1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jvmtifiles/jvmtiEnv.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/metaspaceShared.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/instanceKlass.hpp"
  41 #include "oops/objArrayOop.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/symbol.hpp"
  44 #include "prims/jvm_misc.hpp"
  45 #include "prims/jvmtiExport.hpp"
  46 #include "prims/jvmtiThreadState.hpp"
  47 #include "prims/privilegedStack.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/biasedLocking.hpp"
  50 #include "runtime/deoptimization.hpp"
  51 #include "runtime/fprofiler.hpp"
  52 #include "runtime/frame.inline.hpp"
  53 #include "runtime/init.hpp"
  54 #include "runtime/interfaceSupport.hpp"
  55 #include "runtime/java.hpp"
  56 #include "runtime/javaCalls.hpp"
  57 #include "runtime/jniPeriodicChecker.hpp"
  58 #include "runtime/memprofiler.hpp"
  59 #include "runtime/mutexLocker.hpp"
  60 #include "runtime/objectMonitor.hpp"
  61 #include "runtime/orderAccess.inline.hpp"
  62 #include "runtime/osThread.hpp"
  63 #include "runtime/safepoint.hpp"
  64 #include "runtime/sharedRuntime.hpp"
  65 #include "runtime/statSampler.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/task.hpp"
  68 #include "runtime/thread.inline.hpp"
  69 #include "runtime/threadCritical.hpp"
  70 #include "runtime/threadLocalStorage.hpp"
  71 #include "runtime/vframe.hpp"
  72 #include "runtime/vframeArray.hpp"
  73 #include "runtime/vframe_hp.hpp"
  74 #include "runtime/vmThread.hpp"
  75 #include "runtime/vm_operations.hpp"
  76 #include "services/attachListener.hpp"
  77 #include "services/management.hpp"
  78 #include "services/memTracker.hpp"
  79 #include "services/threadService.hpp"
  80 #include "trace/tracing.hpp"
  81 #include "trace/traceMacros.hpp"
  82 #include "utilities/defaultStream.hpp"
  83 #include "utilities/dtrace.hpp"
  84 #include "utilities/events.hpp"
  85 #include "utilities/preserveException.hpp"
  86 #include "utilities/macros.hpp"
  87 #ifdef TARGET_OS_FAMILY_linux
  88 # include "os_linux.inline.hpp"
  89 #endif
  90 #ifdef TARGET_OS_FAMILY_solaris
  91 # include "os_solaris.inline.hpp"
  92 #endif
  93 #ifdef TARGET_OS_FAMILY_windows
  94 # include "os_windows.inline.hpp"
  95 #endif
  96 #ifdef TARGET_OS_FAMILY_bsd
  97 # include "os_bsd.inline.hpp"
  98 #endif
  99 #if INCLUDE_ALL_GCS
 100 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
 101 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
 102 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
 103 #endif // INCLUDE_ALL_GCS
 104 #ifdef COMPILER1
 105 #include "c1/c1_Compiler.hpp"
 106 #endif
 107 #ifdef COMPILER2
 108 #include "opto/c2compiler.hpp"
 109 #include "opto/idealGraphPrinter.hpp"
 110 #endif
 111 #if INCLUDE_RTM_OPT
 112 #include "runtime/rtmLocking.hpp"
 113 #endif
 114 
 115 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 116 
 117 #ifdef DTRACE_ENABLED
 118 
 119 // Only bother with this argument setup if dtrace is available
 120 
 121 #ifndef USDT2
 122 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
 123 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
 124 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
 125   intptr_t, intptr_t, bool);
 126 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
 127   intptr_t, intptr_t, bool);
 128 
 129 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 130   {                                                                        \
 131     ResourceMark rm(this);                                                 \
 132     int len = 0;                                                           \
 133     const char* name = (javathread)->get_thread_name();                    \
 134     len = strlen(name);                                                    \
 135     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
 136       name, len,                                                           \
 137       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 138       (javathread)->osthread()->thread_id(),                               \
 139       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 140   }
 141 
 142 #else /* USDT2 */
 143 
 144 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 145 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 146 
 147 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 148   {                                                                        \
 149     ResourceMark rm(this);                                                 \
 150     int len = 0;                                                           \
 151     const char* name = (javathread)->get_thread_name();                    \
 152     len = strlen(name);                                                    \
 153     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
 154       (char *) name, len,                                                           \
 155       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 156       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
 157       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 158   }
 159 
 160 #endif /* USDT2 */
 161 
 162 #else //  ndef DTRACE_ENABLED
 163 
 164 #define DTRACE_THREAD_PROBE(probe, javathread)
 165 
 166 #endif // ndef DTRACE_ENABLED
 167 
 168 
 169 // Class hierarchy
 170 // - Thread
 171 //   - VMThread
 172 //   - WatcherThread
 173 //   - ConcurrentMarkSweepThread
 174 //   - JavaThread
 175 //     - CompilerThread
 176 
 177 // ======= Thread ========
 178 // Support for forcing alignment of thread objects for biased locking
 179 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 180   if (UseBiasedLocking) {
 181     const int alignment = markOopDesc::biased_lock_alignment;
 182     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 183     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 184                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 185                                               AllocFailStrategy::RETURN_NULL);
 186     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 187     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 188            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 189            "JavaThread alignment code overflowed allocated storage");
 190     if (TraceBiasedLocking) {
 191       if (aligned_addr != real_malloc_addr)
 192         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 193                       real_malloc_addr, aligned_addr);
 194     }
 195     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 196     return aligned_addr;
 197   } else {
 198     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 199                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 200   }
 201 }
 202 
 203 void Thread::operator delete(void* p) {
 204   if (UseBiasedLocking) {
 205     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 206     FreeHeap(real_malloc_addr, mtThread);
 207   } else {
 208     FreeHeap(p, mtThread);
 209   }
 210 }
 211 
 212 
 213 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 214 // JavaThread
 215 
 216 
 217 Thread::Thread() {
 218   // stack and get_thread
 219   set_stack_base(NULL);
 220   set_stack_size(0);
 221   set_self_raw_id(0);
 222   set_lgrp_id(-1);
 223 
 224   // allocated data structures
 225   set_osthread(NULL);
 226   set_resource_area(new (mtThread)ResourceArea());
 227   DEBUG_ONLY(_current_resource_mark = NULL;)
 228   set_handle_area(new (mtThread) HandleArea(NULL));
 229   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 230   set_active_handles(NULL);
 231   set_free_handle_block(NULL);
 232   set_last_handle_mark(NULL);
 233 
 234   // This initial value ==> never claimed.
 235   _oops_do_parity = 0;
 236 
 237   _metadata_on_stack_buffer = NULL;
 238 
 239   // the handle mark links itself to last_handle_mark
 240   new HandleMark(this);
 241 
 242   // plain initialization
 243   debug_only(_owned_locks = NULL;)
 244   debug_only(_allow_allocation_count = 0;)
 245   NOT_PRODUCT(_allow_safepoint_count = 0;)
 246   NOT_PRODUCT(_skip_gcalot = false;)
 247   _jvmti_env_iteration_count = 0;
 248   set_allocated_bytes(0);
 249   _vm_operation_started_count = 0;
 250   _vm_operation_completed_count = 0;
 251   _current_pending_monitor = NULL;
 252   _current_pending_monitor_is_from_java = true;
 253   _current_waiting_monitor = NULL;
 254   _num_nested_signal = 0;
 255   omFreeList = NULL ;
 256   omFreeCount = 0 ;
 257   omFreeProvision = 32 ;
 258   omInUseList = NULL ;
 259   omInUseCount = 0 ;
 260 
 261 #ifdef ASSERT
 262   _visited_for_critical_count = false;
 263 #endif
 264 
 265   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 266   _suspend_flags = 0;
 267 
 268   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 269   _hashStateX = os::random() ;
 270   _hashStateY = 842502087 ;
 271   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 272   _hashStateW = 273326509 ;
 273 
 274   _OnTrap   = 0 ;
 275   _schedctl = NULL ;
 276   _Stalled  = 0 ;
 277   _TypeTag  = 0x2BAD ;
 278 
 279   // Many of the following fields are effectively final - immutable
 280   // Note that nascent threads can't use the Native Monitor-Mutex
 281   // construct until the _MutexEvent is initialized ...
 282   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 283   // we might instead use a stack of ParkEvents that we could provision on-demand.
 284   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 285   // and ::Release()
 286   _ParkEvent   = ParkEvent::Allocate (this) ;
 287   _SleepEvent  = ParkEvent::Allocate (this) ;
 288   _MutexEvent  = ParkEvent::Allocate (this) ;
 289   _MuxEvent    = ParkEvent::Allocate (this) ;
 290 
 291 #ifdef CHECK_UNHANDLED_OOPS
 292   if (CheckUnhandledOops) {
 293     _unhandled_oops = new UnhandledOops(this);
 294   }
 295 #endif // CHECK_UNHANDLED_OOPS
 296 #ifdef ASSERT
 297   if (UseBiasedLocking) {
 298     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 299     assert(this == _real_malloc_address ||
 300            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 301            "bug in forced alignment of thread objects");
 302   }
 303 #endif /* ASSERT */
 304 }
 305 
 306 void Thread::initialize_thread_local_storage() {
 307   // Note: Make sure this method only calls
 308   // non-blocking operations. Otherwise, it might not work
 309   // with the thread-startup/safepoint interaction.
 310 
 311   // During Java thread startup, safepoint code should allow this
 312   // method to complete because it may need to allocate memory to
 313   // store information for the new thread.
 314 
 315   // initialize structure dependent on thread local storage
 316   ThreadLocalStorage::set_thread(this);
 317 }
 318 
 319 void Thread::record_stack_base_and_size() {
 320   set_stack_base(os::current_stack_base());
 321   set_stack_size(os::current_stack_size());
 322   if (is_Java_thread()) {
 323     ((JavaThread*) this)->set_stack_overflow_limit();
 324   }
 325   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 326   // in initialize_thread(). Without the adjustment, stack size is
 327   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 328   // So far, only Solaris has real implementation of initialize_thread().
 329   //
 330   // set up any platform-specific state.
 331   os::initialize_thread(this);
 332 
 333 #if INCLUDE_NMT
 334   // record thread's native stack, stack grows downward
 335   address stack_low_addr = stack_base() - stack_size();
 336   MemTracker::record_thread_stack(stack_low_addr, stack_size());
 337 #endif // INCLUDE_NMT
 338 }
 339 
 340 
 341 Thread::~Thread() {
 342   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 343   ObjectSynchronizer::omFlush (this) ;
 344 
 345   EVENT_THREAD_DESTRUCT(this);
 346 
 347   // stack_base can be NULL if the thread is never started or exited before
 348   // record_stack_base_and_size called. Although, we would like to ensure
 349   // that all started threads do call record_stack_base_and_size(), there is
 350   // not proper way to enforce that.
 351 #if INCLUDE_NMT
 352   if (_stack_base != NULL) {
 353     address low_stack_addr = stack_base() - stack_size();
 354     MemTracker::release_thread_stack(low_stack_addr, stack_size());
 355 #ifdef ASSERT
 356     set_stack_base(NULL);
 357 #endif
 358   }
 359 #endif // INCLUDE_NMT
 360 
 361   // deallocate data structures
 362   delete resource_area();
 363   // since the handle marks are using the handle area, we have to deallocated the root
 364   // handle mark before deallocating the thread's handle area,
 365   assert(last_handle_mark() != NULL, "check we have an element");
 366   delete last_handle_mark();
 367   assert(last_handle_mark() == NULL, "check we have reached the end");
 368 
 369   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 370   // We NULL out the fields for good hygiene.
 371   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 372   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 373   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 374   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 375 
 376   delete handle_area();
 377   delete metadata_handles();
 378 
 379   // osthread() can be NULL, if creation of thread failed.
 380   if (osthread() != NULL) os::free_thread(osthread());
 381 
 382   delete _SR_lock;
 383 
 384   // clear thread local storage if the Thread is deleting itself
 385   if (this == Thread::current()) {
 386     ThreadLocalStorage::set_thread(NULL);
 387   } else {
 388     // In the case where we're not the current thread, invalidate all the
 389     // caches in case some code tries to get the current thread or the
 390     // thread that was destroyed, and gets stale information.
 391     ThreadLocalStorage::invalidate_all();
 392   }
 393   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 394 }
 395 
 396 // NOTE: dummy function for assertion purpose.
 397 void Thread::run() {
 398   ShouldNotReachHere();
 399 }
 400 
 401 #ifdef ASSERT
 402 // Private method to check for dangling thread pointer
 403 void check_for_dangling_thread_pointer(Thread *thread) {
 404  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 405          "possibility of dangling Thread pointer");
 406 }
 407 #endif
 408 
 409 
 410 #ifndef PRODUCT
 411 // Tracing method for basic thread operations
 412 void Thread::trace(const char* msg, const Thread* const thread) {
 413   if (!TraceThreadEvents) return;
 414   ResourceMark rm;
 415   ThreadCritical tc;
 416   const char *name = "non-Java thread";
 417   int prio = -1;
 418   if (thread->is_Java_thread()
 419       && !thread->is_Compiler_thread()) {
 420     // The Threads_lock must be held to get information about
 421     // this thread but may not be in some situations when
 422     // tracing  thread events.
 423     bool release_Threads_lock = false;
 424     if (!Threads_lock->owned_by_self()) {
 425       Threads_lock->lock();
 426       release_Threads_lock = true;
 427     }
 428     JavaThread* jt = (JavaThread *)thread;
 429     name = (char *)jt->get_thread_name();
 430     oop thread_oop = jt->threadObj();
 431     if (thread_oop != NULL) {
 432       prio = java_lang_Thread::priority(thread_oop);
 433     }
 434     if (release_Threads_lock) {
 435       Threads_lock->unlock();
 436     }
 437   }
 438   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 439 }
 440 #endif
 441 
 442 
 443 ThreadPriority Thread::get_priority(const Thread* const thread) {
 444   trace("get priority", thread);
 445   ThreadPriority priority;
 446   // Can return an error!
 447   (void)os::get_priority(thread, priority);
 448   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 449   return priority;
 450 }
 451 
 452 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 453   trace("set priority", thread);
 454   debug_only(check_for_dangling_thread_pointer(thread);)
 455   // Can return an error!
 456   (void)os::set_priority(thread, priority);
 457 }
 458 
 459 
 460 void Thread::start(Thread* thread) {
 461   trace("start", thread);
 462   // Start is different from resume in that its safety is guaranteed by context or
 463   // being called from a Java method synchronized on the Thread object.
 464   if (!DisableStartThread) {
 465     if (thread->is_Java_thread()) {
 466       // Initialize the thread state to RUNNABLE before starting this thread.
 467       // Can not set it after the thread started because we do not know the
 468       // exact thread state at that time. It could be in MONITOR_WAIT or
 469       // in SLEEPING or some other state.
 470       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 471                                           java_lang_Thread::RUNNABLE);
 472     }
 473     os::start_thread(thread);
 474   }
 475 }
 476 
 477 // Enqueue a VM_Operation to do the job for us - sometime later
 478 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 479   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 480   VMThread::execute(vm_stop);
 481 }
 482 
 483 
 484 //
 485 // Check if an external suspend request has completed (or has been
 486 // cancelled). Returns true if the thread is externally suspended and
 487 // false otherwise.
 488 //
 489 // The bits parameter returns information about the code path through
 490 // the routine. Useful for debugging:
 491 //
 492 // set in is_ext_suspend_completed():
 493 // 0x00000001 - routine was entered
 494 // 0x00000010 - routine return false at end
 495 // 0x00000100 - thread exited (return false)
 496 // 0x00000200 - suspend request cancelled (return false)
 497 // 0x00000400 - thread suspended (return true)
 498 // 0x00001000 - thread is in a suspend equivalent state (return true)
 499 // 0x00002000 - thread is native and walkable (return true)
 500 // 0x00004000 - thread is native_trans and walkable (needed retry)
 501 //
 502 // set in wait_for_ext_suspend_completion():
 503 // 0x00010000 - routine was entered
 504 // 0x00020000 - suspend request cancelled before loop (return false)
 505 // 0x00040000 - thread suspended before loop (return true)
 506 // 0x00080000 - suspend request cancelled in loop (return false)
 507 // 0x00100000 - thread suspended in loop (return true)
 508 // 0x00200000 - suspend not completed during retry loop (return false)
 509 //
 510 
 511 // Helper class for tracing suspend wait debug bits.
 512 //
 513 // 0x00000100 indicates that the target thread exited before it could
 514 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 515 // 0x00080000 each indicate a cancelled suspend request so they don't
 516 // count as wait failures either.
 517 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 518 
 519 class TraceSuspendDebugBits : public StackObj {
 520  private:
 521   JavaThread * jt;
 522   bool         is_wait;
 523   bool         called_by_wait;  // meaningful when !is_wait
 524   uint32_t *   bits;
 525 
 526  public:
 527   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 528                         uint32_t *_bits) {
 529     jt             = _jt;
 530     is_wait        = _is_wait;
 531     called_by_wait = _called_by_wait;
 532     bits           = _bits;
 533   }
 534 
 535   ~TraceSuspendDebugBits() {
 536     if (!is_wait) {
 537 #if 1
 538       // By default, don't trace bits for is_ext_suspend_completed() calls.
 539       // That trace is very chatty.
 540       return;
 541 #else
 542       if (!called_by_wait) {
 543         // If tracing for is_ext_suspend_completed() is enabled, then only
 544         // trace calls to it from wait_for_ext_suspend_completion()
 545         return;
 546       }
 547 #endif
 548     }
 549 
 550     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 551       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 552         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 553         ResourceMark rm;
 554 
 555         tty->print_cr(
 556             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 557             jt->get_thread_name(), *bits);
 558 
 559         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 560       }
 561     }
 562   }
 563 };
 564 #undef DEBUG_FALSE_BITS
 565 
 566 
 567 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 568   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 569 
 570   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 571   bool do_trans_retry;           // flag to force the retry
 572 
 573   *bits |= 0x00000001;
 574 
 575   do {
 576     do_trans_retry = false;
 577 
 578     if (is_exiting()) {
 579       // Thread is in the process of exiting. This is always checked
 580       // first to reduce the risk of dereferencing a freed JavaThread.
 581       *bits |= 0x00000100;
 582       return false;
 583     }
 584 
 585     if (!is_external_suspend()) {
 586       // Suspend request is cancelled. This is always checked before
 587       // is_ext_suspended() to reduce the risk of a rogue resume
 588       // confusing the thread that made the suspend request.
 589       *bits |= 0x00000200;
 590       return false;
 591     }
 592 
 593     if (is_ext_suspended()) {
 594       // thread is suspended
 595       *bits |= 0x00000400;
 596       return true;
 597     }
 598 
 599     // Now that we no longer do hard suspends of threads running
 600     // native code, the target thread can be changing thread state
 601     // while we are in this routine:
 602     //
 603     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 604     //
 605     // We save a copy of the thread state as observed at this moment
 606     // and make our decision about suspend completeness based on the
 607     // copy. This closes the race where the thread state is seen as
 608     // _thread_in_native_trans in the if-thread_blocked check, but is
 609     // seen as _thread_blocked in if-thread_in_native_trans check.
