1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_linux.hpp"
  40 #include "osContainer_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/extendedPC.hpp"
  46 #include "runtime/globals.hpp"
  47 #include "runtime/interfaceSupport.hpp"
  48 #include "runtime/init.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "runtime/objectMonitor.hpp"
  53 #include "runtime/orderAccess.inline.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "services/attachListener.hpp"
  63 #include "services/memTracker.hpp"
  64 #include "services/runtimeService.hpp"
  65 #include "utilities/decoder.hpp"
  66 #include "utilities/defaultStream.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/elfFile.hpp"
  69 #include "utilities/growableArray.hpp"
  70 #include "utilities/vmError.hpp"
  71 
  72 // put OS-includes here
  73 # include <sys/types.h>
  74 # include <sys/mman.h>
  75 # include <sys/stat.h>
  76 # include <sys/select.h>
  77 # include <pthread.h>
  78 # include <signal.h>
  79 # include <errno.h>
  80 # include <dlfcn.h>
  81 # include <stdio.h>
  82 # include <unistd.h>
  83 # include <sys/resource.h>
  84 # include <pthread.h>
  85 # include <sys/stat.h>
  86 # include <sys/time.h>
  87 # include <sys/times.h>
  88 # include <sys/utsname.h>
  89 # include <sys/socket.h>
  90 # include <sys/wait.h>
  91 # include <pwd.h>
  92 # include <poll.h>
  93 # include <semaphore.h>
  94 # include <fcntl.h>
  95 # include <string.h>
  96 # include <syscall.h>
  97 # include <sys/sysinfo.h>
  98 # include <gnu/libc-version.h>
  99 # include <sys/ipc.h>
 100 # include <sys/shm.h>
 101 # include <link.h>
 102 # include <stdint.h>
 103 # include <inttypes.h>
 104 # include <sys/ioctl.h>
 105 
 106 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 107 
 108 #ifndef _GNU_SOURCE
 109   #define _GNU_SOURCE
 110   #include <sched.h>
 111   #undef _GNU_SOURCE
 112 #else
 113   #include <sched.h>
 114 #endif
 115 
 116 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 117 // getrusage() is prepared to handle the associated failure.
 118 #ifndef RUSAGE_THREAD
 119 #define RUSAGE_THREAD   (1)               /* only the calling thread */
 120 #endif
 121 
 122 #define MAX_PATH    (2 * K)
 123 
 124 #define MAX_SECS 100000000
 125 
 126 // for timer info max values which include all bits
 127 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 128 
 129 #define LARGEPAGES_BIT (1 << 6)
 130 ////////////////////////////////////////////////////////////////////////////////
 131 // global variables
 132 julong os::Linux::_physical_memory = 0;
 133 
 134 address   os::Linux::_initial_thread_stack_bottom = NULL;
 135 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 136 
 137 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 138 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 139 Mutex* os::Linux::_createThread_lock = NULL;
 140 pthread_t os::Linux::_main_thread;
 141 int os::Linux::_page_size = -1;
 142 const int os::Linux::_vm_default_page_size = (8 * K);
 143 bool os::Linux::_is_floating_stack = false;
 144 bool os::Linux::_is_NPTL = false;
 145 bool os::Linux::_supports_fast_thread_cpu_time = false;
 146 const char * os::Linux::_glibc_version = NULL;
 147 const char * os::Linux::_libpthread_version = NULL;
 148 pthread_condattr_t os::Linux::_condattr[1];
 149 
 150 static jlong initial_time_count=0;
 151 
 152 static int clock_tics_per_sec = 100;
 153 
 154 // For diagnostics to print a message once. see run_periodic_checks
 155 static sigset_t check_signal_done;
 156 static bool check_signals = true;
 157 
 158 static pid_t _initial_pid = 0;
 159 
 160 /* Signal number used to suspend/resume a thread */
 161 
 162 /* do not use any signal number less than SIGSEGV, see 4355769 */
 163 static int SR_signum = SIGUSR2;
 164 sigset_t SR_sigset;
 165 
 166 /* Used to protect dlsym() calls */
 167 static pthread_mutex_t dl_mutex;
 168 
 169 // Declarations
 170 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 171 
 172 // utility functions
 173 
 174 static int SR_initialize();
 175 
 176 julong os::available_memory() {
 177   return Linux::available_memory();
 178 }
 179 
 180 julong os::Linux::available_memory() {
 181   // values in struct sysinfo are "unsigned long"
 182   struct sysinfo si;
 183   julong avail_mem;
 184 
 185   if (OSContainer::is_containerized()) {
 186     jlong mem_limit, mem_usage;
 187     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 188       if (PrintContainerInfo) {
 189         tty->print_cr("container memory limit %s: " JLONG_FORMAT ", using host value",
 190                        mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 191       }
 192     }
 193 
 194     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 195       if (PrintContainerInfo) {
 196         tty->print_cr("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 197       }
 198     }
 199 
 200     if (mem_limit > 0 && mem_usage > 0 ) {
 201       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 202       if (PrintContainerInfo) {
 203         tty->print_cr("available container memory: " JULONG_FORMAT, avail_mem);
 204       }
 205       return avail_mem;
 206     }
 207   }
 208 
 209   sysinfo(&si);
 210   avail_mem = (julong)si.freeram * si.mem_unit;
 211   if (Verbose) {
 212     tty->print_cr("available memory: " JULONG_FORMAT, avail_mem);
 213   }
 214   return avail_mem;
 215 }
 216 
 217 julong os::physical_memory() {
 218   jlong phys_mem = 0;
 219   if (OSContainer::is_containerized()) {
 220     jlong mem_limit;
 221     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 222       if (PrintContainerInfo) {
 223         tty->print_cr("total container memory: " JLONG_FORMAT, mem_limit);
 224       }
 225       return mem_limit;
 226     }
 227 
 228     if (PrintContainerInfo) {
 229       tty->print_cr("container memory limit %s: " JLONG_FORMAT ", using host value",
 230                      mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 231     }
 232   }
 233 
 234   phys_mem = Linux::physical_memory();
 235   if (Verbose) {
 236     tty->print_cr("total system memory: " JLONG_FORMAT, phys_mem);
 237   }
 238   return phys_mem;
 239 }
 240 
 241 ////////////////////////////////////////////////////////////////////////////////
 242 // environment support
 243 
 244 bool os::getenv(const char* name, char* buf, int len) {
 245   const char* val = ::getenv(name);
 246   if (val != NULL && strlen(val) < (size_t)len) {
 247     strcpy(buf, val);
 248     return true;
 249   }
 250   if (len > 0) buf[0] = 0;  // return a null string
 251   return false;
 252 }
 253 
 254 
 255 // Return true if user is running as root.
 256 
 257 bool os::have_special_privileges() {
 258   static bool init = false;
 259   static bool privileges = false;
 260   if (!init) {
 261     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 262     init = true;
 263   }
 264   return privileges;
 265 }
 266 
 267 
 268 #ifndef SYS_gettid
 269 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 270   #ifdef __ia64__
 271     #define SYS_gettid 1105
 272   #else
 273     #ifdef __i386__
 274       #define SYS_gettid 224
 275     #else
 276       #ifdef __amd64__
 277         #define SYS_gettid 186
 278       #else
 279         #ifdef __sparc__
 280           #define SYS_gettid 143
 281         #else
 282           #error define gettid for the arch
 283         #endif
 284       #endif
 285     #endif
 286   #endif
 287 #endif
 288 
 289 // Cpu architecture string
 290 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 291 
 292 // pid_t gettid()
 293 //
 294 // Returns the kernel thread id of the currently running thread. Kernel
 295 // thread id is used to access /proc.
 296 //
 297 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 298 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 299 //
 300 pid_t os::Linux::gettid() {
 301   int rslt = syscall(SYS_gettid);
 302   if (rslt == -1) {
 303      // old kernel, no NPTL support
 304      return getpid();
 305   } else {
 306      return (pid_t)rslt;
 307   }
 308 }
 309 
 310 // Most versions of linux have a bug where the number of processors are
 311 // determined by looking at the /proc file system.  In a chroot environment,
 312 // the system call returns 1.  This causes the VM to act as if it is
 313 // a single processor and elide locking (see is_MP() call).
 314 static bool unsafe_chroot_detected = false;
 315 static const char *unstable_chroot_error = "/proc file system not found.\n"
 316                      "Java may be unstable running multithreaded in a chroot "
 317                      "environment on Linux when /proc filesystem is not mounted.";
 318 
 319 void os::Linux::initialize_system_info() {
 320   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 321   if (processor_count() == 1) {
 322     pid_t pid = os::Linux::gettid();
 323     char fname[32];
 324     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 325     FILE *fp = fopen(fname, "r");
 326     if (fp == NULL) {
 327       unsafe_chroot_detected = true;
 328     } else {
 329       fclose(fp);
 330     }
 331   }
 332   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 333   assert(processor_count() > 0, "linux error");
 334 }
 335 
 336 void os::init_system_properties_values() {
 337   // The next steps are taken in the product version:
 338   //
 339   // Obtain the JAVA_HOME value from the location of libjvm.so.
 340   // This library should be located at:
 341   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 342   //
 343   // If "/jre/lib/" appears at the right place in the path, then we
 344   // assume libjvm.so is installed in a JDK and we use this path.
 345   //
 346   // Otherwise exit with message: "Could not create the Java virtual machine."
 347   //
 348   // The following extra steps are taken in the debugging version:
 349   //
 350   // If "/jre/lib/" does NOT appear at the right place in the path
 351   // instead of exit check for $JAVA_HOME environment variable.
 352   //
 353   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 354   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 355   // it looks like libjvm.so is installed there
 356   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 357   //
 358   // Otherwise exit.
 359   //
 360   // Important note: if the location of libjvm.so changes this
 361   // code needs to be changed accordingly.
 362 
 363 // See ld(1):
 364 //      The linker uses the following search paths to locate required
 365 //      shared libraries:
 366 //        1: ...
 367 //        ...
 368 //        7: The default directories, normally /lib and /usr/lib.
 369 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 370 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 371 #else
 372 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 373 #endif
 374 
 375 // Base path of extensions installed on the system.
 376 #define SYS_EXT_DIR     "/usr/java/packages"
 377 #define EXTENSIONS_DIR  "/lib/ext"
 378 #define ENDORSED_DIR    "/lib/endorsed"
 379 
 380   // Buffer that fits several sprintfs.
 381   // Note that the space for the colon and the trailing null are provided
 382   // by the nulls included by the sizeof operator.
 383   const size_t bufsize =
 384     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 385          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
 386          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
 387   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 388 
 389   // sysclasspath, java_home, dll_dir
 390   {
 391     char *pslash;
 392     os::jvm_path(buf, bufsize);
 393 
 394     // Found the full path to libjvm.so.
 395     // Now cut the path to <java_home>/jre if we can.
 396     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 397     pslash = strrchr(buf, '/');
 398     if (pslash != NULL) {
 399       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 400     }
 401     Arguments::set_dll_dir(buf);
 402 
 403     if (pslash != NULL) {
 404       pslash = strrchr(buf, '/');
 405       if (pslash != NULL) {
 406         *pslash = '\0';          // Get rid of /<arch>.
 407         pslash = strrchr(buf, '/');
 408         if (pslash != NULL) {
 409           *pslash = '\0';        // Get rid of /lib.
 410         }
 411       }
 412     }
 413     Arguments::set_java_home(buf);
 414     set_boot_path('/', ':');
 415   }
 416 
 417   // Where to look for native libraries.
 418   //
 419   // Note: Due to a legacy implementation, most of the library path
 420   // is set in the launcher. This was to accomodate linking restrictions
 421   // on legacy Linux implementations (which are no longer supported).
 422   // Eventually, all the library path setting will be done here.
 423   //
 424   // However, to prevent the proliferation of improperly built native
 425   // libraries, the new path component /usr/java/packages is added here.
 426   // Eventually, all the library path setting will be done here.
 427   {
 428     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 429     // should always exist (until the legacy problem cited above is
 430     // addressed).
 431     const char *v = ::getenv("LD_LIBRARY_PATH");
 432     const char *v_colon = ":";
 433     if (v == NULL) { v = ""; v_colon = ""; }
 434     // That's +1 for the colon and +1 for the trailing '\0'.
 435     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 436                                                      strlen(v) + 1 +
 437                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 438                                                      mtInternal);
 439     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 440     Arguments::set_library_path(ld_library_path);
 441     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
 442   }
 443 
 444   // Extensions directories.
 445   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 446   Arguments::set_ext_dirs(buf);
 447 
 448   // Endorsed standards default directory.
 449   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 450   Arguments::set_endorsed_dirs(buf);
 451 
 452   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
 453 
 454 #undef DEFAULT_LIBPATH
 455 #undef SYS_EXT_DIR
 456 #undef EXTENSIONS_DIR
 457 #undef ENDORSED_DIR
 458 }
 459 
 460 ////////////////////////////////////////////////////////////////////////////////
 461 // breakpoint support
 462 
 463 void os::breakpoint() {
 464   BREAKPOINT;
 465 }
 466 
 467 extern "C" void breakpoint() {
 468   // use debugger to set breakpoint here
 469 }
 470 
 471 ////////////////////////////////////////////////////////////////////////////////
 472 // signal support
 473 
 474 debug_only(static bool signal_sets_initialized = false);
 475 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 476 
 477 bool os::Linux::is_sig_ignored(int sig) {
 478       struct sigaction oact;
 479       sigaction(sig, (struct sigaction*)NULL, &oact);
 480       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 481                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 482       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 483            return true;
 484       else
 485            return false;
 486 }
 487 
 488 void os::Linux::signal_sets_init() {
 489   // Should also have an assertion stating we are still single-threaded.
 490   assert(!signal_sets_initialized, "Already initialized");
 491   // Fill in signals that are necessarily unblocked for all threads in
 492   // the VM. Currently, we unblock the following signals:
 493   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 494   //                         by -Xrs (=ReduceSignalUsage));
 495   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 496   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 497   // the dispositions or masks wrt these signals.
 498   // Programs embedding the VM that want to use the above signals for their
 499   // own purposes must, at this time, use the "-Xrs" option to prevent
 500   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 501   // (See bug 4345157, and other related bugs).
 502   // In reality, though, unblocking these signals is really a nop, since
 503   // these signals are not blocked by default.
 504   sigemptyset(&unblocked_sigs);
 505   sigemptyset(&allowdebug_blocked_sigs);
 506   sigaddset(&unblocked_sigs, SIGILL);
 507   sigaddset(&unblocked_sigs, SIGSEGV);
 508   sigaddset(&unblocked_sigs, SIGBUS);
 509   sigaddset(&unblocked_sigs, SIGFPE);
 510 #if defined(PPC64)
 511   sigaddset(&unblocked_sigs, SIGTRAP);
 512 #endif
 513   sigaddset(&unblocked_sigs, SR_signum);
 514 
 515   if (!ReduceSignalUsage) {
 516    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 517       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 518       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 519    }
 520    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 521       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 522       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 523    }
 524    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 525       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 526       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 527    }
 528   }
 529   // Fill in signals that are blocked by all but the VM thread.
 530   sigemptyset(&vm_sigs);
 531   if (!ReduceSignalUsage)
 532     sigaddset(&vm_sigs, BREAK_SIGNAL);
 533   debug_only(signal_sets_initialized = true);
 534 
 535 }
 536 
 537 // These are signals that are unblocked while a thread is running Java.
 538 // (For some reason, they get blocked by default.)
 539 sigset_t* os::Linux::unblocked_signals() {
 540   assert(signal_sets_initialized, "Not initialized");
 541   return &unblocked_sigs;
 542 }
 543 
 544 // These are the signals that are blocked while a (non-VM) thread is
 545 // running Java. Only the VM thread handles these signals.
 546 sigset_t* os::Linux::vm_signals() {
 547   assert(signal_sets_initialized, "Not initialized");
 548   return &vm_sigs;
 549 }
 550 
 551 // These are signals that are blocked during cond_wait to allow debugger in
 552 sigset_t* os::Linux::allowdebug_blocked_signals() {
 553   assert(signal_sets_initialized, "Not initialized");
 554   return &allowdebug_blocked_sigs;
 555 }
 556 
 557 void os::Linux::hotspot_sigmask(Thread* thread) {
 558 
 559   //Save caller's signal mask before setting VM signal mask
 560   sigset_t caller_sigmask;
 561   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 562 
 563   OSThread* osthread = thread->osthread();
 564   osthread->set_caller_sigmask(caller_sigmask);
 565 
 566   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 567 
 568   if (!ReduceSignalUsage) {
 569     if (thread->is_VM_thread()) {
 570       // Only the VM thread handles BREAK_SIGNAL ...
 571       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 572     } else {
 573       // ... all other threads block BREAK_SIGNAL
 574       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 575     }
 576   }
 577 }
 578 
 579 //////////////////////////////////////////////////////////////////////////////
 580 // detecting pthread library
 581 
 582 void os::Linux::libpthread_init() {
 583   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 584   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 585   // generic name for earlier versions.
 586   // Define macros here so we can build HotSpot on old systems.
 587 # ifndef _CS_GNU_LIBC_VERSION
 588 # define _CS_GNU_LIBC_VERSION 2
 589 # endif
 590 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 591 # define _CS_GNU_LIBPTHREAD_VERSION 3
 592 # endif
 593 
 594   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 595   if (n > 0) {
 596      char *str = (char *)malloc(n, mtInternal);
 597      confstr(_CS_GNU_LIBC_VERSION, str, n);
 598      os::Linux::set_glibc_version(str);
 599   } else {
 600      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 601      static char _gnu_libc_version[32];
 602      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 603               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 604      os::Linux::set_glibc_version(_gnu_libc_version);
 605   }
 606 
 607   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 608   if (n > 0) {
 609      char *str = (char *)malloc(n, mtInternal);
 610      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 611      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 612      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 613      // is the case. LinuxThreads has a hard limit on max number of threads.
 614      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 615      // On the other hand, NPTL does not have such a limit, sysconf()
 616      // will return -1 and errno is not changed. Check if it is really NPTL.
 617      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 618          strstr(str, "NPTL") &&
 619          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 620        free(str);
 621        os::Linux::set_libpthread_version("linuxthreads");
 622      } else {
 623        os::Linux::set_libpthread_version(str);
 624      }
 625   } else {
 626     // glibc before 2.3.2 only has LinuxThreads.
 627     os::Linux::set_libpthread_version("linuxthreads");
 628   }
 629 
 630   if (strstr(libpthread_version(), "NPTL")) {
 631      os::Linux::set_is_NPTL();
 632   } else {
 633      os::Linux::set_is_LinuxThreads();
 634   }
 635 
 636   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 637   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 638   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 639      os::Linux::set_is_floating_stack();
 640   }
 641 }
 642 
 643 /////////////////////////////////////////////////////////////////////////////
 644 // thread stack
 645 
 646 // Force Linux kernel to expand current thread stack. If "bottom" is close
 647 // to the stack guard, caller should block all signals.
 648 //
 649 // MAP_GROWSDOWN:
 650 //   A special mmap() flag that is used to implement thread stacks. It tells
 651 //   kernel that the memory region should extend downwards when needed. This
 652 //   allows early versions of LinuxThreads to only mmap the first few pages
 653 //   when creating a new thread. Linux kernel will automatically expand thread
 654 //   stack as needed (on page faults).
 655 //
 656 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 657 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 658 //   region, it's hard to tell if the fault is due to a legitimate stack
 659 //   access or because of reading/writing non-exist memory (e.g. buffer
 660 //   overrun). As a rule, if the fault happens below current stack pointer,
 661 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 662 //   application (see Linux kernel fault.c).
 663 //
 664 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 665 //   stack overflow detection.
 666 //
 667 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 668 //   not use this flag. However, the stack of initial thread is not created
 669 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 670 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 671 //   and then attach the thread to JVM.
 672 //
 673 // To get around the problem and allow stack banging on Linux, we need to
 674 // manually expand thread stack after receiving the SIGSEGV.
 675 //
 676 // There are two ways to expand thread stack to address "bottom", we used
 677 // both of them in JVM before 1.5:
 678 //   1. adjust stack pointer first so that it is below "bottom", and then
 679 //      touch "bottom"
 680 //   2. mmap() the page in question
 681 //
 682 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 683 // if current sp is already near the lower end of page 101, and we need to
 684 // call mmap() to map page 100, it is possible that part of the mmap() frame
 685 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 686 // That will destroy the mmap() frame and cause VM to crash.
 687 //
 688 // The following code works by adjusting sp first, then accessing the "bottom"
 689 // page to force a page fault. Linux kernel will then automatically expand the
 690 // stack mapping.
 691 //
 692 // _expand_stack_to() assumes its frame size is less than page size, which
 693 // should always be true if the function is not inlined.
 694 
 695 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 696 #define NOINLINE
 697 #else
 698 #define NOINLINE __attribute__ ((noinline))
 699 #endif
 700 
 701 static void _expand_stack_to(address bottom) NOINLINE;
 702 
 703 static void _expand_stack_to(address bottom) {
 704   address sp;
 705   size_t size;
 706   volatile char *p;
 707 
 708   // Adjust bottom to point to the largest address within the same page, it
 709   // gives us a one-page buffer if alloca() allocates slightly more memory.
 710   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 711   bottom += os::Linux::page_size() - 1;
 712 
 713   // sp might be slightly above current stack pointer; if that's the case, we
 714   // will alloca() a little more space than necessary, which is OK. Don't use
 715   // os::current_stack_pointer(), as its result can be slightly below current
 716   // stack pointer, causing us to not alloca enough to reach "bottom".
 717   sp = (address)&sp;
 718 
 719   if (sp > bottom) {
 720     size = sp - bottom;
 721     p = (volatile char *)alloca(size);
 722     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 723     p[0] = '\0';
 724   }
 725 }
 726 
 727 void os::Linux::expand_stack_to(address bottom) {
 728   _expand_stack_to(bottom);
 729 }
 730 
 731 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 732   assert(t!=NULL, "just checking");
 733   assert(t->osthread()->expanding_stack(), "expand should be set");
 734   assert(t->stack_base() != NULL, "stack_base was not initialized");
 735 
 736   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 737     sigset_t mask_all, old_sigset;
 738     sigfillset(&mask_all);
 739     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 740     _expand_stack_to(addr);
 741     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 742     return true;
 743   }
 744   return false;
 745 }
 746 
 747 //////////////////////////////////////////////////////////////////////////////
 748 // create new thread
 749 
 750 static address highest_vm_reserved_address();
 751 
 752 // check if it's safe to start a new thread
 753 static bool _thread_safety_check(Thread* thread) {
 754   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 755     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 756     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 757     //   allocated (MAP_FIXED) from high address space. Every thread stack
 758     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 759     //   it to other values if they rebuild LinuxThreads).
 760     //
 761     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 762     // the memory region has already been mmap'ed. That means if we have too
 763     // many threads and/or very large heap, eventually thread stack will
 764     // collide with heap.
 765     //
 766     // Here we try to prevent heap/stack collision by comparing current
 767     // stack bottom with the highest address that has been mmap'ed by JVM
 768     // plus a safety margin for memory maps created by native code.
 769     //
 770     // This feature can be disabled by setting ThreadSafetyMargin to 0
 771     //
 772     if (ThreadSafetyMargin > 0) {
 773       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 774 
 775       // not safe if our stack extends below the safety margin
 776       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 777     } else {
 778       return true;
 779     }
 780   } else {
 781     // Floating stack LinuxThreads or NPTL:
 782     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 783     //   there's not enough space left, pthread_create() will fail. If we come
 784     //   here, that means enough space has been reserved for stack.
 785     return true;
 786   }
 787 }
 788 
 789 // Thread start routine for all newly created threads
 790 static void *java_start(Thread *thread) {
 791   // Try to randomize the cache line index of hot stack frames.
 792   // This helps when threads of the same stack traces evict each other's
 793   // cache lines. The threads can be either from the same JVM instance, or
 794   // from different JVM instances. The benefit is especially true for
 795   // processors with hyperthreading technology.
