/* * Copyright (c) 2009, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* ******************************************************************************* * Copyright (C) 2009-2014, International Business Machines * Corporation and others. All Rights Reserved. ******************************************************************************* */ package sun.text.normalizer; import java.io.IOException; import java.nio.ByteBuffer; import java.text.Normalizer; // Original filename in ICU4J: Normalizer2Impl.java public final class NormalizerImpl { public static final class Hangul { /* Korean Hangul and Jamo constants */ public static final int JAMO_L_BASE=0x1100; /* "lead" jamo */ public static final int JAMO_V_BASE=0x1161; /* "vowel" jamo */ public static final int JAMO_T_BASE=0x11a7; /* "trail" jamo */ public static final int HANGUL_BASE=0xac00; public static final int HANGUL_END=0xd7a3; public static final int JAMO_L_COUNT=19; public static final int JAMO_V_COUNT=21; public static final int JAMO_T_COUNT=28; public static final int HANGUL_COUNT=JAMO_L_COUNT*JAMO_V_COUNT*JAMO_T_COUNT; public static final int HANGUL_LIMIT=HANGUL_BASE+HANGUL_COUNT; public static boolean isHangul(int c) { return HANGUL_BASE<=c && c * If dest is a StringBuilder, then the buffer writes directly to it. * Otherwise, the buffer maintains a StringBuilder for intermediate text segments * until no further changes are necessary and whole segments are appended. * append() methods that take combining-class values always write to the StringBuilder. * Other append() methods flush and append to the Appendable. */ public static final class ReorderingBuffer implements Appendable { public ReorderingBuffer(NormalizerImpl ni, Appendable dest, int destCapacity) { impl=ni; app=dest; if (app instanceof StringBuilder) { appIsStringBuilder=true; str=(StringBuilder)dest; // In Java, the constructor subsumes public void init(int destCapacity) str.ensureCapacity(destCapacity); reorderStart=0; if(str.length()==0) { lastCC=0; } else { setIterator(); lastCC=previousCC(); // Set reorderStart after the last code point with cc<=1 if there is one. if(lastCC>1) { while(previousCC()>1) {} } reorderStart=codePointLimit; } } else { appIsStringBuilder=false; str=new StringBuilder(); reorderStart=0; lastCC=0; } } public boolean isEmpty() { return str.length()==0; } public int length() { return str.length(); } public int getLastCC() { return lastCC; } public StringBuilder getStringBuilder() { return str; } public boolean equals(CharSequence s, int start, int limit) { return UTF16Plus.equal(str, 0, str.length(), s, start, limit); } // For Hangul composition, replacing the Leading consonant Jamo with the syllable. public void setLastChar(char c) { str.setCharAt(str.length()-1, c); } public void append(int c, int cc) { if(lastCC<=cc || cc==0) { str.appendCodePoint(c); lastCC=cc; if(cc<=1) { reorderStart=str.length(); } } else { insert(c, cc); } } // s must be in NFD, otherwise change the implementation. public void append(CharSequence s, int start, int limit, int leadCC, int trailCC) { if(start==limit) { return; } if(lastCC<=leadCC || leadCC==0) { if(trailCC<=1) { reorderStart=str.length()+(limit-start); } else if(leadCC<=1) { reorderStart=str.length()+1; // Ok if not a code point boundary. } str.append(s, start, limit); lastCC=trailCC; } else { int c=Character.codePointAt(s, start); start+=Character.charCount(c); insert(c, leadCC); // insert first code point while(startcc;) {} // insert c at codePointLimit, after the character with prevCC<=cc if(c<=0xffff) { str.insert(codePointLimit, (char)c); if(cc<=1) { reorderStart=codePointLimit+1; } } else { str.insert(codePointLimit, Character.toChars(c)); if(cc<=1) { reorderStart=codePointLimit+2; } } } private final NormalizerImpl impl; private final Appendable app; private final StringBuilder str; private final boolean appIsStringBuilder; private int reorderStart; private int lastCC; // private backward iterator private void setIterator() { codePointStart=str.length(); } private void skipPrevious() { // Requires 0=codePointStart) { return 0; } int c=str.codePointBefore(codePointStart); codePointStart-=Character.charCount(c); if(c(nextOffset-offset)) { throw new IOException("Normalizer2 data: not enough bytes for normTrie"); } ICUBinary.skipBytes(bytes, (nextOffset-offset)-trieLength); // skip padding after trie bytes // Read the composition and mapping data. offset=nextOffset; nextOffset=inIndexes[IX_SMALL_FCD_OFFSET]; int numChars=(nextOffset-offset)/2; char[] chars; if(numChars!=0) { chars=new char[numChars]; for(int i=0; i>=1) { if((c&0xff)==0) { bits=smallFCD[c>>8]; // one byte per 0x100 code points } if((bits&1)!=0) { for(int i=0; i<0x20; ++i, ++c) { tccc180[c]=getFCD16FromNormData(c)&0xff; } } else { c+=0x20; } } return this; } catch(IOException e) { throw new InternalError(e); } } public NormalizerImpl load(String name) { return load(ICUBinary.getRequiredData(name)); } public int getNorm16(int c) { return normTrie.get(c); } public boolean isDecompYes(int norm16) { return norm16=MIN_NORMAL_MAYBE_YES) { return norm16&0xff; } if(norm16=MIN_NORMAL_MAYBE_YES ? norm16&0xff : 0; } /** * Returns the FCD data for code point c. * @param c A Unicode code point. * @return The lccc(c) in bits 15..8 and tccc(c) in bits 7..0. */ public int getFCD16(int c) { if(c<0) { return 0; } else if(c<0x180) { return tccc180[c]; } else if(c<=0xffff) { if(!singleLeadMightHaveNonZeroFCD16(c)) { return 0; } } return getFCD16FromNormData(c); } /** Returns the FCD data for U+0000<=c>8]; if(bits==0) { return false; } return ((bits>>((lead>>5)&7))&1)!=0; } /** Gets the FCD value from the regular normalization data. */ public int getFCD16FromNormData(int c) { // Only loops for 1:1 algorithmic mappings. for(;;) { int norm16=getNorm16(c); if(norm16<=minYesNo) { // no decomposition or Hangul syllable, all zeros return 0; } else if(norm16>=MIN_NORMAL_MAYBE_YES) { // combining mark norm16&=0xff; return norm16|(norm16<<8); } else if(norm16>=minMaybeYes) { return 0; } else if(isDecompNoAlgorithmic(norm16)) { c=mapAlgorithmic(c, norm16); } else { // c decomposes, get everything from the variable-length extra data int firstUnit=extraData.charAt(norm16); if((firstUnit&MAPPING_LENGTH_MASK)==0) { // A character that is deleted (maps to an empty string) must // get the worst-case lccc and tccc values because arbitrary // characters on both sides will become adjacent. return 0x1ff; } else { int fcd16=firstUnit>>8; // tccc if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) { fcd16|=extraData.charAt(norm16-1)&0xff00; // lccc } return fcd16; } } } } /** * Gets the decomposition for one code point. * @param c code point * @return c's decomposition, if it has one; returns null if it does not have a decomposition */ public String getDecomposition(int c) { int decomp=-1; int norm16; for(;;) { if(c=limit) { break; } c=Character.codePointAt(s, src); cc=getCC(getNorm16(c)); }; buffer.append(s, 0, src, firstCC, prevCC); buffer.append(s, src, limit); } // Very similar to composeQuickCheck(): Make the same changes in both places if relevant. // doCompose: normalize // !doCompose: isNormalized (buffer must be empty and initialized) public boolean compose(CharSequence