1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_linux.hpp"
  40 #include "osContainer_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/extendedPC.hpp"
  46 #include "runtime/globals.hpp"
  47 #include "runtime/interfaceSupport.hpp"
  48 #include "runtime/init.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "runtime/objectMonitor.hpp"
  53 #include "runtime/orderAccess.inline.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "services/attachListener.hpp"
  63 #include "services/memTracker.hpp"
  64 #include "services/runtimeService.hpp"
  65 #include "utilities/decoder.hpp"
  66 #include "utilities/defaultStream.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/elfFile.hpp"
  69 #include "utilities/growableArray.hpp"
  70 #include "utilities/vmError.hpp"
  71 
  72 // put OS-includes here
  73 # include <sys/types.h>
  74 # include <sys/mman.h>
  75 # include <sys/stat.h>
  76 # include <sys/select.h>
  77 # include <pthread.h>
  78 # include <signal.h>
  79 # include <errno.h>
  80 # include <dlfcn.h>
  81 # include <stdio.h>
  82 # include <unistd.h>
  83 # include <sys/resource.h>
  84 # include <pthread.h>
  85 # include <sys/stat.h>
  86 # include <sys/time.h>
  87 # include <sys/times.h>
  88 # include <sys/utsname.h>
  89 # include <sys/socket.h>
  90 # include <sys/wait.h>
  91 # include <pwd.h>
  92 # include <poll.h>
  93 # include <semaphore.h>
  94 # include <fcntl.h>
  95 # include <string.h>
  96 # include <syscall.h>
  97 # include <sys/sysinfo.h>
  98 # include <gnu/libc-version.h>
  99 # include <sys/ipc.h>
 100 # include <sys/shm.h>
 101 # include <link.h>
 102 # include <stdint.h>
 103 # include <inttypes.h>
 104 # include <sys/ioctl.h>
 105 
 106 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 107 
 108 #ifndef _GNU_SOURCE
 109   #define _GNU_SOURCE
 110   #include <sched.h>
 111   #undef _GNU_SOURCE
 112 #else
 113   #include <sched.h>
 114 #endif
 115 
 116 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 117 // getrusage() is prepared to handle the associated failure.
 118 #ifndef RUSAGE_THREAD
 119 #define RUSAGE_THREAD   (1)               /* only the calling thread */
 120 #endif
 121 
 122 #define MAX_PATH    (2 * K)
 123 
 124 #define MAX_SECS 100000000
 125 
 126 // for timer info max values which include all bits
 127 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 128 
 129 #define LARGEPAGES_BIT (1 << 6)
 130 ////////////////////////////////////////////////////////////////////////////////
 131 // global variables
 132 julong os::Linux::_physical_memory = 0;
 133 
 134 address   os::Linux::_initial_thread_stack_bottom = NULL;
 135 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 136 
 137 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 138 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 139 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 140 Mutex* os::Linux::_createThread_lock = NULL;
 141 pthread_t os::Linux::_main_thread;
 142 int os::Linux::_page_size = -1;
 143 const int os::Linux::_vm_default_page_size = (8 * K);
 144 bool os::Linux::_is_floating_stack = false;
 145 bool os::Linux::_is_NPTL = false;
 146 bool os::Linux::_supports_fast_thread_cpu_time = false;
 147 const char * os::Linux::_glibc_version = NULL;
 148 const char * os::Linux::_libpthread_version = NULL;
 149 pthread_condattr_t os::Linux::_condattr[1];
 150 
 151 static jlong initial_time_count=0;
 152 
 153 static int clock_tics_per_sec = 100;
 154 
 155 // For diagnostics to print a message once. see run_periodic_checks
 156 static sigset_t check_signal_done;
 157 static bool check_signals = true;
 158 
 159 static pid_t _initial_pid = 0;
 160 
 161 /* Signal number used to suspend/resume a thread */
 162 
 163 /* do not use any signal number less than SIGSEGV, see 4355769 */
 164 static int SR_signum = SIGUSR2;
 165 sigset_t SR_sigset;
 166 
 167 /* Used to protect dlsym() calls */
 168 static pthread_mutex_t dl_mutex;
 169 
 170 // Declarations
 171 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 172 
 173 // utility functions
 174 
 175 static int SR_initialize();
 176 
 177 julong os::available_memory() {
 178   return Linux::available_memory();
 179 }
 180 
 181 julong os::Linux::available_memory() {
 182   // values in struct sysinfo are "unsigned long"
 183   struct sysinfo si;
 184   julong avail_mem;
 185 
 186   if (OSContainer::is_containerized()) {
 187     jlong mem_limit, mem_usage;
 188     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 189       if (PrintContainerInfo) {
 190         tty->print_cr("container memory limit %s: " JLONG_FORMAT ", using host value",
 191                        mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 192       }
 193     }
 194 
 195     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 196       if (PrintContainerInfo) {
 197         tty->print_cr("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 198       }
 199     }
 200 
 201     if (mem_limit > 0 && mem_usage > 0 ) {
 202       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 203       if (PrintContainerInfo) {
 204         tty->print_cr("available container memory: " JULONG_FORMAT, avail_mem);
 205       }
 206       return avail_mem;
 207     }
 208   }
 209 
 210   sysinfo(&si);
 211   avail_mem = (julong)si.freeram * si.mem_unit;
 212   if (Verbose) {
 213     tty->print_cr("available memory: " JULONG_FORMAT, avail_mem);
 214   }
 215   return avail_mem;
 216 }
 217 
 218 julong os::physical_memory() {
 219   jlong phys_mem = 0;
 220   if (OSContainer::is_containerized()) {
 221     jlong mem_limit;
 222     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 223       if (PrintContainerInfo) {
 224         tty->print_cr("total container memory: " JLONG_FORMAT, mem_limit);
 225       }
 226       return mem_limit;
 227     }
 228 
 229     if (PrintContainerInfo) {
 230       tty->print_cr("container memory limit %s: " JLONG_FORMAT ", using host value",
 231                      mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 232     }
 233   }
 234 
 235   phys_mem = Linux::physical_memory();
 236   if (Verbose) {
 237     tty->print_cr("total system memory: " JLONG_FORMAT, phys_mem);
 238   }
 239   return phys_mem;
 240 }
 241 
 242 ////////////////////////////////////////////////////////////////////////////////
 243 // environment support
 244 
 245 bool os::getenv(const char* name, char* buf, int len) {
 246   const char* val = ::getenv(name);
 247   if (val != NULL && strlen(val) < (size_t)len) {
 248     strcpy(buf, val);
 249     return true;
 250   }
 251   if (len > 0) buf[0] = 0;  // return a null string
 252   return false;
 253 }
 254 
 255 
 256 // Return true if user is running as root.
 257 
 258 bool os::have_special_privileges() {
 259   static bool init = false;
 260   static bool privileges = false;
 261   if (!init) {
 262     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 263     init = true;
 264   }
 265   return privileges;
 266 }
 267 
 268 
 269 #ifndef SYS_gettid
 270 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 271   #ifdef __ia64__
 272     #define SYS_gettid 1105
 273   #else
 274     #ifdef __i386__
 275       #define SYS_gettid 224
 276     #else
 277       #ifdef __amd64__
 278         #define SYS_gettid 186
 279       #else
 280         #ifdef __sparc__
 281           #define SYS_gettid 143
 282         #else
 283           #error define gettid for the arch
 284         #endif
 285       #endif
 286     #endif
 287   #endif
 288 #endif
 289 
 290 // Cpu architecture string
 291 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 292 
 293 // pid_t gettid()
 294 //
 295 // Returns the kernel thread id of the currently running thread. Kernel
 296 // thread id is used to access /proc.
 297 //
 298 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 299 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 300 //
 301 pid_t os::Linux::gettid() {
 302   int rslt = syscall(SYS_gettid);
 303   if (rslt == -1) {
 304      // old kernel, no NPTL support
 305      return getpid();
 306   } else {
 307      return (pid_t)rslt;
 308   }
 309 }
 310 
 311 // Most versions of linux have a bug where the number of processors are
 312 // determined by looking at the /proc file system.  In a chroot environment,
 313 // the system call returns 1.  This causes the VM to act as if it is
 314 // a single processor and elide locking (see is_MP() call).
 315 static bool unsafe_chroot_detected = false;
 316 static const char *unstable_chroot_error = "/proc file system not found.\n"
 317                      "Java may be unstable running multithreaded in a chroot "
 318                      "environment on Linux when /proc filesystem is not mounted.";
 319 
 320 void os::Linux::initialize_system_info() {
 321   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 322   if (processor_count() == 1) {
 323     pid_t pid = os::Linux::gettid();
 324     char fname[32];
 325     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 326     FILE *fp = fopen(fname, "r");
 327     if (fp == NULL) {
 328       unsafe_chroot_detected = true;
 329     } else {
 330       fclose(fp);
 331     }
 332   }
 333   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 334   assert(processor_count() > 0, "linux error");
 335 }
 336 
 337 void os::init_system_properties_values() {
 338   // The next steps are taken in the product version:
 339   //
 340   // Obtain the JAVA_HOME value from the location of libjvm.so.
 341   // This library should be located at:
 342   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 343   //
 344   // If "/jre/lib/" appears at the right place in the path, then we
 345   // assume libjvm.so is installed in a JDK and we use this path.
 346   //
 347   // Otherwise exit with message: "Could not create the Java virtual machine."
 348   //
 349   // The following extra steps are taken in the debugging version:
 350   //
 351   // If "/jre/lib/" does NOT appear at the right place in the path
 352   // instead of exit check for $JAVA_HOME environment variable.
 353   //
 354   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 355   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 356   // it looks like libjvm.so is installed there
 357   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 358   //
 359   // Otherwise exit.
 360   //
 361   // Important note: if the location of libjvm.so changes this
 362   // code needs to be changed accordingly.
 363 
 364 // See ld(1):
 365 //      The linker uses the following search paths to locate required
 366 //      shared libraries:
 367 //        1: ...
 368 //        ...
 369 //        7: The default directories, normally /lib and /usr/lib.
 370 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 371 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 372 #else
 373 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 374 #endif
 375 
 376 // Base path of extensions installed on the system.
 377 #define SYS_EXT_DIR     "/usr/java/packages"
 378 #define EXTENSIONS_DIR  "/lib/ext"
 379 #define ENDORSED_DIR    "/lib/endorsed"
 380 
 381   // Buffer that fits several sprintfs.
 382   // Note that the space for the colon and the trailing null are provided
 383   // by the nulls included by the sizeof operator.
 384   const size_t bufsize =
 385     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 386          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
 387          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
 388   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 389 
 390   // sysclasspath, java_home, dll_dir
 391   {
 392     char *pslash;
 393     os::jvm_path(buf, bufsize);
 394 
 395     // Found the full path to libjvm.so.
 396     // Now cut the path to <java_home>/jre if we can.
 397     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 398     pslash = strrchr(buf, '/');
 399     if (pslash != NULL) {
 400       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 401     }
 402     Arguments::set_dll_dir(buf);
 403 
 404     if (pslash != NULL) {
 405       pslash = strrchr(buf, '/');
 406       if (pslash != NULL) {
 407         *pslash = '\0';          // Get rid of /<arch>.
 408         pslash = strrchr(buf, '/');
 409         if (pslash != NULL) {
 410           *pslash = '\0';        // Get rid of /lib.
 411         }
 412       }
 413     }
 414     Arguments::set_java_home(buf);
 415     set_boot_path('/', ':');
 416   }
 417 
 418   // Where to look for native libraries.
 419   //
 420   // Note: Due to a legacy implementation, most of the library path
 421   // is set in the launcher. This was to accomodate linking restrictions
 422   // on legacy Linux implementations (which are no longer supported).
 423   // Eventually, all the library path setting will be done here.
 424   //
 425   // However, to prevent the proliferation of improperly built native
 426   // libraries, the new path component /usr/java/packages is added here.
 427   // Eventually, all the library path setting will be done here.
 428   {
 429     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 430     // should always exist (until the legacy problem cited above is
 431     // addressed).
 432     const char *v = ::getenv("LD_LIBRARY_PATH");
 433     const char *v_colon = ":";
 434     if (v == NULL) { v = ""; v_colon = ""; }
 435     // That's +1 for the colon and +1 for the trailing '\0'.
 436     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 437                                                      strlen(v) + 1 +
 438                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 439                                                      mtInternal);
 440     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 441     Arguments::set_library_path(ld_library_path);
 442     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
 443   }
 444 
 445   // Extensions directories.
 446   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 447   Arguments::set_ext_dirs(buf);
 448 
 449   // Endorsed standards default directory.
 450   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 451   Arguments::set_endorsed_dirs(buf);
 452 
 453   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
 454 
 455 #undef DEFAULT_LIBPATH
 456 #undef SYS_EXT_DIR
 457 #undef EXTENSIONS_DIR
 458 #undef ENDORSED_DIR
 459 }
 460 
 461 ////////////////////////////////////////////////////////////////////////////////
 462 // breakpoint support
 463 
 464 void os::breakpoint() {
 465   BREAKPOINT;
 466 }
 467 
 468 extern "C" void breakpoint() {
 469   // use debugger to set breakpoint here
 470 }
 471 
 472 ////////////////////////////////////////////////////////////////////////////////
 473 // signal support
 474 
 475 debug_only(static bool signal_sets_initialized = false);
 476 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 477 
 478 bool os::Linux::is_sig_ignored(int sig) {
 479       struct sigaction oact;
 480       sigaction(sig, (struct sigaction*)NULL, &oact);
 481       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 482                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 483       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 484            return true;
 485       else
 486            return false;
 487 }
 488 
 489 void os::Linux::signal_sets_init() {
 490   // Should also have an assertion stating we are still single-threaded.
 491   assert(!signal_sets_initialized, "Already initialized");
 492   // Fill in signals that are necessarily unblocked for all threads in
 493   // the VM. Currently, we unblock the following signals:
 494   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 495   //                         by -Xrs (=ReduceSignalUsage));
 496   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 497   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 498   // the dispositions or masks wrt these signals.
 499   // Programs embedding the VM that want to use the above signals for their
 500   // own purposes must, at this time, use the "-Xrs" option to prevent
 501   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 502   // (See bug 4345157, and other related bugs).
 503   // In reality, though, unblocking these signals is really a nop, since
 504   // these signals are not blocked by default.
 505   sigemptyset(&unblocked_sigs);
 506   sigemptyset(&allowdebug_blocked_sigs);
 507   sigaddset(&unblocked_sigs, SIGILL);
 508   sigaddset(&unblocked_sigs, SIGSEGV);
 509   sigaddset(&unblocked_sigs, SIGBUS);
 510   sigaddset(&unblocked_sigs, SIGFPE);
 511 #if defined(PPC64)
 512   sigaddset(&unblocked_sigs, SIGTRAP);
 513 #endif
 514   sigaddset(&unblocked_sigs, SR_signum);
 515 
 516   if (!ReduceSignalUsage) {
 517    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 518       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 519       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 520    }
 521    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 522       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 523       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 524    }
 525    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 526       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 527       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 528    }
 529   }
 530   // Fill in signals that are blocked by all but the VM thread.
 531   sigemptyset(&vm_sigs);
 532   if (!ReduceSignalUsage)
 533     sigaddset(&vm_sigs, BREAK_SIGNAL);
 534   debug_only(signal_sets_initialized = true);
 535 
 536 }
 537 
 538 // These are signals that are unblocked while a thread is running Java.
 539 // (For some reason, they get blocked by default.)
 540 sigset_t* os::Linux::unblocked_signals() {
 541   assert(signal_sets_initialized, "Not initialized");
 542   return &unblocked_sigs;
 543 }
 544 
 545 // These are the signals that are blocked while a (non-VM) thread is
 546 // running Java. Only the VM thread handles these signals.
 547 sigset_t* os::Linux::vm_signals() {
 548   assert(signal_sets_initialized, "Not initialized");
 549   return &vm_sigs;
 550 }
 551 
 552 // These are signals that are blocked during cond_wait to allow debugger in
 553 sigset_t* os::Linux::allowdebug_blocked_signals() {
 554   assert(signal_sets_initialized, "Not initialized");
 555   return &allowdebug_blocked_sigs;
 556 }
 557 
 558 void os::Linux::hotspot_sigmask(Thread* thread) {
 559 
 560   //Save caller's signal mask before setting VM signal mask
 561   sigset_t caller_sigmask;
 562   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 563 
 564   OSThread* osthread = thread->osthread();
 565   osthread->set_caller_sigmask(caller_sigmask);
 566 
 567   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 568 
 569   if (!ReduceSignalUsage) {
 570     if (thread->is_VM_thread()) {
 571       // Only the VM thread handles BREAK_SIGNAL ...
 572       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 573     } else {
 574       // ... all other threads block BREAK_SIGNAL
 575       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 576     }
 577   }
 578 }
 579 
 580 //////////////////////////////////////////////////////////////////////////////
 581 // detecting pthread library
 582 
 583 void os::Linux::libpthread_init() {
 584   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 585   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 586   // generic name for earlier versions.
 587   // Define macros here so we can build HotSpot on old systems.
 588 # ifndef _CS_GNU_LIBC_VERSION
 589 # define _CS_GNU_LIBC_VERSION 2
 590 # endif
 591 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 592 # define _CS_GNU_LIBPTHREAD_VERSION 3
 593 # endif
 594 
 595   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 596   if (n > 0) {
 597      char *str = (char *)malloc(n, mtInternal);
 598      confstr(_CS_GNU_LIBC_VERSION, str, n);
 599      os::Linux::set_glibc_version(str);
 600   } else {
 601      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 602      static char _gnu_libc_version[32];
 603      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 604               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 605      os::Linux::set_glibc_version(_gnu_libc_version);
 606   }
 607 
 608   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 609   if (n > 0) {
 610      char *str = (char *)malloc(n, mtInternal);
 611      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 612      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 613      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 614      // is the case. LinuxThreads has a hard limit on max number of threads.
 615      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 616      // On the other hand, NPTL does not have such a limit, sysconf()
 617      // will return -1 and errno is not changed. Check if it is really NPTL.
 618      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 619          strstr(str, "NPTL") &&
 620          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 621        free(str);
 622        os::Linux::set_libpthread_version("linuxthreads");
 623      } else {
 624        os::Linux::set_libpthread_version(str);
 625      }
 626   } else {
 627     // glibc before 2.3.2 only has LinuxThreads.
 628     os::Linux::set_libpthread_version("linuxthreads");
 629   }
 630 
 631   if (strstr(libpthread_version(), "NPTL")) {
 632      os::Linux::set_is_NPTL();
 633   } else {
 634      os::Linux::set_is_LinuxThreads();
 635   }
 636 
 637   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 638   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 639   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 640      os::Linux::set_is_floating_stack();
 641   }
 642 }
 643 
 644 /////////////////////////////////////////////////////////////////////////////
 645 // thread stack
 646 
 647 // Force Linux kernel to expand current thread stack. If "bottom" is close
 648 // to the stack guard, caller should block all signals.
 649 //
 650 // MAP_GROWSDOWN:
 651 //   A special mmap() flag that is used to implement thread stacks. It tells
 652 //   kernel that the memory region should extend downwards when needed. This
 653 //   allows early versions of LinuxThreads to only mmap the first few pages
 654 //   when creating a new thread. Linux kernel will automatically expand thread
 655 //   stack as needed (on page faults).
 656 //
 657 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 658 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 659 //   region, it's hard to tell if the fault is due to a legitimate stack
 660 //   access or because of reading/writing non-exist memory (e.g. buffer
 661 //   overrun). As a rule, if the fault happens below current stack pointer,
 662 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 663 //   application (see Linux kernel fault.c).
 664 //
 665 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 666 //   stack overflow detection.
 667 //
 668 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 669 //   not use this flag. However, the stack of initial thread is not created
 670 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 671 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 672 //   and then attach the thread to JVM.
 673 //
 674 // To get around the problem and allow stack banging on Linux, we need to
 675 // manually expand thread stack after receiving the SIGSEGV.
 676 //
 677 // There are two ways to expand thread stack to address "bottom", we used
 678 // both of them in JVM before 1.5:
 679 //   1. adjust stack pointer first so that it is below "bottom", and then
 680 //      touch "bottom"
 681 //   2. mmap() the page in question
 682 //
 683 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 684 // if current sp is already near the lower end of page 101, and we need to
 685 // call mmap() to map page 100, it is possible that part of the mmap() frame
 686 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 687 // That will destroy the mmap() frame and cause VM to crash.
 688 //
 689 // The following code works by adjusting sp first, then accessing the "bottom"
 690 // page to force a page fault. Linux kernel will then automatically expand the
 691 // stack mapping.
 692 //
 693 // _expand_stack_to() assumes its frame size is less than page size, which
 694 // should always be true if the function is not inlined.
 695 
 696 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 697 #define NOINLINE
 698 #else
 699 #define NOINLINE __attribute__ ((noinline))
 700 #endif
 701 
 702 static void _expand_stack_to(address bottom) NOINLINE;
 703 
 704 static void _expand_stack_to(address bottom) {
 705   address sp;
 706   size_t size;
 707   volatile char *p;
 708 
 709   // Adjust bottom to point to the largest address within the same page, it
 710   // gives us a one-page buffer if alloca() allocates slightly more memory.
 711   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 712   bottom += os::Linux::page_size() - 1;
 713 
 714   // sp might be slightly above current stack pointer; if that's the case, we
 715   // will alloca() a little more space than necessary, which is OK. Don't use
 716   // os::current_stack_pointer(), as its result can be slightly below current
 717   // stack pointer, causing us to not alloca enough to reach "bottom".
 718   sp = (address)&sp;
 719 
 720   if (sp > bottom) {
 721     size = sp - bottom;
 722     p = (volatile char *)alloca(size);
 723     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 724     p[0] = '\0';
 725   }
 726 }
 727 
 728 void os::Linux::expand_stack_to(address bottom) {
 729   _expand_stack_to(bottom);
 730 }
 731 
 732 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 733   assert(t!=NULL, "just checking");
 734   assert(t->osthread()->expanding_stack(), "expand should be set");
 735   assert(t->stack_base() != NULL, "stack_base was not initialized");
 736 
 737   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 738     sigset_t mask_all, old_sigset;
 739     sigfillset(&mask_all);
 740     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 741     _expand_stack_to(addr);
 742     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 743     return true;
 744   }
 745   return false;
 746 }
 747 
 748 //////////////////////////////////////////////////////////////////////////////
 749 // create new thread
 750 
 751 static address highest_vm_reserved_address();
 752 
 753 // check if it's safe to start a new thread
 754 static bool _thread_safety_check(Thread* thread) {
 755   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 756     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 757     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 758     //   allocated (MAP_FIXED) from high address space. Every thread stack
 759     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 760     //   it to other values if they rebuild LinuxThreads).
 761     //
 762     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 763     // the memory region has already been mmap'ed. That means if we have too
 764     // many threads and/or very large heap, eventually thread stack will
 765     // collide with heap.
 766     //
 767     // Here we try to prevent heap/stack collision by comparing current
 768     // stack bottom with the highest address that has been mmap'ed by JVM
 769     // plus a safety margin for memory maps created by native code.
 770     //
 771     // This feature can be disabled by setting ThreadSafetyMargin to 0
 772     //
 773     if (ThreadSafetyMargin > 0) {
 774       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 775 
 776       // not safe if our stack extends below the safety margin
 777       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 778     } else {
 779       return true;
 780     }
 781   } else {
 782     // Floating stack LinuxThreads or NPTL:
 783     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 784     //   there's not enough space left, pthread_create() will fail. If we come
 785     //   here, that means enough space has been reserved for stack.
 786     return true;
 787   }
 788 }
 789 
 790 // Thread start routine for all newly created threads
 791 static void *java_start(Thread *thread) {
 792   // Try to randomize the cache line index of hot stack frames.
 793   // This helps when threads of the same stack traces evict each other's
 794   // cache lines. The threads can be either from the same JVM instance, or
 795   // from different JVM instances. The benefit is especially true for
 796   // processors with hyperthreading technology.
 797   static int counter = 0;
 798   int pid = os::current_process_id();
 799   alloca(((pid ^ counter++) & 7) * 128);
 800 
 801   ThreadLocalStorage::set_thread(thread);
 802 
 803   OSThread* osthread = thread->osthread();
 804   Monitor* sync = osthread->startThread_lock();
 805 
 806   // non floating stack LinuxThreads needs extra check, see above
 807   if (!_thread_safety_check(thread)) {
 808     // notify parent thread
 809     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 810     osthread->set_state(ZOMBIE);
 811     sync->notify_all();
 812     return NULL;
 813   }
 814 
 815   // thread_id is kernel thread id (similar to Solaris LWP id)
 816   osthread->set_thread_id(os::Linux::gettid());
 817 
 818   if (UseNUMA) {
 819     int lgrp_id = os::numa_get_group_id();
 820     if (lgrp_id != -1) {
 821       thread->set_lgrp_id(lgrp_id);
 822     }
 823   }
 824   // initialize signal mask for this thread
 825   os::Linux::hotspot_sigmask(thread);
 826 
 827   // initialize floating point control register
 828   os::Linux::init_thread_fpu_state();
 829 
 830   // handshaking with parent thread
 831   {
 832     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 833 
 834     // notify parent thread
 835     osthread->set_state(INITIALIZED);
 836     sync->notify_all();
 837 
 838     // wait until os::start_thread()
 839     while (osthread->get_state() == INITIALIZED) {
 840       sync->wait(Mutex::_no_safepoint_check_flag);
 841     }
 842   }
 843 
 844   // call one more level start routine
 845   thread->run();
 846 
 847   return 0;
 848 }
 849 
 850 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 851   assert(thread->osthread() == NULL, "caller responsible");
 852 
 853   // Allocate the OSThread object
 854   OSThread* osthread = new OSThread(NULL, NULL);
 855   if (osthread == NULL) {
 856     return false;
 857   }
 858 
 859   // set the correct thread state
 860   osthread->set_thread_type(thr_type);
 861 
 862   // Initial state is ALLOCATED but not INITIALIZED
 863   osthread->set_state(ALLOCATED);
 864 
 865   thread->set_osthread(osthread);
 866 
 867   // init thread attributes
 868   pthread_attr_t attr;
 869   pthread_attr_init(&attr);
 870   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 871 
 872   // stack size
 873   if (os::Linux::supports_variable_stack_size()) {
 874     // calculate stack size if it's not specified by caller
 875     if (stack_size == 0) {
 876       stack_size = os::Linux::default_stack_size(thr_type);
 877 
 878       switch (thr_type) {
 879       case os::java_thread:
 880         // Java threads use ThreadStackSize which default value can be
 881         // changed with the flag -Xss
 882         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 883         stack_size = JavaThread::stack_size_at_create();
 884         break;
 885       case os::compiler_thread:
 886         if (CompilerThreadStackSize > 0) {
 887           stack_size = (size_t)(CompilerThreadStackSize * K);
 888           break;
 889         } // else fall through:
 890           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 891       case os::vm_thread:
 892       case os::pgc_thread:
 893       case os::cgc_thread:
 894       case os::watcher_thread:
 895         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 896         break;
 897       }
 898     }
 899 
 900     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 901     pthread_attr_setstacksize(&attr, stack_size);
 902   } else {
 903     // let pthread_create() pick the default value.