 796   static int counter = 0;
 797   int pid = os::current_process_id();
 798   alloca(((pid ^ counter++) & 7) * 128);
 799 
 800   ThreadLocalStorage::set_thread(thread);
 801 
 802   OSThread* osthread = thread->osthread();
 803   Monitor* sync = osthread->startThread_lock();
 804 
 805   // non floating stack LinuxThreads needs extra check, see above
 806   if (!_thread_safety_check(thread)) {
 807     // notify parent thread
 808     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 809     osthread->set_state(ZOMBIE);
 810     sync->notify_all();
 811     return NULL;
 812   }
 813 
 814   // thread_id is kernel thread id (similar to Solaris LWP id)
 815   osthread->set_thread_id(os::Linux::gettid());
 816 
 817   if (UseNUMA) {
 818     int lgrp_id = os::numa_get_group_id();
 819     if (lgrp_id != -1) {
 820       thread->set_lgrp_id(lgrp_id);
 821     }
 822   }
 823   // initialize signal mask for this thread
 824   os::Linux::hotspot_sigmask(thread);
 825 
 826   // initialize floating point control register
 827   os::Linux::init_thread_fpu_state();
 828 
 829   // handshaking with parent thread
 830   {
 831     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 832 
 833     // notify parent thread
 834     osthread->set_state(INITIALIZED);
 835     sync->notify_all();
 836 
 837     // wait until os::start_thread()
 838     while (osthread->get_state() == INITIALIZED) {
 839       sync->wait(Mutex::_no_safepoint_check_flag);
 840     }
 841   }
 842 
 843   // call one more level start routine
 844   thread->run();
 845 
 846   return 0;
 847 }
 848 
 849 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 850   assert(thread->osthread() == NULL, "caller responsible");
 851 
 852   // Allocate the OSThread object
 853   OSThread* osthread = new OSThread(NULL, NULL);
 854   if (osthread == NULL) {
 855     return false;
 856   }
 857 
 858   // set the correct thread state
 859   osthread->set_thread_type(thr_type);
 860 
 861   // Initial state is ALLOCATED but not INITIALIZED
 862   osthread->set_state(ALLOCATED);
 863 
 864   thread->set_osthread(osthread);
 865 
 866   // init thread attributes
 867   pthread_attr_t attr;
 868   pthread_attr_init(&attr);
 869   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 870 
 871   // stack size
 872   if (os::Linux::supports_variable_stack_size()) {
 873     // calculate stack size if it's not specified by caller
 874     if (stack_size == 0) {
 875       stack_size = os::Linux::default_stack_size(thr_type);
 876 
 877       switch (thr_type) {
 878       case os::java_thread:
 879         // Java threads use ThreadStackSize which default value can be
 880         // changed with the flag -Xss
 881         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 882         stack_size = JavaThread::stack_size_at_create();
 883         break;
 884       case os::compiler_thread:
 885         if (CompilerThreadStackSize > 0) {
 886           stack_size = (size_t)(CompilerThreadStackSize * K);
 887           break;
 888         } // else fall through:
 889           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 890       case os::vm_thread:
 891       case os::pgc_thread:
 892       case os::cgc_thread:
 893       case os::watcher_thread:
 894         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 895         break;
 896       }
 897     }
 898 
 899     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 900     pthread_attr_setstacksize(&attr, stack_size);
 901   } else {
 902     // let pthread_create() pick the default value.
 903   }
 904 
 905   // glibc guard page
 906   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 907 
 908   ThreadState state;
 909 
 910   {
 911     // Serialize thread creation if we are running with fixed stack LinuxThreads
 912     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 913     if (lock) {
 914       os::Linux::createThread_lock()->lock_without_safepoint_check();
 915     }
 916 
 917     pthread_t tid;
 918     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 919 
 920     pthread_attr_destroy(&attr);
 921 
 922     if (ret != 0) {
 923       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 924         perror("pthread_create()");
 925       }
 926       // Need to clean up stuff we've allocated so far
 927       thread->set_osthread(NULL);
 928       delete osthread;
 929       if (lock) os::Linux::createThread_lock()->unlock();
 930       return false;
 931     }
 932 
 933     // Store pthread info into the OSThread
 934     osthread->set_pthread_id(tid);
 935 
 936     // Wait until child thread is either initialized or aborted
 937     {
 938       Monitor* sync_with_child = osthread->startThread_lock();
 939       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 940       while ((state = osthread->get_state()) == ALLOCATED) {
 941         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 942       }
 943     }
 944 
 945     if (lock) {
 946       os::Linux::createThread_lock()->unlock();
 947     }
 948   }
 949 
 950   // Aborted due to thread limit being reached
 951   if (state == ZOMBIE) {
 952       thread->set_osthread(NULL);
 953       delete osthread;
 954       return false;
 955   }
 956 
 957   // The thread is returned suspended (in state INITIALIZED),
 958   // and is started higher up in the call chain
 959   assert(state == INITIALIZED, "race condition");
 960   return true;
 961 }
 962 
 963 /////////////////////////////////////////////////////////////////////////////
 964 // attach existing thread
 965 
 966 // bootstrap the main thread
 967 bool os::create_main_thread(JavaThread* thread) {
 968   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 969   return create_attached_thread(thread);
 970 }
 971 
 972 bool os::create_attached_thread(JavaThread* thread) {
 973 #ifdef ASSERT
 974     thread->verify_not_published();
 975 #endif
 976 
 977   // Allocate the OSThread object
 978   OSThread* osthread = new OSThread(NULL, NULL);
 979 
 980   if (osthread == NULL) {
 981     return false;
 982   }
 983 
 984   // Store pthread info into the OSThread
 985   osthread->set_thread_id(os::Linux::gettid());
 986   osthread->set_pthread_id(::pthread_self());
 987 
 988   // initialize floating point control register
 989   os::Linux::init_thread_fpu_state();
 990 
 991   // Initial thread state is RUNNABLE
 992   osthread->set_state(RUNNABLE);
 993 
 994   thread->set_osthread(osthread);
 995 
 996   if (UseNUMA) {
 997     int lgrp_id = os::numa_get_group_id();
 998     if (lgrp_id != -1) {
 999       thread->set_lgrp_id(lgrp_id);
1000     }
1001   }
1002 
1003   if (os::is_primordial_thread()) {
1004     // If current thread is primordial thread, its stack is mapped on demand,
1005     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1006     // the entire stack region to avoid SEGV in stack banging.
1007     // It is also useful to get around the heap-stack-gap problem on SuSE
1008     // kernel (see 4821821 for details). We first expand stack to the top
1009     // of yellow zone, then enable stack yellow zone (order is significant,
1010     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1011     // is no gap between the last two virtual memory regions.
1012 
1013     JavaThread *jt = (JavaThread *)thread;
1014     address addr = jt->stack_yellow_zone_base();
1015     assert(addr != NULL, "initialization problem?");
1016     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1017 
1018     osthread->set_expanding_stack();
1019     os::Linux::manually_expand_stack(jt, addr);
1020     osthread->clear_expanding_stack();
1021   }
1022 
1023   // initialize signal mask for this thread
1024   // and save the caller's signal mask
1025   os::Linux::hotspot_sigmask(thread);
1026 
1027   return true;
1028 }
1029 
1030 void os::pd_start_thread(Thread* thread) {
1031   OSThread * osthread = thread->osthread();
1032   assert(osthread->get_state() != INITIALIZED, "just checking");
1033   Monitor* sync_with_child = osthread->startThread_lock();
1034   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1035   sync_with_child->notify();
1036 }
1037 
1038 // Free Linux resources related to the OSThread
1039 void os::free_thread(OSThread* osthread) {
1040   assert(osthread != NULL, "osthread not set");
1041 
1042   if (Thread::current()->osthread() == osthread) {
1043     // Restore caller's signal mask
1044     sigset_t sigmask = osthread->caller_sigmask();
1045     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1046    }
1047 
1048   delete osthread;
1049 }
1050 
1051 //////////////////////////////////////////////////////////////////////////////
1052 // thread local storage
1053 
1054 // Restore the thread pointer if the destructor is called. This is in case
1055 // someone from JNI code sets up a destructor with pthread_key_create to run
1056 // detachCurrentThread on thread death. Unless we restore the thread pointer we
1057 // will hang or crash. When detachCurrentThread is called the key will be set
1058 // to null and we will not be called again. If detachCurrentThread is never
1059 // called we could loop forever depending on the pthread implementation.
1060 static void restore_thread_pointer(void* p) {
1061   Thread* thread = (Thread*) p;
1062   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1063 }
1064 
1065 int os::allocate_thread_local_storage() {
1066   pthread_key_t key;
1067   int rslt = pthread_key_create(&key, restore_thread_pointer);
1068   assert(rslt == 0, "cannot allocate thread local storage");
1069   return (int)key;
1070 }
1071 
1072 // Note: This is currently not used by VM, as we don't destroy TLS key
1073 // on VM exit.
1074 void os::free_thread_local_storage(int index) {
1075   int rslt = pthread_key_delete((pthread_key_t)index);
1076   assert(rslt == 0, "invalid index");
1077 }
1078 
1079 void os::thread_local_storage_at_put(int index, void* value) {
1080   int rslt = pthread_setspecific((pthread_key_t)index, value);
1081   assert(rslt == 0, "pthread_setspecific failed");
1082 }
1083 
1084 extern "C" Thread* get_thread() {
1085   return ThreadLocalStorage::thread();
1086 }
1087 
1088 //////////////////////////////////////////////////////////////////////////////
1089 // primordial thread
1090 
1091 // Check if current thread is the primordial thread, similar to Solaris thr_main.
1092 bool os::is_primordial_thread(void) {
1093   char dummy;
1094   // If called before init complete, thread stack bottom will be null.
1095   // Can be called if fatal error occurs before initialization.
1096   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
1097   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
1098          os::Linux::initial_thread_stack_size()   != 0,
1099          "os::init did not locate primordial thread's stack region");
1100   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
1101       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
1102                         os::Linux::initial_thread_stack_size()) {
1103        return true;
1104   } else {
1105        return false;
1106   }
1107 }
1108 
1109 // Find the virtual memory area that contains addr
1110 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1111   FILE *fp = fopen("/proc/self/maps", "r");
1112   if (fp) {
1113     address low, high;
1114     while (!feof(fp)) {
1115       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1116         if (low <= addr && addr < high) {
1117            if (vma_low)  *vma_low  = low;
1118            if (vma_high) *vma_high = high;
1119            fclose (fp);
1120            return true;
1121         }
1122       }
1123       for (;;) {
1124         int ch = fgetc(fp);
1125         if (ch == EOF || ch == (int)'\n') break;
1126       }
1127     }
1128     fclose(fp);
1129   }
1130   return false;
1131 }
1132 
1133 // Locate primordial thread stack. This special handling of primordial thread stack
1134 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1135 // bogus value for the primordial process thread. While the launcher has created
1136 // the VM in a new thread since JDK 6, we still have to allow for the use of the
1137 // JNI invocation API from a primordial thread.
1138 void os::Linux::capture_initial_stack(size_t max_size) {
1139 
1140   // max_size is either 0 (which means accept OS default for thread stacks) or
1141   // a user-specified value known to be at least the minimum needed. If we
1142   // are actually on the primordial thread we can make it appear that we have a
1143   // smaller max_size stack by inserting the guard pages at that location. But we
1144   // cannot do anything to emulate a larger stack than what has been provided by
1145   // the OS or threading library. In fact if we try to use a stack greater than
1146   // what is set by rlimit then we will crash the hosting process.
1147 
1148   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
1149   // If this is "unlimited" then it will be a huge value.
1150   struct rlimit rlim;
1151   getrlimit(RLIMIT_STACK, &rlim);
1152   size_t stack_size = rlim.rlim_cur;
1153 
1154   // 6308388: a bug in ld.so will relocate its own .data section to the
1155   //   lower end of primordial stack; reduce ulimit -s value a little bit
1156   //   so we won't install guard page on ld.so's data section.
1157   //   But ensure we don't underflow the stack size - allow 1 page spare
1158   if (stack_size >= (size_t)(3 * page_size())) {
1159     stack_size -= 2 * page_size();
1160   }
1161 
1162   // Try to figure out where the stack base (top) is. This is harder.
1163   //
1164   // When an application is started, glibc saves the initial stack pointer in
1165   // a global variable "__libc_stack_end", which is then used by system
1166   // libraries. __libc_stack_end should be pretty close to stack top. The
1167   // variable is available since the very early days. However, because it is
1168   // a private interface, it could disappear in the future.
1169   //
1170   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1171   // to __libc_stack_end, it is very close to stack top, but isn't the real
1172   // stack top. Note that /proc may not exist if VM is running as a chroot
1173   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1174   // /proc/<pid>/stat could change in the future (though unlikely).
1175   //
1176   // We try __libc_stack_end first. If that doesn't work, look for
1177   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1178   // as a hint, which should work well in most cases.
1179 
1180   uintptr_t stack_start;
1181 
1182   // try __libc_stack_end first
1183   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1184   if (p && *p) {
1185     stack_start = *p;
1186   } else {
1187     // see if we can get the start_stack field from /proc/self/stat
1188     FILE *fp;
1189     int pid;
1190     char state;
1191     int ppid;
1192     int pgrp;
1193     int session;
1194     int nr;
1195     int tpgrp;
1196     unsigned long flags;
1197     unsigned long minflt;
1198     unsigned long cminflt;
1199     unsigned long majflt;
1200     unsigned long cmajflt;
1201     unsigned long utime;
1202     unsigned long stime;
1203     long cutime;
1204     long cstime;
1205     long prio;
1206     long nice;
1207     long junk;
1208     long it_real;
1209     uintptr_t start;
1210     uintptr_t vsize;
1211     intptr_t rss;
1212     uintptr_t rsslim;
1213     uintptr_t scodes;
1214     uintptr_t ecode;
1215     int i;
1216 
1217     // Figure what the primordial thread stack base is. Code is inspired
1218     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1219     // followed by command name surrounded by parentheses, state, etc.
1220     char stat[2048];
1221     int statlen;
1222 
1223     fp = fopen("/proc/self/stat", "r");
1224     if (fp) {
1225       statlen = fread(stat, 1, 2047, fp);
1226       stat[statlen] = '\0';
1227       fclose(fp);
1228 
1229       // Skip pid and the command string. Note that we could be dealing with
1230       // weird command names, e.g. user could decide to rename java launcher
1231       // to "java 1.4.2 :)", then the stat file would look like
1232       //                1234 (java 1.4.2 :)) R ... ...
1233       // We don't really need to know the command string, just find the last
1234       // occurrence of ")" and then start parsing from there. See bug 4726580.
1235       char * s = strrchr(stat, ')');
1236 
1237       i = 0;
1238       if (s) {
1239         // Skip blank chars
1240         do s++; while (isspace(*s));
1241 
1242 #define _UFM UINTX_FORMAT
1243 #define _DFM INTX_FORMAT
1244 
1245         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1246         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1247         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1248              &state,          /* 3  %c  */
1249              &ppid,           /* 4  %d  */
1250              &pgrp,           /* 5  %d  */
1251              &session,        /* 6  %d  */
1252              &nr,             /* 7  %d  */
1253              &tpgrp,          /* 8  %d  */
1254              &flags,          /* 9  %lu  */
1255              &minflt,         /* 10 %lu  */
1256              &cminflt,        /* 11 %lu  */
1257              &majflt,         /* 12 %lu  */
1258              &cmajflt,        /* 13 %lu  */
1259              &utime,          /* 14 %lu  */
1260              &stime,          /* 15 %lu  */
1261              &cutime,         /* 16 %ld  */
1262              &cstime,         /* 17 %ld  */
1263              &prio,           /* 18 %ld  */
1264              &nice,           /* 19 %ld  */
1265              &junk,           /* 20 %ld  */
1266              &it_real,        /* 21 %ld  */
1267              &start,          /* 22 UINTX_FORMAT */
1268              &vsize,          /* 23 UINTX_FORMAT */
1269              &rss,            /* 24 INTX_FORMAT  */
1270              &rsslim,         /* 25 UINTX_FORMAT */
1271              &scodes,         /* 26 UINTX_FORMAT */
1272              &ecode,          /* 27 UINTX_FORMAT */
1273              &stack_start);   /* 28 UINTX_FORMAT */
1274       }
1275 
1276 #undef _UFM
1277 #undef _DFM
1278 
1279       if (i != 28 - 2) {
1280          assert(false, "Bad conversion from /proc/self/stat");
1281          // product mode - assume we are the primordial thread, good luck in the
1282          // embedded case.
1283          warning("Can't detect primordial thread stack location - bad conversion");
1284          stack_start = (uintptr_t) &rlim;
1285       }
1286     } else {
1287       // For some reason we can't open /proc/self/stat (for example, running on
1288       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1289       // most cases, so don't abort:
1290       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1291       stack_start = (uintptr_t) &rlim;
1292     }
1293   }
1294 
1295   // Now we have a pointer (stack_start) very close to the stack top, the
1296   // next thing to do is to figure out the exact location of stack top. We
1297   // can find out the virtual memory area that contains stack_start by
1298   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1299   // and its upper limit is the real stack top. (again, this would fail if
1300   // running inside chroot, because /proc may not exist.)
1301 
1302   uintptr_t stack_top;
1303   address low, high;
1304   if (find_vma((address)stack_start, &low, &high)) {
1305     // success, "high" is the true stack top. (ignore "low", because initial
1306     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1307     stack_top = (uintptr_t)high;
1308   } else {
1309     // failed, likely because /proc/self/maps does not exist
1310     warning("Can't detect primordial thread stack location - find_vma failed");
1311     // best effort: stack_start is normally within a few pages below the real
1312     // stack top, use it as stack top, and reduce stack size so we won't put
1313     // guard page outside stack.
1314     stack_top = stack_start;
1315     stack_size -= 16 * page_size();
1316   }
1317 
1318   // stack_top could be partially down the page so align it
1319   stack_top = align_size_up(stack_top, page_size());
1320 
1321   // Allowed stack value is minimum of max_size and what we derived from rlimit
1322   if (max_size > 0) {
1323     _initial_thread_stack_size = MIN2(max_size, stack_size);
1324   } else {
1325     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1326     // clamp it at 8MB as we do on Solaris
1327     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1328   }
1329 
1330   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1331   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1332   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1333 }
1334 
1335 ////////////////////////////////////////////////////////////////////////////////
1336 // time support
1337 
1338 // Time since start-up in seconds to a fine granularity.
1339 // Used by VMSelfDestructTimer and the MemProfiler.
1340 double os::elapsedTime() {
1341 
1342   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1343 }
1344 
1345 jlong os::elapsed_counter() {
1346   return javaTimeNanos() - initial_time_count;
1347 }
1348 
1349 jlong os::elapsed_frequency() {
1350   return NANOSECS_PER_SEC; // nanosecond resolution
1351 }
1352 
1353 bool os::supports_vtime() { return true; }
1354 bool os::enable_vtime()   { return false; }
1355 bool os::vtime_enabled()  { return false; }
1356 
1357 double os::elapsedVTime() {
1358   struct rusage usage;
1359   int retval = getrusage(RUSAGE_THREAD, &usage);
1360   if (retval == 0) {
1361     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1362   } else {
1363     // better than nothing, but not much
1364     return elapsedTime();
1365   }
1366 }
1367 
1368 jlong os::javaTimeMillis() {
1369   timeval time;
1370   int status = gettimeofday(&time, NULL);
1371   assert(status != -1, "linux error");
1372   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1373 }
1374 
1375 #ifndef CLOCK_MONOTONIC
1376 #define CLOCK_MONOTONIC (1)
1377 #endif
1378 
1379 void os::Linux::clock_init() {
1380   // we do dlopen's in this particular order due to bug in linux
1381   // dynamical loader (see 6348968) leading to crash on exit
1382   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1383   if (handle == NULL) {
1384     handle = dlopen("librt.so", RTLD_LAZY);
1385   }
1386 
1387   if (handle) {
1388     int (*clock_getres_func)(clockid_t, struct timespec*) =
1389            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1390     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1391            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1392     if (clock_getres_func && clock_gettime_func) {
1393       // See if monotonic clock is supported by the kernel. Note that some
1394       // early implementations simply return kernel jiffies (updated every
1395       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1396       // for nano time (though the monotonic property is still nice to have).
1397       // It's fixed in newer kernels, however clock_getres() still returns
1398       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1399       // resolution for now. Hopefully as people move to new kernels, this
1400       // won't be a problem.
1401       struct timespec res;
1402       struct timespec tp;
1403       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1404           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1405         // yes, monotonic clock is supported
1406         _clock_gettime = clock_gettime_func;
1407         return;
1408       } else {
1409         // close librt if there is no monotonic clock
1410         dlclose(handle);
1411       }
1412     }
1413   }
1414   warning("No monotonic clock was available - timed services may " \
1415           "be adversely affected if the time-of-day clock changes");
1416 }
1417 
1418 #ifndef SYS_clock_getres
1419 
1420 #if defined(IA32) || defined(AMD64)
1421 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1422 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1423 #else
1424 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1425 #define sys_clock_getres(x,y)  -1
1426 #endif
1427 
1428 #else
1429 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1430 #endif
1431 
1432 void os::Linux::fast_thread_clock_init() {
1433   if (!UseLinuxPosixThreadCPUClocks) {
1434     return;
1435   }
1436   clockid_t clockid;
1437   struct timespec tp;
1438   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1439       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1440 
1441   // Switch to using fast clocks for thread cpu time if
1442   // the sys_clock_getres() returns 0 error code.
1443   // Note, that some kernels may support the current thread
1444   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1445   // returned by the pthread_getcpuclockid().
1446   // If the fast Posix clocks are supported then the sys_clock_getres()
1447   // must return at least tp.tv_sec == 0 which means a resolution
1448   // better than 1 sec. This is extra check for reliability.
1449 
1450   if(pthread_getcpuclockid_func &&
1451      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1452      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1453 
1454     _supports_fast_thread_cpu_time = true;
1455     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1456   }
1457 }
1458 
1459 jlong os::javaTimeNanos() {
1460   if (Linux::supports_monotonic_clock()) {
1461     struct timespec tp;
1462     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1463     assert(status == 0, "gettime error");
1464     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1465     return result;
1466   } else {
1467     timeval time;
1468     int status = gettimeofday(&time, NULL);
1469     assert(status != -1, "linux error");
1470     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1471     return 1000 * usecs;
1472   }
1473 }
1474 
1475 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1476   if (Linux::supports_monotonic_clock()) {
1477     info_ptr->max_value = ALL_64_BITS;
1478 
1479     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1480     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1481     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1482   } else {
1483     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1484     info_ptr->max_value = ALL_64_BITS;
1485 
1486     // gettimeofday is a real time clock so it skips
1487     info_ptr->may_skip_backward = true;
1488     info_ptr->may_skip_forward = true;
1489   }
1490 
1491   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1492 }
1493 
1494 // Return the real, user, and system times in seconds from an
1495 // arbitrary fixed point in the past.
1496 bool os::getTimesSecs(double* process_real_time,
1497                       double* process_user_time,
1498                       double* process_system_time) {
1499   struct tms ticks;
1500   clock_t real_ticks = times(&ticks);
1501 
1502   if (real_ticks == (clock_t) (-1)) {
1503     return false;
1504   } else {
1505     double ticks_per_second = (double) clock_tics_per_sec;
1506     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1507     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1508     *process_real_time = ((double) real_ticks) / ticks_per_second;
1509 
1510     return true;
1511   }
1512 }
1513 
1514 
1515 char * os::local_time_string(char *buf, size_t buflen) {
1516   struct tm t;
1517   time_t long_time;
1518   time(&long_time);
1519   localtime_r(&long_time, &t);
1520   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1521                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1522                t.tm_hour, t.tm_min, t.tm_sec);
1523   return buf;
1524 }
1525 
1526 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1527   return localtime_r(clock, res);
1528 }
1529 
1530 ////////////////////////////////////////////////////////////////////////////////
1531 // runtime exit support
1532 
1533 // Note: os::shutdown() might be called very early during initialization, or
1534 // called from signal handler. Before adding something to os::shutdown(), make
1535 // sure it is async-safe and can handle partially initialized VM.
1536 void os::shutdown() {
1537 
1538   // allow PerfMemory to attempt cleanup of any persistent resources
1539   perfMemory_exit();
1540 
1541   // needs to remove object in file system
1542   AttachListener::abort();
1543 
1544   // flush buffered output, finish log files
1545   ostream_abort();
1546 
1547   // Check for abort hook
1548   abort_hook_t abort_hook = Arguments::abort_hook();
1549   if (abort_hook != NULL) {
1550     abort_hook();
1551   }
1552 
1553 }
1554 
1555 // Note: os::abort() might be called very early during initialization, or
1556 // called from signal handler. Before adding something to os::abort(), make
1557 // sure it is async-safe and can handle partially initialized VM.
1558 void os::abort(bool dump_core) {
1559   os::shutdown();
1560   if (dump_core) {
1561 #ifndef PRODUCT
1562     fdStream out(defaultStream::output_fd());
1563     out.print_raw("Current thread is ");
1564     char buf[16];
1565     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1566     out.print_raw_cr(buf);
1567     out.print_raw_cr("Dumping core ...");
1568 #endif
1569     ::abort(); // dump core
1570   }
1571 
1572   ::exit(1);
1573 }
1574 
1575 // Die immediately, no exit hook, no abort hook, no cleanup.
1576 void os::die() {
1577   // _exit() on LinuxThreads only kills current thread
1578   ::abort();
1579 }
1580 
1581 
1582 // This method is a copy of JDK's sysGetLastErrorString
1583 // from src/solaris/hpi/src/system_md.c
1584 
1585 size_t os::lasterror(char *buf, size_t len) {
1586 
1587   if (errno == 0)  return 0;
1588 
1589   const char *s = ::strerror(errno);
1590   size_t n = ::strlen(s);
1591   if (n >= len) {
1592     n = len - 1;
1593   }
1594   ::strncpy(buf, s, n);
1595   buf[n] = '\0';
1596   return n;
1597 }
1598 
1599 intx os::current_thread_id() { return (intx)pthread_self(); }
1600 int os::current_process_id() {
1601 
1602   // Under the old linux thread library, linux gives each thread
1603   // its own process id. Because of this each thread will return
1604   // a different pid if this method were to return the result
1605   // of getpid(2). Linux provides no api that returns the pid
1606   // of the launcher thread for the vm. This implementation
1607   // returns a unique pid, the pid of the launcher thread
1608   // that starts the vm 'process'.
1609 
1610   // Under the NPTL, getpid() returns the same pid as the
1611   // launcher thread rather than a unique pid per thread.
1612   // Use gettid() if you want the old pre NPTL behaviour.
1613 
1614   // if you are looking for the result of a call to getpid() that
1615   // returns a unique pid for the calling thread, then look at the
1616   // OSThread::thread_id() method in osThread_linux.hpp file
1617 
1618   return (int)(_initial_pid ? _initial_pid : getpid());
1619 }
1620 
1621 // DLL functions
1622 
1623 const char* os::dll_file_extension() { return ".so"; }
1624 
1625 // This must be hard coded because it's the system's temporary
1626 // directory not the java application's temp directory, ala java.io.tmpdir.