s, int src, int limit, boolean onlyContiguous, boolean doCompose, ReorderingBuffer buffer) { int minNoMaybeCP=minCompNoMaybeCP; /* * prevBoundary points to the last character before the current one * that has a composition boundary before it with ccc==0 and quick check "yes". * Keeping track of prevBoundary saves us looking for a composition boundary * when we find a "no" or "maybe". * * When we back out from prevSrc back to prevBoundary, * then we also remove those same characters (which had been simply copied * or canonically-order-inserted) from the ReorderingBuffer. * Therefore, at all times, the [prevBoundary..prevSrc[ source units * must correspond 1:1 to destination units at the end of the destination buffer. */ int prevBoundary=src; int prevSrc; int c=0; int norm16=0; // only for isNormalized int prevCC=0; for(;;) { // count code units below the minimum or with irrelevant data for the quick check for(prevSrc=src; src!=limit;) { if( (c=s.charAt(src))=minNoNo. * c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward) * or has ccc!=0. * Check for Jamo V/T, then for regular characters. * c is not a Hangul syllable or Jamo L because those have "yes" properties. */ if(isJamoVT(norm16) && prevBoundary!=prevSrc) { char prev=s.charAt(prevSrc-1); boolean needToDecompose=false; if(c=MIN_YES_YES_WITH_CC) { int cc=norm16&0xff; // cc!=0 if( onlyContiguous && // FCC (doCompose ? buffer.getLastCC() : prevCC)==0 && prevBoundarycc ) { // Fails FCD test, need to decompose and contiguously recompose. if(!doCompose) { return false; } } else if(doCompose) { buffer.append(c, cc); continue; } else if(prevCC<=cc) { prevCC=cc; continue; } else { return false; } } else if(!doCompose && !isMaybeOrNonZeroCC(norm16)) { return false; } /* * Find appropriate boundaries around this character, * decompose the source text from between the boundaries, * and recompose it. * * We may need to remove the last few characters from the ReorderingBuffer * to account for source text that was copied or appended * but needs to take part in the recomposition. */ /* * Find the last composition boundary in [prevBoundary..src[. * It is either the decomposition of the current character (at prevSrc), * or prevBoundary. */ if(hasCompBoundaryBefore(c, norm16)) { prevBoundary=prevSrc; } else if(doCompose) { buffer.removeSuffix(prevSrc-prevBoundary); } // Find the next composition boundary in [src..limit[ - // modifies src to point to the next starter. src=findNextCompBoundary(s, src, limit); // Decompose [prevBoundary..src[ into the buffer and then recompose that part of it. int recomposeStartIndex=buffer.length(); decomposeShort(s, prevBoundary, src, buffer); recompose(buffer, recomposeStartIndex, onlyContiguous); if(!doCompose) { if(!buffer.equals(s, prevBoundary, src)) { return false; } buffer.remove(); prevCC=0; } // Move to the next starter. We never need to look back before this point again. prevBoundary=src; } return true; } /** * Very similar to compose(): Make the same changes in both places if relevant. * doSpan: spanQuickCheckYes (ignore bit 0 of the return value) * !doSpan: quickCheck * @return bits 31..1: spanQuickCheckYes (==s.length() if "yes") and * bit 0: set if "maybe"; otherwise, if the span length<s.length() * then the quick check result is "no" */ public int composeQuickCheck(CharSequence s, int src, int limit, boolean onlyContiguous, boolean doSpan) { int qcResult=0; int minNoMaybeCP=minCompNoMaybeCP; /* * prevBoundary points to the last character before the current one * that has a composition boundary before it with ccc==0 and quick check "yes". */ int prevBoundary=src; int prevSrc; int c=0; int norm16=0; int prevCC=0; for(;;) { // count code units below the minimum or with irrelevant data for the quick check for(prevSrc=src;;) { if(src==limit) { return (src<<1)|qcResult; // "yes" or "maybe" } if( (c=s.charAt(src))=minNoNo. * c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward) * or has ccc!