thread* thread = Thread::current();
2927     if (thread->is_Named_thread()) {
2928       _cur_thr = (NamedThread *)thread;
2929       _cur_thr->set_processed_thread(jthr);
2930     } else {
2931       _cur_thr = NULL;
2932     }
2933   }
2934 
2935   ~RememberProcessedThread() {
2936     if (_cur_thr) {
2937       _cur_thr->set_processed_thread(NULL);
2938     }
2939   }
2940 };
2941 
2942 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2943   // Verify that the deferred card marks have been flushed.
2944   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2945 
2946   // Traverse the GCHandles
2947   Thread::oops_do(f, cf);
2948 
2949   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2950          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2951 
2952   if (has_last_Java_frame()) {
2953     // Record JavaThread to GC thread
2954     RememberProcessedThread rpt(this);
2955 
2956     // traverse the registered growable array
2957     if (_array_for_gc != NULL) {
2958       for (int index = 0; index < _array_for_gc->length(); index++) {
2959         f->do_oop(_array_for_gc->adr_at(index));
2960       }
2961     }
2962 
2963     // Traverse the monitor chunks
2964     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2965       chunk->oops_do(f);
2966     }
2967 
2968     // Traverse the execution stack
2969     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2970       fst.current()->oops_do(f, cf, fst.register_map());
2971     }
2972   }
2973 
2974   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2975   // If we have deferred set_locals there might be oops waiting to be
2976   // written
2977   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2978   if (list != NULL) {
2979     for (int i = 0; i < list->length(); i++) {
2980       list->at(i)->oops_do(f);
2981     }
2982   }
2983 
2984   // Traverse instance variables at the end since the GC may be moving things
2985   // around using this function
2986   f->do_oop((oop*) &_threadObj);
2987   f->do_oop((oop*) &_vm_result);
2988   f->do_oop((oop*) &_exception_oop);
2989   f->do_oop((oop*) &_pending_async_exception);
2990 
2991   if (jvmti_thread_state() != NULL) {
2992     jvmti_thread_state()->oops_do(f, cf);
2993   }
2994 }
2995 
2996 #ifdef ASSERT
2997 void JavaThread::verify_states_for_handshake() {
2998   // This checks that the thread has a correct frame state during a handshake.
2999   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
3000          (has_last_Java_frame() && java_call_counter() > 0),
3001          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
3002          has_last_Java_frame(), java_call_counter());
3003 }
3004 #endif
3005 
3006 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
3007   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
3008          (has_last_Java_frame() && java_call_counter() > 0),
3009          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
3010          has_last_Java_frame(), java_call_counter());
3011 
3012   if (has_last_Java_frame()) {
3013     // Traverse the execution stack
3014     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3015       fst.current()->nmethods_do(cf);
3016     }
3017   }
3018 
3019   if (jvmti_thread_state() != NULL) {
3020     jvmti_thread_state()->nmethods_do(cf);
3021   }
3022 }
3023 
3024 void JavaThread::metadata_do(MetadataClosure* f) {
3025   if (has_last_Java_frame()) {
3026     // Traverse the execution stack to call f() on the methods in the stack
3027     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3028       fst.current()->metadata_do(f);
3029     }
3030   } else if (is_Compiler_thread()) {
3031     // need to walk ciMetadata in current compile tasks to keep alive.
3032     CompilerThread* ct = (CompilerThread*)this;
3033     if (ct->env() != NULL) {
3034       ct->env()->metadata_do(f);
3035     }
3036     CompileTask* task = ct->task();
3037     if (task != NULL) {
3038       task->metadata_do(f);
3039     }
3040   }
3041 }
3042 
3043 // Printing
3044 const char* _get_thread_state_name(JavaThreadState _thread_state) {
3045   switch (_thread_state) {
3046   case _thread_uninitialized:     return "_thread_uninitialized";
3047   case _thread_new:               return "_thread_new";
3048   case _thread_new_trans:         return "_thread_new_trans";
3049   case _thread_in_native:         return "_thread_in_native";
3050   case _thread_in_native_trans:   return "_thread_in_native_trans";
3051   case _thread_in_vm:             return "_thread_in_vm";
3052   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
3053   case _thread_in_Java:           return "_thread_in_Java";
3054   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
3055   case _thread_blocked:           return "_thread_blocked";
3056   case _thread_blocked_trans:     return "_thread_blocked_trans";
3057   default:                        return "unknown thread state";
3058   }
3059 }
3060 
3061 #ifndef PRODUCT
3062 void JavaThread::print_thread_state_on(outputStream *st) const {
3063   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
3064 };
3065 #endif // PRODUCT
3066 
3067 // Called by Threads::print() for VM_PrintThreads operation
3068 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
3069   st->print_raw("\"");
3070   st->print_raw(get_thread_name());
3071   st->print_raw("\" ");
3072   oop thread_oop = threadObj();
3073   if (thread_oop != NULL) {
3074     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3075     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3076     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3077   }
3078   Thread::print_on(st, print_extended_info);
3079   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3080   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3081   if (thread_oop != NULL) {
3082     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3083   }
3084 #ifndef PRODUCT
3085   _safepoint_state->print_on(st);
3086 #endif // PRODUCT
3087   if (is_Compiler_thread()) {
3088     CompileTask *task = ((CompilerThread*)this)->task();
3089     if (task != NULL) {
3090       st->print("   Compiling: ");
3091       task->print(st, NULL, true, false);
3092     } else {
3093       st->print("   No compile task");
3094     }
3095     st->cr();
3096   }
3097 }
3098 
3099 void JavaThread::print() const { print_on(tty); }
3100 
3101 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3102   st->print("%s", get_thread_name_string(buf, buflen));
3103 }
3104 
3105 // Called by fatal error handler. The difference between this and
3106 // JavaThread::print() is that we can't grab lock or allocate memory.
3107 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3108   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3109   oop thread_obj = threadObj();
3110   if (thread_obj != NULL) {
3111     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3112   }
3113   st->print(" [");
3114   st->print("%s", _get_thread_state_name(_thread_state));
3115   if (osthread()) {
3116     st->print(", id=%d", osthread()->thread_id());
3117   }
3118   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3119             p2i(stack_end()), p2i(stack_base()));
3120   st->print("]");
3121 
3122   ThreadsSMRSupport::print_info_on(this, st);
3123   return;
3124 }
3125 
3126 // Verification
3127 
3128 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3129 
3130 void JavaThread::verify() {
3131   // Verify oops in the thread.
3132   oops_do(&VerifyOopClosure::verify_oop, NULL);
3133 
3134   // Verify the stack frames.
3135   frames_do(frame_verify);
3136 }
3137 
3138 // CR 6300358 (sub-CR 2137150)
3139 // Most callers of this method assume that it can't return NULL but a
3140 // thread may not have a name whilst it is in the process of attaching to
3141 // the VM - see CR 6412693, and there are places where a JavaThread can be
3142 // seen prior to having it's threadObj set (eg JNI attaching threads and
3143 // if vm exit occurs during initialization). These cases can all be accounted
3144 // for such that this method never returns NULL.
3145 const char* JavaThread::get_thread_name() const {
3146 #ifdef ASSERT
3147   // early safepoints can hit while current thread does not yet have TLS
3148   if (!SafepointSynchronize::is_at_safepoint()) {
3149     Thread *cur = Thread::current();
3150     if (!(cur->is_Java_thread() && cur == this)) {
3151       // Current JavaThreads are allowed to get their own name without
3152       // the Threads_lock.
3153       assert_locked_or_safepoint_or_handshake(Threads_lock, this);
3154     }
3155   }
3156 #endif // ASSERT
3157   return get_thread_name_string();
3158 }
3159 
3160 // Returns a non-NULL representation of this thread's name, or a suitable
3161 // descriptive string if there is no set name
3162 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3163   const char* name_str;
3164   oop thread_obj = threadObj();
3165   if (thread_obj != NULL) {
3166     oop name = java_lang_Thread::name(thread_obj);
3167     if (name != NULL) {
3168       if (buf == NULL) {
3169         name_str = java_lang_String::as_utf8_string(name);
3170       } else {
3171         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3172       }
3173     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3174       name_str = "<no-name - thread is attaching>";
3175     } else {
3176       name_str = Thread::name();
3177     }
3178   } else {
3179     name_str = Thread::name();
3180   }
3181   assert(name_str != NULL, "unexpected NULL thread name");
3182   return name_str;
3183 }
3184 
3185 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3186 
3187   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3188   assert(NoPriority <= prio && prio <= MaxPriority, "sanity check");
3189   // Link Java Thread object <-> C++ Thread
3190 
3191   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3192   // and put it into a new Handle.  The Handle "thread_oop" can then
3193   // be used to pass the C++ thread object to other methods.
3194 
3195   // Set the Java level thread object (jthread) field of the
3196   // new thread (a JavaThread *) to C++ thread object using the
3197   // "thread_oop" handle.