 904   }
 905 
 906   // glibc guard page
 907   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 908 
 909   ThreadState state;
 910 
 911   {
 912     // Serialize thread creation if we are running with fixed stack LinuxThreads
 913     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 914     if (lock) {
 915       os::Linux::createThread_lock()->lock_without_safepoint_check();
 916     }
 917 
 918     pthread_t tid;
 919     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 920 
 921     pthread_attr_destroy(&attr);
 922 
 923     if (ret != 0) {
 924       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 925         perror("pthread_create()");
 926       }
 927       // Need to clean up stuff we've allocated so far
 928       thread->set_osthread(NULL);
 929       delete osthread;
 930       if (lock) os::Linux::createThread_lock()->unlock();
 931       return false;
 932     }
 933 
 934     // Store pthread info into the OSThread
 935     osthread->set_pthread_id(tid);
 936 
 937     // Wait until child thread is either initialized or aborted
 938     {
 939       Monitor* sync_with_child = osthread->startThread_lock();
 940       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 941       while ((state = osthread->get_state()) == ALLOCATED) {
 942         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 943       }
 944     }
 945 
 946     if (lock) {
 947       os::Linux::createThread_lock()->unlock();
 948     }
 949   }
 950 
 951   // Aborted due to thread limit being reached
 952   if (state == ZOMBIE) {
 953       thread->set_osthread(NULL);
 954       delete osthread;
 955       return false;
 956   }
 957 
 958   // The thread is returned suspended (in state INITIALIZED),
 959   // and is started higher up in the call chain
 960   assert(state == INITIALIZED, "race condition");
 961   return true;
 962 }
 963 
 964 /////////////////////////////////////////////////////////////////////////////
 965 // attach existing thread
 966 
 967 // bootstrap the main thread
 968 bool os::create_main_thread(JavaThread* thread) {
 969   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 970   return create_attached_thread(thread);
 971 }
 972 
 973 bool os::create_attached_thread(JavaThread* thread) {
 974 #ifdef ASSERT
 975     thread->verify_not_published();
 976 #endif
 977 
 978   // Allocate the OSThread object
 979   OSThread* osthread = new OSThread(NULL, NULL);
 980 
 981   if (osthread == NULL) {
 982     return false;
 983   }
 984 
 985   // Store pthread info into the OSThread
 986   osthread->set_thread_id(os::Linux::gettid());
 987   osthread->set_pthread_id(::pthread_self());
 988 
 989   // initialize floating point control register
 990   os::Linux::init_thread_fpu_state();
 991 
 992   // Initial thread state is RUNNABLE
 993   osthread->set_state(RUNNABLE);
 994 
 995   thread->set_osthread(osthread);
 996 
 997   if (UseNUMA) {
 998     int lgrp_id = os::numa_get_group_id();
 999     if (lgrp_id != -1) {
1000       thread->set_lgrp_id(lgrp_id);
1001     }
1002   }
1003 
1004   if (os::is_primordial_thread()) {
1005     // If current thread is primordial thread, its stack is mapped on demand,
1006     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1007     // the entire stack region to avoid SEGV in stack banging.
1008     // It is also useful to get around the heap-stack-gap problem on SuSE
1009     // kernel (see 4821821 for details). We first expand stack to the top
1010     // of yellow zone, then enable stack yellow zone (order is significant,
1011     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1012     // is no gap between the last two virtual memory regions.
1013 
1014     JavaThread *jt = (JavaThread *)thread;
1015     address addr = jt->stack_yellow_zone_base();
1016     assert(addr != NULL, "initialization problem?");
1017     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1018 
1019     osthread->set_expanding_stack();
1020     os::Linux::manually_expand_stack(jt, addr);
1021     osthread->clear_expanding_stack();
1022   }
1023 
1024   // initialize signal mask for this thread
1025   // and save the caller's signal mask
1026   os::Linux::hotspot_sigmask(thread);
1027 
1028   return true;
1029 }
1030 
1031 void os::pd_start_thread(Thread* thread) {
1032   OSThread * osthread = thread->osthread();
1033   assert(osthread->get_state() != INITIALIZED, "just checking");
1034   Monitor* sync_with_child = osthread->startThread_lock();
1035   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1036   sync_with_child->notify();
1037 }
1038 
1039 // Free Linux resources related to the OSThread
1040 void os::free_thread(OSThread* osthread) {
1041   assert(osthread != NULL, "osthread not set");
1042 
1043   if (Thread::current()->osthread() == osthread) {
1044     // Restore caller's signal mask
1045     sigset_t sigmask = osthread->caller_sigmask();
1046     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1047    }
1048 
1049   delete osthread;
1050 }
1051 
1052 //////////////////////////////////////////////////////////////////////////////
1053 // thread local storage
1054 
1055 // Restore the thread pointer if the destructor is called. This is in case
1056 // someone from JNI code sets up a destructor with pthread_key_create to run
1057 // detachCurrentThread on thread death. Unless we restore the thread pointer we
1058 // will hang or crash. When detachCurrentThread is called the key will be set
1059 // to null and we will not be called again. If detachCurrentThread is never
1060 // called we could loop forever depending on the pthread implementation.
1061 static void restore_thread_pointer(void* p) {
1062   Thread* thread = (Thread*) p;
1063   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1064 }
1065 
1066 int os::allocate_thread_local_storage() {
1067   pthread_key_t key;
1068   int rslt = pthread_key_create(&key, restore_thread_pointer);
1069   assert(rslt == 0, "cannot allocate thread local storage");
1070   return (int)key;
1071 }
1072 
1073 // Note: This is currently not used by VM, as we don't destroy TLS key
1074 // on VM exit.
1075 void os::free_thread_local_storage(int index) {
1076   int rslt = pthread_key_delete((pthread_key_t)index);
1077   assert(rslt == 0, "invalid index");
1078 }
1079 
1080 void os::thread_local_storage_at_put(int index, void* value) {
1081   int rslt = pthread_setspecific((pthread_key_t)index, value);
1082   assert(rslt == 0, "pthread_setspecific failed");
1083 }
1084 
1085 extern "C" Thread* get_thread() {
1086   return ThreadLocalStorage::thread();
1087 }
1088 
1089 //////////////////////////////////////////////////////////////////////////////
1090 // primordial thread
1091 
1092 // Check if current thread is the primordial thread, similar to Solaris thr_main.
1093 bool os::is_primordial_thread(void) {
1094   char dummy;
1095   // If called before init complete, thread stack bottom will be null.
1096   // Can be called if fatal error occurs before initialization.
1097   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
1098   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
1099          os::Linux::initial_thread_stack_size()   != 0,
1100          "os::init did not locate primordial thread's stack region");
1101   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
1102       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
1103                         os::Linux::initial_thread_stack_size()) {
1104        return true;
1105   } else {
1106        return false;
1107   }
1108 }
1109 
1110 // Find the virtual memory area that contains addr
1111 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1112   FILE *fp = fopen("/proc/self/maps", "r");
1113   if (fp) {
1114     address low, high;
1115     while (!feof(fp)) {
1116       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1117         if (low <= addr && addr < high) {
1118            if (vma_low)  *vma_low  = low;
1119            if (vma_high) *vma_high = high;
1120            fclose (fp);
1121            return true;
1122         }
1123       }
1124       for (;;) {
1125         int ch = fgetc(fp);
1126         if (ch == EOF || ch == (int)'\n') break;
1127       }
1128     }
1129     fclose(fp);
1130   }
1131   return false;
1132 }
1133 
1134 // Locate primordial thread stack. This special handling of primordial thread stack
1135 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1136 // bogus value for the primordial process thread. While the launcher has created
1137 // the VM in a new thread since JDK 6, we still have to allow for the use of the
1138 // JNI invocation API from a primordial thread.
1139 void os::Linux::capture_initial_stack(size_t max_size) {
1140 
1141   // max_size is either 0 (which means accept OS default for thread stacks) or
1142   // a user-specified value known to be at least the minimum needed. If we
1143   // are actually on the primordial thread we can make it appear that we have a
1144   // smaller max_size stack by inserting the guard pages at that location. But we
1145   // cannot do anything to emulate a larger stack than what has been provided by
1146   // the OS or threading library. In fact if we try to use a stack greater than
1147   // what is set by rlimit then we will crash the hosting process.
1148 
1149   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
1150   // If this is "unlimited" then it will be a huge value.
1151   struct rlimit rlim;
1152   getrlimit(RLIMIT_STACK, &rlim);
1153   size_t stack_size = rlim.rlim_cur;
1154 
1155   // 6308388: a bug in ld.so will relocate its own .data section to the
1156   //   lower end of primordial stack; reduce ulimit -s value a little bit
1157   //   so we won't install guard page on ld.so's data section.
1158   //   But ensure we don't underflow the stack size - allow 1 page spare
1159   if (stack_size >= (size_t)(3 * page_size())) {
1160     stack_size -= 2 * page_size();
1161   }
1162 
1163   // Try to figure out where the stack base (top) is. This is harder.
1164   //
1165   // When an application is started, glibc saves the initial stack pointer in
1166   // a global variable "__libc_stack_end", which is then used by system
1167   // libraries. __libc_stack_end should be pretty close to stack top. The
1168   // variable is available since the very early days. However, because it is
1169   // a private interface, it could disappear in the future.
1170   //
1171   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1172   // to __libc_stack_end, it is very close to stack top, but isn't the real
1173   // stack top. Note that /proc may not exist if VM is running as a chroot
1174   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1175   // /proc/<pid>/stat could change in the future (though unlikely).
1176   //
1177   // We try __libc_stack_end first. If that doesn't work, look for
1178   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1179   // as a hint, which should work well in most cases.
1180 
1181   uintptr_t stack_start;
1182 
1183   // try __libc_stack_end first
1184   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1185   if (p && *p) {
1186     stack_start = *p;
1187   } else {
1188     // see if we can get the start_stack field from /proc/self/stat
1189     FILE *fp;
1190     int pid;
1191     char state;
1192     int ppid;
1193     int pgrp;
1194     int session;
1195     int nr;
1196     int tpgrp;
1197     unsigned long flags;
1198     unsigned long minflt;
1199     unsigned long cminflt;
1200     unsigned long majflt;
1201     unsigned long cmajflt;
1202     unsigned long utime;
1203     unsigned long stime;
1204     long cutime;
1205     long cstime;
1206     long prio;
1207     long nice;
1208     long junk;
1209     long it_real;
1210     uintptr_t start;
1211     uintptr_t vsize;
1212     intptr_t rss;
1213     uintptr_t rsslim;
1214     uintptr_t scodes;
1215     uintptr_t ecode;
1216     int i;
1217 
1218     // Figure what the primordial thread stack base is. Code is inspired
1219     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1220     // followed by command name surrounded by parentheses, state, etc.
1221     char stat[2048];
1222     int statlen;
1223 
1224     fp = fopen("/proc/self/stat", "r");
1225     if (fp) {
1226       statlen = fread(stat, 1, 2047, fp);
1227       stat[statlen] = '\0';
1228       fclose(fp);
1229 
1230       // Skip pid and the command string. Note that we could be dealing with
1231       // weird command names, e.g. user could decide to rename java launcher
1232       // to "java 1.4.2 :)", then the stat file would look like
1233       //                1234 (java 1.4.2 :)) R ... ...
1234       // We don't really need to know the command string, just find the last
1235       // occurrence of ")" and then start parsing from there. See bug 4726580.
1236       char * s = strrchr(stat, ')');
1237 
1238       i = 0;
1239       if (s) {
1240         // Skip blank chars
1241         do s++; while (isspace(*s));
1242 
1243 #define _UFM UINTX_FORMAT
1244 #define _DFM INTX_FORMAT
1245 
1246         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1247         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1248         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1249              &state,          /* 3  %c  */
1250              &ppid,           /* 4  %d  */
1251              &pgrp,           /* 5  %d  */
1252              &session,        /* 6  %d  */
1253              &nr,             /* 7  %d  */
1254              &tpgrp,          /* 8  %d  */
1255              &flags,          /* 9  %lu  */
1256              &minflt,         /* 10 %lu  */
1257              &cminflt,        /* 11 %lu  */
1258              &majflt,         /* 12 %lu  */
1259              &cmajflt,        /* 13 %lu  */
1260              &utime,          /* 14 %lu  */
1261              &stime,          /* 15 %lu  */
1262              &cutime,         /* 16 %ld  */
1263              &cstime,         /* 17 %ld  */
1264              &prio,           /* 18 %ld  */
1265              &nice,           /* 19 %ld  */
1266              &junk,           /* 20 %ld  */
1267              &it_real,        /* 21 %ld  */
1268              &start,          /* 22 UINTX_FORMAT */
1269              &vsize,          /* 23 UINTX_FORMAT */
1270              &rss,            /* 24 INTX_FORMAT  */
1271              &rsslim,         /* 25 UINTX_FORMAT */
1272              &scodes,         /* 26 UINTX_FORMAT */
1273              &ecode,          /* 27 UINTX_FORMAT */
1274              &stack_start);   /* 28 UINTX_FORMAT */
1275       }
1276 
1277 #undef _UFM
1278 #undef _DFM
1279 
1280       if (i != 28 - 2) {
1281          assert(false, "Bad conversion from /proc/self/stat");
1282          // product mode - assume we are the primordial thread, good luck in the
1283          // embedded case.
1284          warning("Can't detect primordial thread stack location - bad conversion");
1285          stack_start = (uintptr_t) &rlim;
1286       }
1287     } else {
1288       // For some reason we can't open /proc/self/stat (for example, running on
1289       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1290       // most cases, so don't abort:
1291       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1292       stack_start = (uintptr_t) &rlim;
1293     }
1294   }
1295 
1296   // Now we have a pointer (stack_start) very close to the stack top, the
1297   // next thing to do is to figure out the exact location of stack top. We
1298   // can find out the virtual memory area that contains stack_start by
1299   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1300   // and its upper limit is the real stack top. (again, this would fail if
1301   // running inside chroot, because /proc may not exist.)
1302 
1303   uintptr_t stack_top;
1304   address low, high;
1305   if (find_vma((address)stack_start, &low, &high)) {
1306     // success, "high" is the true stack top. (ignore "low", because initial
1307     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1308     stack_top = (uintptr_t)high;
1309   } else {
1310     // failed, likely because /proc/self/maps does not exist
1311     warning("Can't detect primordial thread stack location - find_vma failed");
1312     // best effort: stack_start is normally within a few pages below the real
1313     // stack top, use it as stack top, and reduce stack size so we won't put
1314     // guard page outside stack.
1315     stack_top = stack_start;
1316     stack_size -= 16 * page_size();
1317   }
1318 
1319   // stack_top could be partially down the page so align it
1320   stack_top = align_size_up(stack_top, page_size());
1321 
1322   // Allowed stack value is minimum of max_size and what we derived from rlimit
1323   if (max_size > 0) {
1324     _initial_thread_stack_size = MIN2(max_size, stack_size);
1325   } else {
1326     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1327     // clamp it at 8MB as we do on Solaris
1328     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1329   }
1330 
1331   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1332   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1333   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1334 }
1335 
1336 ////////////////////////////////////////////////////////////////////////////////
1337 // time support
1338 
1339 // Time since start-up in seconds to a fine granularity.
1340 // Used by VMSelfDestructTimer and the MemProfiler.
1341 double os::elapsedTime() {
1342 
1343   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1344 }
1345 
1346 jlong os::elapsed_counter() {
1347   return javaTimeNanos() - initial_time_count;
1348 }
1349 
1350 jlong os::elapsed_frequency() {
1351   return NANOSECS_PER_SEC; // nanosecond resolution
1352 }
1353 
1354 bool os::supports_vtime() { return true; }
1355 bool os::enable_vtime()   { return false; }
1356 bool os::vtime_enabled()  { return false; }
1357 
1358 double os::elapsedVTime() {
1359   struct rusage usage;
1360   int retval = getrusage(RUSAGE_THREAD, &usage);
1361   if (retval == 0) {
1362     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1363   } else {
1364     // better than nothing, but not much
1365     return elapsedTime();
1366   }
1367 }
1368 
1369 jlong os::javaTimeMillis() {
1370   timeval time;
1371   int status = gettimeofday(&time, NULL);
1372   assert(status != -1, "linux error");
1373   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1374 }
1375 
1376 #ifndef CLOCK_MONOTONIC
1377 #define CLOCK_MONOTONIC (1)
1378 #endif
1379 
1380 void os::Linux::clock_init() {
1381   // we do dlopen's in this particular order due to bug in linux
1382   // dynamical loader (see 6348968) leading to crash on exit
1383   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1384   if (handle == NULL) {
1385     handle = dlopen("librt.so", RTLD_LAZY);
1386   }
1387 
1388   if (handle) {
1389     int (*clock_getres_func)(clockid_t, struct timespec*) =
1390            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1391     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1392            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1393     if (clock_getres_func && clock_gettime_func) {
1394       // See if monotonic clock is supported by the kernel. Note that some
1395       // early implementations simply return kernel jiffies (updated every
1396       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1397       // for nano time (though the monotonic property is still nice to have).
1398       // It's fixed in newer kernels, however clock_getres() still returns
1399       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1400       // resolution for now. Hopefully as people move to new kernels, this
1401       // won't be a problem.
1402       struct timespec res;
1403       struct timespec tp;
1404       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1405           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1406         // yes, monotonic clock is supported
1407         _clock_gettime = clock_gettime_func;
1408         return;
1409       } else {
1410         // close librt if there is no monotonic clock
1411         dlclose(handle);
1412       }
1413     }
1414   }
1415   warning("No monotonic clock was available - timed services may " \
1416           "be adversely affected if the time-of-day clock changes");
1417 }
1418 
1419 #ifndef SYS_clock_getres
1420 
1421 #if defined(IA32) || defined(AMD64)
1422 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1423 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1424 #else
1425 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1426 #define sys_clock_getres(x,y)  -1
1427 #endif
1428 
1429 #else
1430 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1431 #endif
1432 
1433 void os::Linux::fast_thread_clock_init() {
1434   if (!UseLinuxPosixThreadCPUClocks) {
1435     return;
1436   }
1437   clockid_t clockid;
1438   struct timespec tp;
1439   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1440       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1441 
1442   // Switch to using fast clocks for thread cpu time if
1443   // the sys_clock_getres() returns 0 error code.
1444   // Note, that some kernels may support the current thread
1445   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1446   // returned by the pthread_getcpuclockid().
1447   // If the fast Posix clocks are supported then the sys_clock_getres()
1448   // must return at least tp.tv_sec == 0 which means a resolution
1449   // better than 1 sec. This is extra check for reliability.
1450 
1451   if(pthread_getcpuclockid_func &&
1452      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1453      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1454 
1455     _supports_fast_thread_cpu_time = true;
1456     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1457   }
1458 }
1459 
1460 jlong os::javaTimeNanos() {
1461   if (Linux::supports_monotonic_clock()) {
1462     struct timespec tp;
1463     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1464     assert(status == 0, "gettime error");
1465     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1466     return result;
1467   } else {
1468     timeval time;
1469     int status = gettimeofday(&time, NULL);
1470     assert(status != -1, "linux error");
1471     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1472     return 1000 * usecs;
1473   }
1474 }
1475 
1476 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1477   if (Linux::supports_monotonic_clock()) {
1478     info_ptr->max_value = ALL_64_BITS;
1479 
1480     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1481     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1482     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1483   } else {
1484     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1485     info_ptr->max_value = ALL_64_BITS;
1486 
1487     // gettimeofday is a real time clock so it skips
1488     info_ptr->may_skip_backward = true;
1489     info_ptr->may_skip_forward = true;
1490   }
1491 
1492   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1493 }
1494 
1495 // Return the real, user, and system times in seconds from an
1496 // arbitrary fixed point in the past.
1497 bool os::getTimesSecs(double* process_real_time,
1498                       double* process_user_time,
1499                       double* process_system_time) {
1500   struct tms ticks;
1501   clock_t real_ticks = times(&ticks);
1502 
1503   if (real_ticks == (clock_t) (-1)) {
1504     return false;
1505   } else {
1506     double ticks_per_second = (double) clock_tics_per_sec;
1507     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1508     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1509     *process_real_time = ((double) real_ticks) / ticks_per_second;
1510 
1511     return true;
1512   }
1513 }
1514 
1515 
1516 char * os::local_time_string(char *buf, size_t buflen) {
1517   struct tm t;
1518   time_t long_time;
1519   time(&long_time);
1520   localtime_r(&long_time, &t);
1521   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1522                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1523                t.tm_hour, t.tm_min, t.tm_sec);
1524   return buf;
1525 }
1526 
1527 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1528   return localtime_r(clock, res);
1529 }
1530 
1531 ////////////////////////////////////////////////////////////////////////////////
1532 // runtime exit support
1533 
1534 // Note: os::shutdown() might be called very early during initialization, or
1535 // called from signal handler. Before adding something to os::shutdown(), make
1536 // sure it is async-safe and can handle partially initialized VM.
1537 void os::shutdown() {
1538 
1539   // allow PerfMemory to attempt cleanup of any persistent resources
1540   perfMemory_exit();
1541 
1542   // needs to remove object in file system
1543   AttachListener::abort();
1544 
1545   // flush buffered output, finish log files
1546   ostream_abort();
1547 
1548   // Check for abort hook
1549   abort_hook_t abort_hook = Arguments::abort_hook();
1550   if (abort_hook != NULL) {
1551     abort_hook();
1552   }
1553 
1554 }
1555 
1556 // Note: os::abort() might be called very early during initialization, or
1557 // called from signal handler. Before adding something to os::abort(), make
1558 // sure it is async-safe and can handle partially initialized VM.
1559 void os::abort(bool dump_core) {
1560   os::shutdown();
1561   if (dump_core) {
1562 #ifndef PRODUCT
1563     fdStream out(defaultStream::output_fd());
1564     out.print_raw("Current thread is ");
1565     char buf[16];
1566     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1567     out.print_raw_cr(buf);
1568     out.print_raw_cr("Dumping core ...");
1569 #endif
1570     ::abort(); // dump core
1571   }
1572 
1573   ::exit(1);
1574 }
1575 
1576 // Die immediately, no exit hook, no abort hook, no cleanup.
1577 void os::die() {
1578   // _exit() on LinuxThreads only kills current thread
1579   ::abort();
1580 }
1581 
1582 
1583 // This method is a copy of JDK's sysGetLastErrorString
1584 // from src/solaris/hpi/src/system_md.c
1585 
1586 size_t os::lasterror(char *buf, size_t len) {
1587 
1588   if (errno == 0)  return 0;
1589 
1590   const char *s = ::strerror(errno);
1591   size_t n = ::strlen(s);
1592   if (n >= len) {
1593     n = len - 1;
1594   }
1595   ::strncpy(buf, s, n);
1596   buf[n] = '\0';
1597   return n;
1598 }
1599 
1600 intx os::current_thread_id() { return (intx)pthread_self(); }
1601 int os::current_process_id() {
1602 
1603   // Under the old linux thread library, linux gives each thread
1604   // its own process id. Because of this each thread will return
1605   // a different pid if this method were to return the result
1606   // of getpid(2). Linux provides no api that returns the pid
1607   // of the launcher thread for the vm. This implementation
1608   // returns a unique pid, the pid of the launcher thread
1609   // that starts the vm 'process'.
1610 
1611   // Under the NPTL, getpid() returns the same pid as the
1612   // launcher thread rather than a unique pid per thread.
1613   // Use gettid() if you want the old pre NPTL behaviour.
1614 
1615   // if you are looking for the result of a call to getpid() that
1616   // returns a unique pid for the calling thread, then look at the
1617   // OSThread::thread_id() method in osThread_linux.hpp file
1618 
1619   return (int)(_initial_pid ? _initial_pid : getpid());
1620 }
1621 
1622 // DLL functions
1623 
1624 const char* os::dll_file_extension() { return ".so"; }
1625 
1626 // This must be hard coded because it's the system's temporary
1627 // directory not the java application's temp directory, ala java.io.tmpdir.
1628 const char* os::get_temp_directory() { return "/tmp"; }
1629 
1630 static bool file_exists(const char* filename) {
1631   struct stat statbuf;
1632   if (filename == NULL || strlen(filename) == 0) {
1633     return false;
1634   }
1635   return os::stat(filename, &statbuf) == 0;
1636 }
1637 
1638 bool os::dll_build_name(char* buffer, size_t buflen,
1639                         const char* pname, const char* fname) {
1640   bool retval = false;
1641   // Copied from libhpi
1642   const size_t pnamelen = pname ? strlen(pname) : 0;
1643 
1644   // Return error on buffer overflow.