=0. */ if(isMaybeOrNonZeroCC(norm16)) { int cc=getCCFromYesOrMaybe(norm16); if( onlyContiguous && // FCC cc!=0 && prevCC==0 && prevBoundarycc ) { // Fails FCD test. } else if(prevCC<=cc || cc==0) { prevCC=cc; if(norm16appendZeroCC() because we track // the lead and trail combining classes here, rather than leaving it to // the ReorderingBuffer. // The exception is the call to decomposeShort() which uses the buffer // in the normal way. // Tracks the last FCD-safe boundary, before lccc=0 or after properly-ordered tccc<=1. // Similar to the prevBoundary in the compose() implementation. int prevBoundary=src; int prevSrc; int c=0; int prevFCD16=0; int fcd16=0; for(;;) { // count code units with lccc==0 for(prevSrc=src; src!=limit;) { if((c=s.charAt(src))1) { --prevBoundary; } } else { int p=src-1; if( Character.isLowSurrogate(s.charAt(p)) && prevSrc

1) { prevBoundary=p; } } if(buffer!=null) { // The last lccc==0 character is excluded from the // flush-and-append call in case it needs to be modified. buffer.flushAndAppendZeroCC(s, prevSrc, prevBoundary); buffer.append(s, prevBoundary, src); } // The start of the current character (c). prevSrc=src; } else if(src==limit) { break; } src+=Character.charCount(c); // The current character (c) at [prevSrc..src[ has a non-zero lead combining class. // Check for proper order, and decompose locally if necessary. if((prevFCD16&0xff)<=(fcd16>>8)) { // proper order: prev tccc <= current lccc if((fcd16&0xff)<=1) { prevBoundary=src; } if(buffer!=null) { buffer.appendZeroCC(c); } prevFCD16=fcd16; continue; } else if(buffer==null) { return prevBoundary; // quick check "no" } else { /* * Back out the part of the source that we copied or appended * already but is now going to be decomposed. * prevSrc is set to after what was copied/appended. */ buffer.removeSuffix(prevSrc-prevBoundary); /* * Find the part of the source that needs to be decomposed, * up to the next safe boundary. */ src=findNextFCDBoundary(s, src, limit); /* * The source text does not fulfill the conditions for FCD. * Decompose and reorder a limited piece of the text. */ decomposeShort(s, prevBoundary, src, buffer); prevBoundary=src; prevFCD16=0; } } return src; } // Note: hasDecompBoundary() could be implemented as aliases to // hasFCDBoundaryBefore() and hasFCDBoundaryAfter() // at the cost of building the FCD trie for a decomposition normalizer. public boolean hasDecompBoundary(int c, boolean before) { for(;;) { if(cMIN_NORMAL_MAYBE_YES) { return false; // ccc!=0 } else if(isDecompNoAlgorithmic(norm16)) { c=mapAlgorithmic(c, norm16); } else { // c decomposes, get everything from the variable-length extra data int firstUnit=extraData.charAt(norm16); if((firstUnit&MAPPING_LENGTH_MASK)==0) { return false; } if(!before) { // decomp after-boundary: same as hasFCDBoundaryAfter(), // fcd16<=1 || trailCC==0 if(firstUnit>0x1ff) { return false; // trailCC>1 } if(firstUnit<=0xff) { return true; // trailCC==0 } // if(trailCC==1) test leadCC==0, same as checking for before-boundary } // true if leadCC==0 (hasFCDBoundaryBefore()) return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (extraData.charAt(norm16-1)&0xff00)==0; } } } public boolean hasCompBoundaryBefore(int c) { return c=minMaybeYes; } private static boolean isJamoVT(int norm16) { return norm16==JAMO_VT; } private boolean isHangul(int norm16) { return norm16==minYesNo; } private boolean isCompYesAndZeroCC(int norm16) { return norm16=MIN_YES_YES_WITH_CC || norm16=limitNoNo; } // For use with isCompYes(). // Perhaps the compiler can combine the two tests for MIN_YES_YES_WITH_CC. // static uint8_t getCCFromYes(uint16_t norm16) { // return norm16>=MIN_YES_YES_WITH_CC ? (uint8_t)norm16 : 0; // } private int getCCFromNoNo(int norm16) { if((extraData.charAt(norm16)&MAPPING_HAS_CCC_LCCC_WORD)!