 610     JavaThreadState save_state = thread_state();
 611 
 612     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 613       // If the thread's state is _thread_blocked and this blocking
 614       // condition is known to be equivalent to a suspend, then we can
 615       // consider the thread to be externally suspended. This means that
 616       // the code that sets _thread_blocked has been modified to do
 617       // self-suspension if the blocking condition releases. We also
 618       // used to check for CONDVAR_WAIT here, but that is now covered by
 619       // the _thread_blocked with self-suspension check.
 620       //
 621       // Return true since we wouldn't be here unless there was still an
 622       // external suspend request.
 623       *bits |= 0x00001000;
 624       return true;
 625     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 626       // Threads running native code will self-suspend on native==>VM/Java
 627       // transitions. If its stack is walkable (should always be the case
 628       // unless this function is called before the actual java_suspend()
 629       // call), then the wait is done.
 630       *bits |= 0x00002000;
 631       return true;
 632     } else if (!called_by_wait && !did_trans_retry &&
 633                save_state == _thread_in_native_trans &&
 634                frame_anchor()->walkable()) {
 635       // The thread is transitioning from thread_in_native to another
 636       // thread state. check_safepoint_and_suspend_for_native_trans()
 637       // will force the thread to self-suspend. If it hasn't gotten
 638       // there yet we may have caught the thread in-between the native
 639       // code check above and the self-suspend. Lucky us. If we were
 640       // called by wait_for_ext_suspend_completion(), then it
 641       // will be doing the retries so we don't have to.
 642       //
 643       // Since we use the saved thread state in the if-statement above,
 644       // there is a chance that the thread has already transitioned to
 645       // _thread_blocked by the time we get here. In that case, we will
 646       // make a single unnecessary pass through the logic below. This
 647       // doesn't hurt anything since we still do the trans retry.
 648 
 649       *bits |= 0x00004000;
 650 
 651       // Once the thread leaves thread_in_native_trans for another
 652       // thread state, we break out of this retry loop. We shouldn't
 653       // need this flag to prevent us from getting back here, but
 654       // sometimes paranoia is good.
 655       did_trans_retry = true;
 656 
 657       // We wait for the thread to transition to a more usable state.
 658       for (int i = 1; i <= SuspendRetryCount; i++) {
 659         // We used to do an "os::yield_all(i)" call here with the intention
 660         // that yielding would increase on each retry. However, the parameter
 661         // is ignored on Linux which means the yield didn't scale up. Waiting
 662         // on the SR_lock below provides a much more predictable scale up for
 663         // the delay. It also provides a simple/direct point to check for any
 664         // safepoint requests from the VMThread
 665 
 666         // temporarily drops SR_lock while doing wait with safepoint check
 667         // (if we're a JavaThread - the WatcherThread can also call this)
 668         // and increase delay with each retry
 669         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 670 
 671         // check the actual thread state instead of what we saved above
 672         if (thread_state() != _thread_in_native_trans) {
 673           // the thread has transitioned to another thread state so
 674           // try all the checks (except this one) one more time.
 675           do_trans_retry = true;
 676           break;
 677         }
 678       } // end retry loop
 679 
 680 
 681     }
 682   } while (do_trans_retry);
 683 
 684   *bits |= 0x00000010;
 685   return false;
 686 }
 687 
 688 //
 689 // Wait for an external suspend request to complete (or be cancelled).
 690 // Returns true if the thread is externally suspended and false otherwise.
 691 //
 692 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 693        uint32_t *bits) {
 694   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 695                              false /* !called_by_wait */, bits);
 696 
 697   // local flag copies to minimize SR_lock hold time
 698   bool is_suspended;
 699   bool pending;
 700   uint32_t reset_bits;
 701 
 702   // set a marker so is_ext_suspend_completed() knows we are the caller
 703   *bits |= 0x00010000;
 704 
 705   // We use reset_bits to reinitialize the bits value at the top of
 706   // each retry loop. This allows the caller to make use of any
 707   // unused bits for their own marking purposes.
 708   reset_bits = *bits;
 709 
 710   {
 711     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 712     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 713                                             delay, bits);
 714     pending = is_external_suspend();
 715   }
 716   // must release SR_lock to allow suspension to complete
 717 
 718   if (!pending) {
 719     // A cancelled suspend request is the only false return from
 720     // is_ext_suspend_completed() that keeps us from entering the
 721     // retry loop.
 722     *bits |= 0x00020000;
 723     return false;
 724   }
 725 
 726   if (is_suspended) {
 727     *bits |= 0x00040000;
 728     return true;
 729   }
 730 
 731   for (int i = 1; i <= retries; i++) {
 732     *bits = reset_bits;  // reinit to only track last retry
 733 
 734     // We used to do an "os::yield_all(i)" call here with the intention
 735     // that yielding would increase on each retry. However, the parameter
 736     // is ignored on Linux which means the yield didn't scale up. Waiting
 737     // on the SR_lock below provides a much more predictable scale up for
 738     // the delay. It also provides a simple/direct point to check for any
 739     // safepoint requests from the VMThread
 740 
 741     {
 742       MutexLocker ml(SR_lock());
 743       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 744       // can also call this)  and increase delay with each retry
 745       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 746 
 747       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 748                                               delay, bits);
 749 
 750       // It is possible for the external suspend request to be cancelled
 751       // (by a resume) before the actual suspend operation is completed.
 752       // Refresh our local copy to see if we still need to wait.
 753       pending = is_external_suspend();
 754     }
 755 
 756     if (!pending) {
 757       // A cancelled suspend request is the only false return from
 758       // is_ext_suspend_completed() that keeps us from staying in the
 759       // retry loop.
 760       *bits |= 0x00080000;
 761       return false;
 762     }
 763 
 764     if (is_suspended) {
 765       *bits |= 0x00100000;
 766       return true;
 767     }
 768   } // end retry loop
 769 
 770   // thread did not suspend after all our retries
 771   *bits |= 0x00200000;
 772   return false;
 773 }
 774 
 775 #ifndef PRODUCT
 776 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 777 
 778   // This should not need to be atomic as the only way for simultaneous
 779   // updates is via interrupts. Even then this should be rare or non-existant
 780   // and we don't care that much anyway.
 781 
 782   int index = _jmp_ring_index;
 783   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 784   _jmp_ring[index]._target = (intptr_t) target;
 785   _jmp_ring[index]._instruction = (intptr_t) instr;
 786   _jmp_ring[index]._file = file;
 787   _jmp_ring[index]._line = line;
 788 }
 789 #endif /* PRODUCT */
 790 
 791 // Called by flat profiler
 792 // Callers have already called wait_for_ext_suspend_completion
 793 // The assertion for that is currently too complex to put here:
 794 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 795   bool gotframe = false;
 796   // self suspension saves needed state.
 797   if (has_last_Java_frame() && _anchor.walkable()) {
 798      *_fr = pd_last_frame();
 799      gotframe = true;
 800   }
 801   return gotframe;
 802 }
 803 
 804 void Thread::interrupt(Thread* thread) {
 805   trace("interrupt", thread);
 806   debug_only(check_for_dangling_thread_pointer(thread);)
 807   os::interrupt(thread);
 808 }
 809 
 810 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 811   trace("is_interrupted", thread);
 812   debug_only(check_for_dangling_thread_pointer(thread);)
 813   // Note:  If clear_interrupted==false, this simply fetches and
 814   // returns the value of the field osthread()->interrupted().
 815   return os::is_interrupted(thread, clear_interrupted);
 816 }
 817 
 818 
 819 // GC Support
 820 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 821   jint thread_parity = _oops_do_parity;
 822   if (thread_parity != strong_roots_parity) {
 823     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 824     if (res == thread_parity) {
 825       return true;
 826     } else {
 827       guarantee(res == strong_roots_parity, "Or else what?");
 828       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 829          "Should only fail when parallel.");
 830       return false;
 831     }
 832   }
 833   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 834          "Should only fail when parallel.");
 835   return false;
 836 }
 837 
 838 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 839   active_handles()->oops_do(f);
 840   // Do oop for ThreadShadow
 841   f->do_oop((oop*)&_pending_exception);
 842   handle_area()->oops_do(f);
 843 }
 844 
 845 void Thread::nmethods_do(CodeBlobClosure* cf) {
 846   // no nmethods in a generic thread...
 847 }
 848 
 849 void Thread::metadata_do(void f(Metadata*)) {
 850   if (metadata_handles() != NULL) {
 851     for (int i = 0; i< metadata_handles()->length(); i++) {
 852       f(metadata_handles()->at(i));
 853     }
 854   }
 855 }
 856 
 857 void Thread::print_on(outputStream* st) const {
 858   // get_priority assumes osthread initialized
 859   if (osthread() != NULL) {
 860     int os_prio;
 861     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 862       st->print("os_prio=%d ", os_prio);
 863     }
 864     st->print("tid=" INTPTR_FORMAT " ", this);
 865     ext().print_on(st);
 866     osthread()->print_on(st);
 867   }
 868   debug_only(if (WizardMode) print_owned_locks_on(st);)
 869 }
 870 
 871 // Thread::print_on_error() is called by fatal error handler. Don't use
 872 // any lock or allocate memory.
 873 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 874   if      (is_VM_thread())                  st->print("VMThread");
 875   else if (is_Compiler_thread())            st->print("CompilerThread");
 876   else if (is_Java_thread())                st->print("JavaThread");
 877   else if (is_GC_task_thread())             st->print("GCTaskThread");
 878   else if (is_Watcher_thread())             st->print("WatcherThread");
 879   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 880   else st->print("Thread");
 881 
 882   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 883             _stack_base - _stack_size, _stack_base);
 884 
 885   if (osthread()) {
 886     st->print(" [id=%d]", osthread()->thread_id());
 887   }
 888 }
 889 
 890 #ifdef ASSERT
 891 void Thread::print_owned_locks_on(outputStream* st) const {
 892   Monitor *cur = _owned_locks;
 893   if (cur == NULL) {
 894     st->print(" (no locks) ");
 895   } else {
 896     st->print_cr(" Locks owned:");
 897     while(cur) {
 898       cur->print_on(st);
 899       cur = cur->next();
 900     }
 901   }
 902 }
 903 
 904 static int ref_use_count  = 0;
 905 
 906 bool Thread::owns_locks_but_compiled_lock() const {
 907   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 908     if (cur != Compile_lock) return true;
 909   }
 910   return false;
 911 }
 912 
 913 
 914 #endif
 915 
 916 #ifndef PRODUCT
 917 
 918 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 919 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 920 // no threads which allow_vm_block's are held
 921 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 922     // Check if current thread is allowed to block at a safepoint
 923     if (!(_allow_safepoint_count == 0))
 924       fatal("Possible safepoint reached by thread that does not allow it");
 925     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 926       fatal("LEAF method calling lock?");
 927     }
 928 
 929 #ifdef ASSERT
 930     if (potential_vm_operation && is_Java_thread()
 931         && !Universe::is_bootstrapping()) {
 932       // Make sure we do not hold any locks that the VM thread also uses.
 933       // This could potentially lead to deadlocks
 934       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 935         // Threads_lock is special, since the safepoint synchronization will not start before this is
 936         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 937         // since it is used to transfer control between JavaThreads and the VMThread
 938         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 939         if ( (cur->allow_vm_block() &&
 940               cur != Threads_lock &&
 941               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 942               cur != VMOperationRequest_lock &&
 943               cur != VMOperationQueue_lock) ||
 944               cur->rank() == Mutex::special) {
 945           fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
 946         }
 947       }
 948     }
 949 
 950     if (GCALotAtAllSafepoints) {
 951       // We could enter a safepoint here and thus have a gc
 952       InterfaceSupport::check_gc_alot();
 953     }
 954 #endif
 955 }
 956 #endif
 957 
 958 bool Thread::is_in_stack(address adr) const {
 959   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 960   address end = os::current_stack_pointer();
 961   // Allow non Java threads to call this without stack_base
 962   if (_stack_base == NULL) return true;
 963   if (stack_base() >= adr && adr >= end) return true;
 964 
 965   return false;
 966 }
 967 
 968 
 969 bool Thread::is_in_usable_stack(address adr) const {
 970   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 971   size_t usable_stack_size = _stack_size - stack_guard_size;
 972 
 973   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 974 }
 975 
 976 
 977 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 978 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 979 // used for compilation in the future. If that change is made, the need for these methods
 980 // should be revisited, and they should be removed if possible.
 981 
 982 bool Thread::is_lock_owned(address adr) const {
 983   return on_local_stack(adr);
 984 }
 985 
 986 bool Thread::set_as_starting_thread() {
 987  // NOTE: this must be called inside the main thread.
 988   return os::create_main_thread((JavaThread*)this);
 989 }
 990 
 991 // Helper to initialize_class for callers that need the klass result
 992 static Klass *initialize_class_and_return(Symbol* class_name, TRAPS) {
 993   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK_NULL);
 994   InstanceKlass::cast(klass)->initialize(CHECK_NULL);
 995   return klass;
 996 }
 997 
 998 static void initialize_class(Symbol* class_name, TRAPS) {
 999   (void)initialize_class_and_return(class_name, CHECK);
1000 }
1001 
1002 
1003 // Creates the initial ThreadGroup
1004 static Handle create_initial_thread_group(TRAPS) {
1005   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
1006   instanceKlassHandle klass (THREAD, k);
1007 
1008   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
1009   {
1010     JavaValue result(T_VOID);
1011     JavaCalls::call_special(&result,
1012                             system_instance,
1013                             klass,
1014                             vmSymbols::object_initializer_name(),
1015                             vmSymbols::void_method_signature(),
1016                             CHECK_NH);
1017   }
1018   Universe::set_system_thread_group(system_instance());
1019 
1020   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
1021   {
1022     JavaValue result(T_VOID);
1023     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1024     JavaCalls::call_special(&result,
1025                             main_instance,
1026                             klass,
1027                             vmSymbols::object_initializer_name(),
1028                             vmSymbols::threadgroup_string_void_signature(),
1029                             system_instance,
1030                             string,
1031                             CHECK_NH);
1032   }
1033   return main_instance;
1034 }
1035 
1036 // Creates the initial Thread
1037 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1038   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1039   instanceKlassHandle klass (THREAD, k);
1040   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1041 
1042   java_lang_Thread::set_thread(thread_oop(), thread);
1043   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1044   thread->set_threadObj(thread_oop());
1045 
1046   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1047 
1048   JavaValue result(T_VOID);
1049   JavaCalls::call_special(&result, thread_oop,
1050                                    klass,
1051                                    vmSymbols::object_initializer_name(),
1052                                    vmSymbols::threadgroup_string_void_signature(),
1053                                    thread_group,
1054                                    string,
1055                                    CHECK_NULL);
1056   return thread_oop();
1057 }
1058 
1059 static void call_initializeSystemClass(TRAPS) {
1060   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1061   instanceKlassHandle klass (THREAD, k);
1062 
1063   JavaValue result(T_VOID);
1064   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1065                                          vmSymbols::void_method_signature(), CHECK);
1066 }
1067 
1068 char java_runtime_name[128] = "";
1069 char java_runtime_version[128] = "";
1070 
1071 // extract the JRE name from sun.misc.Version.java_runtime_name
1072 static const char* get_java_runtime_name(TRAPS) {
1073   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1074                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1075   fieldDescriptor fd;
1076   bool found = k != NULL &&
1077                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1078                                                         vmSymbols::string_signature(), &fd);
1079   if (found) {
1080     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1081     if (name_oop == NULL)
1082       return NULL;
1083     const char* name = java_lang_String::as_utf8_string(name_oop,
1084                                                         java_runtime_name,
1085                                                         sizeof(java_runtime_name));
1086     return name;
1087   } else {
1088     return NULL;
1089   }
1090 }
1091 
1092 // extract the JRE version from sun.misc.Version.java_runtime_version
1093 static const char* get_java_runtime_version(TRAPS) {
1094   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1095                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1096   fieldDescriptor fd;
1097   bool found = k != NULL &&
1098                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1099                                                         vmSymbols::string_signature(), &fd);
1100   if (found) {
1101     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1102     if (name_oop == NULL)
1103       return NULL;
1104     const char* name = java_lang_String::as_utf8_string(name_oop,
1105                                                         java_runtime_version,
1106                                                         sizeof(java_runtime_version));
1107     return name;
1108   } else {
1109     return NULL;
1110   }
1111 }
1112 
1113 // General purpose hook into Java code, run once when the VM is initialized.
1114 // The Java library method itself may be changed independently from the VM.
1115 static void call_postVMInitHook(TRAPS) {
1116   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1117   instanceKlassHandle klass (THREAD, k);
1118   if (klass.not_null()) {
1119     JavaValue result(T_VOID);
1120     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1121                                            vmSymbols::void_method_signature(),
1122                                            CHECK);
1123   }
1124 }
1125 
1126 static void reset_vm_info_property(TRAPS) {
1127   // the vm info string
1128   ResourceMark rm(THREAD);
1129   const char *vm_info = VM_Version::vm_info_string();
1130 
1131   // java.lang.System class
1132   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1133   instanceKlassHandle klass (THREAD, k);
1134 
1135   // setProperty arguments
1136   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1137   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1138 
1139   // return value
1140   JavaValue r(T_OBJECT);
1141 
1142   // public static String setProperty(String key, String value);
1143   JavaCalls::call_static(&r,
1144                          klass,
1145                          vmSymbols::setProperty_name(),
1146                          vmSymbols::string_string_string_signature(),
1147                          key_str,
1148                          value_str,
1149                          CHECK);
1150 }
1151 
1152 
1153 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1154   assert(thread_group.not_null(), "thread group should be specified");
1155   assert(threadObj() == NULL, "should only create Java thread object once");
1156 
1157   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1158   instanceKlassHandle klass (THREAD, k);
1159   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1160 
1161   java_lang_Thread::set_thread(thread_oop(), this);
1162   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1163   set_threadObj(thread_oop());
1164 
1165   JavaValue result(T_VOID);
1166   if (thread_name != NULL) {
1167     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1168     // Thread gets assigned specified name and null target
1169     JavaCalls::call_special(&result,
1170                             thread_oop,
1171                             klass,
1172                             vmSymbols::object_initializer_name(),
1173                             vmSymbols::threadgroup_string_void_signature(),
1174                             thread_group, // Argument 1
1175                             name,         // Argument 2
1176                             THREAD);
1177   } else {
1178     // Thread gets assigned name "Thread-nnn" and null target
1179     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1180     JavaCalls::call_special(&result,
1181                             thread_oop,
1182                             klass,
1183                             vmSymbols::object_initializer_name(),
1184                             vmSymbols::threadgroup_runnable_void_signature(),
1185                             thread_group, // Argument 1
1186                             Handle(),     // Argument 2
1187                             THREAD);
1188   }
1189 
1190 
1191   if (daemon) {
1192       java_lang_Thread::set_daemon(thread_oop());
1193   }
1194 
1195   if (HAS_PENDING_EXCEPTION) {
1196     return;
1197   }
1198 
1199   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1200   Handle threadObj(this, this->threadObj());
1201 
1202   JavaCalls::call_special(&result,
1203                          thread_group,
1204                          group,
1205                          vmSymbols::add_method_name(),
1206                          vmSymbols::thread_void_signature(),
1207                          threadObj,          // Arg 1
1208                          THREAD);
1209 
1210 
1211 }
1212 
1213 // NamedThread --  non-JavaThread subclasses with multiple
1214 // uniquely named instances should derive from this.