1627 const char* os::get_temp_directory() { return "/tmp"; }
1628 
1629 static bool file_exists(const char* filename) {
1630   struct stat statbuf;
1631   if (filename == NULL || strlen(filename) == 0) {
1632     return false;
1633   }
1634   return os::stat(filename, &statbuf) == 0;
1635 }
1636 
1637 bool os::dll_build_name(char* buffer, size_t buflen,
1638                         const char* pname, const char* fname) {
1639   bool retval = false;
1640   // Copied from libhpi
1641   const size_t pnamelen = pname ? strlen(pname) : 0;
1642 
1643   // Return error on buffer overflow.
1644   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1645     return retval;
1646   }
1647 
1648   if (pnamelen == 0) {
1649     snprintf(buffer, buflen, "lib%s.so", fname);
1650     retval = true;
1651   } else if (strchr(pname, *os::path_separator()) != NULL) {
1652     int n;
1653     char** pelements = split_path(pname, &n);
1654     if (pelements == NULL) {
1655       return false;
1656     }
1657     for (int i = 0 ; i < n ; i++) {
1658       // Really shouldn't be NULL, but check can't hurt
1659       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1660         continue; // skip the empty path values
1661       }
1662       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1663       if (file_exists(buffer)) {
1664         retval = true;
1665         break;
1666       }
1667     }
1668     // release the storage
1669     for (int i = 0 ; i < n ; i++) {
1670       if (pelements[i] != NULL) {
1671         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1672       }
1673     }
1674     if (pelements != NULL) {
1675       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1676     }
1677   } else {
1678     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1679     retval = true;
1680   }
1681   return retval;
1682 }
1683 
1684 // check if addr is inside libjvm.so
1685 bool os::address_is_in_vm(address addr) {
1686   static address libjvm_base_addr;
1687   Dl_info dlinfo;
1688 
1689   if (libjvm_base_addr == NULL) {
1690     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1691       libjvm_base_addr = (address)dlinfo.dli_fbase;
1692     }
1693     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1694   }
1695 
1696   if (dladdr((void *)addr, &dlinfo) != 0) {
1697     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1698   }
1699 
1700   return false;
1701 }
1702 
1703 bool os::dll_address_to_function_name(address addr, char *buf,
1704                                       int buflen, int *offset) {
1705   // buf is not optional, but offset is optional
1706   assert(buf != NULL, "sanity check");
1707 
1708   Dl_info dlinfo;
1709 
1710   if (dladdr((void*)addr, &dlinfo) != 0) {
1711     // see if we have a matching symbol
1712     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1713       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1714         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1715       }
1716       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1717       return true;
1718     }
1719     // no matching symbol so try for just file info
1720     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1721       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1722                           buf, buflen, offset, dlinfo.dli_fname)) {
1723         return true;
1724       }
1725     }
1726   }
1727 
1728   buf[0] = '\0';
1729   if (offset != NULL) *offset = -1;
1730   return false;
1731 }
1732 
1733 struct _address_to_library_name {
1734   address addr;          // input : memory address
1735   size_t  buflen;        //         size of fname
1736   char*   fname;         // output: library name
1737   address base;          //         library base addr
1738 };
1739 
1740 static int address_to_library_name_callback(struct dl_phdr_info *info,
1741                                             size_t size, void *data) {
1742   int i;
1743   bool found = false;
1744   address libbase = NULL;
1745   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1746 
1747   // iterate through all loadable segments
1748   for (i = 0; i < info->dlpi_phnum; i++) {
1749     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1750     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1751       // base address of a library is the lowest address of its loaded
1752       // segments.
1753       if (libbase == NULL || libbase > segbase) {
1754         libbase = segbase;
1755       }
1756       // see if 'addr' is within current segment
1757       if (segbase <= d->addr &&
1758           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1759         found = true;
1760       }
1761     }
1762   }
1763 
1764   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1765   // so dll_address_to_library_name() can fall through to use dladdr() which
1766   // can figure out executable name from argv[0].
1767   if (found && info->dlpi_name && info->dlpi_name[0]) {
1768     d->base = libbase;
1769     if (d->fname) {
1770       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1771     }
1772     return 1;
1773   }
1774   return 0;
1775 }
1776 
1777 bool os::dll_address_to_library_name(address addr, char* buf,
1778                                      int buflen, int* offset) {
1779   // buf is not optional, but offset is optional
1780   assert(buf != NULL, "sanity check");
1781 
1782   Dl_info dlinfo;
1783   struct _address_to_library_name data;
1784 
1785   // There is a bug in old glibc dladdr() implementation that it could resolve
1786   // to wrong library name if the .so file has a base address != NULL. Here
1787   // we iterate through the program headers of all loaded libraries to find
1788   // out which library 'addr' really belongs to. This workaround can be
1789   // removed once the minimum requirement for glibc is moved to 2.3.x.
1790   data.addr = addr;
1791   data.fname = buf;
1792   data.buflen = buflen;
1793   data.base = NULL;
1794   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1795 
1796   if (rslt) {
1797      // buf already contains library name
1798      if (offset) *offset = addr - data.base;
1799      return true;
1800   }
1801   if (dladdr((void*)addr, &dlinfo) != 0) {
1802     if (dlinfo.dli_fname != NULL) {
1803       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1804     }
1805     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1806       *offset = addr - (address)dlinfo.dli_fbase;
1807     }
1808     return true;
1809   }
1810 
1811   buf[0] = '\0';
1812   if (offset) *offset = -1;
1813   return false;
1814 }
1815 
1816   // Loads .dll/.so and
1817   // in case of error it checks if .dll/.so was built for the
1818   // same architecture as Hotspot is running on
1819 
1820 
1821 // Remember the stack's state. The Linux dynamic linker will change
1822 // the stack to 'executable' at most once, so we must safepoint only once.
1823 bool os::Linux::_stack_is_executable = false;
1824 
1825 // VM operation that loads a library.  This is necessary if stack protection
1826 // of the Java stacks can be lost during loading the library.  If we
1827 // do not stop the Java threads, they can stack overflow before the stacks
1828 // are protected again.
1829 class VM_LinuxDllLoad: public VM_Operation {
1830  private:
1831   const char *_filename;
1832   char *_ebuf;
1833   int _ebuflen;
1834   void *_lib;
1835  public:
1836   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1837     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1838   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1839   void doit() {
1840     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1841     os::Linux::_stack_is_executable = true;
1842   }
1843   void* loaded_library() { return _lib; }
1844 };
1845 
1846 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1847 {
1848   void * result = NULL;
1849   bool load_attempted = false;
1850 
1851   // Check whether the library to load might change execution rights
1852   // of the stack. If they are changed, the protection of the stack
1853   // guard pages will be lost. We need a safepoint to fix this.
1854   //
1855   // See Linux man page execstack(8) for more info.
1856   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1857     ElfFile ef(filename);
1858     if (!ef.specifies_noexecstack()) {
1859       if (!is_init_completed()) {
1860         os::Linux::_stack_is_executable = true;
1861         // This is OK - No Java threads have been created yet, and hence no
1862         // stack guard pages to fix.
1863         //
1864         // This should happen only when you are building JDK7 using a very
1865         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1866         //
1867         // Dynamic loader will make all stacks executable after
1868         // this function returns, and will not do that again.
1869         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1870       } else {
1871         warning("You have loaded library %s which might have disabled stack guard. "
1872                 "The VM will try to fix the stack guard now.\n"
1873                 "It's highly recommended that you fix the library with "
1874                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1875                 filename);
1876 
1877         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1878         JavaThread *jt = JavaThread::current();
1879         if (jt->thread_state() != _thread_in_native) {
1880           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1881           // that requires ExecStack. Cannot enter safe point. Let's give up.
1882           warning("Unable to fix stack guard. Giving up.");
1883         } else {
1884           if (!LoadExecStackDllInVMThread) {
1885             // This is for the case where the DLL has an static
1886             // constructor function that executes JNI code. We cannot
1887             // load such DLLs in the VMThread.
1888             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1889           }
1890 
1891           ThreadInVMfromNative tiv(jt);
1892           debug_only(VMNativeEntryWrapper vew;)
1893 
1894           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1895           VMThread::execute(&op);
1896           if (LoadExecStackDllInVMThread) {
1897             result = op.loaded_library();
1898           }
1899           load_attempted = true;
1900         }
1901       }
1902     }
1903   }
1904 
1905   if (!load_attempted) {
1906     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1907   }
1908 
1909   if (result != NULL) {
1910     // Successful loading
1911     return result;
1912   }
1913 
1914   Elf32_Ehdr elf_head;
1915   int diag_msg_max_length=ebuflen-strlen(ebuf);
1916   char* diag_msg_buf=ebuf+strlen(ebuf);
1917 
1918   if (diag_msg_max_length==0) {
1919     // No more space in ebuf for additional diagnostics message
1920     return NULL;
1921   }
1922 
1923 
1924   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1925 
1926   if (file_descriptor < 0) {
1927     // Can't open library, report dlerror() message
1928     return NULL;
1929   }
1930 
1931   bool failed_to_read_elf_head=
1932     (sizeof(elf_head)!=
1933         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1934 
1935   ::close(file_descriptor);
1936   if (failed_to_read_elf_head) {
1937     // file i/o error - report dlerror() msg
1938     return NULL;
1939   }
1940 
1941   typedef struct {
1942     Elf32_Half  code;         // Actual value as defined in elf.h
1943     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1944     char        elf_class;    // 32 or 64 bit
1945     char        endianess;    // MSB or LSB
1946     char*       name;         // String representation
1947   } arch_t;
1948 
1949   #ifndef EM_486
1950   #define EM_486          6               /* Intel 80486 */
1951   #endif
1952 
1953   static const arch_t arch_array[]={
1954     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1955     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1956     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1957     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1958     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1959     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1960     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1961     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1962 #if defined(VM_LITTLE_ENDIAN)
1963     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1964 #else
1965     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1966 #endif
1967     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1968     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1969     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1970     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1971     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1972     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1973     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1974   };
1975 
1976   #if  (defined IA32)
1977     static  Elf32_Half running_arch_code=EM_386;
1978   #elif   (defined AMD64)
1979     static  Elf32_Half running_arch_code=EM_X86_64;
1980   #elif  (defined IA64)
1981     static  Elf32_Half running_arch_code=EM_IA_64;
1982   #elif  (defined __sparc) && (defined _LP64)
1983     static  Elf32_Half running_arch_code=EM_SPARCV9;
1984   #elif  (defined __sparc) && (!defined _LP64)
1985     static  Elf32_Half running_arch_code=EM_SPARC;
1986   #elif  (defined __powerpc64__)
1987     static  Elf32_Half running_arch_code=EM_PPC64;
1988   #elif  (defined __powerpc__)
1989     static  Elf32_Half running_arch_code=EM_PPC;
1990   #elif  (defined ARM)
1991     static  Elf32_Half running_arch_code=EM_ARM;
1992   #elif  (defined S390)
1993     static  Elf32_Half running_arch_code=EM_S390;
1994   #elif  (defined ALPHA)
1995     static  Elf32_Half running_arch_code=EM_ALPHA;
1996   #elif  (defined MIPSEL)
1997     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1998   #elif  (defined PARISC)
1999     static  Elf32_Half running_arch_code=EM_PARISC;
2000   #elif  (defined MIPS)
2001     static  Elf32_Half running_arch_code=EM_MIPS;
2002   #elif  (defined M68K)
2003     static  Elf32_Half running_arch_code=EM_68K;
2004   #else
2005     #error Method os::dll_load requires that one of following is defined:\
2006          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
2007   #endif
2008 
2009   // Identify compatability class for VM's architecture and library's architecture
2010   // Obtain string descriptions for architectures
2011 
2012   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
2013   int running_arch_index=-1;
2014 
2015   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
2016     if (running_arch_code == arch_array[i].code) {
2017       running_arch_index    = i;
2018     }
2019     if (lib_arch.code == arch_array[i].code) {
2020       lib_arch.compat_class = arch_array[i].compat_class;
2021       lib_arch.name         = arch_array[i].name;
2022     }
2023   }
2024 
2025   assert(running_arch_index != -1,
2026     "Didn't find running architecture code (running_arch_code) in arch_array");
2027   if (running_arch_index == -1) {
2028     // Even though running architecture detection failed
2029     // we may still continue with reporting dlerror() message
2030     return NULL;
2031   }
2032 
2033   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2034     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2035     return NULL;
2036   }
2037 
2038 #ifndef S390
2039   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2040     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2041     return NULL;
2042   }
2043 #endif // !S390
2044 
2045   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2046     if ( lib_arch.name!=NULL ) {
2047       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2048         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2049         lib_arch.name, arch_array[running_arch_index].name);
2050     } else {
2051       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2052       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2053         lib_arch.code,
2054         arch_array[running_arch_index].name);
2055     }
2056   }
2057 
2058   return NULL;
2059 }
2060 
2061 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2062   void * result = ::dlopen(filename, RTLD_LAZY);
2063   if (result == NULL) {
2064     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2065     ebuf[ebuflen-1] = '\0';
2066   }
2067   return result;
2068 }
2069 
2070 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2071   void * result = NULL;
2072   if (LoadExecStackDllInVMThread) {
2073     result = dlopen_helper(filename, ebuf, ebuflen);
2074   }
2075 
2076   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2077   // library that requires an executable stack, or which does not have this
2078   // stack attribute set, dlopen changes the stack attribute to executable. The
2079   // read protection of the guard pages gets lost.
2080   //
2081   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2082   // may have been queued at the same time.
2083 
2084   if (!_stack_is_executable) {
2085     JavaThread *jt = Threads::first();
2086 
2087     while (jt) {
2088       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2089           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2090         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2091                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2092           warning("Attempt to reguard stack yellow zone failed.");
2093         }
2094       }
2095       jt = jt->next();
2096     }
2097   }
2098 
2099   return result;
2100 }
2101 
2102 /*
2103  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2104  * chances are you might want to run the generated bits against glibc-2.0
2105  * libdl.so, so always use locking for any version of glibc.
2106  */
2107 void* os::dll_lookup(void* handle, const char* name) {
2108   pthread_mutex_lock(&dl_mutex);
2109   void* res = dlsym(handle, name);
2110   pthread_mutex_unlock(&dl_mutex);
2111   return res;
2112 }
2113 
2114 void* os::get_default_process_handle() {
2115   return (void*)::dlopen(NULL, RTLD_LAZY);
2116 }
2117 
2118 static bool _print_ascii_file(const char* filename, outputStream* st) {
2119   int fd = ::open(filename, O_RDONLY);
2120   if (fd == -1) {
2121      return false;
2122   }
2123 
2124   char buf[32];
2125   int bytes;
2126   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2127     st->print_raw(buf, bytes);
2128   }
2129 
2130   ::close(fd);
2131 
2132   return true;
2133 }
2134 
2135 void os::print_dll_info(outputStream *st) {
2136    st->print_cr("Dynamic libraries:");
2137 
2138    char fname[32];
2139    pid_t pid = os::Linux::gettid();
2140 
2141    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2142 
2143    if (!_print_ascii_file(fname, st)) {
2144      st->print("Can not get library information for pid = %d\n", pid);
2145    }
2146 }
2147 
2148 void os::print_os_info_brief(outputStream* st) {
2149   os::Linux::print_distro_info(st);
2150 
2151   os::Posix::print_uname_info(st);
2152 
2153   os::Linux::print_libversion_info(st);
2154 
2155 }
2156 
2157 void os::print_os_info(outputStream* st) {
2158   st->print("OS:");
2159 
2160   os::Linux::print_distro_info(st);
2161 
2162   os::Posix::print_uname_info(st);
2163 
2164   // Print warning if unsafe chroot environment detected
2165   if (unsafe_chroot_detected) {
2166     st->print("WARNING!! ");
2167     st->print_cr("%s", unstable_chroot_error);
2168   }
2169 
2170   os::Linux::print_libversion_info(st);
2171 
2172   os::Posix::print_rlimit_info(st);
2173 
2174   os::Posix::print_load_average(st);
2175 
2176   os::Linux::print_full_memory_info(st);
2177 
2178   os::Linux::print_container_info(st);
2179 }
2180 
2181 // Try to identify popular distros.
2182 // Most Linux distributions have a /etc/XXX-release file, which contains
2183 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2184 // file that also contains the OS version string. Some have more than one
2185 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2186 // /etc/redhat-release.), so the order is important.
2187 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2188 // their own specific XXX-release file as well as a redhat-release file.
2189 // Because of this the XXX-release file needs to be searched for before the
2190 // redhat-release file.
2191 // Since Red Hat has a lsb-release file that is not very descriptive the
2192 // search for redhat-release needs to be before lsb-release.
2193 // Since the lsb-release file is the new standard it needs to be searched
2194 // before the older style release files.
2195 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2196 // next to last resort.  The os-release file is a new standard that contains
2197 // distribution information and the system-release file seems to be an old
2198 // standard that has been replaced by the lsb-release and os-release files.
2199 // Searching for the debian_version file is the last resort.  It contains
2200 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2201 // "Debian " is printed before the contents of the debian_version file.
2202 void os::Linux::print_distro_info(outputStream* st) {
2203    if (!_print_ascii_file("/etc/oracle-release", st) &&
2204        !_print_ascii_file("/etc/mandriva-release", st) &&
2205        !_print_ascii_file("/etc/mandrake-release", st) &&
2206        !_print_ascii_file("/etc/sun-release", st) &&
2207        !_print_ascii_file("/etc/redhat-release", st) &&
2208        !_print_ascii_file("/etc/lsb-release", st) &&
2209        !_print_ascii_file("/etc/SuSE-release", st) &&
2210        !_print_ascii_file("/etc/turbolinux-release", st) &&
2211        !_print_ascii_file("/etc/gentoo-release", st) &&
2212        !_print_ascii_file("/etc/ltib-release", st) &&
2213        !_print_ascii_file("/etc/angstrom-version", st) &&
2214        !_print_ascii_file("/etc/system-release", st) &&
2215        !_print_ascii_file("/etc/os-release", st)) {
2216 
2217        if (file_exists("/etc/debian_version")) {
2218          st->print("Debian ");
2219          _print_ascii_file("/etc/debian_version", st);
2220        } else {
2221          st->print("Linux");
2222        }
2223    }
2224    st->cr();
2225 }
2226 
2227 void os::Linux::print_libversion_info(outputStream* st) {
2228   // libc, pthread
2229   st->print("libc:");
2230   st->print("%s ", os::Linux::glibc_version());
2231   st->print("%s ", os::Linux::libpthread_version());
2232   if (os::Linux::is_LinuxThreads()) {
2233      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2234   }
2235   st->cr();
2236 }
2237 
2238 void os::Linux::print_full_memory_info(outputStream* st) {
2239    st->print("\n/proc/meminfo:\n");
2240    _print_ascii_file("/proc/meminfo", st);
2241    st->cr();
2242 }
2243 
2244 void os::Linux::print_container_info(outputStream* st) {
2245 if (!OSContainer::is_containerized()) {
2246     return;
2247   }
2248 
2249   st->print("container (cgroup) information:\n");
2250 
2251   const char *p_ct = OSContainer::container_type();
2252   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "failed");
2253 
2254   char *p = OSContainer::cpu_cpuset_cpus();
2255   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "failed");
2256   free(p);
2257 
2258   p = OSContainer::cpu_cpuset_memory_nodes();
2259   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "failed");
2260   free(p);
2261 
2262   int i = OSContainer::active_processor_count();
2263   if (i > 0) {
2264     st->print("active_processor_count: %d\n", i);
2265   } else {
2266     st->print("active_processor_count: failed\n");
2267   }
2268 
2269   i = OSContainer::cpu_quota();
2270   st->print("cpu_quota: %d\n", i);
2271 
2272   i = OSContainer::cpu_period();
2273   st->print("cpu_period: %d\n", i);
2274 
2275   i = OSContainer::cpu_shares();
2276   st->print("cpu_shares: %d\n", i);
2277 
2278   jlong j = OSContainer::memory_limit_in_bytes();
2279   st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
2280 
2281   j = OSContainer::memory_and_swap_limit_in_bytes();
2282   st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
2283 
2284   j = OSContainer::memory_soft_limit_in_bytes();
2285   st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
2286 
2287   j = OSContainer::OSContainer::memory_usage_in_bytes();
2288   st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
2289 
2290   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2291   st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
2292   st->cr();
2293 }
2294 
2295 void os::print_memory_info(outputStream* st) {
2296 
2297   st->print("Memory:");
2298   st->print(" %dk page", os::vm_page_size()>>10);
2299 
2300   // values in struct sysinfo are "unsigned long"
2301   struct sysinfo si;
2302   sysinfo(&si);
2303 
2304   st->print(", physical " UINT64_FORMAT "k",
2305             os::physical_memory() >> 10);
2306   st->print("(" UINT64_FORMAT "k free)",
2307             os::available_memory() >> 10);
2308   st->print(", swap " UINT64_FORMAT "k",
2309             ((jlong)si.totalswap * si.mem_unit) >> 10);
2310   st->print("(" UINT64_FORMAT "k free)",
2311             ((jlong)si.freeswap * si.mem_unit) >> 10);
2312   st->cr();
2313 }
2314 
2315 void os::pd_print_cpu_info(outputStream* st) {
2316   st->print("\n/proc/cpuinfo:\n");
2317   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2318     st->print("  <Not Available>");
2319   }
2320   st->cr();
2321 }
2322 
2323 void os::print_siginfo(outputStream* st, void* siginfo) {
2324   const siginfo_t* si = (const siginfo_t*)siginfo;
2325 
2326   os::Posix::print_siginfo_brief(st, si);
2327 #if INCLUDE_CDS
2328   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2329       UseSharedSpaces) {
2330     FileMapInfo* mapinfo = FileMapInfo::current_info();
2331     if (mapinfo->is_in_shared_space(si->si_addr)) {
2332       st->print("\n\nError accessing class data sharing archive."   \
2333                 " Mapped file inaccessible during execution, "      \
2334                 " possible disk/network problem.");
2335     }
2336   }
2337 #endif
2338   st->cr();
2339 }
2340 
2341 
2342 static void print_signal_handler(outputStream* st, int sig,
2343                                  char* buf, size_t buflen);
2344 
2345 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2346   st->print_cr("Signal Handlers:");
2347   print_signal_handler(st, SIGSEGV, buf, buflen);
2348   print_signal_handler(st, SIGBUS , buf, buflen);
2349   print_signal_handler(st, SIGFPE , buf, buflen);
2350   print_signal_handler(st, SIGPIPE, buf, buflen);
2351   print_signal_handler(st, SIGXFSZ, buf, buflen);
2352   print_signal_handler(st, SIGILL , buf, buflen);
2353   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2354   print_signal_handler(st, SR_signum, buf, buflen);
2355   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2356   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2357   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2358   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2359 #if defined(PPC64)
2360   print_signal_handler(st, SIGTRAP, buf, buflen);
2361 #endif
2362 }
2363 
2364 static char saved_jvm_path[MAXPATHLEN] = {0};
2365 
2366 // Find the full path to the current module, libjvm.so
2367 void os::jvm_path(char *buf, jint buflen) {
2368   // Error checking.
2369   if (buflen < MAXPATHLEN) {
2370     assert(false, "must use a large-enough buffer");
2371     buf[0] = '\0';
2372     return;
2373   }
2374   // Lazy resolve the path to current module.
2375   if (saved_jvm_path[0] != 0) {
2376     strcpy(buf, saved_jvm_path);
2377     return;
2378   }
2379 
2380   char dli_fname[MAXPATHLEN];
2381   bool ret = dll_address_to_library_name(
2382                 CAST_FROM_FN_PTR(address, os::jvm_path),
2383                 dli_fname, sizeof(dli_fname), NULL);
2384   assert(ret, "cannot locate libjvm");
2385   char *rp = NULL;
2386   if (ret && dli_fname[0] != '\0') {
2387     rp = realpath(dli_fname, buf);
2388   }
2389   if (rp == NULL)
2390     return;
2391 
2392   if (Arguments::created_by_gamma_launcher()) {
2393     // Support for the gamma launcher.  Typical value for buf is
2394     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2395     // the right place in the string, then assume we are installed in a JDK and
2396     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2397     // up the path so it looks like libjvm.so is installed there (append a
2398     // fake suffix hotspot/libjvm.so).
2399     const char *p = buf + strlen(buf) - 1;
2400     for (int count = 0; p > buf && count < 5; ++count) {
2401       for (--p; p > buf && *p != '/'; --p)
2402         /* empty */ ;
2403     }
2404 
2405     if (strncmp(p, "/jre/lib/", 9) != 0) {
2406       // Look for JAVA_HOME in the environment.
2407       char* java_home_var = ::getenv("JAVA_HOME");
2408       if (java_home_var != NULL && java_home_var[0] != 0) {
2409         char* jrelib_p;
2410         int len;
2411 
2412         // Check the current module name "libjvm.so".