3198 
3199   // Set the thread field (a JavaThread *) of the
3200   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3201 
3202   Handle thread_oop(Thread::current(),
3203                     JNIHandles::resolve_non_null(jni_thread));
3204   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3205          "must be initialized");
3206   set_threadObj(thread_oop());
3207   java_lang_Thread::set_thread(thread_oop(), this);
3208 
3209   if (prio == NoPriority) {
3210     prio = java_lang_Thread::priority(thread_oop());
3211     assert(prio != NoPriority, "A valid priority should be present");
3212   }
3213 
3214   // Push the Java priority down to the native thread; needs Threads_lock
3215   Thread::set_priority(this, prio);
3216 
3217   // Add the new thread to the Threads list and set it in motion.
3218   // We must have threads lock in order to call Threads::add.
3219   // It is crucial that we do not block before the thread is
3220   // added to the Threads list for if a GC happens, then the java_thread oop
3221   // will not be visited by GC.
3222   Threads::add(this);
3223 }
3224 
3225 oop JavaThread::current_park_blocker() {
3226   // Support for JSR-166 locks
3227   oop thread_oop = threadObj();
3228   if (thread_oop != NULL) {
3229     return java_lang_Thread::park_blocker(thread_oop);
3230   }
3231   return NULL;
3232 }
3233 
3234 
3235 void JavaThread::print_stack_on(outputStream* st) {
3236   if (!has_last_Java_frame()) return;
3237   ResourceMark rm;
3238   HandleMark   hm;
3239 
3240   RegisterMap reg_map(this);
3241   vframe* start_vf = last_java_vframe(&reg_map);
3242   int count = 0;
3243   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3244     if (f->is_java_frame()) {
3245       javaVFrame* jvf = javaVFrame::cast(f);
3246       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3247 
3248       // Print out lock information
3249       if (JavaMonitorsInStackTrace) {
3250         jvf->print_lock_info_on(st, count);
3251       }
3252     } else {
3253       // Ignore non-Java frames
3254     }
3255 
3256     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3257     count++;
3258     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3259   }
3260 }
3261 
3262 
3263 // JVMTI PopFrame support
3264 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3265   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3266   if (in_bytes(size_in_bytes) != 0) {
3267     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3268     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3269     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3270   }
3271 }
3272 
3273 void* JavaThread::popframe_preserved_args() {
3274   return _popframe_preserved_args;
3275 }
3276 
3277 ByteSize JavaThread::popframe_preserved_args_size() {
3278   return in_ByteSize(_popframe_preserved_args_size);
3279 }
3280 
3281 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3282   int sz = in_bytes(popframe_preserved_args_size());
3283   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3284   return in_WordSize(sz / wordSize);
3285 }
3286 
3287 void JavaThread::popframe_free_preserved_args() {
3288   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3289   FREE_C_HEAP_ARRAY(char, (char*)_popframe_preserved_args);
3290   _popframe_preserved_args = NULL;
3291   _popframe_preserved_args_size = 0;
3292 }
3293 
3294 #ifndef PRODUCT
3295 
3296 void JavaThread::trace_frames() {
3297   tty->print_cr("[Describe stack]");
3298   int frame_no = 1;
3299   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3300     tty->print("  %d. ", frame_no++);
3301     fst.current()->print_value_on(tty, this);
3302     tty->cr();
3303   }
3304 }
3305 
3306 class PrintAndVerifyOopClosure: public OopClosure {
3307  protected:
3308   template <class T> inline void do_oop_work(T* p) {
3309     oop obj = RawAccess<>::oop_load(p);
3310     if (obj == NULL) return;
3311     tty->print(INTPTR_FORMAT ": ", p2i(p));
3312     if (oopDesc::is_oop_or_null(obj)) {
3313       if (obj->is_objArray()) {
3314         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3315       } else {
3316         obj->print();
3317       }
3318     } else {
3319       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3320     }
3321     tty->cr();
3322   }
3323  public:
3324   virtual void do_oop(oop* p) { do_oop_work(p); }
3325   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3326 };
3327 
3328 #ifdef ASSERT
3329 // Print or validate the layout of stack frames
3330 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3331   ResourceMark rm;
3332   PRESERVE_EXCEPTION_MARK;
3333   FrameValues values;
3334   int frame_no = 0;
3335   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3336     fst.current()->describe(values, ++frame_no);
3337     if (depth == frame_no) break;
3338   }
3339   if (validate_only) {
3340     values.validate();
3341   } else {
3342     tty->print_cr("[Describe stack layout]");
3343     values.print(this);
3344   }
3345 }
3346 #endif
3347 
3348 void JavaThread::trace_stack_from(vframe* start_vf) {
3349   ResourceMark rm;
3350   int vframe_no = 1;
3351   for (vframe* f = start_vf; f; f = f->sender()) {
3352     if (f->is_java_frame()) {
3353       javaVFrame::cast(f)->print_activation(vframe_no++);
3354     } else {
3355       f->print();
3356     }
3357     if (vframe_no > StackPrintLimit) {
3358       tty->print_cr("...<more frames>...");
3359       return;
3360     }
3361   }
3362 }
3363 
3364 
3365 void JavaThread::trace_stack() {
3366   if (!has_last_Java_frame()) return;
3367   ResourceMark rm;
3368   HandleMark   hm;
3369   RegisterMap reg_map(this);
3370   trace_stack_from(last_java_vframe(&reg_map));
3371 }
3372 
3373 
3374 #endif // PRODUCT
3375 
3376 
3377 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3378   assert(reg_map != NULL, "a map must be given");
3379   frame f = last_frame();
3380   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3381     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3382   }
3383   return NULL;
3384 }
3385 
3386 
3387 Klass* JavaThread::security_get_caller_class(int depth) {
3388   vframeStream vfst(this);
3389   vfst.security_get_caller_frame(depth);
3390   if (!vfst.at_end()) {
3391     return vfst.method()->method_holder();
3392   }
3393   return NULL;
3394 }
3395 
3396 // java.lang.Thread.sleep support
3397 // Returns true if sleep time elapsed as expected, and false
3398 // if the thread was interrupted.
3399 bool JavaThread::sleep(jlong millis) {
3400   assert(this == Thread::current(),  "thread consistency check");
3401 
3402   ParkEvent * const slp = this->_SleepEvent;
3403   // Because there can be races with thread interruption sending an unpark()
3404   // to the event, we explicitly reset it here to avoid an immediate return.
3405   // The actual interrupt state will be checked before we park().
3406   slp->reset();
3407   // Thread interruption establishes a happens-before ordering in the
3408   // Java Memory Model, so we need to ensure we synchronize with the
3409   // interrupt state.
3410   OrderAccess::fence();
3411 
3412   jlong prevtime = os::javaTimeNanos();
3413 
3414   for (;;) {
3415     // interruption has precedence over timing out
3416     if (this->is_interrupted(true)) {
3417       return false;
3418     }
3419 
3420     if (millis <= 0) {
3421       return true;
3422     }
3423 
3424     {
3425       ThreadBlockInVM tbivm(this);
3426       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
3427 
3428       this->set_suspend_equivalent();
3429       // cleared by handle_special_suspend_equivalent_condition() or
3430       // java_suspend_self() via check_and_wait_while_suspended()
3431 
3432       slp->park(millis);
3433 
3434       // were we externally suspended while we were waiting?
3435       this->check_and_wait_while_suspended();
3436     }
3437 
3438     // Update elapsed time tracking
3439     jlong newtime = os::javaTimeNanos();
3440     if (newtime - prevtime < 0) {
3441       // time moving backwards, should only happen if no monotonic clock
3442       // not a guarantee() because JVM should not abort on kernel/glibc bugs
3443       assert(!os::supports_monotonic_clock(),
3444              "unexpected time moving backwards detected in JavaThread::sleep()");
3445     } else {
3446       millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3447     }
3448     prevtime = newtime;
3449   }
3450 }
3451 
3452 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3453   assert(thread->is_Compiler_thread(), "must be compiler thread");
3454   CompileBroker::compiler_thread_loop();
3455 }
3456 
3457 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3458   NMethodSweeper::sweeper_loop();
3459 }
3460 
3461 // Create a CompilerThread
3462 CompilerThread::CompilerThread(CompileQueue* queue,
3463                                CompilerCounters* counters)
3464                                : JavaThread(&compiler_thread_entry) {
3465   _env   = NULL;
3466   _log   = NULL;
3467   _task  = NULL;
3468   _queue = queue;
3469   _counters = counters;
3470   _buffer_blob = NULL;
3471   _compiler = NULL;
3472 
3473   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3474   resource_area()->bias_to(mtCompiler);
3475 
3476 #ifndef PRODUCT
3477   _ideal_graph_printer = NULL;
3478 #endif
3479 }
3480 
3481 CompilerThread::~CompilerThread() {
3482   // Delete objects which were allocated on heap.
3483   delete _counters;
3484 }
3485 
3486 bool CompilerThread::can_call_java() const {
3487   return _compiler != NULL && _compiler->is_jvmci();
3488 }
3489 
3490 // Create sweeper thread
3491 CodeCacheSweeperThread::CodeCacheSweeperThread()
3492 : JavaThread(&sweeper_thread_entry) {
3493   _scanned_compiled_method = NULL;
3494 }
3495 
3496 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3497   JavaThread::oops_do(f, cf);
3498   if (_scanned_compiled_method != NULL && cf != NULL) {
3499     // Safepoints can occur when the sweeper is scanning an nmethod so
3500     // process it here to make sure it isn't unloaded in the middle of
3501     // a scan.