1645   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1646     return retval;
1647   }
1648 
1649   if (pnamelen == 0) {
1650     snprintf(buffer, buflen, "lib%s.so", fname);
1651     retval = true;
1652   } else if (strchr(pname, *os::path_separator()) != NULL) {
1653     int n;
1654     char** pelements = split_path(pname, &n);
1655     if (pelements == NULL) {
1656       return false;
1657     }
1658     for (int i = 0 ; i < n ; i++) {
1659       // Really shouldn't be NULL, but check can't hurt
1660       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1661         continue; // skip the empty path values
1662       }
1663       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1664       if (file_exists(buffer)) {
1665         retval = true;
1666         break;
1667       }
1668     }
1669     // release the storage
1670     for (int i = 0 ; i < n ; i++) {
1671       if (pelements[i] != NULL) {
1672         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1673       }
1674     }
1675     if (pelements != NULL) {
1676       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1677     }
1678   } else {
1679     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1680     retval = true;
1681   }
1682   return retval;
1683 }
1684 
1685 // check if addr is inside libjvm.so
1686 bool os::address_is_in_vm(address addr) {
1687   static address libjvm_base_addr;
1688   Dl_info dlinfo;
1689 
1690   if (libjvm_base_addr == NULL) {
1691     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1692       libjvm_base_addr = (address)dlinfo.dli_fbase;
1693     }
1694     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1695   }
1696 
1697   if (dladdr((void *)addr, &dlinfo) != 0) {
1698     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1699   }
1700 
1701   return false;
1702 }
1703 
1704 bool os::dll_address_to_function_name(address addr, char *buf,
1705                                       int buflen, int *offset) {
1706   // buf is not optional, but offset is optional
1707   assert(buf != NULL, "sanity check");
1708 
1709   Dl_info dlinfo;
1710 
1711   if (dladdr((void*)addr, &dlinfo) != 0) {
1712     // see if we have a matching symbol
1713     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1714       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1715         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1716       }
1717       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1718       return true;
1719     }
1720     // no matching symbol so try for just file info
1721     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1722       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1723                           buf, buflen, offset, dlinfo.dli_fname)) {
1724         return true;
1725       }
1726     }
1727   }
1728 
1729   buf[0] = '\0';
1730   if (offset != NULL) *offset = -1;
1731   return false;
1732 }
1733 
1734 struct _address_to_library_name {
1735   address addr;          // input : memory address
1736   size_t  buflen;        //         size of fname
1737   char*   fname;         // output: library name
1738   address base;          //         library base addr
1739 };
1740 
1741 static int address_to_library_name_callback(struct dl_phdr_info *info,
1742                                             size_t size, void *data) {
1743   int i;
1744   bool found = false;
1745   address libbase = NULL;
1746   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1747 
1748   // iterate through all loadable segments
1749   for (i = 0; i < info->dlpi_phnum; i++) {
1750     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1751     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1752       // base address of a library is the lowest address of its loaded
1753       // segments.
1754       if (libbase == NULL || libbase > segbase) {
1755         libbase = segbase;
1756       }
1757       // see if 'addr' is within current segment
1758       if (segbase <= d->addr &&
1759           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1760         found = true;
1761       }
1762     }
1763   }
1764 
1765   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1766   // so dll_address_to_library_name() can fall through to use dladdr() which
1767   // can figure out executable name from argv[0].
1768   if (found && info->dlpi_name && info->dlpi_name[0]) {
1769     d->base = libbase;
1770     if (d->fname) {
1771       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1772     }
1773     return 1;
1774   }
1775   return 0;
1776 }
1777 
1778 bool os::dll_address_to_library_name(address addr, char* buf,
1779                                      int buflen, int* offset) {
1780   // buf is not optional, but offset is optional
1781   assert(buf != NULL, "sanity check");
1782 
1783   Dl_info dlinfo;
1784   struct _address_to_library_name data;
1785 
1786   // There is a bug in old glibc dladdr() implementation that it could resolve
1787   // to wrong library name if the .so file has a base address != NULL. Here
1788   // we iterate through the program headers of all loaded libraries to find
1789   // out which library 'addr' really belongs to. This workaround can be
1790   // removed once the minimum requirement for glibc is moved to 2.3.x.
1791   data.addr = addr;
1792   data.fname = buf;
1793   data.buflen = buflen;
1794   data.base = NULL;
1795   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1796 
1797   if (rslt) {
1798      // buf already contains library name
1799      if (offset) *offset = addr - data.base;
1800      return true;
1801   }
1802   if (dladdr((void*)addr, &dlinfo) != 0) {
1803     if (dlinfo.dli_fname != NULL) {
1804       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1805     }
1806     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1807       *offset = addr - (address)dlinfo.dli_fbase;
1808     }
1809     return true;
1810   }
1811 
1812   buf[0] = '\0';
1813   if (offset) *offset = -1;
1814   return false;
1815 }
1816 
1817   // Loads .dll/.so and
1818   // in case of error it checks if .dll/.so was built for the
1819   // same architecture as Hotspot is running on
1820 
1821 
1822 // Remember the stack's state. The Linux dynamic linker will change
1823 // the stack to 'executable' at most once, so we must safepoint only once.
1824 bool os::Linux::_stack_is_executable = false;
1825 
1826 // VM operation that loads a library.  This is necessary if stack protection
1827 // of the Java stacks can be lost during loading the library.  If we
1828 // do not stop the Java threads, they can stack overflow before the stacks
1829 // are protected again.
1830 class VM_LinuxDllLoad: public VM_Operation {
1831  private:
1832   const char *_filename;
1833   char *_ebuf;
1834   int _ebuflen;
1835   void *_lib;
1836  public:
1837   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1838     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1839   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1840   void doit() {
1841     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1842     os::Linux::_stack_is_executable = true;
1843   }
1844   void* loaded_library() { return _lib; }
1845 };
1846 
1847 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1848 {
1849   void * result = NULL;
1850   bool load_attempted = false;
1851 
1852   // Check whether the library to load might change execution rights
1853   // of the stack. If they are changed, the protection of the stack
1854   // guard pages will be lost. We need a safepoint to fix this.
1855   //
1856   // See Linux man page execstack(8) for more info.
1857   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1858     ElfFile ef(filename);
1859     if (!ef.specifies_noexecstack()) {
1860       if (!is_init_completed()) {
1861         os::Linux::_stack_is_executable = true;
1862         // This is OK - No Java threads have been created yet, and hence no
1863         // stack guard pages to fix.
1864         //
1865         // This should happen only when you are building JDK7 using a very
1866         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1867         //
1868         // Dynamic loader will make all stacks executable after
1869         // this function returns, and will not do that again.
1870         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1871       } else {
1872         warning("You have loaded library %s which might have disabled stack guard. "
1873                 "The VM will try to fix the stack guard now.\n"
1874                 "It's highly recommended that you fix the library with "
1875                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1876                 filename);
1877 
1878         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1879         JavaThread *jt = JavaThread::current();
1880         if (jt->thread_state() != _thread_in_native) {
1881           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1882           // that requires ExecStack. Cannot enter safe point. Let's give up.
1883           warning("Unable to fix stack guard. Giving up.");
1884         } else {
1885           if (!LoadExecStackDllInVMThread) {
1886             // This is for the case where the DLL has an static
1887             // constructor function that executes JNI code. We cannot
1888             // load such DLLs in the VMThread.
1889             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1890           }
1891 
1892           ThreadInVMfromNative tiv(jt);
1893           debug_only(VMNativeEntryWrapper vew;)
1894 
1895           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1896           VMThread::execute(&op);
1897           if (LoadExecStackDllInVMThread) {
1898             result = op.loaded_library();
1899           }
1900           load_attempted = true;
1901         }
1902       }
1903     }
1904   }
1905 
1906   if (!load_attempted) {
1907     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1908   }
1909 
1910   if (result != NULL) {
1911     // Successful loading
1912     return result;
1913   }
1914 
1915   Elf32_Ehdr elf_head;
1916   int diag_msg_max_length=ebuflen-strlen(ebuf);
1917   char* diag_msg_buf=ebuf+strlen(ebuf);
1918 
1919   if (diag_msg_max_length==0) {
1920     // No more space in ebuf for additional diagnostics message
1921     return NULL;
1922   }
1923 
1924 
1925   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1926 
1927   if (file_descriptor < 0) {
1928     // Can't open library, report dlerror() message
1929     return NULL;
1930   }
1931 
1932   bool failed_to_read_elf_head=
1933     (sizeof(elf_head)!=
1934         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1935 
1936   ::close(file_descriptor);
1937   if (failed_to_read_elf_head) {
1938     // file i/o error - report dlerror() msg
1939     return NULL;
1940   }
1941 
1942   typedef struct {
1943     Elf32_Half  code;         // Actual value as defined in elf.h
1944     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1945     char        elf_class;    // 32 or 64 bit
1946     char        endianess;    // MSB or LSB
1947     char*       name;         // String representation
1948   } arch_t;
1949 
1950   #ifndef EM_486
1951   #define EM_486          6               /* Intel 80486 */
1952   #endif
1953   #ifndef EM_AARCH64
1954   #define EM_AARCH64    183               /* ARM AARCH64 */
1955   #endif
1956 
1957   static const arch_t arch_array[]={
1958     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1959     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1960     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1961     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1962     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1963     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1964     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1965     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1966 #if defined(VM_LITTLE_ENDIAN)
1967     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1968 #else
1969     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1970 #endif
1971     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1972     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1973     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1974     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1975     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1976     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1977     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1978     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1979   };
1980 
1981   #if  (defined IA32)
1982     static  Elf32_Half running_arch_code=EM_386;
1983   #elif   (defined AMD64)
1984     static  Elf32_Half running_arch_code=EM_X86_64;
1985   #elif  (defined IA64)
1986     static  Elf32_Half running_arch_code=EM_IA_64;
1987   #elif  (defined __sparc) && (defined _LP64)
1988     static  Elf32_Half running_arch_code=EM_SPARCV9;
1989   #elif  (defined __sparc) && (!defined _LP64)
1990     static  Elf32_Half running_arch_code=EM_SPARC;
1991   #elif  (defined __powerpc64__)
1992     static  Elf32_Half running_arch_code=EM_PPC64;
1993   #elif  (defined __powerpc__)
1994     static  Elf32_Half running_arch_code=EM_PPC;
1995   #elif  (defined ARM)
1996     static  Elf32_Half running_arch_code=EM_ARM;
1997   #elif  (defined S390)
1998     static  Elf32_Half running_arch_code=EM_S390;
1999   #elif  (defined ALPHA)
2000     static  Elf32_Half running_arch_code=EM_ALPHA;
2001   #elif  (defined MIPSEL)
2002     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
2003   #elif  (defined PARISC)
2004     static  Elf32_Half running_arch_code=EM_PARISC;
2005   #elif  (defined MIPS)
2006     static  Elf32_Half running_arch_code=EM_MIPS;
2007   #elif  (defined M68K)
2008     static  Elf32_Half running_arch_code=EM_68K;
2009   #elif  (defined AARCH64)
2010     static  Elf32_Half running_arch_code=EM_AARCH64;
2011   #else
2012     #error Method os::dll_load requires that one of following is defined:\
2013          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
2014   #endif
2015 
2016   // Identify compatability class for VM's architecture and library's architecture
2017   // Obtain string descriptions for architectures
2018 
2019   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
2020   int running_arch_index=-1;
2021 
2022   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
2023     if (running_arch_code == arch_array[i].code) {
2024       running_arch_index    = i;
2025     }
2026     if (lib_arch.code == arch_array[i].code) {
2027       lib_arch.compat_class = arch_array[i].compat_class;
2028       lib_arch.name         = arch_array[i].name;
2029     }
2030   }
2031 
2032   assert(running_arch_index != -1,
2033     "Didn't find running architecture code (running_arch_code) in arch_array");
2034   if (running_arch_index == -1) {
2035     // Even though running architecture detection failed
2036     // we may still continue with reporting dlerror() message
2037     return NULL;
2038   }
2039 
2040   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2041     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2042     return NULL;
2043   }
2044 
2045 #ifndef S390
2046   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2047     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2048     return NULL;
2049   }
2050 #endif // !S390
2051 
2052   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2053     if ( lib_arch.name!=NULL ) {
2054       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2055         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2056         lib_arch.name, arch_array[running_arch_index].name);
2057     } else {
2058       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2059       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2060         lib_arch.code,
2061         arch_array[running_arch_index].name);
2062     }
2063   }
2064 
2065   return NULL;
2066 }
2067 
2068 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2069   void * result = ::dlopen(filename, RTLD_LAZY);
2070   if (result == NULL) {
2071     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2072     ebuf[ebuflen-1] = '\0';
2073   }
2074   return result;
2075 }
2076 
2077 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2078   void * result = NULL;
2079   if (LoadExecStackDllInVMThread) {
2080     result = dlopen_helper(filename, ebuf, ebuflen);
2081   }
2082 
2083   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2084   // library that requires an executable stack, or which does not have this
2085   // stack attribute set, dlopen changes the stack attribute to executable. The
2086   // read protection of the guard pages gets lost.
2087   //
2088   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2089   // may have been queued at the same time.
2090 
2091   if (!_stack_is_executable) {
2092     JavaThread *jt = Threads::first();
2093 
2094     while (jt) {
2095       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2096           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2097         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2098                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2099           warning("Attempt to reguard stack yellow zone failed.");
2100         }
2101       }
2102       jt = jt->next();
2103     }
2104   }
2105 
2106   return result;
2107 }
2108 
2109 /*
2110  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2111  * chances are you might want to run the generated bits against glibc-2.0
2112  * libdl.so, so always use locking for any version of glibc.
2113  */
2114 void* os::dll_lookup(void* handle, const char* name) {
2115   pthread_mutex_lock(&dl_mutex);
2116   void* res = dlsym(handle, name);
2117   pthread_mutex_unlock(&dl_mutex);
2118   return res;
2119 }
2120 
2121 void* os::get_default_process_handle() {
2122   return (void*)::dlopen(NULL, RTLD_LAZY);
2123 }
2124 
2125 static bool _print_ascii_file(const char* filename, outputStream* st) {
2126   int fd = ::open(filename, O_RDONLY);
2127   if (fd == -1) {
2128      return false;
2129   }
2130 
2131   char buf[32];
2132   int bytes;
2133   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2134     st->print_raw(buf, bytes);
2135   }
2136 
2137   ::close(fd);
2138 
2139   return true;
2140 }
2141 
2142 void os::print_dll_info(outputStream *st) {
2143    st->print_cr("Dynamic libraries:");
2144 
2145    char fname[32];
2146    pid_t pid = os::Linux::gettid();
2147 
2148    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2149 
2150    if (!_print_ascii_file(fname, st)) {
2151      st->print("Can not get library information for pid = %d\n", pid);
2152    }
2153 }
2154 
2155 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2156   FILE *procmapsFile = NULL;
2157 
2158   // Open the procfs maps file for the current process
2159   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2160     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2161     char line[PATH_MAX + 100];
2162 
2163     // Read line by line from 'file'
2164     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2165       u8 base, top, offset, inode;
2166       char permissions[5];
2167       char device[6];
2168       char name[PATH_MAX + 1];
2169 
2170       // Parse fields from line
2171       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %7s " INT64_FORMAT " %s",
2172              &base, &top, permissions, &offset, device, &inode, name);
2173 
2174       // Filter by device id '00:00' so that we only get file system mapped files.
2175       if (strcmp(device, "00:00") != 0) {
2176 
2177         // Call callback with the fields of interest
2178         if(callback(name, (address)base, (address)top, param)) {
2179           // Oops abort, callback aborted
2180           fclose(procmapsFile);
2181           return 1;
2182         }
2183       }
2184     }
2185     fclose(procmapsFile);
2186   }
2187   return 0;
2188 }
2189 
2190 void os::print_os_info_brief(outputStream* st) {
2191   os::Linux::print_distro_info(st);
2192 
2193   os::Posix::print_uname_info(st);
2194 
2195   os::Linux::print_libversion_info(st);
2196 
2197 }
2198 
2199 void os::print_os_info(outputStream* st) {
2200   st->print("OS:");
2201 
2202   os::Linux::print_distro_info(st);
2203 
2204   os::Posix::print_uname_info(st);
2205 
2206   // Print warning if unsafe chroot environment detected
2207   if (unsafe_chroot_detected) {
2208     st->print("WARNING!! ");
2209     st->print_cr("%s", unstable_chroot_error);
2210   }
2211 
2212   os::Linux::print_libversion_info(st);
2213 
2214   os::Posix::print_rlimit_info(st);
2215 
2216   os::Posix::print_load_average(st);
2217 
2218   os::Linux::print_full_memory_info(st);
2219 
2220   os::Linux::print_container_info(st);
2221 }
2222 
2223 // Try to identify popular distros.
2224 // Most Linux distributions have a /etc/XXX-release file, which contains
2225 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2226 // file that also contains the OS version string. Some have more than one
2227 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2228 // /etc/redhat-release.), so the order is important.
2229 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2230 // their own specific XXX-release file as well as a redhat-release file.
2231 // Because of this the XXX-release file needs to be searched for before the
2232 // redhat-release file.
2233 // Since Red Hat has a lsb-release file that is not very descriptive the
2234 // search for redhat-release needs to be before lsb-release.
2235 // Since the lsb-release file is the new standard it needs to be searched
2236 // before the older style release files.
2237 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2238 // next to last resort.  The os-release file is a new standard that contains
2239 // distribution information and the system-release file seems to be an old
2240 // standard that has been replaced by the lsb-release and os-release files.
2241 // Searching for the debian_version file is the last resort.  It contains
2242 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2243 // "Debian " is printed before the contents of the debian_version file.
2244 void os::Linux::print_distro_info(outputStream* st) {
2245    if (!_print_ascii_file("/etc/oracle-release", st) &&
2246        !_print_ascii_file("/etc/mandriva-release", st) &&
2247        !_print_ascii_file("/etc/mandrake-release", st) &&
2248        !_print_ascii_file("/etc/sun-release", st) &&
2249        !_print_ascii_file("/etc/redhat-release", st) &&
2250        !_print_ascii_file("/etc/lsb-release", st) &&
2251        !_print_ascii_file("/etc/SuSE-release", st) &&
2252        !_print_ascii_file("/etc/turbolinux-release", st) &&
2253        !_print_ascii_file("/etc/gentoo-release", st) &&
2254        !_print_ascii_file("/etc/ltib-release", st) &&
2255        !_print_ascii_file("/etc/angstrom-version", st) &&
2256        !_print_ascii_file("/etc/system-release", st) &&
2257        !_print_ascii_file("/etc/os-release", st)) {
2258 
2259        if (file_exists("/etc/debian_version")) {
2260          st->print("Debian ");
2261          _print_ascii_file("/etc/debian_version", st);
2262        } else {
2263          st->print("Linux");
2264        }
2265    }
2266    st->cr();
2267 }
2268 
2269 void os::Linux::print_libversion_info(outputStream* st) {
2270   // libc, pthread
2271   st->print("libc:");
2272   st->print("%s ", os::Linux::glibc_version());
2273   st->print("%s ", os::Linux::libpthread_version());
2274   if (os::Linux::is_LinuxThreads()) {
2275      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2276   }
2277   st->cr();
2278 }
2279 
2280 void os::Linux::print_full_memory_info(outputStream* st) {
2281    st->print("\n/proc/meminfo:\n");
2282    _print_ascii_file("/proc/meminfo", st);
2283    st->cr();
2284 }
2285 
2286 void os::Linux::print_container_info(outputStream* st) {
2287 if (!OSContainer::is_containerized()) {
2288     return;
2289   }
2290 
2291   st->print("container (cgroup) information:\n");
2292 
2293   const char *p_ct = OSContainer::container_type();
2294   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "failed");
2295 
2296   char *p = OSContainer::cpu_cpuset_cpus();
2297   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "failed");
2298   free(p);
2299 
2300   p = OSContainer::cpu_cpuset_memory_nodes();
2301   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "failed");
2302   free(p);
2303 
2304   int i = OSContainer::active_processor_count();
2305   if (i > 0) {
2306     st->print("active_processor_count: %d\n", i);
2307   } else {
2308     st->print("active_processor_count: failed\n");
2309   }
2310 
2311   i = OSContainer::cpu_quota();
2312   st->print("cpu_quota: %d\n", i);
2313 
2314   i = OSContainer::cpu_period();
2315   st->print("cpu_period: %d\n", i);
2316 
2317   i = OSContainer::cpu_shares();
2318   st->print("cpu_shares: %d\n", i);
2319 
2320   jlong j = OSContainer::memory_limit_in_bytes();
2321   st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
2322 
2323   j = OSContainer::memory_and_swap_limit_in_bytes();
2324   st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
2325 
2326   j = OSContainer::memory_soft_limit_in_bytes();
2327   st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
2328 
2329   j = OSContainer::OSContainer::memory_usage_in_bytes();
2330   st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
2331 
2332   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2333   st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
2334   st->cr();
2335 }
2336 
2337 void os::print_memory_info(outputStream* st) {
2338 
2339   st->print("Memory:");
2340   st->print(" %dk page", os::vm_page_size()>>10);
2341 
2342   // values in struct sysinfo are "unsigned long"
2343   struct sysinfo si;
2344   sysinfo(&si);
2345 
2346   st->print(", physical " UINT64_FORMAT "k",
2347             os::physical_memory() >> 10);
2348   st->print("(" UINT64_FORMAT "k free)",
2349             os::available_memory() >> 10);
2350   st->print(", swap " UINT64_FORMAT "k",
2351             ((jlong)si.totalswap * si.mem_unit) >> 10);
2352   st->print("(" UINT64_FORMAT "k free)",
2353             ((jlong)si.freeswap * si.mem_unit) >> 10);
2354   st->cr();
2355 }
2356 
2357 void os::pd_print_cpu_info(outputStream* st) {
2358   st->print("\n/proc/cpuinfo:\n");
2359   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2360     st->print("  <Not Available>");
2361   }
2362   st->cr();
2363 }
2364 
2365 void os::print_siginfo(outputStream* st, void* siginfo) {
2366   const siginfo_t* si = (const siginfo_t*)siginfo;
2367 
2368   os::Posix::print_siginfo_brief(st, si);
2369 #if INCLUDE_CDS
2370   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2371       UseSharedSpaces) {
2372     FileMapInfo* mapinfo = FileMapInfo::current_info();
2373     if (mapinfo->is_in_shared_space(si->si_addr)) {
2374       st->print("\n\nError accessing class data sharing archive."   \
2375                 " Mapped file inaccessible during execution, "      \
2376                 " possible disk/network problem.");
2377     }
2378   }
2379 #endif
2380   st->cr();
2381 }
2382 
2383 
2384 static void print_signal_handler(outputStream* st, int sig,
2385                                  char* buf, size_t buflen);
2386 
2387 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2388   st->print_cr("Signal Handlers:");
2389   print_signal_handler(st, SIGSEGV, buf, buflen);
2390   print_signal_handler(st, SIGBUS , buf, buflen);
2391   print_signal_handler(st, SIGFPE , buf, buflen);
2392   print_signal_handler(st, SIGPIPE, buf, buflen);
2393   print_signal_handler(st, SIGXFSZ, buf, buflen);
2394   print_signal_handler(st, SIGILL , buf, buflen);
2395   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2396   print_signal_handler(st, SR_signum, buf, buflen);
2397   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2398   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2399   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2400   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2401 #if defined(PPC64)
2402   print_signal_handler(st, SIGTRAP, buf, buflen);
2403 #endif
2404 }
2405 
2406 static char saved_jvm_path[MAXPATHLEN] = {0};
2407 
2408 // Find the full path to the current module, libjvm.so
2409 void os::jvm_path(char *buf, jint buflen) {
2410   // Error checking.
2411   if (buflen < MAXPATHLEN) {
2412     assert(false, "must use a large-enough buffer");
2413     buf[0] = '\0';
2414     return;
2415   }
2416   // Lazy resolve the path to current module.
2417   if (saved_jvm_path[0] != 0) {
2418     strcpy(buf, saved_jvm_path);
2419     return;
2420   }
2421 
2422   char dli_fname[MAXPATHLEN];
2423   bool ret = dll_address_to_library_name(
2424                 CAST_FROM_FN_PTR(address, os::jvm_path),
2425                 dli_fname, sizeof(dli_fname), NULL);
2426   assert(ret, "cannot locate libjvm");
2427   char *rp = NULL;
2428   if (ret && dli_fname[0] != '\0') {
2429     rp = realpath(dli_fname, buf);
2430   }
2431   if (rp == NULL)
2432     return;
2433 
2434   if (Arguments::created_by_gamma_launcher()) {
2435     // Support for the gamma launcher.  Typical value for buf is
2436     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2437     // the right place in the string, then assume we are installed in a JDK and
2438     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2439     // up the path so it looks like libjvm.so is installed there (append a
2440     // fake suffix hotspot/libjvm.so).
2441     const char *p = buf + strlen(buf) - 1;
2442     for (int count = 0; p > buf && count < 5; ++count) {
2443       for (--p; p > buf && *p != '/'; --p)
2444         /* empty */ ;
2445     }
2446 
2447     if (strncmp(p, "/jre/lib/", 9) != 0) {
2448       // Look for JAVA_HOME in the environment.
2449       char* java_home_var = ::getenv("JAVA_HOME");
2450       if (java_home_var != NULL && java_home_var[0] != 0) {
2451         char* jrelib_p;
2452         int len;
2453 
2454         // Check the current module name "libjvm.so".
