1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  37 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  38 #include "gc_implementation/parNew/parNewGeneration.hpp"
  39 #include "gc_implementation/shared/collectorCounters.hpp"
  40 #include "gc_implementation/shared/gcTimer.hpp"
  41 #include "gc_implementation/shared/gcTrace.hpp"
  42 #include "gc_implementation/shared/gcTraceTime.hpp"
  43 #include "gc_implementation/shared/isGCActiveMark.hpp"
  44 #include "gc_interface/collectedHeap.inline.hpp"
  45 #include "memory/allocation.hpp"
  46 #include "memory/cardTableRS.hpp"
  47 #include "memory/collectorPolicy.hpp"
  48 #include "memory/gcLocker.inline.hpp"
  49 #include "memory/genCollectedHeap.hpp"
  50 #include "memory/genMarkSweep.hpp"
  51 #include "memory/genOopClosures.inline.hpp"
  52 #include "memory/iterator.inline.hpp"
  53 #include "memory/padded.hpp"
  54 #include "memory/referencePolicy.hpp"
  55 #include "memory/resourceArea.hpp"
  56 #include "memory/tenuredGeneration.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "prims/jvmtiExport.hpp"
  59 #include "runtime/globals_extension.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/java.hpp"
  62 #include "runtime/orderAccess.inline.hpp"
  63 #include "runtime/vmThread.hpp"
  64 #include "services/memoryService.hpp"
  65 #include "services/runtimeService.hpp"
  66 
  67 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  68 
  69 // statics
  70 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  71 bool CMSCollector::_full_gc_requested = false;
  72 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  73 
  74 //////////////////////////////////////////////////////////////////
  75 // In support of CMS/VM thread synchronization
  76 //////////////////////////////////////////////////////////////////
  77 // We split use of the CGC_lock into 2 "levels".
  78 // The low-level locking is of the usual CGC_lock monitor. We introduce
  79 // a higher level "token" (hereafter "CMS token") built on top of the
  80 // low level monitor (hereafter "CGC lock").
  81 // The token-passing protocol gives priority to the VM thread. The
  82 // CMS-lock doesn't provide any fairness guarantees, but clients
  83 // should ensure that it is only held for very short, bounded
  84 // durations.
  85 //
  86 // When either of the CMS thread or the VM thread is involved in
  87 // collection operations during which it does not want the other
  88 // thread to interfere, it obtains the CMS token.
  89 //
  90 // If either thread tries to get the token while the other has
  91 // it, that thread waits. However, if the VM thread and CMS thread
  92 // both want the token, then the VM thread gets priority while the
  93 // CMS thread waits. This ensures, for instance, that the "concurrent"
  94 // phases of the CMS thread's work do not block out the VM thread
  95 // for long periods of time as the CMS thread continues to hog
  96 // the token. (See bug 4616232).
  97 //
  98 // The baton-passing functions are, however, controlled by the
  99 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 100 // and here the low-level CMS lock, not the high level token,
 101 // ensures mutual exclusion.
 102 //
 103 // Two important conditions that we have to satisfy:
 104 // 1. if a thread does a low-level wait on the CMS lock, then it
 105 //    relinquishes the CMS token if it were holding that token
 106 //    when it acquired the low-level CMS lock.
 107 // 2. any low-level notifications on the low-level lock
 108 //    should only be sent when a thread has relinquished the token.
 109 //
 110 // In the absence of either property, we'd have potential deadlock.
 111 //
 112 // We protect each of the CMS (concurrent and sequential) phases
 113 // with the CMS _token_, not the CMS _lock_.
 114 //
 115 // The only code protected by CMS lock is the token acquisition code
 116 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 117 // baton-passing code.
 118 //
 119 // Unfortunately, i couldn't come up with a good abstraction to factor and
 120 // hide the naked CGC_lock manipulation in the baton-passing code
 121 // further below. That's something we should try to do. Also, the proof
 122 // of correctness of this 2-level locking scheme is far from obvious,
 123 // and potentially quite slippery. We have an uneasy supsicion, for instance,
 124 // that there may be a theoretical possibility of delay/starvation in the
 125 // low-level lock/wait/notify scheme used for the baton-passing because of
 126 // potential intereference with the priority scheme embodied in the
 127 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 128 // invocation further below and marked with "XXX 20011219YSR".
 129 // Indeed, as we note elsewhere, this may become yet more slippery
 130 // in the presence of multiple CMS and/or multiple VM threads. XXX
 131 
 132 class CMSTokenSync: public StackObj {
 133  private:
 134   bool _is_cms_thread;
 135  public:
 136   CMSTokenSync(bool is_cms_thread):
 137     _is_cms_thread(is_cms_thread) {
 138     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 139            "Incorrect argument to constructor");
 140     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 141   }
 142 
 143   ~CMSTokenSync() {
 144     assert(_is_cms_thread ?
 145              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 146              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 147           "Incorrect state");
 148     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 149   }
 150 };
 151 
 152 // Convenience class that does a CMSTokenSync, and then acquires
 153 // upto three locks.
 154 class CMSTokenSyncWithLocks: public CMSTokenSync {
 155  private:
 156   // Note: locks are acquired in textual declaration order
 157   // and released in the opposite order
 158   MutexLockerEx _locker1, _locker2, _locker3;
 159  public:
 160   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 161                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 162     CMSTokenSync(is_cms_thread),
 163     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 164     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 165     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 166   { }
 167 };
 168 
 169 
 170 // Wrapper class to temporarily disable icms during a foreground cms collection.
 171 class ICMSDisabler: public StackObj {
 172  public:
 173   // The ctor disables icms and wakes up the thread so it notices the change;
 174   // the dtor re-enables icms.  Note that the CMSCollector methods will check
 175   // CMSIncrementalMode.
 176   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
 177   ~ICMSDisabler() { CMSCollector::enable_icms(); }
 178 };
 179 
 180 //////////////////////////////////////////////////////////////////
 181 //  Concurrent Mark-Sweep Generation /////////////////////////////
 182 //////////////////////////////////////////////////////////////////
 183 
 184 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 185 
 186 // This struct contains per-thread things necessary to support parallel
 187 // young-gen collection.
 188 class CMSParGCThreadState: public CHeapObj<mtGC> {
 189  public:
 190   CFLS_LAB lab;
 191   PromotionInfo promo;
 192 
 193   // Constructor.
 194   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 195     promo.setSpace(cfls);
 196   }
 197 };
 198 
 199 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 200      ReservedSpace rs, size_t initial_byte_size, int level,
 201      CardTableRS* ct, bool use_adaptive_freelists,
 202      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 203   CardGeneration(rs, initial_byte_size, level, ct),
 204   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 205   _debug_collection_type(Concurrent_collection_type),
 206   _did_compact(false)
 207 {
 208   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 209   HeapWord* end    = (HeapWord*) _virtual_space.high();
 210 
 211   _direct_allocated_words = 0;
 212   NOT_PRODUCT(
 213     _numObjectsPromoted = 0;
 214     _numWordsPromoted = 0;
 215     _numObjectsAllocated = 0;
 216     _numWordsAllocated = 0;
 217   )
 218 
 219   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 220                                            use_adaptive_freelists,
 221                                            dictionaryChoice);
 222   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 223   if (_cmsSpace == NULL) {
 224     vm_exit_during_initialization(
 225       "CompactibleFreeListSpace allocation failure");
 226   }
 227   _cmsSpace->_gen = this;
 228 
 229   _gc_stats = new CMSGCStats();
 230 
 231   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 232   // offsets match. The ability to tell free chunks from objects
 233   // depends on this property.
 234   debug_only(
 235     FreeChunk* junk = NULL;
 236     assert(UseCompressedClassPointers ||
 237            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 238            "Offset of FreeChunk::_prev within FreeChunk must match"
 239            "  that of OopDesc::_klass within OopDesc");
 240   )
 241   if (CollectedHeap::use_parallel_gc_threads()) {
 242     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 243     _par_gc_thread_states =
 244       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC);
 245     if (_par_gc_thread_states == NULL) {
 246       vm_exit_during_initialization("Could not allocate par gc structs");
 247     }
 248     for (uint i = 0; i < ParallelGCThreads; i++) {
 249       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 250       if (_par_gc_thread_states[i] == NULL) {
 251         vm_exit_during_initialization("Could not allocate par gc structs");
 252       }
 253     }
 254   } else {
 255     _par_gc_thread_states = NULL;
 256   }
 257   _incremental_collection_failed = false;
 258   // The "dilatation_factor" is the expansion that can occur on
 259   // account of the fact that the minimum object size in the CMS
 260   // generation may be larger than that in, say, a contiguous young
 261   //  generation.
 262   // Ideally, in the calculation below, we'd compute the dilatation
 263   // factor as: MinChunkSize/(promoting_gen's min object size)
 264   // Since we do not have such a general query interface for the
 265   // promoting generation, we'll instead just use the mimimum
 266   // object size (which today is a header's worth of space);
 267   // note that all arithmetic is in units of HeapWords.
 268   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 269   assert(_dilatation_factor >= 1.0, "from previous assert");
 270 }
 271 
 272 
 273 // The field "_initiating_occupancy" represents the occupancy percentage
 274 // at which we trigger a new collection cycle.  Unless explicitly specified
 275 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 276 // is calculated by:
 277 //
 278 //   Let "f" be MinHeapFreeRatio in
 279 //
 280 //    _intiating_occupancy = 100-f +
 281 //                           f * (CMSTriggerRatio/100)
 282 //   where CMSTriggerRatio is the argument "tr" below.
 283 //
 284 // That is, if we assume the heap is at its desired maximum occupancy at the
 285 // end of a collection, we let CMSTriggerRatio of the (purported) free
 286 // space be allocated before initiating a new collection cycle.
 287 //
 288 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 289   assert(io <= 100 && tr <= 100, "Check the arguments");
 290   if (io >= 0) {
 291     _initiating_occupancy = (double)io / 100.0;
 292   } else {
 293     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 294                              (double)(tr * MinHeapFreeRatio) / 100.0)
 295                             / 100.0;
 296   }
 297 }
 298 
 299 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 300   assert(collector() != NULL, "no collector");
 301   collector()->ref_processor_init();
 302 }
 303 
 304 void CMSCollector::ref_processor_init() {
 305   if (_ref_processor == NULL) {
 306     // Allocate and initialize a reference processor
 307     _ref_processor =
 308       new ReferenceProcessor(_span,                               // span
 309                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 310                              (int) ParallelGCThreads,             // mt processing degree
 311                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 312                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 313                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 314                              &_is_alive_closure);                 // closure for liveness info
 315     // Initialize the _ref_processor field of CMSGen
 316     _cmsGen->set_ref_processor(_ref_processor);
 317 
 318   }
 319 }
 320 
 321 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
 322   GenCollectedHeap* gch = GenCollectedHeap::heap();
 323   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 324     "Wrong type of heap");
 325   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
 326     gch->gen_policy()->size_policy();
 327   assert(sp->is_gc_cms_adaptive_size_policy(),
 328     "Wrong type of size policy");
 329   return sp;
 330 }
 331 
 332 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
 333   CMSGCAdaptivePolicyCounters* results =
 334     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
 335   assert(
 336     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
 337     "Wrong gc policy counter kind");
 338   return results;
 339 }
 340 
 341 
 342 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 343 
 344   const char* gen_name = "old";
 345 
 346   // Generation Counters - generation 1, 1 subspace
 347   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
 348 
 349   _space_counters = new GSpaceCounters(gen_name, 0,
 350                                        _virtual_space.reserved_size(),
 351                                        this, _gen_counters);
 352 }
 353 
 354 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 355   _cms_gen(cms_gen)
 356 {
 357   assert(alpha <= 100, "bad value");
 358   _saved_alpha = alpha;
 359 
 360   // Initialize the alphas to the bootstrap value of 100.
 361   _gc0_alpha = _cms_alpha = 100;
 362 
 363   _cms_begin_time.update();
 364   _cms_end_time.update();
 365 
 366   _gc0_duration = 0.0;
 367   _gc0_period = 0.0;
 368   _gc0_promoted = 0;
 369 
 370   _cms_duration = 0.0;
 371   _cms_period = 0.0;
 372   _cms_allocated = 0;
 373 
 374   _cms_used_at_gc0_begin = 0;
 375   _cms_used_at_gc0_end = 0;
 376   _allow_duty_cycle_reduction = false;
 377   _valid_bits = 0;
 378   _icms_duty_cycle = CMSIncrementalDutyCycle;
 379 }
 380 
 381 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 382   // TBD: CR 6909490
 383   return 1.0;
 384 }
 385 
 386 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 387 }
 388 
 389 // If promotion failure handling is on use
 390 // the padded average size of the promotion for each
 391 // young generation collection.
 392 double CMSStats::time_until_cms_gen_full() const {
 393   size_t cms_free = _cms_gen->cmsSpace()->free();
 394   GenCollectedHeap* gch = GenCollectedHeap::heap();
 395   size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(),
 396                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 397   if (cms_free > expected_promotion) {
 398     // Start a cms collection if there isn't enough space to promote
 399     // for the next minor collection.  Use the padded average as
 400     // a safety factor.
 401     cms_free -= expected_promotion;
 402 
 403     // Adjust by the safety factor.
 404     double cms_free_dbl = (double)cms_free;
 405     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 406     // Apply a further correction factor which tries to adjust
 407     // for recent occurance of concurrent mode failures.
 408     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 409     cms_free_dbl = cms_free_dbl * cms_adjustment;
 410 
 411     if (PrintGCDetails && Verbose) {
 412       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 413         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 414         cms_free, expected_promotion);
 415       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 416         cms_free_dbl, cms_consumption_rate() + 1.0);
 417     }
 418     // Add 1 in case the consumption rate goes to zero.
 419     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 420   }
 421   return 0.0;
 422 }
 423 
 424 // Compare the duration of the cms collection to the
 425 // time remaining before the cms generation is empty.
 426 // Note that the time from the start of the cms collection
 427 // to the start of the cms sweep (less than the total
 428 // duration of the cms collection) can be used.  This
 429 // has been tried and some applications experienced
 430 // promotion failures early in execution.  This was
 431 // possibly because the averages were not accurate
 432 // enough at the beginning.
 433 double CMSStats::time_until_cms_start() const {
 434   // We add "gc0_period" to the "work" calculation
 435   // below because this query is done (mostly) at the
 436   // end of a scavenge, so we need to conservatively
 437   // account for that much possible delay
 438   // in the query so as to avoid concurrent mode failures
 439   // due to starting the collection just a wee bit too
 440   // late.
 441   double work = cms_duration() + gc0_period();
 442   double deadline = time_until_cms_gen_full();
 443   // If a concurrent mode failure occurred recently, we want to be
 444   // more conservative and halve our expected time_until_cms_gen_full()
 445   if (work > deadline) {
 446     if (Verbose && PrintGCDetails) {
 447       gclog_or_tty->print(
 448         " CMSCollector: collect because of anticipated promotion "
 449         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 450         gc0_period(), time_until_cms_gen_full());
 451     }
 452     return 0.0;
 453   }
 454   return work - deadline;
 455 }
 456 
 457 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
 458 // amount of change to prevent wild oscillation.
 459 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
 460                                               unsigned int new_duty_cycle) {
 461   assert(old_duty_cycle <= 100, "bad input value");
 462   assert(new_duty_cycle <= 100, "bad input value");
 463 
 464   // Note:  use subtraction with caution since it may underflow (values are
 465   // unsigned).  Addition is safe since we're in the range 0-100.
 466   unsigned int damped_duty_cycle = new_duty_cycle;
 467   if (new_duty_cycle < old_duty_cycle) {
 468     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
 469     if (new_duty_cycle + largest_delta < old_duty_cycle) {
 470       damped_duty_cycle = old_duty_cycle - largest_delta;
 471     }
 472   } else if (new_duty_cycle > old_duty_cycle) {
 473     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
 474     if (new_duty_cycle > old_duty_cycle + largest_delta) {
 475       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
 476     }
 477   }
 478   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
 479 
 480   if (CMSTraceIncrementalPacing) {
 481     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
 482                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
 483   }
 484   return damped_duty_cycle;
 485 }
 486 
 487 unsigned int CMSStats::icms_update_duty_cycle_impl() {
 488   assert(CMSIncrementalPacing && valid(),
 489          "should be handled in icms_update_duty_cycle()");
 490 
 491   double cms_time_so_far = cms_timer().seconds();
 492   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
 493   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
 494 
 495   // Avoid division by 0.
 496   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
 497   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
 498 
 499   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
 500   if (new_duty_cycle > _icms_duty_cycle) {
 501     // Avoid very small duty cycles (1 or 2); 0 is allowed.
 502     if (new_duty_cycle > 2) {
 503       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
 504                                                 new_duty_cycle);
 505     }
 506   } else if (_allow_duty_cycle_reduction) {
 507     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
 508     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
 509     // Respect the minimum duty cycle.
 510     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
 511     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
 512   }
 513 
 514   if (PrintGCDetails || CMSTraceIncrementalPacing) {
 515     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
 516   }
 517 
 518   _allow_duty_cycle_reduction = false;
 519   return _icms_duty_cycle;
 520 }
 521 
 522 #ifndef PRODUCT
 523 void CMSStats::print_on(outputStream *st) const {
 524   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 525   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 526                gc0_duration(), gc0_period(), gc0_promoted());
 527   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 528             cms_duration(), cms_duration_per_mb(),
 529             cms_period(), cms_allocated());
 530   st->print(",cms_since_beg=%g,cms_since_end=%g",
 531             cms_time_since_begin(), cms_time_since_end());
 532   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 533             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 534   if (CMSIncrementalMode) {
 535     st->print(",dc=%d", icms_duty_cycle());
 536   }
 537 
 538   if (valid()) {
 539     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 540               promotion_rate(), cms_allocation_rate());
 541     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 542               cms_consumption_rate(), time_until_cms_gen_full());
 543   }
 544   st->print(" ");
 545 }
 546 #endif // #ifndef PRODUCT
 547 
 548 CMSCollector::CollectorState CMSCollector::_collectorState =
 549                              CMSCollector::Idling;
 550 bool CMSCollector::_foregroundGCIsActive = false;
 551 bool CMSCollector::_foregroundGCShouldWait = false;
 552 
 553 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 554                            CardTableRS*                   ct,
 555                            ConcurrentMarkSweepPolicy*     cp):
 556   _cmsGen(cmsGen),
 557   _ct(ct),
 558   _ref_processor(NULL),    // will be set later
 559   _conc_workers(NULL),     // may be set later
 560   _abort_preclean(false),
 561   _start_sampling(false),
 562   _between_prologue_and_epilogue(false),
 563   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 564   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 565                  -1 /* lock-free */, "No_lock" /* dummy */),
 566   _modUnionClosure(&_modUnionTable),
 567   _modUnionClosurePar(&_modUnionTable),
 568   // Adjust my span to cover old (cms) gen
 569   _span(cmsGen->reserved()),
 570   // Construct the is_alive_closure with _span & markBitMap
 571   _is_alive_closure(_span, &_markBitMap),
 572   _restart_addr(NULL),
 573   _overflow_list(NULL),
 574   _stats(cmsGen),
 575   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true)),
 576   _eden_chunk_array(NULL),     // may be set in ctor body
 577   _eden_chunk_capacity(0),     // -- ditto --
 578   _eden_chunk_index(0),        // -- ditto --
 579   _survivor_plab_array(NULL),  // -- ditto --
 580   _survivor_chunk_array(NULL), // -- ditto --
 581   _survivor_chunk_capacity(0), // -- ditto --
 582   _survivor_chunk_index(0),    // -- ditto --
 583   _ser_pmc_preclean_ovflw(0),
 584   _ser_kac_preclean_ovflw(0),
 585   _ser_pmc_remark_ovflw(0),
 586   _par_pmc_remark_ovflw(0),
 587   _ser_kac_ovflw(0),
 588   _par_kac_ovflw(0),
 589 #ifndef PRODUCT
 590   _num_par_pushes(0),
 591 #endif
 592   _collection_count_start(0),
 593   _verifying(false),
 594   _icms_start_limit(NULL),
 595   _icms_stop_limit(NULL),
 596   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 597   _completed_initialization(false),
 598   _collector_policy(cp),
 599   _should_unload_classes(CMSClassUnloadingEnabled),
 600   _concurrent_cycles_since_last_unload(0),
 601   _roots_scanning_options(GenCollectedHeap::SO_None),
 602   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 603   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 604   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 605   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 606   _cms_start_registered(false)
 607 {
 608   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 609     ExplicitGCInvokesConcurrent = true;
 610   }
 611   // Now expand the span and allocate the collection support structures
 612   // (MUT, marking bit map etc.) to cover both generations subject to
 613   // collection.
 614 
 615   // For use by dirty card to oop closures.
 616   _cmsGen->cmsSpace()->set_collector(this);
 617 
 618   // Allocate MUT and marking bit map
 619   {
 620     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 621     if (!_markBitMap.allocate(_span)) {
 622       warning("Failed to allocate CMS Bit Map");
 623       return;
 624     }
 625     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 626   }
 627   {
 628     _modUnionTable.allocate(_span);
 629     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 630   }
 631 
 632   if (!_markStack.allocate(MarkStackSize)) {
 633     warning("Failed to allocate CMS Marking Stack");
 634     return;
 635   }
 636 
 637   // Support for multi-threaded concurrent phases
 638   if (CMSConcurrentMTEnabled) {
 639     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 640       // just for now
 641       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 642     }
 643     if (ConcGCThreads > 1) {
 644       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
 645                                  ConcGCThreads, true);
 646       if (_conc_workers == NULL) {
 647         warning("GC/CMS: _conc_workers allocation failure: "
 648               "forcing -CMSConcurrentMTEnabled");
 649         CMSConcurrentMTEnabled = false;
 650       } else {
 651         _conc_workers->initialize_workers();
 652       }
 653     } else {
 654       CMSConcurrentMTEnabled = false;
 655     }
 656   }
 657   if (!CMSConcurrentMTEnabled) {
 658     ConcGCThreads = 0;
 659   } else {
 660     // Turn off CMSCleanOnEnter optimization temporarily for
 661     // the MT case where it's not fixed yet; see 6178663.
 662     CMSCleanOnEnter = false;
 663   }
 664   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 665          "Inconsistency");
 666 
 667   // Parallel task queues; these are shared for the
 668   // concurrent and stop-world phases of CMS, but
 669   // are not shared with parallel scavenge (ParNew).
 670   {
 671     uint i;
 672     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 673 
 674     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 675          || ParallelRefProcEnabled)
 676         && num_queues > 0) {
 677       _task_queues = new OopTaskQueueSet(num_queues);
 678       if (_task_queues == NULL) {
 679         warning("task_queues allocation failure.");
 680         return;
 681       }
 682       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 683       if (_hash_seed == NULL) {
 684         warning("_hash_seed array allocation failure");
 685         return;
 686       }
 687 
 688       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 689       for (i = 0; i < num_queues; i++) {
 690         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 691         if (q == NULL) {
 692           warning("work_queue allocation failure.");
 693           return;
 694         }
 695         _task_queues->register_queue(i, q);
 696       }
 697       for (i = 0; i < num_queues; i++) {
 698         _task_queues->queue(i)->initialize();
 699         _hash_seed[i] = 17;  // copied from ParNew
 700       }
 701     }
 702   }
 703 
 704   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 705 
 706   // Clip CMSBootstrapOccupancy between 0 and 100.
 707   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
 708 
 709   _full_gcs_since_conc_gc = 0;
 710 
 711   // Now tell CMS generations the identity of their collector
 712   ConcurrentMarkSweepGeneration::set_collector(this);
 713 
 714   // Create & start a CMS thread for this CMS collector
 715   _cmsThread = ConcurrentMarkSweepThread::start(this);
 716   assert(cmsThread() != NULL, "CMS Thread should have been created");
 717   assert(cmsThread()->collector() == this,
 718          "CMS Thread should refer to this gen");
 719   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 720 
 721   // Support for parallelizing young gen rescan
 722   GenCollectedHeap* gch = GenCollectedHeap::heap();
 723   _young_gen = gch->prev_gen(_cmsGen);
 724   if (gch->supports_inline_contig_alloc()) {
 725     _top_addr = gch->top_addr();
 726     _end_addr = gch->end_addr();
 727     assert(_young_gen != NULL, "no _young_gen");
 728     _eden_chunk_index = 0;
 729     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 730     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 731     if (_eden_chunk_array == NULL) {
 732       _eden_chunk_capacity = 0;
 733       warning("GC/CMS: _eden_chunk_array allocation failure");
 734     }
 735   }
 736   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
 737 
 738   // Support for parallelizing survivor space rescan
 739   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 740     const size_t max_plab_samples =
 741       ((DefNewGeneration*)_young_gen)->max_survivor_size() / plab_sample_minimum_size();
 742 
 743     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 744     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 745     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 746     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
 747         || _cursor == NULL) {
 748       warning("Failed to allocate survivor plab/chunk array");
 749       if (_survivor_plab_array  != NULL) {
 750         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 751         _survivor_plab_array = NULL;
 752       }
 753       if (_survivor_chunk_array != NULL) {
 754         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 755         _survivor_chunk_array = NULL;
 756       }
 757       if (_cursor != NULL) {
 758         FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC);
 759         _cursor = NULL;
 760       }
 761     } else {
 762       _survivor_chunk_capacity = 2*max_plab_samples;
 763       for (uint i = 0; i < ParallelGCThreads; i++) {
 764         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 765         if (vec == NULL) {
 766           warning("Failed to allocate survivor plab array");
 767           for (int j = i; j > 0; j--) {
 768             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC);
 769           }
 770           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 771           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 772           _survivor_plab_array = NULL;
 773           _survivor_chunk_array = NULL;
 774           _survivor_chunk_capacity = 0;
 775           break;
 776         } else {
 777           ChunkArray* cur =
 778             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
 779                                                         max_plab_samples);
 780           assert(cur->end() == 0, "Should be 0");
 781           assert(cur->array() == vec, "Should be vec");
 782           assert(cur->capacity() == max_plab_samples, "Error");
 783         }
 784       }
 785     }
 786   }
 787   assert(   (   _survivor_plab_array  != NULL
 788              && _survivor_chunk_array != NULL)
 789          || (   _survivor_chunk_capacity == 0
 790              && _survivor_chunk_index == 0),
 791          "Error");
 792 
 793   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 794   _gc_counters = new CollectorCounters("CMS", 1);
 795   _completed_initialization = true;
 796   _inter_sweep_timer.start();  // start of time
 797 }
 798 
 799 size_t CMSCollector::plab_sample_minimum_size() {
 800   // The default value of MinTLABSize is 2k, but there is
 801   // no way to get the default value if the flag has been overridden.
 802   return MAX2(ThreadLocalAllocBuffer::min_size() * HeapWordSize, 2 * K);
 803 }
 804 
 805 const char* ConcurrentMarkSweepGeneration::name() const {
 806   return "concurrent mark-sweep generation";
 807 }
 808 void ConcurrentMarkSweepGeneration::update_counters() {
 809   if (UsePerfData) {
 810     _space_counters->update_all();
 811     _gen_counters->update_all();
 812   }
 813 }
 814 
 815 // this is an optimized version of update_counters(). it takes the
 816 // used value as a parameter rather than computing it.
 817 //
 818 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 819   if (UsePerfData) {
 820     _space_counters->update_used(used);
 821     _space_counters->update_capacity();
 822     _gen_counters->update_all();
 823   }
 824 }
 825 
 826 void ConcurrentMarkSweepGeneration::print() const {
 827   Generation::print();
 828   cmsSpace()->print();
 829 }
 830 
 831 #ifndef PRODUCT
 832 void ConcurrentMarkSweepGeneration::print_statistics() {
 833   cmsSpace()->printFLCensus(0);
 834 }
 835 #endif
 836 
 837 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 838   GenCollectedHeap* gch = GenCollectedHeap::heap();
 839   if (PrintGCDetails) {
 840     if (Verbose) {
 841       gclog_or_tty->print("[%d %s-%s: " SIZE_FORMAT "(" SIZE_FORMAT ")]",
 842         level(), short_name(), s, used(), capacity());
 843     } else {
 844       gclog_or_tty->print("[%d %s-%s: " SIZE_FORMAT "K(" SIZE_FORMAT "K)]",
 845         level(), short_name(), s, used() / K, capacity() / K);
 846     }
 847   }
 848   if (Verbose) {
 849     gclog_or_tty->print(" " SIZE_FORMAT "(" SIZE_FORMAT ")",
 850               gch->used(), gch->capacity());
 851   } else {
 852     gclog_or_tty->print(" " SIZE_FORMAT "K(" SIZE_FORMAT "K)",
 853               gch->used() / K, gch->capacity() / K);
 854   }
 855 }
 856 
 857 size_t
 858 ConcurrentMarkSweepGeneration::contiguous_available() const {
 859   // dld proposes an improvement in precision here. If the committed
 860   // part of the space ends in a free block we should add that to
 861   // uncommitted size in the calculation below. Will make this
 862   // change later, staying with the approximation below for the
 863   // time being. -- ysr.
 864   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 865 }
 866 
 867 size_t
 868 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 869   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 870 }
 871 
 872 size_t ConcurrentMarkSweepGeneration::max_available() const {
 873   return free() + _virtual_space.uncommitted_size();
 874 }
 875 
 876 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 877   size_t available = max_available();
 878   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 879   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 880   if (Verbose && PrintGCDetails) {
 881     gclog_or_tty->print_cr(
 882       "CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "),"
 883       "max_promo(" SIZE_FORMAT ")",
 884       res? "":" not", available, res? ">=":"<",
 885       av_promo, max_promotion_in_bytes);
 886   }
 887   return res;
 888 }
 889 
 890 // At a promotion failure dump information on block layout in heap
 891 // (cms old generation).
 892 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 893   if (CMSDumpAtPromotionFailure) {
 894     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 895   }
 896 }
 897 
 898 CompactibleSpace*
 899 ConcurrentMarkSweepGeneration::first_compaction_space() const {
 900   return _cmsSpace;
 901 }
 902 
 903 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 904   // Clear the promotion information.  These pointers can be adjusted
 905   // along with all the other pointers into the heap but
 906   // compaction is expected to be a rare event with
 907   // a heap using cms so don't do it without seeing the need.
 908   if (CollectedHeap::use_parallel_gc_threads()) {
 909     for (uint i = 0; i < ParallelGCThreads; i++) {
 910       _par_gc_thread_states[i]->promo.reset();
 911     }
 912   }
 913 }
 914 
 915 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
 916   blk->do_space(_cmsSpace);
 917 }
 918 
 919 void ConcurrentMarkSweepGeneration::compute_new_size() {
 920   assert_locked_or_safepoint(Heap_lock);
 921 
 922   // If incremental collection failed, we just want to expand
 923   // to the limit.
 924   if (incremental_collection_failed()) {
 925     clear_incremental_collection_failed();
 926     grow_to_reserved();
 927     return;
 928   }
 929 
 930   // The heap has been compacted but not reset yet.
 931   // Any metric such as free() or used() will be incorrect.
 932 
 933   CardGeneration::compute_new_size();
 934 
 935   // Reset again after a possible resizing
 936   if (did_compact()) {
 937     cmsSpace()->reset_after_compaction();
 938   }
 939 }
 940 
 941 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 942   assert_locked_or_safepoint(Heap_lock);
 943 
 944   // If incremental collection failed, we just want to expand
 945   // to the limit.
 946   if (incremental_collection_failed()) {
 947     clear_incremental_collection_failed();
 948     grow_to_reserved();
 949     return;
 950   }
 951 
 952   double free_percentage = ((double) free()) / capacity();
 953   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 954   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 955 
 956   // compute expansion delta needed for reaching desired free percentage
 957   if (free_percentage < desired_free_percentage) {
 958     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 959     assert(desired_capacity >= capacity(), "invalid expansion size");
 960     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 961     if (PrintGCDetails && Verbose) {
 962       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 963       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 964       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 965       gclog_or_tty->print_cr("  Desired free fraction %f",
 966         desired_free_percentage);
 967       gclog_or_tty->print_cr("  Maximum free fraction %f",
 968         maximum_free_percentage);
 969       gclog_or_tty->print_cr("  Capactiy " SIZE_FORMAT, capacity()/1000);
 970       gclog_or_tty->print_cr("  Desired capacity " SIZE_FORMAT,
 971         desired_capacity/1000);
 972       int prev_level = level() - 1;
 973       if (prev_level >= 0) {
 974         size_t prev_size = 0;
 975         GenCollectedHeap* gch = GenCollectedHeap::heap();
 976         Generation* prev_gen = gch->_gens[prev_level];
 977         prev_size = prev_gen->capacity();
 978           gclog_or_tty->print_cr("  Younger gen size " SIZE_FORMAT,
 979                                  prev_size/1000);
 980       }
 981       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc " SIZE_FORMAT,
 982         unsafe_max_alloc_nogc()/1000);
 983       gclog_or_tty->print_cr("  contiguous available " SIZE_FORMAT,
 984         contiguous_available()/1000);
 985       gclog_or_tty->print_cr("  Expand by " SIZE_FORMAT " (bytes)",
 986         expand_bytes);
 987     }
 988     // safe if expansion fails
 989     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 990     if (PrintGCDetails && Verbose) {
 991       gclog_or_tty->print_cr("  Expanded free fraction %f",
 992         ((double) free()) / capacity());
 993     }
 994   } else {
 995     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 996     assert(desired_capacity <= capacity(), "invalid expansion size");
 997     size_t shrink_bytes = capacity() - desired_capacity;
 998     // Don't shrink unless the delta is greater than the minimum shrink we want
 999     if (shrink_bytes >= MinHeapDeltaBytes) {
1000       shrink_free_list_by(shrink_bytes);
1001     }
1002   }
1003 }
1004 
1005 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
1006   return cmsSpace()->freelistLock();
1007 }
1008 
1009 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
1010                                                   bool   tlab) {
1011   CMSSynchronousYieldRequest yr;
1012   MutexLockerEx x(freelistLock(),
1013                   Mutex::_no_safepoint_check_flag);
1014   return have_lock_and_allocate(size, tlab);
1015 }
1016 
1017 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
1018                                                   bool   tlab /* ignored */) {
1019   assert_lock_strong(freelistLock());
1020   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
1021   HeapWord* res = cmsSpace()->allocate(adjustedSize);
1022   // Allocate the object live (grey) if the background collector has
1023   // started marking. This is necessary because the marker may
1024   // have passed this address and consequently this object will
1025   // not otherwise be greyed and would be incorrectly swept up.
1026   // Note that if this object contains references, the writing
1027   // of those references will dirty the card containing this object
1028   // allowing the object to be blackened (and its references scanned)
1029   // either during a preclean phase or at the final checkpoint.
1030   if (res != NULL) {
1031     // We may block here with an uninitialized object with
1032     // its mark-bit or P-bits not yet set. Such objects need
1033     // to be safely navigable by block_start().
1034     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
1035     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
1036     collector()->direct_allocated(res, adjustedSize);
1037     _direct_allocated_words += adjustedSize;
1038     // allocation counters
1039     NOT_PRODUCT(
1040       _numObjectsAllocated++;
1041       _numWordsAllocated += (int)adjustedSize;
1042     )
1043   }
1044   return res;
1045 }
1046 
1047 // In the case of direct allocation by mutators in a generation that
1048 // is being concurrently collected, the object must be allocated
1049 // live (grey) if the background collector has started marking.
1050 // This is necessary because the marker may
1051 // have passed this address and consequently this object will
1052 // not otherwise be greyed and would be incorrectly swept up.
1053 // Note that if this object contains references, the writing
1054 // of those references will dirty the card containing this object
1055 // allowing the object to be blackened (and its references scanned)
1056 // either during a preclean phase or at the final checkpoint.
1057 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
1058   assert(_markBitMap.covers(start, size), "Out of bounds");
1059   if (_collectorState >= Marking) {
1060     MutexLockerEx y(_markBitMap.lock(),
1061                     Mutex::_no_safepoint_check_flag);
1062     // [see comments preceding SweepClosure::do_blk() below for details]
1063     //
1064     // Can the P-bits be deleted now?  JJJ
1065     //
1066     // 1. need to mark the object as live so it isn't collected
1067     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
1068     // 3. need to mark the end of the object so marking, precleaning or sweeping
1069     //    can skip over uninitialized or unparsable objects. An allocated
1070     //    object is considered uninitialized for our purposes as long as
1071     //    its klass word is NULL.  All old gen objects are parsable
1072     //    as soon as they are initialized.)
1073     _markBitMap.mark(start);          // object is live
1074     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
1075     _markBitMap.mark(start + size - 1);
1076                                       // mark end of object
1077   }
1078   // check that oop looks uninitialized
1079   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
1080 }
1081 
1082 void CMSCollector::promoted(bool par, HeapWord* start,
1083                             bool is_obj_array, size_t obj_size) {
1084   assert(_markBitMap.covers(start), "Out of bounds");
1085   // See comment in direct_allocated() about when objects should
1086   // be allocated live.
1087   if (_collectorState >= Marking) {
1088     // we already hold the marking bit map lock, taken in
1089     // the prologue
1090     if (par) {
1091       _markBitMap.par_mark(start);
1092     } else {
1093       _markBitMap.mark(start);
1094     }
1095     // We don't need to mark the object as uninitialized (as
1096     // in direct_allocated above) because this is being done with the
1097     // world stopped and the object will be initialized by the
1098     // time the marking, precleaning or sweeping get to look at it.
1099     // But see the code for copying objects into the CMS generation,
1100     // where we need to ensure that concurrent readers of the
1101     // block offset table are able to safely navigate a block that
1102     // is in flux from being free to being allocated (and in
1103     // transition while being copied into) and subsequently
1104     // becoming a bona-fide object when the copy/promotion is complete.
1105     assert(SafepointSynchronize::is_at_safepoint(),
1106            "expect promotion only at safepoints");
1107 
1108     if (_collectorState < Sweeping) {
1109       // Mark the appropriate cards in the modUnionTable, so that
1110       // this object gets scanned before the sweep. If this is
1111       // not done, CMS generation references in the object might
1112       // not get marked.
1113       // For the case of arrays, which are otherwise precisely
1114       // marked, we need to dirty the entire array, not just its head.
1115       if (is_obj_array) {
1116         // The [par_]mark_range() method expects mr.end() below to
1117         // be aligned to the granularity of a bit's representation
1118         // in the heap. In the case of the MUT below, that's a
1119         // card size.
1120         MemRegion mr(start,
1121                      (HeapWord*)round_to((intptr_t)(start + obj_size),
1122                         CardTableModRefBS::card_size /* bytes */));
1123         if (par) {
1124           _modUnionTable.par_mark_range(mr);
1125         } else {
1126           _modUnionTable.mark_range(mr);
1127         }
1128       } else {  // not an obj array; we can just mark the head
1129         if (par) {
1130           _modUnionTable.par_mark(start);
1131         } else {
1132           _modUnionTable.mark(start);
1133         }
1134       }
1135     }
1136   }
1137 }
1138 
1139 static inline size_t percent_of_space(Space* space, HeapWord* addr)
1140 {
1141   size_t delta = pointer_delta(addr, space->bottom());
1142   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
1143 }
1144 
1145 void CMSCollector::icms_update_allocation_limits()
1146 {
1147   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
1148   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
1149 
1150   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
1151   if (CMSTraceIncrementalPacing) {
1152     stats().print();
1153   }
1154 
1155   assert(duty_cycle <= 100, "invalid duty cycle");
1156   if (duty_cycle != 0) {
1157     // The duty_cycle is a percentage between 0 and 100; convert to words and
1158     // then compute the offset from the endpoints of the space.
1159     size_t free_words = eden->free() / HeapWordSize;
1160     double free_words_dbl = (double)free_words;
1161     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
1162     size_t offset_words = (free_words - duty_cycle_words) / 2;
1163 
1164     _icms_start_limit = eden->top() + offset_words;
1165     _icms_stop_limit = eden->end() - offset_words;
1166 
1167     // The limits may be adjusted (shifted to the right) by
1168     // CMSIncrementalOffset, to allow the application more mutator time after a
1169     // young gen gc (when all mutators were stopped) and before CMS starts and
1170     // takes away one or more cpus.
1171     if (CMSIncrementalOffset != 0) {
1172       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
1173       size_t adjustment = (size_t)adjustment_dbl;
1174       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
1175       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
1176         _icms_start_limit += adjustment;
1177         _icms_stop_limit = tmp_stop;
1178       }
1179     }
1180   }
1181   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
1182     _icms_start_limit = _icms_stop_limit = eden->end();
1183   }
1184 
1185   // Install the new start limit.
1186   eden->set_soft_end(_icms_start_limit);
1187 
1188   if (CMSTraceIncrementalMode) {
1189     gclog_or_tty->print(" icms alloc limits:  "
1190                            PTR_FORMAT "," PTR_FORMAT
1191                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
1192                            p2i(_icms_start_limit), p2i(_icms_stop_limit),
1193                            percent_of_space(eden, _icms_start_limit),
1194                            percent_of_space(eden, _icms_stop_limit));
1195     if (Verbose) {
1196       gclog_or_tty->print("eden:  ");
1197       eden->print_on(gclog_or_tty);
1198     }
1199   }
1200 }
1201 
1202 // Any changes here should try to maintain the invariant
1203 // that if this method is called with _icms_start_limit
1204 // and _icms_stop_limit both NULL, then it should return NULL
1205 // and not notify the icms thread.
1206 HeapWord*
1207 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
1208                                        size_t word_size)
1209 {
1210   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
1211   // nop.
1212   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
1213     if (top <= _icms_start_limit) {
1214       if (CMSTraceIncrementalMode) {
1215         space->print_on(gclog_or_tty);
1216         gclog_or_tty->stamp();
1217         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
1218                                ", new limit=" PTR_FORMAT
1219                                " (" SIZE_FORMAT "%%)",
1220                                p2i(top), p2i(_icms_stop_limit),
1221                                percent_of_space(space, _icms_stop_limit));
1222       }
1223       ConcurrentMarkSweepThread::start_icms();
1224       assert(top < _icms_stop_limit, "Tautology");
1225       if (word_size < pointer_delta(_icms_stop_limit, top)) {
1226         return _icms_stop_limit;
1227       }
1228 
1229       // The allocation will cross both the _start and _stop limits, so do the
1230       // stop notification also and return end().