1215 NamedThread::NamedThread() : Thread() {
1216   _name = NULL;
1217   _processed_thread = NULL;
1218 }
1219 
1220 NamedThread::~NamedThread() {
1221   if (_name != NULL) {
1222     FREE_C_HEAP_ARRAY(char, _name, mtThread);
1223     _name = NULL;
1224   }
1225 }
1226 
1227 void NamedThread::set_name(const char* format, ...) {
1228   guarantee(_name == NULL, "Only get to set name once.");
1229   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1230   guarantee(_name != NULL, "alloc failure");
1231   va_list ap;
1232   va_start(ap, format);
1233   jio_vsnprintf(_name, max_name_len, format, ap);
1234   va_end(ap);
1235 }
1236 
1237 // ======= WatcherThread ========
1238 
1239 // The watcher thread exists to simulate timer interrupts.  It should
1240 // be replaced by an abstraction over whatever native support for
1241 // timer interrupts exists on the platform.
1242 
1243 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1244 bool WatcherThread::_startable = false;
1245 volatile bool  WatcherThread::_should_terminate = false;
1246 
1247 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1248   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1249   if (os::create_thread(this, os::watcher_thread)) {
1250     _watcher_thread = this;
1251 
1252     // Set the watcher thread to the highest OS priority which should not be
1253     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1254     // is created. The only normal thread using this priority is the reference
1255     // handler thread, which runs for very short intervals only.
1256     // If the VMThread's priority is not lower than the WatcherThread profiling
1257     // will be inaccurate.
1258     os::set_priority(this, MaxPriority);
1259     if (!DisableStartThread) {
1260       os::start_thread(this);
1261     }
1262   }
1263 }
1264 
1265 int WatcherThread::sleep() const {
1266   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1267 
1268   // remaining will be zero if there are no tasks,
1269   // causing the WatcherThread to sleep until a task is
1270   // enrolled
1271   int remaining = PeriodicTask::time_to_wait();
1272   int time_slept = 0;
1273 
1274   // we expect this to timeout - we only ever get unparked when
1275   // we should terminate or when a new task has been enrolled
1276   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1277 
1278   jlong time_before_loop = os::javaTimeNanos();
1279 
1280   for (;;) {
1281     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1282     jlong now = os::javaTimeNanos();
1283 
1284     if (remaining == 0) {
1285         // if we didn't have any tasks we could have waited for a long time
1286         // consider the time_slept zero and reset time_before_loop
1287         time_slept = 0;
1288         time_before_loop = now;
1289     } else {
1290         // need to recalulate since we might have new tasks in _tasks
1291         time_slept = (int) ((now - time_before_loop) / 1000000);
1292     }
1293 
1294     // Change to task list or spurious wakeup of some kind
1295     if (timedout || _should_terminate) {
1296         break;
1297     }
1298 
1299     remaining = PeriodicTask::time_to_wait();
1300     if (remaining == 0) {
1301         // Last task was just disenrolled so loop around and wait until
1302         // another task gets enrolled
1303         continue;
1304     }
1305 
1306     remaining -= time_slept;
1307     if (remaining <= 0)
1308       break;
1309   }
1310 
1311   return time_slept;
1312 }
1313 
1314 void WatcherThread::run() {
1315   assert(this == watcher_thread(), "just checking");
1316 
1317   this->record_stack_base_and_size();
1318   this->initialize_thread_local_storage();
1319   this->set_active_handles(JNIHandleBlock::allocate_block());
1320   while(!_should_terminate) {
1321     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1322     assert(watcher_thread() == this,  "thread consistency check");
1323 
1324     // Calculate how long it'll be until the next PeriodicTask work
1325     // should be done, and sleep that amount of time.
1326     int time_waited = sleep();
1327 
1328     if (is_error_reported()) {
1329       // A fatal error has happened, the error handler(VMError::report_and_die)
1330       // should abort JVM after creating an error log file. However in some
1331       // rare cases, the error handler itself might deadlock. Here we try to
1332       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1333       //
1334       // This code is in WatcherThread because WatcherThread wakes up
1335       // periodically so the fatal error handler doesn't need to do anything;
1336       // also because the WatcherThread is less likely to crash than other
1337       // threads.
1338 
1339       for (;;) {
1340         if (!ShowMessageBoxOnError
1341          && (OnError == NULL || OnError[0] == '\0')
1342          && Arguments::abort_hook() == NULL) {
1343              os::sleep(this, 2 * 60 * 1000, false);
1344              fdStream err(defaultStream::output_fd());
1345              err.print_raw_cr("# [ timer expired, abort... ]");
1346              // skip atexit/vm_exit/vm_abort hooks
1347              os::die();
1348         }
1349 
1350         // Wake up 5 seconds later, the fatal handler may reset OnError or
1351         // ShowMessageBoxOnError when it is ready to abort.
1352         os::sleep(this, 5 * 1000, false);
1353       }
1354     }
1355 
1356     PeriodicTask::real_time_tick(time_waited);
1357   }
1358 
1359   // Signal that it is terminated
1360   {
1361     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1362     _watcher_thread = NULL;
1363     Terminator_lock->notify();
1364   }
1365 
1366   // Thread destructor usually does this..
1367   ThreadLocalStorage::set_thread(NULL);
1368 }
1369 
1370 void WatcherThread::start() {
1371   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1372 
1373   if (watcher_thread() == NULL && _startable) {
1374     _should_terminate = false;
1375     // Create the single instance of WatcherThread
1376     new WatcherThread();
1377   }
1378 }
1379 
1380 void WatcherThread::make_startable() {
1381   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1382   _startable = true;
1383 }
1384 
1385 void WatcherThread::stop() {
1386   {
1387     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1388     _should_terminate = true;
1389     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1390 
1391     WatcherThread* watcher = watcher_thread();
1392     if (watcher != NULL)
1393       watcher->unpark();
1394   }
1395 
1396   // it is ok to take late safepoints here, if needed
1397   MutexLocker mu(Terminator_lock);
1398 
1399   while(watcher_thread() != NULL) {
1400     // This wait should make safepoint checks, wait without a timeout,
1401     // and wait as a suspend-equivalent condition.
1402     //
1403     // Note: If the FlatProfiler is running, then this thread is waiting
1404     // for the WatcherThread to terminate and the WatcherThread, via the
1405     // FlatProfiler task, is waiting for the external suspend request on
1406     // this thread to complete. wait_for_ext_suspend_completion() will
1407     // eventually timeout, but that takes time. Making this wait a
1408     // suspend-equivalent condition solves that timeout problem.
1409     //
1410     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1411                           Mutex::_as_suspend_equivalent_flag);
1412   }
1413 }
1414 
1415 void WatcherThread::unpark() {
1416   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1417   PeriodicTask_lock->notify();
1418 }
1419 
1420 void WatcherThread::print_on(outputStream* st) const {
1421   st->print("\"%s\" ", name());
1422   Thread::print_on(st);
1423   st->cr();
1424 }
1425 
1426 // ======= JavaThread ========
1427 
1428 // A JavaThread is a normal Java thread
1429 
1430 void JavaThread::initialize() {
1431   // Initialize fields
1432 
1433   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1434   set_claimed_par_id(UINT_MAX);
1435 
1436   set_saved_exception_pc(NULL);
1437   set_threadObj(NULL);
1438   _anchor.clear();
1439   set_entry_point(NULL);
1440   set_jni_functions(jni_functions());
1441   set_callee_target(NULL);
1442   set_vm_result(NULL);
1443   set_vm_result_2(NULL);
1444   set_vframe_array_head(NULL);
1445   set_vframe_array_last(NULL);
1446   set_deferred_locals(NULL);
1447   set_deopt_mark(NULL);
1448   set_deopt_nmethod(NULL);
1449   clear_must_deopt_id();
1450   set_monitor_chunks(NULL);
1451   set_next(NULL);
1452   set_thread_state(_thread_new);
1453   _terminated = _not_terminated;
1454   _privileged_stack_top = NULL;
1455   _array_for_gc = NULL;
1456   _suspend_equivalent = false;
1457   _in_deopt_handler = 0;
1458   _doing_unsafe_access = false;
1459   _stack_guard_state = stack_guard_unused;
1460   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1461   _exception_pc  = 0;
1462   _exception_handler_pc = 0;
1463   _is_method_handle_return = 0;
1464   _jvmti_thread_state= NULL;
1465   _should_post_on_exceptions_flag = JNI_FALSE;
1466   _jvmti_get_loaded_classes_closure = NULL;
1467   _interp_only_mode    = 0;
1468   _special_runtime_exit_condition = _no_async_condition;
1469   _pending_async_exception = NULL;
1470   _thread_stat = NULL;
1471   _thread_stat = new ThreadStatistics();
1472   _blocked_on_compilation = false;
1473   _jni_active_critical = 0;
1474   _pending_jni_exception_check_fn = NULL;
1475   _do_not_unlock_if_synchronized = false;
1476   _cached_monitor_info = NULL;
1477   _parker = Parker::Allocate(this) ;
1478 
1479 #ifndef PRODUCT
1480   _jmp_ring_index = 0;
1481   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1482     record_jump(NULL, NULL, NULL, 0);
1483   }
1484 #endif /* PRODUCT */
1485 
1486   set_thread_profiler(NULL);
1487   if (FlatProfiler::is_active()) {
1488     // This is where we would decide to either give each thread it's own profiler
1489     // or use one global one from FlatProfiler,
1490     // or up to some count of the number of profiled threads, etc.
1491     ThreadProfiler* pp = new ThreadProfiler();
1492     pp->engage();
1493     set_thread_profiler(pp);
1494   }
1495 
1496   // Setup safepoint state info for this thread
1497   ThreadSafepointState::create(this);
1498 
1499   debug_only(_java_call_counter = 0);
1500 
1501   // JVMTI PopFrame support
1502   _popframe_condition = popframe_inactive;
1503   _popframe_preserved_args = NULL;
1504   _popframe_preserved_args_size = 0;
1505   _frames_to_pop_failed_realloc = 0;
1506 
1507   pd_initialize();
1508 }
1509 
1510 #if INCLUDE_ALL_GCS
1511 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1512 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1513 #endif // INCLUDE_ALL_GCS
1514 
1515 JavaThread::JavaThread(bool is_attaching_via_jni) :
1516   Thread()
1517 #if INCLUDE_ALL_GCS
1518   , _satb_mark_queue(&_satb_mark_queue_set),
1519   _dirty_card_queue(&_dirty_card_queue_set)
1520 #endif // INCLUDE_ALL_GCS
1521 {
1522   initialize();
1523   if (is_attaching_via_jni) {
1524     _jni_attach_state = _attaching_via_jni;
1525   } else {
1526     _jni_attach_state = _not_attaching_via_jni;
1527   }
1528   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1529 }
1530 
1531 bool JavaThread::reguard_stack(address cur_sp) {
1532   if (_stack_guard_state != stack_guard_yellow_disabled) {
1533     return true; // Stack already guarded or guard pages not needed.
1534   }
1535 
1536   if (register_stack_overflow()) {
1537     // For those architectures which have separate register and
1538     // memory stacks, we must check the register stack to see if
1539     // it has overflowed.
1540     return false;
1541   }
1542 
1543   // Java code never executes within the yellow zone: the latter is only
1544   // there to provoke an exception during stack banging.  If java code
1545   // is executing there, either StackShadowPages should be larger, or
1546   // some exception code in c1, c2 or the interpreter isn't unwinding
1547   // when it should.
1548   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1549 
1550   enable_stack_yellow_zone();
1551   return true;
1552 }
1553 
1554 bool JavaThread::reguard_stack(void) {
1555   return reguard_stack(os::current_stack_pointer());
1556 }
1557 
1558 
1559 void JavaThread::block_if_vm_exited() {
1560   if (_terminated == _vm_exited) {
1561     // _vm_exited is set at safepoint, and Threads_lock is never released
1562     // we will block here forever
1563     Threads_lock->lock_without_safepoint_check();
1564     ShouldNotReachHere();
1565   }
1566 }
1567 
1568 
1569 // Remove this ifdef when C1 is ported to the compiler interface.
1570 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1571 
1572 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1573   Thread()
1574 #if INCLUDE_ALL_GCS
1575   , _satb_mark_queue(&_satb_mark_queue_set),
1576   _dirty_card_queue(&_dirty_card_queue_set)
1577 #endif // INCLUDE_ALL_GCS
1578 {
1579   if (TraceThreadEvents) {
1580     tty->print_cr("creating thread %p", this);
1581   }
1582   initialize();
1583   _jni_attach_state = _not_attaching_via_jni;
1584   set_entry_point(entry_point);
1585   // Create the native thread itself.
1586   // %note runtime_23
1587   os::ThreadType thr_type = os::java_thread;
1588   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1589                                                      os::java_thread;
1590   os::create_thread(this, thr_type, stack_sz);
1591   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1592   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1593   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1594   // the exception consists of creating the exception object & initializing it, initialization
1595   // will leave the VM via a JavaCall and then all locks must be unlocked).
1596   //
1597   // The thread is still suspended when we reach here. Thread must be explicit started
1598   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1599   // by calling Threads:add. The reason why this is not done here, is because the thread
1600   // object must be fully initialized (take a look at JVM_Start)
1601 }
1602 
1603 JavaThread::~JavaThread() {
1604   if (TraceThreadEvents) {
1605       tty->print_cr("terminate thread %p", this);
1606   }
1607 
1608   // JSR166 -- return the parker to the free list
1609   Parker::Release(_parker);
1610   _parker = NULL ;
1611 
1612   // Free any remaining  previous UnrollBlock
1613   vframeArray* old_array = vframe_array_last();
1614 
1615   if (old_array != NULL) {
1616     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1617     old_array->set_unroll_block(NULL);
1618     delete old_info;
1619     delete old_array;
1620   }
1621 
1622   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1623   if (deferred != NULL) {
1624     // This can only happen if thread is destroyed before deoptimization occurs.
1625     assert(deferred->length() != 0, "empty array!");
1626     do {
1627       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1628       deferred->remove_at(0);
1629       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1630       delete dlv;
1631     } while (deferred->length() != 0);
1632     delete deferred;
1633   }
1634 
1635   // All Java related clean up happens in exit
1636   ThreadSafepointState::destroy(this);
1637   if (_thread_profiler != NULL) delete _thread_profiler;
1638   if (_thread_stat != NULL) delete _thread_stat;
1639 }
1640 
1641 
1642 // The first routine called by a new Java thread
1643 void JavaThread::run() {
1644   // initialize thread-local alloc buffer related fields
1645   this->initialize_tlab();
1646 
1647   // used to test validitity of stack trace backs
1648   this->record_base_of_stack_pointer();
1649 
1650   // Record real stack base and size.
1651   this->record_stack_base_and_size();
1652 
1653   // Initialize thread local storage; set before calling MutexLocker
1654   this->initialize_thread_local_storage();
1655 
1656   this->create_stack_guard_pages();
1657 
1658   this->cache_global_variables();
1659 
1660   // Thread is now sufficient initialized to be handled by the safepoint code as being
1661   // in the VM. Change thread state from _thread_new to _thread_in_vm
1662   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1663 
1664   assert(JavaThread::current() == this, "sanity check");
1665   assert(!Thread::current()->owns_locks(), "sanity check");
1666 
1667   DTRACE_THREAD_PROBE(start, this);
1668 
1669   // This operation might block. We call that after all safepoint checks for a new thread has
1670   // been completed.
1671   this->set_active_handles(JNIHandleBlock::allocate_block());
1672 
1673   if (JvmtiExport::should_post_thread_life()) {
1674     JvmtiExport::post_thread_start(this);
1675   }
1676 
1677   EventThreadStart event;
1678   if (event.should_commit()) {
1679      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1680      event.commit();
1681   }
1682 
1683   // We call another function to do the rest so we are sure that the stack addresses used
1684   // from there will be lower than the stack base just computed
1685   thread_main_inner();
1686 
1687   // Note, thread is no longer valid at this point!
1688 }
1689 
1690 
1691 void JavaThread::thread_main_inner() {
1692   assert(JavaThread::current() == this, "sanity check");
1693   assert(this->threadObj() != NULL, "just checking");
1694 
1695   // Execute thread entry point unless this thread has a pending exception
1696   // or has been stopped before starting.
1697   // Note: Due to JVM_StopThread we can have pending exceptions already!
1698   if (!this->has_pending_exception() &&
1699       !java_lang_Thread::is_stillborn(this->threadObj())) {
1700     {
1701       ResourceMark rm(this);
1702       this->set_native_thread_name(this->get_thread_name());
1703     }
1704     HandleMark hm(this);
1705     this->entry_point()(this, this);
1706   }
1707 
1708   DTRACE_THREAD_PROBE(stop, this);
1709 
1710   this->exit(false);
1711   delete this;
1712 }
1713 
1714 
1715 static void ensure_join(JavaThread* thread) {
1716   // We do not need to grap the Threads_lock, since we are operating on ourself.
1717   Handle threadObj(thread, thread->threadObj());
1718   assert(threadObj.not_null(), "java thread object must exist");
1719   ObjectLocker lock(threadObj, thread);
1720   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1721   thread->clear_pending_exception();
1722   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1723   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1724   // Clear the native thread instance - this makes isAlive return false and allows the join()
1725   // to complete once we've done the notify_all below
1726   java_lang_Thread::set_thread(threadObj(), NULL);
1727   lock.notify_all(thread);
1728   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1729   thread->clear_pending_exception();
1730 }
1731 
1732 
1733 // For any new cleanup additions, please check to see if they need to be applied to
1734 // cleanup_failed_attach_current_thread as well.