3502     cf->do_code_blob(_scanned_compiled_method);
3503   }
3504 }
3505 
3506 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3507   JavaThread::nmethods_do(cf);
3508   if (_scanned_compiled_method != NULL && cf != NULL) {
3509     // Safepoints can occur when the sweeper is scanning an nmethod so
3510     // process it here to make sure it isn't unloaded in the middle of
3511     // a scan.
3512     cf->do_code_blob(_scanned_compiled_method);
3513   }
3514 }
3515 
3516 
3517 // ======= Threads ========
3518 
3519 // The Threads class links together all active threads, and provides
3520 // operations over all threads. It is protected by the Threads_lock,
3521 // which is also used in other global contexts like safepointing.
3522 // ThreadsListHandles are used to safely perform operations on one
3523 // or more threads without the risk of the thread exiting during the
3524 // operation.
3525 //
3526 // Note: The Threads_lock is currently more widely used than we
3527 // would like. We are actively migrating Threads_lock uses to other
3528 // mechanisms in order to reduce Threads_lock contention.
3529 
3530 int         Threads::_number_of_threads = 0;
3531 int         Threads::_number_of_non_daemon_threads = 0;
3532 int         Threads::_return_code = 0;
3533 uintx       Threads::_thread_claim_token = 1; // Never zero.
3534 size_t      JavaThread::_stack_size_at_create = 0;
3535 
3536 #ifdef ASSERT
3537 bool        Threads::_vm_complete = false;
3538 #endif
3539 
3540 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3541   Prefetch::read((void*)addr, prefetch_interval);
3542   return *addr;
3543 }
3544 
3545 // Possibly the ugliest for loop the world has seen. C++ does not allow
3546 // multiple types in the declaration section of the for loop. In this case
3547 // we are only dealing with pointers and hence can cast them. It looks ugly
3548 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3549 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3550     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3551              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3552              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3553              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3554              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3555          MACRO_current_p != MACRO_end;                                                                                    \
3556          MACRO_current_p++,                                                                                               \
3557              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3558 
3559 // All JavaThreads
3560 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3561 
3562 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3563 void Threads::non_java_threads_do(ThreadClosure* tc) {
3564   NoSafepointVerifier nsv;
3565   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3566     tc->do_thread(njti.current());
3567   }
3568 }
3569 
3570 // All JavaThreads
3571 void Threads::java_threads_do(ThreadClosure* tc) {
3572   assert_locked_or_safepoint(Threads_lock);
3573   // ALL_JAVA_THREADS iterates through all JavaThreads.
3574   ALL_JAVA_THREADS(p) {
3575     tc->do_thread(p);
3576   }
3577 }
3578 
3579 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3580   assert_locked_or_safepoint(Threads_lock);
3581   java_threads_do(tc);
3582   tc->do_thread(VMThread::vm_thread());
3583 }
3584 
3585 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3586 void Threads::threads_do(ThreadClosure* tc) {
3587   assert_locked_or_safepoint(Threads_lock);
3588   java_threads_do(tc);
3589   non_java_threads_do(tc);
3590 }
3591 
3592 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3593   uintx claim_token = Threads::thread_claim_token();
3594   ALL_JAVA_THREADS(p) {
3595     if (p->claim_threads_do(is_par, claim_token)) {
3596       tc->do_thread(p);
3597     }
3598   }
3599   VMThread* vmt = VMThread::vm_thread();
3600   if (vmt->claim_threads_do(is_par, claim_token)) {
3601     tc->do_thread(vmt);
3602   }
3603 }
3604 
3605 // The system initialization in the library has three phases.
3606 //
3607 // Phase 1: java.lang.System class initialization
3608 //     java.lang.System is a primordial class loaded and initialized
3609 //     by the VM early during startup.  java.lang.System.<clinit>
3610 //     only does registerNatives and keeps the rest of the class
3611 //     initialization work later until thread initialization completes.
3612 //
3613 //     System.initPhase1 initializes the system properties, the static
3614 //     fields in, out, and err. Set up java signal handlers, OS-specific
3615 //     system settings, and thread group of the main thread.
3616 static void call_initPhase1(TRAPS) {
3617   Klass* klass = SystemDictionary::System_klass();
3618   JavaValue result(T_VOID);
3619   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3620                                          vmSymbols::void_method_signature(), CHECK);
3621 }
3622 
3623 // Phase 2. Module system initialization
3624 //     This will initialize the module system.  Only java.base classes
3625 //     can be loaded until phase 2 completes.
3626 //
3627 //     Call System.initPhase2 after the compiler initialization and jsr292
3628 //     classes get initialized because module initialization runs a lot of java
3629 //     code, that for performance reasons, should be compiled.  Also, this will
3630 //     enable the startup code to use lambda and other language features in this
3631 //     phase and onward.
3632 //
3633 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3634 static void call_initPhase2(TRAPS) {
3635   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3636 
3637   Klass* klass = SystemDictionary::System_klass();
3638 
3639   JavaValue result(T_INT);
3640   JavaCallArguments args;
3641   args.push_int(DisplayVMOutputToStderr);
3642   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3643   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3644                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3645   if (result.get_jint() != JNI_OK) {
3646     vm_exit_during_initialization(); // no message or exception
3647   }
3648 
3649   universe_post_module_init();
3650 }
3651 
3652 // Phase 3. final setup - set security manager, system class loader and TCCL
3653 //
3654 //     This will instantiate and set the security manager, set the system class
3655 //     loader as well as the thread context class loader.  The security manager
3656 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3657 //     other modules or the application's classpath.
3658 static void call_initPhase3(TRAPS) {
3659   Klass* klass = SystemDictionary::System_klass();
3660   JavaValue result(T_VOID);
3661   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3662                                          vmSymbols::void_method_signature(), CHECK);
3663 }
3664 
3665 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3666   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3667 
3668   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3669     create_vm_init_libraries();
3670   }
3671 
3672   initialize_class(vmSymbols::java_lang_String(), CHECK);
3673 
3674   // Inject CompactStrings value after the static initializers for String ran.
3675   java_lang_String::set_compact_strings(CompactStrings);
3676 
3677   // Initialize java_lang.System (needed before creating the thread)
3678   initialize_class(vmSymbols::java_lang_System(), CHECK);
3679   // The VM creates & returns objects of this class. Make sure it's initialized.
3680   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3681   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3682   Handle thread_group = create_initial_thread_group(CHECK);
3683   Universe::set_main_thread_group(thread_group());
3684   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3685   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3686   main_thread->set_threadObj(thread_object);
3687 
3688   // Set thread status to running since main thread has
3689   // been started and running.
3690   java_lang_Thread::set_thread_status(thread_object,
3691                                       java_lang_Thread::RUNNABLE);
3692 
3693   // The VM creates objects of this class.
3694   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3695 
3696 #ifdef ASSERT
3697   InstanceKlass *k = SystemDictionary::UnsafeConstants_klass();
3698   assert(k->is_not_initialized(), "UnsafeConstants should not already be initialized");
3699 #endif
3700 
3701   // initialize the hardware-specific constants needed by Unsafe
3702   initialize_class(vmSymbols::jdk_internal_misc_UnsafeConstants(), CHECK);
3703   jdk_internal_misc_UnsafeConstants::set_unsafe_constants();
3704 
3705   // The VM preresolves methods to these classes. Make sure that they get initialized
3706   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3707   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3708 
3709   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3710   call_initPhase1(CHECK);
3711 
3712   // get the Java runtime name, version, and vendor info after java.lang.System is initialized
3713   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3714   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3715   JDK_Version::set_runtime_vendor_version(get_java_runtime_vendor_version(THREAD));
3716   JDK_Version::set_runtime_vendor_vm_bug_url(get_java_runtime_vendor_vm_bug_url(THREAD));
3717 
3718   // an instance of OutOfMemory exception has been allocated earlier
3719   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3720   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3721   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3722   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3723   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3724   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3725   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3726   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3727 
3728   // Eager box cache initialization only if AOT is on and any library is loaded.
3729   AOTLoader::initialize_box_caches(CHECK);
3730 }
3731 
3732 void Threads::initialize_jsr292_core_classes(TRAPS) {
3733   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3734 
3735   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3736   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3737   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3738   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3739 }
3740 
3741 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3742   extern void JDK_Version_init();
3743 
3744   // Preinitialize version info.
3745   VM_Version::early_initialize();
3746 
3747   // Check version
3748   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3749 
3750   // Initialize library-based TLS
3751   ThreadLocalStorage::init();
3752 
3753   // Initialize the output stream module
3754   ostream_init();
3755 
3756   // Process java launcher properties.
