1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_VM_VERSION_X86_HPP
  26 #define CPU_X86_VM_VM_VERSION_X86_HPP
  27 
  28 #include "runtime/globals_extension.hpp"
  29 #include "runtime/vm_version.hpp"
  30 
  31 class VM_Version : public Abstract_VM_Version {
  32 public:
  33   // cpuid result register layouts.  These are all unions of a uint32_t
  34   // (in case anyone wants access to the register as a whole) and a bitfield.
  35 
  36   union StdCpuid1Eax {
  37     uint32_t value;
  38     struct {
  39       uint32_t stepping   : 4,
  40                model      : 4,
  41                family     : 4,
  42                proc_type  : 2,
  43                           : 2,
  44                ext_model  : 4,
  45                ext_family : 8,
  46                           : 4;
  47     } bits;
  48   };
  49 
  50   union StdCpuid1Ebx { // example, unused
  51     uint32_t value;
  52     struct {
  53       uint32_t brand_id         : 8,
  54                clflush_size     : 8,
  55                threads_per_cpu  : 8,
  56                apic_id          : 8;
  57     } bits;
  58   };
  59 
  60   union StdCpuid1Ecx {
  61     uint32_t value;
  62     struct {
  63       uint32_t sse3     : 1,
  64                         : 2,
  65                monitor  : 1,
  66                         : 1,
  67                vmx      : 1,
  68                         : 1,
  69                est      : 1,
  70                         : 1,
  71                ssse3    : 1,
  72                cid      : 1,
  73                         : 2,
  74                cmpxchg16: 1,
  75                         : 4,
  76                dca      : 1,
  77                sse4_1   : 1,
  78                sse4_2   : 1,
  79                         : 2,
  80                popcnt   : 1,
  81                         : 3,
  82                osxsave  : 1,
  83                avx      : 1,
  84                         : 3;
  85     } bits;
  86   };
  87 
  88   union StdCpuid1Edx {
  89     uint32_t value;
  90     struct {
  91       uint32_t          : 4,
  92                tsc      : 1,
  93                         : 3,
  94                cmpxchg8 : 1,
  95                         : 6,
  96                cmov     : 1,
  97                         : 3,
  98                clflush  : 1,
  99                         : 3,
 100                mmx      : 1,
 101                fxsr     : 1,
 102                sse      : 1,
 103                sse2     : 1,
 104                         : 1,
 105                ht       : 1,
 106                         : 3;
 107     } bits;
 108   };
 109 
 110   union DcpCpuid4Eax {
 111     uint32_t value;
 112     struct {
 113       uint32_t cache_type    : 5,
 114                              : 21,
 115                cores_per_cpu : 6;
 116     } bits;
 117   };
 118 
 119   union DcpCpuid4Ebx {
 120     uint32_t value;
 121     struct {
 122       uint32_t L1_line_size  : 12,
 123                partitions    : 10,
 124                associativity : 10;
 125     } bits;
 126   };
 127 
 128   union TplCpuidBEbx {
 129     uint32_t value;
 130     struct {
 131       uint32_t logical_cpus : 16,
 132                             : 16;
 133     } bits;
 134   };
 135 
 136   union ExtCpuid1Ecx {
 137     uint32_t value;
 138     struct {
 139       uint32_t LahfSahf     : 1,
 140                CmpLegacy    : 1,
 141                             : 4,
 142                lzcnt        : 1,
 143                sse4a        : 1,
 144                misalignsse  : 1,
 145                prefetchw    : 1,
 146                             : 22;
 147     } bits;
 148   };