2413         p = strrchr(buf, '/');
2414         assert(strstr(p, "/libjvm") == p, "invalid library name");
2415 
2416         rp = realpath(java_home_var, buf);
2417         if (rp == NULL)
2418           return;
2419 
2420         // determine if this is a legacy image or modules image
2421         // modules image doesn't have "jre" subdirectory
2422         len = strlen(buf);
2423         assert(len < buflen, "Ran out of buffer room");
2424         jrelib_p = buf + len;
2425         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2426         if (0 != access(buf, F_OK)) {
2427           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2428         }
2429 
2430         if (0 == access(buf, F_OK)) {
2431           // Use current module name "libjvm.so"
2432           len = strlen(buf);
2433           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2434         } else {
2435           // Go back to path of .so
2436           rp = realpath(dli_fname, buf);
2437           if (rp == NULL)
2438             return;
2439         }
2440       }
2441     }
2442   }
2443 
2444   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2445 }
2446 
2447 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2448   // no prefix required, not even "_"
2449 }
2450 
2451 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2452   // no suffix required
2453 }
2454 
2455 ////////////////////////////////////////////////////////////////////////////////
2456 // sun.misc.Signal support
2457 
2458 static volatile jint sigint_count = 0;
2459 
2460 static void
2461 UserHandler(int sig, void *siginfo, void *context) {
2462   // 4511530 - sem_post is serialized and handled by the manager thread. When
2463   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2464   // don't want to flood the manager thread with sem_post requests.
2465   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2466       return;
2467 
2468   // Ctrl-C is pressed during error reporting, likely because the error
2469   // handler fails to abort. Let VM die immediately.
2470   if (sig == SIGINT && is_error_reported()) {
2471      os::die();
2472   }
2473 
2474   os::signal_notify(sig);
2475 }
2476 
2477 void* os::user_handler() {
2478   return CAST_FROM_FN_PTR(void*, UserHandler);
2479 }
2480 
2481 class Semaphore : public StackObj {
2482   public:
2483     Semaphore();
2484     ~Semaphore();
2485     void signal();
2486     void wait();
2487     bool trywait();
2488     bool timedwait(unsigned int sec, int nsec);
2489   private:
2490     sem_t _semaphore;
2491 };
2492 
2493 Semaphore::Semaphore() {
2494   sem_init(&_semaphore, 0, 0);
2495 }
2496 
2497 Semaphore::~Semaphore() {
2498   sem_destroy(&_semaphore);
2499 }
2500 
2501 void Semaphore::signal() {
2502   sem_post(&_semaphore);
2503 }
2504 
2505 void Semaphore::wait() {
2506   sem_wait(&_semaphore);
2507 }
2508 
2509 bool Semaphore::trywait() {
2510   return sem_trywait(&_semaphore) == 0;
2511 }
2512 
2513 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2514 
2515   struct timespec ts;
2516   // Semaphore's are always associated with CLOCK_REALTIME
2517   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2518   // see unpackTime for discussion on overflow checking
2519   if (sec >= MAX_SECS) {
2520     ts.tv_sec += MAX_SECS;
2521     ts.tv_nsec = 0;
2522   } else {
2523     ts.tv_sec += sec;
2524     ts.tv_nsec += nsec;
2525     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2526       ts.tv_nsec -= NANOSECS_PER_SEC;
2527       ++ts.tv_sec; // note: this must be <= max_secs
2528     }
2529   }
2530 
2531   while (1) {
2532     int result = sem_timedwait(&_semaphore, &ts);
2533     if (result == 0) {
2534       return true;
2535     } else if (errno == EINTR) {
2536       continue;
2537     } else if (errno == ETIMEDOUT) {
2538       return false;
2539     } else {
2540       return false;
2541     }
2542   }
2543 }
2544 
2545 extern "C" {
2546   typedef void (*sa_handler_t)(int);
2547   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2548 }
2549 
2550 void* os::signal(int signal_number, void* handler) {
2551   struct sigaction sigAct, oldSigAct;
2552 
2553   sigfillset(&(sigAct.sa_mask));
2554   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2555   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2556 
2557   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2558     // -1 means registration failed
2559     return (void *)-1;
2560   }
2561 
2562   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2563 }
2564 
2565 void os::signal_raise(int signal_number) {
2566   ::raise(signal_number);
2567 }
2568 
2569 /*
2570  * The following code is moved from os.cpp for making this
2571  * code platform specific, which it is by its very nature.
2572  */
2573 
2574 // Will be modified when max signal is changed to be dynamic
2575 int os::sigexitnum_pd() {
2576   return NSIG;
2577 }
2578 
2579 // a counter for each possible signal value
2580 static volatile jint pending_signals[NSIG+1] = { 0 };
2581 
2582 // Linux(POSIX) specific hand shaking semaphore.
2583 static sem_t sig_sem;
2584 static Semaphore sr_semaphore;
2585 
2586 void os::signal_init_pd() {
2587   // Initialize signal structures
2588   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2589 
2590   // Initialize signal semaphore
2591   ::sem_init(&sig_sem, 0, 0);
2592 }
2593 
2594 void os::signal_notify(int sig) {
2595   Atomic::inc(&pending_signals[sig]);
2596   ::sem_post(&sig_sem);
2597 }
2598 
2599 static int check_pending_signals(bool wait) {
2600   Atomic::store(0, &sigint_count);
2601   for (;;) {
2602     for (int i = 0; i < NSIG + 1; i++) {
2603       jint n = pending_signals[i];
2604       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2605         return i;
2606       }
2607     }
2608     if (!wait) {
2609       return -1;
2610     }
2611     JavaThread *thread = JavaThread::current();
2612     ThreadBlockInVM tbivm(thread);
2613 
2614     bool threadIsSuspended;
2615     do {
2616       thread->set_suspend_equivalent();
2617       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2618       ::sem_wait(&sig_sem);
2619 
2620       // were we externally suspended while we were waiting?
2621       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2622       if (threadIsSuspended) {
2623         //
2624         // The semaphore has been incremented, but while we were waiting
2625         // another thread suspended us. We don't want to continue running
2626         // while suspended because that would surprise the thread that
2627         // suspended us.
2628         //
2629         ::sem_post(&sig_sem);
2630 
2631         thread->java_suspend_self();
2632       }
2633     } while (threadIsSuspended);
2634   }
2635 }
2636 
2637 int os::signal_lookup() {
2638   return check_pending_signals(false);
2639 }
2640 
2641 int os::signal_wait() {
2642   return check_pending_signals(true);
2643 }
2644 
2645 ////////////////////////////////////////////////////////////////////////////////
2646 // Virtual Memory
2647 
2648 int os::vm_page_size() {
2649   // Seems redundant as all get out
2650   assert(os::Linux::page_size() != -1, "must call os::init");
2651   return os::Linux::page_size();
2652 }
2653 
2654 // Solaris allocates memory by pages.
2655 int os::vm_allocation_granularity() {
2656   assert(os::Linux::page_size() != -1, "must call os::init");
2657   return os::Linux::page_size();
2658 }
2659 
2660 // Rationale behind this function:
2661 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2662 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2663 //  samples for JITted code. Here we create private executable mapping over the code cache
2664 //  and then we can use standard (well, almost, as mapping can change) way to provide
2665 //  info for the reporting script by storing timestamp and location of symbol
2666 void linux_wrap_code(char* base, size_t size) {
2667   static volatile jint cnt = 0;
2668 
2669   if (!UseOprofile) {
2670     return;
2671   }
2672 
2673   char buf[PATH_MAX+1];
2674   int num = Atomic::add(1, &cnt);
2675 
2676   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2677            os::get_temp_directory(), os::current_process_id(), num);
2678   unlink(buf);
2679 
2680   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2681 
2682   if (fd != -1) {
2683     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2684     if (rv != (off_t)-1) {
2685       if (::write(fd, "", 1) == 1) {
2686         mmap(base, size,
2687              PROT_READ|PROT_WRITE|PROT_EXEC,
2688              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2689       }
2690     }
2691     ::close(fd);
2692     unlink(buf);
2693   }
2694 }
2695 
2696 static bool recoverable_mmap_error(int err) {
2697   // See if the error is one we can let the caller handle. This
2698   // list of errno values comes from JBS-6843484. I can't find a
2699   // Linux man page that documents this specific set of errno
2700   // values so while this list currently matches Solaris, it may
2701   // change as we gain experience with this failure mode.
2702   switch (err) {
2703   case EBADF:
2704   case EINVAL:
2705   case ENOTSUP:
2706     // let the caller deal with these errors
2707     return true;
2708 
2709   default:
2710     // Any remaining errors on this OS can cause our reserved mapping
2711     // to be lost. That can cause confusion where different data
2712     // structures think they have the same memory mapped. The worst
2713     // scenario is if both the VM and a library think they have the
2714     // same memory mapped.
2715     return false;
2716   }
2717 }
2718 
2719 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2720                                     int err) {
2721   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2722           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2723           strerror(err), err);
2724 }
2725 
2726 static void warn_fail_commit_memory(char* addr, size_t size,
2727                                     size_t alignment_hint, bool exec,
2728                                     int err) {
2729   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2730           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2731           alignment_hint, exec, strerror(err), err);
2732 }
2733 
2734 // NOTE: Linux kernel does not really reserve the pages for us.
2735 //       All it does is to check if there are enough free pages
2736 //       left at the time of mmap(). This could be a potential
2737 //       problem.
2738 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2739   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2740   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2741                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2742   if (res != (uintptr_t) MAP_FAILED) {
2743     if (UseNUMAInterleaving) {
2744       numa_make_global(addr, size);
2745     }
2746     return 0;
2747   }
2748 
2749   int err = errno;  // save errno from mmap() call above
2750 
2751   if (!recoverable_mmap_error(err)) {
2752     warn_fail_commit_memory(addr, size, exec, err);
2753     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2754   }
2755 
2756   return err;
2757 }
2758 
2759 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2760   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2761 }
2762 
2763 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2764                                   const char* mesg) {
2765   assert(mesg != NULL, "mesg must be specified");
2766   int err = os::Linux::commit_memory_impl(addr, size, exec);
2767   if (err != 0) {
2768     // the caller wants all commit errors to exit with the specified mesg:
2769     warn_fail_commit_memory(addr, size, exec, err);
2770     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2771   }
2772 }
2773 
2774 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2775 #ifndef MAP_HUGETLB
2776 #define MAP_HUGETLB 0x40000
2777 #endif
2778 
2779 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2780 #ifndef MADV_HUGEPAGE
2781 #define MADV_HUGEPAGE 14
2782 #endif
2783 
2784 int os::Linux::commit_memory_impl(char* addr, size_t size,
2785                                   size_t alignment_hint, bool exec) {
2786   int err = os::Linux::commit_memory_impl(addr, size, exec);
2787   if (err == 0) {
2788     realign_memory(addr, size, alignment_hint);
2789   }
2790   return err;
2791 }
2792 
2793 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2794                           bool exec) {
2795   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2796 }
2797 
2798 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2799                                   size_t alignment_hint, bool exec,
2800                                   const char* mesg) {
2801   assert(mesg != NULL, "mesg must be specified");
2802   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2803   if (err != 0) {
2804     // the caller wants all commit errors to exit with the specified mesg:
2805     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2806     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2807   }
2808 }
2809 
2810 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2811   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2812     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2813     // be supported or the memory may already be backed by huge pages.
2814     ::madvise(addr, bytes, MADV_HUGEPAGE);
2815   }
2816 }
2817 
2818 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2819   // This method works by doing an mmap over an existing mmaping and effectively discarding
2820   // the existing pages. However it won't work for SHM-based large pages that cannot be
2821   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2822   // small pages on top of the SHM segment. This method always works for small pages, so we
2823   // allow that in any case.
2824   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2825     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2826   }
2827 }
2828 
2829 void os::numa_make_global(char *addr, size_t bytes) {
2830   Linux::numa_interleave_memory(addr, bytes);
2831 }
2832 
2833 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2834 // bind policy to MPOL_PREFERRED for the current thread.
2835 #define USE_MPOL_PREFERRED 0
2836 
2837 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2838   // To make NUMA and large pages more robust when both enabled, we need to ease
2839   // the requirements on where the memory should be allocated. MPOL_BIND is the
2840   // default policy and it will force memory to be allocated on the specified
2841   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2842   // the specified node, but will not force it. Using this policy will prevent
2843   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2844   // free large pages.
2845   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2846   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2847 }
2848 
2849 bool os::numa_topology_changed()   { return false; }
2850 
2851 size_t os::numa_get_groups_num() {
2852   // Return just the number of nodes in which it's possible to allocate memory
2853   // (in numa terminology, configured nodes).
2854   return Linux::numa_num_configured_nodes();
2855 }
2856 
2857 int os::numa_get_group_id() {
2858   int cpu_id = Linux::sched_getcpu();
2859   if (cpu_id != -1) {
2860     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2861     if (lgrp_id != -1) {
2862       return lgrp_id;
2863     }
2864   }
2865   return 0;
2866 }
2867 
2868 int os::Linux::get_existing_num_nodes() {
2869   size_t node;
2870   size_t highest_node_number = Linux::numa_max_node();
2871   int num_nodes = 0;
2872 
2873   // Get the total number of nodes in the system including nodes without memory.
2874   for (node = 0; node <= highest_node_number; node++) {
2875     if (isnode_in_existing_nodes(node)) {
2876       num_nodes++;
2877     }
2878   }
2879   return num_nodes;
2880 }
2881 
2882 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2883   size_t highest_node_number = Linux::numa_max_node();
2884   size_t i = 0;
2885 
2886   // Map all node ids in which is possible to allocate memory. Also nodes are
2887   // not always consecutively available, i.e. available from 0 to the highest
2888   // node number.
2889   for (size_t node = 0; node <= highest_node_number; node++) {
2890     if (Linux::isnode_in_configured_nodes(node)) {
2891       ids[i++] = node;
2892     }
2893   }
2894   return i;
2895 }
2896 
2897 bool os::get_page_info(char *start, page_info* info) {
2898   return false;
2899 }
2900 
2901 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2902   return end;
2903 }
2904 
2905 
2906 int os::Linux::sched_getcpu_syscall(void) {
2907   unsigned int cpu = 0;
2908   int retval = -1;
2909 
2910 #if defined(IA32)
2911 # ifndef SYS_getcpu
2912 # define SYS_getcpu 318
2913 # endif
2914   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2915 #elif defined(AMD64)
2916 // Unfortunately we have to bring all these macros here from vsyscall.h
2917 // to be able to compile on old linuxes.
2918 # define __NR_vgetcpu 2
2919 # define VSYSCALL_START (-10UL << 20)
2920 # define VSYSCALL_SIZE 1024
2921 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2922   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2923   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2924   retval = vgetcpu(&cpu, NULL, NULL);
2925 #endif
2926 
2927   return (retval == -1) ? retval : cpu;
2928 }
2929 
2930 // Something to do with the numa-aware allocator needs these symbols
2931 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2932 extern "C" JNIEXPORT void numa_error(char *where) { }
2933 extern "C" JNIEXPORT int fork1() { return fork(); }
2934 
2935 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2936 // load symbol from base version instead.
2937 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2938   void *f = dlvsym(handle, name, "libnuma_1.1");
2939   if (f == NULL) {
2940     f = dlsym(handle, name);
2941   }
2942   return f;
2943 }
2944 
2945 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2946 // Return NULL if the symbol is not defined in this particular version.
2947 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2948   return dlvsym(handle, name, "libnuma_1.2");
2949 }
2950 
2951 bool os::Linux::libnuma_init() {
2952   // sched_getcpu() should be in libc.
2953   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2954                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2955 
2956   // If it's not, try a direct syscall.
2957   if (sched_getcpu() == -1)
2958     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2959 
2960   if (sched_getcpu() != -1) { // Does it work?
2961     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2962     if (handle != NULL) {
2963       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2964                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2965       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2966                                        libnuma_dlsym(handle, "numa_max_node")));
2967       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2968                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2969       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2970                                         libnuma_dlsym(handle, "numa_available")));
2971       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2972                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2973       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2974                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2975       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2976                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2977       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2978                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2979       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2980                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2981       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2982                                        libnuma_dlsym(handle, "numa_distance")));
2983 
2984       if (numa_available() != -1) {
2985         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2986         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2987         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2988         // Create an index -> node mapping, since nodes are not always consecutive
2989         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2990         rebuild_nindex_to_node_map();
2991         // Create a cpu -> node mapping
2992         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2993         rebuild_cpu_to_node_map();
2994         return true;
2995       }
2996     }
2997   }
2998   return false;
2999 }
3000 
3001 void os::Linux::rebuild_nindex_to_node_map() {
3002   int highest_node_number = Linux::numa_max_node();
3003 
3004   nindex_to_node()->clear();
3005   for (int node = 0; node <= highest_node_number; node++) {
3006     if (Linux::isnode_in_existing_nodes(node)) {
3007       nindex_to_node()->append(node);
3008     }
3009   }
3010 }
3011 
3012 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
3013 // The table is later used in get_node_by_cpu().
3014 void os::Linux::rebuild_cpu_to_node_map() {
3015   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
3016                               // in libnuma (possible values are starting from 16,
3017                               // and continuing up with every other power of 2, but less
3018                               // than the maximum number of CPUs supported by kernel), and
3019                               // is a subject to change (in libnuma version 2 the requirements
3020                               // are more reasonable) we'll just hardcode the number they use
3021                               // in the library.
3022   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
3023 
3024   size_t cpu_num = processor_count();
3025   size_t cpu_map_size = NCPUS / BitsPerCLong;
3026   size_t cpu_map_valid_size =
3027     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
3028 
3029   cpu_to_node()->clear();
3030   cpu_to_node()->at_grow(cpu_num - 1);
3031 
3032   size_t node_num = get_existing_num_nodes();
3033 
3034   int distance = 0;
3035   int closest_distance = INT_MAX;
3036   int closest_node = 0;
3037   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
3038   for (size_t i = 0; i < node_num; i++) {
3039     // Check if node is configured (not a memory-less node). If it is not, find
3040     // the closest configured node.
3041     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
3042       closest_distance = INT_MAX;
3043       // Check distance from all remaining nodes in the system. Ignore distance
3044       // from itself and from another non-configured node.
3045       for (size_t m = 0; m < node_num; m++) {
3046         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
3047           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
3048           // If a closest node is found, update. There is always at least one
3049           // configured node in the system so there is always at least one node
3050           // close.
3051           if (distance != 0 && distance < closest_distance) {
3052             closest_distance = distance;
3053             closest_node = nindex_to_node()->at(m);
3054           }
3055         }
3056       }
3057      } else {
3058        // Current node is already a configured node.
3059        closest_node = nindex_to_node()->at(i);
3060      }
3061 
3062     // Get cpus from the original node and map them to the closest node. If node
3063     // is a configured node (not a memory-less node), then original node and
3064     // closest node are the same.
3065     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3066       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3067         if (cpu_map[j] != 0) {
3068           for (size_t k = 0; k < BitsPerCLong; k++) {
3069             if (cpu_map[j] & (1UL << k)) {
3070               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3071             }
3072           }
3073         }
3074       }
3075     }
3076   }
3077   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
3078 }
3079 
3080 int os::Linux::get_node_by_cpu(int cpu_id) {
3081   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3082     return cpu_to_node()->at(cpu_id);
3083   }
3084   return -1;
3085 }
3086 
3087 GrowableArray<int>* os::Linux::_cpu_to_node;
3088 GrowableArray<int>* os::Linux::_nindex_to_node;
3089 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3090 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3091 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3092 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3093 os::Linux::numa_available_func_t os::Linux::_numa_available;
3094 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3095 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3096 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3097 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3098 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3099 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3100 unsigned long* os::Linux::_numa_all_nodes;
3101 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3102 struct bitmask* os::Linux::_numa_nodes_ptr;
3103 
3104 bool os::pd_uncommit_memory(char* addr, size_t size) {
3105   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3106                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3107   return res  != (uintptr_t) MAP_FAILED;
3108 }
3109 
3110 static
3111 address get_stack_commited_bottom(address bottom, size_t size) {
3112   address nbot = bottom;
3113   address ntop = bottom + size;
3114 
3115   size_t page_sz = os::vm_page_size();
3116   unsigned pages = size / page_sz;
3117 
3118   unsigned char vec[1];
3119   unsigned imin = 1, imax = pages + 1, imid;
3120   int mincore_return_value = 0;
3121 
3122   assert(imin <= imax, "Unexpected page size");
3123 
3124   while (imin < imax) {
3125     imid = (imax + imin) / 2;
3126     nbot = ntop - (imid * page_sz);
3127 
3128     // Use a trick with mincore to check whether the page is mapped or not.
3129     // mincore sets vec to 1 if page resides in memory and to 0 if page
3130     // is swapped output but if page we are asking for is unmapped
3131     // it returns -1,ENOMEM
3132     mincore_return_value = mincore(nbot, page_sz, vec);
3133 
3134     if (mincore_return_value == -1) {
3135       // Page is not mapped go up
3136       // to find first mapped page
3137       if (errno != EAGAIN) {
3138         assert(errno == ENOMEM, "Unexpected mincore errno");
3139         imax = imid;
3140       }
3141     } else {
3142       // Page is mapped go down
3143       // to find first not mapped page
3144       imin = imid + 1;
3145     }
3146   }
3147 
3148   nbot = nbot + page_sz;
3149 
3150   // Adjust stack bottom one page up if last checked page is not mapped
3151   if (mincore_return_value == -1) {
3152     nbot = nbot + page_sz;
3153   }
3154 
3155   return nbot;
3156 }
3157 
3158 
3159 // Linux uses a growable mapping for the stack, and if the mapping for
3160 // the stack guard pages is not removed when we detach a thread the
3161 // stack cannot grow beyond the pages where the stack guard was
3162 // mapped.  If at some point later in the process the stack expands to
3163 // that point, the Linux kernel cannot expand the stack any further
3164 // because the guard pages are in the way, and a segfault occurs.
3165 //
3166 // However, it's essential not to split the stack region by unmapping
3167 // a region (leaving a hole) that's already part of the stack mapping,
3168 // so if the stack mapping has already grown beyond the guard pages at
3169 // the time we create them, we have to truncate the stack mapping.
3170 // So, we need to know the extent of the stack mapping when
3171 // create_stack_guard_pages() is called.
3172 
3173 // We only need this for stacks that are growable: at the time of
3174 // writing thread stacks don't use growable mappings (i.e. those
3175 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3176 // only applies to the main thread.
3177 
3178 // If the (growable) stack mapping already extends beyond the point
3179 // where we're going to put our guard pages, truncate the mapping at
3180 // that point by munmap()ping it.  This ensures that when we later
3181 // munmap() the guard pages we don't leave a hole in the stack
3182 // mapping. This only affects the main/primordial thread
3183 
3184 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3185 
3186   if (os::is_primordial_thread()) {
3187     // As we manually grow stack up to bottom inside create_attached_thread(),
3188     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3189     // we don't need to do anything special.
3190     // Check it first, before calling heavy function.
3191     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3192     unsigned char vec[1];
3193 
3194     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3195       // Fallback to slow path on all errors, including EAGAIN
3196       stack_extent = (uintptr_t) get_stack_commited_bottom(
3197                                     os::Linux::initial_thread_stack_bottom(),
3198                                     (size_t)addr - stack_extent);
3199     }
3200 
3201     if (stack_extent < (uintptr_t)addr) {
3202       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3203     }
3204   }
3205 
3206   return os::commit_memory(addr, size, !ExecMem);
3207 }
3208 
3209 // If this is a growable mapping, remove the guard pages entirely by
3210 // munmap()ping them.  If not, just call uncommit_memory(). This only
3211 // affects the main/primordial thread, but guard against future OS changes.
3212 // It's safe to always unmap guard pages for primordial thread because we
3213 // always place it right after end of the mapped region.
3214 
3215 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3216   uintptr_t stack_extent, stack_base;
3217 
3218   if (os::is_primordial_thread()) {
3219     return ::munmap(addr, size) == 0;
3220   }
3221 
3222   return os::uncommit_memory(addr, size);
3223 }
3224 
3225 static address _highest_vm_reserved_address = NULL;
3226 
3227 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3228 // at 'requested_addr'. If there are existing memory mappings at the same
3229 // location, however, they will be overwritten. If 'fixed' is false,
3230 // 'requested_addr' is only treated as a hint, the return value may or
3231 // may not start from the requested address. Unlike Linux mmap(), this
3232 // function returns NULL to indicate failure.
3233 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3234   char * addr;
3235   int flags;
3236 
3237   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3238   if (fixed) {
3239     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3240     flags |= MAP_FIXED;
3241   }
3242 
3243   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3244   // touch an uncommitted page. Otherwise, the read/write might
3245   // succeed if we have enough swap space to back the physical page.
3246   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3247                        flags, -1, 0);
3248 
3249   if (addr != MAP_FAILED) {
3250     // anon_mmap() should only get called during VM initialization,
3251     // don't need lock (actually we can skip locking even it can be called
3252     // from multiple threads, because _highest_vm_reserved_address is just a
3253     // hint about the upper limit of non-stack memory regions.)
3254     if ((address)addr + bytes > _highest_vm_reserved_address) {
3255       _highest_vm_reserved_address = (address)addr + bytes;
3256     }
3257   }
3258 
3259   return addr == MAP_FAILED ? NULL : addr;
3260 }
3261 
3262 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3263 //   (req_addr != NULL) or with a given alignment.
3264 //  - bytes shall be a multiple of alignment.
3265 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3266 //  - alignment sets the alignment at which memory shall be allocated.
3267 //     It must be a multiple of allocation granularity.
3268 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3269 //  req_addr or NULL.