2455         p = strrchr(buf, '/');
2456         assert(strstr(p, "/libjvm") == p, "invalid library name");
2457 
2458         rp = realpath(java_home_var, buf);
2459         if (rp == NULL)
2460           return;
2461 
2462         // determine if this is a legacy image or modules image
2463         // modules image doesn't have "jre" subdirectory
2464         len = strlen(buf);
2465         assert(len < buflen, "Ran out of buffer room");
2466         jrelib_p = buf + len;
2467         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2468         if (0 != access(buf, F_OK)) {
2469           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2470         }
2471 
2472         if (0 == access(buf, F_OK)) {
2473           // Use current module name "libjvm.so"
2474           len = strlen(buf);
2475           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2476         } else {
2477           // Go back to path of .so
2478           rp = realpath(dli_fname, buf);
2479           if (rp == NULL)
2480             return;
2481         }
2482       }
2483     }
2484   }
2485 
2486   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2487 }
2488 
2489 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2490   // no prefix required, not even "_"
2491 }
2492 
2493 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2494   // no suffix required
2495 }
2496 
2497 ////////////////////////////////////////////////////////////////////////////////
2498 // sun.misc.Signal support
2499 
2500 static volatile jint sigint_count = 0;
2501 
2502 static void
2503 UserHandler(int sig, void *siginfo, void *context) {
2504   // 4511530 - sem_post is serialized and handled by the manager thread. When
2505   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2506   // don't want to flood the manager thread with sem_post requests.
2507   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2508       return;
2509 
2510   // Ctrl-C is pressed during error reporting, likely because the error
2511   // handler fails to abort. Let VM die immediately.
2512   if (sig == SIGINT && is_error_reported()) {
2513      os::die();
2514   }
2515 
2516   os::signal_notify(sig);
2517 }
2518 
2519 void* os::user_handler() {
2520   return CAST_FROM_FN_PTR(void*, UserHandler);
2521 }
2522 
2523 class Semaphore : public StackObj {
2524   public:
2525     Semaphore();
2526     ~Semaphore();
2527     void signal();
2528     void wait();
2529     bool trywait();
2530     bool timedwait(unsigned int sec, int nsec);
2531   private:
2532     sem_t _semaphore;
2533 };
2534 
2535 Semaphore::Semaphore() {
2536   sem_init(&_semaphore, 0, 0);
2537 }
2538 
2539 Semaphore::~Semaphore() {
2540   sem_destroy(&_semaphore);
2541 }
2542 
2543 void Semaphore::signal() {
2544   sem_post(&_semaphore);
2545 }
2546 
2547 void Semaphore::wait() {
2548   sem_wait(&_semaphore);
2549 }
2550 
2551 bool Semaphore::trywait() {
2552   return sem_trywait(&_semaphore) == 0;
2553 }
2554 
2555 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2556 
2557   struct timespec ts;
2558   // Semaphore's are always associated with CLOCK_REALTIME
2559   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2560   // see unpackTime for discussion on overflow checking
2561   if (sec >= MAX_SECS) {
2562     ts.tv_sec += MAX_SECS;
2563     ts.tv_nsec = 0;
2564   } else {
2565     ts.tv_sec += sec;
2566     ts.tv_nsec += nsec;
2567     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2568       ts.tv_nsec -= NANOSECS_PER_SEC;
2569       ++ts.tv_sec; // note: this must be <= max_secs
2570     }
2571   }
2572 
2573   while (1) {
2574     int result = sem_timedwait(&_semaphore, &ts);
2575     if (result == 0) {
2576       return true;
2577     } else if (errno == EINTR) {
2578       continue;
2579     } else if (errno == ETIMEDOUT) {
2580       return false;
2581     } else {
2582       return false;
2583     }
2584   }
2585 }
2586 
2587 extern "C" {
2588   typedef void (*sa_handler_t)(int);
2589   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2590 }
2591 
2592 void* os::signal(int signal_number, void* handler) {
2593   struct sigaction sigAct, oldSigAct;
2594 
2595   sigfillset(&(sigAct.sa_mask));
2596   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2597   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2598 
2599   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2600     // -1 means registration failed
2601     return (void *)-1;
2602   }
2603 
2604   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2605 }
2606 
2607 void os::signal_raise(int signal_number) {
2608   ::raise(signal_number);
2609 }
2610 
2611 /*
2612  * The following code is moved from os.cpp for making this
2613  * code platform specific, which it is by its very nature.
2614  */
2615 
2616 // Will be modified when max signal is changed to be dynamic
2617 int os::sigexitnum_pd() {
2618   return NSIG;
2619 }
2620 
2621 // a counter for each possible signal value
2622 static volatile jint pending_signals[NSIG+1] = { 0 };
2623 
2624 // Linux(POSIX) specific hand shaking semaphore.
2625 static sem_t sig_sem;
2626 static Semaphore sr_semaphore;
2627 
2628 void os::signal_init_pd() {
2629   // Initialize signal structures
2630   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2631 
2632   // Initialize signal semaphore
2633   ::sem_init(&sig_sem, 0, 0);
2634 }
2635 
2636 void os::signal_notify(int sig) {
2637   Atomic::inc(&pending_signals[sig]);
2638   ::sem_post(&sig_sem);
2639 }
2640 
2641 static int check_pending_signals(bool wait) {
2642   Atomic::store(0, &sigint_count);
2643   for (;;) {
2644     for (int i = 0; i < NSIG + 1; i++) {
2645       jint n = pending_signals[i];
2646       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2647         return i;
2648       }
2649     }
2650     if (!wait) {
2651       return -1;
2652     }
2653     JavaThread *thread = JavaThread::current();
2654     ThreadBlockInVM tbivm(thread);
2655 
2656     bool threadIsSuspended;
2657     do {
2658       thread->set_suspend_equivalent();
2659       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2660       ::sem_wait(&sig_sem);
2661 
2662       // were we externally suspended while we were waiting?
2663       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2664       if (threadIsSuspended) {
2665         //
2666         // The semaphore has been incremented, but while we were waiting
2667         // another thread suspended us. We don't want to continue running
2668         // while suspended because that would surprise the thread that
2669         // suspended us.
2670         //
2671         ::sem_post(&sig_sem);
2672 
2673         thread->java_suspend_self();
2674       }
2675     } while (threadIsSuspended);
2676   }
2677 }
2678 
2679 int os::signal_lookup() {
2680   return check_pending_signals(false);
2681 }
2682 
2683 int os::signal_wait() {
2684   return check_pending_signals(true);
2685 }
2686 
2687 ////////////////////////////////////////////////////////////////////////////////
2688 // Virtual Memory
2689 
2690 int os::vm_page_size() {
2691   // Seems redundant as all get out
2692   assert(os::Linux::page_size() != -1, "must call os::init");
2693   return os::Linux::page_size();
2694 }
2695 
2696 // Solaris allocates memory by pages.
2697 int os::vm_allocation_granularity() {
2698   assert(os::Linux::page_size() != -1, "must call os::init");
2699   return os::Linux::page_size();
2700 }
2701 
2702 // Rationale behind this function:
2703 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2704 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2705 //  samples for JITted code. Here we create private executable mapping over the code cache
2706 //  and then we can use standard (well, almost, as mapping can change) way to provide
2707 //  info for the reporting script by storing timestamp and location of symbol
2708 void linux_wrap_code(char* base, size_t size) {
2709   static volatile jint cnt = 0;
2710 
2711   if (!UseOprofile) {
2712     return;
2713   }
2714 
2715   char buf[PATH_MAX+1];
2716   int num = Atomic::add(1, &cnt);
2717 
2718   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2719            os::get_temp_directory(), os::current_process_id(), num);
2720   unlink(buf);
2721 
2722   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2723 
2724   if (fd != -1) {
2725     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2726     if (rv != (off_t)-1) {
2727       if (::write(fd, "", 1) == 1) {
2728         mmap(base, size,
2729              PROT_READ|PROT_WRITE|PROT_EXEC,
2730              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2731       }
2732     }
2733     ::close(fd);
2734     unlink(buf);
2735   }
2736 }
2737 
2738 static bool recoverable_mmap_error(int err) {
2739   // See if the error is one we can let the caller handle. This
2740   // list of errno values comes from JBS-6843484. I can't find a
2741   // Linux man page that documents this specific set of errno
2742   // values so while this list currently matches Solaris, it may
2743   // change as we gain experience with this failure mode.
2744   switch (err) {
2745   case EBADF:
2746   case EINVAL:
2747   case ENOTSUP:
2748     // let the caller deal with these errors
2749     return true;
2750 
2751   default:
2752     // Any remaining errors on this OS can cause our reserved mapping
2753     // to be lost. That can cause confusion where different data
2754     // structures think they have the same memory mapped. The worst
2755     // scenario is if both the VM and a library think they have the
2756     // same memory mapped.
2757     return false;
2758   }
2759 }
2760 
2761 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2762                                     int err) {
2763   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2764           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2765           strerror(err), err);
2766 }
2767 
2768 static void warn_fail_commit_memory(char* addr, size_t size,
2769                                     size_t alignment_hint, bool exec,
2770                                     int err) {
2771   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2772           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2773           alignment_hint, exec, strerror(err), err);
2774 }
2775 
2776 // NOTE: Linux kernel does not really reserve the pages for us.
2777 //       All it does is to check if there are enough free pages
2778 //       left at the time of mmap(). This could be a potential
2779 //       problem.
2780 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2781   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2782   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2783                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2784   if (res != (uintptr_t) MAP_FAILED) {
2785     if (UseNUMAInterleaving) {
2786       numa_make_global(addr, size);
2787     }
2788     return 0;
2789   }
2790 
2791   int err = errno;  // save errno from mmap() call above
2792 
2793   if (!recoverable_mmap_error(err)) {
2794     warn_fail_commit_memory(addr, size, exec, err);
2795     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2796   }
2797 
2798   return err;
2799 }
2800 
2801 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2802   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2803 }
2804 
2805 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2806                                   const char* mesg) {
2807   assert(mesg != NULL, "mesg must be specified");
2808   int err = os::Linux::commit_memory_impl(addr, size, exec);
2809   if (err != 0) {
2810     // the caller wants all commit errors to exit with the specified mesg:
2811     warn_fail_commit_memory(addr, size, exec, err);
2812     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2813   }
2814 }
2815 
2816 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2817 #ifndef MAP_HUGETLB
2818 #define MAP_HUGETLB 0x40000
2819 #endif
2820 
2821 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2822 #ifndef MADV_HUGEPAGE
2823 #define MADV_HUGEPAGE 14
2824 #endif
2825 
2826 int os::Linux::commit_memory_impl(char* addr, size_t size,
2827                                   size_t alignment_hint, bool exec) {
2828   int err = os::Linux::commit_memory_impl(addr, size, exec);
2829   if (err == 0) {
2830     realign_memory(addr, size, alignment_hint);
2831   }
2832   return err;
2833 }
2834 
2835 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2836                           bool exec) {
2837   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2838 }
2839 
2840 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2841                                   size_t alignment_hint, bool exec,
2842                                   const char* mesg) {
2843   assert(mesg != NULL, "mesg must be specified");
2844   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2845   if (err != 0) {
2846     // the caller wants all commit errors to exit with the specified mesg:
2847     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2848     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2849   }
2850 }
2851 
2852 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2853   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2854     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2855     // be supported or the memory may already be backed by huge pages.
2856     ::madvise(addr, bytes, MADV_HUGEPAGE);
2857   }
2858 }
2859 
2860 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2861   // This method works by doing an mmap over an existing mmaping and effectively discarding
2862   // the existing pages. However it won't work for SHM-based large pages that cannot be
2863   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2864   // small pages on top of the SHM segment. This method always works for small pages, so we
2865   // allow that in any case.
2866   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2867     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2868   }
2869 }
2870 
2871 void os::numa_make_global(char *addr, size_t bytes) {
2872   Linux::numa_interleave_memory(addr, bytes);
2873 }
2874 
2875 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2876 // bind policy to MPOL_PREFERRED for the current thread.
2877 #define USE_MPOL_PREFERRED 0
2878 
2879 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2880   // To make NUMA and large pages more robust when both enabled, we need to ease
2881   // the requirements on where the memory should be allocated. MPOL_BIND is the
2882   // default policy and it will force memory to be allocated on the specified
2883   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2884   // the specified node, but will not force it. Using this policy will prevent
2885   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2886   // free large pages.
2887   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2888   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2889 }
2890 
2891 bool os::numa_topology_changed()   { return false; }
2892 
2893 size_t os::numa_get_groups_num() {
2894   // Return just the number of nodes in which it's possible to allocate memory
2895   // (in numa terminology, configured nodes).
2896   return Linux::numa_num_configured_nodes();
2897 }
2898 
2899 int os::numa_get_group_id() {
2900   int cpu_id = Linux::sched_getcpu();
2901   if (cpu_id != -1) {
2902     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2903     if (lgrp_id != -1) {
2904       return lgrp_id;
2905     }
2906   }
2907   return 0;
2908 }
2909 
2910 int os::Linux::get_existing_num_nodes() {
2911   size_t node;
2912   size_t highest_node_number = Linux::numa_max_node();
2913   int num_nodes = 0;
2914 
2915   // Get the total number of nodes in the system including nodes without memory.
2916   for (node = 0; node <= highest_node_number; node++) {
2917     if (isnode_in_existing_nodes(node)) {
2918       num_nodes++;
2919     }
2920   }
2921   return num_nodes;
2922 }
2923 
2924 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2925   size_t highest_node_number = Linux::numa_max_node();
2926   size_t i = 0;
2927 
2928   // Map all node ids in which is possible to allocate memory. Also nodes are
2929   // not always consecutively available, i.e. available from 0 to the highest
2930   // node number.
2931   for (size_t node = 0; node <= highest_node_number; node++) {
2932     if (Linux::isnode_in_configured_nodes(node)) {
2933       ids[i++] = node;
2934     }
2935   }
2936   return i;
2937 }
2938 
2939 bool os::get_page_info(char *start, page_info* info) {
2940   return false;
2941 }
2942 
2943 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2944   return end;
2945 }
2946 
2947 
2948 int os::Linux::sched_getcpu_syscall(void) {
2949   unsigned int cpu = 0;
2950   int retval = -1;
2951 
2952 #if defined(IA32)
2953 # ifndef SYS_getcpu
2954 # define SYS_getcpu 318
2955 # endif
2956   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2957 #elif defined(AMD64)
2958 // Unfortunately we have to bring all these macros here from vsyscall.h
2959 // to be able to compile on old linuxes.
2960 # define __NR_vgetcpu 2
2961 # define VSYSCALL_START (-10UL << 20)
2962 # define VSYSCALL_SIZE 1024
2963 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2964   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2965   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2966   retval = vgetcpu(&cpu, NULL, NULL);
2967 #endif
2968 
2969   return (retval == -1) ? retval : cpu;
2970 }
2971 
2972 // Something to do with the numa-aware allocator needs these symbols
2973 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2974 extern "C" JNIEXPORT void numa_error(char *where) { }
2975 extern "C" JNIEXPORT int fork1() { return fork(); }
2976 
2977 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2978 // load symbol from base version instead.
2979 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2980   void *f = dlvsym(handle, name, "libnuma_1.1");
2981   if (f == NULL) {
2982     f = dlsym(handle, name);
2983   }
2984   return f;
2985 }
2986 
2987 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2988 // Return NULL if the symbol is not defined in this particular version.
2989 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2990   return dlvsym(handle, name, "libnuma_1.2");
2991 }
2992 
2993 bool os::Linux::libnuma_init() {
2994   // sched_getcpu() should be in libc.
2995   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2996                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2997 
2998   // If it's not, try a direct syscall.
2999   if (sched_getcpu() == -1)
3000     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
3001 
3002   if (sched_getcpu() != -1) { // Does it work?
3003     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
3004     if (handle != NULL) {
3005       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
3006                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
3007       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
3008                                        libnuma_dlsym(handle, "numa_max_node")));
3009       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
3010                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
3011       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
3012                                         libnuma_dlsym(handle, "numa_available")));
3013       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
3014                                             libnuma_dlsym(handle, "numa_tonode_memory")));
3015       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
3016                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
3017       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
3018                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
3019       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
3020                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
3021       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
3022                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
3023       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
3024                                        libnuma_dlsym(handle, "numa_distance")));
3025 
3026       if (numa_available() != -1) {
3027         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
3028         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
3029         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
3030         // Create an index -> node mapping, since nodes are not always consecutive
3031         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3032         rebuild_nindex_to_node_map();
3033         // Create a cpu -> node mapping
3034         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3035         rebuild_cpu_to_node_map();
3036         return true;
3037       }
3038     }
3039   }
3040   return false;
3041 }
3042 
3043 void os::Linux::rebuild_nindex_to_node_map() {
3044   int highest_node_number = Linux::numa_max_node();
3045 
3046   nindex_to_node()->clear();
3047   for (int node = 0; node <= highest_node_number; node++) {
3048     if (Linux::isnode_in_existing_nodes(node)) {
3049       nindex_to_node()->append(node);
3050     }
3051   }
3052 }
3053 
3054 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
3055 // The table is later used in get_node_by_cpu().
3056 void os::Linux::rebuild_cpu_to_node_map() {
3057   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
3058                               // in libnuma (possible values are starting from 16,
3059                               // and continuing up with every other power of 2, but less
3060                               // than the maximum number of CPUs supported by kernel), and
3061                               // is a subject to change (in libnuma version 2 the requirements
3062                               // are more reasonable) we'll just hardcode the number they use
3063                               // in the library.
3064   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
3065 
3066   size_t cpu_num = processor_count();
3067   size_t cpu_map_size = NCPUS / BitsPerCLong;
3068   size_t cpu_map_valid_size =
3069     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
3070 
3071   cpu_to_node()->clear();
3072   cpu_to_node()->at_grow(cpu_num - 1);
3073 
3074   size_t node_num = get_existing_num_nodes();
3075 
3076   int distance = 0;
3077   int closest_distance = INT_MAX;
3078   int closest_node = 0;
3079   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
3080   for (size_t i = 0; i < node_num; i++) {
3081     // Check if node is configured (not a memory-less node). If it is not, find
3082     // the closest configured node.
3083     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
3084       closest_distance = INT_MAX;
3085       // Check distance from all remaining nodes in the system. Ignore distance
3086       // from itself and from another non-configured node.
3087       for (size_t m = 0; m < node_num; m++) {
3088         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
3089           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
3090           // If a closest node is found, update. There is always at least one
3091           // configured node in the system so there is always at least one node
3092           // close.
3093           if (distance != 0 && distance < closest_distance) {
3094             closest_distance = distance;
3095             closest_node = nindex_to_node()->at(m);
3096           }
3097         }
3098       }
3099      } else {
3100        // Current node is already a configured node.
3101        closest_node = nindex_to_node()->at(i);
3102      }
3103 
3104     // Get cpus from the original node and map them to the closest node. If node
3105     // is a configured node (not a memory-less node), then original node and
3106     // closest node are the same.
3107     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3108       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3109         if (cpu_map[j] != 0) {
3110           for (size_t k = 0; k < BitsPerCLong; k++) {
3111             if (cpu_map[j] & (1UL << k)) {
3112               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3113             }
3114           }
3115         }
3116       }
3117     }
3118   }
3119   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
3120 }
3121 
3122 int os::Linux::get_node_by_cpu(int cpu_id) {
3123   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3124     return cpu_to_node()->at(cpu_id);
3125   }
3126   return -1;
3127 }
3128 
3129 GrowableArray<int>* os::Linux::_cpu_to_node;
3130 GrowableArray<int>* os::Linux::_nindex_to_node;
3131 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3132 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3133 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3134 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3135 os::Linux::numa_available_func_t os::Linux::_numa_available;
3136 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3137 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3138 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3139 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3140 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3141 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3142 unsigned long* os::Linux::_numa_all_nodes;
3143 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3144 struct bitmask* os::Linux::_numa_nodes_ptr;
3145 
3146 bool os::pd_uncommit_memory(char* addr, size_t size) {
3147   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3148                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3149   return res  != (uintptr_t) MAP_FAILED;
3150 }
3151 
3152 static
3153 address get_stack_commited_bottom(address bottom, size_t size) {
3154   address nbot = bottom;
3155   address ntop = bottom + size;
3156 
3157   size_t page_sz = os::vm_page_size();
3158   unsigned pages = size / page_sz;
3159 
3160   unsigned char vec[1];
3161   unsigned imin = 1, imax = pages + 1, imid;
3162   int mincore_return_value = 0;
3163 
3164   assert(imin <= imax, "Unexpected page size");
3165 
3166   while (imin < imax) {
3167     imid = (imax + imin) / 2;
3168     nbot = ntop - (imid * page_sz);
3169 
3170     // Use a trick with mincore to check whether the page is mapped or not.
3171     // mincore sets vec to 1 if page resides in memory and to 0 if page
3172     // is swapped output but if page we are asking for is unmapped
3173     // it returns -1,ENOMEM
3174     mincore_return_value = mincore(nbot, page_sz, vec);
3175 
3176     if (mincore_return_value == -1) {
3177       // Page is not mapped go up
3178       // to find first mapped page
3179       if (errno != EAGAIN) {
3180         assert(errno == ENOMEM, "Unexpected mincore errno");
3181         imax = imid;
3182       }
3183     } else {
3184       // Page is mapped go down
3185       // to find first not mapped page
3186       imin = imid + 1;
3187     }
3188   }
3189 
3190   nbot = nbot + page_sz;
3191 
3192   // Adjust stack bottom one page up if last checked page is not mapped
3193   if (mincore_return_value == -1) {
3194     nbot = nbot + page_sz;
3195   }
3196 
3197   return nbot;
3198 }
3199 
3200 
3201 // Linux uses a growable mapping for the stack, and if the mapping for
3202 // the stack guard pages is not removed when we detach a thread the
3203 // stack cannot grow beyond the pages where the stack guard was
3204 // mapped.  If at some point later in the process the stack expands to
3205 // that point, the Linux kernel cannot expand the stack any further
3206 // because the guard pages are in the way, and a segfault occurs.
3207 //
3208 // However, it's essential not to split the stack region by unmapping
3209 // a region (leaving a hole) that's already part of the stack mapping,
3210 // so if the stack mapping has already grown beyond the guard pages at
3211 // the time we create them, we have to truncate the stack mapping.
3212 // So, we need to know the extent of the stack mapping when
3213 // create_stack_guard_pages() is called.
3214 
3215 // We only need this for stacks that are growable: at the time of
3216 // writing thread stacks don't use growable mappings (i.e. those
3217 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3218 // only applies to the main thread.
3219 
3220 // If the (growable) stack mapping already extends beyond the point
3221 // where we're going to put our guard pages, truncate the mapping at
3222 // that point by munmap()ping it.  This ensures that when we later
3223 // munmap() the guard pages we don't leave a hole in the stack
3224 // mapping. This only affects the main/primordial thread
3225 
3226 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3227 
3228   if (os::is_primordial_thread()) {
3229     // As we manually grow stack up to bottom inside create_attached_thread(),
3230     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3231     // we don't need to do anything special.
3232     // Check it first, before calling heavy function.
3233     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3234     unsigned char vec[1];
3235 
3236     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3237       // Fallback to slow path on all errors, including EAGAIN
3238       stack_extent = (uintptr_t) get_stack_commited_bottom(
3239                                     os::Linux::initial_thread_stack_bottom(),
3240                                     (size_t)addr - stack_extent);
3241     }
3242 
3243     if (stack_extent < (uintptr_t)addr) {
3244       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3245     }
3246   }
3247 
3248   return os::commit_memory(addr, size, !ExecMem);
3249 }
3250 
3251 // If this is a growable mapping, remove the guard pages entirely by
3252 // munmap()ping them.  If not, just call uncommit_memory(). This only
3253 // affects the main/primordial thread, but guard against future OS changes.
3254 // It's safe to always unmap guard pages for primordial thread because we
3255 // always place it right after end of the mapped region.
3256 
3257 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3258   uintptr_t stack_extent, stack_base;
3259 
3260   if (os::is_primordial_thread()) {
3261     return ::munmap(addr, size) == 0;
3262   }
3263 
3264   return os::uncommit_memory(addr, size);
3265 }
3266 
3267 static address _highest_vm_reserved_address = NULL;
3268 
3269 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3270 // at 'requested_addr'. If there are existing memory mappings at the same
3271 // location, however, they will be overwritten. If 'fixed' is false,
3272 // 'requested_addr' is only treated as a hint, the return value may or
3273 // may not start from the requested address. Unlike Linux mmap(), this
3274 // function returns NULL to indicate failure.
3275 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3276   char * addr;
3277   int flags;
3278 
3279   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3280   if (fixed) {
3281     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3282     flags |= MAP_FIXED;
3283   }
3284 
3285   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3286   // touch an uncommitted page. Otherwise, the read/write might
3287   // succeed if we have enough swap space to back the physical page.
3288   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3289                        flags, -1, 0);
3290 
3291   if (addr != MAP_FAILED) {
3292     // anon_mmap() should only get called during VM initialization,
3293     // don't need lock (actually we can skip locking even it can be called
3294     // from multiple threads, because _highest_vm_reserved_address is just a
3295     // hint about the upper limit of non-stack memory regions.)
3296     if ((address)addr + bytes > _highest_vm_reserved_address) {
3297       _highest_vm_reserved_address = (address)addr + bytes;
3298     }
3299   }
3300 
3301   return addr == MAP_FAILED ? NULL : addr;
3302 }
3303 
3304 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3305 //   (req_addr != NULL) or with a given alignment.
3306 //  - bytes shall be a multiple of alignment.
3307 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3308 //  - alignment sets the alignment at which memory shall be allocated.
3309 //     It must be a multiple of allocation granularity.
3310 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3311 //  req_addr or NULL.