 149 
 150   union ExtCpuid1Edx {
 151     uint32_t value;
 152     struct {
 153       uint32_t           : 22,
 154                mmx_amd   : 1,
 155                mmx       : 1,
 156                fxsr      : 1,
 157                          : 4,
 158                long_mode : 1,
 159                tdnow2    : 1,
 160                tdnow     : 1;
 161     } bits;
 162   };
 163 
 164   union ExtCpuid5Ex {
 165     uint32_t value;
 166     struct {
 167       uint32_t L1_line_size : 8,
 168                L1_tag_lines : 8,
 169                L1_assoc     : 8,
 170                L1_size      : 8;
 171     } bits;
 172   };
 173 
 174   union ExtCpuid7Edx {
 175     uint32_t value;
 176     struct {
 177       uint32_t               : 8,
 178               tsc_invariance : 1,
 179                              : 23;
 180     } bits;
 181   };
 182 
 183   union ExtCpuid8Ecx {
 184     uint32_t value;
 185     struct {
 186       uint32_t cores_per_cpu : 8,
 187                              : 24;
 188     } bits;
 189   };
 190 
 191   union SefCpuid7Eax {
 192     uint32_t value;
 193   };
 194 
 195   union SefCpuid7Ebx {
 196     uint32_t value;
 197     struct {
 198       uint32_t fsgsbase : 1,
 199                         : 2,
 200                    bmi1 : 1,
 201                         : 1,
 202                    avx2 : 1,
 203                         : 2,
 204                    bmi2 : 1,
 205                         : 23;
 206     } bits;
 207   };
 208 
 209   union XemXcr0Eax {
 210     uint32_t value;
 211     struct {
 212       uint32_t x87 : 1,
 213                sse : 1,
 214                ymm : 1,
 215                    : 29;
 216     } bits;
 217   };
 218 
 219 protected:
 220   static int _cpu;
 221   static int _model;
 222   static int _stepping;
 223   static int _cpuFeatures;     // features returned by the "cpuid" instruction
 224                                // 0 if this instruction is not available
 225   static const char* _features_str;
 226 
 227   enum {
 228     CPU_CX8    = (1 << 0), // next bits are from cpuid 1 (EDX)
 229     CPU_CMOV   = (1 << 1),
 230     CPU_FXSR   = (1 << 2),
 231     CPU_HT     = (1 << 3),
 232     CPU_MMX    = (1 << 4),
 233     CPU_3DNOW_PREFETCH  = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
 234                                     // may not necessarily support other 3dnow instructions
 235     CPU_SSE    = (1 << 6),
 236     CPU_SSE2   = (1 << 7),
 237     CPU_SSE3   = (1 << 8), // SSE3 comes from cpuid 1 (ECX)
 238     CPU_SSSE3  = (1 << 9),
 239     CPU_SSE4A  = (1 << 10),
 240     CPU_SSE4_1 = (1 << 11),
 241     CPU_SSE4_2 = (1 << 12),
 242     CPU_POPCNT = (1 << 13),
 243     CPU_LZCNT  = (1 << 14),
 244     CPU_TSC    = (1 << 15),
 245     CPU_TSCINV = (1 << 16),
 246     CPU_AVX    = (1 << 17),
 247     CPU_AVX2   = (1 << 18)
 248   } cpuFeatureFlags;
 249 
 250   enum {
 251     // AMD
 252     CPU_FAMILY_AMD_11H       = 0x11,
 253     // Intel
 254     CPU_FAMILY_INTEL_CORE    = 6,
 255     CPU_MODEL_NEHALEM        = 0x1e,
 256     CPU_MODEL_NEHALEM_EP     = 0x1a,
 257     CPU_MODEL_NEHALEM_EX     = 0x2e,
 258     CPU_MODEL_WESTMERE       = 0x25,
 259     CPU_MODEL_WESTMERE_EP    = 0x2c,
 260     CPU_MODEL_WESTMERE_EX    = 0x2f,
 261     CPU_MODEL_SANDYBRIDGE    = 0x2a,
 262     CPU_MODEL_SANDYBRIDGE_EP = 0x2d,
 263     CPU_MODEL_IVYBRIDGE_EP   = 0x3a
 264   } cpuExtendedFamily;
 265 
 266   // cpuid information block.  All info derived from executing cpuid with
 267   // various function numbers is stored here.  Intel and AMD info is
 268   // merged in this block: accessor methods disentangle it.