1735 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1736   assert(this == JavaThread::current(),  "thread consistency check");
1737 
1738   HandleMark hm(this);
1739   Handle uncaught_exception(this, this->pending_exception());
1740   this->clear_pending_exception();
1741   Handle threadObj(this, this->threadObj());
1742   assert(threadObj.not_null(), "Java thread object should be created");
1743 
1744   if (get_thread_profiler() != NULL) {
1745     get_thread_profiler()->disengage();
1746     ResourceMark rm;
1747     get_thread_profiler()->print(get_thread_name());
1748   }
1749 
1750 
1751   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1752   {
1753     EXCEPTION_MARK;
1754 
1755     CLEAR_PENDING_EXCEPTION;
1756   }
1757   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1758   // has to be fixed by a runtime query method
1759   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1760     // JSR-166: change call from from ThreadGroup.uncaughtException to
1761     // java.lang.Thread.dispatchUncaughtException
1762     if (uncaught_exception.not_null()) {
1763       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1764       {
1765         EXCEPTION_MARK;
1766         // Check if the method Thread.dispatchUncaughtException() exists. If so
1767         // call it.  Otherwise we have an older library without the JSR-166 changes,
1768         // so call ThreadGroup.uncaughtException()
1769         KlassHandle recvrKlass(THREAD, threadObj->klass());
1770         CallInfo callinfo;
1771         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1772         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1773                                            vmSymbols::dispatchUncaughtException_name(),
1774                                            vmSymbols::throwable_void_signature(),
1775                                            KlassHandle(), false, false, THREAD);
1776         CLEAR_PENDING_EXCEPTION;
1777         methodHandle method = callinfo.selected_method();
1778         if (method.not_null()) {
1779           JavaValue result(T_VOID);
1780           JavaCalls::call_virtual(&result,
1781                                   threadObj, thread_klass,
1782                                   vmSymbols::dispatchUncaughtException_name(),
1783                                   vmSymbols::throwable_void_signature(),
1784                                   uncaught_exception,
1785                                   THREAD);
1786         } else {
1787           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1788           JavaValue result(T_VOID);
1789           JavaCalls::call_virtual(&result,
1790                                   group, thread_group,
1791                                   vmSymbols::uncaughtException_name(),
1792                                   vmSymbols::thread_throwable_void_signature(),
1793                                   threadObj,           // Arg 1
1794                                   uncaught_exception,  // Arg 2
1795                                   THREAD);
1796         }
1797         if (HAS_PENDING_EXCEPTION) {
1798           ResourceMark rm(this);
1799           jio_fprintf(defaultStream::error_stream(),
1800                 "\nException: %s thrown from the UncaughtExceptionHandler"
1801                 " in thread \"%s\"\n",
1802                 pending_exception()->klass()->external_name(),
1803                 get_thread_name());
1804           CLEAR_PENDING_EXCEPTION;
1805         }
1806       }
1807     }
1808 
1809     // Called before the java thread exit since we want to read info
1810     // from java_lang_Thread object
1811     EventThreadEnd event;
1812     if (event.should_commit()) {
1813         event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1814         event.commit();
1815     }
1816 
1817     // Call after last event on thread
1818     EVENT_THREAD_EXIT(this);
1819 
1820     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1821     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1822     // is deprecated anyhow.
1823     if (!is_Compiler_thread()) {
1824       int count = 3;
1825       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1826         EXCEPTION_MARK;
1827         JavaValue result(T_VOID);
1828         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1829         JavaCalls::call_virtual(&result,
1830                               threadObj, thread_klass,
1831                               vmSymbols::exit_method_name(),
1832                               vmSymbols::void_method_signature(),
1833                               THREAD);
1834         CLEAR_PENDING_EXCEPTION;
1835       }
1836     }
1837     // notify JVMTI
1838     if (JvmtiExport::should_post_thread_life()) {
1839       JvmtiExport::post_thread_end(this);
1840     }
1841 
1842     // We have notified the agents that we are exiting, before we go on,
1843     // we must check for a pending external suspend request and honor it
1844     // in order to not surprise the thread that made the suspend request.
1845     while (true) {
1846       {
1847         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1848         if (!is_external_suspend()) {
1849           set_terminated(_thread_exiting);
1850           ThreadService::current_thread_exiting(this);
1851           break;
1852         }
1853         // Implied else:
1854         // Things get a little tricky here. We have a pending external
1855         // suspend request, but we are holding the SR_lock so we
1856         // can't just self-suspend. So we temporarily drop the lock
1857         // and then self-suspend.
1858       }
1859 
1860       ThreadBlockInVM tbivm(this);
1861       java_suspend_self();
1862 
1863       // We're done with this suspend request, but we have to loop around
1864       // and check again. Eventually we will get SR_lock without a pending
1865       // external suspend request and will be able to mark ourselves as
1866       // exiting.
1867     }
1868     // no more external suspends are allowed at this point
1869   } else {
1870     // before_exit() has already posted JVMTI THREAD_END events
1871   }
1872 
1873   // Notify waiters on thread object. This has to be done after exit() is called
1874   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1875   // group should have the destroyed bit set before waiters are notified).
1876   ensure_join(this);
1877   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1878 
1879   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1880   // held by this thread must be released.  A detach operation must only
1881   // get here if there are no Java frames on the stack.  Therefore, any
1882   // owned monitors at this point MUST be JNI-acquired monitors which are
1883   // pre-inflated and in the monitor cache.
1884   //
1885   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1886   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1887     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1888     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1889     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1890   }
1891 
1892   // These things needs to be done while we are still a Java Thread. Make sure that thread
1893   // is in a consistent state, in case GC happens
1894   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1895 
1896   if (active_handles() != NULL) {
1897     JNIHandleBlock* block = active_handles();
1898     set_active_handles(NULL);
1899     JNIHandleBlock::release_block(block);
1900   }
1901 
1902   if (free_handle_block() != NULL) {
1903     JNIHandleBlock* block = free_handle_block();
1904     set_free_handle_block(NULL);
1905     JNIHandleBlock::release_block(block);
1906   }
1907 
1908   // These have to be removed while this is still a valid thread.
1909   remove_stack_guard_pages();
1910 
1911   if (UseTLAB) {
1912     tlab().make_parsable(true);  // retire TLAB
1913   }
1914 
1915   if (JvmtiEnv::environments_might_exist()) {
1916     JvmtiExport::cleanup_thread(this);
1917   }
1918 
1919   // We must flush any deferred card marks before removing a thread from
1920   // the list of active threads.
1921   Universe::heap()->flush_deferred_store_barrier(this);
1922   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1923 
1924 #if INCLUDE_ALL_GCS
1925   // We must flush the G1-related buffers before removing a thread
1926   // from the list of active threads. We must do this after any deferred
1927   // card marks have been flushed (above) so that any entries that are
1928   // added to the thread's dirty card queue as a result are not lost.
1929   if (UseG1GC) {
1930     flush_barrier_queues();
1931   }
1932 #endif // INCLUDE_ALL_GCS
1933 
1934   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1935   Threads::remove(this);
1936 }
1937 
1938 #if INCLUDE_ALL_GCS
1939 // Flush G1-related queues.
1940 void JavaThread::flush_barrier_queues() {
1941   satb_mark_queue().flush();
1942   dirty_card_queue().flush();
1943 }
1944 
1945 void JavaThread::initialize_queues() {
1946   assert(!SafepointSynchronize::is_at_safepoint(),
1947          "we should not be at a safepoint");
1948 
1949   ObjPtrQueue& satb_queue = satb_mark_queue();
1950   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1951   // The SATB queue should have been constructed with its active
1952   // field set to false.
1953   assert(!satb_queue.is_active(), "SATB queue should not be active");
1954   assert(satb_queue.is_empty(), "SATB queue should be empty");
1955   // If we are creating the thread during a marking cycle, we should
1956   // set the active field of the SATB queue to true.
1957   if (satb_queue_set.is_active()) {
1958     satb_queue.set_active(true);
1959   }
1960 
1961   DirtyCardQueue& dirty_queue = dirty_card_queue();
1962   // The dirty card queue should have been constructed with its
1963   // active field set to true.
1964   assert(dirty_queue.is_active(), "dirty card queue should be active");
1965 }
1966 #endif // INCLUDE_ALL_GCS
1967 
1968 void JavaThread::cleanup_failed_attach_current_thread() {
1969   if (get_thread_profiler() != NULL) {
1970     get_thread_profiler()->disengage();
1971     ResourceMark rm;
1972     get_thread_profiler()->print(get_thread_name());
1973   }
1974 
1975   if (active_handles() != NULL) {
1976     JNIHandleBlock* block = active_handles();
1977     set_active_handles(NULL);
1978     JNIHandleBlock::release_block(block);
1979   }
1980 
1981   if (free_handle_block() != NULL) {
1982     JNIHandleBlock* block = free_handle_block();
1983     set_free_handle_block(NULL);
1984     JNIHandleBlock::release_block(block);
1985   }
1986 
1987   // These have to be removed while this is still a valid thread.
1988   remove_stack_guard_pages();
1989 
1990   if (UseTLAB) {
1991     tlab().make_parsable(true);  // retire TLAB, if any
1992   }
1993 
1994 #if INCLUDE_ALL_GCS
1995   if (UseG1GC) {
1996     flush_barrier_queues();
1997   }
1998 #endif // INCLUDE_ALL_GCS
1999 
2000   Threads::remove(this);
2001   delete this;
2002 }
2003 
2004 
2005 
2006 
2007 JavaThread* JavaThread::active() {
2008   Thread* thread = ThreadLocalStorage::thread();
2009   assert(thread != NULL, "just checking");
2010   if (thread->is_Java_thread()) {
2011     return (JavaThread*) thread;
2012   } else {
2013     assert(thread->is_VM_thread(), "this must be a vm thread");
2014     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2015     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2016     assert(ret->is_Java_thread(), "must be a Java thread");
2017     return ret;
2018   }
2019 }
2020 
2021 bool JavaThread::is_lock_owned(address adr) const {
2022   if (Thread::is_lock_owned(adr)) return true;
2023 
2024   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2025     if (chunk->contains(adr)) return true;
2026   }
2027 
2028   return false;
2029 }
2030 
2031 
2032 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2033   chunk->set_next(monitor_chunks());
2034   set_monitor_chunks(chunk);
2035 }
2036 
2037 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2038   guarantee(monitor_chunks() != NULL, "must be non empty");
2039   if (monitor_chunks() == chunk) {
2040     set_monitor_chunks(chunk->next());
2041   } else {
2042     MonitorChunk* prev = monitor_chunks();
2043     while (prev->next() != chunk) prev = prev->next();
2044     prev->set_next(chunk->next());
2045   }
2046 }
2047 
2048 // JVM support.
2049 
2050 // Note: this function shouldn't block if it's called in
2051 // _thread_in_native_trans state (such as from
2052 // check_special_condition_for_native_trans()).
2053 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2054 
2055   if (has_last_Java_frame() && has_async_condition()) {
2056     // If we are at a polling page safepoint (not a poll return)
2057     // then we must defer async exception because live registers
2058     // will be clobbered by the exception path. Poll return is
2059     // ok because the call we a returning from already collides
2060     // with exception handling registers and so there is no issue.
2061     // (The exception handling path kills call result registers but
2062     //  this is ok since the exception kills the result anyway).
2063 
2064     if (is_at_poll_safepoint()) {
2065       // if the code we are returning to has deoptimized we must defer
2066       // the exception otherwise live registers get clobbered on the
2067       // exception path before deoptimization is able to retrieve them.
2068       //
2069       RegisterMap map(this, false);
2070       frame caller_fr = last_frame().sender(&map);
2071       assert(caller_fr.is_compiled_frame(), "what?");
2072       if (caller_fr.is_deoptimized_frame()) {
2073         if (TraceExceptions) {
2074           ResourceMark rm;
2075           tty->print_cr("deferred async exception at compiled safepoint");
2076         }
2077         return;
2078       }
2079     }
2080   }
2081 
2082   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2083   if (condition == _no_async_condition) {
2084     // Conditions have changed since has_special_runtime_exit_condition()
2085     // was called:
2086     // - if we were here only because of an external suspend request,
2087     //   then that was taken care of above (or cancelled) so we are done
2088     // - if we were here because of another async request, then it has
2089     //   been cleared between the has_special_runtime_exit_condition()
2090     //   and now so again we are done
2091     return;
2092   }
2093 
2094   // Check for pending async. exception
2095   if (_pending_async_exception != NULL) {
2096     // Only overwrite an already pending exception, if it is not a threadDeath.
2097     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2098 
2099       // We cannot call Exceptions::_throw(...) here because we cannot block
2100       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2101 
2102       if (TraceExceptions) {
2103         ResourceMark rm;
2104         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2105         if (has_last_Java_frame() ) {
2106           frame f = last_frame();
2107           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2108         }
2109         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2110       }
2111       _pending_async_exception = NULL;
2112       clear_has_async_exception();
2113     }
2114   }
2115 
2116   if (check_unsafe_error &&
2117       condition == _async_unsafe_access_error && !has_pending_exception()) {
2118     condition = _no_async_condition;  // done
2119     switch (thread_state()) {
2120     case _thread_in_vm:
2121       {
2122         JavaThread* THREAD = this;
2123         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2124       }
2125     case _thread_in_native:
2126       {
2127         ThreadInVMfromNative tiv(this);
2128         JavaThread* THREAD = this;
2129         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2130       }
2131     case _thread_in_Java:
2132       {
2133         ThreadInVMfromJava tiv(this);
2134         JavaThread* THREAD = this;
2135         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2136       }
2137     default:
2138       ShouldNotReachHere();
2139     }
2140   }
2141 
2142   assert(condition == _no_async_condition || has_pending_exception() ||
2143          (!check_unsafe_error && condition == _async_unsafe_access_error),
2144          "must have handled the async condition, if no exception");
2145 }
2146 
2147 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2148   //
2149   // Check for pending external suspend. Internal suspend requests do
2150   // not use handle_special_runtime_exit_condition().
2151   // If JNIEnv proxies are allowed, don't self-suspend if the target
2152   // thread is not the current thread. In older versions of jdbx, jdbx
2153   // threads could call into the VM with another thread's JNIEnv so we
2154   // can be here operating on behalf of a suspended thread (4432884).
2155   bool do_self_suspend = is_external_suspend_with_lock();
2156   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2157     //
2158     // Because thread is external suspended the safepoint code will count
2159     // thread as at a safepoint. This can be odd because we can be here
2160     // as _thread_in_Java which would normally transition to _thread_blocked
2161     // at a safepoint. We would like to mark the thread as _thread_blocked
2162     // before calling java_suspend_self like all other callers of it but
2163     // we must then observe proper safepoint protocol. (We can't leave
2164     // _thread_blocked with a safepoint in progress). However we can be
2165     // here as _thread_in_native_trans so we can't use a normal transition
2166     // constructor/destructor pair because they assert on that type of
2167     // transition. We could do something like:
2168     //
2169     // JavaThreadState state = thread_state();
2170     // set_thread_state(_thread_in_vm);
2171     // {
2172     //   ThreadBlockInVM tbivm(this);
2173     //   java_suspend_self()
2174     // }
2175     // set_thread_state(_thread_in_vm_trans);
2176     // if (safepoint) block;
2177     // set_thread_state(state);
2178     //
2179     // but that is pretty messy. Instead we just go with the way the
2180     // code has worked before and note that this is the only path to
2181     // java_suspend_self that doesn't put the thread in _thread_blocked
2182     // mode.
2183 
2184     frame_anchor()->make_walkable(this);
2185     java_suspend_self();
2186 
2187     // We might be here for reasons in addition to the self-suspend request
2188     // so check for other async requests.
2189   }
2190 
2191   if (check_asyncs) {
2192     check_and_handle_async_exceptions();
2193   }
2194 }
2195 
2196 void JavaThread::send_thread_stop(oop java_throwable)  {
2197   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2198   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2199   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2200 
2201   // Do not throw asynchronous exceptions against the compiler thread
2202   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2203   if (is_Compiler_thread()) return;
2204 
2205   {
2206     // Actually throw the Throwable against the target Thread - however
2207     // only if there is no thread death exception installed already.
2208     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2209       // If the topmost frame is a runtime stub, then we are calling into
2210       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2211       // must deoptimize the caller before continuing, as the compiled  exception handler table
2212       // may not be valid
2213       if (has_last_Java_frame()) {
2214         frame f = last_frame();
2215         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2216           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2217           RegisterMap reg_map(this, UseBiasedLocking);
2218           frame compiled_frame = f.sender(&reg_map);
2219           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2220             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2221           }
2222         }
2223       }
2224 
2225       // Set async. pending exception in thread.
2226       set_pending_async_exception(java_throwable);
2227 
2228       if (TraceExceptions) {
2229        ResourceMark rm;
2230        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2231       }
2232       // for AbortVMOnException flag
2233       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2234     }
2235   }
2236 
2237 
2238   // Interrupt thread so it will wake up from a potential wait()
2239   Thread::interrupt(this);
2240 }
2241 
2242 // External suspension mechanism.
2243 //
2244 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2245 // to any VM_locks and it is at a transition
2246 // Self-suspension will happen on the transition out of the vm.
2247 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2248 //
2249 // Guarantees on return:
2250 //   + Target thread will not execute any new bytecode (that's why we need to
2251 //     force a safepoint)
2252 //   + Target thread will not enter any new monitors
2253 //
2254 void JavaThread::java_suspend() {
2255   { MutexLocker mu(Threads_lock);
2256     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2257        return;
2258     }
2259   }
2260 
2261   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2262     if (!is_external_suspend()) {
2263       // a racing resume has cancelled us; bail out now
2264       return;
2265     }
2266 
2267     // suspend is done
2268     uint32_t debug_bits = 0;
2269     // Warning: is_ext_suspend_completed() may temporarily drop the
2270     // SR_lock to allow the thread to reach a stable thread state if
2271     // it is currently in a transient thread state.
2272     if (is_ext_suspend_completed(false /* !called_by_wait */,
2273                                  SuspendRetryDelay, &debug_bits) ) {
2274       return;
2275     }
2276   }
2277 
2278   VM_ForceSafepoint vm_suspend;
2279   VMThread::execute(&vm_suspend);
2280 }
2281 
2282 // Part II of external suspension.
2283 // A JavaThread self suspends when it detects a pending external suspend
2284 // request. This is usually on transitions. It is also done in places
2285 // where continuing to the next transition would surprise the caller,
2286 // e.g., monitor entry.
2287 //
2288 // Returns the number of times that the thread self-suspended.
2289 //
2290 // Note: DO NOT call java_suspend_self() when you just want to block current
2291 //       thread. java_suspend_self() is the second stage of cooperative
2292 //       suspension for external suspend requests and should only be used
2293 //       to complete an external suspend request.
2294 //
2295 int JavaThread::java_suspend_self() {
2296   int ret = 0;
2297 
2298   // we are in the process of exiting so don't suspend
2299   if (is_exiting()) {
2300      clear_external_suspend();
2301      return ret;
2302   }
2303 
2304   assert(_anchor.walkable() ||
2305     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2306     "must have walkable stack");
2307 
2308   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2309 
2310   assert(!this->is_ext_suspended(),
2311     "a thread trying to self-suspend should not already be suspended");
2312 
2313   if (this->is_suspend_equivalent()) {
2314     // If we are self-suspending as a result of the lifting of a
2315     // suspend equivalent condition, then the suspend_equivalent
2316     // flag is not cleared until we set the ext_suspended flag so
2317     // that wait_for_ext_suspend_completion() returns consistent
2318     // results.
2319     this->clear_suspend_equivalent();
2320   }
2321 
2322   // A racing resume may have cancelled us before we grabbed SR_lock
2323   // above. Or another external suspend request could be waiting for us
2324   // by the time we return from SR_lock()->wait(). The thread
2325   // that requested the suspension may already be trying to walk our
2326   // stack and if we return now, we can change the stack out from under
2327   // it. This would be a "bad thing (TM)" and cause the stack walker
2328   // to crash. We stay self-suspended until there are no more pending
2329   // external suspend requests.