=0) { return extraData.charAt(norm16-1)&0xff; } else { return 0; } } // requires that the [cpStart..cpLimit[ character passes isCompYesAndZeroCC() int getTrailCCFromCompYesAndZeroCC(CharSequence s, int cpStart, int cpLimit) { int c; if(cpStart==(cpLimit-1)) { c=s.charAt(cpStart); } else { c=Character.codePointAt(s, cpStart); } int prevNorm16=getNorm16(c); if(prevNorm16<=minYesNo) { return 0; // yesYes and Hangul LV/LVT have ccc=tccc=0 } else { return extraData.charAt(prevNorm16)>>8; // tccc from yesNo } } // Requires algorithmic-NoNo. private int mapAlgorithmic(int c, int norm16) { return c+norm16-(minMaybeYes-MAX_DELTA-1); } // Requires minYesNo>8; if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) { leadCC=extraData.charAt(norm16-1)>>8; } else { leadCC=0; } ++norm16; // skip over the firstUnit buffer.append(extraData, norm16, norm16+length, leadCC, trailCC); } return; } } /** * Finds the recomposition result for * a forward-combining "lead" character, * specified with a pointer to its compositions list, * and a backward-combining "trail" character. * *

If the lead and trail characters combine, then this function returns * the following "compositeAndFwd" value: *

     * Bits 21..1  composite character
     * Bit      0  set if the composite is a forward-combining starter
     * 
* otherwise it returns -1. * *

The compositions list has (trail, compositeAndFwd) pair entries, * encoded as either pairs or triples of 16-bit units. * The last entry has the high bit of its first unit set. * *

The list is sorted by ascending trail characters (there are no duplicates). * A linear search is used. * *

See normalizer2impl.h for a more detailed description * of the compositions list format. */ private static int combine(String compositions, int list, int trail) { int key1, firstUnit; if(trail(firstUnit=compositions.charAt(list))) { list+=2+(firstUnit&COMP_1_TRIPLE); } if(key1==(firstUnit&COMP_1_TRAIL_MASK)) { if((firstUnit&COMP_1_TRIPLE)!=0) { return ((int)compositions.charAt(list+1)<<16)|compositions.charAt(list+2); } else { return compositions.charAt(list+1); } } } else { // trail character is 3400..10FFFF // result entry has 3 units key1=COMP_1_TRAIL_LIMIT+(((trail>>COMP_1_TRAIL_SHIFT))&~COMP_1_TRIPLE); int key2=(trail<(firstUnit=compositions.charAt(list))) { list+=2+(firstUnit&COMP_1_TRIPLE); } else if(key1==(firstUnit&COMP_1_TRAIL_MASK)) { if(key2>(secondUnit=compositions.charAt(list+1))) { if((firstUnit&COMP_1_LAST_TUPLE)!=0) { break; } else { list+=3; } } else if(key2==(secondUnit&COMP_2_TRAIL_MASK)) { return ((secondUnit&~COMP_2_TRAIL_MASK)<<16)|compositions.charAt(list+2); } else { break; } } else { break; } } } return -1; } /* * Recomposes the buffer text starting at recomposeStartIndex * (which is in NFD - decomposed and canonically ordered), * and truncates the buffer contents. * * Note that recomposition never lengthens the text: * Any character consists of either one or two code units; * a composition may contain at most one more code unit than the original starter, * while the combining mark that is removed