1231       if (CMSTraceIncrementalMode) {
1232         space->print_on(gclog_or_tty);
1233         gclog_or_tty->stamp();
1234         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
1235                                ", new limit=" PTR_FORMAT
1236                                " (" SIZE_FORMAT "%%)",
1237                                p2i(top), p2i(space->end()),
1238                                percent_of_space(space, space->end()));
1239       }
1240       ConcurrentMarkSweepThread::stop_icms();
1241       return space->end();
1242     }
1243 
1244     if (top <= _icms_stop_limit) {
1245       if (CMSTraceIncrementalMode) {
1246         space->print_on(gclog_or_tty);
1247         gclog_or_tty->stamp();
1248         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
1249                                ", new limit=" PTR_FORMAT
1250                                " (" SIZE_FORMAT "%%)",
1251                                top, space->end(),
1252                                percent_of_space(space, space->end()));
1253       }
1254       ConcurrentMarkSweepThread::stop_icms();
1255       return space->end();
1256     }
1257 
1258     if (CMSTraceIncrementalMode) {
1259       space->print_on(gclog_or_tty);
1260       gclog_or_tty->stamp();
1261       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
1262                              ", new limit=" PTR_FORMAT,
1263                              top, NULL);
1264     }
1265   }
1266 
1267   return NULL;
1268 }
1269 
1270 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
1271   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1272   // allocate, copy and if necessary update promoinfo --
1273   // delegate to underlying space.
1274   assert_lock_strong(freelistLock());
1275 
1276 #ifndef PRODUCT
1277   if (Universe::heap()->promotion_should_fail()) {
1278     return NULL;
1279   }
1280 #endif  // #ifndef PRODUCT
1281 
1282   oop res = _cmsSpace->promote(obj, obj_size);
1283   if (res == NULL) {
1284     // expand and retry
1285     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
1286     expand(s*HeapWordSize, MinHeapDeltaBytes,
1287       CMSExpansionCause::_satisfy_promotion);
1288     // Since there's currently no next generation, we don't try to promote
1289     // into a more senior generation.
1290     assert(next_gen() == NULL, "assumption, based upon which no attempt "
1291                                "is made to pass on a possibly failing "
1292                                "promotion to next generation");
1293     res = _cmsSpace->promote(obj, obj_size);
1294   }
1295   if (res != NULL) {
1296     // See comment in allocate() about when objects should
1297     // be allocated live.
1298     assert(obj->is_oop(), "Will dereference klass pointer below");
1299     collector()->promoted(false,           // Not parallel
1300                           (HeapWord*)res, obj->is_objArray(), obj_size);
1301     // promotion counters
1302     NOT_PRODUCT(
1303       _numObjectsPromoted++;
1304       _numWordsPromoted +=
1305         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1306     )
1307   }
1308   return res;
1309 }
1310 
1311 
1312 HeapWord*
1313 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
1314                                              HeapWord* top,
1315                                              size_t word_sz)
1316 {
1317   return collector()->allocation_limit_reached(space, top, word_sz);
1318 }
1319 
1320 // IMPORTANT: Notes on object size recognition in CMS.
1321 // ---------------------------------------------------
1322 // A block of storage in the CMS generation is always in
1323 // one of three states. A free block (FREE), an allocated
1324 // object (OBJECT) whose size() method reports the correct size,
1325 // and an intermediate state (TRANSIENT) in which its size cannot
1326 // be accurately determined.
1327 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1328 // -----------------------------------------------------
1329 // FREE:      klass_word & 1 == 1; mark_word holds block size
1330 //
1331 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1332 //            obj->size() computes correct size
1333 //
1334 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1335 //
1336 // STATE IDENTIFICATION: (64 bit+COOPS)
1337 // ------------------------------------
1338 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1339 //
1340 // OBJECT:    klass_word installed; klass_word != 0;
1341 //            obj->size() computes correct size
1342 //
1343 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1344 //
1345 //
1346 // STATE TRANSITION DIAGRAM
1347 //
1348 //        mut / parnew                     mut  /  parnew
1349 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1350 //  ^                                                                   |
1351 //  |------------------------ DEAD <------------------------------------|
1352 //         sweep                            mut
1353 //
1354 // While a block is in TRANSIENT state its size cannot be determined
1355 // so readers will either need to come back later or stall until
1356 // the size can be determined. Note that for the case of direct
1357 // allocation, P-bits, when available, may be used to determine the
1358 // size of an object that may not yet have been initialized.
1359 
1360 // Things to support parallel young-gen collection.
1361 oop
1362 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1363                                            oop old, markOop m,
1364                                            size_t word_sz) {
1365 #ifndef PRODUCT
1366   if (Universe::heap()->promotion_should_fail()) {
1367     return NULL;
1368   }
1369 #endif  // #ifndef PRODUCT
1370 
1371   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1372   PromotionInfo* promoInfo = &ps->promo;
1373   // if we are tracking promotions, then first ensure space for
1374   // promotion (including spooling space for saving header if necessary).
1375   // then allocate and copy, then track promoted info if needed.
1376   // When tracking (see PromotionInfo::track()), the mark word may
1377   // be displaced and in this case restoration of the mark word
1378   // occurs in the (oop_since_save_marks_)iterate phase.
1379   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1380     // Out of space for allocating spooling buffers;
1381     // try expanding and allocating spooling buffers.
1382     if (!expand_and_ensure_spooling_space(promoInfo)) {
1383       return NULL;
1384     }
1385   }
1386   assert(promoInfo->has_spooling_space(), "Control point invariant");
1387   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1388   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1389   if (obj_ptr == NULL) {
1390      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1391      if (obj_ptr == NULL) {
1392        return NULL;
1393      }
1394   }
1395   oop obj = oop(obj_ptr);
1396   OrderAccess::storestore();
1397   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1398   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1399   // IMPORTANT: See note on object initialization for CMS above.
1400   // Otherwise, copy the object.  Here we must be careful to insert the
1401   // klass pointer last, since this marks the block as an allocated object.
1402   // Except with compressed oops it's the mark word.
1403   HeapWord* old_ptr = (HeapWord*)old;
1404   // Restore the mark word copied above.
1405   obj->set_mark(m);
1406   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1407   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1408   OrderAccess::storestore();
1409 
1410   if (UseCompressedClassPointers) {
1411     // Copy gap missed by (aligned) header size calculation below
1412     obj->set_klass_gap(old->klass_gap());
1413   }
1414   if (word_sz > (size_t)oopDesc::header_size()) {
1415     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1416                                  obj_ptr + oopDesc::header_size(),
1417                                  word_sz - oopDesc::header_size());
1418   }
1419 
1420   // Now we can track the promoted object, if necessary.  We take care
1421   // to delay the transition from uninitialized to full object
1422   // (i.e., insertion of klass pointer) until after, so that it
1423   // atomically becomes a promoted object.
1424   if (promoInfo->tracking()) {
1425     promoInfo->track((PromotedObject*)obj, old->klass());
1426   }
1427   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1428   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1429   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1430 
1431   // Finally, install the klass pointer (this should be volatile).
1432   OrderAccess::storestore();
1433   obj->set_klass(old->klass());
1434   // We should now be able to calculate the right size for this object
1435   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1436 
1437   collector()->promoted(true,          // parallel
1438                         obj_ptr, old->is_objArray(), word_sz);
1439 
1440   NOT_PRODUCT(
1441     Atomic::inc_ptr(&_numObjectsPromoted);
1442     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1443   )
1444 
1445   return obj;
1446 }
1447 
1448 void
1449 ConcurrentMarkSweepGeneration::
1450 par_promote_alloc_undo(int thread_num,
1451                        HeapWord* obj, size_t word_sz) {
1452   // CMS does not support promotion undo.
1453   ShouldNotReachHere();
1454 }
1455 
1456 void
1457 ConcurrentMarkSweepGeneration::
1458 par_promote_alloc_done(int thread_num) {
1459   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1460   ps->lab.retire(thread_num);
1461 }
1462 
1463 void
1464 ConcurrentMarkSweepGeneration::
1465 par_oop_since_save_marks_iterate_done(int thread_num) {
1466   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1467   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1468   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1469 }
1470 
1471 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1472                                                    size_t size,
1473                                                    bool   tlab)
1474 {
1475   // We allow a STW collection only if a full
1476   // collection was requested.
1477   return full || should_allocate(size, tlab); // FIX ME !!!
1478   // This and promotion failure handling are connected at the
1479   // hip and should be fixed by untying them.
1480 }
1481 
1482 bool CMSCollector::shouldConcurrentCollect() {
1483   if (_full_gc_requested) {
1484     if (Verbose && PrintGCDetails) {
1485       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1486                              " gc request (or gc_locker)");
1487     }
1488     return true;
1489   }
1490 
1491   // For debugging purposes, change the type of collection.
1492   // If the rotation is not on the concurrent collection
1493   // type, don't start a concurrent collection.
1494   NOT_PRODUCT(
1495     if (RotateCMSCollectionTypes &&
1496         (_cmsGen->debug_collection_type() !=
1497           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
1498       assert(_cmsGen->debug_collection_type() !=
1499         ConcurrentMarkSweepGeneration::Unknown_collection_type,
1500         "Bad cms collection type");
1501       return false;
1502     }
1503   )
1504 
1505   FreelistLocker x(this);
1506   // ------------------------------------------------------------------
1507   // Print out lots of information which affects the initiation of
1508   // a collection.
1509   if (PrintCMSInitiationStatistics && stats().valid()) {
1510     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1511     gclog_or_tty->stamp();
1512     gclog_or_tty->cr();
1513     stats().print_on(gclog_or_tty);
1514     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1515       stats().time_until_cms_gen_full());
1516     gclog_or_tty->print_cr("free=" SIZE_FORMAT, _cmsGen->free());
1517     gclog_or_tty->print_cr("contiguous_available=" SIZE_FORMAT,
1518                            _cmsGen->contiguous_available());
1519     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1520     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1521     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1522     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1523     gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1524     gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1525     gclog_or_tty->print_cr("metadata initialized %d",
1526       MetaspaceGC::should_concurrent_collect());
1527   }
1528   // ------------------------------------------------------------------
1529 
1530   // If the estimated time to complete a cms collection (cms_duration())
1531   // is less than the estimated time remaining until the cms generation
1532   // is full, start a collection.
1533   if (!UseCMSInitiatingOccupancyOnly) {
1534     if (stats().valid()) {
1535       if (stats().time_until_cms_start() == 0.0) {
1536         return true;
1537       }
1538     } else {
1539       // We want to conservatively collect somewhat early in order
1540       // to try and "bootstrap" our CMS/promotion statistics;
1541       // this branch will not fire after the first successful CMS
1542       // collection because the stats should then be valid.
1543       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1544         if (Verbose && PrintGCDetails) {
1545           gclog_or_tty->print_cr(
1546             " CMSCollector: collect for bootstrapping statistics:"
1547             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1548             _bootstrap_occupancy);
1549         }
1550         return true;
1551       }
1552     }
1553   }
1554 
1555   // Otherwise, we start a collection cycle if
1556   // old gen want a collection cycle started. Each may use
1557   // an appropriate criterion for making this decision.
1558   // XXX We need to make sure that the gen expansion
1559   // criterion dovetails well with this. XXX NEED TO FIX THIS
1560   if (_cmsGen->should_concurrent_collect()) {
1561     if (Verbose && PrintGCDetails) {
1562       gclog_or_tty->print_cr("CMS old gen initiated");
1563     }
1564     return true;
1565   }
1566 
1567   // We start a collection if we believe an incremental collection may fail;
1568   // this is not likely to be productive in practice because it's probably too
1569   // late anyway.
1570   GenCollectedHeap* gch = GenCollectedHeap::heap();
1571   assert(gch->collector_policy()->is_two_generation_policy(),
1572          "You may want to check the correctness of the following");
1573   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1574     if (Verbose && PrintGCDetails) {
1575       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1576     }
1577     return true;
1578   }
1579 
1580   if (MetaspaceGC::should_concurrent_collect()) {
1581     if (Verbose && PrintGCDetails) {
1582       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1583     }
1584     return true;
1585   }
1586 
1587   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1588   if (CMSTriggerInterval >= 0) {
1589     if (CMSTriggerInterval == 0) {
1590       // Trigger always
1591       return true;
1592     }
1593 
1594     // Check the CMS time since begin (we do not check the stats validity
1595     // as we want to be able to trigger the first CMS cycle as well)
1596     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1597       if (Verbose && PrintGCDetails) {
1598         if (stats().valid()) {
1599           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1600                                  stats().cms_time_since_begin());
1601         } else {
1602           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)");
1603         }
1604       }
1605       return true;
1606     }
1607   }
1608 
1609   return false;
1610 }
1611 
1612 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1613 
1614 // Clear _expansion_cause fields of constituent generations
1615 void CMSCollector::clear_expansion_cause() {
1616   _cmsGen->clear_expansion_cause();
1617 }
1618 
1619 // We should be conservative in starting a collection cycle.  To
1620 // start too eagerly runs the risk of collecting too often in the
1621 // extreme.  To collect too rarely falls back on full collections,
1622 // which works, even if not optimum in terms of concurrent work.
1623 // As a work around for too eagerly collecting, use the flag
1624 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1625 // giving the user an easily understandable way of controlling the
1626 // collections.
1627 // We want to start a new collection cycle if any of the following
1628 // conditions hold:
1629 // . our current occupancy exceeds the configured initiating occupancy
1630 //   for this generation, or
1631 // . we recently needed to expand this space and have not, since that
1632 //   expansion, done a collection of this generation, or
1633 // . the underlying space believes that it may be a good idea to initiate
1634 //   a concurrent collection (this may be based on criteria such as the
1635 //   following: the space uses linear allocation and linear allocation is
1636 //   going to fail, or there is believed to be excessive fragmentation in
1637 //   the generation, etc... or ...
1638 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1639 //   the case of the old generation; see CR 6543076):
1640 //   we may be approaching a point at which allocation requests may fail because
1641 //   we will be out of sufficient free space given allocation rate estimates.]
1642 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1643 
1644   assert_lock_strong(freelistLock());
1645   if (occupancy() > initiating_occupancy()) {
1646     if (PrintGCDetails && Verbose) {
1647       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1648         short_name(), occupancy(), initiating_occupancy());
1649     }
1650     return true;
1651   }
1652   if (UseCMSInitiatingOccupancyOnly) {
1653     return false;
1654   }
1655   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1656     if (PrintGCDetails && Verbose) {
1657       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1658         short_name());
1659     }
1660     return true;
1661   }
1662   if (_cmsSpace->should_concurrent_collect()) {
1663     if (PrintGCDetails && Verbose) {
1664       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1665         short_name());
1666     }
1667     return true;
1668   }
1669   return false;
1670 }
1671 
1672 void ConcurrentMarkSweepGeneration::collect(bool   full,
1673                                             bool   clear_all_soft_refs,
1674                                             size_t size,
1675                                             bool   tlab)
1676 {
1677   collector()->collect(full, clear_all_soft_refs, size, tlab);
1678 }
1679 
1680 void CMSCollector::collect(bool   full,
1681                            bool   clear_all_soft_refs,
1682                            size_t size,
1683                            bool   tlab)
1684 {
1685   if (!UseCMSCollectionPassing && _collectorState > Idling) {
1686     // For debugging purposes skip the collection if the state
1687     // is not currently idle
1688     if (TraceCMSState) {
1689       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
1690         Thread::current(), full, _collectorState);
1691     }
1692     return;
1693   }
1694 
1695   // The following "if" branch is present for defensive reasons.
1696   // In the current uses of this interface, it can be replaced with:
1697   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1698   // But I am not placing that assert here to allow future
1699   // generality in invoking this interface.
1700   if (GC_locker::is_active()) {
1701     // A consistency test for GC_locker
1702     assert(GC_locker::needs_gc(), "Should have been set already");
1703     // Skip this foreground collection, instead
1704     // expanding the heap if necessary.
1705     // Need the free list locks for the call to free() in compute_new_size()
1706     compute_new_size();
1707     return;
1708   }
1709   acquire_control_and_collect(full, clear_all_soft_refs);
1710   _full_gcs_since_conc_gc++;
1711 }
1712 
1713 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1714   GenCollectedHeap* gch = GenCollectedHeap::heap();
1715   unsigned int gc_count = gch->total_full_collections();
1716   if (gc_count == full_gc_count) {
1717     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1718     _full_gc_requested = true;
1719     _full_gc_cause = cause;
1720     CGC_lock->notify();   // nudge CMS thread
1721   } else {
1722     assert(gc_count > full_gc_count, "Error: causal loop");
1723   }
1724 }
1725 
1726 bool CMSCollector::is_external_interruption() {
1727   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1728   return GCCause::is_user_requested_gc(cause) ||
1729          GCCause::is_serviceability_requested_gc(cause);
1730 }
1731 
1732 void CMSCollector::report_concurrent_mode_interruption() {
1733   if (is_external_interruption()) {
1734     if (PrintGCDetails) {
1735       gclog_or_tty->print(" (concurrent mode interrupted)");
1736     }
1737   } else {
1738     if (PrintGCDetails) {
1739       gclog_or_tty->print(" (concurrent mode failure)");
1740     }
1741     _gc_tracer_cm->report_concurrent_mode_failure();
1742   }
1743 }
1744 
1745 
1746 // The foreground and background collectors need to coordinate in order
1747 // to make sure that they do not mutually interfere with CMS collections.
1748 // When a background collection is active,
1749 // the foreground collector may need to take over (preempt) and
1750 // synchronously complete an ongoing collection. Depending on the
1751 // frequency of the background collections and the heap usage
1752 // of the application, this preemption can be seldom or frequent.
1753 // There are only certain
1754 // points in the background collection that the "collection-baton"
1755 // can be passed to the foreground collector.
1756 //
1757 // The foreground collector will wait for the baton before
1758 // starting any part of the collection.  The foreground collector
1759 // will only wait at one location.
1760 //
1761 // The background collector will yield the baton before starting a new
1762 // phase of the collection (e.g., before initial marking, marking from roots,
1763 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1764 // of the loop which switches the phases. The background collector does some
1765 // of the phases (initial mark, final re-mark) with the world stopped.
1766 // Because of locking involved in stopping the world,
1767 // the foreground collector should not block waiting for the background
1768 // collector when it is doing a stop-the-world phase.  The background
1769 // collector will yield the baton at an additional point just before
1770 // it enters a stop-the-world phase.  Once the world is stopped, the
1771 // background collector checks the phase of the collection.  If the
1772 // phase has not changed, it proceeds with the collection.  If the
1773 // phase has changed, it skips that phase of the collection.  See
1774 // the comments on the use of the Heap_lock in collect_in_background().
1775 //
1776 // Variable used in baton passing.
1777 //   _foregroundGCIsActive - Set to true by the foreground collector when
1778 //      it wants the baton.  The foreground clears it when it has finished
1779 //      the collection.
1780 //   _foregroundGCShouldWait - Set to true by the background collector
1781 //        when it is running.  The foreground collector waits while
1782 //      _foregroundGCShouldWait is true.
1783 //  CGC_lock - monitor used to protect access to the above variables
1784 //      and to notify the foreground and background collectors.
1785 //  _collectorState - current state of the CMS collection.
1786 //
1787 // The foreground collector
1788 //   acquires the CGC_lock
1789 //   sets _foregroundGCIsActive
1790 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1791 //     various locks acquired in preparation for the collection
1792 //     are released so as not to block the background collector
1793 //     that is in the midst of a collection
1794 //   proceeds with the collection
1795 //   clears _foregroundGCIsActive
1796 //   returns
1797 //
1798 // The background collector in a loop iterating on the phases of the
1799 //      collection
1800 //   acquires the CGC_lock
1801 //   sets _foregroundGCShouldWait
1802 //   if _foregroundGCIsActive is set
1803 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1804 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1805 //     and exits the loop.
1806 //   otherwise
1807 //     proceed with that phase of the collection
1808 //     if the phase is a stop-the-world phase,
1809 //       yield the baton once more just before enqueueing
1810 //       the stop-world CMS operation (executed by the VM thread).
1811 //   returns after all phases of the collection are done
1812 //
1813 
1814 void CMSCollector::acquire_control_and_collect(bool full,
1815         bool clear_all_soft_refs) {
1816   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1817   assert(!Thread::current()->is_ConcurrentGC_thread(),
1818          "shouldn't try to acquire control from self!");
1819 
1820   // Start the protocol for acquiring control of the
1821   // collection from the background collector (aka CMS thread).
1822   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1823          "VM thread should have CMS token");
1824   // Remember the possibly interrupted state of an ongoing
1825   // concurrent collection
1826   CollectorState first_state = _collectorState;
1827 
1828   // Signal to a possibly ongoing concurrent collection that
1829   // we want to do a foreground collection.
1830   _foregroundGCIsActive = true;
1831 
1832   // Disable incremental mode during a foreground collection.
1833   ICMSDisabler icms_disabler;
1834 
1835   // release locks and wait for a notify from the background collector
1836   // releasing the locks in only necessary for phases which
1837   // do yields to improve the granularity of the collection.
1838   assert_lock_strong(bitMapLock());
1839   // We need to lock the Free list lock for the space that we are
1840   // currently collecting.
1841   assert(haveFreelistLocks(), "Must be holding free list locks");
1842   bitMapLock()->unlock();
1843   releaseFreelistLocks();
1844   {
1845     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1846     if (_foregroundGCShouldWait) {
1847       // We are going to be waiting for action for the CMS thread;
1848       // it had better not be gone (for instance at shutdown)!
1849       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1850              "CMS thread must be running");
1851       // Wait here until the background collector gives us the go-ahead
1852       ConcurrentMarkSweepThread::clear_CMS_flag(
1853         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1854       // Get a possibly blocked CMS thread going:
1855       //   Note that we set _foregroundGCIsActive true above,
1856       //   without protection of the CGC_lock.
1857       CGC_lock->notify();
1858       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1859              "Possible deadlock");
1860       while (_foregroundGCShouldWait) {
1861         // wait for notification
1862         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1863         // Possibility of delay/starvation here, since CMS token does
1864         // not know to give priority to VM thread? Actually, i think
1865         // there wouldn't be any delay/starvation, but the proof of
1866         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1867       }
1868       ConcurrentMarkSweepThread::set_CMS_flag(
1869         ConcurrentMarkSweepThread::CMS_vm_has_token);
1870     }
1871   }
1872   // The CMS_token is already held.  Get back the other locks.
1873   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1874          "VM thread should have CMS token");
1875   getFreelistLocks();
1876   bitMapLock()->lock_without_safepoint_check();
1877   if (TraceCMSState) {
1878     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1879       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
1880     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1881   }
1882 
1883   // Check if we need to do a compaction, or if not, whether
1884   // we need to start the mark-sweep from scratch.
1885   bool should_compact    = false;
1886   bool should_start_over = false;
1887   decide_foreground_collection_type(clear_all_soft_refs,
1888     &should_compact, &should_start_over);
1889 
1890 NOT_PRODUCT(
1891   if (RotateCMSCollectionTypes) {
1892     if (_cmsGen->debug_collection_type() ==
1893         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
1894       should_compact = true;
1895     } else if (_cmsGen->debug_collection_type() ==
1896                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
1897       should_compact = false;
1898     }
1899   }
1900 )
1901 
1902   if (first_state > Idling) {
1903     report_concurrent_mode_interruption();
1904   }
1905 
1906   set_did_compact(should_compact);
1907   if (should_compact) {
1908     // If the collection is being acquired from the background
1909     // collector, there may be references on the discovered
1910     // references lists that have NULL referents (being those
1911     // that were concurrently cleared by a mutator) or
1912     // that are no longer active (having been enqueued concurrently
1913     // by the mutator).
1914     // Scrub the list of those references because Mark-Sweep-Compact
1915     // code assumes referents are not NULL and that all discovered
1916     // Reference objects are active.
1917     ref_processor()->clean_up_discovered_references();
1918 
1919     if (first_state > Idling) {
1920       save_heap_summary();
1921     }
1922 
1923     do_compaction_work(clear_all_soft_refs);
1924 
1925     // Has the GC time limit been exceeded?
1926     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
1927     size_t max_eden_size = young_gen->max_capacity() -
1928                            young_gen->to()->capacity() -
1929                            young_gen->from()->capacity();
1930     GenCollectedHeap* gch = GenCollectedHeap::heap();
1931     GCCause::Cause gc_cause = gch->gc_cause();
1932     size_policy()->check_gc_overhead_limit(_young_gen->used(),
1933                                            young_gen->eden()->used(),
1934                                            _cmsGen->max_capacity(),
1935                                            max_eden_size,
1936                                            full,
1937                                            gc_cause,
1938                                            gch->collector_policy());
1939   } else {
1940     do_mark_sweep_work(clear_all_soft_refs, first_state,
1941       should_start_over);
1942   }
1943   // Reset the expansion cause, now that we just completed
1944   // a collection cycle.
1945   clear_expansion_cause();
1946   _foregroundGCIsActive = false;
1947   return;
1948 }
1949 
1950 // Resize the tenured generation
1951 // after obtaining the free list locks for the
1952 // two generations.
1953 void CMSCollector::compute_new_size() {
1954   assert_locked_or_safepoint(Heap_lock);
1955   FreelistLocker z(this);
1956   MetaspaceGC::compute_new_size();
1957   _cmsGen->compute_new_size_free_list();
1958 }
1959 
1960 // A work method used by foreground collection to determine
1961 // what type of collection (compacting or not, continuing or fresh)
1962 // it should do.
1963 // NOTE: the intent is to make UseCMSCompactAtFullCollection
1964 // and CMSCompactWhenClearAllSoftRefs the default in the future
1965 // and do away with the flags after a suitable period.
1966 void CMSCollector::decide_foreground_collection_type(
1967   bool clear_all_soft_refs, bool* should_compact,
1968   bool* should_start_over) {
1969   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
1970   // flag is set, and we have either requested a System.gc() or
1971   // the number of full gc's since the last concurrent cycle
1972   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
1973   // or if an incremental collection has failed
1974   GenCollectedHeap* gch = GenCollectedHeap::heap();
1975   assert(gch->collector_policy()->is_two_generation_policy(),
1976          "You may want to check the correctness of the following");
1977   // Inform cms gen if this was due to partial collection failing.
1978   // The CMS gen may use this fact to determine its expansion policy.
1979   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1980     assert(!_cmsGen->incremental_collection_failed(),
1981            "Should have been noticed, reacted to and cleared");
1982     _cmsGen->set_incremental_collection_failed();
1983   }
1984   *should_compact =
1985     UseCMSCompactAtFullCollection &&
1986     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
1987      GCCause::is_user_requested_gc(gch->gc_cause()) ||
1988      gch->incremental_collection_will_fail(true /* consult_young */));
1989   *should_start_over = false;
1990   if (clear_all_soft_refs && !*should_compact) {
1991     // We are about to do a last ditch collection attempt
1992     // so it would normally make sense to do a compaction
1993     // to reclaim as much space as possible.
1994     if (CMSCompactWhenClearAllSoftRefs) {
1995       // Default: The rationale is that in this case either
1996       // we are past the final marking phase, in which case
1997       // we'd have to start over, or so little has been done
1998       // that there's little point in saving that work. Compaction
1999       // appears to be the sensible choice in either case.
2000       *should_compact = true;
2001     } else {
2002       // We have been asked to clear all soft refs, but not to
2003       // compact. Make sure that we aren't past the final checkpoint
2004       // phase, for that is where we process soft refs. If we are already
2005       // past that phase, we'll need to redo the refs discovery phase and
2006       // if necessary clear soft refs that weren't previously
2007       // cleared. We do so by remembering the phase in which
2008       // we came in, and if we are past the refs processing
2009       // phase, we'll choose to just redo the mark-sweep
2010       // collection from scratch.
2011       if (_collectorState > FinalMarking) {
2012         // We are past the refs processing phase;
2013         // start over and do a fresh synchronous CMS cycle
2014         _collectorState = Resetting; // skip to reset to start new cycle
2015         reset(false /* == !asynch */);
2016         *should_start_over = true;
2017       } // else we can continue a possibly ongoing current cycle
2018     }
2019   }
2020 }
2021 
2022 // A work method used by the foreground collector to do
2023 // a mark-sweep-compact.
2024 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
2025   GenCollectedHeap* gch = GenCollectedHeap::heap();
2026 
2027   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
2028   gc_timer->register_gc_start();
2029 
2030   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
2031   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
2032 
2033   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL, gc_tracer->gc_id());
2034   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
2035     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
2036       "collections passed to foreground collector", _full_gcs_since_conc_gc);
2037   }
2038 
2039   // Sample collection interval time and reset for collection pause.
2040   if (UseAdaptiveSizePolicy) {
2041     size_policy()->msc_collection_begin();
2042   }
2043 
2044   // Temporarily widen the span of the weak reference processing to
2045   // the entire heap.
2046   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
2047   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
2048   // Temporarily, clear the "is_alive_non_header" field of the
2049   // reference processor.
2050   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
2051   // Temporarily make reference _processing_ single threaded (non-MT).
2052   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
2053   // Temporarily make refs discovery atomic
2054   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
2055   // Temporarily make reference _discovery_ single threaded (non-MT)
2056   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
2057 
2058   ref_processor()->set_enqueuing_is_done(false);
2059   ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/);
2060   ref_processor()->setup_policy(clear_all_soft_refs);
2061   // If an asynchronous collection finishes, the _modUnionTable is
2062   // all clear.  If we are assuming the collection from an asynchronous
2063   // collection, clear the _modUnionTable.
2064   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
2065     "_modUnionTable should be clear if the baton was not passed");
2066   _modUnionTable.clear_all();
2067   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
2068     "mod union for klasses should be clear if the baton was passed");
2069   _ct->klass_rem_set()->clear_mod_union();
2070 
2071   // We must adjust the allocation statistics being maintained
2072   // in the free list space. We do so by reading and clearing
2073   // the sweep timer and updating the block flux rate estimates below.
2074   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
2075   if (_inter_sweep_timer.is_active()) {
2076     _inter_sweep_timer.stop();
2077     // Note that we do not use this sample to update the _inter_sweep_estimate.
2078     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
2079                                             _inter_sweep_estimate.padded_average(),
2080                                             _intra_sweep_estimate.padded_average());
2081   }
2082 
2083   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
2084     ref_processor(), clear_all_soft_refs);
2085   #ifdef ASSERT
2086     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
2087     size_t free_size = cms_space->free();
2088     assert(free_size ==
2089            pointer_delta(cms_space->end(), cms_space->compaction_top())
2090            * HeapWordSize,
2091       "All the free space should be compacted into one chunk at top");
2092     assert(cms_space->dictionary()->total_chunk_size(
2093                                       debug_only(cms_space->freelistLock())) == 0 ||
2094            cms_space->totalSizeInIndexedFreeLists() == 0,
2095       "All the free space should be in a single chunk");
2096     size_t num = cms_space->totalCount();
2097     assert((free_size == 0 && num == 0) ||
2098            (free_size > 0  && (num == 1 || num == 2)),
2099          "There should be at most 2 free chunks after compaction");
2100   #endif // ASSERT
2101   _collectorState = Resetting;
2102   assert(_restart_addr == NULL,
2103          "Should have been NULL'd before baton was passed");
2104   reset(false /* == !asynch */);
2105   _cmsGen->reset_after_compaction();
2106   _concurrent_cycles_since_last_unload = 0;
2107 
2108   // Clear any data recorded in the PLAB chunk arrays.
2109   if (_survivor_plab_array != NULL) {
2110     reset_survivor_plab_arrays();
2111   }
2112 
2113   // Adjust the per-size allocation stats for the next epoch.
2114   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
2115   // Restart the "inter sweep timer" for the next epoch.
2116   _inter_sweep_timer.reset();
2117   _inter_sweep_timer.start();
2118 
2119   // Sample collection pause time and reset for collection interval.
2120   if (UseAdaptiveSizePolicy) {
2121     size_policy()->msc_collection_end(gch->gc_cause());
2122   }
2123 
2124   gc_timer->register_gc_end();
2125 
2126   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
2127 
2128   // For a mark-sweep-compact, compute_new_size() will be called
2129   // in the heap's do_collection() method.
2130 }
2131 
2132 // A work method used by the foreground collector to do
2133 // a mark-sweep, after taking over from a possibly on-going
2134 // concurrent mark-sweep collection.
2135 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
2136   CollectorState first_state, bool should_start_over) {
2137   if (PrintGC && Verbose) {
2138     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
2139       "collector with count %d",
2140       _full_gcs_since_conc_gc);
2141   }
2142   switch (_collectorState) {
2143     case Idling:
2144       if (first_state == Idling || should_start_over) {
2145         // The background GC was not active, or should
2146         // restarted from scratch;  start the cycle.
2147         _collectorState = InitialMarking;
2148       }
2149       // If first_state was not Idling, then a background GC
2150       // was in progress and has now finished.  No need to do it
2151       // again.  Leave the state as Idling.
2152       break;
2153     case Precleaning:
2154       // In the foreground case don't do the precleaning since
2155       // it is not done concurrently and there is extra work
2156       // required.
2157       _collectorState = FinalMarking;
2158   }
2159   collect_in_foreground(clear_all_soft_refs, GenCollectedHeap::heap()->gc_cause());
2160 
2161   // For a mark-sweep, compute_new_size() will be called
2162   // in the heap's do_collection() method.
2163 }
2164 
2165 
2166 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
2167   DefNewGeneration* dng = _young_gen->as_DefNewGeneration();
2168   EdenSpace* eden_space = dng->eden();
2169   ContiguousSpace* from_space = dng->from();
2170   ContiguousSpace* to_space   = dng->to();
2171   // Eden
2172   if (_eden_chunk_array != NULL) {
2173     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
2174                            eden_space->bottom(), eden_space->top(),
2175                            eden_space->end(), eden_space->capacity());
2176     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
2177                            "_eden_chunk_capacity=" SIZE_FORMAT,
2178                            _eden_chunk_index, _eden_chunk_capacity);
2179     for (size_t i = 0; i < _eden_chunk_index; i++) {
2180       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
2181                              i, _eden_chunk_array[i]);
2182     }
2183   }
2184   // Survivor
2185   if (_survivor_chunk_array != NULL) {
2186     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
2187                            from_space->bottom(), from_space->top(),
2188                            from_space->end(), from_space->capacity());
2189     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
2190                            "_survivor_chunk_capacity=" SIZE_FORMAT,
2191                            _survivor_chunk_index, _survivor_chunk_capacity);
2192     for (size_t i = 0; i < _survivor_chunk_index; i++) {
2193       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
2194                              i, _survivor_chunk_array[i]);
2195     }
2196   }
2197 }
2198 
2199 void CMSCollector::getFreelistLocks() const {
2200   // Get locks for all free lists in all generations that this
2201   // collector is responsible for
2202   _cmsGen->freelistLock()->lock_without_safepoint_check();
2203 }
2204 
2205 void CMSCollector::releaseFreelistLocks() const {
2206   // Release locks for all free lists in all generations that this
2207   // collector is responsible for
2208   _cmsGen->freelistLock()->unlock();
2209 }
2210 
2211 bool CMSCollector::haveFreelistLocks() const {
2212   // Check locks for all free lists in all generations that this
2213   // collector is responsible for
2214   assert_lock_strong(_cmsGen->freelistLock());
2215   PRODUCT_ONLY(ShouldNotReachHere());
2216   return true;
2217 }
2218 
2219 // A utility class that is used by the CMS collector to
2220 // temporarily "release" the foreground collector from its
2221 // usual obligation to wait for the background collector to
2222 // complete an ongoing phase before proceeding.
2223 class ReleaseForegroundGC: public StackObj {
2224  private:
2225   CMSCollector* _c;
2226  public:
2227   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
2228     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
2229     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2230     // allow a potentially blocked foreground collector to proceed
2231     _c->_foregroundGCShouldWait = false;
2232     if (_c->_foregroundGCIsActive) {
2233       CGC_lock->notify();
2234     }
2235     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2236            "Possible deadlock");
2237   }
2238 
2239   ~ReleaseForegroundGC() {
2240     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
2241     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2242     _c->_foregroundGCShouldWait = true;
2243   }
2244 };
2245 
2246 // There are separate collect_in_background and collect_in_foreground because of
2247 // the different locking requirements of the background collector and the
2248 // foreground collector.  There was originally an attempt to share
2249 // one "collect" method between the background collector and the foreground
2250 // collector but the if-then-else required made it cleaner to have
2251 // separate methods.
2252 void CMSCollector::collect_in_background(bool clear_all_soft_refs, GCCause::Cause cause) {
2253   assert(Thread::current()->is_ConcurrentGC_thread(),
2254     "A CMS asynchronous collection is only allowed on a CMS thread.");
2255 
2256   GenCollectedHeap* gch = GenCollectedHeap::heap();
2257   {
2258     bool safepoint_check = Mutex::_no_safepoint_check_flag;
2259     MutexLockerEx hl(Heap_lock, safepoint_check);
2260     FreelistLocker fll(this);
2261     MutexLockerEx x(CGC_lock, safepoint_check);
2262     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
2263       // The foreground collector is active or we're
2264       // not using asynchronous collections.  Skip this
2265       // background collection.
2266       assert(!_foregroundGCShouldWait, "Should be clear");
2267       return;
2268     } else {
2269       assert(_collectorState == Idling, "Should be idling before start.");
2270       _collectorState = InitialMarking;
2271       register_gc_start(cause);
2272       // Reset the expansion cause, now that we are about to begin
2273       // a new cycle.
2274       clear_expansion_cause();
2275 
2276       // Clear the MetaspaceGC flag since a concurrent collection
2277       // is starting but also clear it after the collection.
2278       MetaspaceGC::set_should_concurrent_collect(false);
2279     }
2280     // Decide if we want to enable class unloading as part of the
2281     // ensuing concurrent GC cycle.
2282     update_should_unload_classes();
2283     _full_gc_requested = false;           // acks all outstanding full gc requests
2284     _full_gc_cause = GCCause::_no_gc;
2285     // Signal that we are about to start a collection
2286     gch->increment_total_full_collections();  // ... starting a collection cycle
2287     _collection_count_start = gch->total_full_collections();
2288   }
2289 
2290   // Used for PrintGC
2291   size_t prev_used = 0;
2292   if (PrintGC && Verbose) {
2293     prev_used = _cmsGen->used(); // XXXPERM
2294   }
2295 
2296   // The change of the collection state is normally done at this level;
2297   // the exceptions are phases that are executed while the world is
2298   // stopped.  For those phases the change of state is done while the
2299   // world is stopped.  For baton passing purposes this allows the
2300   // background collector to finish the phase and change state atomically.
2301   // The foreground collector cannot wait on a phase that is done
2302   // while the world is stopped because the foreground collector already
2303   // has the world stopped and would deadlock.
2304   while (_collectorState != Idling) {
2305     if (TraceCMSState) {
2306       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2307         Thread::current(), _collectorState);
2308     }
2309     // The foreground collector
2310     //   holds the Heap_lock throughout its collection.
2311     //   holds the CMS token (but not the lock)
2312     //     except while it is waiting for the background collector to yield.
2313     //
2314     // The foreground collector should be blocked (not for long)
2315     //   if the background collector is about to start a phase
2316     //   executed with world stopped.  If the background
2317     //   collector has already started such a phase, the
2318     //   foreground collector is blocked waiting for the
2319     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
2320     //   are executed in the VM thread.
2321     //
2322     // The locking order is
2323     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
2324     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
2325     //   CMS token  (claimed in
2326     //                stop_world_and_do() -->
2327     //                  safepoint_synchronize() -->
2328     //                    CMSThread::synchronize())
2329 
2330     {
2331       // Check if the FG collector wants us to yield.
2332       CMSTokenSync x(true); // is cms thread
2333       if (waitForForegroundGC()) {
2334         // We yielded to a foreground GC, nothing more to be
2335         // done this round.
2336         assert(_foregroundGCShouldWait == false, "We set it to false in "
2337                "waitForForegroundGC()");
2338         if (TraceCMSState) {
2339           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2340             " exiting collection CMS state %d",
2341             Thread::current(), _collectorState);
2342         }
2343         return;
2344       } else {
2345         // The background collector can run but check to see if the
2346         // foreground collector has done a collection while the
2347         // background collector was waiting to get the CGC_lock
2348         // above.  If yes, break so that _foregroundGCShouldWait
2349         // is cleared before returning.
2350         if (_collectorState == Idling) {
2351           break;
2352         }
2353       }
2354     }
2355 
2356     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
2357       "should be waiting");
2358 
2359     switch (_collectorState) {
2360       case InitialMarking:
2361         {
2362           ReleaseForegroundGC x(this);
2363           stats().record_cms_begin();
2364           VM_CMS_Initial_Mark initial_mark_op(this);
2365           VMThread::execute(&initial_mark_op);
2366         }
2367         // The collector state may be any legal state at this point
2368         // since the background collector may have yielded to the
2369         // foreground collector.
2370         break;
2371       case Marking:
2372         // initial marking in checkpointRootsInitialWork has been completed
2373         if (markFromRoots(true)) { // we were successful
2374           assert(_collectorState == Precleaning, "Collector state should "
2375             "have changed");
2376         } else {
2377           assert(_foregroundGCIsActive, "Internal state inconsistency");
2378         }
2379         break;
2380       case Precleaning:
2381         if (UseAdaptiveSizePolicy) {
2382           size_policy()->concurrent_precleaning_begin();
2383         }
2384         // marking from roots in markFromRoots has been completed
2385         preclean();
2386         if (UseAdaptiveSizePolicy) {
2387           size_policy()->concurrent_precleaning_end();
2388         }
2389         assert(_collectorState == AbortablePreclean ||
2390                _collectorState == FinalMarking,
2391                "Collector state should have changed");
2392         break;
2393       case AbortablePreclean:
2394         if (UseAdaptiveSizePolicy) {
2395         size_policy()->concurrent_phases_resume();
2396         }
2397         abortable_preclean();
2398         if (UseAdaptiveSizePolicy) {
2399           size_policy()->concurrent_precleaning_end();
2400         }
2401         assert(_collectorState == FinalMarking, "Collector state should "
2402           "have changed");
2403         break;
2404       case FinalMarking:
2405         {
2406           ReleaseForegroundGC x(this);
2407 
2408           VM_CMS_Final_Remark final_remark_op(this);
2409           VMThread::execute(&final_remark_op);
2410         }
2411         assert(_foregroundGCShouldWait, "block post-condition");
2412         break;
2413       case Sweeping:
2414         if (UseAdaptiveSizePolicy) {
2415           size_policy()->concurrent_sweeping_begin();
2416         }
2417         // final marking in checkpointRootsFinal has been completed
2418         sweep(true);
2419         assert(_collectorState == Resizing, "Collector state change "
2420           "to Resizing must be done under the free_list_lock");
2421         _full_gcs_since_conc_gc = 0;
2422 
2423         // Stop the timers for adaptive size policy for the concurrent phases
2424         if (UseAdaptiveSizePolicy) {
2425           size_policy()->concurrent_sweeping_end();
2426           size_policy()->concurrent_phases_end(gch->gc_cause(),
2427                                              gch->prev_gen(_cmsGen)->capacity(),
2428                                              _cmsGen->free());
2429         }
2430 
2431       case Resizing: {
2432         // Sweeping has been completed...
2433         // At this point the background collection has completed.
2434         // Don't move the call to compute_new_size() down
2435         // into code that might be executed if the background
2436         // collection was preempted.