3757   Arguments::process_sun_java_launcher_properties(args);
3758 
3759   // Initialize the os module
3760   os::init();
3761 
3762   // Record VM creation timing statistics
3763   TraceVmCreationTime create_vm_timer;
3764   create_vm_timer.start();
3765 
3766   // Initialize system properties.
3767   Arguments::init_system_properties();
3768 
3769   // So that JDK version can be used as a discriminator when parsing arguments
3770   JDK_Version_init();
3771 
3772   // Update/Initialize System properties after JDK version number is known
3773   Arguments::init_version_specific_system_properties();
3774 
3775   // Make sure to initialize log configuration *before* parsing arguments
3776   LogConfiguration::initialize(create_vm_timer.begin_time());
3777 
3778   // Parse arguments
3779   // Note: this internally calls os::init_container_support()
3780   jint parse_result = Arguments::parse(args);
3781   if (parse_result != JNI_OK) return parse_result;
3782 
3783   os::init_before_ergo();
3784 
3785   jint ergo_result = Arguments::apply_ergo();
3786   if (ergo_result != JNI_OK) return ergo_result;
3787 
3788   // Final check of all ranges after ergonomics which may change values.
3789   if (!JVMFlagRangeList::check_ranges()) {
3790     return JNI_EINVAL;
3791   }
3792 
3793   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3794   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3795   if (!constraint_result) {
3796     return JNI_EINVAL;
3797   }
3798 
3799   if (PauseAtStartup) {
3800     os::pause();
3801   }
3802 
3803   HOTSPOT_VM_INIT_BEGIN();
3804 
3805   // Timing (must come after argument parsing)
3806   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3807 
3808   // Initialize the os module after parsing the args
3809   jint os_init_2_result = os::init_2();
3810   if (os_init_2_result != JNI_OK) return os_init_2_result;
3811 
3812 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3813   // Initialize assert poison page mechanism.
3814   if (ShowRegistersOnAssert) {
3815     initialize_assert_poison();
3816   }
3817 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3818 
3819   SafepointMechanism::initialize();
3820 
3821   jint adjust_after_os_result = Arguments::adjust_after_os();
3822   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3823 
3824   // Initialize output stream logging
3825   ostream_init_log();
3826 
3827   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3828   // Must be before create_vm_init_agents()
3829   if (Arguments::init_libraries_at_startup()) {
3830     convert_vm_init_libraries_to_agents();
3831   }
3832 
3833   // Launch -agentlib/-agentpath and converted -Xrun agents
3834   if (Arguments::init_agents_at_startup()) {
3835     create_vm_init_agents();
3836   }
3837 
3838   // Initialize Threads state
3839   _number_of_threads = 0;
3840   _number_of_non_daemon_threads = 0;
3841 
3842   // Initialize global data structures and create system classes in heap
3843   vm_init_globals();
3844 
3845 #if INCLUDE_JVMCI
3846   if (JVMCICounterSize > 0) {
3847     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtJVMCI);
3848     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3849   } else {
3850     JavaThread::_jvmci_old_thread_counters = NULL;
3851   }
3852 #endif // INCLUDE_JVMCI
3853 
3854   // Attach the main thread to this os thread
3855   JavaThread* main_thread = new JavaThread();
3856   main_thread->set_thread_state(_thread_in_vm);
3857   main_thread->initialize_thread_current();
3858   // must do this before set_active_handles
3859   main_thread->record_stack_base_and_size();
3860   main_thread->register_thread_stack_with_NMT();
3861   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3862 
3863   if (!main_thread->set_as_starting_thread()) {
3864     vm_shutdown_during_initialization(
3865                                       "Failed necessary internal allocation. Out of swap space");
3866     main_thread->smr_delete();
3867     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3868     return JNI_ENOMEM;
3869   }
3870 
3871   // Enable guard page *after* os::create_main_thread(), otherwise it would
3872   // crash Linux VM, see notes in os_linux.cpp.
3873   main_thread->create_stack_guard_pages();
3874 
3875   // Initialize Java-Level synchronization subsystem
3876   ObjectMonitor::Initialize();
3877 
3878   // Initialize global modules
3879   jint status = init_globals();
3880   if (status != JNI_OK) {
3881     main_thread->smr_delete();
3882     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3883     return status;
3884   }
3885 
3886   JFR_ONLY(Jfr::on_create_vm_1();)
3887 
3888   // Should be done after the heap is fully created
3889   main_thread->cache_global_variables();
3890 
3891   HandleMark hm;
3892 
3893   { MutexLocker mu(Threads_lock);
3894     Threads::add(main_thread);
3895   }
3896 
3897   // Any JVMTI raw monitors entered in onload will transition into
3898   // real raw monitor. VM is setup enough here for raw monitor enter.
3899   JvmtiExport::transition_pending_onload_raw_monitors();
3900 
3901   // Create the VMThread
3902   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3903 
3904     VMThread::create();
3905     Thread* vmthread = VMThread::vm_thread();
3906 
3907     if (!os::create_thread(vmthread, os::vm_thread)) {
3908       vm_exit_during_initialization("Cannot create VM thread. "
3909                                     "Out of system resources.");
3910     }
3911 
3912     // Wait for the VM thread to become ready, and VMThread::run to initialize
3913     // Monitors can have spurious returns, must always check another state flag
3914     {
3915       MonitorLocker ml(Notify_lock);
3916       os::start_thread(vmthread);
3917       while (vmthread->active_handles() == NULL) {
3918         ml.wait();
3919       }
3920     }
3921   }
3922 
3923   assert(Universe::is_fully_initialized(), "not initialized");
3924   if (VerifyDuringStartup) {
3925     // Make sure we're starting with a clean slate.
3926     VM_Verify verify_op;
3927     VMThread::execute(&verify_op);
3928   }
3929 
3930   // We need this to update the java.vm.info property in case any flags used
3931   // to initially define it have been changed. This is needed for both CDS and
3932   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3933   // is initially computed. See Abstract_VM_Version::vm_info_string().
3934   // This update must happen before we initialize the java classes, but
3935   // after any initialization logic that might modify the flags.
3936   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3937 
3938   Thread* THREAD = Thread::current();
3939 
3940   // Always call even when there are not JVMTI environments yet, since environments
3941   // may be attached late and JVMTI must track phases of VM execution
3942   JvmtiExport::enter_early_start_phase();
3943 
3944   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3945   JvmtiExport::post_early_vm_start();
3946 
3947   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3948 
3949   quicken_jni_functions();
3950 
3951   // No more stub generation allowed after that point.
3952   StubCodeDesc::freeze();
3953 
3954   // Set flag that basic initialization has completed. Used by exceptions and various
3955   // debug stuff, that does not work until all basic classes have been initialized.
3956   set_init_completed();
3957 
3958   LogConfiguration::post_initialize();
3959   Metaspace::post_initialize();
3960 
3961   HOTSPOT_VM_INIT_END();
3962 
3963   // record VM initialization completion time
3964 #if INCLUDE_MANAGEMENT
3965   Management::record_vm_init_completed();
3966 #endif // INCLUDE_MANAGEMENT
3967 
3968   // Signal Dispatcher needs to be started before VMInit event is posted
3969   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3970 
3971   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3972   if (!DisableAttachMechanism) {
3973     AttachListener::vm_start();
3974     if (StartAttachListener || AttachListener::init_at_startup()) {
3975       AttachListener::init();
3976     }
3977   }
3978 
3979   // Launch -Xrun agents
3980   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3981   // back-end can launch with -Xdebug -Xrunjdwp.
3982   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3983     create_vm_init_libraries();
3984   }
3985 
3986   if (CleanChunkPoolAsync) {
3987     Chunk::start_chunk_pool_cleaner_task();
3988   }
3989 
3990   // Start the service thread
3991   // The service thread enqueues JVMTI deferred events and does various hashtable
3992   // and other cleanups.  Needs to start before the compilers start posting events.
3993   ServiceThread::initialize();
3994 
3995   // initialize compiler(s)
3996 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3997 #if INCLUDE_JVMCI
3998   bool force_JVMCI_intialization = false;
3999   if (EnableJVMCI) {
4000     // Initialize JVMCI eagerly when it is explicitly requested.
4001     // Or when JVMCILibDumpJNIConfig or JVMCIPrintProperties is enabled.
4002     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties || JVMCILibDumpJNIConfig;
4003 
4004     if (!force_JVMCI_intialization) {
4005       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
4006       // compilations via JVMCI will not actually block until JVMCI is initialized.
4007       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
4008     }
4009   }
4010 #endif
4011   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
4012   // Postpone completion of compiler initialization to after JVMCI
4013   // is initialized to avoid timeouts of blocking compilations.
4014   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
4015     CompileBroker::compilation_init_phase2();
4016   }
4017 #endif
4018 
4019   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
4020   // It is done after compilers are initialized, because otherwise compilations of
4021   // signature polymorphic MH intrinsics can be missed
4022   // (see SystemDictionary::find_method_handle_intrinsic).