has at least one code unit. */ private void recompose(ReorderingBuffer buffer, int recomposeStartIndex, boolean onlyContiguous) { StringBuilder sb=buffer.getStringBuilder(); int p=recomposeStartIndex; if(p==sb.length()) { return; } int starter, pRemove; int compositionsList; int c, compositeAndFwd; int norm16; int cc, prevCC; boolean starterIsSupplementary; // Some of the following variables are not used until we have a forward-combining starter // and are only initialized now to avoid compiler warnings. compositionsList=-1; // used as indicator for whether we have a forward-combining starter starter=-1; starterIsSupplementary=false; prevCC=0; for(;;) { c=sb.codePointAt(p); p+=Character.charCount(c); norm16=getNorm16(c); cc=getCCFromYesOrMaybe(norm16); if( // this character combines backward and isMaybe(norm16) && // we have seen a starter that combines forward and compositionsList>=0 && // the backward-combining character is not blocked (prevCC=0) { // The starter and the combining mark (c) do combine. int composite=compositeAndFwd>>1; // Remove the combining mark. pRemove=p-Character.charCount(c); // pRemove & p: start & limit of the combining mark sb.delete(pRemove, p); p=pRemove; // Replace the starter with the composite. if(starterIsSupplementary) { if(composite>0xffff) { // both are supplementary sb.setCharAt(starter, UTF16.getLeadSurrogate(composite)); sb.setCharAt(starter+1, UTF16.getTrailSurrogate(composite)); } else { sb.setCharAt(starter, (char)c); sb.deleteCharAt(starter+1); // The composite is shorter than the starter, // move the intermediate characters forward one. starterIsSupplementary=false; --p; } } else if(composite>0xffff) { // The composite is longer than the starter, // move the intermediate characters back one. starterIsSupplementary=true; sb.setCharAt(starter, UTF16.getLeadSurrogate(composite)); sb.insert(starter+1, UTF16.getTrailSurrogate(composite)); ++p; } else { // both are on the BMP sb.setCharAt(starter, (char)composite); } // Keep prevCC because we removed the combining mark. if(p==sb.length()) { break; } // Is the composite a starter that combines forward? if((compositeAndFwd&1)!=0) { compositionsList= getCompositionsListForComposite(getNorm16(composite)); } else { compositionsList=-1; } // We combined; continue with looking for compositions. continue; } } // no combination this time prevCC=cc; if(p==sb.length()) { break; } // If c did not combine, then check if it is a starter. if(cc==0) { // Found a new starter. if((compositionsList=getCompositionsListForDecompYes(norm16))>=0) { // It may combine with something, prepare for it. if(c<=0xffff) { starterIsSupplementary=false; starter=p-1; } else { starterIsSupplementary=true; starter=p-2; } } } else if(onlyContiguous) { // FCC: no discontiguous compositions; any intervening character blocks. compositionsList=-1; } } buffer.flush(); } /** * Does c have a composition boundary before it? * True if its decomposition begins with a character that has * ccc=0 && NFC_QC=Yes (isCompYesAndZeroCC()). * As a shortcut, this is true if c itself has ccc=0 && NFC_QC=Yes * (isCompYesAndZeroCC()) so we need not decompose. */ private boolean hasCompBoundaryBefore(int c, int norm16) { for(;;) { if(isCompYesAndZeroCC(norm16)) { return true; } else if(isMaybeOrNonZeroCC(norm16)) { return false; } else if(isDecompNoAlgorithmic(norm16)) { c=mapAlgorithmic(c, norm16); norm16=getNorm16(c); } else { // c decomposes, get everything from the variable-length extra data int firstUnit=extraData.charAt(norm16); if((firstUnit&MAPPING_LENGTH_MASK)==0) { return false; } if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0 && (extraData.charAt(norm16-1)&0xff00)!