2437         {
2438           ReleaseForegroundGC x(this);   // unblock FG collection
2439           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
2440           CMSTokenSync        z(true);   // not strictly needed.
2441           if (_collectorState == Resizing) {
2442             compute_new_size();
2443             save_heap_summary();
2444             _collectorState = Resetting;
2445           } else {
2446             assert(_collectorState == Idling, "The state should only change"
2447                    " because the foreground collector has finished the collection");
2448           }
2449         }
2450         break;
2451       }
2452       case Resetting:
2453         // CMS heap resizing has been completed
2454         reset(true);
2455         assert(_collectorState == Idling, "Collector state should "
2456           "have changed");
2457 
2458         MetaspaceGC::set_should_concurrent_collect(false);
2459 
2460         stats().record_cms_end();
2461         // Don't move the concurrent_phases_end() and compute_new_size()
2462         // calls to here because a preempted background collection
2463         // has it's state set to "Resetting".
2464         break;
2465       case Idling:
2466       default:
2467         ShouldNotReachHere();
2468         break;
2469     }
2470     if (TraceCMSState) {
2471       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2472         Thread::current(), _collectorState);
2473     }
2474     assert(_foregroundGCShouldWait, "block post-condition");
2475   }
2476 
2477   // Should this be in gc_epilogue?
2478   collector_policy()->counters()->update_counters();
2479 
2480   {
2481     // Clear _foregroundGCShouldWait and, in the event that the
2482     // foreground collector is waiting, notify it, before
2483     // returning.
2484     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2485     _foregroundGCShouldWait = false;
2486     if (_foregroundGCIsActive) {
2487       CGC_lock->notify();
2488     }
2489     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2490            "Possible deadlock");
2491   }
2492   if (TraceCMSState) {
2493     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2494       " exiting collection CMS state %d",
2495       Thread::current(), _collectorState);
2496   }
2497   if (PrintGC && Verbose) {
2498     _cmsGen->print_heap_change(prev_used);
2499   }
2500 }
2501 
2502 void CMSCollector::register_foreground_gc_start(GCCause::Cause cause) {
2503   if (!_cms_start_registered) {
2504     register_gc_start(cause);
2505   }
2506 }
2507 
2508 void CMSCollector::register_gc_start(GCCause::Cause cause) {
2509   _cms_start_registered = true;
2510   _gc_timer_cm->register_gc_start();
2511   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
2512 }
2513 
2514 void CMSCollector::register_gc_end() {
2515   if (_cms_start_registered) {
2516     report_heap_summary(GCWhen::AfterGC);
2517 
2518     _gc_timer_cm->register_gc_end();
2519     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2520     _cms_start_registered = false;
2521   }
2522 }
2523 
2524 void CMSCollector::save_heap_summary() {
2525   GenCollectedHeap* gch = GenCollectedHeap::heap();
2526   _last_heap_summary = gch->create_heap_summary();
2527   _last_metaspace_summary = gch->create_metaspace_summary();
2528 }
2529 
2530 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2531   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
2532   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
2533 }
2534 
2535 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause) {
2536   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
2537          "Foreground collector should be waiting, not executing");
2538   assert(Thread::current()->is_VM_thread(), "A foreground collection"
2539     "may only be done by the VM Thread with the world stopped");
2540   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
2541          "VM thread should have CMS token");
2542 
2543   // The gc id is created in register_foreground_gc_start if this collection is synchronous
2544   const GCId gc_id = _collectorState == InitialMarking ? GCId::peek() : _gc_tracer_cm->gc_id();
2545   NOT_PRODUCT(GCTraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
2546     true, NULL, gc_id);)
2547   if (UseAdaptiveSizePolicy) {
2548     size_policy()->ms_collection_begin();
2549   }
2550   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
2551 
2552   HandleMark hm;  // Discard invalid handles created during verification
2553 
2554   if (VerifyBeforeGC &&
2555       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2556     Universe::verify();
2557   }
2558 
2559   // Snapshot the soft reference policy to be used in this collection cycle.
2560   ref_processor()->setup_policy(clear_all_soft_refs);
2561 
2562   // Decide if class unloading should be done
2563   update_should_unload_classes();
2564 
2565   bool init_mark_was_synchronous = false; // until proven otherwise
2566   while (_collectorState != Idling) {
2567     if (TraceCMSState) {
2568       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2569         Thread::current(), _collectorState);
2570     }
2571     switch (_collectorState) {
2572       case InitialMarking:
2573         register_foreground_gc_start(cause);
2574         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
2575         checkpointRootsInitial(false);
2576         assert(_collectorState == Marking, "Collector state should have changed"
2577           " within checkpointRootsInitial()");
2578         break;
2579       case Marking:
2580         // initial marking in checkpointRootsInitialWork has been completed
2581         if (VerifyDuringGC &&
2582             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2583           Universe::verify("Verify before initial mark: ");
2584         }
2585         {
2586           bool res = markFromRoots(false);
2587           assert(res && _collectorState == FinalMarking, "Collector state should "
2588             "have changed");
2589           break;
2590         }
2591       case FinalMarking:
2592         if (VerifyDuringGC &&
2593             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2594           Universe::verify("Verify before re-mark: ");
2595         }
2596         checkpointRootsFinal(false, clear_all_soft_refs,
2597                              init_mark_was_synchronous);
2598         assert(_collectorState == Sweeping, "Collector state should not "
2599           "have changed within checkpointRootsFinal()");
2600         break;
2601       case Sweeping:
2602         // final marking in checkpointRootsFinal has been completed
2603         if (VerifyDuringGC &&
2604             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2605           Universe::verify("Verify before sweep: ");
2606         }
2607         sweep(false);
2608         assert(_collectorState == Resizing, "Incorrect state");
2609         break;
2610       case Resizing: {
2611         // Sweeping has been completed; the actual resize in this case
2612         // is done separately; nothing to be done in this state.
2613         _collectorState = Resetting;
2614         break;
2615       }
2616       case Resetting:
2617         // The heap has been resized.
2618         if (VerifyDuringGC &&
2619             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2620           Universe::verify("Verify before reset: ");
2621         }
2622         save_heap_summary();
2623         reset(false);
2624         assert(_collectorState == Idling, "Collector state should "
2625           "have changed");
2626         break;
2627       case Precleaning:
2628       case AbortablePreclean:
2629         // Elide the preclean phase
2630         _collectorState = FinalMarking;
2631         break;
2632       default:
2633         ShouldNotReachHere();
2634     }
2635     if (TraceCMSState) {
2636       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2637         Thread::current(), _collectorState);
2638     }
2639   }
2640 
2641   if (UseAdaptiveSizePolicy) {
2642     GenCollectedHeap* gch = GenCollectedHeap::heap();
2643     size_policy()->ms_collection_end(gch->gc_cause());
2644   }
2645 
2646   if (VerifyAfterGC &&
2647       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2648     Universe::verify();
2649   }
2650   if (TraceCMSState) {
2651     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2652       " exiting collection CMS state %d",
2653       Thread::current(), _collectorState);
2654   }
2655 }
2656 
2657 bool CMSCollector::waitForForegroundGC() {
2658   bool res = false;
2659   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2660          "CMS thread should have CMS token");
2661   // Block the foreground collector until the
2662   // background collectors decides whether to
2663   // yield.
2664   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2665   _foregroundGCShouldWait = true;
2666   if (_foregroundGCIsActive) {
2667     // The background collector yields to the
2668     // foreground collector and returns a value
2669     // indicating that it has yielded.  The foreground
2670     // collector can proceed.
2671     res = true;
2672     _foregroundGCShouldWait = false;
2673     ConcurrentMarkSweepThread::clear_CMS_flag(
2674       ConcurrentMarkSweepThread::CMS_cms_has_token);
2675     ConcurrentMarkSweepThread::set_CMS_flag(
2676       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2677     // Get a possibly blocked foreground thread going
2678     CGC_lock->notify();
2679     if (TraceCMSState) {
2680       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2681         Thread::current(), _collectorState);
2682     }
2683     while (_foregroundGCIsActive) {
2684       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2685     }
2686     ConcurrentMarkSweepThread::set_CMS_flag(
2687       ConcurrentMarkSweepThread::CMS_cms_has_token);
2688     ConcurrentMarkSweepThread::clear_CMS_flag(
2689       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2690   }
2691   if (TraceCMSState) {
2692     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2693       Thread::current(), _collectorState);
2694   }
2695   return res;
2696 }
2697 
2698 // Because of the need to lock the free lists and other structures in
2699 // the collector, common to all the generations that the collector is
2700 // collecting, we need the gc_prologues of individual CMS generations
2701 // delegate to their collector. It may have been simpler had the
2702 // current infrastructure allowed one to call a prologue on a
2703 // collector. In the absence of that we have the generation's
2704 // prologue delegate to the collector, which delegates back
2705 // some "local" work to a worker method in the individual generations
2706 // that it's responsible for collecting, while itself doing any
2707 // work common to all generations it's responsible for. A similar
2708 // comment applies to the  gc_epilogue()'s.
2709 // The role of the varaible _between_prologue_and_epilogue is to
2710 // enforce the invocation protocol.
2711 void CMSCollector::gc_prologue(bool full) {
2712   // Call gc_prologue_work() for the CMSGen
2713   // we are responsible for.
2714 
2715   // The following locking discipline assumes that we are only called
2716   // when the world is stopped.
2717   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2718 
2719   // The CMSCollector prologue must call the gc_prologues for the
2720   // "generations" that it's responsible
2721   // for.
2722 
2723   assert(   Thread::current()->is_VM_thread()
2724          || (   CMSScavengeBeforeRemark
2725              && Thread::current()->is_ConcurrentGC_thread()),
2726          "Incorrect thread type for prologue execution");
2727 
2728   if (_between_prologue_and_epilogue) {
2729     // We have already been invoked; this is a gc_prologue delegation
2730     // from yet another CMS generation that we are responsible for, just
2731     // ignore it since all relevant work has already been done.
2732     return;
2733   }
2734 
2735   // set a bit saying prologue has been called; cleared in epilogue
2736   _between_prologue_and_epilogue = true;
2737   // Claim locks for common data structures, then call gc_prologue_work()
2738   // for each CMSGen.
2739 
2740   getFreelistLocks();   // gets free list locks on constituent spaces
2741   bitMapLock()->lock_without_safepoint_check();
2742 
2743   // Should call gc_prologue_work() for all cms gens we are responsible for
2744   bool duringMarking =    _collectorState >= Marking
2745                          && _collectorState < Sweeping;
2746 
2747   // The young collections clear the modified oops state, which tells if
2748   // there are any modified oops in the class. The remark phase also needs
2749   // that information. Tell the young collection to save the union of all
2750   // modified klasses.
2751   if (duringMarking) {
2752     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2753   }
2754 
2755   bool registerClosure = duringMarking;
2756 
2757   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
2758                                                &_modUnionClosurePar
2759                                                : &_modUnionClosure;
2760   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2761 
2762   if (!full) {
2763     stats().record_gc0_begin();
2764   }
2765 }
2766 
2767 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2768 
2769   _capacity_at_prologue = capacity();
2770   _used_at_prologue = used();
2771 
2772   // Delegate to CMScollector which knows how to coordinate between
2773   // this and any other CMS generations that it is responsible for
2774   // collecting.
2775   collector()->gc_prologue(full);
2776 }
2777 
2778 // This is a "private" interface for use by this generation's CMSCollector.
2779 // Not to be called directly by any other entity (for instance,
2780 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2781 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2782   bool registerClosure, ModUnionClosure* modUnionClosure) {
2783   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2784   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2785     "Should be NULL");
2786   if (registerClosure) {
2787     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2788   }
2789   cmsSpace()->gc_prologue();
2790   // Clear stat counters
2791   NOT_PRODUCT(
2792     assert(_numObjectsPromoted == 0, "check");
2793     assert(_numWordsPromoted   == 0, "check");
2794     if (Verbose && PrintGC) {
2795       gclog_or_tty->print("Allocated " SIZE_FORMAT " objects, "
2796                           SIZE_FORMAT " bytes concurrently",
2797       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2798     }
2799     _numObjectsAllocated = 0;
2800     _numWordsAllocated   = 0;
2801   )
2802 }
2803 
2804 void CMSCollector::gc_epilogue(bool full) {
2805   // The following locking discipline assumes that we are only called
2806   // when the world is stopped.
2807   assert(SafepointSynchronize::is_at_safepoint(),
2808          "world is stopped assumption");
2809 
2810   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2811   // if linear allocation blocks need to be appropriately marked to allow the
2812   // the blocks to be parsable. We also check here whether we need to nudge the
2813   // CMS collector thread to start a new cycle (if it's not already active).
2814   assert(   Thread::current()->is_VM_thread()
2815          || (   CMSScavengeBeforeRemark
2816              && Thread::current()->is_ConcurrentGC_thread()),
2817          "Incorrect thread type for epilogue execution");
2818 
2819   if (!_between_prologue_and_epilogue) {
2820     // We have already been invoked; this is a gc_epilogue delegation
2821     // from yet another CMS generation that we are responsible for, just
2822     // ignore it since all relevant work has already been done.
2823     return;
2824   }
2825   assert(haveFreelistLocks(), "must have freelist locks");
2826   assert_lock_strong(bitMapLock());
2827 
2828   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2829 
2830   _cmsGen->gc_epilogue_work(full);
2831 
2832   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2833     // in case sampling was not already enabled, enable it
2834     _start_sampling = true;
2835   }
2836   // reset _eden_chunk_array so sampling starts afresh
2837   _eden_chunk_index = 0;
2838 
2839   size_t cms_used   = _cmsGen->cmsSpace()->used();
2840 
2841   // update performance counters - this uses a special version of
2842   // update_counters() that allows the utilization to be passed as a
2843   // parameter, avoiding multiple calls to used().
2844   //
2845   _cmsGen->update_counters(cms_used);
2846 
2847   if (CMSIncrementalMode) {
2848     icms_update_allocation_limits();
2849   }
2850 
2851   bitMapLock()->unlock();
2852   releaseFreelistLocks();
2853 
2854   if (!CleanChunkPoolAsync) {
2855     Chunk::clean_chunk_pool();
2856   }
2857 
2858   set_did_compact(false);
2859   _between_prologue_and_epilogue = false;  // ready for next cycle
2860 }
2861 
2862 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2863   collector()->gc_epilogue(full);
2864 
2865   // Also reset promotion tracking in par gc thread states.
2866   if (CollectedHeap::use_parallel_gc_threads()) {
2867     for (uint i = 0; i < ParallelGCThreads; i++) {
2868       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2869     }
2870   }
2871 }
2872 
2873 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2874   assert(!incremental_collection_failed(), "Should have been cleared");
2875   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2876   cmsSpace()->gc_epilogue();
2877     // Print stat counters
2878   NOT_PRODUCT(
2879     assert(_numObjectsAllocated == 0, "check");
2880     assert(_numWordsAllocated == 0, "check");
2881     if (Verbose && PrintGC) {
2882       gclog_or_tty->print("Promoted " SIZE_FORMAT " objects, "
2883                           SIZE_FORMAT " bytes",
2884                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2885     }
2886     _numObjectsPromoted = 0;
2887     _numWordsPromoted   = 0;
2888   )
2889 
2890   if (PrintGC && Verbose) {
2891     // Call down the chain in contiguous_available needs the freelistLock
2892     // so print this out before releasing the freeListLock.
2893     gclog_or_tty->print(" Contiguous available " SIZE_FORMAT " bytes ",
2894                         contiguous_available());
2895   }
2896 }
2897 
2898 #ifndef PRODUCT
2899 bool CMSCollector::have_cms_token() {
2900   Thread* thr = Thread::current();
2901   if (thr->is_VM_thread()) {
2902     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2903   } else if (thr->is_ConcurrentGC_thread()) {
2904     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2905   } else if (thr->is_GC_task_thread()) {
2906     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2907            ParGCRareEvent_lock->owned_by_self();
2908   }
2909   return false;
2910 }
2911 #endif
2912 
2913 // Check reachability of the given heap address in CMS generation,
2914 // treating all other generations as roots.
2915 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2916   // We could "guarantee" below, rather than assert, but i'll
2917   // leave these as "asserts" so that an adventurous debugger
2918   // could try this in the product build provided some subset of
2919   // the conditions were met, provided they were intersted in the
2920   // results and knew that the computation below wouldn't interfere
2921   // with other concurrent computations mutating the structures
2922   // being read or written.
2923   assert(SafepointSynchronize::is_at_safepoint(),
2924          "Else mutations in object graph will make answer suspect");
2925   assert(have_cms_token(), "Should hold cms token");
2926   assert(haveFreelistLocks(), "must hold free list locks");
2927   assert_lock_strong(bitMapLock());
2928 
2929   // Clear the marking bit map array before starting, but, just
2930   // for kicks, first report if the given address is already marked
2931   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
2932                 _markBitMap.isMarked(addr) ? "" : " not");
2933 
2934   if (verify_after_remark()) {
2935     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2936     bool result = verification_mark_bm()->isMarked(addr);
2937     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
2938                            result ? "IS" : "is NOT");
2939     return result;
2940   } else {
2941     gclog_or_tty->print_cr("Could not compute result");
2942     return false;
2943   }
2944 }
2945 
2946 
2947 void
2948 CMSCollector::print_on_error(outputStream* st) {
2949   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2950   if (collector != NULL) {
2951     CMSBitMap* bitmap = &collector->_markBitMap;
2952     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, bitmap);
2953     bitmap->print_on_error(st, " Bits: ");
2954 
2955     st->cr();
2956 
2957     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2958     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, mut_bitmap);
2959     mut_bitmap->print_on_error(st, " Bits: ");
2960   }
2961 }
2962 
2963 ////////////////////////////////////////////////////////
2964 // CMS Verification Support
2965 ////////////////////////////////////////////////////////
2966 // Following the remark phase, the following invariant
2967 // should hold -- each object in the CMS heap which is
2968 // marked in markBitMap() should be marked in the verification_mark_bm().
2969 
2970 class VerifyMarkedClosure: public BitMapClosure {
2971   CMSBitMap* _marks;
2972   bool       _failed;
2973 
2974  public:
2975   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2976 
2977   bool do_bit(size_t offset) {
2978     HeapWord* addr = _marks->offsetToHeapWord(offset);
2979     if (!_marks->isMarked(addr)) {
2980       oop(addr)->print_on(gclog_or_tty);
2981       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
2982       _failed = true;
2983     }
2984     return true;
2985   }
2986 
2987   bool failed() { return _failed; }
2988 };
2989 
2990 bool CMSCollector::verify_after_remark(bool silent) {
2991   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2992   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2993   static bool init = false;
2994 
2995   assert(SafepointSynchronize::is_at_safepoint(),
2996          "Else mutations in object graph will make answer suspect");
2997   assert(have_cms_token(),
2998          "Else there may be mutual interference in use of "
2999          " verification data structures");
3000   assert(_collectorState > Marking && _collectorState <= Sweeping,
3001          "Else marking info checked here may be obsolete");
3002   assert(haveFreelistLocks(), "must hold free list locks");
3003   assert_lock_strong(bitMapLock());
3004 
3005 
3006   // Allocate marking bit map if not already allocated
3007   if (!init) { // first time
3008     if (!verification_mark_bm()->allocate(_span)) {
3009       return false;
3010     }
3011     init = true;
3012   }
3013 
3014   assert(verification_mark_stack()->isEmpty(), "Should be empty");
3015 
3016   // Turn off refs discovery -- so we will be tracing through refs.
3017   // This is as intended, because by this time
3018   // GC must already have cleared any refs that need to be cleared,
3019   // and traced those that need to be marked; moreover,
3020   // the marking done here is not going to intefere in any
3021   // way with the marking information used by GC.
3022   NoRefDiscovery no_discovery(ref_processor());
3023 
3024   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3025 
3026   // Clear any marks from a previous round
3027   verification_mark_bm()->clear_all();
3028   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
3029   verify_work_stacks_empty();
3030 
3031   GenCollectedHeap* gch = GenCollectedHeap::heap();
3032   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3033   // Update the saved marks which may affect the root scans.
3034   gch->save_marks();
3035 
3036   if (CMSRemarkVerifyVariant == 1) {
3037     // In this first variant of verification, we complete
3038     // all marking, then check if the new marks-verctor is
3039     // a subset of the CMS marks-vector.
3040     verify_after_remark_work_1();
3041   } else if (CMSRemarkVerifyVariant == 2) {
3042     // In this second variant of verification, we flag an error
3043     // (i.e. an object reachable in the new marks-vector not reachable
3044     // in the CMS marks-vector) immediately, also indicating the
3045     // identify of an object (A) that references the unmarked object (B) --
3046     // presumably, a mutation to A failed to be picked up by preclean/remark?
3047     verify_after_remark_work_2();
3048   } else {
3049     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
3050             CMSRemarkVerifyVariant);
3051   }
3052   if (!silent) gclog_or_tty->print(" done] ");
3053   return true;
3054 }
3055 
3056 void CMSCollector::verify_after_remark_work_1() {
3057   ResourceMark rm;
3058   HandleMark  hm;
3059   GenCollectedHeap* gch = GenCollectedHeap::heap();
3060 
3061   // Get a clear set of claim bits for the roots processing to work with.
3062   ClassLoaderDataGraph::clear_claimed_marks();
3063 
3064   // Mark from roots one level into CMS
3065   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
3066   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3067 
3068   gch->gen_process_roots(_cmsGen->level(),
3069                          true,   // younger gens are roots
3070                          true,   // activate StrongRootsScope
3071                          GenCollectedHeap::ScanningOption(roots_scanning_options()),
3072                          should_unload_classes(),
3073                          &notOlder,
3074                          NULL,
3075                          NULL);  // SSS: Provide correct closure
3076 
3077   // Now mark from the roots
3078   MarkFromRootsClosure markFromRootsClosure(this, _span,
3079     verification_mark_bm(), verification_mark_stack(),
3080     false /* don't yield */, true /* verifying */);
3081   assert(_restart_addr == NULL, "Expected pre-condition");
3082   verification_mark_bm()->iterate(&markFromRootsClosure);
3083   while (_restart_addr != NULL) {
3084     // Deal with stack overflow: by restarting at the indicated
3085     // address.
3086     HeapWord* ra = _restart_addr;
3087     markFromRootsClosure.reset(ra);
3088     _restart_addr = NULL;
3089     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3090   }
3091   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3092   verify_work_stacks_empty();
3093 
3094   // Marking completed -- now verify that each bit marked in
3095   // verification_mark_bm() is also marked in markBitMap(); flag all
3096   // errors by printing corresponding objects.
3097   VerifyMarkedClosure vcl(markBitMap());
3098   verification_mark_bm()->iterate(&vcl);
3099   if (vcl.failed()) {
3100     gclog_or_tty->print("Verification failed");
3101     Universe::heap()->print_on(gclog_or_tty);
3102     fatal("CMS: failed marking verification after remark");
3103   }
3104 }
3105 
3106 class VerifyKlassOopsKlassClosure : public KlassClosure {
3107   class VerifyKlassOopsClosure : public OopClosure {
3108     CMSBitMap* _bitmap;
3109    public:
3110     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
3111     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
3112     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3113   } _oop_closure;
3114  public:
3115   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
3116   void do_klass(Klass* k) {
3117     k->oops_do(&_oop_closure);
3118   }
3119 };
3120 
3121 void CMSCollector::verify_after_remark_work_2() {
3122   ResourceMark rm;
3123   HandleMark  hm;
3124   GenCollectedHeap* gch = GenCollectedHeap::heap();
3125 
3126   // Get a clear set of claim bits for the roots processing to work with.
3127   ClassLoaderDataGraph::clear_claimed_marks();
3128 
3129   // Mark from roots one level into CMS
3130   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
3131                                      markBitMap());
3132   CLDToOopClosure cld_closure(&notOlder, true);
3133 
3134   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3135 
3136   gch->gen_process_roots(_cmsGen->level(),
3137                          true,   // younger gens are roots
3138                          true,   // activate StrongRootsScope
3139                          GenCollectedHeap::ScanningOption(roots_scanning_options()),
3140                          should_unload_classes(),
3141                          &notOlder,
3142                          NULL,
3143                          &cld_closure);
3144 
3145   // Now mark from the roots
3146   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
3147     verification_mark_bm(), markBitMap(), verification_mark_stack());
3148   assert(_restart_addr == NULL, "Expected pre-condition");
3149   verification_mark_bm()->iterate(&markFromRootsClosure);
3150   while (_restart_addr != NULL) {
3151     // Deal with stack overflow: by restarting at the indicated
3152     // address.
3153     HeapWord* ra = _restart_addr;
3154     markFromRootsClosure.reset(ra);
3155     _restart_addr = NULL;
3156     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3157   }
3158   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3159   verify_work_stacks_empty();
3160 
3161   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
3162   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
3163 
3164   // Marking completed -- now verify that each bit marked in
3165   // verification_mark_bm() is also marked in markBitMap(); flag all
3166   // errors by printing corresponding objects.
3167   VerifyMarkedClosure vcl(markBitMap());
3168   verification_mark_bm()->iterate(&vcl);
3169   assert(!vcl.failed(), "Else verification above should not have succeeded");
3170 }
3171 
3172 void ConcurrentMarkSweepGeneration::save_marks() {
3173   // delegate to CMS space
3174   cmsSpace()->save_marks();
3175   for (uint i = 0; i < ParallelGCThreads; i++) {
3176     _par_gc_thread_states[i]->promo.startTrackingPromotions();
3177   }
3178 }
3179 
3180 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
3181   return cmsSpace()->no_allocs_since_save_marks();
3182 }
3183 
3184 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
3185                                                                 \
3186 void ConcurrentMarkSweepGeneration::                            \
3187 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
3188   cl->set_generation(this);                                     \
3189   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
3190   cl->reset_generation();                                       \
3191   save_marks();                                                 \
3192 }
3193 
3194 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
3195 
3196 void
3197 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
3198   cl->set_generation(this);
3199   younger_refs_in_space_iterate(_cmsSpace, cl);
3200   cl->reset_generation();
3201 }
3202 
3203 void
3204 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
3205   if (freelistLock()->owned_by_self()) {
3206     Generation::oop_iterate(cl);
3207   } else {
3208     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3209     Generation::oop_iterate(cl);
3210   }
3211 }
3212 
3213 void
3214 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
3215   if (freelistLock()->owned_by_self()) {
3216     Generation::object_iterate(cl);
3217   } else {
3218     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3219     Generation::object_iterate(cl);
3220   }
3221 }
3222 
3223 void
3224 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
3225   if (freelistLock()->owned_by_self()) {
3226     Generation::safe_object_iterate(cl);
3227   } else {
3228     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3229     Generation::safe_object_iterate(cl);
3230   }
3231 }
3232 
3233 void
3234 ConcurrentMarkSweepGeneration::post_compact() {
3235 }
3236 
3237 void
3238 ConcurrentMarkSweepGeneration::prepare_for_verify() {
3239   // Fix the linear allocation blocks to look like free blocks.
3240 
3241   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3242   // are not called when the heap is verified during universe initialization and
3243   // at vm shutdown.
3244   if (freelistLock()->owned_by_self()) {
3245     cmsSpace()->prepare_for_verify();
3246   } else {
3247     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3248     cmsSpace()->prepare_for_verify();
3249   }
3250 }
3251 
3252 void
3253 ConcurrentMarkSweepGeneration::verify() {
3254   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3255   // are not called when the heap is verified during universe initialization and
3256   // at vm shutdown.
3257   if (freelistLock()->owned_by_self()) {
3258     cmsSpace()->verify();
3259   } else {
3260     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3261     cmsSpace()->verify();
3262   }
3263 }
3264 
3265 void CMSCollector::verify() {
3266   _cmsGen->verify();
3267 }
3268 
3269 #ifndef PRODUCT
3270 bool CMSCollector::overflow_list_is_empty() const {
3271   assert(_num_par_pushes >= 0, "Inconsistency");
3272   if (_overflow_list == NULL) {
3273     assert(_num_par_pushes == 0, "Inconsistency");
3274   }
3275   return _overflow_list == NULL;
3276 }
3277 
3278 // The methods verify_work_stacks_empty() and verify_overflow_empty()
3279 // merely consolidate assertion checks that appear to occur together frequently.
3280 void CMSCollector::verify_work_stacks_empty() const {
3281   assert(_markStack.isEmpty(), "Marking stack should be empty");
3282   assert(overflow_list_is_empty(), "Overflow list should be empty");
3283 }
3284 
3285 void CMSCollector::verify_overflow_empty() const {
3286   assert(overflow_list_is_empty(), "Overflow list should be empty");
3287   assert(no_preserved_marks(), "No preserved marks");
3288 }
3289 #endif // PRODUCT
3290 
3291 // Decide if we want to enable class unloading as part of the
3292 // ensuing concurrent GC cycle. We will collect and
3293 // unload classes if it's the case that:
3294 // (1) an explicit gc request has been made and the flag
3295 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
3296 // (2) (a) class unloading is enabled at the command line, and
3297 //     (b) old gen is getting really full
3298 // NOTE: Provided there is no change in the state of the heap between
3299 // calls to this method, it should have idempotent results. Moreover,
3300 // its results should be monotonically increasing (i.e. going from 0 to 1,
3301 // but not 1 to 0) between successive calls between which the heap was
3302 // not collected. For the implementation below, it must thus rely on
3303 // the property that concurrent_cycles_since_last_unload()
3304 // will not decrease unless a collection cycle happened and that
3305 // _cmsGen->is_too_full() are
3306 // themselves also monotonic in that sense. See check_monotonicity()
3307 // below.
3308 void CMSCollector::update_should_unload_classes() {
3309   _should_unload_classes = false;
3310   // Condition 1 above
3311   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
3312     _should_unload_classes = true;
3313   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
3314     // Disjuncts 2.b.(i,ii,iii) above
3315     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
3316                               CMSClassUnloadingMaxInterval)
3317                            || _cmsGen->is_too_full();
3318   }
3319 }
3320 
3321 bool ConcurrentMarkSweepGeneration::is_too_full() const {
3322   bool res = should_concurrent_collect();
3323   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
3324   return res;
3325 }
3326 
3327 void CMSCollector::setup_cms_unloading_and_verification_state() {
3328   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
3329                              || VerifyBeforeExit;
3330   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
3331 
3332   // We set the proper root for this CMS cycle here.
3333   if (should_unload_classes()) {   // Should unload classes this cycle
3334     remove_root_scanning_option(rso);  // Shrink the root set appropriately
3335     set_verifying(should_verify);    // Set verification state for this cycle
3336     return;                            // Nothing else needs to be done at this time
3337   }
3338 
3339   // Not unloading classes this cycle
3340   assert(!should_unload_classes(), "Inconsitency!");
3341 
3342   // If we are not unloading classes then add SO_AllCodeCache to root
3343   // scanning options.
3344   add_root_scanning_option(rso);
3345 
3346   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
3347     set_verifying(true);
3348   } else if (verifying() && !should_verify) {
3349     // We were verifying, but some verification flags got disabled.
3350     set_verifying(false);
3351     // Exclude symbols, strings and code cache elements from root scanning to
3352     // reduce IM and RM pauses.
3353     remove_root_scanning_option(rso);
3354   }
3355 }
3356 
3357 
3358 #ifndef PRODUCT
3359 HeapWord* CMSCollector::block_start(const void* p) const {
3360   const HeapWord* addr = (HeapWord*)p;
3361   if (_span.contains(p)) {
3362     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
3363       return _cmsGen->cmsSpace()->block_start(p);
3364     }
3365   }
3366   return NULL;
3367 }
3368 #endif
3369 
3370 HeapWord*
3371 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
3372                                                    bool   tlab,
3373                                                    bool   parallel) {
3374   CMSSynchronousYieldRequest yr;
3375   assert(!tlab, "Can't deal with TLAB allocation");
3376   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3377   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
3378     CMSExpansionCause::_satisfy_allocation);
3379   if (GCExpandToAllocateDelayMillis > 0) {
3380     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3381   }
3382   return have_lock_and_allocate(word_size, tlab);
3383 }
3384 
3385 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
3386 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
3387 // to CardGeneration and share it...
3388 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
3389   return CardGeneration::expand(bytes, expand_bytes);
3390 }
3391 
3392 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
3393   CMSExpansionCause::Cause cause)
3394 {
3395 
3396   bool success = expand(bytes, expand_bytes);
3397 
3398   // remember why we expanded; this information is used
3399   // by shouldConcurrentCollect() when making decisions on whether to start
3400   // a new CMS cycle.
3401   if (success) {
3402     set_expansion_cause(cause);
3403     if (PrintGCDetails && Verbose) {
3404       gclog_or_tty->print_cr("Expanded CMS gen for %s",
3405         CMSExpansionCause::to_string(cause));
3406     }
3407   }
3408 }
3409 
3410 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
3411   HeapWord* res = NULL;
3412   MutexLocker x(ParGCRareEvent_lock);
3413   while (true) {
3414     // Expansion by some other thread might make alloc OK now:
3415     res = ps->lab.alloc(word_sz);
3416     if (res != NULL) return res;
3417     // If there's not enough expansion space available, give up.
3418     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
3419       return NULL;
3420     }
3421     // Otherwise, we try expansion.
3422     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
3423       CMSExpansionCause::_allocate_par_lab);
3424     // Now go around the loop and try alloc again;
3425     // A competing par_promote might beat us to the expansion space,
3426     // so we may go around the loop again if promotion fails agaion.
3427     if (GCExpandToAllocateDelayMillis > 0) {
3428       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3429     }
3430   }
3431 }
3432 
3433 
3434 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
3435   PromotionInfo* promo) {
3436   MutexLocker x(ParGCRareEvent_lock);
3437   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
3438   while (true) {
3439     // Expansion by some other thread might make alloc OK now:
3440     if (promo->ensure_spooling_space()) {
3441       assert(promo->has_spooling_space(),
3442              "Post-condition of successful ensure_spooling_space()");
3443       return true;
3444     }
3445     // If there's not enough expansion space available, give up.
3446     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
3447       return false;
3448     }
3449     // Otherwise, we try expansion.
3450     expand(refill_size_bytes, MinHeapDeltaBytes,
3451       CMSExpansionCause::_allocate_par_spooling_space);
3452     // Now go around the loop and try alloc again;
3453     // A competing allocation might beat us to the expansion space,
3454     // so we may go around the loop again if allocation fails again.
3455     if (GCExpandToAllocateDelayMillis > 0) {
3456       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3457     }
3458   }
3459 }
3460 
3461 
3462 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
3463   assert_locked_or_safepoint(ExpandHeap_lock);
3464   // Shrink committed space
3465   _virtual_space.shrink_by(bytes);
3466   // Shrink space; this also shrinks the space's BOT
3467   _cmsSpace->set_end((HeapWord*) _virtual_space.high());
3468   size_t new_word_size = heap_word_size(_cmsSpace->capacity());
3469   // Shrink the shared block offset array
3470   _bts->resize(new_word_size);
3471   MemRegion mr(_cmsSpace->bottom(), new_word_size);
3472   // Shrink the card table
3473   Universe::heap()->barrier_set()->resize_covered_region(mr);
3474 
3475   if (Verbose && PrintGC) {
3476     size_t new_mem_size = _virtual_space.committed_size();
3477     size_t old_mem_size = new_mem_size + bytes;
3478     gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3479                   name(), old_mem_size/K, new_mem_size/K);
3480   }
3481 }
3482 
3483 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
3484   assert_locked_or_safepoint(Heap_lock);
3485   size_t size = ReservedSpace::page_align_size_down(bytes);
3486   // Only shrink if a compaction was done so that all the free space
3487   // in the generation is in a contiguous block at the end.
3488   if (size > 0 && did_compact()) {
3489     shrink_by(size);
3490   }
3491 }
3492 
3493 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
3494   assert_locked_or_safepoint(Heap_lock);
3495   bool result = _virtual_space.expand_by(bytes);
3496   if (result) {
3497     size_t new_word_size =
3498       heap_word_size(_virtual_space.committed_size());
3499     MemRegion mr(_cmsSpace->bottom(), new_word_size);
3500     _bts->resize(new_word_size);  // resize the block offset shared array
3501     Universe::heap()->barrier_set()->resize_covered_region(mr);
3502     // Hmmmm... why doesn't CFLS::set_end verify locking?
3503     // This is quite ugly; FIX ME XXX
3504     _cmsSpace->assert_locked(freelistLock());
3505     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
3506 
3507     // update the space and generation capacity counters
3508     if (UsePerfData) {
3509       _space_counters->update_capacity();
3510       _gen_counters->update_all();
3511     }
3512 
3513     if (Verbose && PrintGC) {
3514       size_t new_mem_size = _virtual_space.committed_size();
3515       size_t old_mem_size = new_mem_size - bytes;
3516       gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3517                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
3518     }
3519   }
3520   return result;
3521 }
3522 
3523 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
3524   assert_locked_or_safepoint(Heap_lock);
3525   bool success = true;
3526   const size_t remaining_bytes = _virtual_space.uncommitted_size();
3527   if (remaining_bytes > 0) {
3528     success = grow_by(remaining_bytes);
3529     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
3530   }
3531   return success;
3532 }
3533 
3534 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
3535   assert_locked_or_safepoint(Heap_lock);
3536   assert_lock_strong(freelistLock());
3537   if (PrintGCDetails && Verbose) {
3538     warning("Shrinking of CMS not yet implemented");
3539   }
3540   return;
3541 }
3542 
3543 
3544 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
3545 // phases.
3546 class CMSPhaseAccounting: public StackObj {
3547  public:
3548   CMSPhaseAccounting(CMSCollector *collector,
3549                      const char *phase,
3550                      const GCId gc_id,
3551                      bool print_cr = true);
3552   ~CMSPhaseAccounting();
3553 
3554  private:
3555   CMSCollector *_collector;
3556   const char *_phase;
3557   elapsedTimer _wallclock;
3558   bool _print_cr;
3559   const GCId _gc_id;
3560 
3561  public:
3562   // Not MT-safe; so do not pass around these StackObj's
3563   // where they may be accessed by other threads.
3564   jlong wallclock_millis() {
3565     assert(_wallclock.is_active(), "Wall clock should not stop");
3566     _wallclock.stop();  // to record time
3567     jlong ret = _wallclock.milliseconds();
3568     _wallclock.start(); // restart
3569     return ret;
3570   }
3571 };
3572 
3573 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
3574                                        const char *phase,
3575                                        const GCId gc_id,
3576                                        bool print_cr) :
3577   _collector(collector), _phase(phase), _print_cr(print_cr), _gc_id(gc_id) {
3578 
3579   if (PrintCMSStatistics != 0) {
3580     _collector->resetYields();
3581   }
3582   if (PrintGCDetails) {
3583     gclog_or_tty->gclog_stamp(_gc_id);
3584     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
3585       _collector->cmsGen()->short_name(), _phase);
3586   }
3587   _collector->resetTimer();
3588   _wallclock.start();
3589   _collector->startTimer();
3590 }
3591 
3592 CMSPhaseAccounting::~CMSPhaseAccounting() {
3593   assert(_wallclock.is_active(), "Wall clock should not have stopped");
3594   _collector->stopTimer();
3595   _wallclock.stop();
3596   if (PrintGCDetails) {
3597     gclog_or_tty->gclog_stamp(_gc_id);
3598     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
3599                  _collector->cmsGen()->short_name(),
3600                  _phase, _collector->timerValue(), _wallclock.seconds());
3601     if (_print_cr) {
3602       gclog_or_tty->cr();
3603     }
3604     if (PrintCMSStatistics != 0) {
3605       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
3606                     _collector->yields());
3607     }
3608   }
3609 }
3610 
3611 // CMS work
3612 
3613 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
3614 class CMSParMarkTask : public AbstractGangTask {
3615  protected:
3616   CMSCollector*     _collector;
3617   int               _n_workers;
3618   CMSParMarkTask(const char* name, CMSCollector* collector, int n_workers) :
3619       AbstractGangTask(name),
3620       _collector(collector),
3621       _n_workers(n_workers) {}
3622   // Work method in support of parallel rescan ... of young gen spaces
3623   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
3624                              ContiguousSpace* space,
3625                              HeapWord** chunk_array, size_t chunk_top);
3626   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
3627 };
3628 
3629 // Parallel initial mark task
3630 class CMSParInitialMarkTask: public CMSParMarkTask {
3631  public:
3632   CMSParInitialMarkTask(CMSCollector* collector, int n_workers) :
3633       CMSParMarkTask("Scan roots and young gen for initial mark in parallel",
3634                      collector, n_workers) {}
3635   void work(uint worker_id);
3636 };
3637 
3638 // Checkpoint the roots into this generation from outside
3639 // this generation. [Note this initial checkpoint need only
3640 // be approximate -- we'll do a catch up phase subsequently.]
3641 void CMSCollector::checkpointRootsInitial(bool asynch) {
3642   assert(_collectorState == InitialMarking, "Wrong collector state");
3643   check_correct_thread_executing();
3644   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
3645 
3646   save_heap_summary();
3647   report_heap_summary(GCWhen::BeforeGC);
3648 
3649   ReferenceProcessor* rp = ref_processor();
3650   SpecializationStats::clear();
3651   assert(_restart_addr == NULL, "Control point invariant");
3652   if (asynch) {
3653     // acquire locks for subsequent manipulations
3654     MutexLockerEx x(bitMapLock(),
3655                     Mutex::_no_safepoint_check_flag);
3656     checkpointRootsInitialWork(asynch);
3657     // enable ("weak") refs discovery
3658     rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/);
3659     _collectorState = Marking;
3660   } else {
3661     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
3662     // which recognizes if we are a CMS generation, and doesn't try to turn on
3663     // discovery; verify that they aren't meddling.
3664     assert(!rp->discovery_is_atomic(),
3665            "incorrect setting of discovery predicate");
3666     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
3667            "ref discovery for this generation kind");
3668     // already have locks
3669     checkpointRootsInitialWork(asynch);
3670     // now enable ("weak") refs discovery
3671     rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/);
3672     _collectorState = Marking;
3673   }
3674   SpecializationStats::print();
3675 }
3676 
3677 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
3678   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
3679   assert(_collectorState == InitialMarking, "just checking");
3680 
3681   // If there has not been a GC[n-1] since last GC[n] cycle completed,
3682   // precede our marking with a collection of all
3683   // younger generations to keep floating garbage to a minimum.
3684   // XXX: we won't do this for now -- it's an optimization to be done later.
3685 
3686   // already have locks
3687   assert_lock_strong(bitMapLock());
3688   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
3689 
3690   // Setup the verification and class unloading state for this
3691   // CMS collection cycle.
3692   setup_cms_unloading_and_verification_state();
3693 
3694   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
3695     PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
3696   if (UseAdaptiveSizePolicy) {
3697     size_policy()->checkpoint_roots_initial_begin();
3698   }
3699 
3700   // Reset all the PLAB chunk arrays if necessary.
3701   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
3702     reset_survivor_plab_arrays();
3703   }
3704 
3705   ResourceMark rm;
3706   HandleMark  hm;
3707 
3708   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
3709   GenCollectedHeap* gch = GenCollectedHeap::heap();
3710 
3711   verify_work_stacks_empty();
3712   verify_overflow_empty();
3713 
3714   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3715   // Update the saved marks which may affect the root scans.