3312 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3313 
3314   size_t extra_size = bytes;
3315   if (req_addr == NULL && alignment > 0) {
3316     extra_size += alignment;
3317   }
3318 
3319   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3320     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3321     -1, 0);
3322   if (start == MAP_FAILED) {
3323     start = NULL;
3324   } else {
3325     if (req_addr != NULL) {
3326       if (start != req_addr) {
3327         ::munmap(start, extra_size);
3328         start = NULL;
3329       }
3330     } else {
3331       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3332       char* const end_aligned = start_aligned + bytes;
3333       char* const end = start + extra_size;
3334       if (start_aligned > start) {
3335         ::munmap(start, start_aligned - start);
3336       }
3337       if (end_aligned < end) {
3338         ::munmap(end_aligned, end - end_aligned);
3339       }
3340       start = start_aligned;
3341     }
3342   }
3343   return start;
3344 }
3345 
3346 // Don't update _highest_vm_reserved_address, because there might be memory
3347 // regions above addr + size. If so, releasing a memory region only creates
3348 // a hole in the address space, it doesn't help prevent heap-stack collision.
3349 //
3350 static int anon_munmap(char * addr, size_t size) {
3351   return ::munmap(addr, size) == 0;
3352 }
3353 
3354 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3355                          size_t alignment_hint) {
3356   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3357 }
3358 
3359 bool os::pd_release_memory(char* addr, size_t size) {
3360   return anon_munmap(addr, size);
3361 }
3362 
3363 static address highest_vm_reserved_address() {
3364   return _highest_vm_reserved_address;
3365 }
3366 
3367 static bool linux_mprotect(char* addr, size_t size, int prot) {
3368   // Linux wants the mprotect address argument to be page aligned.
3369   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3370 
3371   // According to SUSv3, mprotect() should only be used with mappings
3372   // established by mmap(), and mmap() always maps whole pages. Unaligned
3373   // 'addr' likely indicates problem in the VM (e.g. trying to change
3374   // protection of malloc'ed or statically allocated memory). Check the
3375   // caller if you hit this assert.
3376   assert(addr == bottom, "sanity check");
3377 
3378   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3379   return ::mprotect(bottom, size, prot) == 0;
3380 }
3381 
3382 // Set protections specified
3383 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3384                         bool is_committed) {
3385   unsigned int p = 0;
3386   switch (prot) {
3387   case MEM_PROT_NONE: p = PROT_NONE; break;
3388   case MEM_PROT_READ: p = PROT_READ; break;
3389   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3390   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3391   default:
3392     ShouldNotReachHere();
3393   }
3394   // is_committed is unused.
3395   return linux_mprotect(addr, bytes, p);
3396 }
3397 
3398 bool os::guard_memory(char* addr, size_t size) {
3399   return linux_mprotect(addr, size, PROT_NONE);
3400 }
3401 
3402 bool os::unguard_memory(char* addr, size_t size) {
3403   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3404 }
3405 
3406 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3407   bool result = false;
3408   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3409                  MAP_ANONYMOUS|MAP_PRIVATE,
3410                  -1, 0);
3411   if (p != MAP_FAILED) {
3412     void *aligned_p = align_ptr_up(p, page_size);
3413 
3414     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3415 
3416     munmap(p, page_size * 2);
3417   }
3418 
3419   if (warn && !result) {
3420     warning("TransparentHugePages is not supported by the operating system.");
3421   }
3422 
3423   return result;
3424 }
3425 
3426 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3427   bool result = false;
3428   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3429                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3430                  -1, 0);
3431 
3432   if (p != MAP_FAILED) {
3433     // We don't know if this really is a huge page or not.
3434     FILE *fp = fopen("/proc/self/maps", "r");
3435     if (fp) {
3436       while (!feof(fp)) {
3437         char chars[257];
3438         long x = 0;
3439         if (fgets(chars, sizeof(chars), fp)) {
3440           if (sscanf(chars, "%lx-%*x", &x) == 1
3441               && x == (long)p) {
3442             if (strstr (chars, "hugepage")) {
3443               result = true;
3444               break;
3445             }
3446           }
3447         }
3448       }
3449       fclose(fp);
3450     }
3451     munmap(p, page_size);
3452   }
3453 
3454   if (warn && !result) {
3455     warning("HugeTLBFS is not supported by the operating system.");
3456   }
3457 
3458   return result;
3459 }
3460 
3461 /*
3462 * Set the coredump_filter bits to include largepages in core dump (bit 6)
3463 *
3464 * From the coredump_filter documentation:
3465 *
3466 * - (bit 0) anonymous private memory
3467 * - (bit 1) anonymous shared memory
3468 * - (bit 2) file-backed private memory
3469 * - (bit 3) file-backed shared memory
3470 * - (bit 4) ELF header pages in file-backed private memory areas (it is
3471 *           effective only if the bit 2 is cleared)
3472 * - (bit 5) hugetlb private memory
3473 * - (bit 6) hugetlb shared memory
3474 */
3475 static void set_coredump_filter(void) {
3476   FILE *f;
3477   long cdm;
3478 
3479   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3480     return;
3481   }
3482 
3483   if (fscanf(f, "%lx", &cdm) != 1) {
3484     fclose(f);
3485     return;
3486   }
3487 
3488   rewind(f);
3489 
3490   if ((cdm & LARGEPAGES_BIT) == 0) {
3491     cdm |= LARGEPAGES_BIT;
3492     fprintf(f, "%#lx", cdm);
3493   }
3494 
3495   fclose(f);
3496 }
3497 
3498 // Large page support
3499 
3500 static size_t _large_page_size = 0;
3501 
3502 size_t os::Linux::find_large_page_size() {
3503   size_t large_page_size = 0;
3504 
3505   // large_page_size on Linux is used to round up heap size. x86 uses either
3506   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3507   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3508   // page as large as 256M.
3509   //
3510   // Here we try to figure out page size by parsing /proc/meminfo and looking
3511   // for a line with the following format:
3512   //    Hugepagesize:     2048 kB
3513   //
3514   // If we can't determine the value (e.g. /proc is not mounted, or the text
3515   // format has been changed), we'll use the largest page size supported by
3516   // the processor.
3517 
3518 #ifndef ZERO
3519   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3520                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3521 #endif // ZERO
3522 
3523   FILE *fp = fopen("/proc/meminfo", "r");
3524   if (fp) {
3525     while (!feof(fp)) {
3526       int x = 0;
3527       char buf[16];
3528       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3529         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3530           large_page_size = x * K;
3531           break;
3532         }
3533       } else {
3534         // skip to next line
3535         for (;;) {
3536           int ch = fgetc(fp);
3537           if (ch == EOF || ch == (int)'\n') break;
3538         }
3539       }
3540     }
3541     fclose(fp);
3542   }
3543 
3544   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3545     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3546         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3547         proper_unit_for_byte_size(large_page_size));
3548   }
3549 
3550   return large_page_size;
3551 }
3552 
3553 size_t os::Linux::setup_large_page_size() {
3554   _large_page_size = Linux::find_large_page_size();
3555   const size_t default_page_size = (size_t)Linux::page_size();
3556   if (_large_page_size > default_page_size) {
3557     _page_sizes[0] = _large_page_size;
3558     _page_sizes[1] = default_page_size;
3559     _page_sizes[2] = 0;
3560   }
3561 
3562   return _large_page_size;
3563 }
3564 
3565 bool os::Linux::setup_large_page_type(size_t page_size) {
3566   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3567       FLAG_IS_DEFAULT(UseSHM) &&
3568       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3569 
3570     // The type of large pages has not been specified by the user.
3571 
3572     // Try UseHugeTLBFS and then UseSHM.
3573     UseHugeTLBFS = UseSHM = true;
3574 
3575     // Don't try UseTransparentHugePages since there are known
3576     // performance issues with it turned on. This might change in the future.
3577     UseTransparentHugePages = false;
3578   }
3579 
3580   if (UseTransparentHugePages) {
3581     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3582     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3583       UseHugeTLBFS = false;
3584       UseSHM = false;
3585       return true;
3586     }
3587     UseTransparentHugePages = false;
3588   }
3589 
3590   if (UseHugeTLBFS) {
3591     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3592     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3593       UseSHM = false;
3594       return true;
3595     }
3596     UseHugeTLBFS = false;
3597   }
3598 
3599   return UseSHM;
3600 }
3601 
3602 void os::large_page_init() {
3603   if (!UseLargePages &&
3604       !UseTransparentHugePages &&
3605       !UseHugeTLBFS &&
3606       !UseSHM) {
3607     // Not using large pages.
3608     return;
3609   }
3610 
3611   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3612     // The user explicitly turned off large pages.
3613     // Ignore the rest of the large pages flags.
3614     UseTransparentHugePages = false;
3615     UseHugeTLBFS = false;
3616     UseSHM = false;
3617     return;
3618   }
3619 
3620   size_t large_page_size = Linux::setup_large_page_size();
3621   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3622 
3623   set_coredump_filter();
3624 }
3625 
3626 #ifndef SHM_HUGETLB
3627 #define SHM_HUGETLB 04000
3628 #endif
3629 
3630 #define shm_warning_format(format, ...)              \
3631   do {                                               \
3632     if (UseLargePages &&                             \
3633         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3634          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3635          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3636       warning(format, __VA_ARGS__);                  \
3637     }                                                \
3638   } while (0)
3639 
3640 #define shm_warning(str) shm_warning_format("%s", str)
3641 
3642 #define shm_warning_with_errno(str)                \
3643   do {                                             \
3644     int err = errno;                               \
3645     shm_warning_format(str " (error = %d)", err);  \
3646   } while (0)
3647 
3648 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3649   assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
3650 
3651   if (!is_size_aligned(alignment, SHMLBA)) {
3652     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3653     return NULL;
3654   }
3655 
3656   // To ensure that we get 'alignment' aligned memory from shmat,
3657   // we pre-reserve aligned virtual memory and then attach to that.
3658 
3659   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3660   if (pre_reserved_addr == NULL) {
3661     // Couldn't pre-reserve aligned memory.
3662     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3663     return NULL;
3664   }
3665 
3666   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3667   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3668 
3669   if ((intptr_t)addr == -1) {
3670     int err = errno;
3671     shm_warning_with_errno("Failed to attach shared memory.");
3672 
3673     assert(err != EACCES, "Unexpected error");
3674     assert(err != EIDRM,  "Unexpected error");
3675     assert(err != EINVAL, "Unexpected error");
3676 
3677     // Since we don't know if the kernel unmapped the pre-reserved memory area
3678     // we can't unmap it, since that would potentially unmap memory that was
3679     // mapped from other threads.
3680     return NULL;
3681   }
3682 
3683   return addr;
3684 }
3685 
3686 static char* shmat_at_address(int shmid, char* req_addr) {
3687   if (!is_ptr_aligned(req_addr, SHMLBA)) {
3688     assert(false, "Requested address needs to be SHMLBA aligned");
3689     return NULL;
3690   }
3691 
3692   char* addr = (char*)shmat(shmid, req_addr, 0);
3693 
3694   if ((intptr_t)addr == -1) {
3695     shm_warning_with_errno("Failed to attach shared memory.");
3696     return NULL;
3697   }
3698 
3699   return addr;
3700 }
3701 
3702 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3703   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3704   if (req_addr != NULL) {
3705     assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3706     assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
3707     return shmat_at_address(shmid, req_addr);
3708   }
3709 
3710   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3711   // return large page size aligned memory addresses when req_addr == NULL.
3712   // However, if the alignment is larger than the large page size, we have
3713   // to manually ensure that the memory returned is 'alignment' aligned.
3714   if (alignment > os::large_page_size()) {
3715     assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3716     return shmat_with_alignment(shmid, bytes, alignment);
3717   } else {
3718     return shmat_at_address(shmid, NULL);
3719   }
3720 }
3721 
3722 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3723   // "exec" is passed in but not used.  Creating the shared image for
3724   // the code cache doesn't have an SHM_X executable permission to check.
3725   assert(UseLargePages && UseSHM, "only for SHM large pages");
3726   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3727   assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
3728 
3729   if (!is_size_aligned(bytes, os::large_page_size())) {
3730     return NULL; // Fallback to small pages.
3731   }
3732 
3733   // Create a large shared memory region to attach to based on size.
3734   // Currently, size is the total size of the heap.
3735   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3736   if (shmid == -1) {
3737     // Possible reasons for shmget failure:
3738     // 1. shmmax is too small for Java heap.
3739     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3740     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3741     // 2. not enough large page memory.
3742     //    > check available large pages: cat /proc/meminfo
3743     //    > increase amount of large pages:
3744     //          echo new_value > /proc/sys/vm/nr_hugepages
3745     //      Note 1: different Linux may use different name for this property,
3746     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3747     //      Note 2: it's possible there's enough physical memory available but
3748     //            they are so fragmented after a long run that they can't
3749     //            coalesce into large pages. Try to reserve large pages when
3750     //            the system is still "fresh".
3751     shm_warning_with_errno("Failed to reserve shared memory.");
3752     return NULL;
3753   }
3754 
3755   // Attach to the region.
3756   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3757 
3758   // Remove shmid. If shmat() is successful, the actual shared memory segment
3759   // will be deleted when it's detached by shmdt() or when the process
3760   // terminates. If shmat() is not successful this will remove the shared
3761   // segment immediately.
3762   shmctl(shmid, IPC_RMID, NULL);
3763 
3764   return addr;
3765 }
3766 
3767 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3768   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3769 
3770   bool warn_on_failure = UseLargePages &&
3771       (!FLAG_IS_DEFAULT(UseLargePages) ||
3772        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3773        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3774 
3775   if (warn_on_failure) {
3776     char msg[128];
3777     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3778         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3779     warning("%s", msg);
3780   }
3781 }
3782 
3783 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3784   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3785   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3786   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3787 
3788   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3789   char* addr = (char*)::mmap(req_addr, bytes, prot,
3790                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3791                              -1, 0);
3792 
3793   if (addr == MAP_FAILED) {
3794     warn_on_large_pages_failure(req_addr, bytes, errno);
3795     return NULL;
3796   }
3797 
3798   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3799 
3800   return addr;
3801 }
3802 
3803 // Reserve memory using mmap(MAP_HUGETLB).
3804 //  - bytes shall be a multiple of alignment.
3805 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3806 //  - alignment sets the alignment at which memory shall be allocated.
3807 //     It must be a multiple of allocation granularity.
3808 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3809 //  req_addr or NULL.
3810 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3811   size_t large_page_size = os::large_page_size();
3812   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3813 
3814   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3815   assert(is_size_aligned(bytes, alignment), "Must be");
3816 
3817   // First reserve - but not commit - the address range in small pages.
3818   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3819 
3820   if (start == NULL) {
3821     return NULL;
3822   }
3823 
3824   assert(is_ptr_aligned(start, alignment), "Must be");
3825 
3826   char* end = start + bytes;
3827 
3828   // Find the regions of the allocated chunk that can be promoted to large pages.
3829   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3830   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3831 
3832   size_t lp_bytes = lp_end - lp_start;
3833 
3834   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3835 
3836   if (lp_bytes == 0) {
3837     // The mapped region doesn't even span the start and the end of a large page.
3838     // Fall back to allocate a non-special area.
3839     ::munmap(start, end - start);
3840     return NULL;
3841   }
3842 
3843   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3844 
3845   void* result;
3846 
3847   // Commit small-paged leading area.
3848   if (start != lp_start) {
3849     result = ::mmap(start, lp_start - start, prot,
3850                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3851                     -1, 0);
3852     if (result == MAP_FAILED) {
3853       ::munmap(lp_start, end - lp_start);
3854       return NULL;
3855     }
3856   }
3857 
3858   // Commit large-paged area.
3859   result = ::mmap(lp_start, lp_bytes, prot,
3860                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3861                   -1, 0);
3862   if (result == MAP_FAILED) {
3863     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3864     // If the mmap above fails, the large pages region will be unmapped and we
3865     // have regions before and after with small pages. Release these regions.
3866     //
3867     // |  mapped  |  unmapped  |  mapped  |
3868     // ^          ^            ^          ^
3869     // start      lp_start     lp_end     end
3870     //
3871     ::munmap(start, lp_start - start);
3872     ::munmap(lp_end, end - lp_end);
3873     return NULL;
3874   }
3875 
3876   // Commit small-paged trailing area.
3877   if (lp_end != end) {
3878       result = ::mmap(lp_end, end - lp_end, prot,
3879                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3880                       -1, 0);
3881     if (result == MAP_FAILED) {
3882       ::munmap(start, lp_end - start);
3883       return NULL;
3884     }
3885   }
3886 
3887   return start;
3888 }
3889 
3890 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3891   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3892   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3893   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3894   assert(is_power_of_2(os::large_page_size()), "Must be");
3895   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3896 
3897   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3898     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3899   } else {
3900     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3901   }
3902 }
3903 
3904 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3905   assert(UseLargePages, "only for large pages");
3906 
3907   char* addr;
3908   if (UseSHM) {
3909     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3910   } else {
3911     assert(UseHugeTLBFS, "must be");
3912     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3913   }
3914 
3915   if (addr != NULL) {
3916     if (UseNUMAInterleaving) {
3917       numa_make_global(addr, bytes);
3918     }
3919 
3920     // The memory is committed
3921     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3922   }
3923 
3924   return addr;
3925 }
3926 
3927 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3928   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3929   return shmdt(base) == 0;
3930 }
3931 
3932 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3933   return pd_release_memory(base, bytes);
3934 }
3935 
3936 bool os::release_memory_special(char* base, size_t bytes) {
3937   bool res;
3938   if (MemTracker::tracking_level() > NMT_minimal) {
3939     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3940     res = os::Linux::release_memory_special_impl(base, bytes);
3941     if (res) {
3942       tkr.record((address)base, bytes);
3943     }
3944 
3945   } else {
3946     res = os::Linux::release_memory_special_impl(base, bytes);
3947   }
3948   return res;
3949 }
3950 
3951 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3952   assert(UseLargePages, "only for large pages");
3953   bool res;
3954 
3955   if (UseSHM) {
3956     res = os::Linux::release_memory_special_shm(base, bytes);
3957   } else {
3958     assert(UseHugeTLBFS, "must be");
3959     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3960   }
3961   return res;
3962 }
3963 
3964 size_t os::large_page_size() {
3965   return _large_page_size;
3966 }
3967 
3968 // With SysV SHM the entire memory region must be allocated as shared
3969 // memory.
3970 // HugeTLBFS allows application to commit large page memory on demand.
3971 // However, when committing memory with HugeTLBFS fails, the region
3972 // that was supposed to be committed will lose the old reservation
3973 // and allow other threads to steal that memory region. Because of this
3974 // behavior we can't commit HugeTLBFS memory.
3975 bool os::can_commit_large_page_memory() {
3976   return UseTransparentHugePages;
3977 }
3978 
3979 bool os::can_execute_large_page_memory() {
3980   return UseTransparentHugePages || UseHugeTLBFS;
3981 }
3982 
3983 // Reserve memory at an arbitrary address, only if that area is
3984 // available (and not reserved for something else).
3985 
3986 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3987   const int max_tries = 10;
3988   char* base[max_tries];
3989   size_t size[max_tries];
3990   const size_t gap = 0x000000;
3991 
3992   // Assert only that the size is a multiple of the page size, since
3993   // that's all that mmap requires, and since that's all we really know
3994   // about at this low abstraction level.  If we need higher alignment,
3995   // we can either pass an alignment to this method or verify alignment
3996   // in one of the methods further up the call chain.  See bug 5044738.
3997   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3998 
3999   // Repeatedly allocate blocks until the block is allocated at the
4000   // right spot. Give up after max_tries. Note that reserve_memory() will
4001   // automatically update _highest_vm_reserved_address if the call is
4002   // successful. The variable tracks the highest memory address every reserved
4003   // by JVM. It is used to detect heap-stack collision if running with
4004   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
4005   // space than needed, it could confuse the collision detecting code. To
4006   // solve the problem, save current _highest_vm_reserved_address and
4007   // calculate the correct value before return.
4008   address old_highest = _highest_vm_reserved_address;
4009 
4010   // Linux mmap allows caller to pass an address as hint; give it a try first,
4011   // if kernel honors the hint then we can return immediately.
4012   char * addr = anon_mmap(requested_addr, bytes, false);
4013   if (addr == requested_addr) {
4014      return requested_addr;
4015   }
4016 
4017   if (addr != NULL) {
4018      // mmap() is successful but it fails to reserve at the requested address
4019      anon_munmap(addr, bytes);
4020   }
4021 
4022   int i;
4023   for (i = 0; i < max_tries; ++i) {
4024     base[i] = reserve_memory(bytes);
4025 
4026     if (base[i] != NULL) {
4027       // Is this the block we wanted?
4028       if (base[i] == requested_addr) {
4029         size[i] = bytes;
4030         break;
4031       }
4032 
4033       // Does this overlap the block we wanted? Give back the overlapped
4034       // parts and try again.
4035 
4036       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
4037       if (top_overlap >= 0 && top_overlap < bytes) {
4038         unmap_memory(base[i], top_overlap);
4039         base[i] += top_overlap;
4040         size[i] = bytes - top_overlap;
4041       } else {
4042         size_t bottom_overlap = base[i] + bytes - requested_addr;
4043         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
4044           unmap_memory(requested_addr, bottom_overlap);
4045           size[i] = bytes - bottom_overlap;
4046         } else {
4047           size[i] = bytes;
4048         }
4049       }
4050     }
4051   }
4052 
4053   // Give back the unused reserved pieces.
4054 
4055   for (int j = 0; j < i; ++j) {
4056     if (base[j] != NULL) {
4057       unmap_memory(base[j], size[j]);
4058     }
4059   }
4060 
4061   if (i < max_tries) {
4062     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
4063     return requested_addr;
4064   } else {
4065     _highest_vm_reserved_address = old_highest;
4066     return NULL;
4067   }
4068 }
4069 
4070 size_t os::read(int fd, void *buf, unsigned int nBytes) {
4071   return ::read(fd, buf, nBytes);
4072 }
4073 
4074 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4075   return ::pread(fd, buf, nBytes, offset);
4076 }
4077 
4078 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
4079 // Solaris uses poll(), linux uses park().
4080 // Poll() is likely a better choice, assuming that Thread.interrupt()
4081 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
4082 // SIGSEGV, see 4355769.
4083 
4084 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
4085   assert(thread == Thread::current(),  "thread consistency check");
4086 
4087   ParkEvent * const slp = thread->_SleepEvent ;
4088   slp->reset() ;
4089   OrderAccess::fence() ;
4090 
4091   if (interruptible) {
4092     jlong prevtime = javaTimeNanos();
4093 
4094     for (;;) {
4095       if (os::is_interrupted(thread, true)) {
4096         return OS_INTRPT;
4097       }
4098 
4099       jlong newtime = javaTimeNanos();
4100 
4101       if (newtime - prevtime < 0) {
4102         // time moving backwards, should only happen if no monotonic clock
4103         // not a guarantee() because JVM should not abort on kernel/glibc bugs
4104         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
4105       } else {
4106         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
4107       }
4108 
4109       if(millis <= 0) {
4110         return OS_OK;
4111       }
4112 
4113       prevtime = newtime;
4114 
4115       {
4116         assert(thread->is_Java_thread(), "sanity check");
4117         JavaThread *jt = (JavaThread *) thread;
4118         ThreadBlockInVM tbivm(jt);
4119         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
4120 
4121         jt->set_suspend_equivalent();
4122         // cleared by handle_special_suspend_equivalent_condition() or
4123         // java_suspend_self() via check_and_wait_while_suspended()
4124 
4125         slp->park(millis);
4126 
4127         // were we externally suspended while we were waiting?
4128         jt->check_and_wait_while_suspended();
4129       }
4130     }
4131   } else {
4132     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4133     jlong prevtime = javaTimeNanos();
4134 
4135     for (;;) {
4136       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
4137       // the 1st iteration ...
4138       jlong newtime = javaTimeNanos();
4139 
4140       if (newtime - prevtime < 0) {
4141         // time moving backwards, should only happen if no monotonic clock
4142         // not a guarantee() because JVM should not abort on kernel/glibc bugs
4143         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
4144       } else {
4145         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
4146       }
4147 
4148       if(millis <= 0) break ;
4149 
4150       prevtime = newtime;
4151       slp->park(millis);
4152     }
4153     return OS_OK ;
4154   }
4155 }
4156 
4157 //
4158 // Short sleep, direct OS call.
4159 //
4160 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
4161 // sched_yield(2) will actually give up the CPU:
4162 //
4163 //   * Alone on this pariticular CPU, keeps running.
4164 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
4165 //     (pre 2.6.39).
4166 //
4167 // So calling this with 0 is an alternative.
4168 //
4169 void os::naked_short_sleep(jlong ms) {
4170   struct timespec req;
4171 
4172   assert(ms < 1000, "Un-interruptable sleep, short time use only");
4173   req.tv_sec = 0;
4174   if (ms > 0) {
4175     req.tv_nsec = (ms % 1000) * 1000000;
4176   }
4177   else {
4178     req.tv_nsec = 1;
4179   }
4180 
4181   nanosleep(&req, NULL);
4182 
4183   return;
4184 }
4185 
4186 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4187 void os::infinite_sleep() {
4188   while (true) {    // sleep forever ...
4189     ::sleep(100);   // ... 100 seconds at a time
4190   }
4191 }
4192 
4193 // Used to convert frequent JVM_Yield() to nops
4194 bool os::dont_yield() {
4195   return DontYieldALot;
4196 }
4197 
4198 void os::yield() {
4199   sched_yield();
4200 }
4201 
4202 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
4203 
4204 void os::yield_all(int attempts) {
4205   // Yields to all threads, including threads with lower priorities
4206   // Threads on Linux are all with same priority. The Solaris style
4207   // os::yield_all() with nanosleep(1ms) is not necessary.