4023   initialize_jsr292_core_classes(CHECK_JNI_ERR);
4024 
4025   // This will initialize the module system.  Only java.base classes can be
4026   // loaded until phase 2 completes
4027   call_initPhase2(CHECK_JNI_ERR);
4028 
4029   JFR_ONLY(Jfr::on_create_vm_2();)
4030 
4031   // Always call even when there are not JVMTI environments yet, since environments
4032   // may be attached late and JVMTI must track phases of VM execution
4033   JvmtiExport::enter_start_phase();
4034 
4035   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
4036   JvmtiExport::post_vm_start();
4037 
4038   // Final system initialization including security manager and system class loader
4039   call_initPhase3(CHECK_JNI_ERR);
4040 
4041   // cache the system and platform class loaders
4042   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
4043 
4044 #if INCLUDE_CDS
4045   // capture the module path info from the ModuleEntryTable
4046   ClassLoader::initialize_module_path(THREAD);
4047 #endif
4048 
4049 #if INCLUDE_JVMCI
4050   if (force_JVMCI_intialization) {
4051     JVMCI::initialize_compiler(CHECK_JNI_ERR);
4052     CompileBroker::compilation_init_phase2();
4053   }
4054 #endif
4055 
4056   // Always call even when there are not JVMTI environments yet, since environments
4057   // may be attached late and JVMTI must track phases of VM execution
4058   JvmtiExport::enter_live_phase();
4059 
4060   // Make perfmemory accessible
4061   PerfMemory::set_accessible(true);
4062 
4063   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
4064   JvmtiExport::post_vm_initialized();
4065 
4066   JFR_ONLY(Jfr::on_create_vm_3();)
4067 
4068 #if INCLUDE_MANAGEMENT
4069   Management::initialize(THREAD);
4070 
4071   if (HAS_PENDING_EXCEPTION) {
4072     // management agent fails to start possibly due to
4073     // configuration problem and is responsible for printing
4074     // stack trace if appropriate. Simply exit VM.
4075     vm_exit(1);
4076   }
4077 #endif // INCLUDE_MANAGEMENT
4078 
4079   if (MemProfiling)                   MemProfiler::engage();
4080   StatSampler::engage();
4081   if (CheckJNICalls)                  JniPeriodicChecker::engage();
4082 
4083   BiasedLocking::init();
4084 
4085 #if INCLUDE_RTM_OPT
4086   RTMLockingCounters::init();
4087 #endif
4088 
4089   call_postVMInitHook(THREAD);
4090   // The Java side of PostVMInitHook.run must deal with all
4091   // exceptions and provide means of diagnosis.
4092   if (HAS_PENDING_EXCEPTION) {
4093     CLEAR_PENDING_EXCEPTION;
4094   }
4095 
4096   {
4097     MutexLocker ml(PeriodicTask_lock);
4098     // Make sure the WatcherThread can be started by WatcherThread::start()
4099     // or by dynamic enrollment.
4100     WatcherThread::make_startable();
4101     // Start up the WatcherThread if there are any periodic tasks
4102     // NOTE:  All PeriodicTasks should be registered by now. If they
4103     //   aren't, late joiners might appear to start slowly (we might
4104     //   take a while to process their first tick).
4105     if (PeriodicTask::num_tasks() > 0) {
4106       WatcherThread::start();
4107     }
4108   }
4109 
4110   create_vm_timer.end();
4111 #ifdef ASSERT
4112   _vm_complete = true;
4113 #endif
4114 
4115   if (DumpSharedSpaces) {
4116     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4117     ShouldNotReachHere();
4118   }
4119 
4120   return JNI_OK;
4121 }
4122 
4123 // type for the Agent_OnLoad and JVM_OnLoad entry points
4124 extern "C" {
4125   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4126 }
4127 // Find a command line agent library and return its entry point for
4128 //         -agentlib:  -agentpath:   -Xrun
4129 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4130 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4131                                     const char *on_load_symbols[],
4132                                     size_t num_symbol_entries) {
4133   OnLoadEntry_t on_load_entry = NULL;
4134   void *library = NULL;
4135 
4136   if (!agent->valid()) {
4137     char buffer[JVM_MAXPATHLEN];
4138     char ebuf[1024] = "";
4139     const char *name = agent->name();
4140     const char *msg = "Could not find agent library ";
4141 
4142     // First check to see if agent is statically linked into executable
4143     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4144       library = agent->os_lib();
4145     } else if (agent->is_absolute_path()) {
4146       library = os::dll_load(name, ebuf, sizeof ebuf);
4147       if (library == NULL) {
4148         const char *sub_msg = " in absolute path, with error: ";
4149         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4150         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4151         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4152         // If we can't find the agent, exit.
4153         vm_exit_during_initialization(buf, NULL);
4154         FREE_C_HEAP_ARRAY(char, buf);
4155       }
4156     } else {
4157       // Try to load the agent from the standard dll directory
4158       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4159                              name)) {
4160         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4161       }
4162       if (library == NULL) { // Try the library path directory.
4163         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4164           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4165         }
4166         if (library == NULL) {
4167           const char *sub_msg = " on the library path, with error: ";
4168           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4169 
4170           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4171                        strlen(ebuf) + strlen(sub_msg2) + 1;
4172           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4173           if (!agent->is_instrument_lib()) {
4174             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4175           } else {
4176             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4177           }
4178           // If we can't find the agent, exit.
4179           vm_exit_during_initialization(buf, NULL);
4180           FREE_C_HEAP_ARRAY(char, buf);
4181         }
4182       }
4183     }
4184     agent->set_os_lib(library);
4185     agent->set_valid();
4186   }
4187 
4188   // Find the OnLoad function.
4189   on_load_entry =
4190     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4191                                                           false,
4192                                                           on_load_symbols,
4193                                                           num_symbol_entries));
4194   return on_load_entry;
4195 }
4196 
4197 // Find the JVM_OnLoad entry point
4198 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4199   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4200   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4201 }
4202 
4203 // Find the Agent_OnLoad entry point
4204 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4205   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4206   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4207 }
4208 
4209 // For backwards compatibility with -Xrun
4210 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4211 // treated like -agentpath:
4212 // Must be called before agent libraries are created
4213 void Threads::convert_vm_init_libraries_to_agents() {
4214   AgentLibrary* agent;
4215   AgentLibrary* next;
4216 
4217   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4218     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4219     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4220 
4221     // If there is an JVM_OnLoad function it will get called later,
4222     // otherwise see if there is an Agent_OnLoad
4223     if (on_load_entry == NULL) {
4224       on_load_entry = lookup_agent_on_load(agent);
4225       if (on_load_entry != NULL) {
4226         // switch it to the agent list -- so that Agent_OnLoad will be called,
4227         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4228         Arguments::convert_library_to_agent(agent);
4229       } else {
4230         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4231       }
4232     }
4233   }
4234 }
4235 
4236 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4237 // Invokes Agent_OnLoad
4238 // Called very early -- before JavaThreads exist
4239 void Threads::create_vm_init_agents() {
4240   extern struct JavaVM_ main_vm;
4241   AgentLibrary* agent;
4242 
4243   JvmtiExport::enter_onload_phase();
4244 
4245   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4246     // CDS dumping does not support native JVMTI agent.
4247     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
4248     if (Arguments::is_dumping_archive()) {
4249       if(!agent->is_instrument_lib()) {
4250         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
4251       } else if (!AllowArchivingWithJavaAgent) {
4252         vm_exit_during_cds_dumping(
4253           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
4254       }
4255     }
4256 
4257     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4258 
4259     if (on_load_entry != NULL) {
4260       // Invoke the Agent_OnLoad function
4261       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4262       if (err != JNI_OK) {
4263         vm_exit_during_initialization("agent library failed to init", agent->name());
4264       }
4265     } else {
4266       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4267     }
4268   }
4269 
4270   JvmtiExport::enter_primordial_phase();
4271 }
4272 
4273 extern "C" {
4274   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4275 }
4276 
4277 void Threads::shutdown_vm_agents() {
4278   // Send any Agent_OnUnload notifications
4279   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4280   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4281   extern struct JavaVM_ main_vm;
4282   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4283 
4284     // Find the Agent_OnUnload function.
4285     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4286                                                    os::find_agent_function(agent,
4287                                                    false,
4288                                                    on_unload_symbols,
4289                                                    num_symbol_entries));
4290 
4291     // Invoke the Agent_OnUnload function
4292     if (unload_entry != NULL) {
4293       JavaThread* thread = JavaThread::current();
4294       ThreadToNativeFromVM ttn(thread);
4295       HandleMark hm(thread);
4296       (*unload_entry)(&main_vm);
4297     }
4298   }
4299 }
4300 
4301 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4302 // Invokes JVM_OnLoad
4303 void Threads::create_vm_init_libraries() {
4304   extern struct JavaVM_ main_vm;
4305   AgentLibrary* agent;
4306 
4307   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4308     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4309 
4310     if (on_load_entry != NULL) {
4311       // Invoke the JVM_OnLoad function
4312       JavaThread* thread = JavaThread::current();
4313       ThreadToNativeFromVM ttn(thread);
4314       HandleMark hm(thread);
4315       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4316       if (err != JNI_OK) {
4317         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4318       }
4319     } else {
4320       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4321     }
4322   }
4323 }
4324 
4325 
4326 // Last thread running calls java.lang.Shutdown.shutdown()
4327 void JavaThread::invoke_shutdown_hooks() {
4328   HandleMark hm(this);
4329 
4330   // Link all classes for dynamic CDS dumping before vm exit.