 269   //
 270   // The info block is laid out in subblocks of 4 dwords corresponding to
 271   // eax, ebx, ecx and edx, whether or not they contain anything useful.
 272   struct CpuidInfo {
 273     // cpuid function 0
 274     uint32_t std_max_function;
 275     uint32_t std_vendor_name_0;
 276     uint32_t std_vendor_name_1;
 277     uint32_t std_vendor_name_2;
 278 
 279     // cpuid function 1
 280     StdCpuid1Eax std_cpuid1_eax;
 281     StdCpuid1Ebx std_cpuid1_ebx;
 282     StdCpuid1Ecx std_cpuid1_ecx;
 283     StdCpuid1Edx std_cpuid1_edx;
 284 
 285     // cpuid function 4 (deterministic cache parameters)
 286     DcpCpuid4Eax dcp_cpuid4_eax;
 287     DcpCpuid4Ebx dcp_cpuid4_ebx;
 288     uint32_t     dcp_cpuid4_ecx; // unused currently
 289     uint32_t     dcp_cpuid4_edx; // unused currently
 290 
 291     // cpuid function 7 (structured extended features)
 292     SefCpuid7Eax sef_cpuid7_eax;
 293     SefCpuid7Ebx sef_cpuid7_ebx;
 294     uint32_t     sef_cpuid7_ecx; // unused currently
 295     uint32_t     sef_cpuid7_edx; // unused currently
 296 
 297     // cpuid function 0xB (processor topology)
 298     // ecx = 0
 299     uint32_t     tpl_cpuidB0_eax;
 300     TplCpuidBEbx tpl_cpuidB0_ebx;
 301     uint32_t     tpl_cpuidB0_ecx; // unused currently
 302     uint32_t     tpl_cpuidB0_edx; // unused currently
 303 
 304     // ecx = 1
 305     uint32_t     tpl_cpuidB1_eax;
 306     TplCpuidBEbx tpl_cpuidB1_ebx;
 307     uint32_t     tpl_cpuidB1_ecx; // unused currently
 308     uint32_t     tpl_cpuidB1_edx; // unused currently
 309 
 310     // ecx = 2
 311     uint32_t     tpl_cpuidB2_eax;
 312     TplCpuidBEbx tpl_cpuidB2_ebx;
 313     uint32_t     tpl_cpuidB2_ecx; // unused currently
 314     uint32_t     tpl_cpuidB2_edx; // unused currently
 315 
 316     // cpuid function 0x80000000 // example, unused
 317     uint32_t ext_max_function;
 318     uint32_t ext_vendor_name_0;
 319     uint32_t ext_vendor_name_1;
 320     uint32_t ext_vendor_name_2;
 321 
 322     // cpuid function 0x80000001
 323     uint32_t     ext_cpuid1_eax; // reserved
 324     uint32_t     ext_cpuid1_ebx; // reserved
 325     ExtCpuid1Ecx ext_cpuid1_ecx;
 326     ExtCpuid1Edx ext_cpuid1_edx;
 327 
 328     // cpuid functions 0x80000002 thru 0x80000004: example, unused
 329     uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
 330     uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
 331     uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
 332 
 333     // cpuid function 0x80000005 // AMD L1, Intel reserved
 334     uint32_t     ext_cpuid5_eax; // unused currently
 335     uint32_t     ext_cpuid5_ebx; // reserved
 336     ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
 337     ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
 338 
 339     // cpuid function 0x80000007
 340     uint32_t     ext_cpuid7_eax; // reserved
 341     uint32_t     ext_cpuid7_ebx; // reserved
 342     uint32_t     ext_cpuid7_ecx; // reserved
 343     ExtCpuid7Edx ext_cpuid7_edx; // tscinv
 344 
 345     // cpuid function 0x80000008
 346     uint32_t     ext_cpuid8_eax; // unused currently
 347     uint32_t     ext_cpuid8_ebx; // reserved
 348     ExtCpuid8Ecx ext_cpuid8_ecx;
 349     uint32_t     ext_cpuid8_edx; // reserved
 350 
 351     // extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
 352     XemXcr0Eax   xem_xcr0_eax;
 353     uint32_t     xem_xcr0_edx; // reserved
 354   };
 355 
 356   // The actual cpuid info block
 357   static CpuidInfo _cpuid_info;
 358 
 359   // Extractors and predicates
 360   static uint32_t extended_cpu_family() {
 361     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
 362     result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
 363     return result;
 364   }
 365 
 366   static uint32_t extended_cpu_model() {
 367     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
 368     result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
 369     return result;
 370   }
 371 
 372   static uint32_t cpu_stepping() {
 373     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
 374     return result;
 375   }
 376 
 377   static uint logical_processor_count() {
 378     uint result = threads_per_core();