4208   sched_yield();
4209 }
4210 
4211 // Called from the tight loops to possibly influence time-sharing heuristics
4212 void os::loop_breaker(int attempts) {
4213   os::yield_all(attempts);
4214 }
4215 
4216 ////////////////////////////////////////////////////////////////////////////////
4217 // thread priority support
4218 
4219 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4220 // only supports dynamic priority, static priority must be zero. For real-time
4221 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4222 // However, for large multi-threaded applications, SCHED_RR is not only slower
4223 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4224 // of 5 runs - Sep 2005).
4225 //
4226 // The following code actually changes the niceness of kernel-thread/LWP. It
4227 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4228 // not the entire user process, and user level threads are 1:1 mapped to kernel
4229 // threads. It has always been the case, but could change in the future. For
4230 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4231 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
4232 
4233 int os::java_to_os_priority[CriticalPriority + 1] = {
4234   19,              // 0 Entry should never be used
4235 
4236    4,              // 1 MinPriority
4237    3,              // 2
4238    2,              // 3
4239 
4240    1,              // 4
4241    0,              // 5 NormPriority
4242   -1,              // 6
4243 
4244   -2,              // 7
4245   -3,              // 8
4246   -4,              // 9 NearMaxPriority
4247 
4248   -5,              // 10 MaxPriority
4249 
4250   -5               // 11 CriticalPriority
4251 };
4252 
4253 static int prio_init() {
4254   if (ThreadPriorityPolicy == 1) {
4255     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4256     // if effective uid is not root. Perhaps, a more elegant way of doing
4257     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4258     if (geteuid() != 0) {
4259       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4260         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4261       }
4262       ThreadPriorityPolicy = 0;
4263     }
4264   }
4265   if (UseCriticalJavaThreadPriority) {
4266     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4267   }
4268   return 0;
4269 }
4270 
4271 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4272   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
4273 
4274   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4275   return (ret == 0) ? OS_OK : OS_ERR;
4276 }
4277 
4278 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
4279   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
4280     *priority_ptr = java_to_os_priority[NormPriority];
4281     return OS_OK;
4282   }
4283 
4284   errno = 0;
4285   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4286   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4287 }
4288 
4289 // Hint to the underlying OS that a task switch would not be good.
4290 // Void return because it's a hint and can fail.
4291 void os::hint_no_preempt() {}
4292 
4293 ////////////////////////////////////////////////////////////////////////////////
4294 // suspend/resume support
4295 
4296 //  the low-level signal-based suspend/resume support is a remnant from the
4297 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4298 //  within hotspot. Now there is a single use-case for this:
4299 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
4300 //      that runs in the watcher thread.
4301 //  The remaining code is greatly simplified from the more general suspension
4302 //  code that used to be used.
4303 //
4304 //  The protocol is quite simple:
4305 //  - suspend:
4306 //      - sends a signal to the target thread
4307 //      - polls the suspend state of the osthread using a yield loop
4308 //      - target thread signal handler (SR_handler) sets suspend state
4309 //        and blocks in sigsuspend until continued
4310 //  - resume:
4311 //      - sets target osthread state to continue
4312 //      - sends signal to end the sigsuspend loop in the SR_handler
4313 //
4314 //  Note that the SR_lock plays no role in this suspend/resume protocol.
4315 //
4316 
4317 static void resume_clear_context(OSThread *osthread) {
4318   osthread->set_ucontext(NULL);
4319   osthread->set_siginfo(NULL);
4320 }
4321 
4322 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
4323   osthread->set_ucontext(context);
4324   osthread->set_siginfo(siginfo);
4325 }
4326 
4327 //
4328 // Handler function invoked when a thread's execution is suspended or
4329 // resumed. We have to be careful that only async-safe functions are
4330 // called here (Note: most pthread functions are not async safe and
4331 // should be avoided.)
4332 //
4333 // Note: sigwait() is a more natural fit than sigsuspend() from an
4334 // interface point of view, but sigwait() prevents the signal hander
4335 // from being run. libpthread would get very confused by not having
4336 // its signal handlers run and prevents sigwait()'s use with the
4337 // mutex granting granting signal.
4338 //
4339 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4340 //
4341 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4342   // Save and restore errno to avoid confusing native code with EINTR
4343   // after sigsuspend.
4344   int old_errno = errno;
4345 
4346   Thread* thread = Thread::current();
4347   OSThread* osthread = thread->osthread();
4348   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4349 
4350   os::SuspendResume::State current = osthread->sr.state();
4351   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4352     suspend_save_context(osthread, siginfo, context);
4353 
4354     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4355     os::SuspendResume::State state = osthread->sr.suspended();
4356     if (state == os::SuspendResume::SR_SUSPENDED) {
4357       sigset_t suspend_set;  // signals for sigsuspend()
4358 
4359       // get current set of blocked signals and unblock resume signal
4360       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4361       sigdelset(&suspend_set, SR_signum);
4362 
4363       sr_semaphore.signal();
4364       // wait here until we are resumed
4365       while (1) {
4366         sigsuspend(&suspend_set);
4367 
4368         os::SuspendResume::State result = osthread->sr.running();
4369         if (result == os::SuspendResume::SR_RUNNING) {
4370           sr_semaphore.signal();
4371           break;
4372         }
4373       }
4374 
4375     } else if (state == os::SuspendResume::SR_RUNNING) {
4376       // request was cancelled, continue
4377     } else {
4378       ShouldNotReachHere();
4379     }
4380 
4381     resume_clear_context(osthread);
4382   } else if (current == os::SuspendResume::SR_RUNNING) {
4383     // request was cancelled, continue
4384   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4385     // ignore
4386   } else {
4387     // ignore
4388   }
4389 
4390   errno = old_errno;
4391 }
4392 
4393 
4394 static int SR_initialize() {
4395   struct sigaction act;
4396   char *s;
4397   /* Get signal number to use for suspend/resume */
4398   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4399     int sig = ::strtol(s, 0, 10);
4400     if (sig > 0 || sig < _NSIG) {
4401         SR_signum = sig;
4402     }
4403   }
4404 
4405   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4406         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4407 
4408   sigemptyset(&SR_sigset);
4409   sigaddset(&SR_sigset, SR_signum);
4410 
4411   /* Set up signal handler for suspend/resume */
4412   act.sa_flags = SA_RESTART|SA_SIGINFO;
4413   act.sa_handler = (void (*)(int)) SR_handler;
4414 
4415   // SR_signum is blocked by default.
4416   // 4528190 - We also need to block pthread restart signal (32 on all
4417   // supported Linux platforms). Note that LinuxThreads need to block
4418   // this signal for all threads to work properly. So we don't have
4419   // to use hard-coded signal number when setting up the mask.
4420   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4421 
4422   if (sigaction(SR_signum, &act, 0) == -1) {
4423     return -1;
4424   }
4425 
4426   // Save signal flag
4427   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4428   return 0;
4429 }
4430 
4431 static int sr_notify(OSThread* osthread) {
4432   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4433   assert_status(status == 0, status, "pthread_kill");
4434   return status;
4435 }
4436 
4437 // "Randomly" selected value for how long we want to spin
4438 // before bailing out on suspending a thread, also how often
4439 // we send a signal to a thread we want to resume
4440 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4441 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4442 
4443 // returns true on success and false on error - really an error is fatal
4444 // but this seems the normal response to library errors
4445 static bool do_suspend(OSThread* osthread) {
4446   assert(osthread->sr.is_running(), "thread should be running");
4447   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4448 
4449   // mark as suspended and send signal
4450   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4451     // failed to switch, state wasn't running?
4452     ShouldNotReachHere();
4453     return false;
4454   }
4455 
4456   if (sr_notify(osthread) != 0) {
4457     ShouldNotReachHere();
4458   }
4459 
4460   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4461   while (true) {
4462     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4463       break;
4464     } else {
4465       // timeout
4466       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4467       if (cancelled == os::SuspendResume::SR_RUNNING) {
4468         return false;
4469       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4470         // make sure that we consume the signal on the semaphore as well
4471         sr_semaphore.wait();
4472         break;
4473       } else {
4474         ShouldNotReachHere();
4475         return false;
4476       }
4477     }
4478   }
4479 
4480   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4481   return true;
4482 }
4483 
4484 static void do_resume(OSThread* osthread) {
4485   assert(osthread->sr.is_suspended(), "thread should be suspended");
4486   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4487 
4488   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4489     // failed to switch to WAKEUP_REQUEST
4490     ShouldNotReachHere();
4491     return;
4492   }
4493 
4494   while (true) {
4495     if (sr_notify(osthread) == 0) {
4496       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4497         if (osthread->sr.is_running()) {
4498           return;
4499         }
4500       }
4501     } else {
4502       ShouldNotReachHere();
4503     }
4504   }
4505 
4506   guarantee(osthread->sr.is_running(), "Must be running!");
4507 }
4508 
4509 ////////////////////////////////////////////////////////////////////////////////
4510 // interrupt support
4511 
4512 void os::interrupt(Thread* thread) {
4513   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4514     "possibility of dangling Thread pointer");
4515 
4516   OSThread* osthread = thread->osthread();
4517 
4518   if (!osthread->interrupted()) {
4519     osthread->set_interrupted(true);
4520     // More than one thread can get here with the same value of osthread,
4521     // resulting in multiple notifications.  We do, however, want the store
4522     // to interrupted() to be visible to other threads before we execute unpark().
4523     OrderAccess::fence();
4524     ParkEvent * const slp = thread->_SleepEvent ;
4525     if (slp != NULL) slp->unpark() ;
4526   }
4527 
4528   // For JSR166. Unpark even if interrupt status already was set
4529   if (thread->is_Java_thread())
4530     ((JavaThread*)thread)->parker()->unpark();
4531 
4532   ParkEvent * ev = thread->_ParkEvent ;
4533   if (ev != NULL) ev->unpark() ;
4534 
4535 }
4536 
4537 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
4538   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4539     "possibility of dangling Thread pointer");
4540 
4541   OSThread* osthread = thread->osthread();
4542 
4543   bool interrupted = osthread->interrupted();
4544 
4545   if (interrupted && clear_interrupted) {
4546     osthread->set_interrupted(false);
4547     // consider thread->_SleepEvent->reset() ... optional optimization
4548   }
4549 
4550   return interrupted;
4551 }
4552 
4553 ///////////////////////////////////////////////////////////////////////////////////
4554 // signal handling (except suspend/resume)
4555 
4556 // This routine may be used by user applications as a "hook" to catch signals.
4557 // The user-defined signal handler must pass unrecognized signals to this
4558 // routine, and if it returns true (non-zero), then the signal handler must
4559 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4560 // routine will never retun false (zero), but instead will execute a VM panic
4561 // routine kill the process.
4562 //
4563 // If this routine returns false, it is OK to call it again.  This allows
4564 // the user-defined signal handler to perform checks either before or after
4565 // the VM performs its own checks.  Naturally, the user code would be making
4566 // a serious error if it tried to handle an exception (such as a null check
4567 // or breakpoint) that the VM was generating for its own correct operation.
4568 //
4569 // This routine may recognize any of the following kinds of signals:
4570 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4571 // It should be consulted by handlers for any of those signals.
4572 //
4573 // The caller of this routine must pass in the three arguments supplied
4574 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4575 // field of the structure passed to sigaction().  This routine assumes that
4576 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4577 //
4578 // Note that the VM will print warnings if it detects conflicting signal
4579 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4580 //
4581 extern "C" JNIEXPORT int
4582 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4583                         void* ucontext, int abort_if_unrecognized);
4584 
4585 void signalHandler(int sig, siginfo_t* info, void* uc) {
4586   assert(info != NULL && uc != NULL, "it must be old kernel");
4587   int orig_errno = errno;  // Preserve errno value over signal handler.
4588   JVM_handle_linux_signal(sig, info, uc, true);
4589   errno = orig_errno;
4590 }
4591 
4592 
4593 // This boolean allows users to forward their own non-matching signals
4594 // to JVM_handle_linux_signal, harmlessly.
4595 bool os::Linux::signal_handlers_are_installed = false;
4596 
4597 // For signal-chaining
4598 struct sigaction os::Linux::sigact[MAXSIGNUM];
4599 unsigned int os::Linux::sigs = 0;
4600 bool os::Linux::libjsig_is_loaded = false;
4601 typedef struct sigaction *(*get_signal_t)(int);
4602 get_signal_t os::Linux::get_signal_action = NULL;
4603 
4604 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4605   struct sigaction *actp = NULL;
4606 
4607   if (libjsig_is_loaded) {
4608     // Retrieve the old signal handler from libjsig
4609     actp = (*get_signal_action)(sig);
4610   }
4611   if (actp == NULL) {
4612     // Retrieve the preinstalled signal handler from jvm
4613     actp = get_preinstalled_handler(sig);
4614   }
4615 
4616   return actp;
4617 }
4618 
4619 static bool call_chained_handler(struct sigaction *actp, int sig,
4620                                  siginfo_t *siginfo, void *context) {
4621   // Call the old signal handler
4622   if (actp->sa_handler == SIG_DFL) {
4623     // It's more reasonable to let jvm treat it as an unexpected exception
4624     // instead of taking the default action.
4625     return false;
4626   } else if (actp->sa_handler != SIG_IGN) {
4627     if ((actp->sa_flags & SA_NODEFER) == 0) {
4628       // automaticlly block the signal
4629       sigaddset(&(actp->sa_mask), sig);
4630     }
4631 
4632     sa_handler_t hand = NULL;
4633     sa_sigaction_t sa = NULL;
4634     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4635     // retrieve the chained handler
4636     if (siginfo_flag_set) {
4637       sa = actp->sa_sigaction;
4638     } else {
4639       hand = actp->sa_handler;
4640     }
4641 
4642     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4643       actp->sa_handler = SIG_DFL;
4644     }
4645 
4646     // try to honor the signal mask
4647     sigset_t oset;
4648     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4649 
4650     // call into the chained handler
4651     if (siginfo_flag_set) {
4652       (*sa)(sig, siginfo, context);
4653     } else {
4654       (*hand)(sig);
4655     }
4656 
4657     // restore the signal mask
4658     pthread_sigmask(SIG_SETMASK, &oset, 0);
4659   }
4660   // Tell jvm's signal handler the signal is taken care of.
4661   return true;
4662 }
4663 
4664 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4665   bool chained = false;
4666   // signal-chaining
4667   if (UseSignalChaining) {
4668     struct sigaction *actp = get_chained_signal_action(sig);
4669     if (actp != NULL) {
4670       chained = call_chained_handler(actp, sig, siginfo, context);
4671     }
4672   }
4673   return chained;
4674 }
4675 
4676 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4677   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4678     return &sigact[sig];
4679   }
4680   return NULL;
4681 }
4682 
4683 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4684   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4685   sigact[sig] = oldAct;
4686   sigs |= (unsigned int)1 << sig;
4687 }
4688 
4689 // for diagnostic
4690 int os::Linux::sigflags[MAXSIGNUM];
4691 
4692 int os::Linux::get_our_sigflags(int sig) {
4693   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4694   return sigflags[sig];
4695 }
4696 
4697 void os::Linux::set_our_sigflags(int sig, int flags) {
4698   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4699   sigflags[sig] = flags;
4700 }
4701 
4702 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4703   // Check for overwrite.
4704   struct sigaction oldAct;
4705   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4706 
4707   void* oldhand = oldAct.sa_sigaction
4708                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4709                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4710   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4711       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4712       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4713     if (AllowUserSignalHandlers || !set_installed) {
4714       // Do not overwrite; user takes responsibility to forward to us.
4715       return;
4716     } else if (UseSignalChaining) {
4717       // save the old handler in jvm
4718       save_preinstalled_handler(sig, oldAct);
4719       // libjsig also interposes the sigaction() call below and saves the
4720       // old sigaction on it own.
4721     } else {
4722       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4723                     "%#lx for signal %d.", (long)oldhand, sig));
4724     }
4725   }
4726 
4727   struct sigaction sigAct;
4728   sigfillset(&(sigAct.sa_mask));
4729   sigAct.sa_handler = SIG_DFL;
4730   if (!set_installed) {
4731     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4732   } else {
4733     sigAct.sa_sigaction = signalHandler;
4734     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4735   }
4736   // Save flags, which are set by ours
4737   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4738   sigflags[sig] = sigAct.sa_flags;
4739 
4740   int ret = sigaction(sig, &sigAct, &oldAct);
4741   assert(ret == 0, "check");
4742 
4743   void* oldhand2  = oldAct.sa_sigaction
4744                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4745                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4746   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4747 }
4748 
4749 // install signal handlers for signals that HotSpot needs to
4750 // handle in order to support Java-level exception handling.
4751 
4752 void os::Linux::install_signal_handlers() {
4753   if (!signal_handlers_are_installed) {
4754     signal_handlers_are_installed = true;
4755 
4756     // signal-chaining
4757     typedef void (*signal_setting_t)();
4758     signal_setting_t begin_signal_setting = NULL;
4759     signal_setting_t end_signal_setting = NULL;
4760     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4761                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4762     if (begin_signal_setting != NULL) {
4763       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4764                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4765       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4766                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4767       libjsig_is_loaded = true;
4768       assert(UseSignalChaining, "should enable signal-chaining");
4769     }
4770     if (libjsig_is_loaded) {
4771       // Tell libjsig jvm is setting signal handlers
4772       (*begin_signal_setting)();
4773     }
4774 
4775     set_signal_handler(SIGSEGV, true);
4776     set_signal_handler(SIGPIPE, true);
4777     set_signal_handler(SIGBUS, true);
4778     set_signal_handler(SIGILL, true);
4779     set_signal_handler(SIGFPE, true);
4780 #if defined(PPC64)
4781     set_signal_handler(SIGTRAP, true);
4782 #endif
4783     set_signal_handler(SIGXFSZ, true);
4784 
4785     if (libjsig_is_loaded) {
4786       // Tell libjsig jvm finishes setting signal handlers
4787       (*end_signal_setting)();
4788     }
4789 
4790     // We don't activate signal checker if libjsig is in place, we trust ourselves
4791     // and if UserSignalHandler is installed all bets are off.
4792     // Log that signal checking is off only if -verbose:jni is specified.
4793     if (CheckJNICalls) {
4794       if (libjsig_is_loaded) {
4795         if (PrintJNIResolving) {
4796           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4797         }
4798         check_signals = false;
4799       }
4800       if (AllowUserSignalHandlers) {
4801         if (PrintJNIResolving) {
4802           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4803         }
4804         check_signals = false;
4805       }
4806     }
4807   }
4808 }
4809 
4810 // This is the fastest way to get thread cpu time on Linux.
4811 // Returns cpu time (user+sys) for any thread, not only for current.
4812 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4813 // It might work on 2.6.10+ with a special kernel/glibc patch.
4814 // For reference, please, see IEEE Std 1003.1-2004:
4815 //   http://www.unix.org/single_unix_specification
4816 
4817 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4818   struct timespec tp;
4819   int rc = os::Linux::clock_gettime(clockid, &tp);
4820   assert(rc == 0, "clock_gettime is expected to return 0 code");
4821 
4822   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4823 }
4824 
4825 /////
4826 // glibc on Linux platform uses non-documented flag
4827 // to indicate, that some special sort of signal
4828 // trampoline is used.
4829 // We will never set this flag, and we should
4830 // ignore this flag in our diagnostic
4831 #ifdef SIGNIFICANT_SIGNAL_MASK
4832 #undef SIGNIFICANT_SIGNAL_MASK
4833 #endif
4834 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4835 
4836 static const char* get_signal_handler_name(address handler,
4837                                            char* buf, int buflen) {
4838   int offset = 0;
4839   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4840   if (found) {
4841     // skip directory names
4842     const char *p1, *p2;
4843     p1 = buf;
4844     size_t len = strlen(os::file_separator());
4845     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4846     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4847   } else {
4848     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4849   }
4850   return buf;
4851 }
4852 
4853 static void print_signal_handler(outputStream* st, int sig,
4854                                  char* buf, size_t buflen) {
4855   struct sigaction sa;
4856 
4857   sigaction(sig, NULL, &sa);
4858 
4859   // See comment for SIGNIFICANT_SIGNAL_MASK define
4860   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4861 
4862   st->print("%s: ", os::exception_name(sig, buf, buflen));
4863 
4864   address handler = (sa.sa_flags & SA_SIGINFO)
4865     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4866     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4867 
4868   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4869     st->print("SIG_DFL");
4870   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4871     st->print("SIG_IGN");
4872   } else {
4873     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4874   }
4875 
4876   st->print(", sa_mask[0]=");
4877   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4878 
4879   address rh = VMError::get_resetted_sighandler(sig);
4880   // May be, handler was resetted by VMError?
4881   if(rh != NULL) {
4882     handler = rh;
4883     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4884   }
4885 
4886   st->print(", sa_flags=");
4887   os::Posix::print_sa_flags(st, sa.sa_flags);
4888 
4889   // Check: is it our handler?
4890   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4891      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4892     // It is our signal handler
4893     // check for flags, reset system-used one!
4894     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4895       st->print(
4896                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4897                 os::Linux::get_our_sigflags(sig));
4898     }
4899   }
4900   st->cr();
4901 }
4902 
4903 
4904 #define DO_SIGNAL_CHECK(sig) \
4905   if (!sigismember(&check_signal_done, sig)) \
4906     os::Linux::check_signal_handler(sig)
4907 
4908 // This method is a periodic task to check for misbehaving JNI applications
4909 // under CheckJNI, we can add any periodic checks here
4910 
4911 void os::run_periodic_checks() {
4912 
4913   if (check_signals == false) return;
4914 
4915   // SEGV and BUS if overridden could potentially prevent
4916   // generation of hs*.log in the event of a crash, debugging
4917   // such a case can be very challenging, so we absolutely
4918   // check the following for a good measure:
4919   DO_SIGNAL_CHECK(SIGSEGV);
4920   DO_SIGNAL_CHECK(SIGILL);
4921   DO_SIGNAL_CHECK(SIGFPE);
4922   DO_SIGNAL_CHECK(SIGBUS);
4923   DO_SIGNAL_CHECK(SIGPIPE);
4924   DO_SIGNAL_CHECK(SIGXFSZ);
4925 #if defined(PPC64)
4926   DO_SIGNAL_CHECK(SIGTRAP);
4927 #endif
4928 
4929   // ReduceSignalUsage allows the user to override these handlers
4930   // see comments at the very top and jvm_solaris.h
4931   if (!ReduceSignalUsage) {
4932     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4933     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4934     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4935     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4936   }
4937 
4938   DO_SIGNAL_CHECK(SR_signum);
4939   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4940 }
4941 
4942 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4943 
4944 static os_sigaction_t os_sigaction = NULL;
4945 
4946 void os::Linux::check_signal_handler(int sig) {
4947   char buf[O_BUFLEN];
4948   address jvmHandler = NULL;
4949 
4950 
4951   struct sigaction act;
4952   if (os_sigaction == NULL) {
4953     // only trust the default sigaction, in case it has been interposed
4954     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4955     if (os_sigaction == NULL) return;
4956   }
4957 
4958   os_sigaction(sig, (struct sigaction*)NULL, &act);
4959 
4960 
4961   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4962 
4963   address thisHandler = (act.sa_flags & SA_SIGINFO)
4964     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4965     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4966 
4967 
4968   switch(sig) {
4969   case SIGSEGV:
4970   case SIGBUS:
4971   case SIGFPE:
4972   case SIGPIPE:
4973   case SIGILL:
4974   case SIGXFSZ:
4975     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4976     break;
4977 
4978   case SHUTDOWN1_SIGNAL:
4979   case SHUTDOWN2_SIGNAL:
4980   case SHUTDOWN3_SIGNAL:
4981   case BREAK_SIGNAL:
4982     jvmHandler = (address)user_handler();
4983     break;
4984 
4985   case INTERRUPT_SIGNAL:
4986     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4987     break;
4988 
4989   default:
4990     if (sig == SR_signum) {
4991       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4992     } else {
4993       return;
4994     }
4995     break;
4996   }
4997 
4998   if (thisHandler != jvmHandler) {
4999     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
5000     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
5001     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
5002     // No need to check this sig any longer
5003     sigaddset(&check_signal_done, sig);
5004     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
5005     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
5006       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
5007                     exception_name(sig, buf, O_BUFLEN));
5008     }
5009   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
5010     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
5011     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
5012     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
5013     // No need to check this sig any longer
5014     sigaddset(&check_signal_done, sig);
5015   }
5016 
5017   // Dump all the signal
5018   if (sigismember(&check_signal_done, sig)) {
5019     print_signal_handlers(tty, buf, O_BUFLEN);
5020   }
5021 }
5022 
5023 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
5024 
5025 extern bool signal_name(int signo, char* buf, size_t len);
5026 
5027 const char* os::exception_name(int exception_code, char* buf, size_t size) {
5028   if (0 < exception_code && exception_code <= SIGRTMAX) {
5029     // signal
5030     if (!signal_name(exception_code, buf, size)) {
5031       jio_snprintf(buf, size, "SIG%d", exception_code);
5032     }
5033     return buf;
5034   } else {
5035     return NULL;
5036   }
5037 }
5038 
5039 // this is called _before_ most of the global arguments have been parsed
5040 void os::init(void) {
5041   char dummy;   /* used to get a guess on initial stack address */
5042 
5043   // With LinuxThreads the JavaMain thread pid (primordial thread)
5044   // is different than the pid of the java launcher thread.
5045   // So, on Linux, the launcher thread pid is passed to the VM
5046   // via the sun.java.launcher.pid property.
5047   // Use this property instead of getpid() if it was correctly passed.
5048   // See bug 6351349.