4331   // Same operation is being done in JVM_BeforeHalt for handling the
4332   // case where the application calls System.exit().
4333   if (DynamicDumpSharedSpaces) {
4334     MetaspaceShared::link_and_cleanup_shared_classes(this);
4335   }
4336 
4337   // We could get here with a pending exception, if so clear it now.
4338   if (this->has_pending_exception()) {
4339     this->clear_pending_exception();
4340   }
4341 
4342   EXCEPTION_MARK;
4343   Klass* shutdown_klass =
4344     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4345                                       THREAD);
4346   if (shutdown_klass != NULL) {
4347     // SystemDictionary::resolve_or_null will return null if there was
4348     // an exception.  If we cannot load the Shutdown class, just don't
4349     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4350     // won't be run.  Note that if a shutdown hook was registered,
4351     // the Shutdown class would have already been loaded
4352     // (Runtime.addShutdownHook will load it).
4353     JavaValue result(T_VOID);
4354     JavaCalls::call_static(&result,
4355                            shutdown_klass,
4356                            vmSymbols::shutdown_name(),
4357                            vmSymbols::void_method_signature(),
4358                            THREAD);
4359   }
4360   CLEAR_PENDING_EXCEPTION;
4361 }
4362 
4363 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4364 // the program falls off the end of main(). Another VM exit path is through
4365 // vm_exit() when the program calls System.exit() to return a value or when
4366 // there is a serious error in VM. The two shutdown paths are not exactly
4367 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4368 // and VM_Exit op at VM level.
4369 //
4370 // Shutdown sequence:
4371 //   + Shutdown native memory tracking if it is on
4372 //   + Wait until we are the last non-daemon thread to execute
4373 //     <-- every thing is still working at this moment -->
4374 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4375 //        shutdown hooks
4376 //   + Call before_exit(), prepare for VM exit
4377 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4378 //        currently the only user of this mechanism is File.deleteOnExit())
4379 //      > stop StatSampler, watcher thread,
4380 //        post thread end and vm death events to JVMTI,
4381 //        stop signal thread
4382 //   + Call JavaThread::exit(), it will:
4383 //      > release JNI handle blocks, remove stack guard pages
4384 //      > remove this thread from Threads list
4385 //     <-- no more Java code from this thread after this point -->
4386 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4387 //     the compiler threads at safepoint
4388 //     <-- do not use anything that could get blocked by Safepoint -->
4389 //   + Disable tracing at JNI/JVM barriers
4390 //   + Set _vm_exited flag for threads that are still running native code
4391 //   + Call exit_globals()
4392 //      > deletes tty
4393 //      > deletes PerfMemory resources
4394 //   + Delete this thread
4395 //   + Return to caller
4396 
4397 bool Threads::destroy_vm() {
4398   JavaThread* thread = JavaThread::current();
4399 
4400 #ifdef ASSERT
4401   _vm_complete = false;
4402 #endif
4403   // Wait until we are the last non-daemon thread to execute
4404   { MonitorLocker nu(Threads_lock);
4405     while (Threads::number_of_non_daemon_threads() > 1)
4406       // This wait should make safepoint checks, wait without a timeout,
4407       // and wait as a suspend-equivalent condition.
4408       nu.wait(0, Mutex::_as_suspend_equivalent_flag);
4409   }
4410 
4411   EventShutdown e;
4412   if (e.should_commit()) {
4413     e.set_reason("No remaining non-daemon Java threads");
4414     e.commit();
4415   }
4416 
4417   // Hang forever on exit if we are reporting an error.
4418   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4419     os::infinite_sleep();
4420   }
4421   os::wait_for_keypress_at_exit();
4422 
4423   // run Java level shutdown hooks
4424   thread->invoke_shutdown_hooks();
4425 
4426   before_exit(thread);
4427 
4428   thread->exit(true);
4429 
4430   // Stop VM thread.
4431   {
4432     // 4945125 The vm thread comes to a safepoint during exit.
4433     // GC vm_operations can get caught at the safepoint, and the
4434     // heap is unparseable if they are caught. Grab the Heap_lock
4435     // to prevent this. The GC vm_operations will not be able to
4436     // queue until after the vm thread is dead. After this point,
4437     // we'll never emerge out of the safepoint before the VM exits.
4438 
4439     MutexLocker ml(Heap_lock, Mutex::_no_safepoint_check_flag);
4440 
4441     VMThread::wait_for_vm_thread_exit();
4442     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4443     VMThread::destroy();
4444   }
4445 
4446   // Now, all Java threads are gone except daemon threads. Daemon threads
4447   // running Java code or in VM are stopped by the Safepoint. However,
4448   // daemon threads executing native code are still running.  But they
4449   // will be stopped at native=>Java/VM barriers. Note that we can't
4450   // simply kill or suspend them, as it is inherently deadlock-prone.
4451 
4452   VM_Exit::set_vm_exited();
4453 
4454   // Clean up ideal graph printers after the VMThread has started
4455   // the final safepoint which will block all the Compiler threads.
4456   // Note that this Thread has already logically exited so the
4457   // clean_up() function's use of a JavaThreadIteratorWithHandle
4458   // would be a problem except set_vm_exited() has remembered the
4459   // shutdown thread which is granted a policy exception.
4460 #if defined(COMPILER2) && !defined(PRODUCT)
4461   IdealGraphPrinter::clean_up();
4462 #endif
4463 
4464   notify_vm_shutdown();
4465 
4466   // exit_globals() will delete tty
4467   exit_globals();
4468 
4469   // We are after VM_Exit::set_vm_exited() so we can't call
4470   // thread->smr_delete() or we will block on the Threads_lock.
4471   // Deleting the shutdown thread here is safe because another
4472   // JavaThread cannot have an active ThreadsListHandle for
4473   // this JavaThread.
4474   delete thread;
4475 
4476 #if INCLUDE_JVMCI
4477   if (JVMCICounterSize > 0) {
4478     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4479   }
4480 #endif
4481 
4482   LogConfiguration::finalize();
4483 
4484   return true;
4485 }
4486 
4487 
4488 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4489   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4490   return is_supported_jni_version(version);
4491 }
4492 
4493 
4494 jboolean Threads::is_supported_jni_version(jint version) {
4495   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4496   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4497   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4498   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4499   if (version == JNI_VERSION_9) return JNI_TRUE;
4500   if (version == JNI_VERSION_10) return JNI_TRUE;
4501   return JNI_FALSE;
4502 }
4503 
4504 
4505 void Threads::add(JavaThread* p, bool force_daemon) {
4506   // The threads lock must be owned at this point
4507   assert(Threads_lock->owned_by_self(), "must have threads lock");
4508 
4509   BarrierSet::barrier_set()->on_thread_attach(p);
4510 
4511   // Once a JavaThread is added to the Threads list, smr_delete() has
4512   // to be used to delete it. Otherwise we can just delete it directly.
4513   p->set_on_thread_list();
4514 
4515   _number_of_threads++;
4516   oop threadObj = p->threadObj();
4517   bool daemon = true;
4518   // Bootstrapping problem: threadObj can be null for initial
4519   // JavaThread (or for threads attached via JNI)
4520   if ((!force_daemon) && !is_daemon((threadObj))) {
4521     _number_of_non_daemon_threads++;
4522     daemon = false;
4523   }
4524 
4525   ThreadService::add_thread(p, daemon);
4526 
4527   // Maintain fast thread list
4528   ThreadsSMRSupport::add_thread(p);
4529 
4530   // Possible GC point.
4531   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4532 }
4533 
4534 void Threads::remove(JavaThread* p, bool is_daemon) {
4535 
4536   // Reclaim the ObjectMonitors from the om_in_use_list and om_free_list of the moribund thread.
4537   ObjectSynchronizer::om_flush(p);
4538 
4539   // Extra scope needed for Thread_lock, so we can check
4540   // that we do not remove thread without safepoint code notice
4541   { MonitorLocker ml(Threads_lock);
4542 
4543     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4544 
4545     // Maintain fast thread list
4546     ThreadsSMRSupport::remove_thread(p);
4547 
4548     _number_of_threads--;
4549     if (!is_daemon) {
4550       _number_of_non_daemon_threads--;
4551 
4552       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4553       // on destroy_vm will wake up.
4554       if (number_of_non_daemon_threads() == 1) {
4555         ml.notify_all();
4556       }
4557     }
4558     ThreadService::remove_thread(p, is_daemon);
4559 
4560     // Make sure that safepoint code disregard this thread. This is needed since
4561     // the thread might mess around with locks after this point. This can cause it
4562     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4563     // of this thread since it is removed from the queue.
4564     p->set_terminated_value();
4565   } // unlock Threads_lock
4566 
4567   // Since Events::log uses a lock, we grab it outside the Threads_lock
4568   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4569 }
4570 
4571 // Operations on the Threads list for GC.  These are not explicitly locked,
4572 // but the garbage collector must provide a safe context for them to run.