 379     return result;
 380   }
 381 
 382   static uint32_t feature_flags() {
 383     uint32_t result = 0;
 384     if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
 385       result |= CPU_CX8;
 386     if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
 387       result |= CPU_CMOV;
 388     if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
 389         _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
 390       result |= CPU_FXSR;
 391     // HT flag is set for multi-core processors also.
 392     if (threads_per_core() > 1)
 393       result |= CPU_HT;
 394     if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
 395         _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
 396       result |= CPU_MMX;
 397     if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
 398       result |= CPU_SSE;
 399     if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
 400       result |= CPU_SSE2;
 401     if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
 402       result |= CPU_SSE3;
 403     if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
 404       result |= CPU_SSSE3;
 405     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
 406       result |= CPU_SSE4_1;
 407     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
 408       result |= CPU_SSE4_2;
 409     if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
 410       result |= CPU_POPCNT;
 411     if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 &&
 412         _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 &&
 413         _cpuid_info.xem_xcr0_eax.bits.sse != 0 &&
 414         _cpuid_info.xem_xcr0_eax.bits.ymm != 0) {
 415       result |= CPU_AVX;
 416       if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0)
 417         result |= CPU_AVX2;
 418     }
 419     if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0)
 420       result |= CPU_TSC;
 421     if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0)
 422       result |= CPU_TSCINV;
 423 
 424     // AMD features.
 425     if (is_amd()) {
 426       if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
 427           (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
 428         result |= CPU_3DNOW_PREFETCH;
 429       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
 430         result |= CPU_LZCNT;
 431       if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
 432         result |= CPU_SSE4A;
 433     }
 434 
 435     return result;
 436   }
 437 
 438   static void get_processor_features();
 439 
 440 public:
 441   // Offsets for cpuid asm stub
 442   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
 443   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
 444   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
 445   static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
 446   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
 447   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
 448   static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
 449   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
 450   static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
 451   static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
 452   static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
 453   static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
 454 
 455   // Initialization
 456   static void initialize();
 457 
 458   // Asserts
 459   static void assert_is_initialized() {
 460     assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
 461   }
 462 
 463   //
 464   // Processor family:
 465   //       3   -  386
 466   //       4   -  486
 467   //       5   -  Pentium
 468   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
 469   //              Pentium M, Core Solo, Core Duo, Core2 Duo
 470   //    family 6 model:   9,        13,       14,        15
 471   //    0x0f   -  Pentium 4, Opteron
 472   //
 473   // Note: The cpu family should be used to select between
 474   //       instruction sequences which are valid on all Intel
 475   //       processors.  Use the feature test functions below to
 476   //       determine whether a particular instruction is supported.