5049   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
5050 
5051   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
5052 
5053   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
5054 
5055   init_random(1234567);
5056 
5057   ThreadCritical::initialize();
5058 
5059   Linux::set_page_size(sysconf(_SC_PAGESIZE));
5060   if (Linux::page_size() == -1) {
5061     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
5062                   strerror(errno)));
5063   }
5064   init_page_sizes((size_t) Linux::page_size());
5065 
5066   Linux::initialize_system_info();
5067 
5068   // _main_thread points to the thread that created/loaded the JVM.
5069   Linux::_main_thread = pthread_self();
5070 
5071   Linux::clock_init();
5072   initial_time_count = javaTimeNanos();
5073 
5074   // pthread_condattr initialization for monotonic clock
5075   int status;
5076   pthread_condattr_t* _condattr = os::Linux::condAttr();
5077   if ((status = pthread_condattr_init(_condattr)) != 0) {
5078     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
5079   }
5080   // Only set the clock if CLOCK_MONOTONIC is available
5081   if (Linux::supports_monotonic_clock()) {
5082     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
5083       if (status == EINVAL) {
5084         warning("Unable to use monotonic clock with relative timed-waits" \
5085                 " - changes to the time-of-day clock may have adverse affects");
5086       } else {
5087         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
5088       }
5089     }
5090   }
5091   // else it defaults to CLOCK_REALTIME
5092 
5093   pthread_mutex_init(&dl_mutex, NULL);
5094 
5095   // If the pagesize of the VM is greater than 8K determine the appropriate
5096   // number of initial guard pages.  The user can change this with the
5097   // command line arguments, if needed.
5098   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
5099     StackYellowPages = 1;
5100     StackRedPages = 1;
5101     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
5102   }
5103 
5104   // retrieve entry point for pthread_setname_np
5105   Linux::_pthread_setname_np =
5106     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
5107 
5108 }
5109 
5110 // To install functions for atexit system call
5111 extern "C" {
5112   static void perfMemory_exit_helper() {
5113     perfMemory_exit();
5114   }
5115 }
5116 
5117 void os::pd_init_container_support() {
5118   OSContainer::init();
5119 }
5120 
5121 // this is called _after_ the global arguments have been parsed
5122 jint os::init_2(void)
5123 {
5124   Linux::fast_thread_clock_init();
5125 
5126   // Allocate a single page and mark it as readable for safepoint polling
5127   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
5128   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
5129 
5130   os::set_polling_page( polling_page );
5131 
5132 #ifndef PRODUCT
5133   if(Verbose && PrintMiscellaneous)
5134     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
5135 #endif
5136 
5137   if (!UseMembar) {
5138     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
5139     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
5140     os::set_memory_serialize_page( mem_serialize_page );
5141 
5142 #ifndef PRODUCT
5143     if(Verbose && PrintMiscellaneous)
5144       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
5145 #endif
5146   }
5147 
5148   // initialize suspend/resume support - must do this before signal_sets_init()
5149   if (SR_initialize() != 0) {
5150     perror("SR_initialize failed");
5151     return JNI_ERR;
5152   }
5153 
5154   Linux::signal_sets_init();
5155   Linux::install_signal_handlers();
5156 
5157   // Check minimum allowable stack size for thread creation and to initialize
5158   // the java system classes, including StackOverflowError - depends on page
5159   // size.  Add a page for compiler2 recursion in main thread.
5160   // Add in 2*BytesPerWord times page size to account for VM stack during
5161   // class initialization depending on 32 or 64 bit VM.
5162   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
5163             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
5164                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
5165 
5166   size_t threadStackSizeInBytes = ThreadStackSize * K;
5167   if (threadStackSizeInBytes != 0 &&
5168       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
5169         tty->print_cr("\nThe stack size specified is too small, "
5170                       "Specify at least %dk",
5171                       os::Linux::min_stack_allowed/ K);
5172         return JNI_ERR;
5173   }
5174 
5175   // Make the stack size a multiple of the page size so that
5176   // the yellow/red zones can be guarded.
5177   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
5178         vm_page_size()));
5179 
5180   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5181 
5182 #if defined(IA32)
5183   workaround_expand_exec_shield_cs_limit();
5184 #endif
5185 
5186   Linux::libpthread_init();
5187   if (PrintMiscellaneous && (Verbose || WizardMode)) {
5188      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
5189           Linux::glibc_version(), Linux::libpthread_version(),
5190           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
5191   }
5192 
5193   if (UseNUMA) {
5194     if (!Linux::libnuma_init()) {
5195       UseNUMA = false;
5196     } else {
5197       if ((Linux::numa_max_node() < 1)) {
5198         // There's only one node(they start from 0), disable NUMA.
5199         UseNUMA = false;
5200       }
5201     }
5202     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5203     // we can make the adaptive lgrp chunk resizing work. If the user specified
5204     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
5205     // disable adaptive resizing.
5206     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5207       if (FLAG_IS_DEFAULT(UseNUMA)) {
5208         UseNUMA = false;
5209       } else {
5210         if (FLAG_IS_DEFAULT(UseLargePages) &&
5211             FLAG_IS_DEFAULT(UseSHM) &&
5212             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
5213           UseLargePages = false;
5214         } else {
5215           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
5216           UseAdaptiveSizePolicy = false;
5217           UseAdaptiveNUMAChunkSizing = false;
5218         }
5219       }
5220     }
5221     if (!UseNUMA && ForceNUMA) {
5222       UseNUMA = true;
5223     }
5224   }
5225 
5226   if (MaxFDLimit) {
5227     // set the number of file descriptors to max. print out error
5228     // if getrlimit/setrlimit fails but continue regardless.
5229     struct rlimit nbr_files;
5230     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5231     if (status != 0) {
5232       if (PrintMiscellaneous && (Verbose || WizardMode))
5233         perror("os::init_2 getrlimit failed");
5234     } else {
5235       nbr_files.rlim_cur = nbr_files.rlim_max;
5236       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5237       if (status != 0) {
5238         if (PrintMiscellaneous && (Verbose || WizardMode))
5239           perror("os::init_2 setrlimit failed");
5240       }
5241     }
5242   }
5243 
5244   // Initialize lock used to serialize thread creation (see os::create_thread)
5245   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
5246 
5247   // at-exit methods are called in the reverse order of their registration.
5248   // atexit functions are called on return from main or as a result of a
5249   // call to exit(3C). There can be only 32 of these functions registered
5250   // and atexit() does not set errno.
5251 
5252   if (PerfAllowAtExitRegistration) {
5253     // only register atexit functions if PerfAllowAtExitRegistration is set.
5254     // atexit functions can be delayed until process exit time, which
5255     // can be problematic for embedded VM situations. Embedded VMs should
5256     // call DestroyJavaVM() to assure that VM resources are released.
5257 
5258     // note: perfMemory_exit_helper atexit function may be removed in
5259     // the future if the appropriate cleanup code can be added to the
5260     // VM_Exit VMOperation's doit method.
5261     if (atexit(perfMemory_exit_helper) != 0) {
5262       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5263     }
5264   }
5265 
5266   // initialize thread priority policy
5267   prio_init();
5268 
5269   return JNI_OK;
5270 }
5271 
5272 // Mark the polling page as unreadable
5273 void os::make_polling_page_unreadable(void) {
5274   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
5275     fatal("Could not disable polling page");
5276 };
5277 
5278 // Mark the polling page as readable
5279 void os::make_polling_page_readable(void) {
5280   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5281     fatal("Could not enable polling page");
5282   }
5283 };
5284 
5285 static int os_cpu_count(const cpu_set_t* cpus) {
5286   int count = 0;
5287   // only look up to the number of configured processors
5288   for (int i = 0; i < os::processor_count(); i++) {
5289     if (CPU_ISSET(i, cpus)) {
5290       count++;
5291     }
5292   }
5293   return count;
5294 }
5295 
5296 // Get the current number of available processors for this process.
5297 // This value can change at any time during a process's lifetime.
5298 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5299 // If anything goes wrong we fallback to returning the number of online
5300 // processors - which can be greater than the number available to the process.
5301 int os::Linux::active_processor_count() {
5302   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5303   int cpus_size = sizeof(cpu_set_t);
5304   int cpu_count = 0;
5305 
5306   // pid 0 means the current thread - which we have to assume represents the process
5307   if (sched_getaffinity(0, cpus_size, &cpus) == 0) {
5308     cpu_count = os_cpu_count(&cpus);
5309     if (PrintActiveCpus) {
5310       tty->print_cr("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5311     }
5312   }
5313   else {
5314     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5315     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5316             "which may exceed available processors", strerror(errno), cpu_count);
5317   }
5318 
5319   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5320   return cpu_count;
5321 }
5322 
5323 // Determine the active processor count from one of
5324 // three different sources:
5325 //
5326 // 1. User option -XX:ActiveProcessorCount
5327 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5328 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5329 //
5330 // Option 1, if specified, will always override.
5331 // If the cgroup subsystem is active and configured, we
5332 // will return the min of the cgroup and option 2 results.
5333 // This is required since tools, such as numactl, that
5334 // alter cpu affinity do not update cgroup subsystem
5335 // cpuset configuration files.
5336 int os::active_processor_count() {
5337   // User has overridden the number of active processors
5338   if (ActiveProcessorCount > 0) {
5339     if (PrintActiveCpus) {
5340       tty->print_cr("active_processor_count: "
5341                     "active processor count set by user : %d",
5342                     ActiveProcessorCount);
5343     }
5344     return ActiveProcessorCount;
5345   }
5346 
5347   int active_cpus;
5348   if (OSContainer::is_containerized()) {
5349     active_cpus = OSContainer::active_processor_count();
5350     if (PrintActiveCpus) {
5351       tty->print_cr("active_processor_count: determined by OSContainer: %d",
5352                      active_cpus);
5353     }
5354   } else {
5355     active_cpus = os::Linux::active_processor_count();
5356   }
5357 
5358   return active_cpus;
5359 }
5360 
5361 void os::set_native_thread_name(const char *name) {
5362   if (Linux::_pthread_setname_np) {
5363     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5364     snprintf(buf, sizeof(buf), "%s", name);
5365     buf[sizeof(buf) - 1] = '\0';
5366     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5367     // ERANGE should not happen; all other errors should just be ignored.
5368     assert(rc != ERANGE, "pthread_setname_np failed");
5369   }
5370 }
5371 
5372 bool os::distribute_processes(uint length, uint* distribution) {
5373   // Not yet implemented.
5374   return false;
5375 }
5376 
5377 bool os::bind_to_processor(uint processor_id) {
5378   // Not yet implemented.
5379   return false;
5380 }
5381 
5382 ///
5383 
5384 void os::SuspendedThreadTask::internal_do_task() {
5385   if (do_suspend(_thread->osthread())) {
5386     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5387     do_task(context);
5388     do_resume(_thread->osthread());
5389   }
5390 }
5391 
5392 class PcFetcher : public os::SuspendedThreadTask {
5393 public:
5394   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
5395   ExtendedPC result();
5396 protected:
5397   void do_task(const os::SuspendedThreadTaskContext& context);
5398 private:
5399   ExtendedPC _epc;
5400 };
5401 
5402 ExtendedPC PcFetcher::result() {
5403   guarantee(is_done(), "task is not done yet.");
5404   return _epc;
5405 }
5406 
5407 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5408   Thread* thread = context.thread();
5409   OSThread* osthread = thread->osthread();
5410   if (osthread->ucontext() != NULL) {
5411     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
5412   } else {
5413     // NULL context is unexpected, double-check this is the VMThread
5414     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5415   }
5416 }
5417 
5418 // Suspends the target using the signal mechanism and then grabs the PC before
5419 // resuming the target. Used by the flat-profiler only
5420 ExtendedPC os::get_thread_pc(Thread* thread) {
5421   // Make sure that it is called by the watcher for the VMThread
5422   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5423   assert(thread->is_VM_thread(), "Can only be called for VMThread");
5424 
5425   PcFetcher fetcher(thread);
5426   fetcher.run();
5427   return fetcher.result();
5428 }
5429 
5430 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
5431 {
5432    if (is_NPTL()) {
5433       return pthread_cond_timedwait(_cond, _mutex, _abstime);
5434    } else {
5435       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
5436       // word back to default 64bit precision if condvar is signaled. Java
5437       // wants 53bit precision.  Save and restore current value.
5438       int fpu = get_fpu_control_word();
5439       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
5440       set_fpu_control_word(fpu);
5441       return status;
5442    }
5443 }
5444 
5445 ////////////////////////////////////////////////////////////////////////////////
5446 // debug support
5447 
5448 bool os::find(address addr, outputStream* st) {
5449   Dl_info dlinfo;
5450   memset(&dlinfo, 0, sizeof(dlinfo));
5451   if (dladdr(addr, &dlinfo) != 0) {
5452     st->print(PTR_FORMAT ": ", addr);
5453     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5454       st->print("%s+%#x", dlinfo.dli_sname,
5455                  addr - (intptr_t)dlinfo.dli_saddr);
5456     } else if (dlinfo.dli_fbase != NULL) {
5457       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
5458     } else {
5459       st->print("<absolute address>");
5460     }
5461     if (dlinfo.dli_fname != NULL) {
5462       st->print(" in %s", dlinfo.dli_fname);
5463     }
5464     if (dlinfo.dli_fbase != NULL) {
5465       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5466     }
5467     st->cr();
5468 
5469     if (Verbose) {
5470       // decode some bytes around the PC
5471       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5472       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5473       address       lowest = (address) dlinfo.dli_sname;
5474       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5475       if (begin < lowest)  begin = lowest;
5476       Dl_info dlinfo2;
5477       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5478           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
5479         end = (address) dlinfo2.dli_saddr;
5480       Disassembler::decode(begin, end, st);
5481     }
5482     return true;
5483   }
5484   return false;
5485 }
5486 
5487 ////////////////////////////////////////////////////////////////////////////////
5488 // misc
5489 
5490 // This does not do anything on Linux. This is basically a hook for being
5491 // able to use structured exception handling (thread-local exception filters)
5492 // on, e.g., Win32.
5493 void
5494 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5495                          JavaCallArguments* args, Thread* thread) {
5496   f(value, method, args, thread);
5497 }
5498 
5499 void os::print_statistics() {
5500 }
5501 
5502 int os::message_box(const char* title, const char* message) {
5503   int i;
5504   fdStream err(defaultStream::error_fd());
5505   for (i = 0; i < 78; i++) err.print_raw("=");
5506   err.cr();
5507   err.print_raw_cr(title);
5508   for (i = 0; i < 78; i++) err.print_raw("-");
5509   err.cr();
5510   err.print_raw_cr(message);
5511   for (i = 0; i < 78; i++) err.print_raw("=");
5512   err.cr();
5513 
5514   char buf[16];
5515   // Prevent process from exiting upon "read error" without consuming all CPU
5516   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5517 
5518   return buf[0] == 'y' || buf[0] == 'Y';
5519 }
5520 
5521 int os::stat(const char *path, struct stat *sbuf) {
5522   char pathbuf[MAX_PATH];
5523   if (strlen(path) > MAX_PATH - 1) {
5524     errno = ENAMETOOLONG;
5525     return -1;
5526   }
5527   os::native_path(strcpy(pathbuf, path));
5528   return ::stat(pathbuf, sbuf);
5529 }
5530 
5531 bool os::check_heap(bool force) {
5532   return true;
5533 }
5534 
5535 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5536   return ::vsnprintf(buf, count, format, args);
5537 }
5538 
5539 // Is a (classpath) directory empty?
5540 bool os::dir_is_empty(const char* path) {
5541   DIR *dir = NULL;
5542   struct dirent *ptr;
5543 
5544   dir = opendir(path);
5545   if (dir == NULL) return true;
5546 
5547   /* Scan the directory */
5548   bool result = true;
5549   while (result && (ptr = readdir(dir)) != NULL) {
5550     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5551       result = false;
5552     }
5553   }
5554   closedir(dir);
5555   return result;
5556 }
5557 
5558 // This code originates from JDK's sysOpen and open64_w
5559 // from src/solaris/hpi/src/system_md.c
5560 
5561 #ifndef O_DELETE
5562 #define O_DELETE 0x10000
5563 #endif
5564 
5565 // Open a file. Unlink the file immediately after open returns
5566 // if the specified oflag has the O_DELETE flag set.
5567 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5568 
5569 int os::open(const char *path, int oflag, int mode) {
5570 
5571   if (strlen(path) > MAX_PATH - 1) {
5572     errno = ENAMETOOLONG;
5573     return -1;
5574   }
5575   int fd;
5576   int o_delete = (oflag & O_DELETE);
5577   oflag = oflag & ~O_DELETE;
5578 
5579   fd = ::open64(path, oflag, mode);
5580   if (fd == -1) return -1;
5581 
5582   //If the open succeeded, the file might still be a directory
5583   {
5584     struct stat64 buf64;
5585     int ret = ::fstat64(fd, &buf64);
5586     int st_mode = buf64.st_mode;
5587 
5588     if (ret != -1) {
5589       if ((st_mode & S_IFMT) == S_IFDIR) {
5590         errno = EISDIR;
5591         ::close(fd);
5592         return -1;
5593       }
5594     } else {
5595       ::close(fd);
5596       return -1;
5597     }
5598   }
5599 
5600     /*
5601      * All file descriptors that are opened in the JVM and not
5602      * specifically destined for a subprocess should have the
5603      * close-on-exec flag set.  If we don't set it, then careless 3rd
5604      * party native code might fork and exec without closing all
5605      * appropriate file descriptors (e.g. as we do in closeDescriptors in
5606      * UNIXProcess.c), and this in turn might:
5607      *
5608      * - cause end-of-file to fail to be detected on some file
5609      *   descriptors, resulting in mysterious hangs, or
5610      *
5611      * - might cause an fopen in the subprocess to fail on a system
5612      *   suffering from bug 1085341.
5613      *
5614      * (Yes, the default setting of the close-on-exec flag is a Unix
5615      * design flaw)
5616      *
5617      * See:
5618      * 1085341: 32-bit stdio routines should support file descriptors >255
5619      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5620      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5621      */
5622 #ifdef FD_CLOEXEC
5623     {
5624         int flags = ::fcntl(fd, F_GETFD);
5625         if (flags != -1)
5626             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5627     }
5628 #endif
5629 
5630   if (o_delete != 0) {
5631     ::unlink(path);
5632   }
5633   return fd;
5634 }
5635 
5636 
5637 // create binary file, rewriting existing file if required
5638 int os::create_binary_file(const char* path, bool rewrite_existing) {
5639   int oflags = O_WRONLY | O_CREAT;
5640   if (!rewrite_existing) {
5641     oflags |= O_EXCL;
5642   }
5643   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5644 }
5645 
5646 // return current position of file pointer
5647 jlong os::current_file_offset(int fd) {
5648   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5649 }
5650 
5651 // move file pointer to the specified offset
5652 jlong os::seek_to_file_offset(int fd, jlong offset) {
5653   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5654 }
5655 
5656 // This code originates from JDK's sysAvailable
5657 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5658 
5659 int os::available(int fd, jlong *bytes) {
5660   jlong cur, end;
5661   int mode;
5662   struct stat64 buf64;
5663 
5664   if (::fstat64(fd, &buf64) >= 0) {
5665     mode = buf64.st_mode;
5666     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5667       /*
5668       * XXX: is the following call interruptible? If so, this might
5669       * need to go through the INTERRUPT_IO() wrapper as for other
5670       * blocking, interruptible calls in this file.
5671       */
5672       int n;
5673       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5674         *bytes = n;
5675         return 1;
5676       }
5677     }
5678   }
5679   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5680     return 0;
5681   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5682     return 0;
5683   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5684     return 0;
5685   }
5686   *bytes = end - cur;
5687   return 1;
5688 }
5689 
5690 int os::socket_available(int fd, jint *pbytes) {
5691   // Linux doc says EINTR not returned, unlike Solaris
5692   int ret = ::ioctl(fd, FIONREAD, pbytes);
5693 
5694   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5695   // is expected to return 0 on failure and 1 on success to the jdk.
5696   return (ret < 0) ? 0 : 1;
5697 }
5698 
5699 // Map a block of memory.
5700 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5701                      char *addr, size_t bytes, bool read_only,
5702                      bool allow_exec) {
5703   int prot;
5704   int flags = MAP_PRIVATE;
5705 
5706   if (read_only) {
5707     prot = PROT_READ;
5708   } else {
5709     prot = PROT_READ | PROT_WRITE;
5710   }
5711 
5712   if (allow_exec) {
5713     prot |= PROT_EXEC;
5714   }
5715 
5716   if (addr != NULL) {
5717     flags |= MAP_FIXED;
5718   }
5719 
5720   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5721                                      fd, file_offset);
5722   if (mapped_address == MAP_FAILED) {
5723     return NULL;
5724   }
5725   return mapped_address;
5726 }
5727 
5728 
5729 // Remap a block of memory.
5730 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5731                        char *addr, size_t bytes, bool read_only,
5732                        bool allow_exec) {
5733   // same as map_memory() on this OS
5734   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5735                         allow_exec);
5736 }
5737 
5738 
5739 // Unmap a block of memory.
5740 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5741   return munmap(addr, bytes) == 0;
5742 }
5743 
5744 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5745 
5746 static clockid_t thread_cpu_clockid(Thread* thread) {
5747   pthread_t tid = thread->osthread()->pthread_id();
5748   clockid_t clockid;
5749 
5750   // Get thread clockid
5751   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5752   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5753   return clockid;
5754 }
5755 
5756 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5757 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5758 // of a thread.
5759 //
5760 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5761 // the fast estimate available on the platform.
5762 
5763 jlong os::current_thread_cpu_time() {
5764   if (os::Linux::supports_fast_thread_cpu_time()) {
5765     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5766   } else {
5767     // return user + sys since the cost is the same
5768     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5769   }
5770 }
5771 
5772 jlong os::thread_cpu_time(Thread* thread) {
5773   // consistent with what current_thread_cpu_time() returns
5774   if (os::Linux::supports_fast_thread_cpu_time()) {
5775     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5776   } else {
5777     return slow_thread_cpu_time(thread, true /* user + sys */);
5778   }
5779 }
5780 
5781 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5782   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5783     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5784   } else {
5785     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5786   }
5787 }
5788 
5789 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5790   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5791     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5792   } else {
5793     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5794   }
5795 }
5796 
5797 //
5798 //  -1 on error.
5799 //
5800 
5801 PRAGMA_DIAG_PUSH
5802 PRAGMA_FORMAT_NONLITERAL_IGNORED
5803 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5804   static bool proc_task_unchecked = true;
5805   pid_t  tid = thread->osthread()->thread_id();
5806   char *s;
5807   char stat[2048];
5808   int statlen;
5809   char proc_name[64];
5810   int count;
5811   long sys_time, user_time;
5812   char cdummy;
5813   int idummy;
5814   long ldummy;
5815   FILE *fp;
5816 
5817   snprintf(proc_name, 64, "/proc/%d/stat", tid);
5818 
5819   // The /proc/<tid>/stat aggregates per-process usage on
5820   // new Linux kernels 2.6+ where NPTL is supported.
5821   // The /proc/self/task/<tid>/stat still has the per-thread usage.
5822   // See bug 6328462.
5823   // There possibly can be cases where there is no directory
5824   // /proc/self/task, so we check its availability.
5825   if (proc_task_unchecked && os::Linux::is_NPTL()) {
5826     // This is executed only once
5827     proc_task_unchecked = false;
5828     fp = fopen("/proc/self/task", "r");
5829     if (fp != NULL) {
5830       snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5831       fclose(fp);
5832     }
5833   }
5834 
5835   fp = fopen(proc_name, "r");
5836   if ( fp == NULL ) return -1;
5837   statlen = fread(stat, 1, 2047, fp);
5838   stat[statlen] = '\0';
5839   fclose(fp);
5840 
5841   // Skip pid and the command string. Note that we could be dealing with
5842   // weird command names, e.g. user could decide to rename java launcher
5843   // to "java 1.4.2 :)", then the stat file would look like
5844   //                1234 (java 1.4.2 :)) R ... ...
5845   // We don't really need to know the command string, just find the last
5846   // occurrence of ")" and then start parsing from there. See bug 4726580.
5847   s = strrchr(stat, ')');
5848   if (s == NULL ) return -1;
5849 
5850   // Skip blank chars
5851   do s++; while (isspace(*s));
5852 
5853   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5854                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5855                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5856                  &user_time, &sys_time);
5857   if ( count != 13 ) return -1;
5858   if (user_sys_cpu_time) {
5859     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5860   } else {
5861     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5862   }
5863 }
5864 PRAGMA_DIAG_POP
5865 
5866 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5867   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5868   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5869   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5870   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5871 }
5872 
5873 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5874   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5875   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5876   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5877   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5878 }
5879 
5880 bool os::is_thread_cpu_time_supported() {
5881   return true;
5882 }
5883 
5884 // System loadavg support.  Returns -1 if load average cannot be obtained.
5885 // Linux doesn't yet have a (official) notion of processor sets,
5886 // so just return the system wide load average.
5887 int os::loadavg(double loadavg[], int nelem) {
5888   return ::getloadavg(loadavg, nelem);
5889 }
5890 
5891 void os::pause() {
5892   char filename[MAX_PATH];
5893   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5894     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5895   } else {
5896     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5897   }
5898 
5899   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5900   if (fd != -1) {
5901     struct stat buf;
5902     ::close(fd);
5903     while (::stat(filename, &buf) == 0) {
5904       (void)::poll(NULL, 0, 100);
5905     }
5906   } else {
5907     jio_fprintf(stderr,
5908       "Could not open pause file '%s', continuing immediately.\n", filename);
5909   }
5910 }
5911 
5912 
5913 // Refer to the comments in os_solaris.cpp park-unpark.