3270 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3271 
3272   size_t extra_size = bytes;
3273   if (req_addr == NULL && alignment > 0) {
3274     extra_size += alignment;
3275   }
3276 
3277   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3278     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3279     -1, 0);
3280   if (start == MAP_FAILED) {
3281     start = NULL;
3282   } else {
3283     if (req_addr != NULL) {
3284       if (start != req_addr) {
3285         ::munmap(start, extra_size);
3286         start = NULL;
3287       }
3288     } else {
3289       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3290       char* const end_aligned = start_aligned + bytes;
3291       char* const end = start + extra_size;
3292       if (start_aligned > start) {
3293         ::munmap(start, start_aligned - start);
3294       }
3295       if (end_aligned < end) {
3296         ::munmap(end_aligned, end - end_aligned);
3297       }
3298       start = start_aligned;
3299     }
3300   }
3301   return start;
3302 }
3303 
3304 // Don't update _highest_vm_reserved_address, because there might be memory
3305 // regions above addr + size. If so, releasing a memory region only creates
3306 // a hole in the address space, it doesn't help prevent heap-stack collision.
3307 //
3308 static int anon_munmap(char * addr, size_t size) {
3309   return ::munmap(addr, size) == 0;
3310 }
3311 
3312 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3313                          size_t alignment_hint) {
3314   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3315 }
3316 
3317 bool os::pd_release_memory(char* addr, size_t size) {
3318   return anon_munmap(addr, size);
3319 }
3320 
3321 static address highest_vm_reserved_address() {
3322   return _highest_vm_reserved_address;
3323 }
3324 
3325 static bool linux_mprotect(char* addr, size_t size, int prot) {
3326   // Linux wants the mprotect address argument to be page aligned.
3327   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3328 
3329   // According to SUSv3, mprotect() should only be used with mappings
3330   // established by mmap(), and mmap() always maps whole pages. Unaligned
3331   // 'addr' likely indicates problem in the VM (e.g. trying to change
3332   // protection of malloc'ed or statically allocated memory). Check the
3333   // caller if you hit this assert.
3334   assert(addr == bottom, "sanity check");
3335 
3336   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3337   return ::mprotect(bottom, size, prot) == 0;
3338 }
3339 
3340 // Set protections specified
3341 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3342                         bool is_committed) {
3343   unsigned int p = 0;
3344   switch (prot) {
3345   case MEM_PROT_NONE: p = PROT_NONE; break;
3346   case MEM_PROT_READ: p = PROT_READ; break;
3347   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3348   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3349   default:
3350     ShouldNotReachHere();
3351   }
3352   // is_committed is unused.
3353   return linux_mprotect(addr, bytes, p);
3354 }
3355 
3356 bool os::guard_memory(char* addr, size_t size) {
3357   return linux_mprotect(addr, size, PROT_NONE);
3358 }
3359 
3360 bool os::unguard_memory(char* addr, size_t size) {
3361   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3362 }
3363 
3364 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3365   bool result = false;
3366   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3367                  MAP_ANONYMOUS|MAP_PRIVATE,
3368                  -1, 0);
3369   if (p != MAP_FAILED) {
3370     void *aligned_p = align_ptr_up(p, page_size);
3371 
3372     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3373 
3374     munmap(p, page_size * 2);
3375   }
3376 
3377   if (warn && !result) {
3378     warning("TransparentHugePages is not supported by the operating system.");
3379   }
3380 
3381   return result;
3382 }
3383 
3384 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3385   bool result = false;
3386   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3387                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3388                  -1, 0);
3389 
3390   if (p != MAP_FAILED) {
3391     // We don't know if this really is a huge page or not.
3392     FILE *fp = fopen("/proc/self/maps", "r");
3393     if (fp) {
3394       while (!feof(fp)) {
3395         char chars[257];
3396         long x = 0;
3397         if (fgets(chars, sizeof(chars), fp)) {
3398           if (sscanf(chars, "%lx-%*x", &x) == 1
3399               && x == (long)p) {
3400             if (strstr (chars, "hugepage")) {
3401               result = true;
3402               break;
3403             }
3404           }
3405         }
3406       }
3407       fclose(fp);
3408     }
3409     munmap(p, page_size);
3410   }
3411 
3412   if (warn && !result) {
3413     warning("HugeTLBFS is not supported by the operating system.");
3414   }
3415 
3416   return result;
3417 }
3418 
3419 /*
3420 * Set the coredump_filter bits to include largepages in core dump (bit 6)
3421 *
3422 * From the coredump_filter documentation:
3423 *
3424 * - (bit 0) anonymous private memory
3425 * - (bit 1) anonymous shared memory
3426 * - (bit 2) file-backed private memory
3427 * - (bit 3) file-backed shared memory
3428 * - (bit 4) ELF header pages in file-backed private memory areas (it is
3429 *           effective only if the bit 2 is cleared)
3430 * - (bit 5) hugetlb private memory
3431 * - (bit 6) hugetlb shared memory
3432 */
3433 static void set_coredump_filter(void) {
3434   FILE *f;
3435   long cdm;
3436 
3437   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3438     return;
3439   }
3440 
3441   if (fscanf(f, "%lx", &cdm) != 1) {
3442     fclose(f);
3443     return;
3444   }
3445 
3446   rewind(f);
3447 
3448   if ((cdm & LARGEPAGES_BIT) == 0) {
3449     cdm |= LARGEPAGES_BIT;
3450     fprintf(f, "%#lx", cdm);
3451   }
3452 
3453   fclose(f);
3454 }
3455 
3456 // Large page support
3457 
3458 static size_t _large_page_size = 0;
3459 
3460 size_t os::Linux::find_large_page_size() {
3461   size_t large_page_size = 0;
3462 
3463   // large_page_size on Linux is used to round up heap size. x86 uses either
3464   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3465   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3466   // page as large as 256M.
3467   //
3468   // Here we try to figure out page size by parsing /proc/meminfo and looking
3469   // for a line with the following format:
3470   //    Hugepagesize:     2048 kB
3471   //
3472   // If we can't determine the value (e.g. /proc is not mounted, or the text
3473   // format has been changed), we'll use the largest page size supported by
3474   // the processor.
3475 
3476 #ifndef ZERO
3477   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3478                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3479 #endif // ZERO
3480 
3481   FILE *fp = fopen("/proc/meminfo", "r");
3482   if (fp) {
3483     while (!feof(fp)) {
3484       int x = 0;
3485       char buf[16];
3486       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3487         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3488           large_page_size = x * K;
3489           break;
3490         }
3491       } else {
3492         // skip to next line
3493         for (;;) {
3494           int ch = fgetc(fp);
3495           if (ch == EOF || ch == (int)'\n') break;
3496         }
3497       }
3498     }
3499     fclose(fp);
3500   }
3501 
3502   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3503     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3504         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3505         proper_unit_for_byte_size(large_page_size));
3506   }
3507 
3508   return large_page_size;
3509 }
3510 
3511 size_t os::Linux::setup_large_page_size() {
3512   _large_page_size = Linux::find_large_page_size();
3513   const size_t default_page_size = (size_t)Linux::page_size();
3514   if (_large_page_size > default_page_size) {
3515     _page_sizes[0] = _large_page_size;
3516     _page_sizes[1] = default_page_size;
3517     _page_sizes[2] = 0;
3518   }
3519 
3520   return _large_page_size;
3521 }
3522 
3523 bool os::Linux::setup_large_page_type(size_t page_size) {
3524   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3525       FLAG_IS_DEFAULT(UseSHM) &&
3526       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3527 
3528     // The type of large pages has not been specified by the user.
3529 
3530     // Try UseHugeTLBFS and then UseSHM.
3531     UseHugeTLBFS = UseSHM = true;
3532 
3533     // Don't try UseTransparentHugePages since there are known
3534     // performance issues with it turned on. This might change in the future.
3535     UseTransparentHugePages = false;
3536   }
3537 
3538   if (UseTransparentHugePages) {
3539     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3540     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3541       UseHugeTLBFS = false;
3542       UseSHM = false;
3543       return true;
3544     }
3545     UseTransparentHugePages = false;
3546   }
3547 
3548   if (UseHugeTLBFS) {
3549     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3550     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3551       UseSHM = false;
3552       return true;
3553     }
3554     UseHugeTLBFS = false;
3555   }
3556 
3557   return UseSHM;
3558 }
3559 
3560 void os::large_page_init() {
3561   if (!UseLargePages &&
3562       !UseTransparentHugePages &&
3563       !UseHugeTLBFS &&
3564       !UseSHM) {
3565     // Not using large pages.
3566     return;
3567   }
3568 
3569   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3570     // The user explicitly turned off large pages.
3571     // Ignore the rest of the large pages flags.
3572     UseTransparentHugePages = false;
3573     UseHugeTLBFS = false;
3574     UseSHM = false;
3575     return;
3576   }
3577 
3578   size_t large_page_size = Linux::setup_large_page_size();
3579   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3580 
3581   set_coredump_filter();
3582 }
3583 
3584 #ifndef SHM_HUGETLB
3585 #define SHM_HUGETLB 04000
3586 #endif
3587 
3588 #define shm_warning_format(format, ...)              \
3589   do {                                               \
3590     if (UseLargePages &&                             \
3591         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3592          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3593          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3594       warning(format, __VA_ARGS__);                  \
3595     }                                                \
3596   } while (0)
3597 
3598 #define shm_warning(str) shm_warning_format("%s", str)
3599 
3600 #define shm_warning_with_errno(str)                \
3601   do {                                             \
3602     int err = errno;                               \
3603     shm_warning_format(str " (error = %d)", err);  \
3604   } while (0)
3605 
3606 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3607   assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
3608 
3609   if (!is_size_aligned(alignment, SHMLBA)) {
3610     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3611     return NULL;
3612   }
3613 
3614   // To ensure that we get 'alignment' aligned memory from shmat,
3615   // we pre-reserve aligned virtual memory and then attach to that.
3616 
3617   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3618   if (pre_reserved_addr == NULL) {
3619     // Couldn't pre-reserve aligned memory.
3620     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3621     return NULL;
3622   }
3623 
3624   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3625   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3626 
3627   if ((intptr_t)addr == -1) {
3628     int err = errno;
3629     shm_warning_with_errno("Failed to attach shared memory.");
3630 
3631     assert(err != EACCES, "Unexpected error");
3632     assert(err != EIDRM,  "Unexpected error");
3633     assert(err != EINVAL, "Unexpected error");
3634 
3635     // Since we don't know if the kernel unmapped the pre-reserved memory area
3636     // we can't unmap it, since that would potentially unmap memory that was
3637     // mapped from other threads.
3638     return NULL;
3639   }
3640 
3641   return addr;
3642 }
3643 
3644 static char* shmat_at_address(int shmid, char* req_addr) {
3645   if (!is_ptr_aligned(req_addr, SHMLBA)) {
3646     assert(false, "Requested address needs to be SHMLBA aligned");
3647     return NULL;
3648   }
3649 
3650   char* addr = (char*)shmat(shmid, req_addr, 0);
3651 
3652   if ((intptr_t)addr == -1) {
3653     shm_warning_with_errno("Failed to attach shared memory.");
3654     return NULL;
3655   }
3656 
3657   return addr;
3658 }
3659 
3660 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3661   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3662   if (req_addr != NULL) {
3663     assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3664     assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
3665     return shmat_at_address(shmid, req_addr);
3666   }
3667 
3668   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3669   // return large page size aligned memory addresses when req_addr == NULL.
3670   // However, if the alignment is larger than the large page size, we have
3671   // to manually ensure that the memory returned is 'alignment' aligned.
3672   if (alignment > os::large_page_size()) {
3673     assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3674     return shmat_with_alignment(shmid, bytes, alignment);
3675   } else {
3676     return shmat_at_address(shmid, NULL);
3677   }
3678 }
3679 
3680 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3681   // "exec" is passed in but not used.  Creating the shared image for
3682   // the code cache doesn't have an SHM_X executable permission to check.
3683   assert(UseLargePages && UseSHM, "only for SHM large pages");
3684   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3685   assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
3686 
3687   if (!is_size_aligned(bytes, os::large_page_size())) {
3688     return NULL; // Fallback to small pages.
3689   }
3690 
3691   // Create a large shared memory region to attach to based on size.
3692   // Currently, size is the total size of the heap.
3693   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3694   if (shmid == -1) {
3695     // Possible reasons for shmget failure:
3696     // 1. shmmax is too small for Java heap.
3697     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3698     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3699     // 2. not enough large page memory.
3700     //    > check available large pages: cat /proc/meminfo
3701     //    > increase amount of large pages:
3702     //          echo new_value > /proc/sys/vm/nr_hugepages
3703     //      Note 1: different Linux may use different name for this property,
3704     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3705     //      Note 2: it's possible there's enough physical memory available but
3706     //            they are so fragmented after a long run that they can't
3707     //            coalesce into large pages. Try to reserve large pages when
3708     //            the system is still "fresh".
3709     shm_warning_with_errno("Failed to reserve shared memory.");
3710     return NULL;
3711   }
3712 
3713   // Attach to the region.
3714   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3715 
3716   // Remove shmid. If shmat() is successful, the actual shared memory segment
3717   // will be deleted when it's detached by shmdt() or when the process
3718   // terminates. If shmat() is not successful this will remove the shared
3719   // segment immediately.
3720   shmctl(shmid, IPC_RMID, NULL);
3721 
3722   return addr;
3723 }
3724 
3725 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3726   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3727 
3728   bool warn_on_failure = UseLargePages &&
3729       (!FLAG_IS_DEFAULT(UseLargePages) ||
3730        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3731        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3732 
3733   if (warn_on_failure) {
3734     char msg[128];
3735     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3736         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3737     warning("%s", msg);
3738   }
3739 }
3740 
3741 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3742   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3743   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3744   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3745 
3746   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3747   char* addr = (char*)::mmap(req_addr, bytes, prot,
3748                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3749                              -1, 0);
3750 
3751   if (addr == MAP_FAILED) {
3752     warn_on_large_pages_failure(req_addr, bytes, errno);
3753     return NULL;
3754   }
3755 
3756   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3757 
3758   return addr;
3759 }
3760 
3761 // Reserve memory using mmap(MAP_HUGETLB).
3762 //  - bytes shall be a multiple of alignment.
3763 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3764 //  - alignment sets the alignment at which memory shall be allocated.
3765 //     It must be a multiple of allocation granularity.
3766 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3767 //  req_addr or NULL.
3768 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3769   size_t large_page_size = os::large_page_size();
3770   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3771 
3772   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3773   assert(is_size_aligned(bytes, alignment), "Must be");
3774 
3775   // First reserve - but not commit - the address range in small pages.
3776   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3777 
3778   if (start == NULL) {
3779     return NULL;
3780   }
3781 
3782   assert(is_ptr_aligned(start, alignment), "Must be");
3783 
3784   char* end = start + bytes;
3785 
3786   // Find the regions of the allocated chunk that can be promoted to large pages.
3787   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3788   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3789 
3790   size_t lp_bytes = lp_end - lp_start;
3791 
3792   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3793 
3794   if (lp_bytes == 0) {
3795     // The mapped region doesn't even span the start and the end of a large page.
3796     // Fall back to allocate a non-special area.
3797     ::munmap(start, end - start);
3798     return NULL;
3799   }
3800 
3801   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3802 
3803   void* result;
3804 
3805   // Commit small-paged leading area.
3806   if (start != lp_start) {
3807     result = ::mmap(start, lp_start - start, prot,
3808                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3809                     -1, 0);
3810     if (result == MAP_FAILED) {
3811       ::munmap(lp_start, end - lp_start);
3812       return NULL;
3813     }
3814   }
3815 
3816   // Commit large-paged area.
3817   result = ::mmap(lp_start, lp_bytes, prot,
3818                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3819                   -1, 0);
3820   if (result == MAP_FAILED) {
3821     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3822     // If the mmap above fails, the large pages region will be unmapped and we
3823     // have regions before and after with small pages. Release these regions.
3824     //
3825     // |  mapped  |  unmapped  |  mapped  |
3826     // ^          ^            ^          ^
3827     // start      lp_start     lp_end     end
3828     //
3829     ::munmap(start, lp_start - start);
3830     ::munmap(lp_end, end - lp_end);
3831     return NULL;
3832   }
3833 
3834   // Commit small-paged trailing area.
3835   if (lp_end != end) {
3836       result = ::mmap(lp_end, end - lp_end, prot,
3837                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3838                       -1, 0);
3839     if (result == MAP_FAILED) {
3840       ::munmap(start, lp_end - start);
3841       return NULL;
3842     }
3843   }
3844 
3845   return start;
3846 }
3847 
3848 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3849   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3850   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3851   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3852   assert(is_power_of_2(os::large_page_size()), "Must be");
3853   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3854 
3855   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3856     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3857   } else {
3858     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3859   }
3860 }
3861 
3862 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3863   assert(UseLargePages, "only for large pages");
3864 
3865   char* addr;
3866   if (UseSHM) {
3867     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3868   } else {
3869     assert(UseHugeTLBFS, "must be");
3870     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3871   }
3872 
3873   if (addr != NULL) {
3874     if (UseNUMAInterleaving) {
3875       numa_make_global(addr, bytes);
3876     }
3877 
3878     // The memory is committed
3879     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3880   }
3881 
3882   return addr;
3883 }
3884 
3885 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3886   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3887   return shmdt(base) == 0;
3888 }
3889 
3890 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3891   return pd_release_memory(base, bytes);
3892 }
3893 
3894 bool os::release_memory_special(char* base, size_t bytes) {
3895   bool res;
3896   if (MemTracker::tracking_level() > NMT_minimal) {
3897     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3898     res = os::Linux::release_memory_special_impl(base, bytes);
3899     if (res) {
3900       tkr.record((address)base, bytes);
3901     }
3902 
3903   } else {
3904     res = os::Linux::release_memory_special_impl(base, bytes);
3905   }
3906   return res;
3907 }
3908 
3909 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3910   assert(UseLargePages, "only for large pages");
3911   bool res;
3912 
3913   if (UseSHM) {
3914     res = os::Linux::release_memory_special_shm(base, bytes);
3915   } else {
3916     assert(UseHugeTLBFS, "must be");
3917     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3918   }
3919   return res;
3920 }
3921 
3922 size_t os::large_page_size() {
3923   return _large_page_size;
3924 }
3925 
3926 // With SysV SHM the entire memory region must be allocated as shared
3927 // memory.
3928 // HugeTLBFS allows application to commit large page memory on demand.
3929 // However, when committing memory with HugeTLBFS fails, the region
3930 // that was supposed to be committed will lose the old reservation
3931 // and allow other threads to steal that memory region. Because of this
3932 // behavior we can't commit HugeTLBFS memory.
3933 bool os::can_commit_large_page_memory() {
3934   return UseTransparentHugePages;
3935 }
3936 
3937 bool os::can_execute_large_page_memory() {
3938   return UseTransparentHugePages || UseHugeTLBFS;
3939 }
3940 
3941 // Reserve memory at an arbitrary address, only if that area is
3942 // available (and not reserved for something else).
3943 
3944 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3945   const int max_tries = 10;
3946   char* base[max_tries];
3947   size_t size[max_tries];
3948   const size_t gap = 0x000000;
3949 
3950   // Assert only that the size is a multiple of the page size, since
3951   // that's all that mmap requires, and since that's all we really know
3952   // about at this low abstraction level.  If we need higher alignment,
3953   // we can either pass an alignment to this method or verify alignment
3954   // in one of the methods further up the call chain.  See bug 5044738.
3955   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3956 
3957   // Repeatedly allocate blocks until the block is allocated at the
3958   // right spot. Give up after max_tries. Note that reserve_memory() will
3959   // automatically update _highest_vm_reserved_address if the call is
3960   // successful. The variable tracks the highest memory address every reserved
3961   // by JVM. It is used to detect heap-stack collision if running with
3962   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3963   // space than needed, it could confuse the collision detecting code. To
3964   // solve the problem, save current _highest_vm_reserved_address and
3965   // calculate the correct value before return.
3966   address old_highest = _highest_vm_reserved_address;
3967 
3968   // Linux mmap allows caller to pass an address as hint; give it a try first,
3969   // if kernel honors the hint then we can return immediately.
3970   char * addr = anon_mmap(requested_addr, bytes, false);
3971   if (addr == requested_addr) {
3972      return requested_addr;
3973   }
3974 
3975   if (addr != NULL) {
3976      // mmap() is successful but it fails to reserve at the requested address
3977      anon_munmap(addr, bytes);
3978   }
3979 
3980   int i;
3981   for (i = 0; i < max_tries; ++i) {
3982     base[i] = reserve_memory(bytes);
3983 
3984     if (base[i] != NULL) {
3985       // Is this the block we wanted?
3986       if (base[i] == requested_addr) {
3987         size[i] = bytes;
3988         break;
3989       }
3990 
3991       // Does this overlap the block we wanted? Give back the overlapped
3992       // parts and try again.
3993 
3994       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3995       if (top_overlap >= 0 && top_overlap < bytes) {
3996         unmap_memory(base[i], top_overlap);
3997         base[i] += top_overlap;
3998         size[i] = bytes - top_overlap;
3999       } else {
4000         size_t bottom_overlap = base[i] + bytes - requested_addr;
4001         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
4002           unmap_memory(requested_addr, bottom_overlap);
4003           size[i] = bytes - bottom_overlap;
4004         } else {
4005           size[i] = bytes;
4006         }
4007       }
4008     }
4009   }
4010 
4011   // Give back the unused reserved pieces.
4012 
4013   for (int j = 0; j < i; ++j) {
4014     if (base[j] != NULL) {
4015       unmap_memory(base[j], size[j]);
4016     }
4017   }
4018 
4019   if (i < max_tries) {
4020     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
4021     return requested_addr;
4022   } else {
4023     _highest_vm_reserved_address = old_highest;
4024     return NULL;
4025   }
4026 }
4027 
4028 size_t os::read(int fd, void *buf, unsigned int nBytes) {
4029   return ::read(fd, buf, nBytes);
4030 }
4031 
4032 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
4033 // Solaris uses poll(), linux uses park().
4034 // Poll() is likely a better choice, assuming that Thread.interrupt()
4035 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
4036 // SIGSEGV, see 4355769.
4037 
4038 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
4039   assert(thread == Thread::current(),  "thread consistency check");
4040 
4041   ParkEvent * const slp = thread->_SleepEvent ;
4042   slp->reset() ;
4043   OrderAccess::fence() ;
4044 
4045   if (interruptible) {
4046     jlong prevtime = javaTimeNanos();
4047 
4048     for (;;) {
4049       if (os::is_interrupted(thread, true)) {
4050         return OS_INTRPT;
4051       }
4052 
4053       jlong newtime = javaTimeNanos();
4054 
4055       if (newtime - prevtime < 0) {
4056         // time moving backwards, should only happen if no monotonic clock
4057         // not a guarantee() because JVM should not abort on kernel/glibc bugs
4058         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
4059       } else {
4060         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
4061       }
4062 
4063       if(millis <= 0) {
4064         return OS_OK;
4065       }
4066 
4067       prevtime = newtime;
4068 
4069       {
4070         assert(thread->is_Java_thread(), "sanity check");
4071         JavaThread *jt = (JavaThread *) thread;
4072         ThreadBlockInVM tbivm(jt);
4073         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
4074 
4075         jt->set_suspend_equivalent();
4076         // cleared by handle_special_suspend_equivalent_condition() or
4077         // java_suspend_self() via check_and_wait_while_suspended()
4078 
4079         slp->park(millis);
4080 
4081         // were we externally suspended while we were waiting?
4082         jt->check_and_wait_while_suspended();
4083       }
4084     }
4085   } else {
4086     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4087     jlong prevtime = javaTimeNanos();
4088 
4089     for (;;) {
4090       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
4091       // the 1st iteration ...
4092       jlong newtime = javaTimeNanos();
4093 
4094       if (newtime - prevtime < 0) {
4095         // time moving backwards, should only happen if no monotonic clock
4096         // not a guarantee() because JVM should not abort on kernel/glibc bugs
4097         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
4098       } else {
4099         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
4100       }
4101 
4102       if(millis <= 0) break ;
4103 
4104       prevtime = newtime;
4105       slp->park(millis);
4106     }
4107     return OS_OK ;
4108   }
4109 }
4110 
4111 //
4112 // Short sleep, direct OS call.
4113 //
4114 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
4115 // sched_yield(2) will actually give up the CPU:
4116 //
4117 //   * Alone on this pariticular CPU, keeps running.
4118 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
4119 //     (pre 2.6.39).
4120 //
4121 // So calling this with 0 is an alternative.
4122 //
4123 void os::naked_short_sleep(jlong ms) {
4124   struct timespec req;
4125 
4126   assert(ms < 1000, "Un-interruptable sleep, short time use only");
4127   req.tv_sec = 0;
4128   if (ms > 0) {
4129     req.tv_nsec = (ms % 1000) * 1000000;
4130   }
4131   else {
4132     req.tv_nsec = 1;
4133   }
4134 
4135   nanosleep(&req, NULL);
4136 
4137   return;
4138 }
4139 
4140 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4141 void os::infinite_sleep() {
4142   while (true) {    // sleep forever ...
4143     ::sleep(100);   // ... 100 seconds at a time
4144   }
4145 }
4146 
4147 // Used to convert frequent JVM_Yield() to nops
4148 bool os::dont_yield() {
4149   return DontYieldALot;
4150 }
4151 
4152 void os::yield() {
4153   sched_yield();
4154 }
4155 
4156 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
4157 
4158 void os::yield_all(int attempts) {
4159   // Yields to all threads, including threads with lower priorities
4160   // Threads on Linux are all with same priority. The Solaris style
4161   // os::yield_all() with nanosleep(1ms) is not necessary.