 477   //
 478   static int  cpu_family()        { return _cpu;}
 479   static bool is_P6()             { return cpu_family() >= 6; }
 480   static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
 481   static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
 482 
 483   static bool supports_processor_topology() {
 484     return (_cpuid_info.std_max_function >= 0xB) &&
 485            // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
 486            // Some cpus have max cpuid >= 0xB but do not support processor topology.
 487            ((_cpuid_info.tpl_cpuidB0_eax & 0x1f | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
 488   }
 489 
 490   static uint cores_per_cpu()  {
 491     uint result = 1;
 492     if (is_intel()) {
 493       if (supports_processor_topology()) {
 494         result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
 495                  _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 496       } else {
 497         result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
 498       }
 499     } else if (is_amd()) {
 500       result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
 501     }
 502     return result;
 503   }
 504 
 505   static uint threads_per_core()  {
 506     uint result = 1;
 507     if (is_intel() && supports_processor_topology()) {
 508       result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 509     } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
 510       result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
 511                cores_per_cpu();
 512     }
 513     return result;
 514   }
 515 
 516   static intx prefetch_data_size()  {
 517     intx result = 0;
 518     if (is_intel()) {
 519       result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
 520     } else if (is_amd()) {
 521       result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
 522     }
 523     if (result < 32) // not defined ?
 524       result = 32;   // 32 bytes by default on x86 and other x64
 525     return result;
 526   }
 527 
 528   //
 529   // Feature identification
 530   //
 531   static bool supports_cpuid()    { return _cpuFeatures  != 0; }
 532   static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
 533   static bool supports_cmov()     { return (_cpuFeatures & CPU_CMOV) != 0; }
 534   static bool supports_fxsr()     { return (_cpuFeatures & CPU_FXSR) != 0; }
 535   static bool supports_ht()       { return (_cpuFeatures & CPU_HT) != 0; }
 536   static bool supports_mmx()      { return (_cpuFeatures & CPU_MMX) != 0; }
 537   static bool supports_sse()      { return (_cpuFeatures & CPU_SSE) != 0; }
 538   static bool supports_sse2()     { return (_cpuFeatures & CPU_SSE2) != 0; }
 539   static bool supports_sse3()     { return (_cpuFeatures & CPU_SSE3) != 0; }
 540   static bool supports_ssse3()    { return (_cpuFeatures & CPU_SSSE3)!= 0; }
 541   static bool supports_sse4_1()   { return (_cpuFeatures & CPU_SSE4_1) != 0; }
 542   static bool supports_sse4_2()   { return (_cpuFeatures & CPU_SSE4_2) != 0; }
 543   static bool supports_popcnt()   { return (_cpuFeatures & CPU_POPCNT) != 0; }
 544   static bool supports_avx()      { return (_cpuFeatures & CPU_AVX) != 0; }
 545   static bool supports_avx2()     { return (_cpuFeatures & CPU_AVX2) != 0; }
 546   static bool supports_tsc()      { return (_cpuFeatures & CPU_TSC)    != 0; }
 547 
 548   // Intel features
 549   static bool is_intel_family_core() { return is_intel() &&
 550                                        extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
 551 
 552   static bool is_intel_tsc_synched_at_init()  {
 553     if (is_intel_family_core()) {
 554       uint32_t ext_model = extended_cpu_model();
 555       if (ext_model == CPU_MODEL_NEHALEM_EP     ||
 556           ext_model == CPU_MODEL_WESTMERE_EP    ||
 557           ext_model == CPU_MODEL_SANDYBRIDGE_EP ||
 558           ext_model == CPU_MODEL_IVYBRIDGE_EP) {
 559         // <= 2-socket invariant tsc support. EX versions are usually used
 560         // in > 2-socket systems and likely don't synchronize tscs at
 561         // initialization.
 562         // Code that uses tsc values must be prepared for them to arbitrarily
 563         // jump forward or backward.