3716   gch->save_marks();
3717 
3718   // weak reference processing has not started yet.
3719   ref_processor()->set_enqueuing_is_done(false);
3720 
3721   // Need to remember all newly created CLDs,
3722   // so that we can guarantee that the remark finds them.
3723   ClassLoaderDataGraph::remember_new_clds(true);
3724 
3725   // Whenever a CLD is found, it will be claimed before proceeding to mark
3726   // the klasses. The claimed marks need to be cleared before marking starts.
3727   ClassLoaderDataGraph::clear_claimed_marks();
3728 
3729   if (CMSPrintEdenSurvivorChunks) {
3730     print_eden_and_survivor_chunk_arrays();
3731   }
3732 
3733   {
3734     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3735     if (CMSParallelInitialMarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
3736       // The parallel version.
3737       FlexibleWorkGang* workers = gch->workers();
3738       assert(workers != NULL, "Need parallel worker threads.");
3739       int n_workers = workers->active_workers();
3740       CMSParInitialMarkTask tsk(this, n_workers);
3741       gch->set_par_threads(n_workers);
3742       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3743       if (n_workers > 1) {
3744         GenCollectedHeap::StrongRootsScope srs(gch);
3745         workers->run_task(&tsk);
3746       } else {
3747         GenCollectedHeap::StrongRootsScope srs(gch);
3748         tsk.work(0);
3749       }
3750       gch->set_par_threads(0);
3751     } else {
3752       // The serial version.
3753       CLDToOopClosure cld_closure(&notOlder, true);
3754       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3755       gch->gen_process_roots(_cmsGen->level(),
3756                              true,   // younger gens are roots
3757                              true,   // activate StrongRootsScope
3758                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
3759                              should_unload_classes(),
3760                              &notOlder,
3761                              NULL,
3762                              &cld_closure);
3763     }
3764   }
3765 
3766   // Clear mod-union table; it will be dirtied in the prologue of
3767   // CMS generation per each younger generation collection.
3768 
3769   assert(_modUnionTable.isAllClear(),
3770        "Was cleared in most recent final checkpoint phase"
3771        " or no bits are set in the gc_prologue before the start of the next "
3772        "subsequent marking phase.");
3773 
3774   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3775 
3776   // Save the end of the used_region of the constituent generations
3777   // to be used to limit the extent of sweep in each generation.
3778   save_sweep_limits();
3779   if (UseAdaptiveSizePolicy) {
3780     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
3781   }
3782   verify_overflow_empty();
3783 }
3784 
3785 bool CMSCollector::markFromRoots(bool asynch) {
3786   // we might be tempted to assert that:
3787   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
3788   //        "inconsistent argument?");
3789   // However that wouldn't be right, because it's possible that
3790   // a safepoint is indeed in progress as a younger generation
3791   // stop-the-world GC happens even as we mark in this generation.
3792   assert(_collectorState == Marking, "inconsistent state?");
3793   check_correct_thread_executing();
3794   verify_overflow_empty();
3795 
3796   bool res;
3797   if (asynch) {
3798 
3799     // Start the timers for adaptive size policy for the concurrent phases
3800     // Do it here so that the foreground MS can use the concurrent
3801     // timer since a foreground MS might has the sweep done concurrently
3802     // or STW.
3803     if (UseAdaptiveSizePolicy) {
3804       size_policy()->concurrent_marking_begin();
3805     }
3806 
3807     // Weak ref discovery note: We may be discovering weak
3808     // refs in this generation concurrent (but interleaved) with
3809     // weak ref discovery by a younger generation collector.
3810 
3811     CMSTokenSyncWithLocks ts(true, bitMapLock());
3812     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3813     CMSPhaseAccounting pa(this, "mark", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3814     res = markFromRootsWork(asynch);
3815     if (res) {
3816       _collectorState = Precleaning;
3817     } else { // We failed and a foreground collection wants to take over
3818       assert(_foregroundGCIsActive, "internal state inconsistency");
3819       assert(_restart_addr == NULL,  "foreground will restart from scratch");
3820       if (PrintGCDetails) {
3821         gclog_or_tty->print_cr("bailing out to foreground collection");
3822       }
3823     }
3824     if (UseAdaptiveSizePolicy) {
3825       size_policy()->concurrent_marking_end();
3826     }
3827   } else {
3828     assert(SafepointSynchronize::is_at_safepoint(),
3829            "inconsistent with asynch == false");
3830     if (UseAdaptiveSizePolicy) {
3831       size_policy()->ms_collection_marking_begin();
3832     }
3833     // already have locks
3834     res = markFromRootsWork(asynch);
3835     _collectorState = FinalMarking;
3836     if (UseAdaptiveSizePolicy) {
3837       GenCollectedHeap* gch = GenCollectedHeap::heap();
3838       size_policy()->ms_collection_marking_end(gch->gc_cause());
3839     }
3840   }
3841   verify_overflow_empty();
3842   return res;
3843 }
3844 
3845 bool CMSCollector::markFromRootsWork(bool asynch) {
3846   // iterate over marked bits in bit map, doing a full scan and mark
3847   // from these roots using the following algorithm:
3848   // . if oop is to the right of the current scan pointer,
3849   //   mark corresponding bit (we'll process it later)
3850   // . else (oop is to left of current scan pointer)
3851   //   push oop on marking stack
3852   // . drain the marking stack
3853 
3854   // Note that when we do a marking step we need to hold the
3855   // bit map lock -- recall that direct allocation (by mutators)
3856   // and promotion (by younger generation collectors) is also
3857   // marking the bit map. [the so-called allocate live policy.]
3858   // Because the implementation of bit map marking is not
3859   // robust wrt simultaneous marking of bits in the same word,
3860   // we need to make sure that there is no such interference
3861   // between concurrent such updates.
3862 
3863   // already have locks
3864   assert_lock_strong(bitMapLock());
3865 
3866   verify_work_stacks_empty();
3867   verify_overflow_empty();
3868   bool result = false;
3869   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3870     result = do_marking_mt(asynch);
3871   } else {
3872     result = do_marking_st(asynch);
3873   }
3874   return result;
3875 }
3876 
3877 // Forward decl
3878 class CMSConcMarkingTask;
3879 
3880 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3881   CMSCollector*       _collector;
3882   CMSConcMarkingTask* _task;
3883  public:
3884   virtual void yield();
3885 
3886   // "n_threads" is the number of threads to be terminated.
3887   // "queue_set" is a set of work queues of other threads.
3888   // "collector" is the CMS collector associated with this task terminator.
3889   // "yield" indicates whether we need the gang as a whole to yield.
3890   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3891     ParallelTaskTerminator(n_threads, queue_set),
3892     _collector(collector) { }
3893 
3894   void set_task(CMSConcMarkingTask* task) {
3895     _task = task;
3896   }
3897 };
3898 
3899 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3900   CMSConcMarkingTask* _task;
3901  public:
3902   bool should_exit_termination();
3903   void set_task(CMSConcMarkingTask* task) {
3904     _task = task;
3905   }
3906 };
3907 
3908 // MT Concurrent Marking Task
3909 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3910   CMSCollector* _collector;
3911   int           _n_workers;                  // requested/desired # workers
3912   bool          _asynch;
3913   bool          _result;
3914   CompactibleFreeListSpace*  _cms_space;
3915   char          _pad_front[64];   // padding to ...
3916   HeapWord*     _global_finger;   // ... avoid sharing cache line
3917   char          _pad_back[64];
3918   HeapWord*     _restart_addr;
3919 
3920   //  Exposed here for yielding support
3921   Mutex* const _bit_map_lock;
3922 
3923   // The per thread work queues, available here for stealing
3924   OopTaskQueueSet*  _task_queues;
3925 
3926   // Termination (and yielding) support
3927   CMSConcMarkingTerminator _term;
3928   CMSConcMarkingTerminatorTerminator _term_term;
3929 
3930  public:
3931   CMSConcMarkingTask(CMSCollector* collector,
3932                  CompactibleFreeListSpace* cms_space,
3933                  bool asynch,
3934                  YieldingFlexibleWorkGang* workers,
3935                  OopTaskQueueSet* task_queues):
3936     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3937     _collector(collector),
3938     _cms_space(cms_space),
3939     _asynch(asynch), _n_workers(0), _result(true),
3940     _task_queues(task_queues),
3941     _term(_n_workers, task_queues, _collector),
3942     _bit_map_lock(collector->bitMapLock())
3943   {
3944     _requested_size = _n_workers;
3945     _term.set_task(this);
3946     _term_term.set_task(this);
3947     _restart_addr = _global_finger = _cms_space->bottom();
3948   }
3949 
3950 
3951   OopTaskQueueSet* task_queues()  { return _task_queues; }
3952 
3953   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3954 
3955   HeapWord** global_finger_addr() { return &_global_finger; }
3956 
3957   CMSConcMarkingTerminator* terminator() { return &_term; }
3958 
3959   virtual void set_for_termination(int active_workers) {
3960     terminator()->reset_for_reuse(active_workers);
3961   }
3962 
3963   void work(uint worker_id);
3964   bool should_yield() {
3965     return    ConcurrentMarkSweepThread::should_yield()
3966            && !_collector->foregroundGCIsActive()
3967            && _asynch;
3968   }
3969 
3970   virtual void coordinator_yield();  // stuff done by coordinator
3971   bool result() { return _result; }
3972 
3973   void reset(HeapWord* ra) {
3974     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3975     _restart_addr = _global_finger = ra;
3976     _term.reset_for_reuse();
3977   }
3978 
3979   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3980                                            OopTaskQueue* work_q);
3981 
3982  private:
3983   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3984   void do_work_steal(int i);
3985   void bump_global_finger(HeapWord* f);
3986 };
3987 
3988 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3989   assert(_task != NULL, "Error");
3990   return _task->yielding();
3991   // Note that we do not need the disjunct || _task->should_yield() above
3992   // because we want terminating threads to yield only if the task
3993   // is already in the midst of yielding, which happens only after at least one
3994   // thread has yielded.
3995 }
3996 
3997 void CMSConcMarkingTerminator::yield() {
3998   if (_task->should_yield()) {
3999     _task->yield();
4000   } else {
4001     ParallelTaskTerminator::yield();
4002   }
4003 }
4004 
4005 ////////////////////////////////////////////////////////////////
4006 // Concurrent Marking Algorithm Sketch
4007 ////////////////////////////////////////////////////////////////
4008 // Until all tasks exhausted (both spaces):
4009 // -- claim next available chunk
4010 // -- bump global finger via CAS
4011 // -- find first object that starts in this chunk
4012 //    and start scanning bitmap from that position
4013 // -- scan marked objects for oops
4014 // -- CAS-mark target, and if successful:
4015 //    . if target oop is above global finger (volatile read)
4016 //      nothing to do
4017 //    . if target oop is in chunk and above local finger
4018 //        then nothing to do
4019 //    . else push on work-queue
4020 // -- Deal with possible overflow issues:
4021 //    . local work-queue overflow causes stuff to be pushed on
4022 //      global (common) overflow queue
4023 //    . always first empty local work queue
4024 //    . then get a batch of oops from global work queue if any
4025 //    . then do work stealing
4026 // -- When all tasks claimed (both spaces)
4027 //    and local work queue empty,
4028 //    then in a loop do:
4029 //    . check global overflow stack; steal a batch of oops and trace
4030 //    . try to steal from other threads oif GOS is empty
4031 //    . if neither is available, offer termination
4032 // -- Terminate and return result
4033 //
4034 void CMSConcMarkingTask::work(uint worker_id) {
4035   elapsedTimer _timer;
4036   ResourceMark rm;
4037   HandleMark hm;
4038 
4039   DEBUG_ONLY(_collector->verify_overflow_empty();)
4040 
4041   // Before we begin work, our work queue should be empty
4042   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
4043   // Scan the bitmap covering _cms_space, tracing through grey objects.
4044   _timer.start();
4045   do_scan_and_mark(worker_id, _cms_space);
4046   _timer.stop();
4047   if (PrintCMSStatistics != 0) {
4048     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
4049       worker_id, _timer.seconds());
4050       // XXX: need xxx/xxx type of notation, two timers
4051   }
4052 
4053   // ... do work stealing
4054   _timer.reset();
4055   _timer.start();
4056   do_work_steal(worker_id);
4057   _timer.stop();
4058   if (PrintCMSStatistics != 0) {
4059     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
4060       worker_id, _timer.seconds());
4061       // XXX: need xxx/xxx type of notation, two timers
4062   }
4063   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
4064   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
4065   // Note that under the current task protocol, the
4066   // following assertion is true even of the spaces
4067   // expanded since the completion of the concurrent
4068   // marking. XXX This will likely change under a strict
4069   // ABORT semantics.
4070   // After perm removal the comparison was changed to
4071   // greater than or equal to from strictly greater than.
4072   // Before perm removal the highest address sweep would
4073   // have been at the end of perm gen but now is at the
4074   // end of the tenured gen.
4075   assert(_global_finger >=  _cms_space->end(),
4076          "All tasks have been completed");
4077   DEBUG_ONLY(_collector->verify_overflow_empty();)
4078 }
4079 
4080 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
4081   HeapWord* read = _global_finger;
4082   HeapWord* cur  = read;
4083   while (f > read) {
4084     cur = read;
4085     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
4086     if (cur == read) {
4087       // our cas succeeded
4088       assert(_global_finger >= f, "protocol consistency");
4089       break;
4090     }
4091   }
4092 }
4093 
4094 // This is really inefficient, and should be redone by
4095 // using (not yet available) block-read and -write interfaces to the
4096 // stack and the work_queue. XXX FIX ME !!!
4097 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
4098                                                       OopTaskQueue* work_q) {
4099   // Fast lock-free check
4100   if (ovflw_stk->length() == 0) {
4101     return false;
4102   }
4103   assert(work_q->size() == 0, "Shouldn't steal");
4104   MutexLockerEx ml(ovflw_stk->par_lock(),
4105                    Mutex::_no_safepoint_check_flag);
4106   // Grab up to 1/4 the size of the work queue
4107   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4108                     (size_t)ParGCDesiredObjsFromOverflowList);
4109   num = MIN2(num, ovflw_stk->length());
4110   for (int i = (int) num; i > 0; i--) {
4111     oop cur = ovflw_stk->pop();
4112     assert(cur != NULL, "Counted wrong?");
4113     work_q->push(cur);
4114   }
4115   return num > 0;
4116 }
4117 
4118 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
4119   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4120   int n_tasks = pst->n_tasks();
4121   // We allow that there may be no tasks to do here because
4122   // we are restarting after a stack overflow.
4123   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
4124   uint nth_task = 0;
4125 
4126   HeapWord* aligned_start = sp->bottom();
4127   if (sp->used_region().contains(_restart_addr)) {
4128     // Align down to a card boundary for the start of 0th task
4129     // for this space.
4130     aligned_start =
4131       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
4132                                  CardTableModRefBS::card_size);
4133   }
4134 
4135   size_t chunk_size = sp->marking_task_size();
4136   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4137     // Having claimed the nth task in this space,
4138     // compute the chunk that it corresponds to:
4139     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
4140                                aligned_start + (nth_task+1)*chunk_size);
4141     // Try and bump the global finger via a CAS;
4142     // note that we need to do the global finger bump
4143     // _before_ taking the intersection below, because
4144     // the task corresponding to that region will be
4145     // deemed done even if the used_region() expands
4146     // because of allocation -- as it almost certainly will
4147     // during start-up while the threads yield in the
4148     // closure below.
4149     HeapWord* finger = span.end();
4150     bump_global_finger(finger);   // atomically
4151     // There are null tasks here corresponding to chunks
4152     // beyond the "top" address of the space.
4153     span = span.intersection(sp->used_region());
4154     if (!span.is_empty()) {  // Non-null task
4155       HeapWord* prev_obj;
4156       assert(!span.contains(_restart_addr) || nth_task == 0,
4157              "Inconsistency");
4158       if (nth_task == 0) {
4159         // For the 0th task, we'll not need to compute a block_start.
4160         if (span.contains(_restart_addr)) {
4161           // In the case of a restart because of stack overflow,
4162           // we might additionally skip a chunk prefix.
4163           prev_obj = _restart_addr;
4164         } else {
4165           prev_obj = span.start();
4166         }
4167       } else {
4168         // We want to skip the first object because
4169         // the protocol is to scan any object in its entirety
4170         // that _starts_ in this span; a fortiori, any
4171         // object starting in an earlier span is scanned
4172         // as part of an earlier claimed task.
4173         // Below we use the "careful" version of block_start
4174         // so we do not try to navigate uninitialized objects.
4175         prev_obj = sp->block_start_careful(span.start());
4176         // Below we use a variant of block_size that uses the
4177         // Printezis bits to avoid waiting for allocated
4178         // objects to become initialized/parsable.
4179         while (prev_obj < span.start()) {
4180           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
4181           if (sz > 0) {
4182             prev_obj += sz;
4183           } else {
4184             // In this case we may end up doing a bit of redundant
4185             // scanning, but that appears unavoidable, short of
4186             // locking the free list locks; see bug 6324141.
4187             break;
4188           }
4189         }
4190       }
4191       if (prev_obj < span.end()) {
4192         MemRegion my_span = MemRegion(prev_obj, span.end());
4193         // Do the marking work within a non-empty span --
4194         // the last argument to the constructor indicates whether the
4195         // iteration should be incremental with periodic yields.
4196         Par_MarkFromRootsClosure cl(this, _collector, my_span,
4197                                     &_collector->_markBitMap,
4198                                     work_queue(i),
4199                                     &_collector->_markStack,
4200                                     _asynch);
4201         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
4202       } // else nothing to do for this task
4203     }   // else nothing to do for this task
4204   }
4205   // We'd be tempted to assert here that since there are no
4206   // more tasks left to claim in this space, the global_finger
4207   // must exceed space->top() and a fortiori space->end(). However,
4208   // that would not quite be correct because the bumping of
4209   // global_finger occurs strictly after the claiming of a task,
4210   // so by the time we reach here the global finger may not yet
4211   // have been bumped up by the thread that claimed the last
4212   // task.
4213   pst->all_tasks_completed();
4214 }
4215 
4216 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
4217  private:
4218   CMSCollector* _collector;
4219   CMSConcMarkingTask* _task;
4220   MemRegion     _span;
4221   CMSBitMap*    _bit_map;
4222   CMSMarkStack* _overflow_stack;
4223   OopTaskQueue* _work_queue;
4224  protected:
4225   DO_OOP_WORK_DEFN
4226  public:
4227   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
4228                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
4229     MetadataAwareOopClosure(collector->ref_processor()),
4230     _collector(collector),
4231     _task(task),
4232     _span(collector->_span),
4233     _work_queue(work_queue),
4234     _bit_map(bit_map),
4235     _overflow_stack(overflow_stack)
4236   { }
4237   virtual void do_oop(oop* p);
4238   virtual void do_oop(narrowOop* p);
4239 
4240   void trim_queue(size_t max);
4241   void handle_stack_overflow(HeapWord* lost);
4242   void do_yield_check() {
4243     if (_task->should_yield()) {
4244       _task->yield();
4245     }
4246   }
4247 };
4248 
4249 // Grey object scanning during work stealing phase --
4250 // the salient assumption here is that any references
4251 // that are in these stolen objects being scanned must
4252 // already have been initialized (else they would not have
4253 // been published), so we do not need to check for
4254 // uninitialized objects before pushing here.
4255 void Par_ConcMarkingClosure::do_oop(oop obj) {
4256   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
4257   HeapWord* addr = (HeapWord*)obj;
4258   // Check if oop points into the CMS generation
4259   // and is not marked
4260   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
4261     // a white object ...
4262     // If we manage to "claim" the object, by being the
4263     // first thread to mark it, then we push it on our
4264     // marking stack
4265     if (_bit_map->par_mark(addr)) {     // ... now grey
4266       // push on work queue (grey set)
4267       bool simulate_overflow = false;
4268       NOT_PRODUCT(
4269         if (CMSMarkStackOverflowALot &&
4270             _collector->simulate_overflow()) {
4271           // simulate a stack overflow
4272           simulate_overflow = true;
4273         }
4274       )
4275       if (simulate_overflow ||
4276           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
4277         // stack overflow
4278         if (PrintCMSStatistics != 0) {
4279           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
4280                                  SIZE_FORMAT, _overflow_stack->capacity());
4281         }
4282         // We cannot assert that the overflow stack is full because
4283         // it may have been emptied since.
4284         assert(simulate_overflow ||
4285                _work_queue->size() == _work_queue->max_elems(),
4286               "Else push should have succeeded");
4287         handle_stack_overflow(addr);
4288       }
4289     } // Else, some other thread got there first
4290     do_yield_check();
4291   }
4292 }
4293 
4294 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
4295 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
4296 
4297 void Par_ConcMarkingClosure::trim_queue(size_t max) {
4298   while (_work_queue->size() > max) {
4299     oop new_oop;
4300     if (_work_queue->pop_local(new_oop)) {
4301       assert(new_oop->is_oop(), "Should be an oop");
4302       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
4303       assert(_span.contains((HeapWord*)new_oop), "Not in span");
4304       new_oop->oop_iterate(this);  // do_oop() above
4305       do_yield_check();
4306     }
4307   }
4308 }
4309 
4310 // Upon stack overflow, we discard (part of) the stack,
4311 // remembering the least address amongst those discarded
4312 // in CMSCollector's _restart_address.
4313 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
4314   // We need to do this under a mutex to prevent other
4315   // workers from interfering with the work done below.
4316   MutexLockerEx ml(_overflow_stack->par_lock(),
4317                    Mutex::_no_safepoint_check_flag);
4318   // Remember the least grey address discarded
4319   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
4320   _collector->lower_restart_addr(ra);
4321   _overflow_stack->reset();  // discard stack contents
4322   _overflow_stack->expand(); // expand the stack if possible
4323 }
4324 
4325 
4326 void CMSConcMarkingTask::do_work_steal(int i) {
4327   OopTaskQueue* work_q = work_queue(i);
4328   oop obj_to_scan;
4329   CMSBitMap* bm = &(_collector->_markBitMap);
4330   CMSMarkStack* ovflw = &(_collector->_markStack);
4331   int* seed = _collector->hash_seed(i);
4332   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
4333   while (true) {
4334     cl.trim_queue(0);
4335     assert(work_q->size() == 0, "Should have been emptied above");
4336     if (get_work_from_overflow_stack(ovflw, work_q)) {
4337       // Can't assert below because the work obtained from the
4338       // overflow stack may already have been stolen from us.
4339       // assert(work_q->size() > 0, "Work from overflow stack");
4340       continue;
4341     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4342       assert(obj_to_scan->is_oop(), "Should be an oop");
4343       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
4344       obj_to_scan->oop_iterate(&cl);
4345     } else if (terminator()->offer_termination(&_term_term)) {
4346       assert(work_q->size() == 0, "Impossible!");
4347       break;
4348     } else if (yielding() || should_yield()) {
4349       yield();
4350     }
4351   }
4352 }
4353 
4354 // This is run by the CMS (coordinator) thread.
4355 void CMSConcMarkingTask::coordinator_yield() {
4356   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4357          "CMS thread should hold CMS token");
4358   // First give up the locks, then yield, then re-lock
4359   // We should probably use a constructor/destructor idiom to
4360   // do this unlock/lock or modify the MutexUnlocker class to
4361   // serve our purpose. XXX
4362   assert_lock_strong(_bit_map_lock);
4363   _bit_map_lock->unlock();
4364   ConcurrentMarkSweepThread::desynchronize(true);
4365   ConcurrentMarkSweepThread::acknowledge_yield_request();
4366   _collector->stopTimer();
4367   if (PrintCMSStatistics != 0) {
4368     _collector->incrementYields();
4369   }
4370   _collector->icms_wait();
4371 
4372   // It is possible for whichever thread initiated the yield request
4373   // not to get a chance to wake up and take the bitmap lock between
4374   // this thread releasing it and reacquiring it. So, while the
4375   // should_yield() flag is on, let's sleep for a bit to give the
4376   // other thread a chance to wake up. The limit imposed on the number
4377   // of iterations is defensive, to avoid any unforseen circumstances
4378   // putting us into an infinite loop. Since it's always been this
4379   // (coordinator_yield()) method that was observed to cause the
4380   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
4381   // which is by default non-zero. For the other seven methods that
4382   // also perform the yield operation, as are using a different
4383   // parameter (CMSYieldSleepCount) which is by default zero. This way we
4384   // can enable the sleeping for those methods too, if necessary.
4385   // See 6442774.
4386   //
4387   // We really need to reconsider the synchronization between the GC
4388   // thread and the yield-requesting threads in the future and we
4389   // should really use wait/notify, which is the recommended
4390   // way of doing this type of interaction. Additionally, we should
4391   // consolidate the eight methods that do the yield operation and they
4392   // are almost identical into one for better maintenability and
4393   // readability. See 6445193.
4394   //
4395   // Tony 2006.06.29
4396   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
4397                    ConcurrentMarkSweepThread::should_yield() &&
4398                    !CMSCollector::foregroundGCIsActive(); ++i) {
4399     os::sleep(Thread::current(), 1, false);
4400     ConcurrentMarkSweepThread::acknowledge_yield_request();
4401   }
4402 
4403   ConcurrentMarkSweepThread::synchronize(true);
4404   _bit_map_lock->lock_without_safepoint_check();
4405   _collector->startTimer();
4406 }
4407 
4408 bool CMSCollector::do_marking_mt(bool asynch) {
4409   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
4410   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
4411                                        conc_workers()->total_workers(),
4412                                        conc_workers()->active_workers(),
4413                                        Threads::number_of_non_daemon_threads());
4414   conc_workers()->set_active_workers(num_workers);
4415 
4416   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4417 
4418   CMSConcMarkingTask tsk(this,
4419                          cms_space,
4420                          asynch,
4421                          conc_workers(),
4422                          task_queues());
4423 
4424   // Since the actual number of workers we get may be different
4425   // from the number we requested above, do we need to do anything different
4426   // below? In particular, may be we need to subclass the SequantialSubTasksDone
4427   // class?? XXX
4428   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
4429 
4430   // Refs discovery is already non-atomic.
4431   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
4432   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
4433   conc_workers()->start_task(&tsk);
4434   while (tsk.yielded()) {
4435     tsk.coordinator_yield();
4436     conc_workers()->continue_task(&tsk);
4437   }
4438   // If the task was aborted, _restart_addr will be non-NULL
4439   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
4440   while (_restart_addr != NULL) {
4441     // XXX For now we do not make use of ABORTED state and have not
4442     // yet implemented the right abort semantics (even in the original
4443     // single-threaded CMS case). That needs some more investigation
4444     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
4445     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
4446     // If _restart_addr is non-NULL, a marking stack overflow
4447     // occurred; we need to do a fresh marking iteration from the
4448     // indicated restart address.
4449     if (_foregroundGCIsActive && asynch) {
4450       // We may be running into repeated stack overflows, having
4451       // reached the limit of the stack size, while making very
4452       // slow forward progress. It may be best to bail out and
4453       // let the foreground collector do its job.
4454       // Clear _restart_addr, so that foreground GC
4455       // works from scratch. This avoids the headache of
4456       // a "rescan" which would otherwise be needed because
4457       // of the dirty mod union table & card table.
4458       _restart_addr = NULL;
4459       return false;
4460     }
4461     // Adjust the task to restart from _restart_addr
4462     tsk.reset(_restart_addr);
4463     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
4464                   _restart_addr);
4465     _restart_addr = NULL;
4466     // Get the workers going again
4467     conc_workers()->start_task(&tsk);
4468     while (tsk.yielded()) {
4469       tsk.coordinator_yield();
4470       conc_workers()->continue_task(&tsk);
4471     }
4472   }
4473   assert(tsk.completed(), "Inconsistency");
4474   assert(tsk.result() == true, "Inconsistency");
4475   return true;
4476 }
4477 
4478 bool CMSCollector::do_marking_st(bool asynch) {
4479   ResourceMark rm;
4480   HandleMark   hm;
4481 
4482   // Temporarily make refs discovery single threaded (non-MT)
4483   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
4484   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
4485     &_markStack, CMSYield && asynch);
4486   // the last argument to iterate indicates whether the iteration
4487   // should be incremental with periodic yields.
4488   _markBitMap.iterate(&markFromRootsClosure);
4489   // If _restart_addr is non-NULL, a marking stack overflow
4490   // occurred; we need to do a fresh iteration from the
4491   // indicated restart address.
4492   while (_restart_addr != NULL) {
4493     if (_foregroundGCIsActive && asynch) {
4494       // We may be running into repeated stack overflows, having
4495       // reached the limit of the stack size, while making very
4496       // slow forward progress. It may be best to bail out and
4497       // let the foreground collector do its job.
4498       // Clear _restart_addr, so that foreground GC
4499       // works from scratch. This avoids the headache of
4500       // a "rescan" which would otherwise be needed because
4501       // of the dirty mod union table & card table.
4502       _restart_addr = NULL;
4503       return false;  // indicating failure to complete marking
4504     }
4505     // Deal with stack overflow:
4506     // we restart marking from _restart_addr
4507     HeapWord* ra = _restart_addr;
4508     markFromRootsClosure.reset(ra);
4509     _restart_addr = NULL;
4510     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
4511   }
4512   return true;
4513 }
4514 
4515 void CMSCollector::preclean() {
4516   check_correct_thread_executing();
4517   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
4518   verify_work_stacks_empty();
4519   verify_overflow_empty();
4520   _abort_preclean = false;
4521   if (CMSPrecleaningEnabled) {
4522     if (!CMSEdenChunksRecordAlways) {
4523       _eden_chunk_index = 0;
4524     }
4525     size_t used = get_eden_used();
4526     size_t capacity = get_eden_capacity();
4527     // Don't start sampling unless we will get sufficiently
4528     // many samples.
4529     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
4530                 * CMSScheduleRemarkEdenPenetration)) {
4531       _start_sampling = true;
4532     } else {
4533       _start_sampling = false;
4534     }
4535     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4536     CMSPhaseAccounting pa(this, "preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
4537     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
4538   }
4539   CMSTokenSync x(true); // is cms thread
4540   if (CMSPrecleaningEnabled) {
4541     sample_eden();
4542     _collectorState = AbortablePreclean;
4543   } else {
4544     _collectorState = FinalMarking;
4545   }
4546   verify_work_stacks_empty();
4547   verify_overflow_empty();
4548 }
4549 
4550 // Try and schedule the remark such that young gen
4551 // occupancy is CMSScheduleRemarkEdenPenetration %.
4552 void CMSCollector::abortable_preclean() {
4553   check_correct_thread_executing();
4554   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
4555   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
4556 
4557   // If Eden's current occupancy is below this threshold,
4558   // immediately schedule the remark; else preclean
4559   // past the next scavenge in an effort to
4560   // schedule the pause as described avove. By choosing
4561   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
4562   // we will never do an actual abortable preclean cycle.
4563   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
4564     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4565     CMSPhaseAccounting pa(this, "abortable-preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
4566     // We need more smarts in the abortable preclean
4567     // loop below to deal with cases where allocation
4568     // in young gen is very very slow, and our precleaning
4569     // is running a losing race against a horde of
4570     // mutators intent on flooding us with CMS updates
4571     // (dirty cards).
4572     // One, admittedly dumb, strategy is to give up
4573     // after a certain number of abortable precleaning loops
4574     // or after a certain maximum time. We want to make
4575     // this smarter in the next iteration.
4576     // XXX FIX ME!!! YSR
4577     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
4578     while (!(should_abort_preclean() ||
4579              ConcurrentMarkSweepThread::should_terminate())) {
4580       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
4581       cumworkdone += workdone;
4582       loops++;
4583       // Voluntarily terminate abortable preclean phase if we have
4584       // been at it for too long.
4585       if ((CMSMaxAbortablePrecleanLoops != 0) &&
4586           loops >= CMSMaxAbortablePrecleanLoops) {
4587         if (PrintGCDetails) {
4588           gclog_or_tty->print(" CMS: abort preclean due to loops ");
4589         }
4590         break;
4591       }
4592       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
4593         if (PrintGCDetails) {
4594           gclog_or_tty->print(" CMS: abort preclean due to time ");
4595         }
4596         break;
4597       }
4598       // If we are doing little work each iteration, we should
4599       // take a short break.
4600       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
4601         // Sleep for some time, waiting for work to accumulate
4602         stopTimer();
4603         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
4604         startTimer();
4605         waited++;
4606       }
4607     }
4608     if (PrintCMSStatistics > 0) {
4609       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
4610                           loops, waited, cumworkdone);
4611     }
4612   }
4613   CMSTokenSync x(true); // is cms thread
4614   if (_collectorState != Idling) {
4615     assert(_collectorState == AbortablePreclean,
4616            "Spontaneous state transition?");
4617     _collectorState = FinalMarking;
4618   } // Else, a foreground collection completed this CMS cycle.
4619   return;
4620 }
4621 
4622 // Respond to an Eden sampling opportunity
4623 void CMSCollector::sample_eden() {
4624   // Make sure a young gc cannot sneak in between our
4625   // reading and recording of a sample.
4626   assert(Thread::current()->is_ConcurrentGC_thread(),
4627          "Only the cms thread may collect Eden samples");
4628   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4629          "Should collect samples while holding CMS token");
4630   if (!_start_sampling) {
4631     return;
4632   }
4633   // When CMSEdenChunksRecordAlways is true, the eden chunk array
4634   // is populated by the young generation.
4635   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
4636     if (_eden_chunk_index < _eden_chunk_capacity) {
4637       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
4638       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4639              "Unexpected state of Eden");
4640       // We'd like to check that what we just sampled is an oop-start address;
4641       // however, we cannot do that here since the object may not yet have been
4642       // initialized. So we'll instead do the check when we _use_ this sample
4643       // later.
4644       if (_eden_chunk_index == 0 ||
4645           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4646                          _eden_chunk_array[_eden_chunk_index-1])
4647            >= CMSSamplingGrain)) {
4648         _eden_chunk_index++;  // commit sample
4649       }
4650     }
4651   }
4652   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
4653     size_t used = get_eden_used();
4654     size_t capacity = get_eden_capacity();
4655     assert(used <= capacity, "Unexpected state of Eden");
4656     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
4657       _abort_preclean = true;
4658     }
4659   }
4660 }
4661 
4662 
4663 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
4664   assert(_collectorState == Precleaning ||
4665          _collectorState == AbortablePreclean, "incorrect state");
4666   ResourceMark rm;
4667   HandleMark   hm;
4668 
4669   // Precleaning is currently not MT but the reference processor
4670   // may be set for MT.  Disable it temporarily here.
4671   ReferenceProcessor* rp = ref_processor();
4672   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
4673 
4674   // Do one pass of scrubbing the discovered reference lists
4675   // to remove any reference objects with strongly-reachable
4676   // referents.
4677   if (clean_refs) {
4678     CMSPrecleanRefsYieldClosure yield_cl(this);
4679     assert(rp->span().equals(_span), "Spans should be equal");
4680     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
4681                                    &_markStack, true /* preclean */);
4682     CMSDrainMarkingStackClosure complete_trace(this,
4683                                    _span, &_markBitMap, &_markStack,
4684                                    &keep_alive, true /* preclean */);
4685 
4686     // We don't want this step to interfere with a young
4687     // collection because we don't want to take CPU
4688     // or memory bandwidth away from the young GC threads
4689     // (which may be as many as there are CPUs).
4690     // Note that we don't need to protect ourselves from
4691     // interference with mutators because they can't
4692     // manipulate the discovered reference lists nor affect
4693     // the computed reachability of the referents, the
4694     // only properties manipulated by the precleaning
4695     // of these reference lists.
4696     stopTimer();
4697     CMSTokenSyncWithLocks x(true /* is cms thread */,
4698                             bitMapLock());
4699     startTimer();
4700     sample_eden();
4701 
4702     // The following will yield to allow foreground
4703     // collection to proceed promptly. XXX YSR:
4704     // The code in this method may need further
4705     // tweaking for better performance and some restructuring
4706     // for cleaner interfaces.
4707     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
4708     rp->preclean_discovered_references(
4709           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
4710           gc_timer, _gc_tracer_cm->gc_id());
4711   }
4712 
4713   if (clean_survivor) {  // preclean the active survivor space(s)
4714     assert(_young_gen->kind() == Generation::DefNew ||
4715            _young_gen->kind() == Generation::ParNew ||
4716            _young_gen->kind() == Generation::ASParNew,
4717          "incorrect type for cast");
4718     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
4719     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
4720                              &_markBitMap, &_modUnionTable,
4721                              &_markStack, true /* precleaning phase */);
4722     stopTimer();
4723     CMSTokenSyncWithLocks ts(true /* is cms thread */,
4724                              bitMapLock());
4725     startTimer();
4726     unsigned int before_count =
4727       GenCollectedHeap::heap()->total_collections();
4728     SurvivorSpacePrecleanClosure
4729       sss_cl(this, _span, &_markBitMap, &_markStack,
4730              &pam_cl, before_count, CMSYield);
4731     dng->from()->object_iterate_careful(&sss_cl);
4732     dng->to()->object_iterate_careful(&sss_cl);
4733   }
4734   MarkRefsIntoAndScanClosure
4735     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
4736              &_markStack, this, CMSYield,
4737              true /* precleaning phase */);
4738   // CAUTION: The following closure has persistent state that may need to
4739   // be reset upon a decrease in the sequence of addresses it
4740   // processes.
4741   ScanMarkedObjectsAgainCarefullyClosure
4742     smoac_cl(this, _span,
4743       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
4744 
4745   // Preclean dirty cards in ModUnionTable and CardTable using
4746   // appropriate convergence criterion;
4747   // repeat CMSPrecleanIter times unless we find that
4748   // we are losing.
4749   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
4750   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
4751          "Bad convergence multiplier");
4752   assert(CMSPrecleanThreshold >= 100,
4753          "Unreasonably low CMSPrecleanThreshold");
4754 
4755   size_t numIter, cumNumCards, lastNumCards, curNumCards;
4756   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
4757        numIter < CMSPrecleanIter;
4758        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
4759     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
4760     if (Verbose && PrintGCDetails) {
4761       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
4762     }
4763     // Either there are very few dirty cards, so re-mark
4764     // pause will be small anyway, or our pre-cleaning isn't
4765     // that much faster than the rate at which cards are being
4766     // dirtied, so we might as well stop and re-mark since
4767     // precleaning won't improve our re-mark time by much.
4768     if (curNumCards <= CMSPrecleanThreshold ||
4769         (numIter > 0 &&
4770          (curNumCards * CMSPrecleanDenominator >
4771          lastNumCards * CMSPrecleanNumerator))) {
4772       numIter++;
4773       cumNumCards += curNumCards;
4774       break;
4775     }
4776   }
4777 
4778   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
4779 
4780   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4781   cumNumCards += curNumCards;
4782   if (PrintGCDetails && PrintCMSStatistics != 0) {
4783     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
4784                   curNumCards, cumNumCards, numIter);
4785   }
4786   return cumNumCards;   // as a measure of useful work done
4787 }
4788 
4789 // PRECLEANING NOTES:
4790 // Precleaning involves:
4791 // . reading the bits of the modUnionTable and clearing the set bits.
4792 // . For the cards corresponding to the set bits, we scan the
4793 //   objects on those cards. This means we need the free_list_lock
4794 //   so that we can safely iterate over the CMS space when scanning
4795 //   for oops.
4796 // . When we scan the objects, we'll be both reading and setting
4797 //   marks in the marking bit map, so we'll need the marking bit map.
4798 // . For protecting _collector_state transitions, we take the CGC_lock.
4799 //   Note that any races in the reading of of card table entries by the
4800 //   CMS thread on the one hand and the clearing of those entries by the
4801 //   VM thread or the setting of those entries by the mutator threads on the
4802 //   other are quite benign. However, for efficiency it makes sense to keep
4803 //   the VM thread from racing with the CMS thread while the latter is
4804 //   dirty card info to the modUnionTable. We therefore also use the
4805 //   CGC_lock to protect the reading of the card table and the mod union
4806 //   table by the CM thread.
4807 // . We run concurrently with mutator updates, so scanning
4808 //   needs to be done carefully  -- we should not try to scan
4809 //   potentially uninitialized objects.
4810 //
4811 // Locking strategy: While holding the CGC_lock, we scan over and
4812 // reset a maximal dirty range of the mod union / card tables, then lock
4813 // the free_list_lock and bitmap lock to do a full marking, then
4814 // release these locks; and repeat the cycle. This allows for a
4815 // certain amount of fairness in the sharing of these locks between
4816 // the CMS collector on the one hand, and the VM thread and the
4817 // mutators on the other.
4818 
4819 // NOTE: preclean_mod_union_table() and preclean_card_table()
4820 // further below are largely identical; if you need to modify
4821 // one of these methods, please check the other method too.
4822 
4823 size_t CMSCollector::preclean_mod_union_table(
4824   ConcurrentMarkSweepGeneration* gen,
4825   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4826   verify_work_stacks_empty();
4827   verify_overflow_empty();
4828 
4829   // strategy: starting with the first card, accumulate contiguous
4830   // ranges of dirty cards; clear these cards, then scan the region
4831   // covered by these cards.
4832 
4833   // Since all of the MUT is committed ahead, we can just use
4834   // that, in case the generations expand while we are precleaning.
4835   // It might also be fine to just use the committed part of the
4836   // generation, but we might potentially miss cards when the
4837   // generation is rapidly expanding while we are in the midst
4838   // of precleaning.
4839   HeapWord* startAddr = gen->reserved().start();
4840   HeapWord* endAddr   = gen->reserved().end();
4841 
4842   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4843 
4844   size_t numDirtyCards, cumNumDirtyCards;
4845   HeapWord *nextAddr, *lastAddr;
4846   for (cumNumDirtyCards = numDirtyCards = 0,
4847        nextAddr = lastAddr = startAddr;
4848        nextAddr < endAddr;
4849        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4850 
4851     ResourceMark rm;
4852     HandleMark   hm;
4853 
4854     MemRegion dirtyRegion;
4855     {
4856       stopTimer();
4857       // Potential yield point
4858       CMSTokenSync ts(true);
4859       startTimer();
4860       sample_eden();
4861       // Get dirty region starting at nextOffset (inclusive),
4862       // simultaneously clearing it.
4863       dirtyRegion =
4864         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4865       assert(dirtyRegion.start() >= nextAddr,
4866              "returned region inconsistent?");
4867     }
4868     // Remember where the next search should begin.
4869     // The returned region (if non-empty) is a right open interval,
4870     // so lastOffset is obtained from the right end of that
4871     // interval.
4872     lastAddr = dirtyRegion.end();
4873     // Should do something more transparent and less hacky XXX
4874     numDirtyCards =
4875       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4876 
4877     // We'll scan the cards in the dirty region (with periodic
4878     // yields for foreground GC as needed).