4162   sched_yield();
4163 }
4164 
4165 // Called from the tight loops to possibly influence time-sharing heuristics
4166 void os::loop_breaker(int attempts) {
4167   os::yield_all(attempts);
4168 }
4169 
4170 ////////////////////////////////////////////////////////////////////////////////
4171 // thread priority support
4172 
4173 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4174 // only supports dynamic priority, static priority must be zero. For real-time
4175 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4176 // However, for large multi-threaded applications, SCHED_RR is not only slower
4177 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4178 // of 5 runs - Sep 2005).
4179 //
4180 // The following code actually changes the niceness of kernel-thread/LWP. It
4181 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4182 // not the entire user process, and user level threads are 1:1 mapped to kernel
4183 // threads. It has always been the case, but could change in the future. For
4184 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4185 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
4186 
4187 int os::java_to_os_priority[CriticalPriority + 1] = {
4188   19,              // 0 Entry should never be used
4189 
4190    4,              // 1 MinPriority
4191    3,              // 2
4192    2,              // 3
4193 
4194    1,              // 4
4195    0,              // 5 NormPriority
4196   -1,              // 6
4197 
4198   -2,              // 7
4199   -3,              // 8
4200   -4,              // 9 NearMaxPriority
4201 
4202   -5,              // 10 MaxPriority
4203 
4204   -5               // 11 CriticalPriority
4205 };
4206 
4207 static int prio_init() {
4208   if (ThreadPriorityPolicy == 1) {
4209     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4210     // if effective uid is not root. Perhaps, a more elegant way of doing
4211     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4212     if (geteuid() != 0) {
4213       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4214         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4215       }
4216       ThreadPriorityPolicy = 0;
4217     }
4218   }
4219   if (UseCriticalJavaThreadPriority) {
4220     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4221   }
4222   return 0;
4223 }
4224 
4225 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4226   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
4227 
4228   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4229   return (ret == 0) ? OS_OK : OS_ERR;
4230 }
4231 
4232 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
4233   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
4234     *priority_ptr = java_to_os_priority[NormPriority];
4235     return OS_OK;
4236   }
4237 
4238   errno = 0;
4239   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4240   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4241 }
4242 
4243 // Hint to the underlying OS that a task switch would not be good.
4244 // Void return because it's a hint and can fail.
4245 void os::hint_no_preempt() {}
4246 
4247 ////////////////////////////////////////////////////////////////////////////////
4248 // suspend/resume support
4249 
4250 //  the low-level signal-based suspend/resume support is a remnant from the
4251 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4252 //  within hotspot. Now there is a single use-case for this:
4253 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
4254 //      that runs in the watcher thread.
4255 //  The remaining code is greatly simplified from the more general suspension
4256 //  code that used to be used.
4257 //
4258 //  The protocol is quite simple:
4259 //  - suspend:
4260 //      - sends a signal to the target thread
4261 //      - polls the suspend state of the osthread using a yield loop
4262 //      - target thread signal handler (SR_handler) sets suspend state
4263 //        and blocks in sigsuspend until continued
4264 //  - resume:
4265 //      - sets target osthread state to continue
4266 //      - sends signal to end the sigsuspend loop in the SR_handler
4267 //
4268 //  Note that the SR_lock plays no role in this suspend/resume protocol.
4269 //
4270 
4271 static void resume_clear_context(OSThread *osthread) {
4272   osthread->set_ucontext(NULL);
4273   osthread->set_siginfo(NULL);
4274 }
4275 
4276 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
4277   osthread->set_ucontext(context);
4278   osthread->set_siginfo(siginfo);
4279 }
4280 
4281 //
4282 // Handler function invoked when a thread's execution is suspended or
4283 // resumed. We have to be careful that only async-safe functions are
4284 // called here (Note: most pthread functions are not async safe and
4285 // should be avoided.)
4286 //
4287 // Note: sigwait() is a more natural fit than sigsuspend() from an
4288 // interface point of view, but sigwait() prevents the signal hander
4289 // from being run. libpthread would get very confused by not having
4290 // its signal handlers run and prevents sigwait()'s use with the
4291 // mutex granting granting signal.
4292 //
4293 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4294 //
4295 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4296   // Save and restore errno to avoid confusing native code with EINTR
4297   // after sigsuspend.
4298   int old_errno = errno;
4299 
4300   Thread* thread = Thread::current();
4301   OSThread* osthread = thread->osthread();
4302   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4303 
4304   os::SuspendResume::State current = osthread->sr.state();
4305   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4306     suspend_save_context(osthread, siginfo, context);
4307 
4308     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4309     os::SuspendResume::State state = osthread->sr.suspended();
4310     if (state == os::SuspendResume::SR_SUSPENDED) {
4311       sigset_t suspend_set;  // signals for sigsuspend()
4312 
4313       // get current set of blocked signals and unblock resume signal
4314       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4315       sigdelset(&suspend_set, SR_signum);
4316 
4317       sr_semaphore.signal();
4318       // wait here until we are resumed
4319       while (1) {
4320         sigsuspend(&suspend_set);
4321 
4322         os::SuspendResume::State result = osthread->sr.running();
4323         if (result == os::SuspendResume::SR_RUNNING) {
4324           sr_semaphore.signal();
4325           break;
4326         }
4327       }
4328 
4329     } else if (state == os::SuspendResume::SR_RUNNING) {
4330       // request was cancelled, continue
4331     } else {
4332       ShouldNotReachHere();
4333     }
4334 
4335     resume_clear_context(osthread);
4336   } else if (current == os::SuspendResume::SR_RUNNING) {
4337     // request was cancelled, continue
4338   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4339     // ignore
4340   } else {
4341     // ignore
4342   }
4343 
4344   errno = old_errno;
4345 }
4346 
4347 
4348 static int SR_initialize() {
4349   struct sigaction act;
4350   char *s;
4351   /* Get signal number to use for suspend/resume */
4352   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4353     int sig = ::strtol(s, 0, 10);
4354     if (sig > 0 || sig < _NSIG) {
4355         SR_signum = sig;
4356     }
4357   }
4358 
4359   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4360         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4361 
4362   sigemptyset(&SR_sigset);
4363   sigaddset(&SR_sigset, SR_signum);
4364 
4365   /* Set up signal handler for suspend/resume */
4366   act.sa_flags = SA_RESTART|SA_SIGINFO;
4367   act.sa_handler = (void (*)(int)) SR_handler;
4368 
4369   // SR_signum is blocked by default.
4370   // 4528190 - We also need to block pthread restart signal (32 on all
4371   // supported Linux platforms). Note that LinuxThreads need to block
4372   // this signal for all threads to work properly. So we don't have
4373   // to use hard-coded signal number when setting up the mask.
4374   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4375 
4376   if (sigaction(SR_signum, &act, 0) == -1) {
4377     return -1;
4378   }
4379 
4380   // Save signal flag
4381   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4382   return 0;
4383 }
4384 
4385 static int sr_notify(OSThread* osthread) {
4386   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4387   assert_status(status == 0, status, "pthread_kill");
4388   return status;
4389 }
4390 
4391 // "Randomly" selected value for how long we want to spin
4392 // before bailing out on suspending a thread, also how often
4393 // we send a signal to a thread we want to resume
4394 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4395 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4396 
4397 // returns true on success and false on error - really an error is fatal
4398 // but this seems the normal response to library errors
4399 static bool do_suspend(OSThread* osthread) {
4400   assert(osthread->sr.is_running(), "thread should be running");
4401   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4402 
4403   // mark as suspended and send signal
4404   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4405     // failed to switch, state wasn't running?
4406     ShouldNotReachHere();
4407     return false;
4408   }
4409 
4410   if (sr_notify(osthread) != 0) {
4411     ShouldNotReachHere();
4412   }
4413 
4414   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4415   while (true) {
4416     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4417       break;
4418     } else {
4419       // timeout
4420       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4421       if (cancelled == os::SuspendResume::SR_RUNNING) {
4422         return false;
4423       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4424         // make sure that we consume the signal on the semaphore as well
4425         sr_semaphore.wait();
4426         break;
4427       } else {
4428         ShouldNotReachHere();
4429         return false;
4430       }
4431     }
4432   }
4433 
4434   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4435   return true;
4436 }
4437 
4438 static void do_resume(OSThread* osthread) {
4439   assert(osthread->sr.is_suspended(), "thread should be suspended");
4440   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4441 
4442   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4443     // failed to switch to WAKEUP_REQUEST
4444     ShouldNotReachHere();
4445     return;
4446   }
4447 
4448   while (true) {
4449     if (sr_notify(osthread) == 0) {
4450       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4451         if (osthread->sr.is_running()) {
4452           return;
4453         }
4454       }
4455     } else {
4456       ShouldNotReachHere();
4457     }
4458   }
4459 
4460   guarantee(osthread->sr.is_running(), "Must be running!");
4461 }
4462 
4463 ////////////////////////////////////////////////////////////////////////////////
4464 // interrupt support
4465 
4466 void os::interrupt(Thread* thread) {
4467   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4468     "possibility of dangling Thread pointer");
4469 
4470   OSThread* osthread = thread->osthread();
4471 
4472   if (!osthread->interrupted()) {
4473     osthread->set_interrupted(true);
4474     // More than one thread can get here with the same value of osthread,
4475     // resulting in multiple notifications.  We do, however, want the store
4476     // to interrupted() to be visible to other threads before we execute unpark().
4477     OrderAccess::fence();
4478     ParkEvent * const slp = thread->_SleepEvent ;
4479     if (slp != NULL) slp->unpark() ;
4480   }
4481 
4482   // For JSR166. Unpark even if interrupt status already was set
4483   if (thread->is_Java_thread())
4484     ((JavaThread*)thread)->parker()->unpark();
4485 
4486   ParkEvent * ev = thread->_ParkEvent ;
4487   if (ev != NULL) ev->unpark() ;
4488 
4489 }
4490 
4491 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
4492   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4493     "possibility of dangling Thread pointer");
4494 
4495   OSThread* osthread = thread->osthread();
4496 
4497   bool interrupted = osthread->interrupted();
4498 
4499   if (interrupted && clear_interrupted) {
4500     osthread->set_interrupted(false);
4501     // consider thread->_SleepEvent->reset() ... optional optimization
4502   }
4503 
4504   return interrupted;
4505 }
4506 
4507 ///////////////////////////////////////////////////////////////////////////////////
4508 // signal handling (except suspend/resume)
4509 
4510 // This routine may be used by user applications as a "hook" to catch signals.
4511 // The user-defined signal handler must pass unrecognized signals to this
4512 // routine, and if it returns true (non-zero), then the signal handler must
4513 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4514 // routine will never retun false (zero), but instead will execute a VM panic
4515 // routine kill the process.
4516 //
4517 // If this routine returns false, it is OK to call it again.  This allows
4518 // the user-defined signal handler to perform checks either before or after
4519 // the VM performs its own checks.  Naturally, the user code would be making
4520 // a serious error if it tried to handle an exception (such as a null check
4521 // or breakpoint) that the VM was generating for its own correct operation.
4522 //
4523 // This routine may recognize any of the following kinds of signals:
4524 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4525 // It should be consulted by handlers for any of those signals.
4526 //
4527 // The caller of this routine must pass in the three arguments supplied
4528 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4529 // field of the structure passed to sigaction().  This routine assumes that
4530 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4531 //
4532 // Note that the VM will print warnings if it detects conflicting signal
4533 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4534 //
4535 extern "C" JNIEXPORT int
4536 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4537                         void* ucontext, int abort_if_unrecognized);
4538 
4539 void signalHandler(int sig, siginfo_t* info, void* uc) {
4540   assert(info != NULL && uc != NULL, "it must be old kernel");
4541   int orig_errno = errno;  // Preserve errno value over signal handler.
4542   JVM_handle_linux_signal(sig, info, uc, true);
4543   errno = orig_errno;
4544 }
4545 
4546 
4547 // This boolean allows users to forward their own non-matching signals
4548 // to JVM_handle_linux_signal, harmlessly.
4549 bool os::Linux::signal_handlers_are_installed = false;
4550 
4551 // For signal-chaining
4552 struct sigaction os::Linux::sigact[MAXSIGNUM];
4553 unsigned int os::Linux::sigs = 0;
4554 bool os::Linux::libjsig_is_loaded = false;
4555 typedef struct sigaction *(*get_signal_t)(int);
4556 get_signal_t os::Linux::get_signal_action = NULL;
4557 
4558 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4559   struct sigaction *actp = NULL;
4560 
4561   if (libjsig_is_loaded) {
4562     // Retrieve the old signal handler from libjsig
4563     actp = (*get_signal_action)(sig);
4564   }
4565   if (actp == NULL) {
4566     // Retrieve the preinstalled signal handler from jvm
4567     actp = get_preinstalled_handler(sig);
4568   }
4569 
4570   return actp;
4571 }
4572 
4573 static bool call_chained_handler(struct sigaction *actp, int sig,
4574                                  siginfo_t *siginfo, void *context) {
4575   // Call the old signal handler
4576   if (actp->sa_handler == SIG_DFL) {
4577     // It's more reasonable to let jvm treat it as an unexpected exception
4578     // instead of taking the default action.
4579     return false;
4580   } else if (actp->sa_handler != SIG_IGN) {
4581     if ((actp->sa_flags & SA_NODEFER) == 0) {
4582       // automaticlly block the signal
4583       sigaddset(&(actp->sa_mask), sig);
4584     }
4585 
4586     sa_handler_t hand = NULL;
4587     sa_sigaction_t sa = NULL;
4588     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4589     // retrieve the chained handler
4590     if (siginfo_flag_set) {
4591       sa = actp->sa_sigaction;
4592     } else {
4593       hand = actp->sa_handler;
4594     }
4595 
4596     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4597       actp->sa_handler = SIG_DFL;
4598     }
4599 
4600     // try to honor the signal mask
4601     sigset_t oset;
4602     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4603 
4604     // call into the chained handler
4605     if (siginfo_flag_set) {
4606       (*sa)(sig, siginfo, context);
4607     } else {
4608       (*hand)(sig);
4609     }
4610 
4611     // restore the signal mask
4612     pthread_sigmask(SIG_SETMASK, &oset, 0);
4613   }
4614   // Tell jvm's signal handler the signal is taken care of.
4615   return true;
4616 }
4617 
4618 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4619   bool chained = false;
4620   // signal-chaining
4621   if (UseSignalChaining) {
4622     struct sigaction *actp = get_chained_signal_action(sig);
4623     if (actp != NULL) {
4624       chained = call_chained_handler(actp, sig, siginfo, context);
4625     }
4626   }
4627   return chained;
4628 }
4629 
4630 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4631   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4632     return &sigact[sig];
4633   }
4634   return NULL;
4635 }
4636 
4637 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4638   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4639   sigact[sig] = oldAct;
4640   sigs |= (unsigned int)1 << sig;
4641 }
4642 
4643 // for diagnostic
4644 int os::Linux::sigflags[MAXSIGNUM];
4645 
4646 int os::Linux::get_our_sigflags(int sig) {
4647   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4648   return sigflags[sig];
4649 }
4650 
4651 void os::Linux::set_our_sigflags(int sig, int flags) {
4652   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4653   sigflags[sig] = flags;
4654 }
4655 
4656 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4657   // Check for overwrite.
4658   struct sigaction oldAct;
4659   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4660 
4661   void* oldhand = oldAct.sa_sigaction
4662                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4663                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4664   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4665       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4666       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4667     if (AllowUserSignalHandlers || !set_installed) {
4668       // Do not overwrite; user takes responsibility to forward to us.
4669       return;
4670     } else if (UseSignalChaining) {
4671       // save the old handler in jvm
4672       save_preinstalled_handler(sig, oldAct);
4673       // libjsig also interposes the sigaction() call below and saves the
4674       // old sigaction on it own.
4675     } else {
4676       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4677                     "%#lx for signal %d.", (long)oldhand, sig));
4678     }
4679   }
4680 
4681   struct sigaction sigAct;
4682   sigfillset(&(sigAct.sa_mask));
4683   sigAct.sa_handler = SIG_DFL;
4684   if (!set_installed) {
4685     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4686   } else {
4687     sigAct.sa_sigaction = signalHandler;
4688     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4689   }
4690   // Save flags, which are set by ours
4691   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4692   sigflags[sig] = sigAct.sa_flags;
4693 
4694   int ret = sigaction(sig, &sigAct, &oldAct);
4695   assert(ret == 0, "check");
4696 
4697   void* oldhand2  = oldAct.sa_sigaction
4698                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4699                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4700   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4701 }
4702 
4703 // install signal handlers for signals that HotSpot needs to
4704 // handle in order to support Java-level exception handling.
4705 
4706 void os::Linux::install_signal_handlers() {
4707   if (!signal_handlers_are_installed) {
4708     signal_handlers_are_installed = true;
4709 
4710     // signal-chaining
4711     typedef void (*signal_setting_t)();
4712     signal_setting_t begin_signal_setting = NULL;
4713     signal_setting_t end_signal_setting = NULL;
4714     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4715                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4716     if (begin_signal_setting != NULL) {
4717       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4718                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4719       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4720                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4721       libjsig_is_loaded = true;
4722       assert(UseSignalChaining, "should enable signal-chaining");
4723     }
4724     if (libjsig_is_loaded) {
4725       // Tell libjsig jvm is setting signal handlers
4726       (*begin_signal_setting)();
4727     }
4728 
4729     set_signal_handler(SIGSEGV, true);
4730     set_signal_handler(SIGPIPE, true);
4731     set_signal_handler(SIGBUS, true);
4732     set_signal_handler(SIGILL, true);
4733     set_signal_handler(SIGFPE, true);
4734 #if defined(PPC64)
4735     set_signal_handler(SIGTRAP, true);
4736 #endif
4737     set_signal_handler(SIGXFSZ, true);
4738 
4739     if (libjsig_is_loaded) {
4740       // Tell libjsig jvm finishes setting signal handlers
4741       (*end_signal_setting)();
4742     }
4743 
4744     // We don't activate signal checker if libjsig is in place, we trust ourselves
4745     // and if UserSignalHandler is installed all bets are off.
4746     // Log that signal checking is off only if -verbose:jni is specified.
4747     if (CheckJNICalls) {
4748       if (libjsig_is_loaded) {
4749         if (PrintJNIResolving) {
4750           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4751         }
4752         check_signals = false;
4753       }
4754       if (AllowUserSignalHandlers) {
4755         if (PrintJNIResolving) {
4756           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4757         }
4758         check_signals = false;
4759       }
4760     }
4761   }
4762 }
4763 
4764 // This is the fastest way to get thread cpu time on Linux.
4765 // Returns cpu time (user+sys) for any thread, not only for current.
4766 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4767 // It might work on 2.6.10+ with a special kernel/glibc patch.
4768 // For reference, please, see IEEE Std 1003.1-2004:
4769 //   http://www.unix.org/single_unix_specification
4770 
4771 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4772   struct timespec tp;
4773   int rc = os::Linux::clock_gettime(clockid, &tp);
4774   assert(rc == 0, "clock_gettime is expected to return 0 code");
4775 
4776   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4777 }
4778 
4779 /////
4780 // glibc on Linux platform uses non-documented flag
4781 // to indicate, that some special sort of signal
4782 // trampoline is used.
4783 // We will never set this flag, and we should
4784 // ignore this flag in our diagnostic
4785 #ifdef SIGNIFICANT_SIGNAL_MASK
4786 #undef SIGNIFICANT_SIGNAL_MASK
4787 #endif
4788 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4789 
4790 static const char* get_signal_handler_name(address handler,
4791                                            char* buf, int buflen) {
4792   int offset = 0;
4793   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4794   if (found) {
4795     // skip directory names
4796     const char *p1, *p2;
4797     p1 = buf;
4798     size_t len = strlen(os::file_separator());
4799     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4800     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4801   } else {
4802     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4803   }
4804   return buf;
4805 }
4806 
4807 static void print_signal_handler(outputStream* st, int sig,
4808                                  char* buf, size_t buflen) {
4809   struct sigaction sa;
4810 
4811   sigaction(sig, NULL, &sa);
4812 
4813   // See comment for SIGNIFICANT_SIGNAL_MASK define
4814   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4815 
4816   st->print("%s: ", os::exception_name(sig, buf, buflen));
4817 
4818   address handler = (sa.sa_flags & SA_SIGINFO)
4819     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4820     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4821 
4822   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4823     st->print("SIG_DFL");
4824   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4825     st->print("SIG_IGN");
4826   } else {
4827     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4828   }
4829 
4830   st->print(", sa_mask[0]=");
4831   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4832 
4833   address rh = VMError::get_resetted_sighandler(sig);
4834   // May be, handler was resetted by VMError?
4835   if(rh != NULL) {
4836     handler = rh;
4837     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4838   }
4839 
4840   st->print(", sa_flags=");
4841   os::Posix::print_sa_flags(st, sa.sa_flags);
4842 
4843   // Check: is it our handler?
4844   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4845      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4846     // It is our signal handler
4847     // check for flags, reset system-used one!
4848     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4849       st->print(
4850                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4851                 os::Linux::get_our_sigflags(sig));
4852     }
4853   }
4854   st->cr();
4855 }
4856 
4857 
4858 #define DO_SIGNAL_CHECK(sig) \
4859   if (!sigismember(&check_signal_done, sig)) \
4860     os::Linux::check_signal_handler(sig)
4861 
4862 // This method is a periodic task to check for misbehaving JNI applications
4863 // under CheckJNI, we can add any periodic checks here
4864 
4865 void os::run_periodic_checks() {
4866 
4867   if (check_signals == false) return;
4868 
4869   // SEGV and BUS if overridden could potentially prevent
4870   // generation of hs*.log in the event of a crash, debugging
4871   // such a case can be very challenging, so we absolutely
4872   // check the following for a good measure:
4873   DO_SIGNAL_CHECK(SIGSEGV);
4874   DO_SIGNAL_CHECK(SIGILL);
4875   DO_SIGNAL_CHECK(SIGFPE);
4876   DO_SIGNAL_CHECK(SIGBUS);
4877   DO_SIGNAL_CHECK(SIGPIPE);
4878   DO_SIGNAL_CHECK(SIGXFSZ);
4879 #if defined(PPC64)
4880   DO_SIGNAL_CHECK(SIGTRAP);
4881 #endif
4882 
4883   // ReduceSignalUsage allows the user to override these handlers
4884   // see comments at the very top and jvm_solaris.h
4885   if (!ReduceSignalUsage) {
4886     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4887     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4888     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4889     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4890   }
4891 
4892   DO_SIGNAL_CHECK(SR_signum);
4893   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4894 }
4895 
4896 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4897 
4898 static os_sigaction_t os_sigaction = NULL;
4899 
4900 void os::Linux::check_signal_handler(int sig) {
4901   char buf[O_BUFLEN];
4902   address jvmHandler = NULL;
4903 
4904 
4905   struct sigaction act;
4906   if (os_sigaction == NULL) {
4907     // only trust the default sigaction, in case it has been interposed
4908     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4909     if (os_sigaction == NULL) return;
4910   }
4911 
4912   os_sigaction(sig, (struct sigaction*)NULL, &act);
4913 
4914 
4915   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4916 
4917   address thisHandler = (act.sa_flags & SA_SIGINFO)
4918     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4919     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4920 
4921 
4922   switch(sig) {
4923   case SIGSEGV:
4924   case SIGBUS:
4925   case SIGFPE:
4926   case SIGPIPE:
4927   case SIGILL:
4928   case SIGXFSZ:
4929     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4930     break;
4931 
4932   case SHUTDOWN1_SIGNAL:
4933   case SHUTDOWN2_SIGNAL:
4934   case SHUTDOWN3_SIGNAL:
4935   case BREAK_SIGNAL:
4936     jvmHandler = (address)user_handler();
4937     break;
4938 
4939   case INTERRUPT_SIGNAL:
4940     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4941     break;
4942 
4943   default:
4944     if (sig == SR_signum) {
4945       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4946     } else {
4947       return;
4948     }
4949     break;
4950   }
4951 
4952   if (thisHandler != jvmHandler) {
4953     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4954     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4955     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4956     // No need to check this sig any longer
4957     sigaddset(&check_signal_done, sig);
4958     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4959     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4960       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4961                     exception_name(sig, buf, O_BUFLEN));
4962     }
4963   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4964     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4965     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4966     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4967     // No need to check this sig any longer
4968     sigaddset(&check_signal_done, sig);
4969   }
4970 
4971   // Dump all the signal
4972   if (sigismember(&check_signal_done, sig)) {
4973     print_signal_handlers(tty, buf, O_BUFLEN);
4974   }
4975 }
4976 
4977 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4978 
4979 extern bool signal_name(int signo, char* buf, size_t len);
4980 
4981 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4982   if (0 < exception_code && exception_code <= SIGRTMAX) {
4983     // signal
4984     if (!signal_name(exception_code, buf, size)) {
4985       jio_snprintf(buf, size, "SIG%d", exception_code);
4986     }
4987     return buf;
4988   } else {
4989     return NULL;
4990   }
4991 }
4992 
4993 // this is called _before_ most of the global arguments have been parsed
4994 void os::init(void) {
4995   char dummy;   /* used to get a guess on initial stack address */
4996 
4997   // With LinuxThreads the JavaMain thread pid (primordial thread)
4998   // is different than the pid of the java launcher thread.
4999   // So, on Linux, the launcher thread pid is passed to the VM
5000   // via the sun.java.launcher.pid property.
5001   // Use this property instead of getpid() if it was correctly passed.
5002   // See bug 6351349.
5003   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
5004 
5005   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
5006 
5007   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
5008 
5009   init_random(1234567);
5010 
5011   ThreadCritical::initialize();
5012 
5013   Linux::set_page_size(sysconf(_SC_PAGESIZE));
5014   if (Linux::page_size() == -1) {
5015     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
5016                   strerror(errno)));
5017   }
5018   init_page_sizes((size_t) Linux::page_size());
5019 
5020   Linux::initialize_system_info();
5021 
5022   // _main_thread points to the thread that created/loaded the JVM.