 564         return true;
 565       }
 566     }
 567     return false;
 568   }
 569 
 570   // AMD features
 571   static bool supports_3dnow_prefetch()    { return (_cpuFeatures & CPU_3DNOW_PREFETCH) != 0; }
 572   static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
 573   static bool supports_lzcnt()    { return (_cpuFeatures & CPU_LZCNT) != 0; }
 574   static bool supports_sse4a()    { return (_cpuFeatures & CPU_SSE4A) != 0; }
 575 
 576   static bool is_amd_Barcelona()  { return is_amd() &&
 577                                            extended_cpu_family() == CPU_FAMILY_AMD_11H; }
 578 
 579   // Intel and AMD newer cores support fast timestamps well
 580   static bool supports_tscinv_bit() {
 581     return (_cpuFeatures & CPU_TSCINV) != 0;
 582   }
 583   static bool supports_tscinv() {
 584     return supports_tscinv_bit() &&
 585            ( (is_amd() && !is_amd_Barcelona()) ||
 586              is_intel_tsc_synched_at_init() );
 587   }
 588 
 589   // Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
 590   static bool has_fast_idiv()     { return is_intel() && cpu_family() == 6 &&
 591                                            supports_sse3() && _model != 0x1C; }
 592 
 593   static bool supports_compare_and_exchange() { return true; }
 594 
 595   static const char* cpu_features()           { return _features_str; }
 596 
 597   static intx allocate_prefetch_distance() {
 598     // This method should be called before allocate_prefetch_style().
 599     //
 600     // Hardware prefetching (distance/size in bytes):
 601     // Pentium 3 -  64 /  32
 602     // Pentium 4 - 256 / 128
 603     // Athlon    -  64 /  32 ????
 604     // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
 605     // Core      - 128 /  64
 606     //
 607     // Software prefetching (distance in bytes / instruction with best score):
 608     // Pentium 3 - 128 / prefetchnta
 609     // Pentium 4 - 512 / prefetchnta
 610     // Athlon    - 128 / prefetchnta
 611     // Opteron   - 256 / prefetchnta
 612     // Core      - 256 / prefetchnta
 613     // It will be used only when AllocatePrefetchStyle > 0
 614 
 615     intx count = AllocatePrefetchDistance;
 616     if (count < 0) {   // default ?
 617       if (is_amd()) {  // AMD
 618         if (supports_sse2())
 619           count = 256; // Opteron
 620         else
 621           count = 128; // Athlon
 622       } else {         // Intel
 623         if (supports_sse2())
 624           if (cpu_family() == 6) {
 625             count = 256; // Pentium M, Core, Core2
 626           } else {
 627             count = 512; // Pentium 4
 628           }
 629         else
 630           count = 128; // Pentium 3 (and all other old CPUs)
 631       }
 632     }
 633     return count;
 634   }
 635   static intx allocate_prefetch_style() {
 636     assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
 637     // Return 0 if AllocatePrefetchDistance was not defined.
 638     return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
 639   }
 640 
 641   // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
 642   // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
 643   // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
 644   // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
 645 
 646   // gc copy/scan is disabled if prefetchw isn't supported, because
 647   // Prefetch::write emits an inlined prefetchw on Linux.
 648   // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
 649   // The used prefetcht0 instruction works for both amd64 and em64t.
 650   static intx prefetch_copy_interval_in_bytes() {
 651     intx interval = PrefetchCopyIntervalInBytes;
 652     return interval >= 0 ? interval : 576;
 653   }
 654   static intx prefetch_scan_interval_in_bytes() {
 655     intx interval = PrefetchScanIntervalInBytes;
 656     return interval >= 0 ? interval : 576;
 657   }
 658   static intx prefetch_fields_ahead() {
 659     intx count = PrefetchFieldsAhead;
 660     return count >= 0 ? count : 1;
 661   }
 662 };
 663 
 664 #endif // CPU_X86_VM_VM_VERSION_X86_HPP