4879     if (!dirtyRegion.is_empty()) {
4880       assert(numDirtyCards > 0, "consistency check");
4881       HeapWord* stop_point = NULL;
4882       stopTimer();
4883       // Potential yield point
4884       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4885                                bitMapLock());
4886       startTimer();
4887       {
4888         verify_work_stacks_empty();
4889         verify_overflow_empty();
4890         sample_eden();
4891         stop_point =
4892           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4893       }
4894       if (stop_point != NULL) {
4895         // The careful iteration stopped early either because it found an
4896         // uninitialized object, or because we were in the midst of an
4897         // "abortable preclean", which should now be aborted. Redirty
4898         // the bits corresponding to the partially-scanned or unscanned
4899         // cards. We'll either restart at the next block boundary or
4900         // abort the preclean.
4901         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4902                "Should only be AbortablePreclean.");
4903         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4904         if (should_abort_preclean()) {
4905           break; // out of preclean loop
4906         } else {
4907           // Compute the next address at which preclean should pick up;
4908           // might need bitMapLock in order to read P-bits.
4909           lastAddr = next_card_start_after_block(stop_point);
4910         }
4911       }
4912     } else {
4913       assert(lastAddr == endAddr, "consistency check");
4914       assert(numDirtyCards == 0, "consistency check");
4915       break;
4916     }
4917   }
4918   verify_work_stacks_empty();
4919   verify_overflow_empty();
4920   return cumNumDirtyCards;
4921 }
4922 
4923 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4924 // below are largely identical; if you need to modify
4925 // one of these methods, please check the other method too.
4926 
4927 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4928   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4929   // strategy: it's similar to precleamModUnionTable above, in that
4930   // we accumulate contiguous ranges of dirty cards, mark these cards
4931   // precleaned, then scan the region covered by these cards.
4932   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4933   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4934 
4935   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4936 
4937   size_t numDirtyCards, cumNumDirtyCards;
4938   HeapWord *lastAddr, *nextAddr;
4939 
4940   for (cumNumDirtyCards = numDirtyCards = 0,
4941        nextAddr = lastAddr = startAddr;
4942        nextAddr < endAddr;
4943        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4944 
4945     ResourceMark rm;
4946     HandleMark   hm;
4947 
4948     MemRegion dirtyRegion;
4949     {
4950       // See comments in "Precleaning notes" above on why we
4951       // do this locking. XXX Could the locking overheads be
4952       // too high when dirty cards are sparse? [I don't think so.]
4953       stopTimer();
4954       CMSTokenSync x(true); // is cms thread
4955       startTimer();
4956       sample_eden();
4957       // Get and clear dirty region from card table
4958       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4959                                     MemRegion(nextAddr, endAddr),
4960                                     true,
4961                                     CardTableModRefBS::precleaned_card_val());
4962 
4963       assert(dirtyRegion.start() >= nextAddr,
4964              "returned region inconsistent?");
4965     }
4966     lastAddr = dirtyRegion.end();
4967     numDirtyCards =
4968       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4969 
4970     if (!dirtyRegion.is_empty()) {
4971       stopTimer();
4972       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4973       startTimer();
4974       sample_eden();
4975       verify_work_stacks_empty();
4976       verify_overflow_empty();
4977       HeapWord* stop_point =
4978         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4979       if (stop_point != NULL) {
4980         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4981                "Should only be AbortablePreclean.");
4982         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4983         if (should_abort_preclean()) {
4984           break; // out of preclean loop
4985         } else {
4986           // Compute the next address at which preclean should pick up.
4987           lastAddr = next_card_start_after_block(stop_point);
4988         }
4989       }
4990     } else {
4991       break;
4992     }
4993   }
4994   verify_work_stacks_empty();
4995   verify_overflow_empty();
4996   return cumNumDirtyCards;
4997 }
4998 
4999 class PrecleanKlassClosure : public KlassClosure {
5000   KlassToOopClosure _cm_klass_closure;
5001  public:
5002   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
5003   void do_klass(Klass* k) {
5004     if (k->has_accumulated_modified_oops()) {
5005       k->clear_accumulated_modified_oops();
5006 
5007       _cm_klass_closure.do_klass(k);
5008     }
5009   }
5010 };
5011 
5012 // The freelist lock is needed to prevent asserts, is it really needed?
5013 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
5014 
5015   cl->set_freelistLock(freelistLock);
5016 
5017   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
5018 
5019   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
5020   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
5021   PrecleanKlassClosure preclean_klass_closure(cl);
5022   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
5023 
5024   verify_work_stacks_empty();
5025   verify_overflow_empty();
5026 }
5027 
5028 void CMSCollector::checkpointRootsFinal(bool asynch,
5029   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
5030   assert(_collectorState == FinalMarking, "incorrect state transition?");
5031   check_correct_thread_executing();
5032   // world is stopped at this checkpoint
5033   assert(SafepointSynchronize::is_at_safepoint(),
5034          "world should be stopped");
5035   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5036 
5037   verify_work_stacks_empty();
5038   verify_overflow_empty();
5039 
5040   SpecializationStats::clear();
5041   if (PrintGCDetails) {
5042     gclog_or_tty->print("[YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)]",
5043                         _young_gen->used() / K,
5044                         _young_gen->capacity() / K);
5045   }
5046   if (asynch) {
5047     if (CMSScavengeBeforeRemark) {
5048       GenCollectedHeap* gch = GenCollectedHeap::heap();
5049       // Temporarily set flag to false, GCH->do_collection will
5050       // expect it to be false and set to true
5051       FlagSetting fl(gch->_is_gc_active, false);
5052       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
5053         PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
5054       int level = _cmsGen->level() - 1;
5055       if (level >= 0) {
5056         gch->do_collection(true,        // full (i.e. force, see below)
5057                            false,       // !clear_all_soft_refs
5058                            0,           // size
5059                            false,       // is_tlab
5060                            level        // max_level
5061                           );
5062       }
5063     }
5064     FreelistLocker x(this);
5065     MutexLockerEx y(bitMapLock(),
5066                     Mutex::_no_safepoint_check_flag);
5067     assert(!init_mark_was_synchronous, "but that's impossible!");
5068     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
5069   } else {
5070     // already have all the locks
5071     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
5072                              init_mark_was_synchronous);
5073   }
5074   verify_work_stacks_empty();
5075   verify_overflow_empty();
5076   SpecializationStats::print();
5077 }
5078 
5079 void CMSCollector::checkpointRootsFinalWork(bool asynch,
5080   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
5081 
5082   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
5083 
5084   assert(haveFreelistLocks(), "must have free list locks");
5085   assert_lock_strong(bitMapLock());
5086 
5087   if (UseAdaptiveSizePolicy) {
5088     size_policy()->checkpoint_roots_final_begin();
5089   }
5090 
5091   ResourceMark rm;
5092   HandleMark   hm;
5093 
5094   GenCollectedHeap* gch = GenCollectedHeap::heap();
5095 
5096   if (should_unload_classes()) {
5097     CodeCache::gc_prologue();
5098   }
5099   assert(haveFreelistLocks(), "must have free list locks");
5100   assert_lock_strong(bitMapLock());
5101 
5102   if (!init_mark_was_synchronous) {
5103     // We might assume that we need not fill TLAB's when
5104     // CMSScavengeBeforeRemark is set, because we may have just done
5105     // a scavenge which would have filled all TLAB's -- and besides
5106     // Eden would be empty. This however may not always be the case --
5107     // for instance although we asked for a scavenge, it may not have
5108     // happened because of a JNI critical section. We probably need
5109     // a policy for deciding whether we can in that case wait until
5110     // the critical section releases and then do the remark following
5111     // the scavenge, and skip it here. In the absence of that policy,
5112     // or of an indication of whether the scavenge did indeed occur,
5113     // we cannot rely on TLAB's having been filled and must do
5114     // so here just in case a scavenge did not happen.
5115     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
5116     // Update the saved marks which may affect the root scans.
5117     gch->save_marks();
5118 
5119     if (CMSPrintEdenSurvivorChunks) {
5120       print_eden_and_survivor_chunk_arrays();
5121     }
5122 
5123     {
5124       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
5125 
5126       // Note on the role of the mod union table:
5127       // Since the marker in "markFromRoots" marks concurrently with
5128       // mutators, it is possible for some reachable objects not to have been
5129       // scanned. For instance, an only reference to an object A was
5130       // placed in object B after the marker scanned B. Unless B is rescanned,
5131       // A would be collected. Such updates to references in marked objects
5132       // are detected via the mod union table which is the set of all cards
5133       // dirtied since the first checkpoint in this GC cycle and prior to
5134       // the most recent young generation GC, minus those cleaned up by the
5135       // concurrent precleaning.
5136       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
5137         GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5138         do_remark_parallel();
5139       } else {
5140         GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
5141                     _gc_timer_cm, _gc_tracer_cm->gc_id());
5142         do_remark_non_parallel();
5143       }
5144     }
5145   } else {
5146     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
5147     // The initial mark was stop-world, so there's no rescanning to
5148     // do; go straight on to the next step below.
5149   }
5150   verify_work_stacks_empty();
5151   verify_overflow_empty();
5152 
5153   {
5154     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
5155     refProcessingWork(asynch, clear_all_soft_refs);
5156   }
5157   verify_work_stacks_empty();
5158   verify_overflow_empty();
5159 
5160   if (should_unload_classes()) {
5161     CodeCache::gc_epilogue();
5162   }
5163   JvmtiExport::gc_epilogue();
5164 
5165   // If we encountered any (marking stack / work queue) overflow
5166   // events during the current CMS cycle, take appropriate
5167   // remedial measures, where possible, so as to try and avoid
5168   // recurrence of that condition.
5169   assert(_markStack.isEmpty(), "No grey objects");
5170   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
5171                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
5172   if (ser_ovflw > 0) {
5173     if (PrintCMSStatistics != 0) {
5174       gclog_or_tty->print_cr("Marking stack overflow (benign) "
5175         "(pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT
5176         ", kac_preclean=" SIZE_FORMAT ")",
5177         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
5178         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
5179     }
5180     _markStack.expand();
5181     _ser_pmc_remark_ovflw = 0;
5182     _ser_pmc_preclean_ovflw = 0;
5183     _ser_kac_preclean_ovflw = 0;
5184     _ser_kac_ovflw = 0;
5185   }
5186   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
5187     if (PrintCMSStatistics != 0) {
5188       gclog_or_tty->print_cr("Work queue overflow (benign) "
5189         "(pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
5190         _par_pmc_remark_ovflw, _par_kac_ovflw);
5191     }
5192     _par_pmc_remark_ovflw = 0;
5193     _par_kac_ovflw = 0;
5194   }
5195   if (PrintCMSStatistics != 0) {
5196      if (_markStack._hit_limit > 0) {
5197        gclog_or_tty->print_cr(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
5198                               _markStack._hit_limit);
5199      }
5200      if (_markStack._failed_double > 0) {
5201        gclog_or_tty->print_cr(" (benign) Failed stack doubling (" SIZE_FORMAT "),"
5202                               " current capacity " SIZE_FORMAT,
5203                               _markStack._failed_double,
5204                               _markStack.capacity());
5205      }
5206   }
5207   _markStack._hit_limit = 0;
5208   _markStack._failed_double = 0;
5209 
5210   if ((VerifyAfterGC || VerifyDuringGC) &&
5211       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5212     verify_after_remark();
5213   }
5214 
5215   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
5216 
5217   // Change under the freelistLocks.
5218   _collectorState = Sweeping;
5219   // Call isAllClear() under bitMapLock
5220   assert(_modUnionTable.isAllClear(),
5221       "Should be clear by end of the final marking");
5222   assert(_ct->klass_rem_set()->mod_union_is_clear(),
5223       "Should be clear by end of the final marking");
5224   if (UseAdaptiveSizePolicy) {
5225     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
5226   }
5227 }
5228 
5229 void CMSParInitialMarkTask::work(uint worker_id) {
5230   elapsedTimer _timer;
5231   ResourceMark rm;
5232   HandleMark   hm;
5233 
5234   // ---------- scan from roots --------------
5235   _timer.start();
5236   GenCollectedHeap* gch = GenCollectedHeap::heap();
5237   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
5238 
5239   // ---------- young gen roots --------------
5240   {
5241     work_on_young_gen_roots(worker_id, &par_mri_cl);
5242     _timer.stop();
5243     if (PrintCMSStatistics != 0) {
5244       gclog_or_tty->print_cr(
5245         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
5246         worker_id, _timer.seconds());
5247     }
5248   }
5249 
5250   // ---------- remaining roots --------------
5251   _timer.reset();
5252   _timer.start();
5253 
5254   CLDToOopClosure cld_closure(&par_mri_cl, true);
5255 
5256   gch->gen_process_roots(_collector->_cmsGen->level(),
5257                          false,     // yg was scanned above
5258                          false,     // this is parallel code
5259                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5260                          _collector->should_unload_classes(),
5261                          &par_mri_cl,
5262                          NULL,
5263                          &cld_closure);
5264   assert(_collector->should_unload_classes()
5265          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
5266          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5267   _timer.stop();
5268   if (PrintCMSStatistics != 0) {
5269     gclog_or_tty->print_cr(
5270       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
5271       worker_id, _timer.seconds());
5272   }
5273 }
5274 
5275 // Parallel remark task
5276 class CMSParRemarkTask: public CMSParMarkTask {
5277   CompactibleFreeListSpace* _cms_space;
5278 
5279   // The per-thread work queues, available here for stealing.
5280   OopTaskQueueSet*       _task_queues;
5281   ParallelTaskTerminator _term;
5282 
5283  public:
5284   // A value of 0 passed to n_workers will cause the number of
5285   // workers to be taken from the active workers in the work gang.
5286   CMSParRemarkTask(CMSCollector* collector,
5287                    CompactibleFreeListSpace* cms_space,
5288                    int n_workers, FlexibleWorkGang* workers,
5289                    OopTaskQueueSet* task_queues):
5290     CMSParMarkTask("Rescan roots and grey objects in parallel",
5291                    collector, n_workers),
5292     _cms_space(cms_space),
5293     _task_queues(task_queues),
5294     _term(n_workers, task_queues) { }
5295 
5296   OopTaskQueueSet* task_queues() { return _task_queues; }
5297 
5298   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5299 
5300   ParallelTaskTerminator* terminator() { return &_term; }
5301   int n_workers() { return _n_workers; }
5302 
5303   void work(uint worker_id);
5304 
5305  private:
5306   // ... of  dirty cards in old space
5307   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
5308                                   Par_MarkRefsIntoAndScanClosure* cl);
5309 
5310   // ... work stealing for the above
5311   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
5312 };
5313 
5314 class RemarkKlassClosure : public KlassClosure {
5315   KlassToOopClosure _cm_klass_closure;
5316  public:
5317   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
5318   void do_klass(Klass* k) {
5319     // Check if we have modified any oops in the Klass during the concurrent marking.
5320     if (k->has_accumulated_modified_oops()) {
5321       k->clear_accumulated_modified_oops();
5322 
5323       // We could have transfered the current modified marks to the accumulated marks,
5324       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
5325     } else if (k->has_modified_oops()) {
5326       // Don't clear anything, this info is needed by the next young collection.
5327     } else {
5328       // No modified oops in the Klass.
5329       return;
5330     }
5331 
5332     // The klass has modified fields, need to scan the klass.
5333     _cm_klass_closure.do_klass(k);
5334   }
5335 };
5336 
5337 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
5338   DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
5339   EdenSpace* eden_space = dng->eden();
5340   ContiguousSpace* from_space = dng->from();
5341   ContiguousSpace* to_space   = dng->to();
5342 
5343   HeapWord** eca = _collector->_eden_chunk_array;
5344   size_t     ect = _collector->_eden_chunk_index;
5345   HeapWord** sca = _collector->_survivor_chunk_array;
5346   size_t     sct = _collector->_survivor_chunk_index;
5347 
5348   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
5349   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
5350 
5351   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
5352   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
5353   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
5354 }
5355 
5356 // work_queue(i) is passed to the closure
5357 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
5358 // also is passed to do_dirty_card_rescan_tasks() and to
5359 // do_work_steal() to select the i-th task_queue.
5360 
5361 void CMSParRemarkTask::work(uint worker_id) {
5362   elapsedTimer _timer;
5363   ResourceMark rm;
5364   HandleMark   hm;
5365 
5366   // ---------- rescan from roots --------------
5367   _timer.start();
5368   GenCollectedHeap* gch = GenCollectedHeap::heap();
5369   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
5370     _collector->_span, _collector->ref_processor(),
5371     &(_collector->_markBitMap),
5372     work_queue(worker_id));
5373 
5374   // Rescan young gen roots first since these are likely
5375   // coarsely partitioned and may, on that account, constitute
5376   // the critical path; thus, it's best to start off that
5377   // work first.
5378   // ---------- young gen roots --------------
5379   {
5380     work_on_young_gen_roots(worker_id, &par_mrias_cl);
5381     _timer.stop();
5382     if (PrintCMSStatistics != 0) {
5383       gclog_or_tty->print_cr(
5384         "Finished young gen rescan work in %dth thread: %3.3f sec",
5385         worker_id, _timer.seconds());
5386     }
5387   }
5388 
5389   // ---------- remaining roots --------------
5390   _timer.reset();
5391   _timer.start();
5392   gch->gen_process_roots(_collector->_cmsGen->level(),
5393                          false,     // yg was scanned above
5394                          false,     // this is parallel code
5395                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5396                          _collector->should_unload_classes(),
5397                          &par_mrias_cl,
5398                          NULL,
5399                          NULL);     // The dirty klasses will be handled below
5400 
5401   assert(_collector->should_unload_classes()
5402          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
5403          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5404   _timer.stop();
5405   if (PrintCMSStatistics != 0) {
5406     gclog_or_tty->print_cr(
5407       "Finished remaining root rescan work in %dth thread: %3.3f sec",
5408       worker_id, _timer.seconds());
5409   }
5410 
5411   // ---------- unhandled CLD scanning ----------
5412   if (worker_id == 0) { // Single threaded at the moment.
5413     _timer.reset();
5414     _timer.start();
5415 
5416     // Scan all new class loader data objects and new dependencies that were
5417     // introduced during concurrent marking.
5418     ResourceMark rm;
5419     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5420     for (int i = 0; i < array->length(); i++) {
5421       par_mrias_cl.do_class_loader_data(array->at(i));
5422     }
5423 
5424     // We don't need to keep track of new CLDs anymore.
5425     ClassLoaderDataGraph::remember_new_clds(false);
5426 
5427     _timer.stop();
5428     if (PrintCMSStatistics != 0) {
5429       gclog_or_tty->print_cr(
5430           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
5431           worker_id, _timer.seconds());
5432     }
5433   }
5434 
5435   // ---------- dirty klass scanning ----------
5436   if (worker_id == 0) { // Single threaded at the moment.
5437     _timer.reset();
5438     _timer.start();
5439 
5440     // Scan all classes that was dirtied during the concurrent marking phase.
5441     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
5442     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5443 
5444     _timer.stop();
5445     if (PrintCMSStatistics != 0) {
5446       gclog_or_tty->print_cr(
5447           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
5448           worker_id, _timer.seconds());
5449     }
5450   }
5451 
5452   // We might have added oops to ClassLoaderData::_handles during the
5453   // concurrent marking phase. These oops point to newly allocated objects
5454   // that are guaranteed to be kept alive. Either by the direct allocation
5455   // code, or when the young collector processes the roots. Hence,
5456   // we don't have to revisit the _handles block during the remark phase.
5457 
5458   // ---------- rescan dirty cards ------------
5459   _timer.reset();
5460   _timer.start();
5461 
5462   // Do the rescan tasks for each of the two spaces
5463   // (cms_space) in turn.
5464   // "worker_id" is passed to select the task_queue for "worker_id"
5465   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
5466   _timer.stop();
5467   if (PrintCMSStatistics != 0) {
5468     gclog_or_tty->print_cr(
5469       "Finished dirty card rescan work in %dth thread: %3.3f sec",
5470       worker_id, _timer.seconds());
5471   }
5472 
5473   // ---------- steal work from other threads ...
5474   // ---------- ... and drain overflow list.
5475   _timer.reset();
5476   _timer.start();
5477   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
5478   _timer.stop();
5479   if (PrintCMSStatistics != 0) {
5480     gclog_or_tty->print_cr(
5481       "Finished work stealing in %dth thread: %3.3f sec",
5482       worker_id, _timer.seconds());
5483   }
5484 }
5485 
5486 // Note that parameter "i" is not used.
5487 void
5488 CMSParMarkTask::do_young_space_rescan(uint worker_id,
5489   OopsInGenClosure* cl, ContiguousSpace* space,
5490   HeapWord** chunk_array, size_t chunk_top) {
5491   // Until all tasks completed:
5492   // . claim an unclaimed task
5493   // . compute region boundaries corresponding to task claimed
5494   //   using chunk_array
5495   // . par_oop_iterate(cl) over that region
5496 
5497   ResourceMark rm;
5498   HandleMark   hm;
5499 
5500   SequentialSubTasksDone* pst = space->par_seq_tasks();
5501 
5502   uint nth_task = 0;
5503   uint n_tasks  = pst->n_tasks();
5504 
5505   if (n_tasks > 0) {
5506     assert(pst->valid(), "Uninitialized use?");
5507     HeapWord *start, *end;
5508     while (!pst->is_task_claimed(/* reference */ nth_task)) {
5509       // We claimed task # nth_task; compute its boundaries.
5510       if (chunk_top == 0) {  // no samples were taken
5511         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
5512         start = space->bottom();
5513         end   = space->top();
5514       } else if (nth_task == 0) {
5515         start = space->bottom();
5516         end   = chunk_array[nth_task];
5517       } else if (nth_task < (uint)chunk_top) {
5518         assert(nth_task >= 1, "Control point invariant");
5519         start = chunk_array[nth_task - 1];
5520         end   = chunk_array[nth_task];
5521       } else {
5522         assert(nth_task == (uint)chunk_top, "Control point invariant");
5523         start = chunk_array[chunk_top - 1];
5524         end   = space->top();
5525       }
5526       MemRegion mr(start, end);
5527       // Verify that mr is in space
5528       assert(mr.is_empty() || space->used_region().contains(mr),
5529              "Should be in space");
5530       // Verify that "start" is an object boundary
5531       assert(mr.is_empty() || oop(mr.start())->is_oop(),
5532              "Should be an oop");
5533       space->par_oop_iterate(mr, cl);
5534     }
5535     pst->all_tasks_completed();
5536   }
5537 }
5538 
5539 void
5540 CMSParRemarkTask::do_dirty_card_rescan_tasks(
5541   CompactibleFreeListSpace* sp, int i,
5542   Par_MarkRefsIntoAndScanClosure* cl) {
5543   // Until all tasks completed:
5544   // . claim an unclaimed task
5545   // . compute region boundaries corresponding to task claimed
5546   // . transfer dirty bits ct->mut for that region
5547   // . apply rescanclosure to dirty mut bits for that region
5548 
5549   ResourceMark rm;
5550   HandleMark   hm;
5551 
5552   OopTaskQueue* work_q = work_queue(i);
5553   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
5554   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
5555   // CAUTION: This closure has state that persists across calls to
5556   // the work method dirty_range_iterate_clear() in that it has
5557   // imbedded in it a (subtype of) UpwardsObjectClosure. The
5558   // use of that state in the imbedded UpwardsObjectClosure instance
5559   // assumes that the cards are always iterated (even if in parallel
5560   // by several threads) in monotonically increasing order per each
5561   // thread. This is true of the implementation below which picks
5562   // card ranges (chunks) in monotonically increasing order globally
5563   // and, a-fortiori, in monotonically increasing order per thread
5564   // (the latter order being a subsequence of the former).
5565   // If the work code below is ever reorganized into a more chaotic
5566   // work-partitioning form than the current "sequential tasks"
5567   // paradigm, the use of that persistent state will have to be
5568   // revisited and modified appropriately. See also related
5569   // bug 4756801 work on which should examine this code to make
5570   // sure that the changes there do not run counter to the
5571   // assumptions made here and necessary for correctness and
5572   // efficiency. Note also that this code might yield inefficient
5573   // behaviour in the case of very large objects that span one or
5574   // more work chunks. Such objects would potentially be scanned
5575   // several times redundantly. Work on 4756801 should try and
5576   // address that performance anomaly if at all possible. XXX
5577   MemRegion  full_span  = _collector->_span;
5578   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
5579   MarkFromDirtyCardsClosure
5580     greyRescanClosure(_collector, full_span, // entire span of interest
5581                       sp, bm, work_q, cl);
5582 
5583   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
5584   assert(pst->valid(), "Uninitialized use?");
5585   uint nth_task = 0;
5586   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
5587   MemRegion span = sp->used_region();
5588   HeapWord* start_addr = span.start();
5589   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
5590                                            alignment);
5591   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
5592   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
5593          start_addr, "Check alignment");
5594   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
5595          chunk_size, "Check alignment");
5596 
5597   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5598     // Having claimed the nth_task, compute corresponding mem-region,
5599     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
5600     // The alignment restriction ensures that we do not need any
5601     // synchronization with other gang-workers while setting or
5602     // clearing bits in thus chunk of the MUT.
5603     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
5604                                     start_addr + (nth_task+1)*chunk_size);
5605     // The last chunk's end might be way beyond end of the
5606     // used region. In that case pull back appropriately.
5607     if (this_span.end() > end_addr) {
5608       this_span.set_end(end_addr);
5609       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
5610     }
5611     // Iterate over the dirty cards covering this chunk, marking them
5612     // precleaned, and setting the corresponding bits in the mod union
5613     // table. Since we have been careful to partition at Card and MUT-word
5614     // boundaries no synchronization is needed between parallel threads.
5615     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
5616                                                  &modUnionClosure);
5617 
5618     // Having transferred these marks into the modUnionTable,
5619     // rescan the marked objects on the dirty cards in the modUnionTable.
5620     // Even if this is at a synchronous collection, the initial marking
5621     // may have been done during an asynchronous collection so there
5622     // may be dirty bits in the mod-union table.
5623     _collector->_modUnionTable.dirty_range_iterate_clear(
5624                   this_span, &greyRescanClosure);
5625     _collector->_modUnionTable.verifyNoOneBitsInRange(
5626                                  this_span.start(),
5627                                  this_span.end());
5628   }
5629   pst->all_tasks_completed();  // declare that i am done
5630 }
5631 
5632 // . see if we can share work_queues with ParNew? XXX
5633 void
5634 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
5635                                 int* seed) {
5636   OopTaskQueue* work_q = work_queue(i);
5637   NOT_PRODUCT(int num_steals = 0;)
5638   oop obj_to_scan;
5639   CMSBitMap* bm = &(_collector->_markBitMap);
5640 
5641   while (true) {
5642     // Completely finish any left over work from (an) earlier round(s)
5643     cl->trim_queue(0);
5644     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5645                                          (size_t)ParGCDesiredObjsFromOverflowList);
5646     // Now check if there's any work in the overflow list
5647     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5648     // only affects the number of attempts made to get work from the
5649     // overflow list and does not affect the number of workers.  Just
5650     // pass ParallelGCThreads so this behavior is unchanged.
5651     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5652                                                 work_q,
5653                                                 ParallelGCThreads)) {
5654       // found something in global overflow list;
5655       // not yet ready to go stealing work from others.
5656       // We'd like to assert(work_q->size() != 0, ...)
5657       // because we just took work from the overflow list,
5658       // but of course we can't since all of that could have
5659       // been already stolen from us.
5660       // "He giveth and He taketh away."
5661       continue;
5662     }
5663     // Verify that we have no work before we resort to stealing
5664     assert(work_q->size() == 0, "Have work, shouldn't steal");
5665     // Try to steal from other queues that have work
5666     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5667       NOT_PRODUCT(num_steals++;)
5668       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5669       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5670       // Do scanning work
5671       obj_to_scan->oop_iterate(cl);
5672       // Loop around, finish this work, and try to steal some more
5673     } else if (terminator()->offer_termination()) {
5674         break;  // nirvana from the infinite cycle
5675     }
5676   }
5677   NOT_PRODUCT(
5678     if (PrintCMSStatistics != 0) {
5679       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5680     }
5681   )
5682   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
5683          "Else our work is not yet done");
5684 }
5685 
5686 // Record object boundaries in _eden_chunk_array by sampling the eden
5687 // top in the slow-path eden object allocation code path and record
5688 // the boundaries, if CMSEdenChunksRecordAlways is true. If
5689 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
5690 // sampling in sample_eden() that activates during the part of the
5691 // preclean phase.
5692 void CMSCollector::sample_eden_chunk() {
5693   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
5694     if (_eden_chunk_lock->try_lock()) {
5695       // Record a sample. This is the critical section. The contents
5696       // of the _eden_chunk_array have to be non-decreasing in the
5697       // address order.
5698       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
5699       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
5700              "Unexpected state of Eden");
5701       if (_eden_chunk_index == 0 ||
5702           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
5703            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
5704                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
5705         _eden_chunk_index++;  // commit sample
5706       }
5707       _eden_chunk_lock->unlock();
5708     }
5709   }
5710 }
5711 
5712 // Return a thread-local PLAB recording array, as appropriate.
5713 void* CMSCollector::get_data_recorder(int thr_num) {
5714   if (_survivor_plab_array != NULL &&
5715       (CMSPLABRecordAlways ||
5716        (_collectorState > Marking && _collectorState < FinalMarking))) {
5717     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
5718     ChunkArray* ca = &_survivor_plab_array[thr_num];
5719     ca->reset();   // clear it so that fresh data is recorded
5720     return (void*) ca;
5721   } else {
5722     return NULL;
5723   }
5724 }
5725 
5726 // Reset all the thread-local PLAB recording arrays
5727 void CMSCollector::reset_survivor_plab_arrays() {
5728   for (uint i = 0; i < ParallelGCThreads; i++) {
5729     _survivor_plab_array[i].reset();
5730   }
5731 }
5732 
5733 // Merge the per-thread plab arrays into the global survivor chunk
5734 // array which will provide the partitioning of the survivor space
5735 // for CMS initial scan and rescan.
5736 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
5737                                               int no_of_gc_threads) {
5738   assert(_survivor_plab_array  != NULL, "Error");
5739   assert(_survivor_chunk_array != NULL, "Error");
5740   assert(_collectorState == FinalMarking ||
5741          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
5742   for (int j = 0; j < no_of_gc_threads; j++) {
5743     _cursor[j] = 0;
5744   }
5745   HeapWord* top = surv->top();
5746   size_t i;
5747   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
5748     HeapWord* min_val = top;          // Higher than any PLAB address
5749     uint      min_tid = 0;            // position of min_val this round
5750     for (int j = 0; j < no_of_gc_threads; j++) {
5751       ChunkArray* cur_sca = &_survivor_plab_array[j];
5752       if (_cursor[j] == cur_sca->end()) {
5753         continue;
5754       }
5755       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
5756       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
5757       assert(surv->used_region().contains(cur_val), "Out of bounds value");
5758       if (cur_val < min_val) {
5759         min_tid = j;
5760         min_val = cur_val;
5761       } else {
5762         assert(cur_val < top, "All recorded addresses should be less");
5763       }
5764     }
5765     // At this point min_val and min_tid are respectively
5766     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
5767     // and the thread (j) that witnesses that address.
5768     // We record this address in the _survivor_chunk_array[i]
5769     // and increment _cursor[min_tid] prior to the next round i.
5770     if (min_val == top) {
5771       break;
5772     }
5773     _survivor_chunk_array[i] = min_val;
5774     _cursor[min_tid]++;
5775   }
5776   // We are all done; record the size of the _survivor_chunk_array
5777   _survivor_chunk_index = i; // exclusive: [0, i)
5778   if (PrintCMSStatistics > 0) {
5779     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
5780   }
5781   // Verify that we used up all the recorded entries
5782   #ifdef ASSERT
5783     size_t total = 0;
5784     for (int j = 0; j < no_of_gc_threads; j++) {
5785       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
5786       total += _cursor[j];
5787     }
5788     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5789     // Check that the merged array is in sorted order
5790     if (total > 0) {
5791       for (size_t i = 0; i < total - 1; i++) {
5792         if (PrintCMSStatistics > 0) {
5793           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5794                               i, _survivor_chunk_array[i]);
5795         }
5796         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5797                "Not sorted");
5798       }
5799     }
5800   #endif // ASSERT
5801 }
5802 
5803 // Set up the space's par_seq_tasks structure for work claiming
5804 // for parallel initial scan and rescan of young gen.
5805 // See ParRescanTask where this is currently used.
5806 void
5807 CMSCollector::
5808 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5809   assert(n_threads > 0, "Unexpected n_threads argument");
5810   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
5811 
5812   // Eden space
5813   if (!dng->eden()->is_empty()) {
5814     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
5815     assert(!pst->valid(), "Clobbering existing data?");
5816     // Each valid entry in [0, _eden_chunk_index) represents a task.
5817     size_t n_tasks = _eden_chunk_index + 1;
5818     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5819     // Sets the condition for completion of the subtask (how many threads
5820     // need to finish in order to be done).
5821     pst->set_n_threads(n_threads);
5822     pst->set_n_tasks((int)n_tasks);
5823   }
5824 
5825   // Merge the survivor plab arrays into _survivor_chunk_array
5826   if (_survivor_plab_array != NULL) {
5827     merge_survivor_plab_arrays(dng->from(), n_threads);
5828   } else {
5829     assert(_survivor_chunk_index == 0, "Error");
5830   }
5831 
5832   // To space
5833   {
5834     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
5835     assert(!pst->valid(), "Clobbering existing data?");
5836     // Sets the condition for completion of the subtask (how many threads
5837     // need to finish in order to be done).
5838     pst->set_n_threads(n_threads);
5839     pst->set_n_tasks(1);
5840     assert(pst->valid(), "Error");
5841   }
5842 
5843   // From space
5844   {
5845     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
5846     assert(!pst->valid(), "Clobbering existing data?");
5847     size_t n_tasks = _survivor_chunk_index + 1;
5848     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5849     // Sets the condition for completion of the subtask (how many threads
5850     // need to finish in order to be done).
5851     pst->set_n_threads(n_threads);
5852     pst->set_n_tasks((int)n_tasks);
5853     assert(pst->valid(), "Error");
5854   }
5855 }
5856 
5857 // Parallel version of remark
5858 void CMSCollector::do_remark_parallel() {
5859   GenCollectedHeap* gch = GenCollectedHeap::heap();
5860   FlexibleWorkGang* workers = gch->workers();
5861   assert(workers != NULL, "Need parallel worker threads.");
5862   // Choose to use the number of GC workers most recently set
5863   // into "active_workers".  If active_workers is not set, set it
5864   // to ParallelGCThreads.
5865   int n_workers = workers->active_workers();
5866   if (n_workers == 0) {
5867     assert(n_workers > 0, "Should have been set during scavenge");
5868     n_workers = ParallelGCThreads;
5869     workers->set_active_workers(n_workers);
5870   }
5871   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5872 
5873   CMSParRemarkTask tsk(this,
5874     cms_space,
5875     n_workers, workers, task_queues());
5876 
5877   // Set up for parallel process_roots work.
5878   gch->set_par_threads(n_workers);
5879   // We won't be iterating over the cards in the card table updating
5880   // the younger_gen cards, so we shouldn't call the following else
5881   // the verification code as well as subsequent younger_refs_iterate
5882   // code would get confused. XXX
5883   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5884 
5885   // The young gen rescan work will not be done as part of
5886   // process_roots (which currently doesn't know how to
5887   // parallelize such a scan), but rather will be broken up into
5888   // a set of parallel tasks (via the sampling that the [abortable]
5889   // preclean phase did of EdenSpace, plus the [two] tasks of
5890   // scanning the [two] survivor spaces. Further fine-grain
5891   // parallelization of the scanning of the survivor spaces
5892   // themselves, and of precleaning of the younger gen itself
5893   // is deferred to the future.
5894   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5895 
5896   // The dirty card rescan work is broken up into a "sequence"
5897   // of parallel tasks (per constituent space) that are dynamically
5898   // claimed by the parallel threads.
5899   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5900 
5901   // It turns out that even when we're using 1 thread, doing the work in a
5902   // separate thread causes wide variance in run times.  We can't help this
5903   // in the multi-threaded case, but we special-case n=1 here to get
5904   // repeatable measurements of the 1-thread overhead of the parallel code.
5905   if (n_workers > 1) {
5906     // Make refs discovery MT-safe, if it isn't already: it may not
5907     // necessarily be so, since it's possible that we are doing
5908     // ST marking.
5909     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5910     GenCollectedHeap::StrongRootsScope srs(gch);
5911     workers->run_task(&tsk);
5912   } else {
5913     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5914     GenCollectedHeap::StrongRootsScope srs(gch);
5915     tsk.work(0);
5916   }
5917 
5918   gch->set_par_threads(0);  // 0 ==> non-parallel.
5919   // restore, single-threaded for now, any preserved marks
5920   // as a result of work_q overflow
5921   restore_preserved_marks_if_any();
5922 }
5923 
5924 // Non-parallel version of remark
5925 void CMSCollector::do_remark_non_parallel() {
5926   ResourceMark rm;
5927   HandleMark   hm;
5928   GenCollectedHeap* gch = GenCollectedHeap::heap();
5929   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5930 
5931   MarkRefsIntoAndScanClosure
5932     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5933              &_markStack, this,
5934              false /* should_yield */, false /* not precleaning */);
5935   MarkFromDirtyCardsClosure
5936     markFromDirtyCardsClosure(this, _span,
5937                               NULL,  // space is set further below
5938                               &_markBitMap, &_markStack, &mrias_cl);
5939   {
5940     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5941     // Iterate over the dirty cards, setting the corresponding bits in the
5942     // mod union table.
5943     {
5944       ModUnionClosure modUnionClosure(&_modUnionTable);
5945       _ct->ct_bs()->dirty_card_iterate(
5946                       _cmsGen->used_region(),
5947                       &modUnionClosure);
5948     }
5949     // Having transferred these marks into the modUnionTable, we just need
5950     // to rescan the marked objects on the dirty cards in the modUnionTable.
5951     // The initial marking may have been done during an asynchronous
5952     // collection so there may be dirty bits in the mod-union table.
5953     const int alignment =
5954       CardTableModRefBS::card_size * BitsPerWord;
5955     {
5956       // ... First handle dirty cards in CMS gen
5957       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5958       MemRegion ur = _cmsGen->used_region();
5959       HeapWord* lb = ur.start();
5960       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5961       MemRegion cms_span(lb, ub);
5962       _modUnionTable.dirty_range_iterate_clear(cms_span,
5963                                                &markFromDirtyCardsClosure);
5964       verify_work_stacks_empty();
5965       if (PrintCMSStatistics != 0) {
5966         gclog_or_tty->print(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ",
5967           markFromDirtyCardsClosure.num_dirty_cards());
5968       }
5969     }
5970   }
5971   if (VerifyDuringGC &&
5972       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5973     HandleMark hm;  // Discard invalid handles created during verification
5974     Universe::verify();
5975   }
5976   {
5977     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5978 
5979     verify_work_stacks_empty();
5980 
5981     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5982     GenCollectedHeap::StrongRootsScope srs(gch);
5983 
5984     gch->gen_process_roots(_cmsGen->level(),
5985                            true,  // younger gens as roots
5986                            false, // use the local StrongRootsScope
5987                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
5988                            should_unload_classes(),
5989                            &mrias_cl,
5990                            NULL,
5991                            NULL); // The dirty klasses will be handled below
5992 
5993     assert(should_unload_classes()
5994            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
5995            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5996   }
5997 
5998   {
5999     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
6000 
6001     verify_work_stacks_empty();
6002 
6003     // Scan all class loader data objects that might have been introduced
6004     // during concurrent marking.
6005     ResourceMark rm;
6006     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
6007     for (int i = 0; i < array->length(); i++) {
6008       mrias_cl.do_class_loader_data(array->at(i));
6009     }
6010 
6011     // We don't need to keep track of new CLDs anymore.
6012     ClassLoaderDataGraph::remember_new_clds(false);
6013 
6014     verify_work_stacks_empty();
6015   }
6016 
6017   {
6018     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
6019 
6020     verify_work_stacks_empty();
6021 
6022     RemarkKlassClosure remark_klass_closure(&mrias_cl);
6023     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
6024 
6025     verify_work_stacks_empty();
6026   }
6027 
6028   // We might have added oops to ClassLoaderData::_handles during the
6029   // concurrent marking phase. These oops point to newly allocated objects
6030   // that are guaranteed to be kept alive. Either by the direct allocation
6031   // code, or when the young collector processes the roots. Hence,
6032   // we don't have to revisit the _handles block during the remark phase.
6033 
6034   verify_work_stacks_empty();
6035   // Restore evacuated mark words, if any, used for overflow list links
6036   if (!CMSOverflowEarlyRestoration) {
6037     restore_preserved_marks_if_any();
6038   }
6039   verify_overflow_empty();
6040 }
6041 
6042 ////////////////////////////////////////////////////////
6043 // Parallel Reference Processing Task Proxy Class
6044 ////////////////////////////////////////////////////////
6045 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
6046   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
6047   CMSCollector*          _collector;
6048   CMSBitMap*             _mark_bit_map;
6049   const MemRegion        _span;
6050   ProcessTask&           _task;
6051 
6052 public:
6053   CMSRefProcTaskProxy(ProcessTask&     task,
6054                       CMSCollector*    collector,
6055                       const MemRegion& span,
6056                       CMSBitMap*       mark_bit_map,
6057                       AbstractWorkGang* workers,
6058                       OopTaskQueueSet* task_queues):
6059     // XXX Should superclass AGTWOQ also know about AWG since it knows
6060     // about the task_queues used by the AWG? Then it could initialize
6061     // the terminator() object. See 6984287. The set_for_termination()
6062     // below is a temporary band-aid for the regression in 6984287.