5914 //
5915 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5916 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5917 // For specifics regarding the bug see GLIBC BUGID 261237 :
5918 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5919 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5920 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5921 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5922 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5923 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5924 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5925 // of libpthread avoids the problem, but isn't practical.
5926 //
5927 // Possible remedies:
5928 //
5929 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5930 //      This is palliative and probabilistic, however.  If the thread is preempted
5931 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5932 //      than the minimum period may have passed, and the abstime may be stale (in the
5933 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5934 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5935 //
5936 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5937 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5938 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5939 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5940 //      thread.
5941 //
5942 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5943 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5944 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5945 //      This also works well.  In fact it avoids kernel-level scalability impediments
5946 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5947 //      timers in a graceful fashion.
5948 //
5949 // 4.   When the abstime value is in the past it appears that control returns
5950 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5951 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5952 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5953 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5954 //      It may be possible to avoid reinitialization by checking the return
5955 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5956 //      condvar we must establish the invariant that cond_signal() is only called
5957 //      within critical sections protected by the adjunct mutex.  This prevents
5958 //      cond_signal() from "seeing" a condvar that's in the midst of being
5959 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5960 //      desirable signal-after-unlock optimization that avoids futile context switching.
5961 //
5962 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5963 //      structure when a condvar is used or initialized.  cond_destroy()  would
5964 //      release the helper structure.  Our reinitialize-after-timedwait fix
5965 //      put excessive stress on malloc/free and locks protecting the c-heap.
5966 //
5967 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5968 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5969 // and only enabling the work-around for vulnerable environments.
5970 
5971 // utility to compute the abstime argument to timedwait:
5972 // millis is the relative timeout time
5973 // abstime will be the absolute timeout time
5974 // TODO: replace compute_abstime() with unpackTime()
5975 
5976 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5977   if (millis < 0)  millis = 0;
5978 
5979   jlong seconds = millis / 1000;
5980   millis %= 1000;
5981   if (seconds > 50000000) { // see man cond_timedwait(3T)
5982     seconds = 50000000;
5983   }
5984 
5985   if (os::Linux::supports_monotonic_clock()) {
5986     struct timespec now;
5987     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5988     assert_status(status == 0, status, "clock_gettime");
5989     abstime->tv_sec = now.tv_sec  + seconds;
5990     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5991     if (nanos >= NANOSECS_PER_SEC) {
5992       abstime->tv_sec += 1;
5993       nanos -= NANOSECS_PER_SEC;
5994     }
5995     abstime->tv_nsec = nanos;
5996   } else {
5997     struct timeval now;
5998     int status = gettimeofday(&now, NULL);
5999     assert(status == 0, "gettimeofday");
6000     abstime->tv_sec = now.tv_sec  + seconds;
6001     long usec = now.tv_usec + millis * 1000;
6002     if (usec >= 1000000) {
6003       abstime->tv_sec += 1;
6004       usec -= 1000000;
6005     }
6006     abstime->tv_nsec = usec * 1000;
6007   }
6008   return abstime;
6009 }
6010 
6011 
6012 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
6013 // Conceptually TryPark() should be equivalent to park(0).
6014 
6015 int os::PlatformEvent::TryPark() {
6016   for (;;) {
6017     const int v = _Event ;
6018     guarantee ((v == 0) || (v == 1), "invariant") ;
6019     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
6020   }
6021 }
6022 
6023 void os::PlatformEvent::park() {       // AKA "down()"
6024   // Invariant: Only the thread associated with the Event/PlatformEvent
6025   // may call park().
6026   // TODO: assert that _Assoc != NULL or _Assoc == Self
6027   int v ;
6028   for (;;) {
6029       v = _Event ;
6030       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
6031   }
6032   guarantee (v >= 0, "invariant") ;
6033   if (v == 0) {
6034      // Do this the hard way by blocking ...
6035      int status = pthread_mutex_lock(_mutex);
6036      assert_status(status == 0, status, "mutex_lock");
6037      guarantee (_nParked == 0, "invariant") ;
6038      ++ _nParked ;
6039      while (_Event < 0) {
6040         status = pthread_cond_wait(_cond, _mutex);
6041         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
6042         // Treat this the same as if the wait was interrupted
6043         if (status == ETIME) { status = EINTR; }
6044         assert_status(status == 0 || status == EINTR, status, "cond_wait");
6045      }
6046      -- _nParked ;
6047 
6048     _Event = 0 ;
6049      status = pthread_mutex_unlock(_mutex);
6050      assert_status(status == 0, status, "mutex_unlock");
6051     // Paranoia to ensure our locked and lock-free paths interact
6052     // correctly with each other.
6053     OrderAccess::fence();
6054   }
6055   guarantee (_Event >= 0, "invariant") ;
6056 }
6057 
6058 int os::PlatformEvent::park(jlong millis) {
6059   guarantee (_nParked == 0, "invariant") ;
6060 
6061   int v ;
6062   for (;;) {
6063       v = _Event ;
6064       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
6065   }
6066   guarantee (v >= 0, "invariant") ;
6067   if (v != 0) return OS_OK ;
6068 
6069   // We do this the hard way, by blocking the thread.
6070   // Consider enforcing a minimum timeout value.
6071   struct timespec abst;
6072   compute_abstime(&abst, millis);
6073 
6074   int ret = OS_TIMEOUT;
6075   int status = pthread_mutex_lock(_mutex);
6076   assert_status(status == 0, status, "mutex_lock");
6077   guarantee (_nParked == 0, "invariant") ;
6078   ++_nParked ;
6079 
6080   // Object.wait(timo) will return because of
6081   // (a) notification
6082   // (b) timeout
6083   // (c) thread.interrupt
6084   //
6085   // Thread.interrupt and object.notify{All} both call Event::set.
6086   // That is, we treat thread.interrupt as a special case of notification.
6087   // The underlying Solaris implementation, cond_timedwait, admits
6088   // spurious/premature wakeups, but the JLS/JVM spec prevents the
6089   // JVM from making those visible to Java code.  As such, we must
6090   // filter out spurious wakeups.  We assume all ETIME returns are valid.
6091   //
6092   // TODO: properly differentiate simultaneous notify+interrupt.
6093   // In that case, we should propagate the notify to another waiter.
6094 
6095   while (_Event < 0) {
6096     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
6097     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
6098       pthread_cond_destroy (_cond);
6099       pthread_cond_init (_cond, os::Linux::condAttr()) ;
6100     }
6101     assert_status(status == 0 || status == EINTR ||
6102                   status == ETIME || status == ETIMEDOUT,
6103                   status, "cond_timedwait");
6104     if (!FilterSpuriousWakeups) break ;                 // previous semantics
6105     if (status == ETIME || status == ETIMEDOUT) break ;
6106     // We consume and ignore EINTR and spurious wakeups.
6107   }
6108   --_nParked ;
6109   if (_Event >= 0) {
6110      ret = OS_OK;
6111   }
6112   _Event = 0 ;
6113   status = pthread_mutex_unlock(_mutex);
6114   assert_status(status == 0, status, "mutex_unlock");
6115   assert (_nParked == 0, "invariant") ;
6116   // Paranoia to ensure our locked and lock-free paths interact
6117   // correctly with each other.
6118   OrderAccess::fence();
6119   return ret;
6120 }
6121 
6122 void os::PlatformEvent::unpark() {
6123   // Transitions for _Event:
6124   //    0 :=> 1
6125   //    1 :=> 1
6126   //   -1 :=> either 0 or 1; must signal target thread
6127   //          That is, we can safely transition _Event from -1 to either
6128   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
6129   //          unpark() calls.
6130   // See also: "Semaphores in Plan 9" by Mullender & Cox
6131   //
6132   // Note: Forcing a transition from "-1" to "1" on an unpark() means
6133   // that it will take two back-to-back park() calls for the owning
6134   // thread to block. This has the benefit of forcing a spurious return
6135   // from the first park() call after an unpark() call which will help
6136   // shake out uses of park() and unpark() without condition variables.
6137 
6138   if (Atomic::xchg(1, &_Event) >= 0) return;
6139 
6140   // Wait for the thread associated with the event to vacate
6141   int status = pthread_mutex_lock(_mutex);
6142   assert_status(status == 0, status, "mutex_lock");
6143   int AnyWaiters = _nParked;
6144   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
6145   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
6146     AnyWaiters = 0;
6147     pthread_cond_signal(_cond);
6148   }
6149   status = pthread_mutex_unlock(_mutex);
6150   assert_status(status == 0, status, "mutex_unlock");
6151   if (AnyWaiters != 0) {
6152     status = pthread_cond_signal(_cond);
6153     assert_status(status == 0, status, "cond_signal");
6154   }
6155 
6156   // Note that we signal() _after dropping the lock for "immortal" Events.
6157   // This is safe and avoids a common class of  futile wakeups.  In rare
6158   // circumstances this can cause a thread to return prematurely from
6159   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
6160   // simply re-test the condition and re-park itself.
6161 }
6162 
6163 
6164 // JSR166
6165 // -------------------------------------------------------
6166 
6167 /*
6168  * The solaris and linux implementations of park/unpark are fairly
6169  * conservative for now, but can be improved. They currently use a
6170  * mutex/condvar pair, plus a a count.
6171  * Park decrements count if > 0, else does a condvar wait.  Unpark
6172  * sets count to 1 and signals condvar.  Only one thread ever waits
6173  * on the condvar. Contention seen when trying to park implies that someone
6174  * is unparking you, so don't wait. And spurious returns are fine, so there
6175  * is no need to track notifications.
6176  */
6177 
6178 /*
6179  * This code is common to linux and solaris and will be moved to a
6180  * common place in dolphin.
6181  *
6182  * The passed in time value is either a relative time in nanoseconds
6183  * or an absolute time in milliseconds. Either way it has to be unpacked
6184  * into suitable seconds and nanoseconds components and stored in the
6185  * given timespec structure.
6186  * Given time is a 64-bit value and the time_t used in the timespec is only
6187  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
6188  * overflow if times way in the future are given. Further on Solaris versions
6189  * prior to 10 there is a restriction (see cond_timedwait) that the specified
6190  * number of seconds, in abstime, is less than current_time  + 100,000,000.
6191  * As it will be 28 years before "now + 100000000" will overflow we can
6192  * ignore overflow and just impose a hard-limit on seconds using the value
6193  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
6194  * years from "now".
6195  */
6196 
6197 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
6198   assert (time > 0, "convertTime");
6199   time_t max_secs = 0;
6200 
6201   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
6202     struct timeval now;
6203     int status = gettimeofday(&now, NULL);
6204     assert(status == 0, "gettimeofday");
6205 
6206     max_secs = now.tv_sec + MAX_SECS;
6207 
6208     if (isAbsolute) {
6209       jlong secs = time / 1000;
6210       if (secs > max_secs) {
6211         absTime->tv_sec = max_secs;
6212       } else {
6213         absTime->tv_sec = secs;
6214       }
6215       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
6216     } else {
6217       jlong secs = time / NANOSECS_PER_SEC;
6218       if (secs >= MAX_SECS) {
6219         absTime->tv_sec = max_secs;
6220         absTime->tv_nsec = 0;
6221       } else {
6222         absTime->tv_sec = now.tv_sec + secs;
6223         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
6224         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
6225           absTime->tv_nsec -= NANOSECS_PER_SEC;
6226           ++absTime->tv_sec; // note: this must be <= max_secs
6227         }
6228       }
6229     }
6230   } else {
6231     // must be relative using monotonic clock
6232     struct timespec now;
6233     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
6234     assert_status(status == 0, status, "clock_gettime");
6235     max_secs = now.tv_sec + MAX_SECS;
6236     jlong secs = time / NANOSECS_PER_SEC;
6237     if (secs >= MAX_SECS) {
6238       absTime->tv_sec = max_secs;
6239       absTime->tv_nsec = 0;
6240     } else {
6241       absTime->tv_sec = now.tv_sec + secs;
6242       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
6243       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
6244         absTime->tv_nsec -= NANOSECS_PER_SEC;
6245         ++absTime->tv_sec; // note: this must be <= max_secs
6246       }
6247     }
6248   }
6249   assert(absTime->tv_sec >= 0, "tv_sec < 0");
6250   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
6251   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
6252   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
6253 }
6254 
6255 void Parker::park(bool isAbsolute, jlong time) {
6256   // Ideally we'd do something useful while spinning, such
6257   // as calling unpackTime().
6258 
6259   // Optional fast-path check:
6260   // Return immediately if a permit is available.
6261   // We depend on Atomic::xchg() having full barrier semantics
6262   // since we are doing a lock-free update to _counter.
6263   if (Atomic::xchg(0, &_counter) > 0) return;
6264 
6265   Thread* thread = Thread::current();
6266   assert(thread->is_Java_thread(), "Must be JavaThread");
6267   JavaThread *jt = (JavaThread *)thread;
6268 
6269   // Optional optimization -- avoid state transitions if there's an interrupt pending.
6270   // Check interrupt before trying to wait
6271   if (Thread::is_interrupted(thread, false)) {
6272     return;
6273   }
6274 
6275   // Next, demultiplex/decode time arguments
6276   timespec absTime;
6277   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
6278     return;
6279   }
6280   if (time > 0) {
6281     unpackTime(&absTime, isAbsolute, time);
6282   }
6283 
6284 
6285   // Enter safepoint region
6286   // Beware of deadlocks such as 6317397.
6287   // The per-thread Parker:: mutex is a classic leaf-lock.
6288   // In particular a thread must never block on the Threads_lock while
6289   // holding the Parker:: mutex.  If safepoints are pending both the
6290   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
6291   ThreadBlockInVM tbivm(jt);
6292 
6293   // Don't wait if cannot get lock since interference arises from
6294   // unblocking.  Also. check interrupt before trying wait
6295   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
6296     return;
6297   }
6298 
6299   int status ;
6300   if (_counter > 0)  { // no wait needed
6301     _counter = 0;
6302     status = pthread_mutex_unlock(_mutex);
6303     assert (status == 0, "invariant") ;
6304     // Paranoia to ensure our locked and lock-free paths interact
6305     // correctly with each other and Java-level accesses.
6306     OrderAccess::fence();
6307     return;
6308   }
6309 
6310 #ifdef ASSERT
6311   // Don't catch signals while blocked; let the running threads have the signals.
6312   // (This allows a debugger to break into the running thread.)
6313   sigset_t oldsigs;
6314   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
6315   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
6316 #endif
6317 
6318   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
6319   jt->set_suspend_equivalent();
6320   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
6321 
6322   assert(_cur_index == -1, "invariant");
6323   if (time == 0) {
6324     _cur_index = REL_INDEX; // arbitrary choice when not timed
6325     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
6326   } else {
6327     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
6328     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
6329     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
6330       pthread_cond_destroy (&_cond[_cur_index]) ;
6331       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
6332     }
6333   }
6334   _cur_index = -1;
6335   assert_status(status == 0 || status == EINTR ||
6336                 status == ETIME || status == ETIMEDOUT,
6337                 status, "cond_timedwait");
6338 
6339 #ifdef ASSERT
6340   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
6341 #endif
6342 
6343   _counter = 0 ;
6344   status = pthread_mutex_unlock(_mutex) ;
6345   assert_status(status == 0, status, "invariant") ;
6346   // Paranoia to ensure our locked and lock-free paths interact
6347   // correctly with each other and Java-level accesses.
6348   OrderAccess::fence();
6349 
6350   // If externally suspended while waiting, re-suspend
6351   if (jt->handle_special_suspend_equivalent_condition()) {
6352     jt->java_suspend_self();
6353   }
6354 }
6355 
6356 void Parker::unpark() {
6357   int s, status ;
6358   status = pthread_mutex_lock(_mutex);
6359   assert (status == 0, "invariant") ;
6360   s = _counter;
6361   _counter = 1;
6362   if (s < 1) {
6363     // thread might be parked
6364     if (_cur_index != -1) {
6365       // thread is definitely parked
6366       if (WorkAroundNPTLTimedWaitHang) {
6367         status = pthread_cond_signal (&_cond[_cur_index]);
6368         assert (status == 0, "invariant");
6369         status = pthread_mutex_unlock(_mutex);
6370         assert (status == 0, "invariant");
6371       } else {
6372         // must capture correct index before unlocking
6373         int index = _cur_index;
6374         status = pthread_mutex_unlock(_mutex);
6375         assert (status == 0, "invariant");
6376         status = pthread_cond_signal (&_cond[index]);
6377         assert (status == 0, "invariant");
6378       }
6379     } else {
6380       pthread_mutex_unlock(_mutex);
6381       assert (status == 0, "invariant") ;
6382     }
6383   } else {
6384     pthread_mutex_unlock(_mutex);
6385     assert (status == 0, "invariant") ;
6386   }
6387 }
6388 
6389 
6390 extern char** environ;
6391 
6392 // Run the specified command in a separate process. Return its exit value,
6393 // or -1 on failure (e.g. can't fork a new process).
6394 // Unlike system(), this function can be called from signal handler. It
6395 // doesn't block SIGINT et al.
6396 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
6397   const char * argv[4] = {"sh", "-c", cmd, NULL};
6398 
6399   pid_t pid ;
6400 
6401   if (use_vfork_if_available) {
6402     pid = vfork();
6403   } else {
6404     pid = fork();
6405   }
6406 
6407   if (pid < 0) {
6408     // fork failed
6409     return -1;
6410 
6411   } else if (pid == 0) {
6412     // child process
6413 
6414     execve("/bin/sh", (char* const*)argv, environ);
6415 
6416     // execve failed
6417     _exit(-1);
6418 
6419   } else  {
6420     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
6421     // care about the actual exit code, for now.
6422 
6423     int status;
6424 
6425     // Wait for the child process to exit.  This returns immediately if
6426     // the child has already exited. */
6427     while (waitpid(pid, &status, 0) < 0) {
6428         switch (errno) {
6429         case ECHILD: return 0;
6430         case EINTR: break;
6431         default: return -1;
6432         }
6433     }
6434 
6435     if (WIFEXITED(status)) {
6436        // The child exited normally; get its exit code.
6437        return WEXITSTATUS(status);
6438     } else if (WIFSIGNALED(status)) {
6439        // The child exited because of a signal
6440        // The best value to return is 0x80 + signal number,
6441        // because that is what all Unix shells do, and because
6442        // it allows callers to distinguish between process exit and
6443        // process death by signal.
6444        return 0x80 + WTERMSIG(status);
6445     } else {
6446        // Unknown exit code; pass it through
6447        return status;
6448     }
6449   }
6450 }
6451 
6452 // is_headless_jre()
6453 //
6454 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
6455 // in order to report if we are running in a headless jre
6456 //
6457 // Since JDK8 xawt/libmawt.so was moved into the same directory
6458 // as libawt.so, and renamed libawt_xawt.so
6459 //
6460 bool os::is_headless_jre() {
6461     struct stat statbuf;
6462     char buf[MAXPATHLEN];
6463     char libmawtpath[MAXPATHLEN];
6464     const char *xawtstr  = "/xawt/libmawt.so";
6465     const char *new_xawtstr = "/libawt_xawt.so";
6466     char *p;
6467 
6468     // Get path to libjvm.so
6469     os::jvm_path(buf, sizeof(buf));
6470 
6471     // Get rid of libjvm.so
6472     p = strrchr(buf, '/');
6473     if (p == NULL) return false;
6474     else *p = '\0';
6475 
6476     // Get rid of client or server
6477     p = strrchr(buf, '/');
6478     if (p == NULL) return false;
6479     else *p = '\0';
6480 
6481     // check xawt/libmawt.so
6482     strcpy(libmawtpath, buf);
6483     strcat(libmawtpath, xawtstr);
6484     if (::stat(libmawtpath, &statbuf) == 0) return false;
6485 
6486     // check libawt_xawt.so
6487     strcpy(libmawtpath, buf);
6488     strcat(libmawtpath, new_xawtstr);
6489     if (::stat(libmawtpath, &statbuf) == 0) return false;
6490 
6491     return true;
6492 }
6493 
6494 // Get the default path to the core file
6495 // Returns the length of the string
6496 int os::get_core_path(char* buffer, size_t bufferSize) {
6497   const char* p = get_current_directory(buffer, bufferSize);
6498 
6499   if (p == NULL) {
6500     assert(p != NULL, "failed to get current directory");
6501     return 0;
6502   }
6503 
6504   return strlen(buffer);
6505 }
6506 
6507 /////////////// Unit tests ///////////////
6508 
6509 #ifndef PRODUCT
6510 
6511 #define test_log(...) \
6512   do {\
6513     if (VerboseInternalVMTests) { \
6514       tty->print_cr(__VA_ARGS__); \
6515       tty->flush(); \
6516     }\
6517   } while (false)
6518 
6519 class TestReserveMemorySpecial : AllStatic {
6520  public:
6521   static void small_page_write(void* addr, size_t size) {
6522     size_t page_size = os::vm_page_size();
6523 
6524     char* end = (char*)addr + size;
6525     for (char* p = (char*)addr; p < end; p += page_size) {
6526       *p = 1;
6527     }
6528   }
6529 
6530   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6531     if (!UseHugeTLBFS) {
6532       return;
6533     }
6534 
6535     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6536 
6537     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6538 
6539     if (addr != NULL) {
6540       small_page_write(addr, size);
6541 
6542       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6543     }
6544   }
6545 
6546   static void test_reserve_memory_special_huge_tlbfs_only() {
6547     if (!UseHugeTLBFS) {
6548       return;
6549     }
6550 
6551     size_t lp = os::large_page_size();
6552 
6553     for (size_t size = lp; size <= lp * 10; size += lp) {
6554       test_reserve_memory_special_huge_tlbfs_only(size);
6555     }
6556   }
6557 
6558   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6559     size_t lp = os::large_page_size();
6560     size_t ag = os::vm_allocation_granularity();
6561 
6562     // sizes to test
6563     const size_t sizes[] = {
6564       lp, lp + ag, lp + lp / 2, lp * 2,
6565       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6566       lp * 10, lp * 10 + lp / 2
6567     };
6568     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6569 
6570     // For each size/alignment combination, we test three scenarios:
6571     // 1) with req_addr == NULL
6572     // 2) with a non-null req_addr at which we expect to successfully allocate
6573     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6574     //    expect the allocation to either fail or to ignore req_addr
6575 
6576     // Pre-allocate two areas; they shall be as large as the largest allocation
6577     //  and aligned to the largest alignment we will be testing.
6578     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6579     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6580       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6581       -1, 0);
6582     assert(mapping1 != MAP_FAILED, "should work");
6583 
6584     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6585       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6586       -1, 0);
6587     assert(mapping2 != MAP_FAILED, "should work");
6588 
6589     // Unmap the first mapping, but leave the second mapping intact: the first
6590     // mapping will serve as a value for a "good" req_addr (case 2). The second
6591     // mapping, still intact, as "bad" req_addr (case 3).
6592     ::munmap(mapping1, mapping_size);
6593 
6594     // Case 1
6595     test_log("%s, req_addr NULL:", __FUNCTION__);
6596     test_log("size            align           result");
6597 
6598     for (int i = 0; i < num_sizes; i++) {
6599       const size_t size = sizes[i];
6600       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6601         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6602         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6603             size, alignment, p, (p != NULL ? "" : "(failed)"));
6604         if (p != NULL) {
6605           assert(is_ptr_aligned(p, alignment), "must be");
6606           small_page_write(p, size);
6607           os::Linux::release_memory_special_huge_tlbfs(p, size);
6608         }
6609       }
6610     }
6611 
6612     // Case 2
6613     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6614     test_log("size            align           req_addr         result");
6615 
6616     for (int i = 0; i < num_sizes; i++) {
6617       const size_t size = sizes[i];
6618       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6619         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6620         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6621         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6622             size, alignment, req_addr, p,
6623             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6624         if (p != NULL) {
6625           assert(p == req_addr, "must be");
6626           small_page_write(p, size);
6627           os::Linux::release_memory_special_huge_tlbfs(p, size);
6628         }
6629       }
6630     }
6631 
6632     // Case 3
6633     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6634     test_log("size            align           req_addr         result");
6635 
6636     for (int i = 0; i < num_sizes; i++) {
6637       const size_t size = sizes[i];
6638       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6639         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6640         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6641         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6642             size, alignment, req_addr, p,
6643             ((p != NULL ? "" : "(failed)")));
6644         // as the area around req_addr contains already existing mappings, the API should always
6645         // return NULL (as per contract, it cannot return another address)
6646         assert(p == NULL, "must be");
6647       }
6648     }
6649 
6650     ::munmap(mapping2, mapping_size);
6651 
6652   }
6653 
6654   static void test_reserve_memory_special_huge_tlbfs() {
6655     if (!UseHugeTLBFS) {
6656       return;
6657     }
6658 
6659     test_reserve_memory_special_huge_tlbfs_only();
6660     test_reserve_memory_special_huge_tlbfs_mixed();
6661   }
6662 
6663   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6664     if (!UseSHM) {
6665       return;
6666     }
6667 
6668     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6669 
6670     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6671 
6672     if (addr != NULL) {
6673       assert(is_ptr_aligned(addr, alignment), "Check");
6674       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6675 
6676       small_page_write(addr, size);
6677 
6678       os::Linux::release_memory_special_shm(addr, size);
6679     }
6680   }
6681 
6682   static void test_reserve_memory_special_shm() {
6683     size_t lp = os::large_page_size();
6684     size_t ag = os::vm_allocation_granularity();
6685 
6686     for (size_t size = ag; size < lp * 3; size += ag) {
6687       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6688         test_reserve_memory_special_shm(size, alignment);
6689       }
6690     }
6691   }
6692 
6693   static void test() {
6694     test_reserve_memory_special_huge_tlbfs();
6695     test_reserve_memory_special_shm();
6696   }
6697 };
6698 
6699 void TestReserveMemorySpecial_test() {
6700   TestReserveMemorySpecial::test();
6701 }
6702 
6703 #endif