2330   while (is_external_suspend()) {
2331     ret++;
2332     this->set_ext_suspended();
2333 
2334     // _ext_suspended flag is cleared by java_resume()
2335     while (is_ext_suspended()) {
2336       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2337     }
2338   }
2339 
2340   return ret;
2341 }
2342 
2343 #ifdef ASSERT
2344 // verify the JavaThread has not yet been published in the Threads::list, and
2345 // hence doesn't need protection from concurrent access at this stage
2346 void JavaThread::verify_not_published() {
2347   if (!Threads_lock->owned_by_self()) {
2348    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2349    assert( !Threads::includes(this),
2350            "java thread shouldn't have been published yet!");
2351   }
2352   else {
2353    assert( !Threads::includes(this),
2354            "java thread shouldn't have been published yet!");
2355   }
2356 }
2357 #endif
2358 
2359 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2360 // progress or when _suspend_flags is non-zero.
2361 // Current thread needs to self-suspend if there is a suspend request and/or
2362 // block if a safepoint is in progress.
2363 // Async exception ISN'T checked.
2364 // Note only the ThreadInVMfromNative transition can call this function
2365 // directly and when thread state is _thread_in_native_trans
2366 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2367   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2368 
2369   JavaThread *curJT = JavaThread::current();
2370   bool do_self_suspend = thread->is_external_suspend();
2371 
2372   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2373 
2374   // If JNIEnv proxies are allowed, don't self-suspend if the target
2375   // thread is not the current thread. In older versions of jdbx, jdbx
2376   // threads could call into the VM with another thread's JNIEnv so we
2377   // can be here operating on behalf of a suspended thread (4432884).
2378   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2379     JavaThreadState state = thread->thread_state();
2380 
2381     // We mark this thread_blocked state as a suspend-equivalent so
2382     // that a caller to is_ext_suspend_completed() won't be confused.
2383     // The suspend-equivalent state is cleared by java_suspend_self().
2384     thread->set_suspend_equivalent();
2385 
2386     // If the safepoint code sees the _thread_in_native_trans state, it will
2387     // wait until the thread changes to other thread state. There is no
2388     // guarantee on how soon we can obtain the SR_lock and complete the
2389     // self-suspend request. It would be a bad idea to let safepoint wait for
2390     // too long. Temporarily change the state to _thread_blocked to
2391     // let the VM thread know that this thread is ready for GC. The problem
2392     // of changing thread state is that safepoint could happen just after
2393     // java_suspend_self() returns after being resumed, and VM thread will
2394     // see the _thread_blocked state. We must check for safepoint
2395     // after restoring the state and make sure we won't leave while a safepoint
2396     // is in progress.
2397     thread->set_thread_state(_thread_blocked);
2398     thread->java_suspend_self();
2399     thread->set_thread_state(state);
2400     // Make sure new state is seen by VM thread
2401     if (os::is_MP()) {
2402       if (UseMembar) {
2403         // Force a fence between the write above and read below
2404         OrderAccess::fence();
2405       } else {
2406         // Must use this rather than serialization page in particular on Windows
2407         InterfaceSupport::serialize_memory(thread);
2408       }
2409     }
2410   }
2411 
2412   if (SafepointSynchronize::do_call_back()) {
2413     // If we are safepointing, then block the caller which may not be
2414     // the same as the target thread (see above).
2415     SafepointSynchronize::block(curJT);
2416   }
2417 
2418   if (thread->is_deopt_suspend()) {
2419     thread->clear_deopt_suspend();
2420     RegisterMap map(thread, false);
2421     frame f = thread->last_frame();
2422     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2423       f = f.sender(&map);
2424     }
2425     if (f.id() == thread->must_deopt_id()) {
2426       thread->clear_must_deopt_id();
2427       f.deoptimize(thread);
2428     } else {
2429       fatal("missed deoptimization!");
2430     }
2431   }
2432 }
2433 
2434 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2435 // progress or when _suspend_flags is non-zero.
2436 // Current thread needs to self-suspend if there is a suspend request and/or
2437 // block if a safepoint is in progress.
2438 // Also check for pending async exception (not including unsafe access error).
2439 // Note only the native==>VM/Java barriers can call this function and when
2440 // thread state is _thread_in_native_trans.
2441 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2442   check_safepoint_and_suspend_for_native_trans(thread);
2443 
2444   if (thread->has_async_exception()) {
2445     // We are in _thread_in_native_trans state, don't handle unsafe
2446     // access error since that may block.
2447     thread->check_and_handle_async_exceptions(false);
2448   }
2449 }
2450 
2451 // This is a variant of the normal
2452 // check_special_condition_for_native_trans with slightly different
2453 // semantics for use by critical native wrappers.  It does all the
2454 // normal checks but also performs the transition back into
2455 // thread_in_Java state.  This is required so that critical natives
2456 // can potentially block and perform a GC if they are the last thread
2457 // exiting the GC_locker.
2458 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2459   check_special_condition_for_native_trans(thread);
2460 
2461   // Finish the transition
2462   thread->set_thread_state(_thread_in_Java);
2463 
2464   if (thread->do_critical_native_unlock()) {
2465     ThreadInVMfromJavaNoAsyncException tiv(thread);
2466     GC_locker::unlock_critical(thread);
2467     thread->clear_critical_native_unlock();
2468   }
2469 }
2470 
2471 // We need to guarantee the Threads_lock here, since resumes are not
2472 // allowed during safepoint synchronization
2473 // Can only resume from an external suspension
2474 void JavaThread::java_resume() {
2475   assert_locked_or_safepoint(Threads_lock);
2476 
2477   // Sanity check: thread is gone, has started exiting or the thread
2478   // was not externally suspended.
2479   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2480     return;
2481   }
2482 
2483   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2484 
2485   clear_external_suspend();
2486 
2487   if (is_ext_suspended()) {
2488     clear_ext_suspended();
2489     SR_lock()->notify_all();
2490   }
2491 }
2492 
2493 void JavaThread::create_stack_guard_pages() {
2494   if (!os::uses_stack_guard_pages() ||
2495       _stack_guard_state != stack_guard_unused ||
2496       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2497       if (TraceThreadEvents) {
2498         tty->print_cr("Stack guard page creation for thread "
2499                       UINTX_FORMAT " disabled", os::current_thread_id());
2500       }
2501     return;
2502   }
2503   address low_addr = stack_base() - stack_size();
2504   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2505 
2506   int allocate = os::allocate_stack_guard_pages();
2507   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2508 
2509   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2510     warning("Attempt to allocate stack guard pages failed.");
2511     return;
2512   }
2513 
2514   if (os::guard_memory((char *) low_addr, len)) {
2515     _stack_guard_state = stack_guard_enabled;
2516   } else {
2517     warning("Attempt to protect stack guard pages failed.");
2518     if (os::uncommit_memory((char *) low_addr, len)) {
2519       warning("Attempt to deallocate stack guard pages failed.");
2520     }
2521   }
2522 }
2523 
2524 void JavaThread::remove_stack_guard_pages() {
2525   assert(Thread::current() == this, "from different thread");
2526   if (_stack_guard_state == stack_guard_unused) return;
2527   address low_addr = stack_base() - stack_size();
2528   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2529 
2530   if (os::allocate_stack_guard_pages()) {
2531     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2532       _stack_guard_state = stack_guard_unused;
2533     } else {
2534       warning("Attempt to deallocate stack guard pages failed.");
2535     }
2536   } else {
2537     if (_stack_guard_state == stack_guard_unused) return;
2538     if (os::unguard_memory((char *) low_addr, len)) {
2539       _stack_guard_state = stack_guard_unused;
2540     } else {
2541         warning("Attempt to unprotect stack guard pages failed.");
2542     }
2543   }
2544 }
2545 
2546 void JavaThread::enable_stack_yellow_zone() {
2547   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2548   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2549 
2550   // The base notation is from the stacks point of view, growing downward.
2551   // We need to adjust it to work correctly with guard_memory()
2552   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2553 
2554   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2555   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2556 
2557   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2558     _stack_guard_state = stack_guard_enabled;
2559   } else {
2560     warning("Attempt to guard stack yellow zone failed.");
2561   }
2562   enable_register_stack_guard();
2563 }
2564 
2565 void JavaThread::disable_stack_yellow_zone() {
2566   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2567   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2568 
2569   // Simply return if called for a thread that does not use guard pages.
2570   if (_stack_guard_state == stack_guard_unused) return;
2571 
2572   // The base notation is from the stacks point of view, growing downward.
2573   // We need to adjust it to work correctly with guard_memory()
2574   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2575 
2576   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2577     _stack_guard_state = stack_guard_yellow_disabled;
2578   } else {
2579     warning("Attempt to unguard stack yellow zone failed.");
2580   }
2581   disable_register_stack_guard();
2582 }
2583 
2584 void JavaThread::enable_stack_red_zone() {
2585   // The base notation is from the stacks point of view, growing downward.
2586   // We need to adjust it to work correctly with guard_memory()
2587   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2588   address base = stack_red_zone_base() - stack_red_zone_size();
2589 
2590   guarantee(base < stack_base(),"Error calculating stack red zone");
2591   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2592 
2593   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2594     warning("Attempt to guard stack red zone failed.");
2595   }
2596 }
2597 
2598 void JavaThread::disable_stack_red_zone() {
2599   // The base notation is from the stacks point of view, growing downward.
2600   // We need to adjust it to work correctly with guard_memory()
2601   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2602   address base = stack_red_zone_base() - stack_red_zone_size();
2603   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2604     warning("Attempt to unguard stack red zone failed.");
2605   }
2606 }
2607 
2608 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2609   // ignore is there is no stack
2610   if (!has_last_Java_frame()) return;
2611   // traverse the stack frames. Starts from top frame.
2612   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2613     frame* fr = fst.current();
2614     f(fr, fst.register_map());
2615   }
2616 }
2617 
2618 
2619 #ifndef PRODUCT
2620 // Deoptimization
2621 // Function for testing deoptimization
2622 void JavaThread::deoptimize() {
2623   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2624   StackFrameStream fst(this, UseBiasedLocking);
2625   bool deopt = false;           // Dump stack only if a deopt actually happens.
2626   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2627   // Iterate over all frames in the thread and deoptimize
2628   for(; !fst.is_done(); fst.next()) {
2629     if(fst.current()->can_be_deoptimized()) {
2630 
2631       if (only_at) {
2632         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2633         // consists of comma or carriage return separated numbers so
2634         // search for the current bci in that string.
2635         address pc = fst.current()->pc();
2636         nmethod* nm =  (nmethod*) fst.current()->cb();
2637         ScopeDesc* sd = nm->scope_desc_at( pc);
2638         char buffer[8];
2639         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2640         size_t len = strlen(buffer);
2641         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2642         while (found != NULL) {
2643           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2644               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2645             // Check that the bci found is bracketed by terminators.
2646             break;
2647           }
2648           found = strstr(found + 1, buffer);
2649         }
2650         if (!found) {
2651           continue;
2652         }
2653       }
2654 
2655       if (DebugDeoptimization && !deopt) {
2656         deopt = true; // One-time only print before deopt
2657         tty->print_cr("[BEFORE Deoptimization]");
2658         trace_frames();
2659         trace_stack();
2660       }
2661       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2662     }
2663   }
2664 
2665   if (DebugDeoptimization && deopt) {
2666     tty->print_cr("[AFTER Deoptimization]");
2667     trace_frames();
2668   }
2669 }
2670 
2671 
2672 // Make zombies
2673 void JavaThread::make_zombies() {
2674   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2675     if (fst.current()->can_be_deoptimized()) {
2676       // it is a Java nmethod
2677       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2678       nm->make_not_entrant();
2679     }
2680   }
2681 }
2682 #endif // PRODUCT
2683 
2684 
2685 void JavaThread::deoptimized_wrt_marked_nmethods() {
2686   if (!has_last_Java_frame()) return;
2687   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2688   StackFrameStream fst(this, UseBiasedLocking);
2689   for(; !fst.is_done(); fst.next()) {
2690     if (fst.current()->should_be_deoptimized()) {
2691       if (LogCompilation && xtty != NULL) {
2692         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2693         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2694                    this->name(), nm != NULL ? nm->compile_id() : -1);
2695       }
2696 
2697       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2698     }
2699   }
2700 }
2701 
2702 
2703 // GC support
2704 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2705 
2706 void JavaThread::gc_epilogue() {
2707   frames_do(frame_gc_epilogue);
2708 }
2709 
2710 
2711 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2712 
2713 void JavaThread::gc_prologue() {
2714   frames_do(frame_gc_prologue);
2715 }
2716 
2717 // If the caller is a NamedThread, then remember, in the current scope,
2718 // the given JavaThread in its _processed_thread field.
2719 class RememberProcessedThread: public StackObj {
2720   NamedThread* _cur_thr;
2721 public:
2722   RememberProcessedThread(JavaThread* jthr) {
2723     Thread* thread = Thread::current();
2724     if (thread->is_Named_thread()) {
2725       _cur_thr = (NamedThread *)thread;
2726       _cur_thr->set_processed_thread(jthr);
2727     } else {
2728       _cur_thr = NULL;
2729     }
2730   }
2731 
2732   ~RememberProcessedThread() {
2733     if (_cur_thr) {
2734       _cur_thr->set_processed_thread(NULL);
2735     }
2736   }
2737 };
2738 
2739 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2740   // Verify that the deferred card marks have been flushed.
2741   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2742 
2743   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2744   // since there may be more than one thread using each ThreadProfiler.
2745 
2746   // Traverse the GCHandles
2747   Thread::oops_do(f, cld_f, cf);
2748 
2749   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2750           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2751 
2752   if (has_last_Java_frame()) {
2753     // Record JavaThread to GC thread
2754     RememberProcessedThread rpt(this);
2755 
2756     // Traverse the privileged stack
2757     if (_privileged_stack_top != NULL) {
2758       _privileged_stack_top->oops_do(f);
2759     }
2760 
2761     // traverse the registered growable array
2762     if (_array_for_gc != NULL) {
2763       for (int index = 0; index < _array_for_gc->length(); index++) {
2764         f->do_oop(_array_for_gc->adr_at(index));
2765       }
2766     }
2767 
2768     // Traverse the monitor chunks
2769     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2770       chunk->oops_do(f);
2771     }
2772 
2773     // Traverse the execution stack
2774     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2775       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2776     }
2777   }
2778 
2779   // callee_target is never live across a gc point so NULL it here should
2780   // it still contain a methdOop.
2781 
2782   set_callee_target(NULL);
2783 
2784   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2785   // If we have deferred set_locals there might be oops waiting to be
2786   // written
2787   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2788   if (list != NULL) {
2789     for (int i = 0; i < list->length(); i++) {
2790       list->at(i)->oops_do(f);
2791     }
2792   }
2793 
2794   // Traverse instance variables at the end since the GC may be moving things
2795   // around using this function
2796   f->do_oop((oop*) &_threadObj);
2797   f->do_oop((oop*) &_vm_result);
2798   f->do_oop((oop*) &_exception_oop);
2799   f->do_oop((oop*) &_pending_async_exception);
2800 
2801   if (jvmti_thread_state() != NULL) {
2802     jvmti_thread_state()->oops_do(f);
2803   }
2804 }
2805 
2806 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2807   Thread::nmethods_do(cf);  // (super method is a no-op)
2808 
2809   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2810           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2811 
2812   if (has_last_Java_frame()) {
2813     // Traverse the execution stack
2814     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2815       fst.current()->nmethods_do(cf);
2816     }
2817   }
2818 }
2819 
2820 void JavaThread::metadata_do(void f(Metadata*)) {
2821   Thread::metadata_do(f);
2822   if (has_last_Java_frame()) {
2823     // Traverse the execution stack to call f() on the methods in the stack
2824     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2825       fst.current()->metadata_do(f);
2826     }
2827   } else if (is_Compiler_thread()) {
2828     // need to walk ciMetadata in current compile tasks to keep alive.
2829     CompilerThread* ct = (CompilerThread*)this;
2830     if (ct->env() != NULL) {
2831       ct->env()->metadata_do(f);
2832     }
2833   }
2834 }
2835 
2836 // Printing
2837 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2838   switch (_thread_state) {
2839   case _thread_uninitialized:     return "_thread_uninitialized";
2840   case _thread_new:               return "_thread_new";
2841   case _thread_new_trans:         return "_thread_new_trans";
2842   case _thread_in_native:         return "_thread_in_native";
2843   case _thread_in_native_trans:   return "_thread_in_native_trans";
2844   case _thread_in_vm:             return "_thread_in_vm";
2845   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2846   case _thread_in_Java:           return "_thread_in_Java";
2847   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2848   case _thread_blocked:           return "_thread_blocked";
2849   case _thread_blocked_trans:     return "_thread_blocked_trans";
2850   default:                        return "unknown thread state";
2851   }
2852 }
2853 
2854 #ifndef PRODUCT
2855 void JavaThread::print_thread_state_on(outputStream *st) const {
2856   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2857 };
2858 void JavaThread::print_thread_state() const {
2859   print_thread_state_on(tty);
2860 };
2861 #endif // PRODUCT
2862 
2863 // Called by Threads::print() for VM_PrintThreads operation
2864 void JavaThread::print_on(outputStream *st) const {
2865   st->print("\"%s\" ", get_thread_name());
2866   oop thread_oop = threadObj();
2867   if (thread_oop != NULL) {
2868     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2869     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2870     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2871   }
2872   Thread::print_on(st);
2873   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2874   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2875   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2876     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2877   }
2878 #ifndef PRODUCT
2879   print_thread_state_on(st);
2880   _safepoint_state->print_on(st);
2881 #endif // PRODUCT
2882 }
2883 
2884 // Called by fatal error handler. The difference between this and
2885 // JavaThread::print() is that we can't grab lock or allocate memory.
2886 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2887   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2888   oop thread_obj = threadObj();
2889   if (thread_obj != NULL) {
2890      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2891   }
2892   st->print(" [");
2893   st->print("%s", _get_thread_state_name(_thread_state));
2894   if (osthread()) {
2895     st->print(", id=%d", osthread()->thread_id());
2896   }
2897   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2898             _stack_base - _stack_size, _stack_base);
2899   st->print("]");
2900   return;
2901 }
2902 
2903 // Verification
2904 
2905 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2906 
2907 void JavaThread::verify() {
2908   // Verify oops in the thread.
2909   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2910 
2911   // Verify the stack frames.
2912   frames_do(frame_verify);
2913 }
2914 
2915 // CR 6300358 (sub-CR 2137150)
2916 // Most callers of this method assume that it can't return NULL but a
2917 // thread may not have a name whilst it is in the process of attaching to
2918 // the VM - see CR 6412693, and there are places where a JavaThread can be
2919 // seen prior to having it's threadObj set (eg JNI attaching threads and
2920 // if vm exit occurs during initialization). These cases can all be accounted
2921 // for such that this method never returns NULL.
2922 const char* JavaThread::get_thread_name() const {
2923 #ifdef ASSERT
2924   // early safepoints can hit while current thread does not yet have TLS
2925   if (!SafepointSynchronize::is_at_safepoint()) {
2926     Thread *cur = Thread::current();
2927     if (!(cur->is_Java_thread() && cur == this)) {
2928       // Current JavaThreads are allowed to get their own name without
2929       // the Threads_lock.