6063     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
6064       task_queues),
6065     _task(task),
6066     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
6067   {
6068     assert(_collector->_span.equals(_span) && !_span.is_empty(),
6069            "Inconsistency in _span");
6070     set_for_termination(workers->active_workers());
6071   }
6072 
6073   OopTaskQueueSet* task_queues() { return queues(); }
6074 
6075   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
6076 
6077   void do_work_steal(int i,
6078                      CMSParDrainMarkingStackClosure* drain,
6079                      CMSParKeepAliveClosure* keep_alive,
6080                      int* seed);
6081 
6082   virtual void work(uint worker_id);
6083 };
6084 
6085 void CMSRefProcTaskProxy::work(uint worker_id) {
6086   ResourceMark rm;
6087   HandleMark hm;
6088   assert(_collector->_span.equals(_span), "Inconsistency in _span");
6089   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
6090                                         _mark_bit_map,
6091                                         work_queue(worker_id));
6092   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
6093                                                  _mark_bit_map,
6094                                                  work_queue(worker_id));
6095   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
6096   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
6097   if (_task.marks_oops_alive()) {
6098     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
6099                   _collector->hash_seed(worker_id));
6100   }
6101   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
6102   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
6103 }
6104 
6105 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
6106   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
6107   EnqueueTask& _task;
6108 
6109 public:
6110   CMSRefEnqueueTaskProxy(EnqueueTask& task)
6111     : AbstractGangTask("Enqueue reference objects in parallel"),
6112       _task(task)
6113   { }
6114 
6115   virtual void work(uint worker_id)
6116   {
6117     _task.work(worker_id);
6118   }
6119 };
6120 
6121 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
6122   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
6123    _span(span),
6124    _bit_map(bit_map),
6125    _work_queue(work_queue),
6126    _mark_and_push(collector, span, bit_map, work_queue),
6127    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6128                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
6129 { }
6130 
6131 // . see if we can share work_queues with ParNew? XXX
6132 void CMSRefProcTaskProxy::do_work_steal(int i,
6133   CMSParDrainMarkingStackClosure* drain,
6134   CMSParKeepAliveClosure* keep_alive,
6135   int* seed) {
6136   OopTaskQueue* work_q = work_queue(i);
6137   NOT_PRODUCT(int num_steals = 0;)
6138   oop obj_to_scan;
6139 
6140   while (true) {
6141     // Completely finish any left over work from (an) earlier round(s)
6142     drain->trim_queue(0);
6143     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
6144                                          (size_t)ParGCDesiredObjsFromOverflowList);
6145     // Now check if there's any work in the overflow list
6146     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
6147     // only affects the number of attempts made to get work from the
6148     // overflow list and does not affect the number of workers.  Just
6149     // pass ParallelGCThreads so this behavior is unchanged.
6150     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
6151                                                 work_q,
6152                                                 ParallelGCThreads)) {
6153       // Found something in global overflow list;
6154       // not yet ready to go stealing work from others.
6155       // We'd like to assert(work_q->size() != 0, ...)
6156       // because we just took work from the overflow list,
6157       // but of course we can't, since all of that might have
6158       // been already stolen from us.
6159       continue;
6160     }
6161     // Verify that we have no work before we resort to stealing
6162     assert(work_q->size() == 0, "Have work, shouldn't steal");
6163     // Try to steal from other queues that have work
6164     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
6165       NOT_PRODUCT(num_steals++;)
6166       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
6167       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
6168       // Do scanning work
6169       obj_to_scan->oop_iterate(keep_alive);
6170       // Loop around, finish this work, and try to steal some more
6171     } else if (terminator()->offer_termination()) {
6172       break;  // nirvana from the infinite cycle
6173     }
6174   }
6175   NOT_PRODUCT(
6176     if (PrintCMSStatistics != 0) {
6177       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
6178     }
6179   )
6180 }
6181 
6182 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
6183 {
6184   GenCollectedHeap* gch = GenCollectedHeap::heap();
6185   FlexibleWorkGang* workers = gch->workers();
6186   assert(workers != NULL, "Need parallel worker threads.");
6187   CMSRefProcTaskProxy rp_task(task, &_collector,
6188                               _collector.ref_processor()->span(),
6189                               _collector.markBitMap(),
6190                               workers, _collector.task_queues());
6191   workers->run_task(&rp_task);
6192 }
6193 
6194 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
6195 {
6196 
6197   GenCollectedHeap* gch = GenCollectedHeap::heap();
6198   FlexibleWorkGang* workers = gch->workers();
6199   assert(workers != NULL, "Need parallel worker threads.");
6200   CMSRefEnqueueTaskProxy enq_task(task);
6201   workers->run_task(&enq_task);
6202 }
6203 
6204 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
6205 
6206   ResourceMark rm;
6207   HandleMark   hm;
6208 
6209   ReferenceProcessor* rp = ref_processor();
6210   assert(rp->span().equals(_span), "Spans should be equal");
6211   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
6212   // Process weak references.
6213   rp->setup_policy(clear_all_soft_refs);
6214   verify_work_stacks_empty();
6215 
6216   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
6217                                           &_markStack, false /* !preclean */);
6218   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
6219                                 _span, &_markBitMap, &_markStack,
6220                                 &cmsKeepAliveClosure, false /* !preclean */);
6221   {
6222     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
6223 
6224     ReferenceProcessorStats stats;
6225     if (rp->processing_is_mt()) {
6226       // Set the degree of MT here.  If the discovery is done MT, there
6227       // may have been a different number of threads doing the discovery
6228       // and a different number of discovered lists may have Ref objects.
6229       // That is OK as long as the Reference lists are balanced (see
6230       // balance_all_queues() and balance_queues()).
6231       GenCollectedHeap* gch = GenCollectedHeap::heap();
6232       int active_workers = ParallelGCThreads;
6233       FlexibleWorkGang* workers = gch->workers();
6234       if (workers != NULL) {
6235         active_workers = workers->active_workers();
6236         // The expectation is that active_workers will have already
6237         // been set to a reasonable value.  If it has not been set,
6238         // investigate.
6239         assert(active_workers > 0, "Should have been set during scavenge");
6240       }
6241       rp->set_active_mt_degree(active_workers);
6242       CMSRefProcTaskExecutor task_executor(*this);
6243       stats = rp->process_discovered_references(&_is_alive_closure,
6244                                         &cmsKeepAliveClosure,
6245                                         &cmsDrainMarkingStackClosure,
6246                                         &task_executor,
6247                                         _gc_timer_cm,
6248                                         _gc_tracer_cm->gc_id());
6249     } else {
6250       stats = rp->process_discovered_references(&_is_alive_closure,
6251                                         &cmsKeepAliveClosure,
6252                                         &cmsDrainMarkingStackClosure,
6253                                         NULL,
6254                                         _gc_timer_cm,
6255                                         _gc_tracer_cm->gc_id());
6256     }
6257     _gc_tracer_cm->report_gc_reference_stats(stats);
6258 
6259   }
6260 
6261   // This is the point where the entire marking should have completed.
6262   verify_work_stacks_empty();
6263 
6264   if (should_unload_classes()) {
6265     {
6266       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
6267 
6268       // Unload classes and purge the SystemDictionary.
6269       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
6270 
6271       // Unload nmethods.
6272       CodeCache::do_unloading(&_is_alive_closure, purged_class);
6273 
6274       // Prune dead klasses from subklass/sibling/implementor lists.
6275       Klass::clean_weak_klass_links(&_is_alive_closure);
6276     }
6277 
6278     {
6279       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
6280       // Clean up unreferenced symbols in symbol table.
6281       SymbolTable::unlink();
6282     }
6283 
6284     {
6285       GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
6286       // Delete entries for dead interned strings.
6287       StringTable::unlink(&_is_alive_closure);
6288     }
6289   }
6290 
6291 
6292   // Restore any preserved marks as a result of mark stack or
6293   // work queue overflow
6294   restore_preserved_marks_if_any();  // done single-threaded for now
6295 
6296   rp->set_enqueuing_is_done(true);
6297   if (rp->processing_is_mt()) {
6298     rp->balance_all_queues();
6299     CMSRefProcTaskExecutor task_executor(*this);
6300     rp->enqueue_discovered_references(&task_executor);
6301   } else {
6302     rp->enqueue_discovered_references(NULL);
6303   }
6304   rp->verify_no_references_recorded();
6305   assert(!rp->discovery_enabled(), "should have been disabled");
6306 }
6307 
6308 #ifndef PRODUCT
6309 void CMSCollector::check_correct_thread_executing() {
6310   Thread* t = Thread::current();
6311   // Only the VM thread or the CMS thread should be here.
6312   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
6313          "Unexpected thread type");
6314   // If this is the vm thread, the foreground process
6315   // should not be waiting.  Note that _foregroundGCIsActive is
6316   // true while the foreground collector is waiting.
6317   if (_foregroundGCShouldWait) {
6318     // We cannot be the VM thread
6319     assert(t->is_ConcurrentGC_thread(),
6320            "Should be CMS thread");
6321   } else {
6322     // We can be the CMS thread only if we are in a stop-world
6323     // phase of CMS collection.
6324     if (t->is_ConcurrentGC_thread()) {
6325       assert(_collectorState == InitialMarking ||
6326              _collectorState == FinalMarking,
6327              "Should be a stop-world phase");
6328       // The CMS thread should be holding the CMS_token.
6329       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6330              "Potential interference with concurrently "
6331              "executing VM thread");
6332     }
6333   }
6334 }
6335 #endif
6336 
6337 void CMSCollector::sweep(bool asynch) {
6338   assert(_collectorState == Sweeping, "just checking");
6339   check_correct_thread_executing();
6340   verify_work_stacks_empty();
6341   verify_overflow_empty();
6342   increment_sweep_count();
6343   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
6344 
6345   _inter_sweep_timer.stop();
6346   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
6347   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
6348 
6349   assert(!_intra_sweep_timer.is_active(), "Should not be active");
6350   _intra_sweep_timer.reset();
6351   _intra_sweep_timer.start();
6352   if (asynch) {
6353     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6354     CMSPhaseAccounting pa(this, "sweep", _gc_tracer_cm->gc_id(), !PrintGCDetails);
6355     // First sweep the old gen
6356     {
6357       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6358                                bitMapLock());
6359       sweepWork(_cmsGen, asynch);
6360     }
6361 
6362     // Update Universe::_heap_*_at_gc figures.
6363     // We need all the free list locks to make the abstract state
6364     // transition from Sweeping to Resetting. See detailed note
6365     // further below.
6366     {
6367       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
6368       // Update heap occupancy information which is used as
6369       // input to soft ref clearing policy at the next gc.
6370       Universe::update_heap_info_at_gc();
6371       _collectorState = Resizing;
6372     }
6373   } else {
6374     // already have needed locks
6375     sweepWork(_cmsGen,  asynch);
6376     // Update heap occupancy information which is used as
6377     // input to soft ref clearing policy at the next gc.
6378     Universe::update_heap_info_at_gc();
6379     _collectorState = Resizing;
6380   }
6381   verify_work_stacks_empty();
6382   verify_overflow_empty();
6383 
6384   if (should_unload_classes()) {
6385     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
6386     // requires that the virtual spaces are stable and not deleted.
6387     ClassLoaderDataGraph::set_should_purge(true);
6388   }
6389 
6390   _intra_sweep_timer.stop();
6391   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
6392 
6393   _inter_sweep_timer.reset();
6394   _inter_sweep_timer.start();
6395 
6396   // We need to use a monotonically non-deccreasing time in ms
6397   // or we will see time-warp warnings and os::javaTimeMillis()
6398   // does not guarantee monotonicity.
6399   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
6400   update_time_of_last_gc(now);
6401 
6402   // NOTE on abstract state transitions:
6403   // Mutators allocate-live and/or mark the mod-union table dirty
6404   // based on the state of the collection.  The former is done in
6405   // the interval [Marking, Sweeping] and the latter in the interval
6406   // [Marking, Sweeping).  Thus the transitions into the Marking state
6407   // and out of the Sweeping state must be synchronously visible
6408   // globally to the mutators.
6409   // The transition into the Marking state happens with the world
6410   // stopped so the mutators will globally see it.  Sweeping is
6411   // done asynchronously by the background collector so the transition
6412   // from the Sweeping state to the Resizing state must be done
6413   // under the freelistLock (as is the check for whether to
6414   // allocate-live and whether to dirty the mod-union table).
6415   assert(_collectorState == Resizing, "Change of collector state to"
6416     " Resizing must be done under the freelistLocks (plural)");
6417 
6418   // Now that sweeping has been completed, we clear
6419   // the incremental_collection_failed flag,
6420   // thus inviting a younger gen collection to promote into
6421   // this generation. If such a promotion may still fail,
6422   // the flag will be set again when a young collection is
6423   // attempted.
6424   GenCollectedHeap* gch = GenCollectedHeap::heap();
6425   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
6426   gch->update_full_collections_completed(_collection_count_start);
6427 }
6428 
6429 // FIX ME!!! Looks like this belongs in CFLSpace, with
6430 // CMSGen merely delegating to it.
6431 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
6432   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
6433   HeapWord*  minAddr        = _cmsSpace->bottom();
6434   HeapWord*  largestAddr    =
6435     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
6436   if (largestAddr == NULL) {
6437     // The dictionary appears to be empty.  In this case
6438     // try to coalesce at the end of the heap.
6439     largestAddr = _cmsSpace->end();
6440   }
6441   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
6442   size_t nearLargestOffset =
6443     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
6444   if (PrintFLSStatistics != 0) {
6445     gclog_or_tty->print_cr(
6446       "CMS: Large Block: " PTR_FORMAT ";"
6447       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
6448       largestAddr,
6449       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
6450   }
6451   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
6452 }
6453 
6454 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
6455   return addr >= _cmsSpace->nearLargestChunk();
6456 }
6457 
6458 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
6459   return _cmsSpace->find_chunk_at_end();
6460 }
6461 
6462 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
6463                                                     bool full) {
6464   // The next lower level has been collected.  Gather any statistics
6465   // that are of interest at this point.
6466   if (!full && (current_level + 1) == level()) {
6467     // Gather statistics on the young generation collection.
6468     collector()->stats().record_gc0_end(used());
6469   }
6470 }
6471 
6472 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
6473   GenCollectedHeap* gch = GenCollectedHeap::heap();
6474   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
6475     "Wrong type of heap");
6476   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
6477     gch->gen_policy()->size_policy();
6478   assert(sp->is_gc_cms_adaptive_size_policy(),
6479     "Wrong type of size policy");
6480   return sp;
6481 }
6482 
6483 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
6484   if (PrintGCDetails && Verbose) {
6485     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
6486   }
6487   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
6488   _debug_collection_type =
6489     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
6490   if (PrintGCDetails && Verbose) {
6491     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
6492   }
6493 }
6494 
6495 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
6496   bool asynch) {
6497   // We iterate over the space(s) underlying this generation,
6498   // checking the mark bit map to see if the bits corresponding
6499   // to specific blocks are marked or not. Blocks that are
6500   // marked are live and are not swept up. All remaining blocks
6501   // are swept up, with coalescing on-the-fly as we sweep up
6502   // contiguous free and/or garbage blocks:
6503   // We need to ensure that the sweeper synchronizes with allocators
6504   // and stop-the-world collectors. In particular, the following
6505   // locks are used:
6506   // . CMS token: if this is held, a stop the world collection cannot occur
6507   // . freelistLock: if this is held no allocation can occur from this
6508   //                 generation by another thread
6509   // . bitMapLock: if this is held, no other thread can access or update
6510   //
6511 
6512   // Note that we need to hold the freelistLock if we use
6513   // block iterate below; else the iterator might go awry if
6514   // a mutator (or promotion) causes block contents to change
6515   // (for instance if the allocator divvies up a block).
6516   // If we hold the free list lock, for all practical purposes
6517   // young generation GC's can't occur (they'll usually need to
6518   // promote), so we might as well prevent all young generation
6519   // GC's while we do a sweeping step. For the same reason, we might
6520   // as well take the bit map lock for the entire duration
6521 
6522   // check that we hold the requisite locks
6523   assert(have_cms_token(), "Should hold cms token");
6524   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
6525          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
6526         "Should possess CMS token to sweep");
6527   assert_lock_strong(gen->freelistLock());
6528   assert_lock_strong(bitMapLock());
6529 
6530   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
6531   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
6532   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
6533                                       _inter_sweep_estimate.padded_average(),
6534                                       _intra_sweep_estimate.padded_average());
6535   gen->setNearLargestChunk();
6536 
6537   {
6538     SweepClosure sweepClosure(this, gen, &_markBitMap,
6539                             CMSYield && asynch);
6540     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
6541     // We need to free-up/coalesce garbage/blocks from a
6542     // co-terminal free run. This is done in the SweepClosure
6543     // destructor; so, do not remove this scope, else the
6544     // end-of-sweep-census below will be off by a little bit.
6545   }
6546   gen->cmsSpace()->sweep_completed();
6547   gen->cmsSpace()->endSweepFLCensus(sweep_count());
6548   if (should_unload_classes()) {                // unloaded classes this cycle,
6549     _concurrent_cycles_since_last_unload = 0;   // ... reset count
6550   } else {                                      // did not unload classes,
6551     _concurrent_cycles_since_last_unload++;     // ... increment count
6552   }
6553 }
6554 
6555 // Reset CMS data structures (for now just the marking bit map)
6556 // preparatory for the next cycle.
6557 void CMSCollector::reset(bool asynch) {
6558   GenCollectedHeap* gch = GenCollectedHeap::heap();
6559   CMSAdaptiveSizePolicy* sp = size_policy();
6560   AdaptiveSizePolicyOutput(sp, gch->total_collections());
6561   if (asynch) {
6562     CMSTokenSyncWithLocks ts(true, bitMapLock());
6563 
6564     // If the state is not "Resetting", the foreground  thread
6565     // has done a collection and the resetting.
6566     if (_collectorState != Resetting) {
6567       assert(_collectorState == Idling, "The state should only change"
6568         " because the foreground collector has finished the collection");
6569       return;
6570     }
6571 
6572     // Clear the mark bitmap (no grey objects to start with)
6573     // for the next cycle.
6574     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6575     CMSPhaseAccounting cmspa(this, "reset", _gc_tracer_cm->gc_id(), !PrintGCDetails);
6576 
6577     HeapWord* curAddr = _markBitMap.startWord();
6578     while (curAddr < _markBitMap.endWord()) {
6579       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
6580       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
6581       _markBitMap.clear_large_range(chunk);
6582       if (ConcurrentMarkSweepThread::should_yield() &&
6583           !foregroundGCIsActive() &&
6584           CMSYield) {
6585         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6586                "CMS thread should hold CMS token");
6587         assert_lock_strong(bitMapLock());
6588         bitMapLock()->unlock();
6589         ConcurrentMarkSweepThread::desynchronize(true);
6590         ConcurrentMarkSweepThread::acknowledge_yield_request();
6591         stopTimer();
6592         if (PrintCMSStatistics != 0) {
6593           incrementYields();
6594         }
6595         icms_wait();
6596 
6597         // See the comment in coordinator_yield()
6598         for (unsigned i = 0; i < CMSYieldSleepCount &&
6599                          ConcurrentMarkSweepThread::should_yield() &&
6600                          !CMSCollector::foregroundGCIsActive(); ++i) {
6601           os::sleep(Thread::current(), 1, false);
6602           ConcurrentMarkSweepThread::acknowledge_yield_request();
6603         }
6604 
6605         ConcurrentMarkSweepThread::synchronize(true);
6606         bitMapLock()->lock_without_safepoint_check();
6607         startTimer();
6608       }
6609       curAddr = chunk.end();
6610     }
6611     // A successful mostly concurrent collection has been done.
6612     // Because only the full (i.e., concurrent mode failure) collections
6613     // are being measured for gc overhead limits, clean the "near" flag
6614     // and count.
6615     sp->reset_gc_overhead_limit_count();
6616     _collectorState = Idling;
6617   } else {
6618     // already have the lock
6619     assert(_collectorState == Resetting, "just checking");
6620     assert_lock_strong(bitMapLock());
6621     _markBitMap.clear_all();
6622     _collectorState = Idling;
6623   }
6624 
6625   // Stop incremental mode after a cycle completes, so that any future cycles
6626   // are triggered by allocation.
6627   stop_icms();
6628 
6629   NOT_PRODUCT(
6630     if (RotateCMSCollectionTypes) {
6631       _cmsGen->rotate_debug_collection_type();
6632     }
6633   )
6634 
6635   register_gc_end();
6636 }
6637 
6638 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
6639   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6640   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer_cm->gc_id());
6641   TraceCollectorStats tcs(counters());
6642 
6643   switch (op) {
6644     case CMS_op_checkpointRootsInitial: {
6645       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6646       checkpointRootsInitial(true);       // asynch
6647       if (PrintGC) {
6648         _cmsGen->printOccupancy("initial-mark");
6649       }
6650       break;
6651     }
6652     case CMS_op_checkpointRootsFinal: {
6653       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6654       checkpointRootsFinal(true,    // asynch
6655                            false,   // !clear_all_soft_refs
6656                            false);  // !init_mark_was_synchronous
6657       if (PrintGC) {
6658         _cmsGen->printOccupancy("remark");
6659       }
6660       break;
6661     }
6662     default:
6663       fatal("No such CMS_op");
6664   }
6665 }
6666 
6667 #ifndef PRODUCT
6668 size_t const CMSCollector::skip_header_HeapWords() {
6669   return FreeChunk::header_size();
6670 }
6671 
6672 // Try and collect here conditions that should hold when
6673 // CMS thread is exiting. The idea is that the foreground GC
6674 // thread should not be blocked if it wants to terminate
6675 // the CMS thread and yet continue to run the VM for a while
6676 // after that.
6677 void CMSCollector::verify_ok_to_terminate() const {
6678   assert(Thread::current()->is_ConcurrentGC_thread(),
6679          "should be called by CMS thread");
6680   assert(!_foregroundGCShouldWait, "should be false");
6681   // We could check here that all the various low-level locks
6682   // are not held by the CMS thread, but that is overkill; see
6683   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
6684   // is checked.
6685 }
6686 #endif
6687 
6688 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
6689    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
6690           "missing Printezis mark?");
6691   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6692   size_t size = pointer_delta(nextOneAddr + 1, addr);
6693   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6694          "alignment problem");
6695   assert(size >= 3, "Necessary for Printezis marks to work");
6696   return size;
6697 }
6698 
6699 // A variant of the above (block_size_using_printezis_bits()) except
6700 // that we return 0 if the P-bits are not yet set.
6701 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
6702   if (_markBitMap.isMarked(addr + 1)) {
6703     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
6704     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6705     size_t size = pointer_delta(nextOneAddr + 1, addr);
6706     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6707            "alignment problem");
6708     assert(size >= 3, "Necessary for Printezis marks to work");
6709     return size;
6710   }
6711   return 0;
6712 }
6713 
6714 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
6715   size_t sz = 0;
6716   oop p = (oop)addr;
6717   if (p->klass_or_null() != NULL) {
6718     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
6719   } else {
6720     sz = block_size_using_printezis_bits(addr);
6721   }
6722   assert(sz > 0, "size must be nonzero");
6723   HeapWord* next_block = addr + sz;
6724   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
6725                                              CardTableModRefBS::card_size);
6726   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
6727          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
6728          "must be different cards");
6729   return next_card;
6730 }
6731 
6732 
6733 // CMS Bit Map Wrapper /////////////////////////////////////////
6734 
6735 // Construct a CMS bit map infrastructure, but don't create the
6736 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
6737 // further below.
6738 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
6739   _bm(),
6740   _shifter(shifter),
6741   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
6742 {
6743   _bmStartWord = 0;
6744   _bmWordSize  = 0;
6745 }
6746 
6747 bool CMSBitMap::allocate(MemRegion mr) {
6748   _bmStartWord = mr.start();
6749   _bmWordSize  = mr.word_size();
6750   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
6751                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
6752   if (!brs.is_reserved()) {
6753     warning("CMS bit map allocation failure");
6754     return false;
6755   }
6756   // For now we'll just commit all of the bit map up fromt.
6757   // Later on we'll try to be more parsimonious with swap.
6758   if (!_virtual_space.initialize(brs, brs.size())) {
6759     warning("CMS bit map backing store failure");
6760     return false;
6761   }
6762   assert(_virtual_space.committed_size() == brs.size(),
6763          "didn't reserve backing store for all of CMS bit map?");
6764   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
6765   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
6766          _bmWordSize, "inconsistency in bit map sizing");
6767   _bm.set_size(_bmWordSize >> _shifter);
6768 
6769   // bm.clear(); // can we rely on getting zero'd memory? verify below
6770   assert(isAllClear(),
6771          "Expected zero'd memory from ReservedSpace constructor");
6772   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
6773          "consistency check");
6774   return true;
6775 }
6776 
6777 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
6778   HeapWord *next_addr, *end_addr, *last_addr;
6779   assert_locked();
6780   assert(covers(mr), "out-of-range error");
6781   // XXX assert that start and end are appropriately aligned
6782   for (next_addr = mr.start(), end_addr = mr.end();
6783        next_addr < end_addr; next_addr = last_addr) {
6784     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
6785     last_addr = dirty_region.end();
6786     if (!dirty_region.is_empty()) {
6787       cl->do_MemRegion(dirty_region);
6788     } else {
6789       assert(last_addr == end_addr, "program logic");
6790       return;
6791     }
6792   }
6793 }
6794 
6795 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
6796   _bm.print_on_error(st, prefix);
6797 }
6798 
6799 #ifndef PRODUCT
6800 void CMSBitMap::assert_locked() const {
6801   CMSLockVerifier::assert_locked(lock());
6802 }
6803 
6804 bool CMSBitMap::covers(MemRegion mr) const {
6805   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
6806   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
6807          "size inconsistency");
6808   return (mr.start() >= _bmStartWord) &&
6809          (mr.end()   <= endWord());
6810 }
6811 
6812 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
6813     return (start >= _bmStartWord && (start + size) <= endWord());
6814 }
6815 
6816 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
6817   // verify that there are no 1 bits in the interval [left, right)
6818   FalseBitMapClosure falseBitMapClosure;
6819   iterate(&falseBitMapClosure, left, right);
6820 }
6821 
6822 void CMSBitMap::region_invariant(MemRegion mr)
6823 {
6824   assert_locked();
6825   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
6826   assert(!mr.is_empty(), "unexpected empty region");
6827   assert(covers(mr), "mr should be covered by bit map");
6828   // convert address range into offset range
6829   size_t start_ofs = heapWordToOffset(mr.start());
6830   // Make sure that end() is appropriately aligned
6831   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
6832                         ((intptr_t) 1 << (_shifter+LogHeapWordSize))),
6833          "Misaligned mr.end()");
6834   size_t end_ofs   = heapWordToOffset(mr.end());
6835   assert(end_ofs > start_ofs, "Should mark at least one bit");
6836 }
6837 
6838 #endif
6839 
6840 bool CMSMarkStack::allocate(size_t size) {
6841   // allocate a stack of the requisite depth
6842   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6843                    size * sizeof(oop)));
6844   if (!rs.is_reserved()) {
6845     warning("CMSMarkStack allocation failure");
6846     return false;
6847   }
6848   if (!_virtual_space.initialize(rs, rs.size())) {
6849     warning("CMSMarkStack backing store failure");
6850     return false;
6851   }
6852   assert(_virtual_space.committed_size() == rs.size(),
6853          "didn't reserve backing store for all of CMS stack?");
6854   _base = (oop*)(_virtual_space.low());
6855   _index = 0;
6856   _capacity = size;
6857   NOT_PRODUCT(_max_depth = 0);
6858   return true;
6859 }
6860 
6861 // XXX FIX ME !!! In the MT case we come in here holding a
6862 // leaf lock. For printing we need to take a further lock
6863 // which has lower rank. We need to recallibrate the two
6864 // lock-ranks involved in order to be able to rpint the
6865 // messages below. (Or defer the printing to the caller.
6866 // For now we take the expedient path of just disabling the
6867 // messages for the problematic case.)
6868 void CMSMarkStack::expand() {
6869   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6870   if (_capacity == MarkStackSizeMax) {
6871     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6872       // We print a warning message only once per CMS cycle.
6873       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6874     }
6875     return;
6876   }
6877   // Double capacity if possible
6878   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6879   // Do not give up existing stack until we have managed to
6880   // get the double capacity that we desired.
6881   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6882                    new_capacity * sizeof(oop)));
6883   if (rs.is_reserved()) {
6884     // Release the backing store associated with old stack
6885     _virtual_space.release();
6886     // Reinitialize virtual space for new stack
6887     if (!_virtual_space.initialize(rs, rs.size())) {
6888       fatal("Not enough swap for expanded marking stack");
6889     }
6890     _base = (oop*)(_virtual_space.low());
6891     _index = 0;
6892     _capacity = new_capacity;
6893   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6894     // Failed to double capacity, continue;
6895     // we print a detail message only once per CMS cycle.
6896     gclog_or_tty->print(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to "
6897             SIZE_FORMAT "K",
6898             _capacity / K, new_capacity / K);
6899   }
6900 }
6901 
6902 
6903 // Closures
6904 // XXX: there seems to be a lot of code  duplication here;
6905 // should refactor and consolidate common code.
6906 
6907 // This closure is used to mark refs into the CMS generation in
6908 // the CMS bit map. Called at the first checkpoint. This closure
6909 // assumes that we do not need to re-mark dirty cards; if the CMS
6910 // generation on which this is used is not an oldest
6911 // generation then this will lose younger_gen cards!
6912 
6913 MarkRefsIntoClosure::MarkRefsIntoClosure(
6914   MemRegion span, CMSBitMap* bitMap):
6915     _span(span),
6916     _bitMap(bitMap)
6917 {
6918     assert(_ref_processor == NULL, "deliberately left NULL");
6919     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6920 }
6921 
6922 void MarkRefsIntoClosure::do_oop(oop obj) {
6923   // if p points into _span, then mark corresponding bit in _markBitMap
6924   assert(obj->is_oop(), "expected an oop");
6925   HeapWord* addr = (HeapWord*)obj;
6926   if (_span.contains(addr)) {
6927     // this should be made more efficient
6928     _bitMap->mark(addr);
6929   }
6930 }
6931 
6932 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6933 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6934 
6935 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6936   MemRegion span, CMSBitMap* bitMap):
6937     _span(span),
6938     _bitMap(bitMap)
6939 {
6940     assert(_ref_processor == NULL, "deliberately left NULL");
6941     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6942 }
6943 
6944 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6945   // if p points into _span, then mark corresponding bit in _markBitMap
6946   assert(obj->is_oop(), "expected an oop");
6947   HeapWord* addr = (HeapWord*)obj;
6948   if (_span.contains(addr)) {
6949     // this should be made more efficient
6950     _bitMap->par_mark(addr);
6951   }
6952 }
6953 
6954 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6955 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6956 
6957 // A variant of the above, used for CMS marking verification.
6958 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6959   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6960     _span(span),
6961     _verification_bm(verification_bm),
6962     _cms_bm(cms_bm)
6963 {
6964     assert(_ref_processor == NULL, "deliberately left NULL");
6965     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6966 }
6967 
6968 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6969   // if p points into _span, then mark corresponding bit in _markBitMap
6970   assert(obj->is_oop(), "expected an oop");
6971   HeapWord* addr = (HeapWord*)obj;
6972   if (_span.contains(addr)) {
6973     _verification_bm->mark(addr);
6974     if (!_cms_bm->isMarked(addr)) {
6975       oop(addr)->print();
6976       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
6977       fatal("... aborting");
6978     }
6979   }
6980 }
6981 
6982 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6983 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6984 
6985 //////////////////////////////////////////////////
6986 // MarkRefsIntoAndScanClosure
6987 //////////////////////////////////////////////////
6988 
6989 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6990                                                        ReferenceProcessor* rp,
6991                                                        CMSBitMap* bit_map,
6992                                                        CMSBitMap* mod_union_table,
6993                                                        CMSMarkStack*  mark_stack,
6994                                                        CMSCollector* collector,
6995                                                        bool should_yield,
6996                                                        bool concurrent_precleaning):
6997   _collector(collector),
6998   _span(span),
6999   _bit_map(bit_map),
7000   _mark_stack(mark_stack),
7001   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
7002                       mark_stack, concurrent_precleaning),
7003   _yield(should_yield),
7004   _concurrent_precleaning(concurrent_precleaning),
7005   _freelistLock(NULL)
7006 {
7007   _ref_processor = rp;
7008   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7009 }
7010 
7011 // This closure is used to mark refs into the CMS generation at the
7012 // second (final) checkpoint, and to scan and transitively follow
7013 // the unmarked oops. It is also used during the concurrent precleaning
7014 // phase while scanning objects on dirty cards in the CMS generation.
7015 // The marks are made in the marking bit map and the marking stack is
7016 // used for keeping the (newly) grey objects during the scan.
7017 // The parallel version (Par_...) appears further below.
7018 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
7019   if (obj != NULL) {
7020     assert(obj->is_oop(), "expected an oop");
7021     HeapWord* addr = (HeapWord*)obj;
7022     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
7023     assert(_collector->overflow_list_is_empty(),
7024            "overflow list should be empty");
7025     if (_span.contains(addr) &&
7026         !_bit_map->isMarked(addr)) {
7027       // mark bit map (object is now grey)
7028       _bit_map->mark(addr);
7029       // push on marking stack (stack should be empty), and drain the
7030       // stack by applying this closure to the oops in the oops popped
7031       // from the stack (i.e. blacken the grey objects)
7032       bool res = _mark_stack->push(obj);
7033       assert(res, "Should have space to push on empty stack");
7034       do {
7035         oop new_oop = _mark_stack->pop();
7036         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7037         assert(_bit_map->isMarked((HeapWord*)new_oop),
7038                "only grey objects on this stack");
7039         // iterate over the oops in this oop, marking and pushing
7040         // the ones in CMS heap (i.e. in _span).
7041         new_oop->oop_iterate(&_pushAndMarkClosure);
7042         // check if it's time to yield
7043         do_yield_check();
7044       } while (!_mark_stack->isEmpty() ||
7045                (!_concurrent_precleaning && take_from_overflow_list()));
7046         // if marking stack is empty, and we are not doing this
7047         // during precleaning, then check the overflow list
7048     }
7049     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7050     assert(_collector->overflow_list_is_empty(),
7051            "overflow list was drained above");
7052     // We could restore evacuated mark words, if any, used for
7053     // overflow list links here because the overflow list is
7054     // provably empty here. That would reduce the maximum
7055     // size requirements for preserved_{oop,mark}_stack.
7056     // But we'll just postpone it until we are all done
7057     // so we can just stream through.
7058     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
7059       _collector->restore_preserved_marks_if_any();
7060       assert(_collector->no_preserved_marks(), "No preserved marks");
7061     }
7062     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
7063            "All preserved marks should have been restored above");
7064   }
7065 }
7066 
7067 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
7068 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
7069 
7070 void MarkRefsIntoAndScanClosure::do_yield_work() {
7071   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7072          "CMS thread should hold CMS token");
7073   assert_lock_strong(_freelistLock);
7074   assert_lock_strong(_bit_map->lock());
7075   // relinquish the free_list_lock and bitMaplock()
7076   _bit_map->lock()->unlock();
7077   _freelistLock->unlock();
7078   ConcurrentMarkSweepThread::desynchronize(true);
7079   ConcurrentMarkSweepThread::acknowledge_yield_request();
7080   _collector->stopTimer();
7081   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7082   if (PrintCMSStatistics != 0) {
7083     _collector->incrementYields();
7084   }
7085   _collector->icms_wait();
7086 
7087   // See the comment in coordinator_yield()
7088   for (unsigned i = 0;
7089        i < CMSYieldSleepCount &&
7090        ConcurrentMarkSweepThread::should_yield() &&
7091        !CMSCollector::foregroundGCIsActive();
7092        ++i) {
7093     os::sleep(Thread::current(), 1, false);
7094     ConcurrentMarkSweepThread::acknowledge_yield_request();
7095   }
7096 
7097   ConcurrentMarkSweepThread::synchronize(true);
7098   _freelistLock->lock_without_safepoint_check();
7099   _bit_map->lock()->lock_without_safepoint_check();
7100   _collector->startTimer();
7101 }
7102 
7103 ///////////////////////////////////////////////////////////
7104 // Par_MarkRefsIntoAndScanClosure: a parallel version of
7105 //                                 MarkRefsIntoAndScanClosure
7106 ///////////////////////////////////////////////////////////
7107 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
7108   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
7109   CMSBitMap* bit_map, OopTaskQueue* work_queue):
7110   _span(span),
7111   _bit_map(bit_map),
7112   _work_queue(work_queue),
7113   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
7114                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
7115   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
7116 {
7117   _ref_processor = rp;
7118   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7119 }
7120 
7121 // This closure is used to mark refs into the CMS generation at the
7122 // second (final) checkpoint, and to scan and transitively follow
7123 // the unmarked oops. The marks are made in the marking bit map and
7124 // the work_queue is used for keeping the (newly) grey objects during
7125 // the scan phase whence they are also available for stealing by parallel
7126 // threads. Since the marking bit map is shared, updates are
7127 // synchronized (via CAS).
7128 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
7129   if (obj != NULL) {
7130     // Ignore mark word because this could be an already marked oop
7131     // that may be chained at the end of the overflow list.
7132     assert(obj->is_oop(true), "expected an oop");
7133     HeapWord* addr = (HeapWord*)obj;
7134     if (_span.contains(addr) &&
7135         !_bit_map->isMarked(addr)) {
7136       // mark bit map (object will become grey):
7137       // It is possible for several threads to be
7138       // trying to "claim" this object concurrently;
7139       // the unique thread that succeeds in marking the
7140       // object first will do the subsequent push on
7141       // to the work queue (or overflow list).
7142       if (_bit_map->par_mark(addr)) {
7143         // push on work_queue (which may not be empty), and trim the
7144         // queue to an appropriate length by applying this closure to
7145         // the oops in the oops popped from the stack (i.e. blacken the
7146         // grey objects)
7147         bool res = _work_queue->push(obj);
7148         assert(res, "Low water mark should be less than capacity?");
7149         trim_queue(_low_water_mark);
7150       } // Else, another thread claimed the object
7151     }
7152   }
7153 }
7154 
7155 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
7156 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
7157 
7158 // This closure is used to rescan the marked objects on the dirty cards
7159 // in the mod union table and the card table proper.
7160 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
7161   oop p, MemRegion mr) {
7162 
7163   size_t size = 0;
7164   HeapWord* addr = (HeapWord*)p;
7165   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7166   assert(_span.contains(addr), "we are scanning the CMS generation");
7167   // check if it's time to yield
7168   if (do_yield_check()) {
7169     // We yielded for some foreground stop-world work,
7170     // and we have been asked to abort this ongoing preclean cycle.
7171     return 0;
7172   }
7173   if (_bitMap->isMarked(addr)) {
7174     // it's marked; is it potentially uninitialized?
7175     if (p->klass_or_null() != NULL) {
7176         // an initialized object; ignore mark word in verification below
7177         // since we are running concurrent with mutators
7178         assert(p->is_oop(true), "should be an oop");
7179         if (p->is_objArray()) {
7180           // objArrays are precisely marked; restrict scanning
7181           // to dirty cards only.
7182           size = CompactibleFreeListSpace::adjustObjectSize(
7183                    p->oop_iterate(_scanningClosure, mr));
7184         } else {
7185           // A non-array may have been imprecisely marked; we need
7186           // to scan object in its entirety.
7187           size = CompactibleFreeListSpace::adjustObjectSize(
7188                    p->oop_iterate(_scanningClosure));
7189         }
7190         #ifdef ASSERT
7191           size_t direct_size =
7192             CompactibleFreeListSpace::adjustObjectSize(p->size());
7193           assert(size == direct_size, "Inconsistency in size");
7194           assert(size >= 3, "Necessary for Printezis marks to work");
7195           if (!_bitMap->isMarked(addr+1)) {
7196             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
7197           } else {
7198             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
7199             assert(_bitMap->isMarked(addr+size-1),
7200                    "inconsistent Printezis mark");
7201           }
7202         #endif // ASSERT
7203     } else {
7204       // an unitialized object
7205       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
7206       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7207       size = pointer_delta(nextOneAddr + 1, addr);
7208       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7209              "alignment problem");
7210       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
7211       // will dirty the card when the klass pointer is installed in the
7212       // object (signalling the completion of initialization).
7213     }
7214   } else {
7215     // Either a not yet marked object or an uninitialized object
7216     if (p->klass_or_null() == NULL) {
7217       // An uninitialized object, skip to the next card, since
7218       // we may not be able to read its P-bits yet.
7219       assert(size == 0, "Initial value");
7220     } else {
7221       // An object not (yet) reached by marking: we merely need to
7222       // compute its size so as to go look at the next block.
7223       assert(p->is_oop(true), "should be an oop");
7224       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
7225     }
7226   }
7227   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7228   return size;
7229 }
7230 
7231 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
7232   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7233          "CMS thread should hold CMS token");
7234   assert_lock_strong(_freelistLock);
7235   assert_lock_strong(_bitMap->lock());
7236   // relinquish the free_list_lock and bitMaplock()
7237   _bitMap->lock()->unlock();
7238   _freelistLock->unlock();
7239   ConcurrentMarkSweepThread::desynchronize(true);
7240   ConcurrentMarkSweepThread::acknowledge_yield_request();
7241   _collector->stopTimer();
7242   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7243   if (PrintCMSStatistics != 0) {
7244     _collector->incrementYields();
7245   }
7246   _collector->icms_wait();
7247 
7248   // See the comment in coordinator_yield()
7249   for (unsigned i = 0; i < CMSYieldSleepCount &&
7250                    ConcurrentMarkSweepThread::should_yield() &&
7251                    !CMSCollector::foregroundGCIsActive(); ++i) {
7252     os::sleep(Thread::current(), 1, false);
7253     ConcurrentMarkSweepThread::acknowledge_yield_request();
7254   }
7255 
7256   ConcurrentMarkSweepThread::synchronize(true);
7257   _freelistLock->lock_without_safepoint_check();
7258   _bitMap->lock()->lock_without_safepoint_check();
7259   _collector->startTimer();
7260 }
7261 
7262 
7263 //////////////////////////////////////////////////////////////////
7264 // SurvivorSpacePrecleanClosure
7265 //////////////////////////////////////////////////////////////////
7266 // This (single-threaded) closure is used to preclean the oops in
7267 // the survivor spaces.
7268 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
7269 
7270   HeapWord* addr = (HeapWord*)p;
7271   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7272   assert(!_span.contains(addr), "we are scanning the survivor spaces");
7273   assert(p->klass_or_null() != NULL, "object should be initializd");
7274   // an initialized object; ignore mark word in verification below
7275   // since we are running concurrent with mutators
7276   assert(p->is_oop(true), "should be an oop");
7277   // Note that we do not yield while we iterate over
7278   // the interior oops of p, pushing the relevant ones
7279   // on our marking stack.
7280   size_t size = p->oop_iterate(_scanning_closure);
7281   do_yield_check();
7282   // Observe that below, we do not abandon the preclean
7283   // phase as soon as we should; rather we empty the
7284   // marking stack before returning. This is to satisfy
7285   // some existing assertions. In general, it may be a
7286   // good idea to abort immediately and complete the marking
7287   // from the grey objects at a later time.
7288   while (!_mark_stack->isEmpty()) {
7289     oop new_oop = _mark_stack->pop();
7290     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7291     assert(_bit_map->isMarked((HeapWord*)new_oop),
7292            "only grey objects on this stack");
7293     // iterate over the oops in this oop, marking and pushing
7294     // the ones in CMS heap (i.e. in _span).