5023   Linux::_main_thread = pthread_self();
5024 
5025   Linux::clock_init();
5026   initial_time_count = javaTimeNanos();
5027 
5028   // pthread_condattr initialization for monotonic clock
5029   int status;
5030   pthread_condattr_t* _condattr = os::Linux::condAttr();
5031   if ((status = pthread_condattr_init(_condattr)) != 0) {
5032     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
5033   }
5034   // Only set the clock if CLOCK_MONOTONIC is available
5035   if (Linux::supports_monotonic_clock()) {
5036     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
5037       if (status == EINVAL) {
5038         warning("Unable to use monotonic clock with relative timed-waits" \
5039                 " - changes to the time-of-day clock may have adverse affects");
5040       } else {
5041         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
5042       }
5043     }
5044   }
5045   // else it defaults to CLOCK_REALTIME
5046 
5047   pthread_mutex_init(&dl_mutex, NULL);
5048 
5049   // If the pagesize of the VM is greater than 8K determine the appropriate
5050   // number of initial guard pages.  The user can change this with the
5051   // command line arguments, if needed.
5052   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
5053     StackYellowPages = 1;
5054     StackRedPages = 1;
5055     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
5056   }
5057 }
5058 
5059 // To install functions for atexit system call
5060 extern "C" {
5061   static void perfMemory_exit_helper() {
5062     perfMemory_exit();
5063   }
5064 }
5065 
5066 void os::pd_init_container_support() {
5067   OSContainer::init();
5068 }
5069 
5070 // this is called _after_ the global arguments have been parsed
5071 jint os::init_2(void)
5072 {
5073   Linux::fast_thread_clock_init();
5074 
5075   // Allocate a single page and mark it as readable for safepoint polling
5076   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
5077   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
5078 
5079   os::set_polling_page( polling_page );
5080 
5081 #ifndef PRODUCT
5082   if(Verbose && PrintMiscellaneous)
5083     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
5084 #endif
5085 
5086   if (!UseMembar) {
5087     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
5088     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
5089     os::set_memory_serialize_page( mem_serialize_page );
5090 
5091 #ifndef PRODUCT
5092     if(Verbose && PrintMiscellaneous)
5093       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
5094 #endif
5095   }
5096 
5097   // initialize suspend/resume support - must do this before signal_sets_init()
5098   if (SR_initialize() != 0) {
5099     perror("SR_initialize failed");
5100     return JNI_ERR;
5101   }
5102 
5103   Linux::signal_sets_init();
5104   Linux::install_signal_handlers();
5105 
5106   // Check minimum allowable stack size for thread creation and to initialize
5107   // the java system classes, including StackOverflowError - depends on page
5108   // size.  Add a page for compiler2 recursion in main thread.
5109   // Add in 2*BytesPerWord times page size to account for VM stack during
5110   // class initialization depending on 32 or 64 bit VM.
5111   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
5112             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
5113                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
5114 
5115   size_t threadStackSizeInBytes = ThreadStackSize * K;
5116   if (threadStackSizeInBytes != 0 &&
5117       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
5118         tty->print_cr("\nThe stack size specified is too small, "
5119                       "Specify at least %dk",
5120                       os::Linux::min_stack_allowed/ K);
5121         return JNI_ERR;
5122   }
5123 
5124   // Make the stack size a multiple of the page size so that
5125   // the yellow/red zones can be guarded.
5126   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
5127         vm_page_size()));
5128 
5129   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5130 
5131 #if defined(IA32)
5132   workaround_expand_exec_shield_cs_limit();
5133 #endif
5134 
5135   Linux::libpthread_init();
5136   if (PrintMiscellaneous && (Verbose || WizardMode)) {
5137      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
5138           Linux::glibc_version(), Linux::libpthread_version(),
5139           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
5140   }
5141 
5142   if (UseNUMA) {
5143     if (!Linux::libnuma_init()) {
5144       UseNUMA = false;
5145     } else {
5146       if ((Linux::numa_max_node() < 1)) {
5147         // There's only one node(they start from 0), disable NUMA.
5148         UseNUMA = false;
5149       }
5150     }
5151     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5152     // we can make the adaptive lgrp chunk resizing work. If the user specified
5153     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
5154     // disable adaptive resizing.
5155     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5156       if (FLAG_IS_DEFAULT(UseNUMA)) {
5157         UseNUMA = false;
5158       } else {
5159         if (FLAG_IS_DEFAULT(UseLargePages) &&
5160             FLAG_IS_DEFAULT(UseSHM) &&
5161             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
5162           UseLargePages = false;
5163         } else {
5164           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
5165           UseAdaptiveSizePolicy = false;
5166           UseAdaptiveNUMAChunkSizing = false;
5167         }
5168       }
5169     }
5170     if (!UseNUMA && ForceNUMA) {
5171       UseNUMA = true;
5172     }
5173   }
5174 
5175   if (MaxFDLimit) {
5176     // set the number of file descriptors to max. print out error
5177     // if getrlimit/setrlimit fails but continue regardless.
5178     struct rlimit nbr_files;
5179     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5180     if (status != 0) {
5181       if (PrintMiscellaneous && (Verbose || WizardMode))
5182         perror("os::init_2 getrlimit failed");
5183     } else {
5184       nbr_files.rlim_cur = nbr_files.rlim_max;
5185       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5186       if (status != 0) {
5187         if (PrintMiscellaneous && (Verbose || WizardMode))
5188           perror("os::init_2 setrlimit failed");
5189       }
5190     }
5191   }
5192 
5193   // Initialize lock used to serialize thread creation (see os::create_thread)
5194   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
5195 
5196   // at-exit methods are called in the reverse order of their registration.
5197   // atexit functions are called on return from main or as a result of a
5198   // call to exit(3C). There can be only 32 of these functions registered
5199   // and atexit() does not set errno.
5200 
5201   if (PerfAllowAtExitRegistration) {
5202     // only register atexit functions if PerfAllowAtExitRegistration is set.
5203     // atexit functions can be delayed until process exit time, which
5204     // can be problematic for embedded VM situations. Embedded VMs should
5205     // call DestroyJavaVM() to assure that VM resources are released.
5206 
5207     // note: perfMemory_exit_helper atexit function may be removed in
5208     // the future if the appropriate cleanup code can be added to the
5209     // VM_Exit VMOperation's doit method.
5210     if (atexit(perfMemory_exit_helper) != 0) {
5211       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5212     }
5213   }
5214 
5215   // initialize thread priority policy
5216   prio_init();
5217 
5218   return JNI_OK;
5219 }
5220 
5221 // Mark the polling page as unreadable
5222 void os::make_polling_page_unreadable(void) {
5223   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
5224     fatal("Could not disable polling page");
5225 };
5226 
5227 // Mark the polling page as readable
5228 void os::make_polling_page_readable(void) {
5229   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5230     fatal("Could not enable polling page");
5231   }
5232 };
5233 
5234 static int os_cpu_count(const cpu_set_t* cpus) {
5235   int count = 0;
5236   // only look up to the number of configured processors
5237   for (int i = 0; i < os::processor_count(); i++) {
5238     if (CPU_ISSET(i, cpus)) {
5239       count++;
5240     }
5241   }
5242   return count;
5243 }
5244 
5245 // Get the current number of available processors for this process.
5246 // This value can change at any time during a process's lifetime.
5247 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5248 // If anything goes wrong we fallback to returning the number of online
5249 // processors - which can be greater than the number available to the process.
5250 int os::Linux::active_processor_count() {
5251   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5252   int cpus_size = sizeof(cpu_set_t);
5253   int cpu_count = 0;
5254 
5255   // pid 0 means the current thread - which we have to assume represents the process
5256   if (sched_getaffinity(0, cpus_size, &cpus) == 0) {
5257     cpu_count = os_cpu_count(&cpus);
5258     if (PrintActiveCpus) {
5259       tty->print_cr("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5260     }
5261   }
5262   else {
5263     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5264     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5265             "which may exceed available processors", strerror(errno), cpu_count);
5266   }
5267 
5268   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5269   return cpu_count;
5270 }
5271 
5272 // Determine the active processor count from one of
5273 // three different sources:
5274 //
5275 // 1. User option -XX:ActiveProcessorCount
5276 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5277 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5278 //
5279 // Option 1, if specified, will always override.
5280 // If the cgroup subsystem is active and configured, we
5281 // will return the min of the cgroup and option 2 results.
5282 // This is required since tools, such as numactl, that
5283 // alter cpu affinity do not update cgroup subsystem
5284 // cpuset configuration files.
5285 int os::active_processor_count() {
5286   // User has overridden the number of active processors
5287   if (ActiveProcessorCount > 0) {
5288     if (PrintActiveCpus) {
5289       tty->print_cr("active_processor_count: "
5290                     "active processor count set by user : %d",
5291                     ActiveProcessorCount);
5292     }
5293     return ActiveProcessorCount;
5294   }
5295 
5296   int active_cpus;
5297   if (OSContainer::is_containerized()) {
5298     active_cpus = OSContainer::active_processor_count();
5299     if (PrintActiveCpus) {
5300       tty->print_cr("active_processor_count: determined by OSContainer: %d",
5301                      active_cpus);
5302     }
5303   } else {
5304     active_cpus = os::Linux::active_processor_count();
5305   }
5306 
5307   return active_cpus;
5308 }
5309 
5310 void os::set_native_thread_name(const char *name) {
5311   // Not yet implemented.
5312   return;
5313 }
5314 
5315 bool os::distribute_processes(uint length, uint* distribution) {
5316   // Not yet implemented.
5317   return false;
5318 }
5319 
5320 bool os::bind_to_processor(uint processor_id) {
5321   // Not yet implemented.
5322   return false;
5323 }
5324 
5325 ///
5326 
5327 void os::SuspendedThreadTask::internal_do_task() {
5328   if (do_suspend(_thread->osthread())) {
5329     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5330     do_task(context);
5331     do_resume(_thread->osthread());
5332   }
5333 }
5334 
5335 class PcFetcher : public os::SuspendedThreadTask {
5336 public:
5337   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
5338   ExtendedPC result();
5339 protected:
5340   void do_task(const os::SuspendedThreadTaskContext& context);
5341 private:
5342   ExtendedPC _epc;
5343 };
5344 
5345 ExtendedPC PcFetcher::result() {
5346   guarantee(is_done(), "task is not done yet.");
5347   return _epc;
5348 }
5349 
5350 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5351   Thread* thread = context.thread();
5352   OSThread* osthread = thread->osthread();
5353   if (osthread->ucontext() != NULL) {
5354     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
5355   } else {
5356     // NULL context is unexpected, double-check this is the VMThread
5357     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5358   }
5359 }
5360 
5361 // Suspends the target using the signal mechanism and then grabs the PC before
5362 // resuming the target. Used by the flat-profiler only
5363 ExtendedPC os::get_thread_pc(Thread* thread) {
5364   // Make sure that it is called by the watcher for the VMThread
5365   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5366   assert(thread->is_VM_thread(), "Can only be called for VMThread");
5367 
5368   PcFetcher fetcher(thread);
5369   fetcher.run();
5370   return fetcher.result();
5371 }
5372 
5373 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
5374 {
5375    if (is_NPTL()) {
5376       return pthread_cond_timedwait(_cond, _mutex, _abstime);
5377    } else {
5378       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
5379       // word back to default 64bit precision if condvar is signaled. Java
5380       // wants 53bit precision.  Save and restore current value.
5381       int fpu = get_fpu_control_word();
5382       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
5383       set_fpu_control_word(fpu);
5384       return status;
5385    }
5386 }
5387 
5388 ////////////////////////////////////////////////////////////////////////////////
5389 // debug support
5390 
5391 bool os::find(address addr, outputStream* st) {
5392   Dl_info dlinfo;
5393   memset(&dlinfo, 0, sizeof(dlinfo));
5394   if (dladdr(addr, &dlinfo) != 0) {
5395     st->print(PTR_FORMAT ": ", addr);
5396     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5397       st->print("%s+%#x", dlinfo.dli_sname,
5398                  addr - (intptr_t)dlinfo.dli_saddr);
5399     } else if (dlinfo.dli_fbase != NULL) {
5400       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
5401     } else {
5402       st->print("<absolute address>");
5403     }
5404     if (dlinfo.dli_fname != NULL) {
5405       st->print(" in %s", dlinfo.dli_fname);
5406     }
5407     if (dlinfo.dli_fbase != NULL) {
5408       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5409     }
5410     st->cr();
5411 
5412     if (Verbose) {
5413       // decode some bytes around the PC
5414       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5415       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5416       address       lowest = (address) dlinfo.dli_sname;
5417       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5418       if (begin < lowest)  begin = lowest;
5419       Dl_info dlinfo2;
5420       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5421           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
5422         end = (address) dlinfo2.dli_saddr;
5423       Disassembler::decode(begin, end, st);
5424     }
5425     return true;
5426   }
5427   return false;
5428 }
5429 
5430 ////////////////////////////////////////////////////////////////////////////////
5431 // misc
5432 
5433 // This does not do anything on Linux. This is basically a hook for being
5434 // able to use structured exception handling (thread-local exception filters)
5435 // on, e.g., Win32.
5436 void
5437 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5438                          JavaCallArguments* args, Thread* thread) {
5439   f(value, method, args, thread);
5440 }
5441 
5442 void os::print_statistics() {
5443 }
5444 
5445 int os::message_box(const char* title, const char* message) {
5446   int i;
5447   fdStream err(defaultStream::error_fd());
5448   for (i = 0; i < 78; i++) err.print_raw("=");
5449   err.cr();
5450   err.print_raw_cr(title);
5451   for (i = 0; i < 78; i++) err.print_raw("-");
5452   err.cr();
5453   err.print_raw_cr(message);
5454   for (i = 0; i < 78; i++) err.print_raw("=");
5455   err.cr();
5456 
5457   char buf[16];
5458   // Prevent process from exiting upon "read error" without consuming all CPU
5459   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5460 
5461   return buf[0] == 'y' || buf[0] == 'Y';
5462 }
5463 
5464 int os::stat(const char *path, struct stat *sbuf) {
5465   char pathbuf[MAX_PATH];
5466   if (strlen(path) > MAX_PATH - 1) {
5467     errno = ENAMETOOLONG;
5468     return -1;
5469   }
5470   os::native_path(strcpy(pathbuf, path));
5471   return ::stat(pathbuf, sbuf);
5472 }
5473 
5474 bool os::check_heap(bool force) {
5475   return true;
5476 }
5477 
5478 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5479   return ::vsnprintf(buf, count, format, args);
5480 }
5481 
5482 // Is a (classpath) directory empty?
5483 bool os::dir_is_empty(const char* path) {
5484   DIR *dir = NULL;
5485   struct dirent *ptr;
5486 
5487   dir = opendir(path);
5488   if (dir == NULL) return true;
5489 
5490   /* Scan the directory */
5491   bool result = true;
5492   char buf[sizeof(struct dirent) + MAX_PATH];
5493   while (result && (ptr = ::readdir(dir)) != NULL) {
5494     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5495       result = false;
5496     }
5497   }
5498   closedir(dir);
5499   return result;
5500 }
5501 
5502 // This code originates from JDK's sysOpen and open64_w
5503 // from src/solaris/hpi/src/system_md.c
5504 
5505 #ifndef O_DELETE
5506 #define O_DELETE 0x10000
5507 #endif
5508 
5509 // Open a file. Unlink the file immediately after open returns
5510 // if the specified oflag has the O_DELETE flag set.
5511 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5512 
5513 int os::open(const char *path, int oflag, int mode) {
5514 
5515   if (strlen(path) > MAX_PATH - 1) {
5516     errno = ENAMETOOLONG;
5517     return -1;
5518   }
5519   int fd;
5520   int o_delete = (oflag & O_DELETE);
5521   oflag = oflag & ~O_DELETE;
5522 
5523   fd = ::open64(path, oflag, mode);
5524   if (fd == -1) return -1;
5525 
5526   //If the open succeeded, the file might still be a directory
5527   {
5528     struct stat64 buf64;
5529     int ret = ::fstat64(fd, &buf64);
5530     int st_mode = buf64.st_mode;
5531 
5532     if (ret != -1) {
5533       if ((st_mode & S_IFMT) == S_IFDIR) {
5534         errno = EISDIR;
5535         ::close(fd);
5536         return -1;
5537       }
5538     } else {
5539       ::close(fd);
5540       return -1;
5541     }
5542   }
5543 
5544     /*
5545      * All file descriptors that are opened in the JVM and not
5546      * specifically destined for a subprocess should have the
5547      * close-on-exec flag set.  If we don't set it, then careless 3rd
5548      * party native code might fork and exec without closing all
5549      * appropriate file descriptors (e.g. as we do in closeDescriptors in
5550      * UNIXProcess.c), and this in turn might:
5551      *
5552      * - cause end-of-file to fail to be detected on some file
5553      *   descriptors, resulting in mysterious hangs, or
5554      *
5555      * - might cause an fopen in the subprocess to fail on a system
5556      *   suffering from bug 1085341.
5557      *
5558      * (Yes, the default setting of the close-on-exec flag is a Unix
5559      * design flaw)
5560      *
5561      * See:
5562      * 1085341: 32-bit stdio routines should support file descriptors >255
5563      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5564      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5565      */
5566 #ifdef FD_CLOEXEC
5567     {
5568         int flags = ::fcntl(fd, F_GETFD);
5569         if (flags != -1)
5570             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5571     }
5572 #endif
5573 
5574   if (o_delete != 0) {
5575     ::unlink(path);
5576   }
5577   return fd;
5578 }
5579 
5580 
5581 // create binary file, rewriting existing file if required
5582 int os::create_binary_file(const char* path, bool rewrite_existing) {
5583   int oflags = O_WRONLY | O_CREAT;
5584   if (!rewrite_existing) {
5585     oflags |= O_EXCL;
5586   }
5587   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5588 }
5589 
5590 // return current position of file pointer
5591 jlong os::current_file_offset(int fd) {
5592   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5593 }
5594 
5595 // move file pointer to the specified offset
5596 jlong os::seek_to_file_offset(int fd, jlong offset) {
5597   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5598 }
5599 
5600 // This code originates from JDK's sysAvailable
5601 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5602 
5603 int os::available(int fd, jlong *bytes) {
5604   jlong cur, end;
5605   int mode;
5606   struct stat64 buf64;
5607 
5608   if (::fstat64(fd, &buf64) >= 0) {
5609     mode = buf64.st_mode;
5610     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5611       /*
5612       * XXX: is the following call interruptible? If so, this might
5613       * need to go through the INTERRUPT_IO() wrapper as for other
5614       * blocking, interruptible calls in this file.
5615       */
5616       int n;
5617       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5618         *bytes = n;
5619         return 1;
5620       }
5621     }
5622   }
5623   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5624     return 0;
5625   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5626     return 0;
5627   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5628     return 0;
5629   }
5630   *bytes = end - cur;
5631   return 1;
5632 }
5633 
5634 int os::socket_available(int fd, jint *pbytes) {
5635   // Linux doc says EINTR not returned, unlike Solaris
5636   int ret = ::ioctl(fd, FIONREAD, pbytes);
5637 
5638   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5639   // is expected to return 0 on failure and 1 on success to the jdk.
5640   return (ret < 0) ? 0 : 1;
5641 }
5642 
5643 // Map a block of memory.
5644 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5645                      char *addr, size_t bytes, bool read_only,
5646                      bool allow_exec) {
5647   int prot;
5648   int flags = MAP_PRIVATE;
5649 
5650   if (read_only) {
5651     prot = PROT_READ;
5652   } else {
5653     prot = PROT_READ | PROT_WRITE;
5654   }
5655 
5656   if (allow_exec) {
5657     prot |= PROT_EXEC;
5658   }
5659 
5660   if (addr != NULL) {
5661     flags |= MAP_FIXED;
5662   }
5663 
5664   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5665                                      fd, file_offset);
5666   if (mapped_address == MAP_FAILED) {
5667     return NULL;
5668   }
5669   return mapped_address;
5670 }
5671 
5672 
5673 // Remap a block of memory.
5674 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5675                        char *addr, size_t bytes, bool read_only,
5676                        bool allow_exec) {
5677   // same as map_memory() on this OS
5678   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5679                         allow_exec);
5680 }
5681 
5682 
5683 // Unmap a block of memory.
5684 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5685   return munmap(addr, bytes) == 0;
5686 }
5687 
5688 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5689 
5690 static clockid_t thread_cpu_clockid(Thread* thread) {
5691   pthread_t tid = thread->osthread()->pthread_id();
5692   clockid_t clockid;
5693 
5694   // Get thread clockid
5695   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5696   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5697   return clockid;
5698 }
5699 
5700 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5701 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5702 // of a thread.
5703 //
5704 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5705 // the fast estimate available on the platform.
5706 
5707 jlong os::current_thread_cpu_time() {
5708   if (os::Linux::supports_fast_thread_cpu_time()) {
5709     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5710   } else {
5711     // return user + sys since the cost is the same
5712     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5713   }
5714 }
5715 
5716 jlong os::thread_cpu_time(Thread* thread) {
5717   // consistent with what current_thread_cpu_time() returns
5718   if (os::Linux::supports_fast_thread_cpu_time()) {
5719     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5720   } else {
5721     return slow_thread_cpu_time(thread, true /* user + sys */);
5722   }
5723 }
5724 
5725 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5726   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5727     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5728   } else {
5729     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5730   }
5731 }
5732 
5733 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5734   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5735     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5736   } else {
5737     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5738   }
5739 }
5740 
5741 //
5742 //  -1 on error.
5743 //
5744 
5745 PRAGMA_DIAG_PUSH
5746 PRAGMA_FORMAT_NONLITERAL_IGNORED
5747 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5748   static bool proc_task_unchecked = true;
5749   static const char *proc_stat_path = "/proc/%d/stat";
5750   pid_t  tid = thread->osthread()->thread_id();
5751   char *s;
5752   char stat[2048];
5753   int statlen;
5754   char proc_name[64];
5755   int count;
5756   long sys_time, user_time;
5757   char cdummy;
5758   int idummy;
5759   long ldummy;
5760   FILE *fp;
5761 
5762   // The /proc/<tid>/stat aggregates per-process usage on
5763   // new Linux kernels 2.6+ where NPTL is supported.
5764   // The /proc/self/task/<tid>/stat still has the per-thread usage.
5765   // See bug 6328462.
5766   // There possibly can be cases where there is no directory
5767   // /proc/self/task, so we check its availability.
5768   if (proc_task_unchecked && os::Linux::is_NPTL()) {
5769     // This is executed only once
5770     proc_task_unchecked = false;
5771     fp = fopen("/proc/self/task", "r");
5772     if (fp != NULL) {
5773       proc_stat_path = "/proc/self/task/%d/stat";
5774       fclose(fp);
5775     }
5776   }
5777 
5778   sprintf(proc_name, proc_stat_path, tid);
5779   fp = fopen(proc_name, "r");
5780   if ( fp == NULL ) return -1;
5781   statlen = fread(stat, 1, 2047, fp);
5782   stat[statlen] = '\0';
5783   fclose(fp);
5784 
5785   // Skip pid and the command string. Note that we could be dealing with
5786   // weird command names, e.g. user could decide to rename java launcher
5787   // to "java 1.4.2 :)", then the stat file would look like
5788   //                1234 (java 1.4.2 :)) R ... ...
5789   // We don't really need to know the command string, just find the last
5790   // occurrence of ")" and then start parsing from there. See bug 4726580.
5791   s = strrchr(stat, ')');
5792   if (s == NULL ) return -1;
5793 
5794   // Skip blank chars
5795   do s++; while (isspace(*s));
5796 
5797   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5798                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5799                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5800                  &user_time, &sys_time);
5801   if ( count != 13 ) return -1;
5802   if (user_sys_cpu_time) {
5803     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5804   } else {
5805     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5806   }
5807 }
5808 PRAGMA_DIAG_POP
5809 
5810 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5811   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5812   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5813   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5814   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5815 }
5816 
5817 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5818   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5819   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5820   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5821   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5822 }
5823 
5824 bool os::is_thread_cpu_time_supported() {
5825   return true;
5826 }
5827 
5828 // System loadavg support.  Returns -1 if load average cannot be obtained.
5829 // Linux doesn't yet have a (official) notion of processor sets,
5830 // so just return the system wide load average.
5831 int os::loadavg(double loadavg[], int nelem) {
5832   return ::getloadavg(loadavg, nelem);
5833 }
5834 
5835 void os::pause() {
5836   char filename[MAX_PATH];
5837   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5838     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5839   } else {
5840     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5841   }
5842 
5843   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5844   if (fd != -1) {
5845     struct stat buf;
5846     ::close(fd);
5847     while (::stat(filename, &buf) == 0) {
5848       (void)::poll(NULL, 0, 100);
5849     }
5850   } else {
5851     jio_fprintf(stderr,
5852       "Could not open pause file '%s', continuing immediately.\n", filename);
5853   }
5854 }
5855 
5856 
5857 // Refer to the comments in os_solaris.cpp park-unpark.
5858 //
5859 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5860 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5861 // For specifics regarding the bug see GLIBC BUGID 261237 :
5862 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5863 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5864 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5865 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5866 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5867 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5868 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5869 // of libpthread avoids the problem, but isn't practical.