2930       assert_locked_or_safepoint(Threads_lock);
2931     }
2932   }
2933 #endif // ASSERT
2934     return get_thread_name_string();
2935 }
2936 
2937 // Returns a non-NULL representation of this thread's name, or a suitable
2938 // descriptive string if there is no set name
2939 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2940   const char* name_str;
2941   oop thread_obj = threadObj();
2942   if (thread_obj != NULL) {
2943     oop name = java_lang_Thread::name(thread_obj);
2944     if (name != NULL) {
2945       if (buf == NULL) {
2946         name_str = java_lang_String::as_utf8_string(name);
2947       }
2948       else {
2949         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2950       }
2951     }
2952     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2953       name_str = "<no-name - thread is attaching>";
2954     }
2955     else {
2956       name_str = Thread::name();
2957     }
2958   }
2959   else {
2960     name_str = Thread::name();
2961   }
2962   assert(name_str != NULL, "unexpected NULL thread name");
2963   return name_str;
2964 }
2965 
2966 
2967 const char* JavaThread::get_threadgroup_name() const {
2968   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2969   oop thread_obj = threadObj();
2970   if (thread_obj != NULL) {
2971     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2972     if (thread_group != NULL) {
2973       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2974       // ThreadGroup.name can be null
2975       if (name != NULL) {
2976         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2977         return str;
2978       }
2979     }
2980   }
2981   return NULL;
2982 }
2983 
2984 const char* JavaThread::get_parent_name() const {
2985   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2986   oop thread_obj = threadObj();
2987   if (thread_obj != NULL) {
2988     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2989     if (thread_group != NULL) {
2990       oop parent = java_lang_ThreadGroup::parent(thread_group);
2991       if (parent != NULL) {
2992         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2993         // ThreadGroup.name can be null
2994         if (name != NULL) {
2995           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2996           return str;
2997         }
2998       }
2999     }
3000   }
3001   return NULL;
3002 }
3003 
3004 ThreadPriority JavaThread::java_priority() const {
3005   oop thr_oop = threadObj();
3006   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3007   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3008   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3009   return priority;
3010 }
3011 
3012 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3013 
3014   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3015   // Link Java Thread object <-> C++ Thread
3016 
3017   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3018   // and put it into a new Handle.  The Handle "thread_oop" can then
3019   // be used to pass the C++ thread object to other methods.
3020 
3021   // Set the Java level thread object (jthread) field of the
3022   // new thread (a JavaThread *) to C++ thread object using the
3023   // "thread_oop" handle.
3024 
3025   // Set the thread field (a JavaThread *) of the
3026   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3027 
3028   Handle thread_oop(Thread::current(),
3029                     JNIHandles::resolve_non_null(jni_thread));
3030   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3031     "must be initialized");
3032   set_threadObj(thread_oop());
3033   java_lang_Thread::set_thread(thread_oop(), this);
3034 
3035   if (prio == NoPriority) {
3036     prio = java_lang_Thread::priority(thread_oop());
3037     assert(prio != NoPriority, "A valid priority should be present");
3038   }
3039 
3040   // Push the Java priority down to the native thread; needs Threads_lock
3041   Thread::set_priority(this, prio);
3042 
3043   prepare_ext();
3044 
3045   // Add the new thread to the Threads list and set it in motion.
3046   // We must have threads lock in order to call Threads::add.
3047   // It is crucial that we do not block before the thread is
3048   // added to the Threads list for if a GC happens, then the java_thread oop
3049   // will not be visited by GC.
3050   Threads::add(this);
3051 }
3052 
3053 oop JavaThread::current_park_blocker() {
3054   // Support for JSR-166 locks
3055   oop thread_oop = threadObj();
3056   if (thread_oop != NULL &&
3057       JDK_Version::current().supports_thread_park_blocker()) {
3058     return java_lang_Thread::park_blocker(thread_oop);
3059   }
3060   return NULL;
3061 }
3062 
3063 
3064 void JavaThread::print_stack_on(outputStream* st) {
3065   if (!has_last_Java_frame()) return;
3066   ResourceMark rm;
3067   HandleMark   hm;
3068 
3069   RegisterMap reg_map(this);
3070   vframe* start_vf = last_java_vframe(&reg_map);
3071   int count = 0;
3072   for (vframe* f = start_vf; f; f = f->sender() ) {
3073     if (f->is_java_frame()) {
3074       javaVFrame* jvf = javaVFrame::cast(f);
3075       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3076 
3077       // Print out lock information
3078       if (JavaMonitorsInStackTrace) {
3079         jvf->print_lock_info_on(st, count);
3080       }
3081     } else {
3082       // Ignore non-Java frames
3083     }
3084 
3085     // Bail-out case for too deep stacks
3086     count++;
3087     if (MaxJavaStackTraceDepth == count) return;
3088   }
3089 }
3090 
3091 
3092 // JVMTI PopFrame support
3093 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3094   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3095   if (in_bytes(size_in_bytes) != 0) {
3096     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3097     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3098     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3099   }
3100 }
3101 
3102 void* JavaThread::popframe_preserved_args() {
3103   return _popframe_preserved_args;
3104 }
3105 
3106 ByteSize JavaThread::popframe_preserved_args_size() {
3107   return in_ByteSize(_popframe_preserved_args_size);
3108 }
3109 
3110 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3111   int sz = in_bytes(popframe_preserved_args_size());
3112   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3113   return in_WordSize(sz / wordSize);
3114 }
3115 
3116 void JavaThread::popframe_free_preserved_args() {
3117   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3118   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3119   _popframe_preserved_args = NULL;
3120   _popframe_preserved_args_size = 0;
3121 }
3122 
3123 #ifndef PRODUCT
3124 
3125 void JavaThread::trace_frames() {
3126   tty->print_cr("[Describe stack]");
3127   int frame_no = 1;
3128   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3129     tty->print("  %d. ", frame_no++);
3130     fst.current()->print_value_on(tty,this);
3131     tty->cr();
3132   }
3133 }
3134 
3135 class PrintAndVerifyOopClosure: public OopClosure {
3136  protected:
3137   template <class T> inline void do_oop_work(T* p) {
3138     oop obj = oopDesc::load_decode_heap_oop(p);
3139     if (obj == NULL) return;
3140     tty->print(INTPTR_FORMAT ": ", p);
3141     if (obj->is_oop_or_null()) {
3142       if (obj->is_objArray()) {
3143         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3144       } else {
3145         obj->print();
3146       }
3147     } else {
3148       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3149     }
3150     tty->cr();
3151   }
3152  public:
3153   virtual void do_oop(oop* p) { do_oop_work(p); }
3154   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3155 };
3156 
3157 
3158 static void oops_print(frame* f, const RegisterMap *map) {
3159   PrintAndVerifyOopClosure print;
3160   f->print_value();
3161   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3162 }
3163 
3164 // Print our all the locations that contain oops and whether they are
3165 // valid or not.  This useful when trying to find the oldest frame
3166 // where an oop has gone bad since the frame walk is from youngest to
3167 // oldest.
3168 void JavaThread::trace_oops() {
3169   tty->print_cr("[Trace oops]");
3170   frames_do(oops_print);
3171 }
3172 
3173 
3174 #ifdef ASSERT
3175 // Print or validate the layout of stack frames
3176 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3177   ResourceMark rm;
3178   PRESERVE_EXCEPTION_MARK;
3179   FrameValues values;
3180   int frame_no = 0;
3181   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3182     fst.current()->describe(values, ++frame_no);
3183     if (depth == frame_no) break;
3184   }
3185   if (validate_only) {
3186     values.validate();
3187   } else {
3188     tty->print_cr("[Describe stack layout]");
3189     values.print(this);
3190   }
3191 }
3192 #endif
3193 
3194 void JavaThread::trace_stack_from(vframe* start_vf) {
3195   ResourceMark rm;
3196   int vframe_no = 1;
3197   for (vframe* f = start_vf; f; f = f->sender() ) {
3198     if (f->is_java_frame()) {
3199       javaVFrame::cast(f)->print_activation(vframe_no++);
3200     } else {
3201       f->print();
3202     }
3203     if (vframe_no > StackPrintLimit) {
3204       tty->print_cr("...<more frames>...");
3205       return;
3206     }
3207   }
3208 }
3209 
3210 
3211 void JavaThread::trace_stack() {
3212   if (!has_last_Java_frame()) return;
3213   ResourceMark rm;
3214   HandleMark   hm;
3215   RegisterMap reg_map(this);
3216   trace_stack_from(last_java_vframe(&reg_map));
3217 }
3218 
3219 
3220 #endif // PRODUCT
3221 
3222 
3223 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3224   assert(reg_map != NULL, "a map must be given");
3225   frame f = last_frame();
3226   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3227     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3228   }
3229   return NULL;
3230 }
3231 
3232 
3233 Klass* JavaThread::security_get_caller_class(int depth) {
3234   vframeStream vfst(this);
3235   vfst.security_get_caller_frame(depth);
3236   if (!vfst.at_end()) {
3237     return vfst.method()->method_holder();
3238   }
3239   return NULL;
3240 }
3241 
3242 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3243   assert(thread->is_Compiler_thread(), "must be compiler thread");
3244   CompileBroker::compiler_thread_loop();
3245 }
3246 
3247 // Create a CompilerThread
3248 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3249 : JavaThread(&compiler_thread_entry) {
3250   _env   = NULL;
3251   _log   = NULL;
3252   _task  = NULL;
3253   _queue = queue;
3254   _counters = counters;
3255   _buffer_blob = NULL;
3256   _scanned_nmethod = NULL;
3257   _compiler = NULL;
3258 
3259   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3260   resource_area()->bias_to(mtCompiler);
3261 
3262 #ifndef PRODUCT
3263   _ideal_graph_printer = NULL;
3264 #endif
3265 }
3266 
3267 void CompilerThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3268   JavaThread::oops_do(f, cld_f, cf);
3269   if (_scanned_nmethod != NULL && cf != NULL) {
3270     // Safepoints can occur when the sweeper is scanning an nmethod so
3271     // process it here to make sure it isn't unloaded in the middle of
3272     // a scan.
3273     cf->do_code_blob(_scanned_nmethod);
3274   }
3275 }
3276 
3277 
3278 // ======= Threads ========
3279 
3280 // The Threads class links together all active threads, and provides
3281 // operations over all threads.  It is protected by its own Mutex
3282 // lock, which is also used in other contexts to protect thread
3283 // operations from having the thread being operated on from exiting
3284 // and going away unexpectedly (e.g., safepoint synchronization)
3285 
3286 JavaThread* Threads::_thread_list = NULL;
3287 int         Threads::_number_of_threads = 0;
3288 int         Threads::_number_of_non_daemon_threads = 0;
3289 int         Threads::_return_code = 0;
3290 size_t      JavaThread::_stack_size_at_create = 0;
3291 #ifdef ASSERT
3292 bool        Threads::_vm_complete = false;
3293 #endif
3294 
3295 // All JavaThreads
3296 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3297 
3298 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3299 void Threads::threads_do(ThreadClosure* tc) {
3300   assert_locked_or_safepoint(Threads_lock);
3301   // ALL_JAVA_THREADS iterates through all JavaThreads
3302   ALL_JAVA_THREADS(p) {
3303     tc->do_thread(p);
3304   }
3305   // Someday we could have a table or list of all non-JavaThreads.
3306   // For now, just manually iterate through them.
3307   tc->do_thread(VMThread::vm_thread());
3308   Universe::heap()->gc_threads_do(tc);
3309   WatcherThread *wt = WatcherThread::watcher_thread();
3310   // Strictly speaking, the following NULL check isn't sufficient to make sure
3311   // the data for WatcherThread is still valid upon being examined. However,
3312   // considering that WatchThread terminates when the VM is on the way to
3313   // exit at safepoint, the chance of the above is extremely small. The right
3314   // way to prevent termination of WatcherThread would be to acquire
3315   // Terminator_lock, but we can't do that without violating the lock rank
3316   // checking in some cases.
3317   if (wt != NULL)
3318     tc->do_thread(wt);
3319 
3320   // If CompilerThreads ever become non-JavaThreads, add them here
3321 }
3322 
3323 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3324 
3325   extern void JDK_Version_init();
3326 
3327   // Preinitialize version info.
3328   VM_Version::early_initialize();
3329 
3330   // Check version
3331   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3332 
3333   // Initialize the output stream module
3334   ostream_init();
3335 
3336   // Process java launcher properties.
3337   Arguments::process_sun_java_launcher_properties(args);
3338 
3339   // Initialize the os module before using TLS
3340   os::init();
3341 
3342   // Initialize system properties.
3343   Arguments::init_system_properties();
3344 
3345   // So that JDK version can be used as a discrimintor when parsing arguments
3346   JDK_Version_init();
3347 
3348   // Update/Initialize System properties after JDK version number is known
3349   Arguments::init_version_specific_system_properties();
3350 
3351   // Parse arguments
3352   // Note: this internally calls os::init_container_support()
3353   jint parse_result = Arguments::parse(args);
3354   if (parse_result != JNI_OK) return parse_result;
3355 
3356   os::init_before_ergo();
3357 
3358   jint ergo_result = Arguments::apply_ergo();
3359   if (ergo_result != JNI_OK) return ergo_result;
3360 
3361   if (PauseAtStartup) {
3362     os::pause();
3363   }
3364 
3365 #ifndef USDT2
3366   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3367 #else /* USDT2 */
3368   HOTSPOT_VM_INIT_BEGIN();
3369 #endif /* USDT2 */
3370 
3371   // Record VM creation timing statistics
3372   TraceVmCreationTime create_vm_timer;
3373   create_vm_timer.start();
3374 
3375   // Timing (must come after argument parsing)
3376   TraceTime timer("Create VM", TraceStartupTime);
3377 
3378   // Initialize the os module after parsing the args
3379   jint os_init_2_result = os::init_2();
3380   if (os_init_2_result != JNI_OK) return os_init_2_result;
3381 
3382   jint adjust_after_os_result = Arguments::adjust_after_os();
3383   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3384 
3385   // intialize TLS
3386   ThreadLocalStorage::init();
3387 
3388   // Initialize output stream logging
3389   ostream_init_log();
3390 
3391   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3392   // Must be before create_vm_init_agents()
3393   if (Arguments::init_libraries_at_startup()) {
3394     convert_vm_init_libraries_to_agents();
3395   }
3396 
3397   // Launch -agentlib/-agentpath and converted -Xrun agents
3398   if (Arguments::init_agents_at_startup()) {
3399     create_vm_init_agents();
3400   }
3401 
3402   // Initialize Threads state
3403   _thread_list = NULL;
3404   _number_of_threads = 0;
3405   _number_of_non_daemon_threads = 0;
3406 
3407   // Initialize global data structures and create system classes in heap
3408   vm_init_globals();
3409 
3410   // Attach the main thread to this os thread
3411   JavaThread* main_thread = new JavaThread();
3412   main_thread->set_thread_state(_thread_in_vm);
3413   // must do this before set_active_handles and initialize_thread_local_storage
3414   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3415   // change the stack size recorded here to one based on the java thread
3416   // stacksize. This adjusted size is what is used to figure the placement
3417   // of the guard pages.
3418   main_thread->record_stack_base_and_size();
3419   main_thread->initialize_thread_local_storage();
3420 
3421   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3422 
3423   if (!main_thread->set_as_starting_thread()) {
3424     vm_shutdown_during_initialization(
3425       "Failed necessary internal allocation. Out of swap space");
3426     delete main_thread;
3427     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3428     return JNI_ENOMEM;
3429   }
3430 
3431   // Enable guard page *after* os::create_main_thread(), otherwise it would
3432   // crash Linux VM, see notes in os_linux.cpp.
3433   main_thread->create_stack_guard_pages();
3434 
3435   // Initialize Java-Level synchronization subsystem
3436   ObjectMonitor::Initialize() ;
3437 
3438   // Initialize global modules
3439   jint status = init_globals();
3440   if (status != JNI_OK) {
3441     delete main_thread;
3442     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3443     return status;
3444   }
3445 
3446   // Should be done after the heap is fully created
3447   main_thread->cache_global_variables();
3448 
3449   HandleMark hm;
3450 
3451   { MutexLocker mu(Threads_lock);
3452     Threads::add(main_thread);
3453   }
3454 
3455   // Any JVMTI raw monitors entered in onload will transition into
3456   // real raw monitor. VM is setup enough here for raw monitor enter.
3457   JvmtiExport::transition_pending_onload_raw_monitors();
3458 
3459   // Create the VMThread
3460   { TraceTime timer("Start VMThread", TraceStartupTime);
3461     VMThread::create();
3462     Thread* vmthread = VMThread::vm_thread();
3463 
3464     if (!os::create_thread(vmthread, os::vm_thread))
3465       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3466 
3467     // Wait for the VM thread to become ready, and VMThread::run to initialize
3468     // Monitors can have spurious returns, must always check another state flag
3469     {
3470       MutexLocker ml(Notify_lock);
3471       os::start_thread(vmthread);
3472       while (vmthread->active_handles() == NULL) {
3473         Notify_lock->wait();
3474       }
3475     }
3476   }
3477 
3478   assert (Universe::is_fully_initialized(), "not initialized");
3479   if (VerifyDuringStartup) {
3480     // Make sure we're starting with a clean slate.
3481     VM_Verify verify_op;
3482     VMThread::execute(&verify_op);
3483   }
3484 
3485   EXCEPTION_MARK;
3486 
3487   // At this point, the Universe is initialized, but we have not executed
3488   // any byte code.  Now is a good time (the only time) to dump out the
3489   // internal state of the JVM for sharing.
3490   if (DumpSharedSpaces) {
3491     MetaspaceShared::preload_and_dump(CHECK_0);
3492     ShouldNotReachHere();
3493   }
3494 
3495   // Always call even when there are not JVMTI environments yet, since environments
3496   // may be attached late and JVMTI must track phases of VM execution
3497   JvmtiExport::enter_start_phase();
3498 
3499   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3500   JvmtiExport::post_vm_start();
3501 
3502   {
3503     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3504 
3505     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3506       create_vm_init_libraries();
3507     }
3508 
3509     initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3510 
3511     // Initialize java_lang.System (needed before creating the thread)
3512     initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3513     initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3514     Handle thread_group = create_initial_thread_group(CHECK_0);
3515     Universe::set_main_thread_group(thread_group());
3516     initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3517     oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3518     main_thread->set_threadObj(thread_object);
3519     // Set thread status to running since main thread has
3520     // been started and running.
3521     java_lang_Thread::set_thread_status(thread_object,
3522                                         java_lang_Thread::RUNNABLE);
3523 
3524     // The VM creates & returns objects of this class. Make sure it's initialized.
3525     initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3526 
3527     // The VM preresolves methods to these classes. Make sure that they get initialized
3528     initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3529     initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3530     call_initializeSystemClass(CHECK_0);
3531 
3532     // get the Java runtime name after java.lang.System is initialized
3533     JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3534     JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3535 
3536     // an instance of OutOfMemory exception has been allocated earlier
3537     initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3538     initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3539     initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3540     initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3541     initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3542     initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3543     initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3544     initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3545   }
3546 
3547   // See        : bugid 4211085.
3548   // Background : the static initializer of java.lang.Compiler tries to read
3549   //              property"java.compiler" and read & write property "java.vm.info".