7295     new_oop->oop_iterate(_scanning_closure);
7296     // check if it's time to yield
7297     do_yield_check();
7298   }
7299   unsigned int after_count =
7300     GenCollectedHeap::heap()->total_collections();
7301   bool abort = (_before_count != after_count) ||
7302                _collector->should_abort_preclean();
7303   return abort ? 0 : size;
7304 }
7305 
7306 void SurvivorSpacePrecleanClosure::do_yield_work() {
7307   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7308          "CMS thread should hold CMS token");
7309   assert_lock_strong(_bit_map->lock());
7310   // Relinquish the bit map lock
7311   _bit_map->lock()->unlock();
7312   ConcurrentMarkSweepThread::desynchronize(true);
7313   ConcurrentMarkSweepThread::acknowledge_yield_request();
7314   _collector->stopTimer();
7315   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7316   if (PrintCMSStatistics != 0) {
7317     _collector->incrementYields();
7318   }
7319   _collector->icms_wait();
7320 
7321   // See the comment in coordinator_yield()
7322   for (unsigned i = 0; i < CMSYieldSleepCount &&
7323                        ConcurrentMarkSweepThread::should_yield() &&
7324                        !CMSCollector::foregroundGCIsActive(); ++i) {
7325     os::sleep(Thread::current(), 1, false);
7326     ConcurrentMarkSweepThread::acknowledge_yield_request();
7327   }
7328 
7329   ConcurrentMarkSweepThread::synchronize(true);
7330   _bit_map->lock()->lock_without_safepoint_check();
7331   _collector->startTimer();
7332 }
7333 
7334 // This closure is used to rescan the marked objects on the dirty cards
7335 // in the mod union table and the card table proper. In the parallel
7336 // case, although the bitMap is shared, we do a single read so the
7337 // isMarked() query is "safe".
7338 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
7339   // Ignore mark word because we are running concurrent with mutators
7340   assert(p->is_oop_or_null(true), "expected an oop or null");
7341   HeapWord* addr = (HeapWord*)p;
7342   assert(_span.contains(addr), "we are scanning the CMS generation");
7343   bool is_obj_array = false;
7344   #ifdef ASSERT
7345     if (!_parallel) {
7346       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
7347       assert(_collector->overflow_list_is_empty(),
7348              "overflow list should be empty");
7349 
7350     }
7351   #endif // ASSERT
7352   if (_bit_map->isMarked(addr)) {
7353     // Obj arrays are precisely marked, non-arrays are not;
7354     // so we scan objArrays precisely and non-arrays in their
7355     // entirety.
7356     if (p->is_objArray()) {
7357       is_obj_array = true;
7358       if (_parallel) {
7359         p->oop_iterate(_par_scan_closure, mr);
7360       } else {
7361         p->oop_iterate(_scan_closure, mr);
7362       }
7363     } else {
7364       if (_parallel) {
7365         p->oop_iterate(_par_scan_closure);
7366       } else {
7367         p->oop_iterate(_scan_closure);
7368       }
7369     }
7370   }
7371   #ifdef ASSERT
7372     if (!_parallel) {
7373       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7374       assert(_collector->overflow_list_is_empty(),
7375              "overflow list should be empty");
7376 
7377     }
7378   #endif // ASSERT
7379   return is_obj_array;
7380 }
7381 
7382 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
7383                         MemRegion span,
7384                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
7385                         bool should_yield, bool verifying):
7386   _collector(collector),
7387   _span(span),
7388   _bitMap(bitMap),
7389   _mut(&collector->_modUnionTable),
7390   _markStack(markStack),
7391   _yield(should_yield),
7392   _skipBits(0)
7393 {
7394   assert(_markStack->isEmpty(), "stack should be empty");
7395   _finger = _bitMap->startWord();
7396   _threshold = _finger;
7397   assert(_collector->_restart_addr == NULL, "Sanity check");
7398   assert(_span.contains(_finger), "Out of bounds _finger?");
7399   DEBUG_ONLY(_verifying = verifying;)
7400 }
7401 
7402 void MarkFromRootsClosure::reset(HeapWord* addr) {
7403   assert(_markStack->isEmpty(), "would cause duplicates on stack");
7404   assert(_span.contains(addr), "Out of bounds _finger?");
7405   _finger = addr;
7406   _threshold = (HeapWord*)round_to(
7407                  (intptr_t)_finger, CardTableModRefBS::card_size);
7408 }
7409 
7410 // Should revisit to see if this should be restructured for
7411 // greater efficiency.
7412 bool MarkFromRootsClosure::do_bit(size_t offset) {
7413   if (_skipBits > 0) {
7414     _skipBits--;
7415     return true;
7416   }
7417   // convert offset into a HeapWord*
7418   HeapWord* addr = _bitMap->startWord() + offset;
7419   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
7420          "address out of range");
7421   assert(_bitMap->isMarked(addr), "tautology");
7422   if (_bitMap->isMarked(addr+1)) {
7423     // this is an allocated but not yet initialized object
7424     assert(_skipBits == 0, "tautology");
7425     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
7426     oop p = oop(addr);
7427     if (p->klass_or_null() == NULL) {
7428       DEBUG_ONLY(if (!_verifying) {)
7429         // We re-dirty the cards on which this object lies and increase
7430         // the _threshold so that we'll come back to scan this object
7431         // during the preclean or remark phase. (CMSCleanOnEnter)
7432         if (CMSCleanOnEnter) {
7433           size_t sz = _collector->block_size_using_printezis_bits(addr);
7434           HeapWord* end_card_addr   = (HeapWord*)round_to(
7435                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7436           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7437           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7438           // Bump _threshold to end_card_addr; note that
7439           // _threshold cannot possibly exceed end_card_addr, anyhow.
7440           // This prevents future clearing of the card as the scan proceeds
7441           // to the right.
7442           assert(_threshold <= end_card_addr,
7443                  "Because we are just scanning into this object");
7444           if (_threshold < end_card_addr) {
7445             _threshold = end_card_addr;
7446           }
7447           if (p->klass_or_null() != NULL) {
7448             // Redirty the range of cards...
7449             _mut->mark_range(redirty_range);
7450           } // ...else the setting of klass will dirty the card anyway.
7451         }
7452       DEBUG_ONLY(})
7453       return true;
7454     }
7455   }
7456   scanOopsInOop(addr);
7457   return true;
7458 }
7459 
7460 // We take a break if we've been at this for a while,
7461 // so as to avoid monopolizing the locks involved.
7462 void MarkFromRootsClosure::do_yield_work() {
7463   // First give up the locks, then yield, then re-lock
7464   // We should probably use a constructor/destructor idiom to
7465   // do this unlock/lock or modify the MutexUnlocker class to
7466   // serve our purpose. XXX
7467   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7468          "CMS thread should hold CMS token");
7469   assert_lock_strong(_bitMap->lock());
7470   _bitMap->lock()->unlock();
7471   ConcurrentMarkSweepThread::desynchronize(true);
7472   ConcurrentMarkSweepThread::acknowledge_yield_request();
7473   _collector->stopTimer();
7474   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7475   if (PrintCMSStatistics != 0) {
7476     _collector->incrementYields();
7477   }
7478   _collector->icms_wait();
7479 
7480   // See the comment in coordinator_yield()
7481   for (unsigned i = 0; i < CMSYieldSleepCount &&
7482                        ConcurrentMarkSweepThread::should_yield() &&
7483                        !CMSCollector::foregroundGCIsActive(); ++i) {
7484     os::sleep(Thread::current(), 1, false);
7485     ConcurrentMarkSweepThread::acknowledge_yield_request();
7486   }
7487 
7488   ConcurrentMarkSweepThread::synchronize(true);
7489   _bitMap->lock()->lock_without_safepoint_check();
7490   _collector->startTimer();
7491 }
7492 
7493 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
7494   assert(_bitMap->isMarked(ptr), "expected bit to be set");
7495   assert(_markStack->isEmpty(),
7496          "should drain stack to limit stack usage");
7497   // convert ptr to an oop preparatory to scanning
7498   oop obj = oop(ptr);
7499   // Ignore mark word in verification below, since we
7500   // may be running concurrent with mutators.
7501   assert(obj->is_oop(true), "should be an oop");
7502   assert(_finger <= ptr, "_finger runneth ahead");
7503   // advance the finger to right end of this object
7504   _finger = ptr + obj->size();
7505   assert(_finger > ptr, "we just incremented it above");
7506   // On large heaps, it may take us some time to get through
7507   // the marking phase (especially if running iCMS). During
7508   // this time it's possible that a lot of mutations have
7509   // accumulated in the card table and the mod union table --
7510   // these mutation records are redundant until we have
7511   // actually traced into the corresponding card.
7512   // Here, we check whether advancing the finger would make
7513   // us cross into a new card, and if so clear corresponding
7514   // cards in the MUT (preclean them in the card-table in the
7515   // future).
7516 
7517   DEBUG_ONLY(if (!_verifying) {)
7518     // The clean-on-enter optimization is disabled by default,
7519     // until we fix 6178663.
7520     if (CMSCleanOnEnter && (_finger > _threshold)) {
7521       // [_threshold, _finger) represents the interval
7522       // of cards to be cleared  in MUT (or precleaned in card table).
7523       // The set of cards to be cleared is all those that overlap
7524       // with the interval [_threshold, _finger); note that
7525       // _threshold is always kept card-aligned but _finger isn't
7526       // always card-aligned.
7527       HeapWord* old_threshold = _threshold;
7528       assert(old_threshold == (HeapWord*)round_to(
7529               (intptr_t)old_threshold, CardTableModRefBS::card_size),
7530              "_threshold should always be card-aligned");
7531       _threshold = (HeapWord*)round_to(
7532                      (intptr_t)_finger, CardTableModRefBS::card_size);
7533       MemRegion mr(old_threshold, _threshold);
7534       assert(!mr.is_empty(), "Control point invariant");
7535       assert(_span.contains(mr), "Should clear within span");
7536       _mut->clear_range(mr);
7537     }
7538   DEBUG_ONLY(})
7539   // Note: the finger doesn't advance while we drain
7540   // the stack below.
7541   PushOrMarkClosure pushOrMarkClosure(_collector,
7542                                       _span, _bitMap, _markStack,
7543                                       _finger, this);
7544   bool res = _markStack->push(obj);
7545   assert(res, "Empty non-zero size stack should have space for single push");
7546   while (!_markStack->isEmpty()) {
7547     oop new_oop = _markStack->pop();
7548     // Skip verifying header mark word below because we are
7549     // running concurrent with mutators.
7550     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7551     // now scan this oop's oops
7552     new_oop->oop_iterate(&pushOrMarkClosure);
7553     do_yield_check();
7554   }
7555   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
7556 }
7557 
7558 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
7559                        CMSCollector* collector, MemRegion span,
7560                        CMSBitMap* bit_map,
7561                        OopTaskQueue* work_queue,
7562                        CMSMarkStack*  overflow_stack,
7563                        bool should_yield):
7564   _collector(collector),
7565   _whole_span(collector->_span),
7566   _span(span),
7567   _bit_map(bit_map),
7568   _mut(&collector->_modUnionTable),
7569   _work_queue(work_queue),
7570   _overflow_stack(overflow_stack),
7571   _yield(should_yield),
7572   _skip_bits(0),
7573   _task(task)
7574 {
7575   assert(_work_queue->size() == 0, "work_queue should be empty");
7576   _finger = span.start();
7577   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
7578   assert(_span.contains(_finger), "Out of bounds _finger?");
7579 }
7580 
7581 // Should revisit to see if this should be restructured for
7582 // greater efficiency.
7583 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
7584   if (_skip_bits > 0) {
7585     _skip_bits--;
7586     return true;
7587   }
7588   // convert offset into a HeapWord*
7589   HeapWord* addr = _bit_map->startWord() + offset;
7590   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
7591          "address out of range");
7592   assert(_bit_map->isMarked(addr), "tautology");
7593   if (_bit_map->isMarked(addr+1)) {
7594     // this is an allocated object that might not yet be initialized
7595     assert(_skip_bits == 0, "tautology");
7596     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
7597     oop p = oop(addr);
7598     if (p->klass_or_null() == NULL) {
7599       // in the case of Clean-on-Enter optimization, redirty card
7600       // and avoid clearing card by increasing  the threshold.
7601       return true;
7602     }
7603   }
7604   scan_oops_in_oop(addr);
7605   return true;
7606 }
7607 
7608 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
7609   assert(_bit_map->isMarked(ptr), "expected bit to be set");
7610   // Should we assert that our work queue is empty or
7611   // below some drain limit?
7612   assert(_work_queue->size() == 0,
7613          "should drain stack to limit stack usage");
7614   // convert ptr to an oop preparatory to scanning
7615   oop obj = oop(ptr);
7616   // Ignore mark word in verification below, since we
7617   // may be running concurrent with mutators.
7618   assert(obj->is_oop(true), "should be an oop");
7619   assert(_finger <= ptr, "_finger runneth ahead");
7620   // advance the finger to right end of this object
7621   _finger = ptr + obj->size();
7622   assert(_finger > ptr, "we just incremented it above");
7623   // On large heaps, it may take us some time to get through
7624   // the marking phase (especially if running iCMS). During
7625   // this time it's possible that a lot of mutations have
7626   // accumulated in the card table and the mod union table --
7627   // these mutation records are redundant until we have
7628   // actually traced into the corresponding card.
7629   // Here, we check whether advancing the finger would make
7630   // us cross into a new card, and if so clear corresponding
7631   // cards in the MUT (preclean them in the card-table in the
7632   // future).
7633 
7634   // The clean-on-enter optimization is disabled by default,
7635   // until we fix 6178663.
7636   if (CMSCleanOnEnter && (_finger > _threshold)) {
7637     // [_threshold, _finger) represents the interval
7638     // of cards to be cleared  in MUT (or precleaned in card table).
7639     // The set of cards to be cleared is all those that overlap
7640     // with the interval [_threshold, _finger); note that
7641     // _threshold is always kept card-aligned but _finger isn't
7642     // always card-aligned.
7643     HeapWord* old_threshold = _threshold;
7644     assert(old_threshold == (HeapWord*)round_to(
7645             (intptr_t)old_threshold, CardTableModRefBS::card_size),
7646            "_threshold should always be card-aligned");
7647     _threshold = (HeapWord*)round_to(
7648                    (intptr_t)_finger, CardTableModRefBS::card_size);
7649     MemRegion mr(old_threshold, _threshold);
7650     assert(!mr.is_empty(), "Control point invariant");
7651     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
7652     _mut->clear_range(mr);
7653   }
7654 
7655   // Note: the local finger doesn't advance while we drain
7656   // the stack below, but the global finger sure can and will.
7657   HeapWord** gfa = _task->global_finger_addr();
7658   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
7659                                       _span, _bit_map,
7660                                       _work_queue,
7661                                       _overflow_stack,
7662                                       _finger,
7663                                       gfa, this);
7664   bool res = _work_queue->push(obj);   // overflow could occur here
7665   assert(res, "Will hold once we use workqueues");
7666   while (true) {
7667     oop new_oop;
7668     if (!_work_queue->pop_local(new_oop)) {
7669       // We emptied our work_queue; check if there's stuff that can
7670       // be gotten from the overflow stack.
7671       if (CMSConcMarkingTask::get_work_from_overflow_stack(
7672             _overflow_stack, _work_queue)) {
7673         do_yield_check();
7674         continue;
7675       } else {  // done
7676         break;
7677       }
7678     }
7679     // Skip verifying header mark word below because we are
7680     // running concurrent with mutators.
7681     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7682     // now scan this oop's oops
7683     new_oop->oop_iterate(&pushOrMarkClosure);
7684     do_yield_check();
7685   }
7686   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
7687 }
7688 
7689 // Yield in response to a request from VM Thread or
7690 // from mutators.
7691 void Par_MarkFromRootsClosure::do_yield_work() {
7692   assert(_task != NULL, "sanity");
7693   _task->yield();
7694 }
7695 
7696 // A variant of the above used for verifying CMS marking work.
7697 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
7698                         MemRegion span,
7699                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7700                         CMSMarkStack*  mark_stack):
7701   _collector(collector),
7702   _span(span),
7703   _verification_bm(verification_bm),
7704   _cms_bm(cms_bm),
7705   _mark_stack(mark_stack),
7706   _pam_verify_closure(collector, span, verification_bm, cms_bm,
7707                       mark_stack)
7708 {
7709   assert(_mark_stack->isEmpty(), "stack should be empty");
7710   _finger = _verification_bm->startWord();
7711   assert(_collector->_restart_addr == NULL, "Sanity check");
7712   assert(_span.contains(_finger), "Out of bounds _finger?");
7713 }
7714 
7715 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
7716   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
7717   assert(_span.contains(addr), "Out of bounds _finger?");
7718   _finger = addr;
7719 }
7720 
7721 // Should revisit to see if this should be restructured for
7722 // greater efficiency.
7723 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
7724   // convert offset into a HeapWord*
7725   HeapWord* addr = _verification_bm->startWord() + offset;
7726   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
7727          "address out of range");
7728   assert(_verification_bm->isMarked(addr), "tautology");
7729   assert(_cms_bm->isMarked(addr), "tautology");
7730 
7731   assert(_mark_stack->isEmpty(),
7732          "should drain stack to limit stack usage");
7733   // convert addr to an oop preparatory to scanning
7734   oop obj = oop(addr);
7735   assert(obj->is_oop(), "should be an oop");
7736   assert(_finger <= addr, "_finger runneth ahead");
7737   // advance the finger to right end of this object
7738   _finger = addr + obj->size();
7739   assert(_finger > addr, "we just incremented it above");
7740   // Note: the finger doesn't advance while we drain
7741   // the stack below.
7742   bool res = _mark_stack->push(obj);
7743   assert(res, "Empty non-zero size stack should have space for single push");
7744   while (!_mark_stack->isEmpty()) {
7745     oop new_oop = _mark_stack->pop();
7746     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
7747     // now scan this oop's oops
7748     new_oop->oop_iterate(&_pam_verify_closure);
7749   }
7750   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
7751   return true;
7752 }
7753 
7754 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
7755   CMSCollector* collector, MemRegion span,
7756   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7757   CMSMarkStack*  mark_stack):
7758   MetadataAwareOopClosure(collector->ref_processor()),
7759   _collector(collector),
7760   _span(span),
7761   _verification_bm(verification_bm),
7762   _cms_bm(cms_bm),
7763   _mark_stack(mark_stack)
7764 { }
7765 
7766 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
7767 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
7768 
7769 // Upon stack overflow, we discard (part of) the stack,
7770 // remembering the least address amongst those discarded
7771 // in CMSCollector's _restart_address.
7772 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
7773   // Remember the least grey address discarded
7774   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
7775   _collector->lower_restart_addr(ra);
7776   _mark_stack->reset();  // discard stack contents
7777   _mark_stack->expand(); // expand the stack if possible
7778 }
7779 
7780 void PushAndMarkVerifyClosure::do_oop(oop obj) {
7781   assert(obj->is_oop_or_null(), "expected an oop or NULL");
7782   HeapWord* addr = (HeapWord*)obj;
7783   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
7784     // Oop lies in _span and isn't yet grey or black
7785     _verification_bm->mark(addr);            // now grey
7786     if (!_cms_bm->isMarked(addr)) {
7787       oop(addr)->print();
7788       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
7789                              addr);
7790       fatal("... aborting");
7791     }
7792 
7793     if (!_mark_stack->push(obj)) { // stack overflow
7794       if (PrintCMSStatistics != 0) {
7795         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7796                                SIZE_FORMAT, _mark_stack->capacity());
7797       }
7798       assert(_mark_stack->isFull(), "Else push should have succeeded");
7799       handle_stack_overflow(addr);
7800     }
7801     // anything including and to the right of _finger
7802     // will be scanned as we iterate over the remainder of the
7803     // bit map
7804   }
7805 }
7806 
7807 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
7808                      MemRegion span,
7809                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
7810                      HeapWord* finger, MarkFromRootsClosure* parent) :
7811   MetadataAwareOopClosure(collector->ref_processor()),
7812   _collector(collector),
7813   _span(span),
7814   _bitMap(bitMap),
7815   _markStack(markStack),
7816   _finger(finger),
7817   _parent(parent)
7818 { }
7819 
7820 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
7821                      MemRegion span,
7822                      CMSBitMap* bit_map,
7823                      OopTaskQueue* work_queue,
7824                      CMSMarkStack*  overflow_stack,
7825                      HeapWord* finger,
7826                      HeapWord** global_finger_addr,
7827                      Par_MarkFromRootsClosure* parent) :
7828   MetadataAwareOopClosure(collector->ref_processor()),
7829   _collector(collector),
7830   _whole_span(collector->_span),
7831   _span(span),
7832   _bit_map(bit_map),
7833   _work_queue(work_queue),
7834   _overflow_stack(overflow_stack),
7835   _finger(finger),
7836   _global_finger_addr(global_finger_addr),
7837   _parent(parent)
7838 { }
7839 
7840 // Assumes thread-safe access by callers, who are
7841 // responsible for mutual exclusion.
7842 void CMSCollector::lower_restart_addr(HeapWord* low) {
7843   assert(_span.contains(low), "Out of bounds addr");
7844   if (_restart_addr == NULL) {
7845     _restart_addr = low;
7846   } else {
7847     _restart_addr = MIN2(_restart_addr, low);
7848   }
7849 }
7850 
7851 // Upon stack overflow, we discard (part of) the stack,
7852 // remembering the least address amongst those discarded
7853 // in CMSCollector's _restart_address.
7854 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7855   // Remember the least grey address discarded
7856   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
7857   _collector->lower_restart_addr(ra);
7858   _markStack->reset();  // discard stack contents
7859   _markStack->expand(); // expand the stack if possible
7860 }
7861 
7862 // Upon stack overflow, we discard (part of) the stack,
7863 // remembering the least address amongst those discarded
7864 // in CMSCollector's _restart_address.
7865 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7866   // We need to do this under a mutex to prevent other
7867   // workers from interfering with the work done below.
7868   MutexLockerEx ml(_overflow_stack->par_lock(),
7869                    Mutex::_no_safepoint_check_flag);
7870   // Remember the least grey address discarded
7871   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7872   _collector->lower_restart_addr(ra);
7873   _overflow_stack->reset();  // discard stack contents
7874   _overflow_stack->expand(); // expand the stack if possible
7875 }
7876 
7877 void PushOrMarkClosure::do_oop(oop obj) {
7878   // Ignore mark word because we are running concurrent with mutators.
7879   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7880   HeapWord* addr = (HeapWord*)obj;
7881   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7882     // Oop lies in _span and isn't yet grey or black
7883     _bitMap->mark(addr);            // now grey
7884     if (addr < _finger) {
7885       // the bit map iteration has already either passed, or
7886       // sampled, this bit in the bit map; we'll need to
7887       // use the marking stack to scan this oop's oops.
7888       bool simulate_overflow = false;
7889       NOT_PRODUCT(
7890         if (CMSMarkStackOverflowALot &&
7891             _collector->simulate_overflow()) {
7892           // simulate a stack overflow
7893           simulate_overflow = true;
7894         }
7895       )
7896       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7897         if (PrintCMSStatistics != 0) {
7898           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7899                                  SIZE_FORMAT, _markStack->capacity());
7900         }
7901         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7902         handle_stack_overflow(addr);
7903       }
7904     }
7905     // anything including and to the right of _finger
7906     // will be scanned as we iterate over the remainder of the
7907     // bit map
7908     do_yield_check();
7909   }
7910 }
7911 
7912 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7913 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7914 
7915 void Par_PushOrMarkClosure::do_oop(oop obj) {
7916   // Ignore mark word because we are running concurrent with mutators.
7917   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7918   HeapWord* addr = (HeapWord*)obj;
7919   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7920     // Oop lies in _span and isn't yet grey or black
7921     // We read the global_finger (volatile read) strictly after marking oop
7922     bool res = _bit_map->par_mark(addr);    // now grey
7923     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7924     // Should we push this marked oop on our stack?
7925     // -- if someone else marked it, nothing to do
7926     // -- if target oop is above global finger nothing to do
7927     // -- if target oop is in chunk and above local finger
7928     //      then nothing to do
7929     // -- else push on work queue
7930     if (   !res       // someone else marked it, they will deal with it
7931         || (addr >= *gfa)  // will be scanned in a later task
7932         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7933       return;
7934     }
7935     // the bit map iteration has already either passed, or
7936     // sampled, this bit in the bit map; we'll need to
7937     // use the marking stack to scan this oop's oops.
7938     bool simulate_overflow = false;
7939     NOT_PRODUCT(
7940       if (CMSMarkStackOverflowALot &&
7941           _collector->simulate_overflow()) {
7942         // simulate a stack overflow
7943         simulate_overflow = true;
7944       }
7945     )
7946     if (simulate_overflow ||
7947         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7948       // stack overflow
7949       if (PrintCMSStatistics != 0) {
7950         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7951                                SIZE_FORMAT, _overflow_stack->capacity());
7952       }
7953       // We cannot assert that the overflow stack is full because
7954       // it may have been emptied since.
7955       assert(simulate_overflow ||
7956              _work_queue->size() == _work_queue->max_elems(),
7957             "Else push should have succeeded");
7958       handle_stack_overflow(addr);
7959     }
7960     do_yield_check();
7961   }
7962 }
7963 
7964 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7965 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7966 
7967 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7968                                        MemRegion span,
7969                                        ReferenceProcessor* rp,
7970                                        CMSBitMap* bit_map,
7971                                        CMSBitMap* mod_union_table,
7972                                        CMSMarkStack*  mark_stack,
7973                                        bool           concurrent_precleaning):
7974   MetadataAwareOopClosure(rp),
7975   _collector(collector),
7976   _span(span),
7977   _bit_map(bit_map),
7978   _mod_union_table(mod_union_table),
7979   _mark_stack(mark_stack),
7980   _concurrent_precleaning(concurrent_precleaning)
7981 {
7982   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7983 }
7984 
7985 // Grey object rescan during pre-cleaning and second checkpoint phases --
7986 // the non-parallel version (the parallel version appears further below.)
7987 void PushAndMarkClosure::do_oop(oop obj) {
7988   // Ignore mark word verification. If during concurrent precleaning,
7989   // the object monitor may be locked. If during the checkpoint
7990   // phases, the object may already have been reached by a  different
7991   // path and may be at the end of the global overflow list (so
7992   // the mark word may be NULL).
7993   assert(obj->is_oop_or_null(true /* ignore mark word */),
7994          "expected an oop or NULL");
7995   HeapWord* addr = (HeapWord*)obj;
7996   // Check if oop points into the CMS generation
7997   // and is not marked
7998   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7999     // a white object ...
8000     _bit_map->mark(addr);         // ... now grey
8001     // push on the marking stack (grey set)
8002     bool simulate_overflow = false;
8003     NOT_PRODUCT(
8004       if (CMSMarkStackOverflowALot &&
8005           _collector->simulate_overflow()) {
8006         // simulate a stack overflow
8007         simulate_overflow = true;
8008       }
8009     )
8010     if (simulate_overflow || !_mark_stack->push(obj)) {
8011       if (_concurrent_precleaning) {
8012          // During precleaning we can just dirty the appropriate card(s)
8013          // in the mod union table, thus ensuring that the object remains
8014          // in the grey set  and continue. In the case of object arrays
8015          // we need to dirty all of the cards that the object spans,
8016          // since the rescan of object arrays will be limited to the
8017          // dirty cards.
8018          // Note that no one can be intefering with us in this action
8019          // of dirtying the mod union table, so no locking or atomics
8020          // are required.
8021          if (obj->is_objArray()) {
8022            size_t sz = obj->size();
8023            HeapWord* end_card_addr = (HeapWord*)round_to(
8024                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
8025            MemRegion redirty_range = MemRegion(addr, end_card_addr);
8026            assert(!redirty_range.is_empty(), "Arithmetical tautology");
8027            _mod_union_table->mark_range(redirty_range);
8028          } else {
8029            _mod_union_table->mark(addr);
8030          }
8031          _collector->_ser_pmc_preclean_ovflw++;
8032       } else {
8033          // During the remark phase, we need to remember this oop
8034          // in the overflow list.
8035          _collector->push_on_overflow_list(obj);
8036          _collector->_ser_pmc_remark_ovflw++;
8037       }
8038     }
8039   }
8040 }
8041 
8042 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
8043                                                MemRegion span,
8044                                                ReferenceProcessor* rp,
8045                                                CMSBitMap* bit_map,
8046                                                OopTaskQueue* work_queue):
8047   MetadataAwareOopClosure(rp),
8048   _collector(collector),
8049   _span(span),
8050   _bit_map(bit_map),
8051   _work_queue(work_queue)
8052 {
8053   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
8054 }
8055 
8056 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
8057 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
8058 
8059 // Grey object rescan during second checkpoint phase --
8060 // the parallel version.
8061 void Par_PushAndMarkClosure::do_oop(oop obj) {
8062   // In the assert below, we ignore the mark word because
8063   // this oop may point to an already visited object that is
8064   // on the overflow stack (in which case the mark word has
8065   // been hijacked for chaining into the overflow stack --
8066   // if this is the last object in the overflow stack then
8067   // its mark word will be NULL). Because this object may
8068   // have been subsequently popped off the global overflow
8069   // stack, and the mark word possibly restored to the prototypical
8070   // value, by the time we get to examined this failing assert in
8071   // the debugger, is_oop_or_null(false) may subsequently start
8072   // to hold.
8073   assert(obj->is_oop_or_null(true),
8074          "expected an oop or NULL");
8075   HeapWord* addr = (HeapWord*)obj;
8076   // Check if oop points into the CMS generation
8077   // and is not marked
8078   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
8079     // a white object ...
8080     // If we manage to "claim" the object, by being the
8081     // first thread to mark it, then we push it on our
8082     // marking stack
8083     if (_bit_map->par_mark(addr)) {     // ... now grey
8084       // push on work queue (grey set)
8085       bool simulate_overflow = false;
8086       NOT_PRODUCT(
8087         if (CMSMarkStackOverflowALot &&
8088             _collector->par_simulate_overflow()) {
8089           // simulate a stack overflow
8090           simulate_overflow = true;
8091         }
8092       )
8093       if (simulate_overflow || !_work_queue->push(obj)) {
8094         _collector->par_push_on_overflow_list(obj);
8095         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
8096       }
8097     } // Else, some other thread got there first
8098   }
8099 }
8100 
8101 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
8102 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
8103 
8104 void CMSPrecleanRefsYieldClosure::do_yield_work() {
8105   Mutex* bml = _collector->bitMapLock();
8106   assert_lock_strong(bml);
8107   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8108          "CMS thread should hold CMS token");
8109 
8110   bml->unlock();
8111   ConcurrentMarkSweepThread::desynchronize(true);
8112 
8113   ConcurrentMarkSweepThread::acknowledge_yield_request();
8114 
8115   _collector->stopTimer();
8116   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8117   if (PrintCMSStatistics != 0) {
8118     _collector->incrementYields();
8119   }
8120   _collector->icms_wait();
8121 
8122   // See the comment in coordinator_yield()
8123   for (unsigned i = 0; i < CMSYieldSleepCount &&
8124                        ConcurrentMarkSweepThread::should_yield() &&
8125                        !CMSCollector::foregroundGCIsActive(); ++i) {
8126     os::sleep(Thread::current(), 1, false);
8127     ConcurrentMarkSweepThread::acknowledge_yield_request();
8128   }
8129 
8130   ConcurrentMarkSweepThread::synchronize(true);
8131   bml->lock();
8132 
8133   _collector->startTimer();
8134 }
8135 
8136 bool CMSPrecleanRefsYieldClosure::should_return() {
8137   if (ConcurrentMarkSweepThread::should_yield()) {
8138     do_yield_work();
8139   }
8140   return _collector->foregroundGCIsActive();
8141 }
8142 
8143 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
8144   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
8145          "mr should be aligned to start at a card boundary");
8146   // We'd like to assert:
8147   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
8148   //        "mr should be a range of cards");
8149   // However, that would be too strong in one case -- the last
8150   // partition ends at _unallocated_block which, in general, can be
8151   // an arbitrary boundary, not necessarily card aligned.
8152   if (PrintCMSStatistics != 0) {
8153     _num_dirty_cards +=
8154          mr.word_size()/CardTableModRefBS::card_size_in_words;
8155   }
8156   _space->object_iterate_mem(mr, &_scan_cl);
8157 }
8158 
8159 SweepClosure::SweepClosure(CMSCollector* collector,
8160                            ConcurrentMarkSweepGeneration* g,
8161                            CMSBitMap* bitMap, bool should_yield) :
8162   _collector(collector),
8163   _g(g),
8164   _sp(g->cmsSpace()),
8165   _limit(_sp->sweep_limit()),
8166   _freelistLock(_sp->freelistLock()),
8167   _bitMap(bitMap),
8168   _yield(should_yield),
8169   _inFreeRange(false),           // No free range at beginning of sweep
8170   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
8171   _lastFreeRangeCoalesced(false),
8172   _freeFinger(g->used_region().start())
8173 {
8174   NOT_PRODUCT(
8175     _numObjectsFreed = 0;
8176     _numWordsFreed   = 0;
8177     _numObjectsLive = 0;
8178     _numWordsLive = 0;
8179     _numObjectsAlreadyFree = 0;
8180     _numWordsAlreadyFree = 0;
8181     _last_fc = NULL;
8182 
8183     _sp->initializeIndexedFreeListArrayReturnedBytes();
8184     _sp->dictionary()->initialize_dict_returned_bytes();
8185   )
8186   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8187          "sweep _limit out of bounds");
8188   if (CMSTraceSweeper) {
8189     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
8190                         _limit);
8191   }
8192 }
8193 
8194 void SweepClosure::print_on(outputStream* st) const {
8195   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
8196                 _sp->bottom(), _sp->end());
8197   tty->print_cr("_limit = " PTR_FORMAT, _limit);
8198   tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger);
8199   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);)
8200   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
8201                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
8202 }
8203 
8204 #ifndef PRODUCT
8205 // Assertion checking only:  no useful work in product mode --
8206 // however, if any of the flags below become product flags,
8207 // you may need to review this code to see if it needs to be
8208 // enabled in product mode.
8209 SweepClosure::~SweepClosure() {
8210   assert_lock_strong(_freelistLock);
8211   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8212          "sweep _limit out of bounds");
8213   if (inFreeRange()) {
8214     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
8215     print();
8216     ShouldNotReachHere();
8217   }
8218   if (Verbose && PrintGC) {
8219     gclog_or_tty->print("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
8220                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
8221     gclog_or_tty->print_cr("\nLive " SIZE_FORMAT " objects,  "
8222                            SIZE_FORMAT " bytes  "
8223       "Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
8224       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
8225       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
8226     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
8227                         * sizeof(HeapWord);
8228     gclog_or_tty->print_cr("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
8229 
8230     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
8231       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
8232       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
8233       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
8234       gclog_or_tty->print("Returned " SIZE_FORMAT " bytes", returned_bytes);
8235       gclog_or_tty->print("   Indexed List Returned " SIZE_FORMAT " bytes",
8236         indexListReturnedBytes);
8237       gclog_or_tty->print_cr("        Dictionary Returned " SIZE_FORMAT " bytes",
8238         dict_returned_bytes);
8239     }
8240   }
8241   if (CMSTraceSweeper) {
8242     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
8243                            _limit);
8244   }
8245 }
8246 #endif  // PRODUCT
8247 
8248 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
8249     bool freeRangeInFreeLists) {
8250   if (CMSTraceSweeper) {
8251     gclog_or_tty->print("---- Start free range at 0x%x with free block (%d)\n",
8252                freeFinger, freeRangeInFreeLists);
8253   }
8254   assert(!inFreeRange(), "Trampling existing free range");
8255   set_inFreeRange(true);
8256   set_lastFreeRangeCoalesced(false);
8257 
8258   set_freeFinger(freeFinger);
8259   set_freeRangeInFreeLists(freeRangeInFreeLists);
8260   if (CMSTestInFreeList) {
8261     if (freeRangeInFreeLists) {
8262       FreeChunk* fc = (FreeChunk*) freeFinger;
8263       assert(fc->is_free(), "A chunk on the free list should be free.");
8264       assert(fc->size() > 0, "Free range should have a size");
8265       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
8266     }
8267   }
8268 }
8269 
8270 // Note that the sweeper runs concurrently with mutators. Thus,
8271 // it is possible for direct allocation in this generation to happen
8272 // in the middle of the sweep. Note that the sweeper also coalesces
8273 // contiguous free blocks. Thus, unless the sweeper and the allocator
8274 // synchronize appropriately freshly allocated blocks may get swept up.
8275 // This is accomplished by the sweeper locking the free lists while
8276 // it is sweeping. Thus blocks that are determined to be free are
8277 // indeed free. There is however one additional complication:
8278 // blocks that have been allocated since the final checkpoint and
8279 // mark, will not have been marked and so would be treated as
8280 // unreachable and swept up. To prevent this, the allocator marks
8281 // the bit map when allocating during the sweep phase. This leads,
8282 // however, to a further complication -- objects may have been allocated
8283 // but not yet initialized -- in the sense that the header isn't yet
8284 // installed. The sweeper can not then determine the size of the block
8285 // in order to skip over it. To deal with this case, we use a technique
8286 // (due to Printezis) to encode such uninitialized block sizes in the
8287 // bit map. Since the bit map uses a bit per every HeapWord, but the
8288 // CMS generation has a minimum object size of 3 HeapWords, it follows
8289 // that "normal marks" won't be adjacent in the bit map (there will
8290 // always be at least two 0 bits between successive 1 bits). We make use
8291 // of these "unused" bits to represent uninitialized blocks -- the bit
8292 // corresponding to the start of the uninitialized object and the next
8293 // bit are both set. Finally, a 1 bit marks the end of the object that
8294 // started with the two consecutive 1 bits to indicate its potentially
8295 // uninitialized state.
8296 
8297 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
8298   FreeChunk* fc = (FreeChunk*)addr;
8299   size_t res;
8300 
8301   // Check if we are done sweeping. Below we check "addr >= _limit" rather
8302   // than "addr == _limit" because although _limit was a block boundary when
8303   // we started the sweep, it may no longer be one because heap expansion
8304   // may have caused us to coalesce the block ending at the address _limit
8305   // with a newly expanded chunk (this happens when _limit was set to the
8306   // previous _end of the space), so we may have stepped past _limit:
8307   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
8308   if (addr >= _limit) { // we have swept up to or past the limit: finish up
8309     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8310            "sweep _limit out of bounds");
8311     assert(addr < _sp->end(), "addr out of bounds");
8312     // Flush any free range we might be holding as a single
8313     // coalesced chunk to the appropriate free list.
8314     if (inFreeRange()) {
8315       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
8316              err_msg("freeFinger() " PTR_FORMAT " is out-of-bounds", freeFinger()));
8317       flush_cur_free_chunk(freeFinger(),
8318                            pointer_delta(addr, freeFinger()));
8319       if (CMSTraceSweeper) {
8320         gclog_or_tty->print("Sweep: last chunk: ");
8321         gclog_or_tty->print("put_free_blk 0x%x (" SIZE_FORMAT ") "
8322                    "[coalesced:" SIZE_FORMAT "]\n",
8323                    freeFinger(), pointer_delta(addr, freeFinger()),
8324                    lastFreeRangeCoalesced());
8325       }
8326     }
8327 
8328     // help the iterator loop finish
8329     return pointer_delta(_sp->end(), addr);
8330   }
8331 
8332   assert(addr < _limit, "sweep invariant");
8333   // check if we should yield
8334   do_yield_check(addr);
8335   if (fc->is_free()) {
8336     // Chunk that is already free
8337     res = fc->size();
8338     do_already_free_chunk(fc);
8339     debug_only(_sp->verifyFreeLists());
8340     // If we flush the chunk at hand in lookahead_and_flush()
8341     // and it's coalesced with a preceding chunk, then the
8342     // process of "mangling" the payload of the coalesced block
8343     // will cause erasure of the size information from the
8344     // (erstwhile) header of all the coalesced blocks but the
8345     // first, so the first disjunct in the assert will not hold
8346     // in that specific case (in which case the second disjunct
8347     // will hold).
8348     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
8349            "Otherwise the size info doesn't change at this step");
8350     NOT_PRODUCT(
8351       _numObjectsAlreadyFree++;
8352       _numWordsAlreadyFree += res;
8353     )
8354     NOT_PRODUCT(_last_fc = fc;)
8355   } else if (!_bitMap->isMarked(addr)) {
8356     // Chunk is fresh garbage
8357     res = do_garbage_chunk(fc);
8358     debug_only(_sp->verifyFreeLists());
8359     NOT_PRODUCT(
8360       _numObjectsFreed++;
8361       _numWordsFreed += res;
8362     )
8363   } else {
8364     // Chunk that is alive.
8365     res = do_live_chunk(fc);
8366     debug_only(_sp->verifyFreeLists());
8367     NOT_PRODUCT(
8368         _numObjectsLive++;
8369         _numWordsLive += res;
8370     )
8371   }
8372   return res;
8373 }
8374 
8375 // For the smart allocation, record following
8376 //  split deaths - a free chunk is removed from its free list because
8377 //      it is being split into two or more chunks.
8378 //  split birth - a free chunk is being added to its free list because
8379 //      a larger free chunk has been split and resulted in this free chunk.
8380 //  coal death - a free chunk is being removed from its free list because
8381 //      it is being coalesced into a large free chunk.
8382 //  coal birth - a free chunk is being added to its free list because
8383 //      it was created when two or more free chunks where coalesced into
8384 //      this free chunk.
8385 //
8386 // These statistics are used to determine the desired number of free
8387 // chunks of a given size.  The desired number is chosen to be relative
8388 // to the end of a CMS sweep.  The desired number at the end of a sweep
8389 // is the
8390 //      count-at-end-of-previous-sweep (an amount that was enough)
8391 //              - count-at-beginning-of-current-sweep  (the excess)
8392 //              + split-births  (gains in this size during interval)
8393 //              - split-deaths  (demands on this size during interval)
8394 // where the interval is from the end of one sweep to the end of the
8395 // next.
8396 //
8397 // When sweeping the sweeper maintains an accumulated chunk which is
8398 // the chunk that is made up of chunks that have been coalesced.  That
8399 // will be termed the left-hand chunk.  A new chunk of garbage that
8400 // is being considered for coalescing will be referred to as the
8401 // right-hand chunk.
8402 //
8403 // When making a decision on whether to coalesce a right-hand chunk with
8404 // the current left-hand chunk, the current count vs. the desired count
8405 // of the left-hand chunk is considered.  Also if the right-hand chunk
8406 // is near the large chunk at the end of the heap (see
8407 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
8408 // left-hand chunk is coalesced.
8409 //
8410 // When making a decision about whether to split a chunk, the desired count
8411 // vs. the current count of the candidate to be split is also considered.
8412 // If the candidate is underpopulated (currently fewer chunks than desired)
8413 // a chunk of an overpopulated (currently more chunks than desired) size may
8414 // be chosen.  The "hint" associated with a free list, if non-null, points
8415 // to a free list which may be overpopulated.
8416 //
8417 
8418 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
8419   const size_t size = fc->size();
8420   // Chunks that cannot be coalesced are not in the
8421   // free lists.