4573 // In particular, these things should never be called when the Threads_lock
4574 // is held by some other thread. (Note: the Safepoint abstraction also
4575 // uses the Threads_lock to guarantee this property. It also makes sure that
4576 // all threads gets blocked when exiting or starting).
4577 
4578 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4579   ALL_JAVA_THREADS(p) {
4580     p->oops_do(f, cf);
4581   }
4582   VMThread::vm_thread()->oops_do(f, cf);
4583 }
4584 
4585 void Threads::change_thread_claim_token() {
4586   if (++_thread_claim_token == 0) {
4587     // On overflow of the token counter, there is a risk of future
4588     // collisions between a new global token value and a stale token
4589     // for a thread, because not all iterations visit all threads.
4590     // (Though it's pretty much a theoretical concern for non-trivial
4591     // token counter sizes.)  To deal with the possibility, reset all
4592     // the thread tokens to zero on global token overflow.
4593     struct ResetClaims : public ThreadClosure {
4594       virtual void do_thread(Thread* t) {
4595         t->claim_threads_do(false, 0);
4596       }
4597     } reset_claims;
4598     Threads::threads_do(&reset_claims);
4599     // On overflow, update the global token to non-zero, to
4600     // avoid the special "never claimed" initial thread value.
4601     _thread_claim_token = 1;
4602   }
4603 }
4604 
4605 #ifdef ASSERT
4606 void assert_thread_claimed(const char* kind, Thread* t, uintx expected) {
4607   const uintx token = t->threads_do_token();
4608   assert(token == expected,
4609          "%s " PTR_FORMAT " has incorrect value " UINTX_FORMAT " != "
4610          UINTX_FORMAT, kind, p2i(t), token, expected);
4611 }
4612 
4613 void Threads::assert_all_threads_claimed() {
4614   ALL_JAVA_THREADS(p) {
4615     assert_thread_claimed("Thread", p, _thread_claim_token);
4616   }
4617   assert_thread_claimed("VMThread", VMThread::vm_thread(), _thread_claim_token);
4618 }
4619 #endif // ASSERT
4620 
4621 class ParallelOopsDoThreadClosure : public ThreadClosure {
4622 private:
4623   OopClosure* _f;
4624   CodeBlobClosure* _cf;
4625 public:
4626   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4627   void do_thread(Thread* t) {
4628     t->oops_do(_f, _cf);
4629   }
4630 };
4631 
4632 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4633   ParallelOopsDoThreadClosure tc(f, cf);
4634   possibly_parallel_threads_do(is_par, &tc);
4635 }
4636 
4637 void Threads::nmethods_do(CodeBlobClosure* cf) {
4638   ALL_JAVA_THREADS(p) {
4639     // This is used by the code cache sweeper to mark nmethods that are active
4640     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4641     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4642     if(!p->is_Code_cache_sweeper_thread()) {
4643       p->nmethods_do(cf);
4644     }
4645   }
4646 }
4647 
4648 void Threads::metadata_do(MetadataClosure* f) {
4649   ALL_JAVA_THREADS(p) {
4650     p->metadata_do(f);
4651   }
4652 }
4653 
4654 class ThreadHandlesClosure : public ThreadClosure {
4655   void (*_f)(Metadata*);
4656  public:
4657   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4658   virtual void do_thread(Thread* thread) {
4659     thread->metadata_handles_do(_f);
4660   }
4661 };
4662 
4663 void Threads::metadata_handles_do(void f(Metadata*)) {
4664   // Only walk the Handles in Thread.
4665   ThreadHandlesClosure handles_closure(f);
4666   threads_do(&handles_closure);
4667 }
4668 
4669 // Get count Java threads that are waiting to enter the specified monitor.
4670 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4671                                                          int count,
4672                                                          address monitor) {
4673   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4674 
4675   int i = 0;
4676   DO_JAVA_THREADS(t_list, p) {
4677     if (!p->can_call_java()) continue;
4678 
4679     address pending = (address)p->current_pending_monitor();
4680     if (pending == monitor) {             // found a match
4681       if (i < count) result->append(p);   // save the first count matches
4682       i++;
4683     }
4684   }
4685 
4686   return result;
4687 }
4688 
4689 
4690 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4691                                                       address owner) {
4692   // NULL owner means not locked so we can skip the search
4693   if (owner == NULL) return NULL;
4694 
4695   DO_JAVA_THREADS(t_list, p) {
4696     // first, see if owner is the address of a Java thread
4697     if (owner == (address)p) return p;
4698   }
4699 
4700   // Cannot assert on lack of success here since this function may be
4701   // used by code that is trying to report useful problem information
4702   // like deadlock detection.
4703   if (UseHeavyMonitors) return NULL;
4704 
4705   // If we didn't find a matching Java thread and we didn't force use of
4706   // heavyweight monitors, then the owner is the stack address of the
4707   // Lock Word in the owning Java thread's stack.
4708   //
4709   JavaThread* the_owner = NULL;
4710   DO_JAVA_THREADS(t_list, q) {
4711     if (q->is_lock_owned(owner)) {
4712       the_owner = q;
4713       break;
4714     }
4715   }
4716 
4717   // cannot assert on lack of success here; see above comment
4718   return the_owner;
4719 }
4720 
4721 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4722 void Threads::print_on(outputStream* st, bool print_stacks,
4723                        bool internal_format, bool print_concurrent_locks,
4724                        bool print_extended_info) {
4725   char buf[32];
4726   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4727 
4728   st->print_cr("Full thread dump %s (%s %s):",
4729                VM_Version::vm_name(),
4730                VM_Version::vm_release(),
4731                VM_Version::vm_info_string());
4732   st->cr();
4733 
4734 #if INCLUDE_SERVICES
4735   // Dump concurrent locks
4736   ConcurrentLocksDump concurrent_locks;
4737   if (print_concurrent_locks) {
4738     concurrent_locks.dump_at_safepoint();
4739   }
4740 #endif // INCLUDE_SERVICES
4741 
4742   ThreadsSMRSupport::print_info_on(st);
4743   st->cr();
4744 
4745   ALL_JAVA_THREADS(p) {
4746     ResourceMark rm;
4747     p->print_on(st, print_extended_info);
4748     if (print_stacks) {
4749       if (internal_format) {
4750         p->trace_stack();
4751       } else {
4752         p->print_stack_on(st);
4753       }
4754     }
4755     st->cr();
4756 #if INCLUDE_SERVICES
4757     if (print_concurrent_locks) {
4758       concurrent_locks.print_locks_on(p, st);
4759     }
4760 #endif // INCLUDE_SERVICES
4761   }
4762 
4763   VMThread::vm_thread()->print_on(st);
4764   st->cr();
4765   Universe::heap()->print_gc_threads_on(st);
4766   WatcherThread* wt = WatcherThread::watcher_thread();
4767   if (wt != NULL) {
4768     wt->print_on(st);
4769     st->cr();
4770   }
4771 
4772   st->flush();
4773 }
4774 
4775 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4776                              int buflen, bool* found_current) {
4777   if (this_thread != NULL) {
4778     bool is_current = (current == this_thread);
4779     *found_current = *found_current || is_current;
4780     st->print("%s", is_current ? "=>" : "  ");
4781 
4782     st->print(PTR_FORMAT, p2i(this_thread));
4783     st->print(" ");
4784     this_thread->print_on_error(st, buf, buflen);
4785     st->cr();
4786   }
4787 }
4788 
4789 class PrintOnErrorClosure : public ThreadClosure {
4790   outputStream* _st;
4791   Thread* _current;
4792   char* _buf;
4793   int _buflen;
4794   bool* _found_current;
4795  public:
4796   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4797                       int buflen, bool* found_current) :
4798    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4799 
4800   virtual void do_thread(Thread* thread) {
4801     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4802   }
4803 };
4804 
4805 // Threads::print_on_error() is called by fatal error handler. It's possible
4806 // that VM is not at safepoint and/or current thread is inside signal handler.
4807 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4808 // memory (even in resource area), it might deadlock the error handler.
4809 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4810                              int buflen) {
4811   ThreadsSMRSupport::print_info_on(st);
4812   st->cr();
4813 
4814   bool found_current = false;
4815   st->print_cr("Java Threads: ( => current thread )");
4816   ALL_JAVA_THREADS(thread) {
4817     print_on_error(thread, st, current, buf, buflen, &found_current);
4818   }
4819   st->cr();
4820 
4821   st->print_cr("Other Threads:");
4822   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4823   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4824 
4825   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4826   Universe::heap()->gc_threads_do(&print_closure);
4827 
4828   if (!found_current) {
4829     st->cr();
4830     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4831     current->print_on_error(st, buf, buflen);
4832     st->cr();
4833   }
4834   st->cr();
4835 
4836   st->print_cr("Threads with active compile tasks:");
4837   print_threads_compiling(st, buf, buflen);
4838 }
4839 
4840 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen, bool short_form) {
4841   ALL_JAVA_THREADS(thread) {
4842     if (thread->is_Compiler_thread()) {
4843       CompilerThread* ct = (CompilerThread*) thread;
4844 
4845       // Keep task in local variable for NULL check.