3550   //              When a security manager is installed through the command line
3551   //              option "-Djava.security.manager", the above properties are not
3552   //              readable and the static initializer for java.lang.Compiler fails
3553   //              resulting in a NoClassDefFoundError.  This can happen in any
3554   //              user code which calls methods in java.lang.Compiler.
3555   // Hack :       the hack is to pre-load and initialize this class, so that only
3556   //              system domains are on the stack when the properties are read.
3557   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3558   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3559   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3560   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3561   //              Once that is done, we should remove this hack.
3562   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3563 
3564   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3565   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3566   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3567   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3568   // This should also be taken out as soon as 4211383 gets fixed.
3569   reset_vm_info_property(CHECK_0);
3570 
3571   quicken_jni_functions();
3572 
3573   // Must be run after init_ft which initializes ft_enabled
3574   if (TRACE_INITIALIZE() != JNI_OK) {
3575     vm_exit_during_initialization("Failed to initialize tracing backend");
3576   }
3577 
3578   // Set flag that basic initialization has completed. Used by exceptions and various
3579   // debug stuff, that does not work until all basic classes have been initialized.
3580   set_init_completed();
3581 
3582   Metaspace::post_initialize();
3583 
3584 #ifndef USDT2
3585   HS_DTRACE_PROBE(hotspot, vm__init__end);
3586 #else /* USDT2 */
3587   HOTSPOT_VM_INIT_END();
3588 #endif /* USDT2 */
3589 
3590   // record VM initialization completion time
3591 #if INCLUDE_MANAGEMENT
3592   Management::record_vm_init_completed();
3593 #endif // INCLUDE_MANAGEMENT
3594 
3595   // Compute system loader. Note that this has to occur after set_init_completed, since
3596   // valid exceptions may be thrown in the process.
3597   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3598   // set_init_completed has just been called, causing exceptions not to be shortcut
3599   // anymore. We call vm_exit_during_initialization directly instead.
3600   SystemDictionary::compute_java_system_loader(THREAD);
3601   if (HAS_PENDING_EXCEPTION) {
3602     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3603   }
3604 
3605 #if INCLUDE_ALL_GCS
3606   // Support for ConcurrentMarkSweep. This should be cleaned up
3607   // and better encapsulated. The ugly nested if test would go away
3608   // once things are properly refactored. XXX YSR
3609   if (UseConcMarkSweepGC || UseG1GC) {
3610     if (UseConcMarkSweepGC) {
3611       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3612     } else {
3613       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3614     }
3615     if (HAS_PENDING_EXCEPTION) {
3616       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3617     }
3618   }
3619 #endif // INCLUDE_ALL_GCS
3620 
3621   // Always call even when there are not JVMTI environments yet, since environments
3622   // may be attached late and JVMTI must track phases of VM execution
3623   JvmtiExport::enter_live_phase();
3624 
3625   // Signal Dispatcher needs to be started before VMInit event is posted
3626   os::signal_init();
3627 
3628   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3629   if (!DisableAttachMechanism) {
3630     AttachListener::vm_start();
3631     if (StartAttachListener || AttachListener::init_at_startup()) {
3632       AttachListener::init();
3633     }
3634   }
3635 
3636   // Launch -Xrun agents
3637   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3638   // back-end can launch with -Xdebug -Xrunjdwp.
3639   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3640     create_vm_init_libraries();
3641   }
3642 
3643   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3644   JvmtiExport::post_vm_initialized();
3645 
3646   if (TRACE_START() != JNI_OK) {
3647     vm_exit_during_initialization("Failed to start tracing backend.");
3648   }
3649 
3650   if (CleanChunkPoolAsync) {
3651     Chunk::start_chunk_pool_cleaner_task();
3652   }
3653 
3654   // initialize compiler(s)
3655 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3656   CompileBroker::compilation_init();
3657 #endif
3658 
3659   if (EnableInvokeDynamic) {
3660     // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3661     // It is done after compilers are initialized, because otherwise compilations of
3662     // signature polymorphic MH intrinsics can be missed
3663     // (see SystemDictionary::find_method_handle_intrinsic).
3664     initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK_0);
3665     initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK_0);
3666     initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK_0);
3667   }
3668 
3669   // See        : bugid 8194653
3670   // Background : Deadlock as described by https://bugs.openjdk.java.net/browse/JDK-8194653
3671   // Mitigation : Eliminates a race condition on call to
3672   //              java.nio.file.FileSystems::getDefault() where two threads (one inside
3673   //              a loadLibrary() call) could cause a deadlock if they both referenced this
3674   //              code path.  Priming the code path during startup eliminates the deadlock
3675   //              (<clinit> and loadLibrary0 are single threaded).
3676   //              Note the JVM is at the end of initialization and the getDefault() call
3677   //              is safe to make.
3678   // Future Fix : OpenJDK 9 beyond address the issue with a different (fixed) startup
3679   //              sequence.  For OpenJDK 8 this should be sufficient.
3680   {
3681     Klass* k = initialize_class_and_return(vmSymbols::java_nio_file_FileSystems(), CHECK_0);
3682     instanceKlassHandle klass (THREAD, k);
3683     JavaValue result(T_OBJECT);
3684 
3685     JavaCalls::call_static(&result, klass, vmSymbols::getDefault_name(),
3686                                            vmSymbols::getDefault_signature(), CHECK_0);
3687   }
3688 
3689 #if INCLUDE_MANAGEMENT
3690   Management::initialize(THREAD);
3691 #endif // INCLUDE_MANAGEMENT
3692 
3693   if (HAS_PENDING_EXCEPTION) {
3694     // management agent fails to start possibly due to
3695     // configuration problem and is responsible for printing
3696     // stack trace if appropriate. Simply exit VM.
3697     vm_exit(1);
3698   }
3699 
3700   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3701   if (MemProfiling)                   MemProfiler::engage();
3702   StatSampler::engage();
3703   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3704 
3705   BiasedLocking::init();
3706 
3707 #if INCLUDE_RTM_OPT
3708   RTMLockingCounters::init();
3709 #endif
3710 
3711   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3712     call_postVMInitHook(THREAD);
3713     // The Java side of PostVMInitHook.run must deal with all
3714     // exceptions and provide means of diagnosis.
3715     if (HAS_PENDING_EXCEPTION) {
3716       CLEAR_PENDING_EXCEPTION;
3717     }
3718   }
3719 
3720   {
3721       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3722       // Make sure the watcher thread can be started by WatcherThread::start()
3723       // or by dynamic enrollment.
3724       WatcherThread::make_startable();
3725       // Start up the WatcherThread if there are any periodic tasks
3726       // NOTE:  All PeriodicTasks should be registered by now. If they
3727       //   aren't, late joiners might appear to start slowly (we might
3728       //   take a while to process their first tick).
3729       if (PeriodicTask::num_tasks() > 0) {
3730           WatcherThread::start();
3731       }
3732   }
3733 
3734   create_vm_timer.end();
3735 #ifdef ASSERT
3736   _vm_complete = true;
3737 #endif
3738   return JNI_OK;
3739 }
3740 
3741 // type for the Agent_OnLoad and JVM_OnLoad entry points
3742 extern "C" {
3743   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3744 }
3745 // Find a command line agent library and return its entry point for
3746 //         -agentlib:  -agentpath:   -Xrun
3747 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3748 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3749   OnLoadEntry_t on_load_entry = NULL;
3750   void *library = NULL;
3751 
3752   if (!agent->valid()) {
3753     char buffer[JVM_MAXPATHLEN];
3754     char ebuf[1024];
3755     const char *name = agent->name();
3756     const char *msg = "Could not find agent library ";
3757 
3758     // First check to see if agent is statically linked into executable
3759     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3760       library = agent->os_lib();
3761     } else if (agent->is_absolute_path()) {
3762       library = os::dll_load(name, ebuf, sizeof ebuf);
3763       if (library == NULL) {
3764         const char *sub_msg = " in absolute path, with error: ";
3765         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3766         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3767         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3768         // If we can't find the agent, exit.
3769         vm_exit_during_initialization(buf, NULL);
3770         FREE_C_HEAP_ARRAY(char, buf, mtThread);
3771       }
3772     } else {
3773       // Try to load the agent from the standard dll directory
3774       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3775                              name)) {
3776         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3777       }
3778       if (library == NULL) { // Try the local directory
3779         char ns[1] = {0};
3780         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3781           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3782         }
3783         if (library == NULL) {
3784           const char *sub_msg = " on the library path, with error: ";
3785           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3786           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3787           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3788           // If we can't find the agent, exit.
3789           vm_exit_during_initialization(buf, NULL);
3790           FREE_C_HEAP_ARRAY(char, buf, mtThread);
3791         }
3792       }
3793     }
3794     agent->set_os_lib(library);
3795     agent->set_valid();
3796   }
3797 
3798   // Find the OnLoad function.
3799   on_load_entry =
3800     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3801                                                           false,
3802                                                           on_load_symbols,
3803                                                           num_symbol_entries));
3804   return on_load_entry;
3805 }
3806 
3807 // Find the JVM_OnLoad entry point
3808 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3809   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3810   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3811 }
3812 
3813 // Find the Agent_OnLoad entry point
3814 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3815   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3816   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3817 }
3818 
3819 // For backwards compatibility with -Xrun
3820 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3821 // treated like -agentpath:
3822 // Must be called before agent libraries are created
3823 void Threads::convert_vm_init_libraries_to_agents() {
3824   AgentLibrary* agent;
3825   AgentLibrary* next;
3826 
3827   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3828     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3829     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3830 
3831     // If there is an JVM_OnLoad function it will get called later,
3832     // otherwise see if there is an Agent_OnLoad
3833     if (on_load_entry == NULL) {
3834       on_load_entry = lookup_agent_on_load(agent);
3835       if (on_load_entry != NULL) {
3836         // switch it to the agent list -- so that Agent_OnLoad will be called,
3837         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3838         Arguments::convert_library_to_agent(agent);
3839       } else {
3840         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3841       }
3842     }
3843   }
3844 }
3845 
3846 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3847 // Invokes Agent_OnLoad
3848 // Called very early -- before JavaThreads exist
3849 void Threads::create_vm_init_agents() {
3850   extern struct JavaVM_ main_vm;
3851   AgentLibrary* agent;
3852 
3853   JvmtiExport::enter_onload_phase();
3854 
3855   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3856     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3857 
3858     if (on_load_entry != NULL) {
3859       // Invoke the Agent_OnLoad function
3860       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3861       if (err != JNI_OK) {
3862         vm_exit_during_initialization("agent library failed to init", agent->name());
3863       }
3864     } else {
3865       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3866     }
3867   }
3868   JvmtiExport::enter_primordial_phase();
3869 }
3870 
3871 extern "C" {
3872   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3873 }
3874 
3875 void Threads::shutdown_vm_agents() {
3876   // Send any Agent_OnUnload notifications
3877   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3878   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3879   extern struct JavaVM_ main_vm;
3880   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3881 
3882     // Find the Agent_OnUnload function.
3883     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3884       os::find_agent_function(agent,
3885       false,
3886       on_unload_symbols,
3887       num_symbol_entries));
3888 
3889     // Invoke the Agent_OnUnload function
3890     if (unload_entry != NULL) {
3891       JavaThread* thread = JavaThread::current();
3892       ThreadToNativeFromVM ttn(thread);
3893       HandleMark hm(thread);
3894       (*unload_entry)(&main_vm);
3895     }
3896   }
3897 }
3898 
3899 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3900 // Invokes JVM_OnLoad
3901 void Threads::create_vm_init_libraries() {
3902   extern struct JavaVM_ main_vm;
3903   AgentLibrary* agent;
3904 
3905   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3906     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3907 
3908     if (on_load_entry != NULL) {
3909       // Invoke the JVM_OnLoad function
3910       JavaThread* thread = JavaThread::current();
3911       ThreadToNativeFromVM ttn(thread);
3912       HandleMark hm(thread);
3913       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3914       if (err != JNI_OK) {
3915         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3916       }
3917     } else {
3918       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3919     }
3920   }
3921 }
3922 
3923 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3924   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3925 
3926   JavaThread* java_thread = NULL;
3927   // Sequential search for now.  Need to do better optimization later.
3928   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3929     oop tobj = thread->threadObj();
3930     if (!thread->is_exiting() &&
3931         tobj != NULL &&
3932         java_tid == java_lang_Thread::thread_id(tobj)) {
3933       java_thread = thread;
3934       break;
3935     }
3936   }
3937   return java_thread;
3938 }
3939 
3940 
3941 // Last thread running calls java.lang.Shutdown.shutdown()
3942 void JavaThread::invoke_shutdown_hooks() {
3943   HandleMark hm(this);
3944 
3945   // We could get here with a pending exception, if so clear it now.
3946   if (this->has_pending_exception()) {
3947     this->clear_pending_exception();
3948   }
3949 
3950   EXCEPTION_MARK;
3951   Klass* k =
3952     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3953                                       THREAD);
3954   if (k != NULL) {
3955     // SystemDictionary::resolve_or_null will return null if there was
3956     // an exception.  If we cannot load the Shutdown class, just don't
3957     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3958     // and finalizers (if runFinalizersOnExit is set) won't be run.
3959     // Note that if a shutdown hook was registered or runFinalizersOnExit
3960     // was called, the Shutdown class would have already been loaded
3961     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3962     instanceKlassHandle shutdown_klass (THREAD, k);
3963     JavaValue result(T_VOID);
3964     JavaCalls::call_static(&result,
3965                            shutdown_klass,
3966                            vmSymbols::shutdown_method_name(),
3967                            vmSymbols::void_method_signature(),
3968                            THREAD);
3969   }
3970   CLEAR_PENDING_EXCEPTION;
3971 }
3972 
3973 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3974 // the program falls off the end of main(). Another VM exit path is through
3975 // vm_exit() when the program calls System.exit() to return a value or when
3976 // there is a serious error in VM. The two shutdown paths are not exactly
3977 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3978 // and VM_Exit op at VM level.
3979 //
3980 // Shutdown sequence:
3981 //   + Shutdown native memory tracking if it is on
3982 //   + Wait until we are the last non-daemon thread to execute
3983 //     <-- every thing is still working at this moment -->
3984 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3985 //        shutdown hooks, run finalizers if finalization-on-exit
3986 //   + Call before_exit(), prepare for VM exit
3987 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3988 //        currently the only user of this mechanism is File.deleteOnExit())
3989 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3990 //        post thread end and vm death events to JVMTI,
3991 //        stop signal thread
3992 //   + Call JavaThread::exit(), it will:
3993 //      > release JNI handle blocks, remove stack guard pages
3994 //      > remove this thread from Threads list
3995 //     <-- no more Java code from this thread after this point -->
3996 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3997 //     the compiler threads at safepoint
3998 //     <-- do not use anything that could get blocked by Safepoint -->
3999 //   + Disable tracing at JNI/JVM barriers
4000 //   + Set _vm_exited flag for threads that are still running native code
4001 //   + Delete this thread
4002 //   + Call exit_globals()
4003 //      > deletes tty
4004 //      > deletes PerfMemory resources
4005 //   + Return to caller
4006 
4007 bool Threads::destroy_vm() {
4008   JavaThread* thread = JavaThread::current();
4009 
4010 #ifdef ASSERT
4011   _vm_complete = false;
4012 #endif
4013   // Wait until we are the last non-daemon thread to execute
4014   { MutexLocker nu(Threads_lock);
4015     while (Threads::number_of_non_daemon_threads() > 1 )
4016       // This wait should make safepoint checks, wait without a timeout,
4017       // and wait as a suspend-equivalent condition.
4018       //
4019       // Note: If the FlatProfiler is running and this thread is waiting
4020       // for another non-daemon thread to finish, then the FlatProfiler
4021       // is waiting for the external suspend request on this thread to
4022       // complete. wait_for_ext_suspend_completion() will eventually
4023       // timeout, but that takes time. Making this wait a suspend-
4024       // equivalent condition solves that timeout problem.
4025       //
4026       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4027                          Mutex::_as_suspend_equivalent_flag);
4028   }
4029 
4030   // Hang forever on exit if we are reporting an error.
4031   if (ShowMessageBoxOnError && is_error_reported()) {
4032     os::infinite_sleep();
4033   }
4034   os::wait_for_keypress_at_exit();
4035 
4036   if (JDK_Version::is_jdk12x_version()) {
4037     // We are the last thread running, so check if finalizers should be run.
4038     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
4039     HandleMark rm(thread);
4040     Universe::run_finalizers_on_exit();
4041   } else {
4042     // run Java level shutdown hooks
4043     thread->invoke_shutdown_hooks();
4044   }
4045 
4046   before_exit(thread);
4047 
4048   thread->exit(true);
4049 
4050   // Stop VM thread.
4051   {
4052     // 4945125 The vm thread comes to a safepoint during exit.
4053     // GC vm_operations can get caught at the safepoint, and the
4054     // heap is unparseable if they are caught. Grab the Heap_lock
4055     // to prevent this. The GC vm_operations will not be able to
4056     // queue until after the vm thread is dead. After this point,
4057     // we'll never emerge out of the safepoint before the VM exits.
4058 
4059     MutexLocker ml(Heap_lock);
4060 
4061     VMThread::wait_for_vm_thread_exit();
4062     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4063     VMThread::destroy();
4064   }
4065 
4066   // clean up ideal graph printers
4067 #if defined(COMPILER2) && !defined(PRODUCT)
4068   IdealGraphPrinter::clean_up();
4069 #endif
4070 
4071   // Now, all Java threads are gone except daemon threads. Daemon threads
4072   // running Java code or in VM are stopped by the Safepoint. However,
4073   // daemon threads executing native code are still running.  But they
4074   // will be stopped at native=>Java/VM barriers. Note that we can't
4075   // simply kill or suspend them, as it is inherently deadlock-prone.
4076 
4077 #ifndef PRODUCT
4078   // disable function tracing at JNI/JVM barriers
4079   TraceJNICalls = false;
4080   TraceJVMCalls = false;
4081   TraceRuntimeCalls = false;
4082 #endif
4083 
4084   VM_Exit::set_vm_exited();
4085 
4086   notify_vm_shutdown();
4087 
4088   delete thread;
4089 
4090   // exit_globals() will delete tty
4091   exit_globals();
4092 
4093   return true;
4094 }
4095 
4096 
4097 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4098   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4099   return is_supported_jni_version(version);
4100 }
4101 
4102 
4103 jboolean Threads::is_supported_jni_version(jint version) {
4104   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4105   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4106   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4107   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4108   return JNI_FALSE;
4109 }
4110 
4111 
4112 void Threads::add(JavaThread* p, bool force_daemon) {
4113   // The threads lock must be owned at this point
4114   assert_locked_or_safepoint(Threads_lock);
4115 
4116   // See the comment for this method in thread.hpp for its purpose and
4117   // why it is called here.
4118   p->initialize_queues();
4119   p->set_next(_thread_list);
4120   _thread_list = p;
4121   _number_of_threads++;
4122   oop threadObj = p->threadObj();
4123   bool daemon = true;
4124   // Bootstrapping problem: threadObj can be null for initial
4125   // JavaThread (or for threads attached via JNI)
4126   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4127     _number_of_non_daemon_threads++;
4128     daemon = false;
4129   }
4130 
4131   ThreadService::add_thread(p, daemon);
4132 
4133   // Possible GC point.