5870 //
5871 // Possible remedies:
5872 //
5873 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5874 //      This is palliative and probabilistic, however.  If the thread is preempted
5875 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5876 //      than the minimum period may have passed, and the abstime may be stale (in the
5877 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5878 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5879 //
5880 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5881 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5882 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5883 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5884 //      thread.
5885 //
5886 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5887 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5888 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5889 //      This also works well.  In fact it avoids kernel-level scalability impediments
5890 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5891 //      timers in a graceful fashion.
5892 //
5893 // 4.   When the abstime value is in the past it appears that control returns
5894 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5895 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5896 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5897 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5898 //      It may be possible to avoid reinitialization by checking the return
5899 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5900 //      condvar we must establish the invariant that cond_signal() is only called
5901 //      within critical sections protected by the adjunct mutex.  This prevents
5902 //      cond_signal() from "seeing" a condvar that's in the midst of being
5903 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5904 //      desirable signal-after-unlock optimization that avoids futile context switching.
5905 //
5906 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5907 //      structure when a condvar is used or initialized.  cond_destroy()  would
5908 //      release the helper structure.  Our reinitialize-after-timedwait fix
5909 //      put excessive stress on malloc/free and locks protecting the c-heap.
5910 //
5911 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5912 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5913 // and only enabling the work-around for vulnerable environments.
5914 
5915 // utility to compute the abstime argument to timedwait:
5916 // millis is the relative timeout time
5917 // abstime will be the absolute timeout time
5918 // TODO: replace compute_abstime() with unpackTime()
5919 
5920 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5921   if (millis < 0)  millis = 0;
5922 
5923   jlong seconds = millis / 1000;
5924   millis %= 1000;
5925   if (seconds > 50000000) { // see man cond_timedwait(3T)
5926     seconds = 50000000;
5927   }
5928 
5929   if (os::Linux::supports_monotonic_clock()) {
5930     struct timespec now;
5931     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5932     assert_status(status == 0, status, "clock_gettime");
5933     abstime->tv_sec = now.tv_sec  + seconds;
5934     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5935     if (nanos >= NANOSECS_PER_SEC) {
5936       abstime->tv_sec += 1;
5937       nanos -= NANOSECS_PER_SEC;
5938     }
5939     abstime->tv_nsec = nanos;
5940   } else {
5941     struct timeval now;
5942     int status = gettimeofday(&now, NULL);
5943     assert(status == 0, "gettimeofday");
5944     abstime->tv_sec = now.tv_sec  + seconds;
5945     long usec = now.tv_usec + millis * 1000;
5946     if (usec >= 1000000) {
5947       abstime->tv_sec += 1;
5948       usec -= 1000000;
5949     }
5950     abstime->tv_nsec = usec * 1000;
5951   }
5952   return abstime;
5953 }
5954 
5955 
5956 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5957 // Conceptually TryPark() should be equivalent to park(0).
5958 
5959 int os::PlatformEvent::TryPark() {
5960   for (;;) {
5961     const int v = _Event ;
5962     guarantee ((v == 0) || (v == 1), "invariant") ;
5963     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5964   }
5965 }
5966 
5967 void os::PlatformEvent::park() {       // AKA "down()"
5968   // Invariant: Only the thread associated with the Event/PlatformEvent
5969   // may call park().
5970   // TODO: assert that _Assoc != NULL or _Assoc == Self
5971   int v ;
5972   for (;;) {
5973       v = _Event ;
5974       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5975   }
5976   guarantee (v >= 0, "invariant") ;
5977   if (v == 0) {
5978      // Do this the hard way by blocking ...
5979      int status = pthread_mutex_lock(_mutex);
5980      assert_status(status == 0, status, "mutex_lock");
5981      guarantee (_nParked == 0, "invariant") ;
5982      ++ _nParked ;
5983      while (_Event < 0) {
5984         status = pthread_cond_wait(_cond, _mutex);
5985         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5986         // Treat this the same as if the wait was interrupted
5987         if (status == ETIME) { status = EINTR; }
5988         assert_status(status == 0 || status == EINTR, status, "cond_wait");
5989      }
5990      -- _nParked ;
5991 
5992     _Event = 0 ;
5993      status = pthread_mutex_unlock(_mutex);
5994      assert_status(status == 0, status, "mutex_unlock");
5995     // Paranoia to ensure our locked and lock-free paths interact
5996     // correctly with each other.
5997     OrderAccess::fence();
5998   }
5999   guarantee (_Event >= 0, "invariant") ;
6000 }
6001 
6002 int os::PlatformEvent::park(jlong millis) {
6003   guarantee (_nParked == 0, "invariant") ;
6004 
6005   int v ;
6006   for (;;) {
6007       v = _Event ;
6008       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
6009   }
6010   guarantee (v >= 0, "invariant") ;
6011   if (v != 0) return OS_OK ;
6012 
6013   // We do this the hard way, by blocking the thread.
6014   // Consider enforcing a minimum timeout value.
6015   struct timespec abst;
6016   compute_abstime(&abst, millis);
6017 
6018   int ret = OS_TIMEOUT;
6019   int status = pthread_mutex_lock(_mutex);
6020   assert_status(status == 0, status, "mutex_lock");
6021   guarantee (_nParked == 0, "invariant") ;
6022   ++_nParked ;
6023 
6024   // Object.wait(timo) will return because of
6025   // (a) notification
6026   // (b) timeout
6027   // (c) thread.interrupt
6028   //
6029   // Thread.interrupt and object.notify{All} both call Event::set.
6030   // That is, we treat thread.interrupt as a special case of notification.
6031   // The underlying Solaris implementation, cond_timedwait, admits
6032   // spurious/premature wakeups, but the JLS/JVM spec prevents the
6033   // JVM from making those visible to Java code.  As such, we must
6034   // filter out spurious wakeups.  We assume all ETIME returns are valid.
6035   //
6036   // TODO: properly differentiate simultaneous notify+interrupt.
6037   // In that case, we should propagate the notify to another waiter.
6038 
6039   while (_Event < 0) {
6040     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
6041     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
6042       pthread_cond_destroy (_cond);
6043       pthread_cond_init (_cond, os::Linux::condAttr()) ;
6044     }
6045     assert_status(status == 0 || status == EINTR ||
6046                   status == ETIME || status == ETIMEDOUT,
6047                   status, "cond_timedwait");
6048     if (!FilterSpuriousWakeups) break ;                 // previous semantics
6049     if (status == ETIME || status == ETIMEDOUT) break ;
6050     // We consume and ignore EINTR and spurious wakeups.
6051   }
6052   --_nParked ;
6053   if (_Event >= 0) {
6054      ret = OS_OK;
6055   }
6056   _Event = 0 ;
6057   status = pthread_mutex_unlock(_mutex);
6058   assert_status(status == 0, status, "mutex_unlock");
6059   assert (_nParked == 0, "invariant") ;
6060   // Paranoia to ensure our locked and lock-free paths interact
6061   // correctly with each other.
6062   OrderAccess::fence();
6063   return ret;
6064 }
6065 
6066 void os::PlatformEvent::unpark() {
6067   // Transitions for _Event:
6068   //    0 :=> 1
6069   //    1 :=> 1
6070   //   -1 :=> either 0 or 1; must signal target thread
6071   //          That is, we can safely transition _Event from -1 to either
6072   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
6073   //          unpark() calls.
6074   // See also: "Semaphores in Plan 9" by Mullender & Cox
6075   //
6076   // Note: Forcing a transition from "-1" to "1" on an unpark() means
6077   // that it will take two back-to-back park() calls for the owning
6078   // thread to block. This has the benefit of forcing a spurious return
6079   // from the first park() call after an unpark() call which will help
6080   // shake out uses of park() and unpark() without condition variables.
6081 
6082   if (Atomic::xchg(1, &_Event) >= 0) return;
6083 
6084   // Wait for the thread associated with the event to vacate
6085   int status = pthread_mutex_lock(_mutex);
6086   assert_status(status == 0, status, "mutex_lock");
6087   int AnyWaiters = _nParked;
6088   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
6089   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
6090     AnyWaiters = 0;
6091     pthread_cond_signal(_cond);
6092   }
6093   status = pthread_mutex_unlock(_mutex);
6094   assert_status(status == 0, status, "mutex_unlock");
6095   if (AnyWaiters != 0) {
6096     status = pthread_cond_signal(_cond);
6097     assert_status(status == 0, status, "cond_signal");
6098   }
6099 
6100   // Note that we signal() _after dropping the lock for "immortal" Events.
6101   // This is safe and avoids a common class of  futile wakeups.  In rare
6102   // circumstances this can cause a thread to return prematurely from
6103   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
6104   // simply re-test the condition and re-park itself.
6105 }
6106 
6107 
6108 // JSR166
6109 // -------------------------------------------------------
6110 
6111 /*
6112  * The solaris and linux implementations of park/unpark are fairly
6113  * conservative for now, but can be improved. They currently use a
6114  * mutex/condvar pair, plus a a count.
6115  * Park decrements count if > 0, else does a condvar wait.  Unpark
6116  * sets count to 1 and signals condvar.  Only one thread ever waits
6117  * on the condvar. Contention seen when trying to park implies that someone
6118  * is unparking you, so don't wait. And spurious returns are fine, so there
6119  * is no need to track notifications.
6120  */
6121 
6122 /*
6123  * This code is common to linux and solaris and will be moved to a
6124  * common place in dolphin.
6125  *
6126  * The passed in time value is either a relative time in nanoseconds
6127  * or an absolute time in milliseconds. Either way it has to be unpacked
6128  * into suitable seconds and nanoseconds components and stored in the
6129  * given timespec structure.
6130  * Given time is a 64-bit value and the time_t used in the timespec is only
6131  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
6132  * overflow if times way in the future are given. Further on Solaris versions
6133  * prior to 10 there is a restriction (see cond_timedwait) that the specified
6134  * number of seconds, in abstime, is less than current_time  + 100,000,000.
6135  * As it will be 28 years before "now + 100000000" will overflow we can
6136  * ignore overflow and just impose a hard-limit on seconds using the value
6137  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
6138  * years from "now".
6139  */
6140 
6141 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
6142   assert (time > 0, "convertTime");
6143   time_t max_secs = 0;
6144 
6145   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
6146     struct timeval now;
6147     int status = gettimeofday(&now, NULL);
6148     assert(status == 0, "gettimeofday");
6149 
6150     max_secs = now.tv_sec + MAX_SECS;
6151 
6152     if (isAbsolute) {
6153       jlong secs = time / 1000;
6154       if (secs > max_secs) {
6155         absTime->tv_sec = max_secs;
6156       } else {
6157         absTime->tv_sec = secs;
6158       }
6159       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
6160     } else {
6161       jlong secs = time / NANOSECS_PER_SEC;
6162       if (secs >= MAX_SECS) {
6163         absTime->tv_sec = max_secs;
6164         absTime->tv_nsec = 0;
6165       } else {
6166         absTime->tv_sec = now.tv_sec + secs;
6167         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
6168         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
6169           absTime->tv_nsec -= NANOSECS_PER_SEC;
6170           ++absTime->tv_sec; // note: this must be <= max_secs
6171         }
6172       }
6173     }
6174   } else {
6175     // must be relative using monotonic clock
6176     struct timespec now;
6177     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
6178     assert_status(status == 0, status, "clock_gettime");
6179     max_secs = now.tv_sec + MAX_SECS;
6180     jlong secs = time / NANOSECS_PER_SEC;
6181     if (secs >= MAX_SECS) {
6182       absTime->tv_sec = max_secs;
6183       absTime->tv_nsec = 0;
6184     } else {
6185       absTime->tv_sec = now.tv_sec + secs;
6186       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
6187       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
6188         absTime->tv_nsec -= NANOSECS_PER_SEC;
6189         ++absTime->tv_sec; // note: this must be <= max_secs
6190       }
6191     }
6192   }
6193   assert(absTime->tv_sec >= 0, "tv_sec < 0");
6194   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
6195   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
6196   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
6197 }
6198 
6199 void Parker::park(bool isAbsolute, jlong time) {
6200   // Ideally we'd do something useful while spinning, such
6201   // as calling unpackTime().
6202 
6203   // Optional fast-path check:
6204   // Return immediately if a permit is available.
6205   // We depend on Atomic::xchg() having full barrier semantics
6206   // since we are doing a lock-free update to _counter.
6207   if (Atomic::xchg(0, &_counter) > 0) return;
6208 
6209   Thread* thread = Thread::current();
6210   assert(thread->is_Java_thread(), "Must be JavaThread");
6211   JavaThread *jt = (JavaThread *)thread;
6212 
6213   // Optional optimization -- avoid state transitions if there's an interrupt pending.
6214   // Check interrupt before trying to wait
6215   if (Thread::is_interrupted(thread, false)) {
6216     return;
6217   }
6218 
6219   // Next, demultiplex/decode time arguments
6220   timespec absTime;
6221   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
6222     return;
6223   }
6224   if (time > 0) {
6225     unpackTime(&absTime, isAbsolute, time);
6226   }
6227 
6228 
6229   // Enter safepoint region
6230   // Beware of deadlocks such as 6317397.
6231   // The per-thread Parker:: mutex is a classic leaf-lock.
6232   // In particular a thread must never block on the Threads_lock while
6233   // holding the Parker:: mutex.  If safepoints are pending both the
6234   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
6235   ThreadBlockInVM tbivm(jt);
6236 
6237   // Don't wait if cannot get lock since interference arises from
6238   // unblocking.  Also. check interrupt before trying wait
6239   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
6240     return;
6241   }
6242 
6243   int status ;
6244   if (_counter > 0)  { // no wait needed
6245     _counter = 0;
6246     status = pthread_mutex_unlock(_mutex);
6247     assert (status == 0, "invariant") ;
6248     // Paranoia to ensure our locked and lock-free paths interact
6249     // correctly with each other and Java-level accesses.
6250     OrderAccess::fence();
6251     return;
6252   }
6253 
6254 #ifdef ASSERT
6255   // Don't catch signals while blocked; let the running threads have the signals.
6256   // (This allows a debugger to break into the running thread.)
6257   sigset_t oldsigs;
6258   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
6259   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
6260 #endif
6261 
6262   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
6263   jt->set_suspend_equivalent();
6264   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
6265 
6266   assert(_cur_index == -1, "invariant");
6267   if (time == 0) {
6268     _cur_index = REL_INDEX; // arbitrary choice when not timed
6269     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
6270   } else {
6271     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
6272     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
6273     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
6274       pthread_cond_destroy (&_cond[_cur_index]) ;
6275       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
6276     }
6277   }
6278   _cur_index = -1;
6279   assert_status(status == 0 || status == EINTR ||
6280                 status == ETIME || status == ETIMEDOUT,
6281                 status, "cond_timedwait");
6282 
6283 #ifdef ASSERT
6284   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
6285 #endif
6286 
6287   _counter = 0 ;
6288   status = pthread_mutex_unlock(_mutex) ;
6289   assert_status(status == 0, status, "invariant") ;
6290   // Paranoia to ensure our locked and lock-free paths interact
6291   // correctly with each other and Java-level accesses.
6292   OrderAccess::fence();
6293 
6294   // If externally suspended while waiting, re-suspend
6295   if (jt->handle_special_suspend_equivalent_condition()) {
6296     jt->java_suspend_self();
6297   }
6298 }
6299 
6300 void Parker::unpark() {
6301   int s, status ;
6302   status = pthread_mutex_lock(_mutex);
6303   assert (status == 0, "invariant") ;
6304   s = _counter;
6305   _counter = 1;
6306   if (s < 1) {
6307     // thread might be parked
6308     if (_cur_index != -1) {
6309       // thread is definitely parked
6310       if (WorkAroundNPTLTimedWaitHang) {
6311         status = pthread_cond_signal (&_cond[_cur_index]);
6312         assert (status == 0, "invariant");
6313         status = pthread_mutex_unlock(_mutex);
6314         assert (status == 0, "invariant");
6315       } else {
6316         // must capture correct index before unlocking
6317         int index = _cur_index;
6318         status = pthread_mutex_unlock(_mutex);
6319         assert (status == 0, "invariant");
6320         status = pthread_cond_signal (&_cond[index]);
6321         assert (status == 0, "invariant");
6322       }
6323     } else {
6324       pthread_mutex_unlock(_mutex);
6325       assert (status == 0, "invariant") ;
6326     }
6327   } else {
6328     pthread_mutex_unlock(_mutex);
6329     assert (status == 0, "invariant") ;
6330   }
6331 }
6332 
6333 
6334 extern char** environ;
6335 
6336 // Run the specified command in a separate process. Return its exit value,
6337 // or -1 on failure (e.g. can't fork a new process).
6338 // Unlike system(), this function can be called from signal handler. It
6339 // doesn't block SIGINT et al.
6340 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
6341   const char * argv[4] = {"sh", "-c", cmd, NULL};
6342 
6343   pid_t pid ;
6344 
6345   if (use_vfork_if_available) {
6346     pid = vfork();
6347   } else {
6348     pid = fork();
6349   }
6350 
6351   if (pid < 0) {
6352     // fork failed
6353     return -1;
6354 
6355   } else if (pid == 0) {
6356     // child process
6357 
6358     execve("/bin/sh", (char* const*)argv, environ);
6359 
6360     // execve failed
6361     _exit(-1);
6362 
6363   } else  {
6364     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
6365     // care about the actual exit code, for now.
6366 
6367     int status;
6368 
6369     // Wait for the child process to exit.  This returns immediately if
6370     // the child has already exited. */
6371     while (waitpid(pid, &status, 0) < 0) {
6372         switch (errno) {
6373         case ECHILD: return 0;
6374         case EINTR: break;
6375         default: return -1;
6376         }
6377     }
6378 
6379     if (WIFEXITED(status)) {
6380        // The child exited normally; get its exit code.
6381        return WEXITSTATUS(status);
6382     } else if (WIFSIGNALED(status)) {
6383        // The child exited because of a signal
6384        // The best value to return is 0x80 + signal number,
6385        // because that is what all Unix shells do, and because
6386        // it allows callers to distinguish between process exit and
6387        // process death by signal.
6388        return 0x80 + WTERMSIG(status);
6389     } else {
6390        // Unknown exit code; pass it through
6391        return status;
6392     }
6393   }
6394 }
6395 
6396 // is_headless_jre()
6397 //
6398 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
6399 // in order to report if we are running in a headless jre
6400 //
6401 // Since JDK8 xawt/libmawt.so was moved into the same directory
6402 // as libawt.so, and renamed libawt_xawt.so
6403 //
6404 bool os::is_headless_jre() {
6405     struct stat statbuf;
6406     char buf[MAXPATHLEN];
6407     char libmawtpath[MAXPATHLEN];
6408     const char *xawtstr  = "/xawt/libmawt.so";
6409     const char *new_xawtstr = "/libawt_xawt.so";
6410     char *p;
6411 
6412     // Get path to libjvm.so
6413     os::jvm_path(buf, sizeof(buf));
6414 
6415     // Get rid of libjvm.so
6416     p = strrchr(buf, '/');
6417     if (p == NULL) return false;
6418     else *p = '\0';
6419 
6420     // Get rid of client or server
6421     p = strrchr(buf, '/');
6422     if (p == NULL) return false;
6423     else *p = '\0';
6424 
6425     // check xawt/libmawt.so
6426     strcpy(libmawtpath, buf);
6427     strcat(libmawtpath, xawtstr);
6428     if (::stat(libmawtpath, &statbuf) == 0) return false;
6429 
6430     // check libawt_xawt.so
6431     strcpy(libmawtpath, buf);
6432     strcat(libmawtpath, new_xawtstr);
6433     if (::stat(libmawtpath, &statbuf) == 0) return false;
6434 
6435     return true;
6436 }
6437 
6438 // Get the default path to the core file
6439 // Returns the length of the string
6440 int os::get_core_path(char* buffer, size_t bufferSize) {
6441   const char* p = get_current_directory(buffer, bufferSize);
6442 
6443   if (p == NULL) {
6444     assert(p != NULL, "failed to get current directory");
6445     return 0;
6446   }
6447 
6448   return strlen(buffer);
6449 }
6450 
6451 /////////////// Unit tests ///////////////
6452 
6453 #ifndef PRODUCT
6454 
6455 #define test_log(...) \
6456   do {\
6457     if (VerboseInternalVMTests) { \
6458       tty->print_cr(__VA_ARGS__); \
6459       tty->flush(); \
6460     }\
6461   } while (false)
6462 
6463 class TestReserveMemorySpecial : AllStatic {
6464  public:
6465   static void small_page_write(void* addr, size_t size) {
6466     size_t page_size = os::vm_page_size();
6467 
6468     char* end = (char*)addr + size;
6469     for (char* p = (char*)addr; p < end; p += page_size) {
6470       *p = 1;
6471     }
6472   }
6473 
6474   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6475     if (!UseHugeTLBFS) {
6476       return;
6477     }
6478 
6479     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6480 
6481     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6482 
6483     if (addr != NULL) {
6484       small_page_write(addr, size);
6485 
6486       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6487     }
6488   }
6489 
6490   static void test_reserve_memory_special_huge_tlbfs_only() {
6491     if (!UseHugeTLBFS) {
6492       return;
6493     }
6494 
6495     size_t lp = os::large_page_size();
6496 
6497     for (size_t size = lp; size <= lp * 10; size += lp) {
6498       test_reserve_memory_special_huge_tlbfs_only(size);
6499     }
6500   }
6501 
6502   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6503     size_t lp = os::large_page_size();
6504     size_t ag = os::vm_allocation_granularity();
6505 
6506     // sizes to test
6507     const size_t sizes[] = {
6508       lp, lp + ag, lp + lp / 2, lp * 2,
6509       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6510       lp * 10, lp * 10 + lp / 2
6511     };
6512     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6513 
6514     // For each size/alignment combination, we test three scenarios:
6515     // 1) with req_addr == NULL
6516     // 2) with a non-null req_addr at which we expect to successfully allocate
6517     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6518     //    expect the allocation to either fail or to ignore req_addr
6519 
6520     // Pre-allocate two areas; they shall be as large as the largest allocation
6521     //  and aligned to the largest alignment we will be testing.
6522     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6523     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6524       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6525       -1, 0);
6526     assert(mapping1 != MAP_FAILED, "should work");
6527 
6528     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6529       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6530       -1, 0);
6531     assert(mapping2 != MAP_FAILED, "should work");
6532 
6533     // Unmap the first mapping, but leave the second mapping intact: the first
6534     // mapping will serve as a value for a "good" req_addr (case 2). The second
6535     // mapping, still intact, as "bad" req_addr (case 3).
6536     ::munmap(mapping1, mapping_size);
6537 
6538     // Case 1
6539     test_log("%s, req_addr NULL:", __FUNCTION__);
6540     test_log("size            align           result");
6541 
6542     for (int i = 0; i < num_sizes; i++) {
6543       const size_t size = sizes[i];
6544       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6545         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6546         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6547             size, alignment, p, (p != NULL ? "" : "(failed)"));
6548         if (p != NULL) {
6549           assert(is_ptr_aligned(p, alignment), "must be");
6550           small_page_write(p, size);
6551           os::Linux::release_memory_special_huge_tlbfs(p, size);
6552         }
6553       }
6554     }
6555 
6556     // Case 2
6557     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6558     test_log("size            align           req_addr         result");
6559 
6560     for (int i = 0; i < num_sizes; i++) {
6561       const size_t size = sizes[i];
6562       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6563         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6564         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6565         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6566             size, alignment, req_addr, p,
6567             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6568         if (p != NULL) {
6569           assert(p == req_addr, "must be");
6570           small_page_write(p, size);
6571           os::Linux::release_memory_special_huge_tlbfs(p, size);
6572         }
6573       }
6574     }
6575 
6576     // Case 3
6577     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6578     test_log("size            align           req_addr         result");
6579 
6580     for (int i = 0; i < num_sizes; i++) {
6581       const size_t size = sizes[i];
6582       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6583         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6584         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6585         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6586             size, alignment, req_addr, p,
6587             ((p != NULL ? "" : "(failed)")));
6588         // as the area around req_addr contains already existing mappings, the API should always
6589         // return NULL (as per contract, it cannot return another address)
6590         assert(p == NULL, "must be");
6591       }
6592     }
6593 
6594     ::munmap(mapping2, mapping_size);
6595 
6596   }
6597 
6598   static void test_reserve_memory_special_huge_tlbfs() {
6599     if (!UseHugeTLBFS) {
6600       return;
6601     }
6602 
6603     test_reserve_memory_special_huge_tlbfs_only();
6604     test_reserve_memory_special_huge_tlbfs_mixed();
6605   }
6606 
6607   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6608     if (!UseSHM) {
6609       return;
6610     }
6611 
6612     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6613 
6614     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6615 
6616     if (addr != NULL) {
6617       assert(is_ptr_aligned(addr, alignment), "Check");
6618       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6619 
6620       small_page_write(addr, size);
6621 
6622       os::Linux::release_memory_special_shm(addr, size);
6623     }
6624   }
6625 
6626   static void test_reserve_memory_special_shm() {
6627     size_t lp = os::large_page_size();
6628     size_t ag = os::vm_allocation_granularity();
6629 
6630     for (size_t size = ag; size < lp * 3; size += ag) {
6631       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6632         test_reserve_memory_special_shm(size, alignment);
6633       }
6634     }
6635   }
6636 
6637   static void test() {
6638     test_reserve_memory_special_huge_tlbfs();
6639     test_reserve_memory_special_shm();
6640   }
6641 };
6642 
6643 void TestReserveMemorySpecial_test() {
6644   TestReserveMemorySpecial::test();
6645 }
6646 
6647 #endif