4846       // ct->_task might be set to NULL by concurring compiler thread
4847       // because it completed the compilation. The task is never freed,
4848       // though, just returned to a free list.
4849       CompileTask* task = ct->task();
4850       if (task != NULL) {
4851         thread->print_name_on_error(st, buf, buflen);
4852         st->print("  ");
4853         task->print(st, NULL, short_form, true);
4854       }
4855     }
4856   }
4857 }
4858 
4859 
4860 // Internal SpinLock and Mutex
4861 // Based on ParkEvent
4862 
4863 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4864 //
4865 // We employ SpinLocks _only for low-contention, fixed-length
4866 // short-duration critical sections where we're concerned
4867 // about native mutex_t or HotSpot Mutex:: latency.
4868 // The mux construct provides a spin-then-block mutual exclusion
4869 // mechanism.
4870 //
4871 // Testing has shown that contention on the ListLock guarding gFreeList
4872 // is common.  If we implement ListLock as a simple SpinLock it's common
4873 // for the JVM to devolve to yielding with little progress.  This is true
4874 // despite the fact that the critical sections protected by ListLock are
4875 // extremely short.
4876 //
4877 // TODO-FIXME: ListLock should be of type SpinLock.
4878 // We should make this a 1st-class type, integrated into the lock
4879 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4880 // should have sufficient padding to avoid false-sharing and excessive
4881 // cache-coherency traffic.
4882 
4883 
4884 typedef volatile int SpinLockT;
4885 
4886 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4887   if (Atomic::cmpxchg(adr, 0, 1) == 0) {
4888     return;   // normal fast-path return
4889   }
4890 
4891   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4892   int ctr = 0;
4893   int Yields = 0;
4894   for (;;) {
4895     while (*adr != 0) {
4896       ++ctr;
4897       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4898         if (Yields > 5) {
4899           os::naked_short_sleep(1);
4900         } else {
4901           os::naked_yield();
4902           ++Yields;
4903         }
4904       } else {
4905         SpinPause();
4906       }
4907     }
4908     if (Atomic::cmpxchg(adr, 0, 1) == 0) return;
4909   }
4910 }
4911 
4912 void Thread::SpinRelease(volatile int * adr) {
4913   assert(*adr != 0, "invariant");
4914   OrderAccess::fence();      // guarantee at least release consistency.
4915   // Roach-motel semantics.
4916   // It's safe if subsequent LDs and STs float "up" into the critical section,
4917   // but prior LDs and STs within the critical section can't be allowed
4918   // to reorder or float past the ST that releases the lock.
4919   // Loads and stores in the critical section - which appear in program
4920   // order before the store that releases the lock - must also appear
4921   // before the store that releases the lock in memory visibility order.
4922   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4923   // the ST of 0 into the lock-word which releases the lock, so fence
4924   // more than covers this on all platforms.
4925   *adr = 0;
4926 }
4927 
4928 // muxAcquire and muxRelease:
4929 //
4930 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4931 //    The LSB of the word is set IFF the lock is held.
4932 //    The remainder of the word points to the head of a singly-linked list
4933 //    of threads blocked on the lock.
4934 //
4935 // *  The current implementation of muxAcquire-muxRelease uses its own
4936 //    dedicated Thread._MuxEvent instance.  If we're interested in
4937 //    minimizing the peak number of extant ParkEvent instances then
4938 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4939 //    as certain invariants were satisfied.  Specifically, care would need
4940 //    to be taken with regards to consuming unpark() "permits".
4941 //    A safe rule of thumb is that a thread would never call muxAcquire()
4942 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4943 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4944 //    consume an unpark() permit intended for monitorenter, for instance.
4945 //    One way around this would be to widen the restricted-range semaphore
4946 //    implemented in park().  Another alternative would be to provide
4947 //    multiple instances of the PlatformEvent() for each thread.  One
4948 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4949 //
4950 // *  Usage:
4951 //    -- Only as leaf locks
4952 //    -- for short-term locking only as muxAcquire does not perform
4953 //       thread state transitions.
4954 //
4955 // Alternatives:
4956 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4957 //    but with parking or spin-then-park instead of pure spinning.
4958 // *  Use Taura-Oyama-Yonenzawa locks.
4959 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4960 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4961 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4962 //    acquiring threads use timers (ParkTimed) to detect and recover from
4963 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4964 //    boundaries by using placement-new.
4965 // *  Augment MCS with advisory back-link fields maintained with CAS().
4966 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4967 //    The validity of the backlinks must be ratified before we trust the value.
4968 //    If the backlinks are invalid the exiting thread must back-track through the
4969 //    the forward links, which are always trustworthy.
4970 // *  Add a successor indication.  The LockWord is currently encoded as
4971 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4972 //    to provide the usual futile-wakeup optimization.
4973 //    See RTStt for details.
4974 //
4975 
4976 
4977 const intptr_t LOCKBIT = 1;
4978 
4979 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4980   intptr_t w = Atomic::cmpxchg(Lock, (intptr_t)0, LOCKBIT);
4981   if (w == 0) return;
4982   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(Lock, w, w|LOCKBIT) == w) {
4983     return;
4984   }
4985 
4986   ParkEvent * const Self = Thread::current()->_MuxEvent;
4987   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4988   for (;;) {
4989     int its = (os::is_MP() ? 100 : 0) + 1;
4990 
4991     // Optional spin phase: spin-then-park strategy
4992     while (--its >= 0) {
4993       w = *Lock;
4994       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(Lock, w, w|LOCKBIT) == w) {
4995         return;
4996       }
4997     }
4998 
4999     Self->reset();
5000     Self->OnList = intptr_t(Lock);
5001     // The following fence() isn't _strictly necessary as the subsequent
5002     // CAS() both serializes execution and ratifies the fetched *Lock value.
5003     OrderAccess::fence();
5004     for (;;) {
5005       w = *Lock;
5006       if ((w & LOCKBIT) == 0) {
5007         if (Atomic::cmpxchg(Lock, w, w|LOCKBIT) == w) {
5008           Self->OnList = 0;   // hygiene - allows stronger asserts
5009           return;
5010         }
5011         continue;      // Interference -- *Lock changed -- Just retry
5012       }
5013       assert(w & LOCKBIT, "invariant");
5014       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
5015       if (Atomic::cmpxchg(Lock, w, intptr_t(Self)|LOCKBIT) == w) break;
5016     }
5017 
5018     while (Self->OnList != 0) {
5019       Self->park();
5020     }
5021   }
5022 }
5023 
5024 // Release() must extract a successor from the list and then wake that thread.
5025 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
5026 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
5027 // Release() would :
5028 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
5029 // (B) Extract a successor from the private list "in-hand"
5030 // (C) attempt to CAS() the residual back into *Lock over null.
5031 //     If there were any newly arrived threads and the CAS() would fail.
5032 //     In that case Release() would detach the RATs, re-merge the list in-hand
5033 //     with the RATs and repeat as needed.  Alternately, Release() might
5034 //     detach and extract a successor, but then pass the residual list to the wakee.
5035 //     The wakee would be responsible for reattaching and remerging before it
5036 //     competed for the lock.
5037 //
5038 // Both "pop" and DMR are immune from ABA corruption -- there can be
5039 // multiple concurrent pushers, but only one popper or detacher.
5040 // This implementation pops from the head of the list.  This is unfair,
5041 // but tends to provide excellent throughput as hot threads remain hot.
5042 // (We wake recently run threads first).
5043 //
5044 // All paths through muxRelease() will execute a CAS.
5045 // Release consistency -- We depend on the CAS in muxRelease() to provide full
5046 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
5047 // executed within the critical section are complete and globally visible before the
5048 // store (CAS) to the lock-word that releases the lock becomes globally visible.
5049 void Thread::muxRelease(volatile intptr_t * Lock)  {
5050   for (;;) {
5051     const intptr_t w = Atomic::cmpxchg(Lock, LOCKBIT, (intptr_t)0);
5052     assert(w & LOCKBIT, "invariant");
5053     if (w == LOCKBIT) return;
5054     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
5055     assert(List != NULL, "invariant");
5056     assert(List->OnList == intptr_t(Lock), "invariant");
5057     ParkEvent * const nxt = List->ListNext;
5058     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5059 
5060     // The following CAS() releases the lock and pops the head element.
5061     // The CAS() also ratifies the previously fetched lock-word value.
5062     if (Atomic::cmpxchg(Lock, w, intptr_t(nxt)) != w) {
5063       continue;
5064     }
5065     List->OnList = 0;
5066     OrderAccess::fence();
5067     List->unpark();
5068     return;
5069   }
5070 }
5071 
5072 
5073 void Threads::verify() {
5074   ALL_JAVA_THREADS(p) {
5075     p->verify();
5076   }
5077   VMThread* thread = VMThread::vm_thread();
5078   if (thread != NULL) thread->verify();
5079 }