=0) { return false; // non-zero leadCC } return isCompYesAndZeroCC(getNorm16(Character.codePointAt(extraData, norm16+1))); } } } private int findPreviousCompBoundary(CharSequence s, int p) { while(p>0) { int c=Character.codePointBefore(s, p); p-=Character.charCount(c); if(hasCompBoundaryBefore(c)) { break; } // We could also test hasCompBoundaryAfter() and return iter.codePointLimit, // but that's probably not worth the extra cost. } return p; } private int findNextCompBoundary(CharSequence s, int p, int limit) { while(p= 0x0009 && c <= 0x000D) || (c >= 0x0020 && c <= 0x002F) || (c >= 0x003A && c <= 0x0040) || (c >= 0x005B && c <= 0x0060) || (c >= 0x007B && c <= 0x007E); } public static String canonicalDecomposeWithSingleQuotation(String string) { Normalizer2 impl = Normalizer2.getNFDInstance(); char[] src = string.toCharArray(); int srcIndex = 0; int srcLimit = src.length; char[] dest = new char[src.length * 3]; //MAX_BUF_SIZE_DECOMPOSE = 3 int destIndex = 0; int destLimit = dest.length; int prevSrc; String norm; int reorderStartIndex, length; char c1, c2; int cp; int minNoMaybe = 0x00c0; int cc, prevCC, trailCC; char[] p; int pStart; // initialize reorderStartIndex = 0; prevCC = 0; norm = null; cp = 0; pStart = 0; cc = trailCC = -1; // initialize to bogus value c1 = 0; for (;;) { prevSrc=srcIndex; //quick check (1)less than minNoMaybe (2)no decomp (3)hangual while (srcIndex != srcLimit && ((c1 = src[srcIndex]) < minNoMaybe || (norm = impl.getDecomposition(cp = string.codePointAt(srcIndex))) == null || (c1 >= '\uac00' && c1 <= '\ud7a3'))) { // Hangul Syllables prevCC = 0; srcIndex += (cp < 0x10000) ? 1 : 2; } // copy these code units all at once if (srcIndex != prevSrc) { length = srcIndex - prevSrc; if ((destIndex + length) <= destLimit) { System.arraycopy(src,prevSrc,dest,destIndex,length); } destIndex += length; reorderStartIndex = destIndex; } // end of source reached? if (srcIndex == srcLimit) { break; } // cp already contains *src and norm32 is set for it, increment src srcIndex += (cp < 0x10000) ? 1 : 2; if (cp < Character.MIN_SUPPLEMENTARY_CODE_POINT) { c2 = 0; length = 1; if (Character.isHighSurrogate(c1) || Character.isLowSurrogate(c1)) { norm = null; } } else { length = 2; c2 = src[srcIndex-1]; } // get the decomposition and the lead and trail cc's if (norm == null) { // cp does not decompose cc = trailCC = UCharacter.getCombiningClass(cp); p = null; pStart = -1; } else { pStart = 0; p = norm.toCharArray(); length = p.length; int cpNum = norm.codePointCount(0, length); cc= UCharacter.getCombiningClass(norm.codePointAt(0)); trailCC= UCharacter.getCombiningClass(norm.codePointAt(cpNum-1)); if (length == 1) { // fastpath a single code unit from decomposition c1 = p[pStart]; c2 = 0; p = null; pStart = -1; } } if((destIndex + length * 3) >= destLimit) { // 2 SingleQuotations // buffer overflow char[] tmpBuf = new char[destLimit * 2]; System.arraycopy(dest, 0, tmpBuf, 0, destIndex); dest = tmpBuf; destLimit = dest.length; } // append the decomposition to the destination buffer, assume length>0 { int reorderSplit = destIndex; if (p == null) { // fastpath: single code point if (needSingleQuotation(c1)) { //if we need single quotation, no need to consider "prevCC" //and it must NOT be a supplementary pair dest[destIndex++] = '\''; dest[destIndex++] = c1; dest[destIndex++] = '\''; trailCC = 0; } else if(cc != 0 && cc < prevCC) { // (c1, c2) is out of order with respect to the preceding // text destIndex += length; trailCC = insertOrdered(dest, reorderStartIndex, reorderSplit, destIndex, c1, c2, cc); } else { // just append (c1, c2) dest[destIndex++] = c1; if(c2 != 0) { dest[destIndex++] = c2; } } } else { // general: multiple code points (ordered by themselves) // from decomposition if (needSingleQuotation(p[pStart])) { dest[destIndex++] = '\''; dest[destIndex++] = p[pStart++]; dest[destIndex++] = '\''; length--; do { dest[destIndex++] = p[pStart++]; } while(--length > 0); } else if (cc != 0 && cc < prevCC) { destIndex += length; trailCC = mergeOrdered(dest, reorderStartIndex, reorderSplit, p, pStart, pStart+length); } else { // just append the decomposition do { dest[destIndex++] = p[pStart++]; } while (--length > 0); } } } prevCC = trailCC; if(prevCC == 0) { reorderStartIndex = destIndex; } } return new String(dest, 0, destIndex); } /** * simpler, single-character version of mergeOrdered() - * bubble-insert one single code point into the preceding string * which is already canonically ordered * (c, c2) may or may not yet have been inserted at src[current]..src[p] * * it must be p=current+lengthof(c, c2) i.e. p=current+(c2==0 ? 1 : 2) * * before: src[start]..src[current] is already ordered, and * src[current]..src[p] may or may not hold (c, c2) but * must be exactly the same length as (c, c2) * after: src[start]..src[p] is ordered * * @return the trailing combining class */ private static int/*unsigned byte*/ insertOrdered(char[] source, int start, int current, int p, char c1, char c2, int/*unsigned byte*/ cc) { int back, preBack; int r; int prevCC, trailCC=cc; if (start=prevCC preBack=back=current; PrevArgs prevArgs = new PrevArgs(); prevArgs.current = current; prevArgs.start = start; prevArgs.src = source; prevArgs.c1 = c1; prevArgs.c2 = c2; // get the prevCC prevCC=getPrevCC(prevArgs); preBack = prevArgs.current; if(cc=prevCC) { break; } back=preBack; } // this is where we are right now with all these indicies: // [start]..[pPreBack] 0..? code points that we can ignore // [pPreBack]..[pBack] 0..1 code points with prevCC<=cc // [pBack]..[current] 0..n code points with >cc, move up to insert (c, c2) // [current]..[p] 1 code point (c, c2) with cc // move the code units in between up r=p; do { source[--r]=source[--current]; } while (back!=current); } } // insert (c1, c2) source[current] = c1; if (c2!=0) { source[(current+1)] = c2; } // we know the cc of the last code point return trailCC; } /** * merge two UTF-16 string parts together * to canonically order (order by combining classes) their concatenation * * the two strings may already be adjacent, so that the merging is done * in-place if the two strings are not adjacent, then the buffer holding the * first one must be large enough * the second string may or may not be ordered in itself * * before: [start]..[current] is already ordered, and * [next]..[limit] may be ordered in itself, but * is not in relation to [start..current[ * after: [start..current+(limit-next)[ is ordered * * the algorithm is a simple bubble-sort that takes the characters from * src[next++] and inserts them in correct combining class order into the * preceding part of the string * * since this function is called much less often than the single-code point * insertOrdered(), it just uses that for easier maintenance * * @return the trailing combining class */ private static int /*unsigned byte*/ mergeOrdered(char[] source, int start, int current, char[] data, int next, int limit) { int r; int /*unsigned byte*/ cc, trailCC=0; boolean adjacent; adjacent= current==next; NextCCArgs ncArgs = new NextCCArgs(); ncArgs.source = data; ncArgs.next = next; ncArgs.limit = limit; if(start!=current) { while(ncArgs.next