8422   if (CMSTestInFreeList && !fc->cantCoalesce()) {
8423     assert(_sp->verify_chunk_in_free_list(fc),
8424       "free chunk should be in free lists");
8425   }
8426   // a chunk that is already free, should not have been
8427   // marked in the bit map
8428   HeapWord* const addr = (HeapWord*) fc;
8429   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
8430   // Verify that the bit map has no bits marked between
8431   // addr and purported end of this block.
8432   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8433 
8434   // Some chunks cannot be coalesced under any circumstances.
8435   // See the definition of cantCoalesce().
8436   if (!fc->cantCoalesce()) {
8437     // This chunk can potentially be coalesced.
8438     if (_sp->adaptive_freelists()) {
8439       // All the work is done in
8440       do_post_free_or_garbage_chunk(fc, size);
8441     } else {  // Not adaptive free lists
8442       // this is a free chunk that can potentially be coalesced by the sweeper;
8443       if (!inFreeRange()) {
8444         // if the next chunk is a free block that can't be coalesced
8445         // it doesn't make sense to remove this chunk from the free lists
8446         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
8447         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
8448         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
8449             nextChunk->is_free()               &&     // ... which is free...
8450             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
8451           // nothing to do
8452         } else {
8453           // Potentially the start of a new free range:
8454           // Don't eagerly remove it from the free lists.
8455           // No need to remove it if it will just be put
8456           // back again.  (Also from a pragmatic point of view
8457           // if it is a free block in a region that is beyond
8458           // any allocated blocks, an assertion will fail)
8459           // Remember the start of a free run.
8460           initialize_free_range(addr, true);
8461           // end - can coalesce with next chunk
8462         }
8463       } else {
8464         // the midst of a free range, we are coalescing
8465         print_free_block_coalesced(fc);
8466         if (CMSTraceSweeper) {
8467           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
8468         }
8469         // remove it from the free lists
8470         _sp->removeFreeChunkFromFreeLists(fc);
8471         set_lastFreeRangeCoalesced(true);
8472         // If the chunk is being coalesced and the current free range is
8473         // in the free lists, remove the current free range so that it
8474         // will be returned to the free lists in its entirety - all
8475         // the coalesced pieces included.
8476         if (freeRangeInFreeLists()) {
8477           FreeChunk* ffc = (FreeChunk*) freeFinger();
8478           assert(ffc->size() == pointer_delta(addr, freeFinger()),
8479             "Size of free range is inconsistent with chunk size.");
8480           if (CMSTestInFreeList) {
8481             assert(_sp->verify_chunk_in_free_list(ffc),
8482               "free range is not in free lists");
8483           }
8484           _sp->removeFreeChunkFromFreeLists(ffc);
8485           set_freeRangeInFreeLists(false);
8486         }
8487       }
8488     }
8489     // Note that if the chunk is not coalescable (the else arm
8490     // below), we unconditionally flush, without needing to do
8491     // a "lookahead," as we do below.
8492     if (inFreeRange()) lookahead_and_flush(fc, size);
8493   } else {
8494     // Code path common to both original and adaptive free lists.
8495 
8496     // cant coalesce with previous block; this should be treated
8497     // as the end of a free run if any
8498     if (inFreeRange()) {
8499       // we kicked some butt; time to pick up the garbage
8500       assert(freeFinger() < addr, "freeFinger points too high");
8501       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8502     }
8503     // else, nothing to do, just continue
8504   }
8505 }
8506 
8507 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
8508   // This is a chunk of garbage.  It is not in any free list.
8509   // Add it to a free list or let it possibly be coalesced into
8510   // a larger chunk.
8511   HeapWord* const addr = (HeapWord*) fc;
8512   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8513 
8514   if (_sp->adaptive_freelists()) {
8515     // Verify that the bit map has no bits marked between
8516     // addr and purported end of just dead object.
8517     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8518 
8519     do_post_free_or_garbage_chunk(fc, size);
8520   } else {
8521     if (!inFreeRange()) {
8522       // start of a new free range
8523       assert(size > 0, "A free range should have a size");
8524       initialize_free_range(addr, false);
8525     } else {
8526       // this will be swept up when we hit the end of the
8527       // free range
8528       if (CMSTraceSweeper) {
8529         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
8530       }
8531       // If the chunk is being coalesced and the current free range is
8532       // in the free lists, remove the current free range so that it
8533       // will be returned to the free lists in its entirety - all
8534       // the coalesced pieces included.
8535       if (freeRangeInFreeLists()) {
8536         FreeChunk* ffc = (FreeChunk*)freeFinger();
8537         assert(ffc->size() == pointer_delta(addr, freeFinger()),
8538           "Size of free range is inconsistent with chunk size.");
8539         if (CMSTestInFreeList) {
8540           assert(_sp->verify_chunk_in_free_list(ffc),
8541             "free range is not in free lists");
8542         }
8543         _sp->removeFreeChunkFromFreeLists(ffc);
8544         set_freeRangeInFreeLists(false);
8545       }
8546       set_lastFreeRangeCoalesced(true);
8547     }
8548     // this will be swept up when we hit the end of the free range
8549 
8550     // Verify that the bit map has no bits marked between
8551     // addr and purported end of just dead object.
8552     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8553   }
8554   assert(_limit >= addr + size,
8555          "A freshly garbage chunk can't possibly straddle over _limit");
8556   if (inFreeRange()) lookahead_and_flush(fc, size);
8557   return size;
8558 }
8559 
8560 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
8561   HeapWord* addr = (HeapWord*) fc;
8562   // The sweeper has just found a live object. Return any accumulated
8563   // left hand chunk to the free lists.
8564   if (inFreeRange()) {
8565     assert(freeFinger() < addr, "freeFinger points too high");
8566     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8567   }
8568 
8569   // This object is live: we'd normally expect this to be
8570   // an oop, and like to assert the following:
8571   // assert(oop(addr)->is_oop(), "live block should be an oop");
8572   // However, as we commented above, this may be an object whose
8573   // header hasn't yet been initialized.
8574   size_t size;
8575   assert(_bitMap->isMarked(addr), "Tautology for this control point");
8576   if (_bitMap->isMarked(addr + 1)) {
8577     // Determine the size from the bit map, rather than trying to
8578     // compute it from the object header.
8579     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
8580     size = pointer_delta(nextOneAddr + 1, addr);
8581     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
8582            "alignment problem");
8583 
8584 #ifdef ASSERT
8585       if (oop(addr)->klass_or_null() != NULL) {
8586         // Ignore mark word because we are running concurrent with mutators
8587         assert(oop(addr)->is_oop(true), "live block should be an oop");
8588         assert(size ==
8589                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
8590                "P-mark and computed size do not agree");
8591       }
8592 #endif
8593 
8594   } else {
8595     // This should be an initialized object that's alive.
8596     assert(oop(addr)->klass_or_null() != NULL,
8597            "Should be an initialized object");
8598     // Ignore mark word because we are running concurrent with mutators
8599     assert(oop(addr)->is_oop(true), "live block should be an oop");
8600     // Verify that the bit map has no bits marked between
8601     // addr and purported end of this block.
8602     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8603     assert(size >= 3, "Necessary for Printezis marks to work");
8604     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
8605     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
8606   }
8607   return size;
8608 }
8609 
8610 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
8611                                                  size_t chunkSize) {
8612   // do_post_free_or_garbage_chunk() should only be called in the case
8613   // of the adaptive free list allocator.
8614   const bool fcInFreeLists = fc->is_free();
8615   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
8616   assert((HeapWord*)fc <= _limit, "sweep invariant");
8617   if (CMSTestInFreeList && fcInFreeLists) {
8618     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
8619   }
8620 
8621   if (CMSTraceSweeper) {
8622     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
8623   }
8624 
8625   HeapWord* const fc_addr = (HeapWord*) fc;
8626 
8627   bool coalesce = false;
8628   const size_t left  = pointer_delta(fc_addr, freeFinger());
8629   const size_t right = chunkSize;
8630   switch (FLSCoalescePolicy) {
8631     // numeric value forms a coalition aggressiveness metric
8632     case 0:  { // never coalesce
8633       coalesce = false;
8634       break;
8635     }
8636     case 1: { // coalesce if left & right chunks on overpopulated lists
8637       coalesce = _sp->coalOverPopulated(left) &&
8638                  _sp->coalOverPopulated(right);
8639       break;
8640     }
8641     case 2: { // coalesce if left chunk on overpopulated list (default)
8642       coalesce = _sp->coalOverPopulated(left);
8643       break;
8644     }
8645     case 3: { // coalesce if left OR right chunk on overpopulated list
8646       coalesce = _sp->coalOverPopulated(left) ||
8647                  _sp->coalOverPopulated(right);
8648       break;
8649     }
8650     case 4: { // always coalesce
8651       coalesce = true;
8652       break;
8653     }
8654     default:
8655      ShouldNotReachHere();
8656   }
8657 
8658   // Should the current free range be coalesced?
8659   // If the chunk is in a free range and either we decided to coalesce above
8660   // or the chunk is near the large block at the end of the heap
8661   // (isNearLargestChunk() returns true), then coalesce this chunk.
8662   const bool doCoalesce = inFreeRange()
8663                           && (coalesce || _g->isNearLargestChunk(fc_addr));
8664   if (doCoalesce) {
8665     // Coalesce the current free range on the left with the new
8666     // chunk on the right.  If either is on a free list,
8667     // it must be removed from the list and stashed in the closure.
8668     if (freeRangeInFreeLists()) {
8669       FreeChunk* const ffc = (FreeChunk*)freeFinger();
8670       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
8671         "Size of free range is inconsistent with chunk size.");
8672       if (CMSTestInFreeList) {
8673         assert(_sp->verify_chunk_in_free_list(ffc),
8674           "Chunk is not in free lists");
8675       }
8676       _sp->coalDeath(ffc->size());
8677       _sp->removeFreeChunkFromFreeLists(ffc);
8678       set_freeRangeInFreeLists(false);
8679     }
8680     if (fcInFreeLists) {
8681       _sp->coalDeath(chunkSize);
8682       assert(fc->size() == chunkSize,
8683         "The chunk has the wrong size or is not in the free lists");
8684       _sp->removeFreeChunkFromFreeLists(fc);
8685     }
8686     set_lastFreeRangeCoalesced(true);
8687     print_free_block_coalesced(fc);
8688   } else {  // not in a free range and/or should not coalesce
8689     // Return the current free range and start a new one.
8690     if (inFreeRange()) {
8691       // In a free range but cannot coalesce with the right hand chunk.
8692       // Put the current free range into the free lists.
8693       flush_cur_free_chunk(freeFinger(),
8694                            pointer_delta(fc_addr, freeFinger()));
8695     }
8696     // Set up for new free range.  Pass along whether the right hand
8697     // chunk is in the free lists.
8698     initialize_free_range((HeapWord*)fc, fcInFreeLists);
8699   }
8700 }
8701 
8702 // Lookahead flush:
8703 // If we are tracking a free range, and this is the last chunk that
8704 // we'll look at because its end crosses past _limit, we'll preemptively
8705 // flush it along with any free range we may be holding on to. Note that
8706 // this can be the case only for an already free or freshly garbage
8707 // chunk. If this block is an object, it can never straddle
8708 // over _limit. The "straddling" occurs when _limit is set at
8709 // the previous end of the space when this cycle started, and
8710 // a subsequent heap expansion caused the previously co-terminal
8711 // free block to be coalesced with the newly expanded portion,
8712 // thus rendering _limit a non-block-boundary making it dangerous
8713 // for the sweeper to step over and examine.
8714 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
8715   assert(inFreeRange(), "Should only be called if currently in a free range.");
8716   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
8717   assert(_sp->used_region().contains(eob - 1),
8718          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
8719                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
8720                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
8721                  eob, eob-1, _limit, _sp->bottom(), _sp->end(), fc, chunk_size));
8722   if (eob >= _limit) {
8723     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
8724     if (CMSTraceSweeper) {
8725       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
8726                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
8727                              "[" PTR_FORMAT "," PTR_FORMAT ")",
8728                              _limit, fc, eob, _sp->bottom(), _sp->end());
8729     }
8730     // Return the storage we are tracking back into the free lists.
8731     if (CMSTraceSweeper) {
8732       gclog_or_tty->print_cr("Flushing ... ");
8733     }
8734     assert(freeFinger() < eob, "Error");
8735     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
8736   }
8737 }
8738 
8739 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
8740   assert(inFreeRange(), "Should only be called if currently in a free range.");
8741   assert(size > 0,
8742     "A zero sized chunk cannot be added to the free lists.");
8743   if (!freeRangeInFreeLists()) {
8744     if (CMSTestInFreeList) {
8745       FreeChunk* fc = (FreeChunk*) chunk;
8746       fc->set_size(size);
8747       assert(!_sp->verify_chunk_in_free_list(fc),
8748         "chunk should not be in free lists yet");
8749     }
8750     if (CMSTraceSweeper) {
8751       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
8752                     chunk, size);
8753     }
8754     // A new free range is going to be starting.  The current
8755     // free range has not been added to the free lists yet or
8756     // was removed so add it back.
8757     // If the current free range was coalesced, then the death
8758     // of the free range was recorded.  Record a birth now.
8759     if (lastFreeRangeCoalesced()) {
8760       _sp->coalBirth(size);
8761     }
8762     _sp->addChunkAndRepairOffsetTable(chunk, size,
8763             lastFreeRangeCoalesced());
8764   } else if (CMSTraceSweeper) {
8765     gclog_or_tty->print_cr("Already in free list: nothing to flush");
8766   }
8767   set_inFreeRange(false);
8768   set_freeRangeInFreeLists(false);
8769 }
8770 
8771 // We take a break if we've been at this for a while,
8772 // so as to avoid monopolizing the locks involved.
8773 void SweepClosure::do_yield_work(HeapWord* addr) {
8774   // Return current free chunk being used for coalescing (if any)
8775   // to the appropriate freelist.  After yielding, the next
8776   // free block encountered will start a coalescing range of
8777   // free blocks.  If the next free block is adjacent to the
8778   // chunk just flushed, they will need to wait for the next
8779   // sweep to be coalesced.
8780   if (inFreeRange()) {
8781     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8782   }
8783 
8784   // First give up the locks, then yield, then re-lock.
8785   // We should probably use a constructor/destructor idiom to
8786   // do this unlock/lock or modify the MutexUnlocker class to
8787   // serve our purpose. XXX
8788   assert_lock_strong(_bitMap->lock());
8789   assert_lock_strong(_freelistLock);
8790   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8791          "CMS thread should hold CMS token");
8792   _bitMap->lock()->unlock();
8793   _freelistLock->unlock();
8794   ConcurrentMarkSweepThread::desynchronize(true);
8795   ConcurrentMarkSweepThread::acknowledge_yield_request();
8796   _collector->stopTimer();
8797   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8798   if (PrintCMSStatistics != 0) {
8799     _collector->incrementYields();
8800   }
8801   _collector->icms_wait();
8802 
8803   // See the comment in coordinator_yield()
8804   for (unsigned i = 0; i < CMSYieldSleepCount &&
8805                        ConcurrentMarkSweepThread::should_yield() &&
8806                        !CMSCollector::foregroundGCIsActive(); ++i) {
8807     os::sleep(Thread::current(), 1, false);
8808     ConcurrentMarkSweepThread::acknowledge_yield_request();
8809   }
8810 
8811   ConcurrentMarkSweepThread::synchronize(true);
8812   _freelistLock->lock();
8813   _bitMap->lock()->lock_without_safepoint_check();
8814   _collector->startTimer();
8815 }
8816 
8817 #ifndef PRODUCT
8818 // This is actually very useful in a product build if it can
8819 // be called from the debugger.  Compile it into the product
8820 // as needed.
8821 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
8822   return debug_cms_space->verify_chunk_in_free_list(fc);
8823 }
8824 #endif
8825 
8826 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
8827   if (CMSTraceSweeper) {
8828     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
8829                            fc, fc->size());
8830   }
8831 }
8832 
8833 // CMSIsAliveClosure
8834 bool CMSIsAliveClosure::do_object_b(oop obj) {
8835   HeapWord* addr = (HeapWord*)obj;
8836   return addr != NULL &&
8837          (!_span.contains(addr) || _bit_map->isMarked(addr));
8838 }
8839 
8840 
8841 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
8842                       MemRegion span,
8843                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
8844                       bool cpc):
8845   _collector(collector),
8846   _span(span),
8847   _bit_map(bit_map),
8848   _mark_stack(mark_stack),
8849   _concurrent_precleaning(cpc) {
8850   assert(!_span.is_empty(), "Empty span could spell trouble");
8851 }
8852 
8853 
8854 // CMSKeepAliveClosure: the serial version
8855 void CMSKeepAliveClosure::do_oop(oop obj) {
8856   HeapWord* addr = (HeapWord*)obj;
8857   if (_span.contains(addr) &&
8858       !_bit_map->isMarked(addr)) {
8859     _bit_map->mark(addr);
8860     bool simulate_overflow = false;
8861     NOT_PRODUCT(
8862       if (CMSMarkStackOverflowALot &&
8863           _collector->simulate_overflow()) {
8864         // simulate a stack overflow
8865         simulate_overflow = true;
8866       }
8867     )
8868     if (simulate_overflow || !_mark_stack->push(obj)) {
8869       if (_concurrent_precleaning) {
8870         // We dirty the overflown object and let the remark
8871         // phase deal with it.
8872         assert(_collector->overflow_list_is_empty(), "Error");
8873         // In the case of object arrays, we need to dirty all of
8874         // the cards that the object spans. No locking or atomics
8875         // are needed since no one else can be mutating the mod union
8876         // table.
8877         if (obj->is_objArray()) {
8878           size_t sz = obj->size();
8879           HeapWord* end_card_addr =
8880             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8881           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8882           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8883           _collector->_modUnionTable.mark_range(redirty_range);
8884         } else {
8885           _collector->_modUnionTable.mark(addr);
8886         }
8887         _collector->_ser_kac_preclean_ovflw++;
8888       } else {
8889         _collector->push_on_overflow_list(obj);
8890         _collector->_ser_kac_ovflw++;
8891       }
8892     }
8893   }
8894 }
8895 
8896 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8897 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8898 
8899 // CMSParKeepAliveClosure: a parallel version of the above.
8900 // The work queues are private to each closure (thread),
8901 // but (may be) available for stealing by other threads.
8902 void CMSParKeepAliveClosure::do_oop(oop obj) {
8903   HeapWord* addr = (HeapWord*)obj;
8904   if (_span.contains(addr) &&
8905       !_bit_map->isMarked(addr)) {
8906     // In general, during recursive tracing, several threads
8907     // may be concurrently getting here; the first one to
8908     // "tag" it, claims it.
8909     if (_bit_map->par_mark(addr)) {
8910       bool res = _work_queue->push(obj);
8911       assert(res, "Low water mark should be much less than capacity");
8912       // Do a recursive trim in the hope that this will keep
8913       // stack usage lower, but leave some oops for potential stealers
8914       trim_queue(_low_water_mark);
8915     } // Else, another thread got there first
8916   }
8917 }
8918 
8919 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8920 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8921 
8922 void CMSParKeepAliveClosure::trim_queue(uint max) {
8923   while (_work_queue->size() > max) {
8924     oop new_oop;
8925     if (_work_queue->pop_local(new_oop)) {
8926       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8927       assert(_bit_map->isMarked((HeapWord*)new_oop),
8928              "no white objects on this stack!");
8929       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8930       // iterate over the oops in this oop, marking and pushing
8931       // the ones in CMS heap (i.e. in _span).
8932       new_oop->oop_iterate(&_mark_and_push);
8933     }
8934   }
8935 }
8936 
8937 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8938                                 CMSCollector* collector,
8939                                 MemRegion span, CMSBitMap* bit_map,
8940                                 OopTaskQueue* work_queue):
8941   _collector(collector),
8942   _span(span),
8943   _bit_map(bit_map),
8944   _work_queue(work_queue) { }
8945 
8946 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8947   HeapWord* addr = (HeapWord*)obj;
8948   if (_span.contains(addr) &&
8949       !_bit_map->isMarked(addr)) {
8950     if (_bit_map->par_mark(addr)) {
8951       bool simulate_overflow = false;
8952       NOT_PRODUCT(
8953         if (CMSMarkStackOverflowALot &&
8954             _collector->par_simulate_overflow()) {
8955           // simulate a stack overflow
8956           simulate_overflow = true;
8957         }
8958       )
8959       if (simulate_overflow || !_work_queue->push(obj)) {
8960         _collector->par_push_on_overflow_list(obj);
8961         _collector->_par_kac_ovflw++;
8962       }
8963     } // Else another thread got there already
8964   }
8965 }
8966 
8967 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8968 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8969 
8970 //////////////////////////////////////////////////////////////////
8971 //  CMSExpansionCause                /////////////////////////////
8972 //////////////////////////////////////////////////////////////////
8973 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8974   switch (cause) {
8975     case _no_expansion:
8976       return "No expansion";
8977     case _satisfy_free_ratio:
8978       return "Free ratio";
8979     case _satisfy_promotion:
8980       return "Satisfy promotion";
8981     case _satisfy_allocation:
8982       return "allocation";
8983     case _allocate_par_lab:
8984       return "Par LAB";
8985     case _allocate_par_spooling_space:
8986       return "Par Spooling Space";
8987     case _adaptive_size_policy:
8988       return "Ergonomics";
8989     default:
8990       return "unknown";
8991   }
8992 }
8993 
8994 void CMSDrainMarkingStackClosure::do_void() {
8995   // the max number to take from overflow list at a time
8996   const size_t num = _mark_stack->capacity()/4;
8997   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8998          "Overflow list should be NULL during concurrent phases");
8999   while (!_mark_stack->isEmpty() ||
9000          // if stack is empty, check the overflow list
9001          _collector->take_from_overflow_list(num, _mark_stack)) {
9002     oop obj = _mark_stack->pop();
9003     HeapWord* addr = (HeapWord*)obj;
9004     assert(_span.contains(addr), "Should be within span");
9005     assert(_bit_map->isMarked(addr), "Should be marked");
9006     assert(obj->is_oop(), "Should be an oop");
9007     obj->oop_iterate(_keep_alive);
9008   }
9009 }
9010 
9011 void CMSParDrainMarkingStackClosure::do_void() {
9012   // drain queue
9013   trim_queue(0);
9014 }
9015 
9016 // Trim our work_queue so its length is below max at return
9017 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
9018   while (_work_queue->size() > max) {
9019     oop new_oop;
9020     if (_work_queue->pop_local(new_oop)) {
9021       assert(new_oop->is_oop(), "Expected an oop");
9022       assert(_bit_map->isMarked((HeapWord*)new_oop),
9023              "no white objects on this stack!");
9024       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
9025       // iterate over the oops in this oop, marking and pushing
9026       // the ones in CMS heap (i.e. in _span).
9027       new_oop->oop_iterate(&_mark_and_push);
9028     }
9029   }
9030 }
9031 
9032 ////////////////////////////////////////////////////////////////////
9033 // Support for Marking Stack Overflow list handling and related code
9034 ////////////////////////////////////////////////////////////////////
9035 // Much of the following code is similar in shape and spirit to the
9036 // code used in ParNewGC. We should try and share that code
9037 // as much as possible in the future.
9038 
9039 #ifndef PRODUCT
9040 // Debugging support for CMSStackOverflowALot
9041 
9042 // It's OK to call this multi-threaded;  the worst thing
9043 // that can happen is that we'll get a bunch of closely
9044 // spaced simulated oveflows, but that's OK, in fact
9045 // probably good as it would exercise the overflow code
9046 // under contention.
9047 bool CMSCollector::simulate_overflow() {
9048   if (_overflow_counter-- <= 0) { // just being defensive
9049     _overflow_counter = CMSMarkStackOverflowInterval;
9050     return true;
9051   } else {
9052     return false;
9053   }
9054 }
9055 
9056 bool CMSCollector::par_simulate_overflow() {
9057   return simulate_overflow();
9058 }
9059 #endif
9060 
9061 // Single-threaded
9062 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
9063   assert(stack->isEmpty(), "Expected precondition");
9064   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
9065   size_t i = num;
9066   oop  cur = _overflow_list;
9067   const markOop proto = markOopDesc::prototype();
9068   NOT_PRODUCT(ssize_t n = 0;)
9069   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
9070     next = oop(cur->mark());
9071     cur->set_mark(proto);   // until proven otherwise
9072     assert(cur->is_oop(), "Should be an oop");
9073     bool res = stack->push(cur);
9074     assert(res, "Bit off more than can chew?");
9075     NOT_PRODUCT(n++;)
9076   }
9077   _overflow_list = cur;
9078 #ifndef PRODUCT
9079   assert(_num_par_pushes >= n, "Too many pops?");
9080   _num_par_pushes -=n;
9081 #endif
9082   return !stack->isEmpty();
9083 }
9084 
9085 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
9086 // (MT-safe) Get a prefix of at most "num" from the list.
9087 // The overflow list is chained through the mark word of
9088 // each object in the list. We fetch the entire list,
9089 // break off a prefix of the right size and return the
9090 // remainder. If other threads try to take objects from
9091 // the overflow list at that time, they will wait for
9092 // some time to see if data becomes available. If (and
9093 // only if) another thread places one or more object(s)
9094 // on the global list before we have returned the suffix
9095 // to the global list, we will walk down our local list
9096 // to find its end and append the global list to
9097 // our suffix before returning it. This suffix walk can
9098 // prove to be expensive (quadratic in the amount of traffic)
9099 // when there are many objects in the overflow list and
9100 // there is much producer-consumer contention on the list.
9101 // *NOTE*: The overflow list manipulation code here and
9102 // in ParNewGeneration:: are very similar in shape,
9103 // except that in the ParNew case we use the old (from/eden)
9104 // copy of the object to thread the list via its klass word.
9105 // Because of the common code, if you make any changes in
9106 // the code below, please check the ParNew version to see if
9107 // similar changes might be needed.
9108 // CR 6797058 has been filed to consolidate the common code.
9109 bool CMSCollector::par_take_from_overflow_list(size_t num,
9110                                                OopTaskQueue* work_q,
9111                                                int no_of_gc_threads) {
9112   assert(work_q->size() == 0, "First empty local work queue");
9113   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
9114   if (_overflow_list == NULL) {
9115     return false;
9116   }
9117   // Grab the entire list; we'll put back a suffix
9118   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
9119   Thread* tid = Thread::current();
9120   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
9121   // set to ParallelGCThreads.
9122   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
9123   size_t sleep_time_millis = MAX2((size_t)1, num/100);
9124   // If the list is busy, we spin for a short while,
9125   // sleeping between attempts to get the list.
9126   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
9127     os::sleep(tid, sleep_time_millis, false);
9128     if (_overflow_list == NULL) {
9129       // Nothing left to take
9130       return false;
9131     } else if (_overflow_list != BUSY) {
9132       // Try and grab the prefix
9133       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
9134     }
9135   }
9136   // If the list was found to be empty, or we spun long
9137   // enough, we give up and return empty-handed. If we leave
9138   // the list in the BUSY state below, it must be the case that
9139   // some other thread holds the overflow list and will set it
9140   // to a non-BUSY state in the future.
9141   if (prefix == NULL || prefix == BUSY) {
9142      // Nothing to take or waited long enough
9143      if (prefix == NULL) {
9144        // Write back the NULL in case we overwrote it with BUSY above
9145        // and it is still the same value.
9146        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
9147      }
9148      return false;
9149   }
9150   assert(prefix != NULL && prefix != BUSY, "Error");
9151   size_t i = num;
9152   oop cur = prefix;
9153   // Walk down the first "num" objects, unless we reach the end.
9154   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
9155   if (cur->mark() == NULL) {
9156     // We have "num" or fewer elements in the list, so there
9157     // is nothing to return to the global list.
9158     // Write back the NULL in lieu of the BUSY we wrote
9159     // above, if it is still the same value.
9160     if (_overflow_list == BUSY) {
9161       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
9162     }
9163   } else {
9164     // Chop off the suffix and rerturn it to the global list.
9165     assert(cur->mark() != BUSY, "Error");
9166     oop suffix_head = cur->mark(); // suffix will be put back on global list
9167     cur->set_mark(NULL);           // break off suffix
9168     // It's possible that the list is still in the empty(busy) state
9169     // we left it in a short while ago; in that case we may be
9170     // able to place back the suffix without incurring the cost
9171     // of a walk down the list.
9172     oop observed_overflow_list = _overflow_list;
9173     oop cur_overflow_list = observed_overflow_list;
9174     bool attached = false;
9175     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
9176       observed_overflow_list =
9177         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9178       if (cur_overflow_list == observed_overflow_list) {
9179         attached = true;
9180         break;
9181       } else cur_overflow_list = observed_overflow_list;
9182     }
9183     if (!attached) {
9184       // Too bad, someone else sneaked in (at least) an element; we'll need
9185       // to do a splice. Find tail of suffix so we can prepend suffix to global
9186       // list.
9187       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
9188       oop suffix_tail = cur;
9189       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
9190              "Tautology");
9191       observed_overflow_list = _overflow_list;
9192       do {
9193         cur_overflow_list = observed_overflow_list;
9194         if (cur_overflow_list != BUSY) {
9195           // Do the splice ...
9196           suffix_tail->set_mark(markOop(cur_overflow_list));
9197         } else { // cur_overflow_list == BUSY
9198           suffix_tail->set_mark(NULL);
9199         }
9200         // ... and try to place spliced list back on overflow_list ...
9201         observed_overflow_list =
9202           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9203       } while (cur_overflow_list != observed_overflow_list);
9204       // ... until we have succeeded in doing so.
9205     }
9206   }
9207 
9208   // Push the prefix elements on work_q
9209   assert(prefix != NULL, "control point invariant");
9210   const markOop proto = markOopDesc::prototype();
9211   oop next;
9212   NOT_PRODUCT(ssize_t n = 0;)
9213   for (cur = prefix; cur != NULL; cur = next) {
9214     next = oop(cur->mark());
9215     cur->set_mark(proto);   // until proven otherwise
9216     assert(cur->is_oop(), "Should be an oop");
9217     bool res = work_q->push(cur);
9218     assert(res, "Bit off more than we can chew?");
9219     NOT_PRODUCT(n++;)
9220   }
9221 #ifndef PRODUCT
9222   assert(_num_par_pushes >= n, "Too many pops?");
9223   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
9224 #endif
9225   return true;
9226 }
9227 
9228 // Single-threaded
9229 void CMSCollector::push_on_overflow_list(oop p) {
9230   NOT_PRODUCT(_num_par_pushes++;)
9231   assert(p->is_oop(), "Not an oop");
9232   preserve_mark_if_necessary(p);
9233   p->set_mark((markOop)_overflow_list);
9234   _overflow_list = p;
9235 }
9236 
9237 // Multi-threaded; use CAS to prepend to overflow list
9238 void CMSCollector::par_push_on_overflow_list(oop p) {
9239   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
9240   assert(p->is_oop(), "Not an oop");
9241   par_preserve_mark_if_necessary(p);
9242   oop observed_overflow_list = _overflow_list;
9243   oop cur_overflow_list;
9244   do {
9245     cur_overflow_list = observed_overflow_list;
9246     if (cur_overflow_list != BUSY) {
9247       p->set_mark(markOop(cur_overflow_list));
9248     } else {
9249       p->set_mark(NULL);
9250     }
9251     observed_overflow_list =
9252       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
9253   } while (cur_overflow_list != observed_overflow_list);
9254 }
9255 #undef BUSY
9256 
9257 // Single threaded
9258 // General Note on GrowableArray: pushes may silently fail
9259 // because we are (temporarily) out of C-heap for expanding
9260 // the stack. The problem is quite ubiquitous and affects
9261 // a lot of code in the JVM. The prudent thing for GrowableArray
9262 // to do (for now) is to exit with an error. However, that may
9263 // be too draconian in some cases because the caller may be
9264 // able to recover without much harm. For such cases, we
9265 // should probably introduce a "soft_push" method which returns
9266 // an indication of success or failure with the assumption that
9267 // the caller may be able to recover from a failure; code in
9268 // the VM can then be changed, incrementally, to deal with such
9269 // failures where possible, thus, incrementally hardening the VM
9270 // in such low resource situations.
9271 void CMSCollector::preserve_mark_work(oop p, markOop m) {
9272   _preserved_oop_stack.push(p);
9273   _preserved_mark_stack.push(m);
9274   assert(m == p->mark(), "Mark word changed");
9275   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9276          "bijection");
9277 }
9278 
9279 // Single threaded
9280 void CMSCollector::preserve_mark_if_necessary(oop p) {
9281   markOop m = p->mark();
9282   if (m->must_be_preserved(p)) {
9283     preserve_mark_work(p, m);
9284   }
9285 }
9286 
9287 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
9288   markOop m = p->mark();
9289   if (m->must_be_preserved(p)) {
9290     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
9291     // Even though we read the mark word without holding
9292     // the lock, we are assured that it will not change
9293     // because we "own" this oop, so no other thread can
9294     // be trying to push it on the overflow list; see
9295     // the assertion in preserve_mark_work() that checks
9296     // that m == p->mark().
9297     preserve_mark_work(p, m);
9298   }
9299 }
9300 
9301 // We should be able to do this multi-threaded,
9302 // a chunk of stack being a task (this is
9303 // correct because each oop only ever appears
9304 // once in the overflow list. However, it's
9305 // not very easy to completely overlap this with
9306 // other operations, so will generally not be done
9307 // until all work's been completed. Because we
9308 // expect the preserved oop stack (set) to be small,
9309 // it's probably fine to do this single-threaded.
9310 // We can explore cleverer concurrent/overlapped/parallel
9311 // processing of preserved marks if we feel the
9312 // need for this in the future. Stack overflow should
9313 // be so rare in practice and, when it happens, its
9314 // effect on performance so great that this will
9315 // likely just be in the noise anyway.
9316 void CMSCollector::restore_preserved_marks_if_any() {
9317   assert(SafepointSynchronize::is_at_safepoint(),
9318          "world should be stopped");
9319   assert(Thread::current()->is_ConcurrentGC_thread() ||
9320          Thread::current()->is_VM_thread(),
9321          "should be single-threaded");
9322   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9323          "bijection");
9324 
9325   while (!_preserved_oop_stack.is_empty()) {
9326     oop p = _preserved_oop_stack.pop();
9327     assert(p->is_oop(), "Should be an oop");
9328     assert(_span.contains(p), "oop should be in _span");
9329     assert(p->mark() == markOopDesc::prototype(),
9330            "Set when taken from overflow list");
9331     markOop m = _preserved_mark_stack.pop();
9332     p->set_mark(m);
9333   }
9334   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
9335          "stacks were cleared above");
9336 }
9337 
9338 #ifndef PRODUCT
9339 bool CMSCollector::no_preserved_marks() const {
9340   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
9341 }
9342 #endif
9343 
9344 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
9345 {
9346   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
9347   CMSAdaptiveSizePolicy* size_policy =
9348     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
9349   assert(size_policy->is_gc_cms_adaptive_size_policy(),
9350     "Wrong type for size policy");
9351   return size_policy;
9352 }
9353 
9354 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
9355                                            size_t desired_promo_size) {
9356   if (cur_promo_size < desired_promo_size) {
9357     size_t expand_bytes = desired_promo_size - cur_promo_size;
9358     if (PrintAdaptiveSizePolicy && Verbose) {
9359       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9360         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
9361         expand_bytes);
9362     }
9363     expand(expand_bytes,
9364            MinHeapDeltaBytes,
9365            CMSExpansionCause::_adaptive_size_policy);
9366   } else if (desired_promo_size < cur_promo_size) {
9367     size_t shrink_bytes = cur_promo_size - desired_promo_size;
9368     if (PrintAdaptiveSizePolicy && Verbose) {
9369       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9370         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
9371         shrink_bytes);
9372     }
9373     shrink(shrink_bytes);
9374   }
9375 }
9376 
9377 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
9378   GenCollectedHeap* gch = GenCollectedHeap::heap();
9379   CMSGCAdaptivePolicyCounters* counters =
9380     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
9381   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
9382     "Wrong kind of counters");
9383   return counters;
9384 }
9385 
9386 
9387 void ASConcurrentMarkSweepGeneration::update_counters() {
9388   if (UsePerfData) {
9389     _space_counters->update_all();
9390     _gen_counters->update_all();
9391     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9392     GenCollectedHeap* gch = GenCollectedHeap::heap();
9393     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9394     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9395       "Wrong gc statistics type");
9396     counters->update_counters(gc_stats_l);
9397   }
9398 }
9399 
9400 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
9401   if (UsePerfData) {
9402     _space_counters->update_used(used);
9403     _space_counters->update_capacity();
9404     _gen_counters->update_all();
9405 
9406     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9407     GenCollectedHeap* gch = GenCollectedHeap::heap();
9408     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9409     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9410       "Wrong gc statistics type");
9411     counters->update_counters(gc_stats_l);
9412   }
9413 }
9414 
9415 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
9416   assert_locked_or_safepoint(Heap_lock);
9417   assert_lock_strong(freelistLock());
9418   HeapWord* old_end = _cmsSpace->end();
9419   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
9420   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
9421   FreeChunk* chunk_at_end = find_chunk_at_end();
9422   if (chunk_at_end == NULL) {
9423     // No room to shrink
9424     if (PrintGCDetails && Verbose) {
9425       gclog_or_tty->print_cr("No room to shrink: old_end  "
9426         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
9427         " chunk_at_end  " PTR_FORMAT,
9428         old_end, unallocated_start, chunk_at_end);
9429     }
9430     return;
9431   } else {
9432 
9433     // Find the chunk at the end of the space and determine
9434     // how much it can be shrunk.
9435     size_t shrinkable_size_in_bytes = chunk_at_end->size();
9436     size_t aligned_shrinkable_size_in_bytes =
9437       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
9438     assert(unallocated_start <= (HeapWord*) chunk_at_end->end(),
9439       "Inconsistent chunk at end of space");
9440     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
9441     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
9442 
9443     // Shrink the underlying space
9444     _virtual_space.shrink_by(bytes);
9445     if (PrintGCDetails && Verbose) {
9446       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
9447         " desired_bytes " SIZE_FORMAT
9448         " shrinkable_size_in_bytes " SIZE_FORMAT
9449         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
9450         "  bytes  " SIZE_FORMAT,
9451         desired_bytes, shrinkable_size_in_bytes,
9452         aligned_shrinkable_size_in_bytes, bytes);
9453       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
9454         "  unallocated_start  " SIZE_FORMAT,
9455         old_end, unallocated_start);
9456     }
9457 
9458     // If the space did shrink (shrinking is not guaranteed),
9459     // shrink the chunk at the end by the appropriate amount.
9460     if (((HeapWord*)_virtual_space.high()) < old_end) {
9461       size_t new_word_size =
9462         heap_word_size(_virtual_space.committed_size());
9463 
9464       // Have to remove the chunk from the dictionary because it is changing
9465       // size and might be someplace elsewhere in the dictionary.
9466 
9467       // Get the chunk at end, shrink it, and put it
9468       // back.
9469       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
9470       size_t word_size_change = word_size_before - new_word_size;
9471       size_t chunk_at_end_old_size = chunk_at_end->size();
9472       assert(chunk_at_end_old_size >= word_size_change,
9473         "Shrink is too large");
9474       chunk_at_end->set_size(chunk_at_end_old_size -
9475                           word_size_change);
9476       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
9477         word_size_change);
9478 
9479       _cmsSpace->returnChunkToDictionary(chunk_at_end);
9480 
9481       MemRegion mr(_cmsSpace->bottom(), new_word_size);
9482       _bts->resize(new_word_size);  // resize the block offset shared array
9483       Universe::heap()->barrier_set()->resize_covered_region(mr);
9484       _cmsSpace->assert_locked();
9485       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
9486 
9487       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
9488 
9489       // update the space and generation capacity counters
9490       if (UsePerfData) {
9491         _space_counters->update_capacity();
9492         _gen_counters->update_all();
9493       }
9494 
9495       if (Verbose && PrintGCDetails) {
9496         size_t new_mem_size = _virtual_space.committed_size();
9497         size_t old_mem_size = new_mem_size + bytes;
9498         gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
9499                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
9500       }
9501     }
9502 
9503     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
9504       "Inconsistency at end of space");
9505     assert(chunk_at_end->end() == (uintptr_t*) _cmsSpace->end(),
9506       "Shrinking is inconsistent");
9507     return;
9508   }
9509 }
9510 // Transfer some number of overflown objects to usual marking
9511 // stack. Return true if some objects were transferred.
9512 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
9513   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
9514                     (size_t)ParGCDesiredObjsFromOverflowList);
9515 
9516   bool res = _collector->take_from_overflow_list(num, _mark_stack);
9517   assert(_collector->overflow_list_is_empty() || res,
9518          "If list is not empty, we should have taken something");
9519   assert(!res || !_mark_stack->isEmpty(),
9520          "If we took something, it should now be on our stack");
9521   return res;
9522 }
9523 
9524 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
9525   size_t res = _sp->block_size_no_stall(addr, _collector);
9526   if (_sp->block_is_obj(addr)) {
9527     if (_live_bit_map->isMarked(addr)) {
9528       // It can't have been dead in a previous cycle
9529       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
9530     } else {
9531       _dead_bit_map->mark(addr);      // mark the dead object
9532     }
9533   }
9534   // Could be 0, if the block size could not be computed without stalling.
9535   return res;
9536 }
9537 
9538 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
9539 
9540   switch (phase) {
9541     case CMSCollector::InitialMarking:
9542       initialize(true  /* fullGC */ ,
9543                  cause /* cause of the GC */,
9544                  true  /* allMemoryPoolsAffected */,
9545                  true  /* recordGCBeginTime */,
9546                  true  /* recordPreGCUsage */,
9547                  false /* recordPeakUsage */,
9548                  false /* recordPostGCusage */,
9549                  true  /* recordAccumulatedGCTime */,
9550                  false /* recordGCEndTime */,
9551                  false /* countCollection */  );
9552       break;
9553 
9554     case CMSCollector::FinalMarking:
9555       initialize(true  /* fullGC */ ,
9556                  cause /* cause of the GC */,
9557                  true  /* allMemoryPoolsAffected */,
9558                  false /* recordGCBeginTime */,
9559                  false /* recordPreGCUsage */,
9560                  false /* recordPeakUsage */,
9561                  false /* recordPostGCusage */,
9562                  true  /* recordAccumulatedGCTime */,
9563                  false /* recordGCEndTime */,
9564                  false /* countCollection */  );
9565       break;
9566 
9567     case CMSCollector::Sweeping:
9568       initialize(true  /* fullGC */ ,
9569                  cause /* cause of the GC */,
9570                  true  /* allMemoryPoolsAffected */,
9571                  false /* recordGCBeginTime */,
9572                  false /* recordPreGCUsage */,
9573                  true  /* recordPeakUsage */,
9574                  true  /* recordPostGCusage */,
9575                  false /* recordAccumulatedGCTime */,
9576                  true  /* recordGCEndTime */,
9577                  true  /* countCollection */  );
9578       break;
9579 
9580     default:
9581       ShouldNotReachHere();
9582   }
9583 }