4134   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4135 }
4136 
4137 void Threads::remove(JavaThread* p) {
4138   // Extra scope needed for Thread_lock, so we can check
4139   // that we do not remove thread without safepoint code notice
4140   { MutexLocker ml(Threads_lock);
4141 
4142     assert(includes(p), "p must be present");
4143 
4144     JavaThread* current = _thread_list;
4145     JavaThread* prev    = NULL;
4146 
4147     while (current != p) {
4148       prev    = current;
4149       current = current->next();
4150     }
4151 
4152     if (prev) {
4153       prev->set_next(current->next());
4154     } else {
4155       _thread_list = p->next();
4156     }
4157     _number_of_threads--;
4158     oop threadObj = p->threadObj();
4159     bool daemon = true;
4160     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4161       _number_of_non_daemon_threads--;
4162       daemon = false;
4163 
4164       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4165       // on destroy_vm will wake up.
4166       if (number_of_non_daemon_threads() == 1)
4167         Threads_lock->notify_all();
4168     }
4169     ThreadService::remove_thread(p, daemon);
4170 
4171     // Make sure that safepoint code disregard this thread. This is needed since
4172     // the thread might mess around with locks after this point. This can cause it
4173     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4174     // of this thread since it is removed from the queue.
4175     p->set_terminated_value();
4176   } // unlock Threads_lock
4177 
4178   // Since Events::log uses a lock, we grab it outside the Threads_lock
4179   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4180 }
4181 
4182 // Threads_lock must be held when this is called (or must be called during a safepoint)
4183 bool Threads::includes(JavaThread* p) {
4184   assert(Threads_lock->is_locked(), "sanity check");
4185   ALL_JAVA_THREADS(q) {
4186     if (q == p ) {
4187       return true;
4188     }
4189   }
4190   return false;
4191 }
4192 
4193 // Operations on the Threads list for GC.  These are not explicitly locked,
4194 // but the garbage collector must provide a safe context for them to run.
4195 // In particular, these things should never be called when the Threads_lock
4196 // is held by some other thread. (Note: the Safepoint abstraction also
4197 // uses the Threads_lock to gurantee this property. It also makes sure that
4198 // all threads gets blocked when exiting or starting).
4199 
4200 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4201   ALL_JAVA_THREADS(p) {
4202     p->oops_do(f, cld_f, cf);
4203   }
4204   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4205 }
4206 
4207 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4208   // Introduce a mechanism allowing parallel threads to claim threads as
4209   // root groups.  Overhead should be small enough to use all the time,
4210   // even in sequential code.
4211   SharedHeap* sh = SharedHeap::heap();
4212   // Cannot yet substitute active_workers for n_par_threads
4213   // because of G1CollectedHeap::verify() use of
4214   // SharedHeap::process_roots().  n_par_threads == 0 will
4215   // turn off parallelism in process_roots while active_workers
4216   // is being used for parallelism elsewhere.
4217   bool is_par = sh->n_par_threads() > 0;
4218   assert(!is_par ||
4219          (SharedHeap::heap()->n_par_threads() ==
4220           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4221   int cp = SharedHeap::heap()->strong_roots_parity();
4222   ALL_JAVA_THREADS(p) {
4223     if (p->claim_oops_do(is_par, cp)) {
4224       p->oops_do(f, cld_f, cf);
4225     }
4226   }
4227   VMThread* vmt = VMThread::vm_thread();
4228   if (vmt->claim_oops_do(is_par, cp)) {
4229     vmt->oops_do(f, cld_f, cf);
4230   }
4231 }
4232 
4233 #if INCLUDE_ALL_GCS
4234 // Used by ParallelScavenge
4235 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4236   ALL_JAVA_THREADS(p) {
4237     q->enqueue(new ThreadRootsTask(p));
4238   }
4239   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4240 }
4241 
4242 // Used by Parallel Old
4243 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4244   ALL_JAVA_THREADS(p) {
4245     q->enqueue(new ThreadRootsMarkingTask(p));
4246   }
4247   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4248 }
4249 #endif // INCLUDE_ALL_GCS
4250 
4251 void Threads::nmethods_do(CodeBlobClosure* cf) {
4252   ALL_JAVA_THREADS(p) {
4253     p->nmethods_do(cf);
4254   }
4255   VMThread::vm_thread()->nmethods_do(cf);
4256 }
4257 
4258 void Threads::metadata_do(void f(Metadata*)) {
4259   ALL_JAVA_THREADS(p) {
4260     p->metadata_do(f);
4261   }
4262 }
4263 
4264 void Threads::gc_epilogue() {
4265   ALL_JAVA_THREADS(p) {
4266     p->gc_epilogue();
4267   }
4268 }
4269 
4270 void Threads::gc_prologue() {
4271   ALL_JAVA_THREADS(p) {
4272     p->gc_prologue();
4273   }
4274 }
4275 
4276 void Threads::deoptimized_wrt_marked_nmethods() {
4277   ALL_JAVA_THREADS(p) {
4278     p->deoptimized_wrt_marked_nmethods();
4279   }
4280 }
4281 
4282 
4283 // Get count Java threads that are waiting to enter the specified monitor.
4284 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4285   address monitor, bool doLock) {
4286   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4287     "must grab Threads_lock or be at safepoint");
4288   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4289 
4290   int i = 0;
4291   {
4292     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4293     ALL_JAVA_THREADS(p) {
4294       if (p->is_Compiler_thread()) continue;
4295 
4296       address pending = (address)p->current_pending_monitor();
4297       if (pending == monitor) {             // found a match
4298         if (i < count) result->append(p);   // save the first count matches
4299         i++;
4300       }
4301     }
4302   }
4303   return result;
4304 }
4305 
4306 
4307 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4308   assert(doLock ||
4309          Threads_lock->owned_by_self() ||
4310          SafepointSynchronize::is_at_safepoint(),
4311          "must grab Threads_lock or be at safepoint");
4312 
4313   // NULL owner means not locked so we can skip the search
4314   if (owner == NULL) return NULL;
4315 
4316   {
4317     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4318     ALL_JAVA_THREADS(p) {
4319       // first, see if owner is the address of a Java thread
4320       if (owner == (address)p) return p;
4321     }
4322   }
4323   // Cannot assert on lack of success here since this function may be
4324   // used by code that is trying to report useful problem information
4325   // like deadlock detection.
4326   if (UseHeavyMonitors) return NULL;
4327 
4328   //
4329   // If we didn't find a matching Java thread and we didn't force use of
4330   // heavyweight monitors, then the owner is the stack address of the
4331   // Lock Word in the owning Java thread's stack.
4332   //
4333   JavaThread* the_owner = NULL;
4334   {
4335     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4336     ALL_JAVA_THREADS(q) {
4337       if (q->is_lock_owned(owner)) {
4338         the_owner = q;
4339         break;
4340       }
4341     }
4342   }
4343   // cannot assert on lack of success here; see above comment
4344   return the_owner;
4345 }
4346 
4347 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4348 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4349   char buf[32];
4350   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4351 
4352   st->print_cr("Full thread dump %s (%s %s):",
4353                 Abstract_VM_Version::vm_name(),
4354                 Abstract_VM_Version::vm_release(),
4355                 Abstract_VM_Version::vm_info_string()
4356                );
4357   st->cr();
4358 
4359 #if INCLUDE_ALL_GCS
4360   // Dump concurrent locks
4361   ConcurrentLocksDump concurrent_locks;
4362   if (print_concurrent_locks) {
4363     concurrent_locks.dump_at_safepoint();
4364   }
4365 #endif // INCLUDE_ALL_GCS
4366 
4367   ALL_JAVA_THREADS(p) {
4368     ResourceMark rm;
4369     p->print_on(st);
4370     if (print_stacks) {
4371       if (internal_format) {
4372         p->trace_stack();
4373       } else {
4374         p->print_stack_on(st);
4375       }
4376     }
4377     st->cr();
4378 #if INCLUDE_ALL_GCS
4379     if (print_concurrent_locks) {
4380       concurrent_locks.print_locks_on(p, st);
4381     }
4382 #endif // INCLUDE_ALL_GCS
4383   }
4384 
4385   VMThread::vm_thread()->print_on(st);
4386   st->cr();
4387   Universe::heap()->print_gc_threads_on(st);
4388   WatcherThread* wt = WatcherThread::watcher_thread();
4389   if (wt != NULL) {
4390     wt->print_on(st);
4391     st->cr();
4392   }
4393   CompileBroker::print_compiler_threads_on(st);
4394   st->flush();
4395 }
4396 
4397 // Threads::print_on_error() is called by fatal error handler. It's possible
4398 // that VM is not at safepoint and/or current thread is inside signal handler.
4399 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4400 // memory (even in resource area), it might deadlock the error handler.
4401 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4402   bool found_current = false;
4403   st->print_cr("Java Threads: ( => current thread )");
4404   ALL_JAVA_THREADS(thread) {
4405     bool is_current = (current == thread);
4406     found_current = found_current || is_current;
4407 
4408     st->print("%s", is_current ? "=>" : "  ");
4409 
4410     st->print(PTR_FORMAT, thread);
4411     st->print(" ");
4412     thread->print_on_error(st, buf, buflen);
4413     st->cr();
4414   }
4415   st->cr();
4416 
4417   st->print_cr("Other Threads:");
4418   if (VMThread::vm_thread()) {
4419     bool is_current = (current == VMThread::vm_thread());
4420     found_current = found_current || is_current;
4421     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4422 
4423     st->print(PTR_FORMAT, VMThread::vm_thread());
4424     st->print(" ");
4425     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4426     st->cr();
4427   }
4428   WatcherThread* wt = WatcherThread::watcher_thread();
4429   if (wt != NULL) {
4430     bool is_current = (current == wt);
4431     found_current = found_current || is_current;
4432     st->print("%s", is_current ? "=>" : "  ");
4433 
4434     st->print(PTR_FORMAT, wt);
4435     st->print(" ");
4436     wt->print_on_error(st, buf, buflen);
4437     st->cr();
4438   }
4439   if (!found_current) {
4440     st->cr();
4441     st->print("=>" PTR_FORMAT " (exited) ", current);
4442     current->print_on_error(st, buf, buflen);
4443     st->cr();
4444   }
4445 }
4446 
4447 // Internal SpinLock and Mutex
4448 // Based on ParkEvent
4449 
4450 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4451 //
4452 // We employ SpinLocks _only for low-contention, fixed-length
4453 // short-duration critical sections where we're concerned
4454 // about native mutex_t or HotSpot Mutex:: latency.
4455 // The mux construct provides a spin-then-block mutual exclusion
4456 // mechanism.
4457 //
4458 // Testing has shown that contention on the ListLock guarding gFreeList
4459 // is common.  If we implement ListLock as a simple SpinLock it's common
4460 // for the JVM to devolve to yielding with little progress.  This is true
4461 // despite the fact that the critical sections protected by ListLock are
4462 // extremely short.
4463 //
4464 // TODO-FIXME: ListLock should be of type SpinLock.
4465 // We should make this a 1st-class type, integrated into the lock
4466 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4467 // should have sufficient padding to avoid false-sharing and excessive
4468 // cache-coherency traffic.
4469 
4470 
4471 typedef volatile int SpinLockT ;
4472 
4473 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4474   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4475      return ;   // normal fast-path return
4476   }
4477 
4478   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4479   TEVENT (SpinAcquire - ctx) ;
4480   int ctr = 0 ;
4481   int Yields = 0 ;
4482   for (;;) {
4483      while (*adr != 0) {
4484         ++ctr ;
4485         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4486            if (Yields > 5) {
4487              os::naked_short_sleep(1);
4488            } else {
4489              os::NakedYield() ;
4490              ++Yields ;
4491            }
4492         } else {
4493            SpinPause() ;
4494         }
4495      }
4496      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4497   }
4498 }
4499 
4500 void Thread::SpinRelease (volatile int * adr) {
4501   assert (*adr != 0, "invariant") ;
4502   OrderAccess::fence() ;      // guarantee at least release consistency.
4503   // Roach-motel semantics.
4504   // It's safe if subsequent LDs and STs float "up" into the critical section,
4505   // but prior LDs and STs within the critical section can't be allowed
4506   // to reorder or float past the ST that releases the lock.
4507   *adr = 0 ;
4508 }
4509 
4510 // muxAcquire and muxRelease:
4511 //
4512 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4513 //    The LSB of the word is set IFF the lock is held.
4514 //    The remainder of the word points to the head of a singly-linked list
4515 //    of threads blocked on the lock.
4516 //
4517 // *  The current implementation of muxAcquire-muxRelease uses its own
4518 //    dedicated Thread._MuxEvent instance.  If we're interested in
4519 //    minimizing the peak number of extant ParkEvent instances then
4520 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4521 //    as certain invariants were satisfied.  Specifically, care would need
4522 //    to be taken with regards to consuming unpark() "permits".
4523 //    A safe rule of thumb is that a thread would never call muxAcquire()
4524 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4525 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4526 //    consume an unpark() permit intended for monitorenter, for instance.
4527 //    One way around this would be to widen the restricted-range semaphore
4528 //    implemented in park().  Another alternative would be to provide
4529 //    multiple instances of the PlatformEvent() for each thread.  One
4530 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4531 //
4532 // *  Usage:
4533 //    -- Only as leaf locks
4534 //    -- for short-term locking only as muxAcquire does not perform
4535 //       thread state transitions.
4536 //
4537 // Alternatives:
4538 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4539 //    but with parking or spin-then-park instead of pure spinning.
4540 // *  Use Taura-Oyama-Yonenzawa locks.
4541 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4542 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4543 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4544 //    acquiring threads use timers (ParkTimed) to detect and recover from
4545 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4546 //    boundaries by using placement-new.
4547 // *  Augment MCS with advisory back-link fields maintained with CAS().
4548 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4549 //    The validity of the backlinks must be ratified before we trust the value.
4550 //    If the backlinks are invalid the exiting thread must back-track through the
4551 //    the forward links, which are always trustworthy.
4552 // *  Add a successor indication.  The LockWord is currently encoded as
4553 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4554 //    to provide the usual futile-wakeup optimization.
4555 //    See RTStt for details.
4556 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4557 //
4558 
4559 
4560 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4561 enum MuxBits { LOCKBIT = 1 } ;
4562 
4563 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4564   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4565   if (w == 0) return ;
4566   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4567      return ;
4568   }
4569 
4570   TEVENT (muxAcquire - Contention) ;
4571   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4572   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4573   for (;;) {
4574      int its = (os::is_MP() ? 100 : 0) + 1 ;
4575 
4576      // Optional spin phase: spin-then-park strategy
4577      while (--its >= 0) {
4578        w = *Lock ;
4579        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4580           return ;
4581        }
4582      }
4583 
4584      Self->reset() ;
4585      Self->OnList = intptr_t(Lock) ;
4586      // The following fence() isn't _strictly necessary as the subsequent
4587      // CAS() both serializes execution and ratifies the fetched *Lock value.
4588      OrderAccess::fence();
4589      for (;;) {
4590         w = *Lock ;
4591         if ((w & LOCKBIT) == 0) {
4592             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4593                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4594                 return ;
4595             }
4596             continue ;      // Interference -- *Lock changed -- Just retry
4597         }
4598         assert (w & LOCKBIT, "invariant") ;
4599         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4600         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4601      }
4602 
4603      while (Self->OnList != 0) {
4604         Self->park() ;
4605      }
4606   }
4607 }
4608 
4609 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4610   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4611   if (w == 0) return ;
4612   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4613     return ;
4614   }
4615 
4616   TEVENT (muxAcquire - Contention) ;
4617   ParkEvent * ReleaseAfter = NULL ;
4618   if (ev == NULL) {
4619     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4620   }
4621   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4622   for (;;) {
4623     guarantee (ev->OnList == 0, "invariant") ;
4624     int its = (os::is_MP() ? 100 : 0) + 1 ;
4625 
4626     // Optional spin phase: spin-then-park strategy
4627     while (--its >= 0) {
4628       w = *Lock ;
4629       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4630         if (ReleaseAfter != NULL) {
4631           ParkEvent::Release (ReleaseAfter) ;
4632         }
4633         return ;
4634       }
4635     }
4636 
4637     ev->reset() ;
4638     ev->OnList = intptr_t(Lock) ;
4639     // The following fence() isn't _strictly necessary as the subsequent
4640     // CAS() both serializes execution and ratifies the fetched *Lock value.
4641     OrderAccess::fence();
4642     for (;;) {
4643       w = *Lock ;
4644       if ((w & LOCKBIT) == 0) {
4645         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4646           ev->OnList = 0 ;
4647           // We call ::Release while holding the outer lock, thus
4648           // artificially lengthening the critical section.
4649           // Consider deferring the ::Release() until the subsequent unlock(),
4650           // after we've dropped the outer lock.
4651           if (ReleaseAfter != NULL) {
4652             ParkEvent::Release (ReleaseAfter) ;
4653           }
4654           return ;
4655         }
4656         continue ;      // Interference -- *Lock changed -- Just retry
4657       }
4658       assert (w & LOCKBIT, "invariant") ;
4659       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4660       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4661     }
4662 
4663     while (ev->OnList != 0) {
4664       ev->park() ;
4665     }
4666   }
4667 }
4668 
4669 // Release() must extract a successor from the list and then wake that thread.
4670 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4671 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4672 // Release() would :
4673 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4674 // (B) Extract a successor from the private list "in-hand"
4675 // (C) attempt to CAS() the residual back into *Lock over null.
4676 //     If there were any newly arrived threads and the CAS() would fail.
4677 //     In that case Release() would detach the RATs, re-merge the list in-hand
4678 //     with the RATs and repeat as needed.  Alternately, Release() might
4679 //     detach and extract a successor, but then pass the residual list to the wakee.
4680 //     The wakee would be responsible for reattaching and remerging before it
4681 //     competed for the lock.
4682 //
4683 // Both "pop" and DMR are immune from ABA corruption -- there can be
4684 // multiple concurrent pushers, but only one popper or detacher.
4685 // This implementation pops from the head of the list.  This is unfair,
4686 // but tends to provide excellent throughput as hot threads remain hot.
4687 // (We wake recently run threads first).
4688 
4689 void Thread::muxRelease (volatile intptr_t * Lock)  {
4690   for (;;) {
4691     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4692     assert (w & LOCKBIT, "invariant") ;
4693     if (w == LOCKBIT) return ;
4694     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4695     assert (List != NULL, "invariant") ;
4696     assert (List->OnList == intptr_t(Lock), "invariant") ;
4697     ParkEvent * nxt = List->ListNext ;
4698 
4699     // The following CAS() releases the lock and pops the head element.
4700     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4701       continue ;
4702     }
4703     List->OnList = 0 ;
4704     OrderAccess::fence() ;
4705     List->unpark () ;
4706     return ;
4707   }
4708 }
4709 
4710 
4711 void Threads::verify() {
4712   ALL_JAVA_THREADS(p) {
4713     p->verify();
4714   }
4715   VMThread* thread = VMThread::vm_thread();
4716   if (thread != NULL) thread->verify();
4717 }