/* * Copyright (c) 2017, 2020, Red Hat, Inc. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/epsilon/epsilonHeap.hpp" #include "gc/epsilon/epsilonInitLogger.hpp" #include "gc/epsilon/epsilonMemoryPool.hpp" #include "gc/epsilon/epsilonThreadLocalData.hpp" #include "gc/shared/gcArguments.hpp" #include "gc/shared/locationPrinter.inline.hpp" #include "memory/allocation.hpp" #include "memory/allocation.inline.hpp" #include "memory/resourceArea.hpp" #include "memory/universe.hpp" #include "runtime/atomic.hpp" #include "runtime/globals.hpp" jint EpsilonHeap::initialize() { size_t align = HeapAlignment; size_t init_byte_size = align_up(InitialHeapSize, align); size_t max_byte_size = align_up(MaxHeapSize, align); // Initialize backing storage ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, align); _virtual_space.initialize(heap_rs, init_byte_size); MemRegion committed_region((HeapWord*)_virtual_space.low(), (HeapWord*)_virtual_space.high()); MemRegion reserved_region((HeapWord*)_virtual_space.low_boundary(), (HeapWord*)_virtual_space.high_boundary()); initialize_reserved_region(heap_rs); _space = new ContiguousSpace(); _space->initialize(committed_region, /* clear_space = */ true, /* mangle_space = */ true); // Precompute hot fields _max_tlab_size = MIN2(CollectedHeap::max_tlab_size(), align_object_size(EpsilonMaxTLABSize / HeapWordSize)); _step_counter_update = MIN2(max_byte_size / 16, EpsilonUpdateCountersStep); _step_heap_print = (EpsilonPrintHeapSteps == 0) ? SIZE_MAX : (max_byte_size / EpsilonPrintHeapSteps); _decay_time_ns = (int64_t) EpsilonTLABDecayTime * NANOSECS_PER_MILLISEC; // Enable monitoring _monitoring_support = new EpsilonMonitoringSupport(this); _last_counter_update = 0; _last_heap_print = 0; // Install barrier set BarrierSet::set_barrier_set(new EpsilonBarrierSet()); // All done, print out the configuration EpsilonInitLogger::print(); return JNI_OK; } void EpsilonHeap::post_initialize() { CollectedHeap::post_initialize(); } void EpsilonHeap::initialize_serviceability() { _pool = new EpsilonMemoryPool(this); _memory_manager.add_pool(_pool); } GrowableArray EpsilonHeap::memory_managers() { GrowableArray memory_managers(1); memory_managers.append(&_memory_manager); return memory_managers; } GrowableArray EpsilonHeap::memory_pools() { GrowableArray memory_pools(1); memory_pools.append(_pool); return memory_pools; } size_t EpsilonHeap::unsafe_max_tlab_alloc(Thread* thr) const { // Return max allocatable TLAB size, and let allocation path figure out // the actual allocation size. Note: result should be in bytes. return _max_tlab_size * HeapWordSize; } EpsilonHeap* EpsilonHeap::heap() { return named_heap(CollectedHeap::Epsilon); } HeapWord* EpsilonHeap::allocate_work(size_t size) { assert(is_object_aligned(size), "Allocation size should be aligned: " SIZE_FORMAT, size); HeapWord* res = _space->par_allocate(size); while (res == NULL) { // Allocation failed, attempt expansion, and retry: MutexLocker ml(Heap_lock); size_t space_left = max_capacity() - capacity(); size_t want_space = MAX2(size, EpsilonMinHeapExpand); if (want_space < space_left) { // Enough space to expand in bulk: bool expand = _virtual_space.expand_by(want_space); assert(expand, "Should be able to expand"); } else if (size < space_left) { // No space to expand in bulk, and this allocation is still possible, // take all the remaining space: bool expand = _virtual_space.expand_by(space_left); assert(expand, "Should be able to expand"); } else { // No space left: return NULL; } _space->set_end((HeapWord *) _virtual_space.high()); res = _space->par_allocate(size); } size_t used = _space->used(); // Allocation successful, update counters { size_t last = _last_counter_update; if ((used - last >= _step_counter_update) && Atomic::cmpxchg(&_last_counter_update, last, used) == last) { _monitoring_support->update_counters(); } } // ...and print the occupancy line, if needed { size_t last = _last_heap_print; if ((used - last >= _step_heap_print) && Atomic::cmpxchg(&_last_heap_print, last, used) == last) { print_heap_info(used); print_metaspace_info(); } } assert(is_object_aligned(res), "Object should be aligned: " PTR_FORMAT, p2i(res)); return res; } HeapWord* EpsilonHeap::allocate_new_tlab(size_t min_size, size_t requested_size, size_t* actual_size) { Thread* thread = Thread::current(); // Defaults in case elastic paths are not taken bool fits = true; size_t size = requested_size; size_t ergo_tlab = requested_size; int64_t time = 0; if (EpsilonElasticTLAB) { ergo_tlab = EpsilonThreadLocalData::ergo_tlab_size(thread); if (EpsilonElasticTLABDecay) { int64_t last_time = EpsilonThreadLocalData::last_tlab_time(thread); time = (int64_t) os::javaTimeNanos(); assert(last_time <= time, "time should be monotonic"); // If the thread had not allocated recently, retract the ergonomic size. // This conserves memory when the thread had initial burst of allocations, // and then started allocating only sporadically. if (last_time != 0 && (time - last_time > _decay_time_ns)) { ergo_tlab = 0; EpsilonThreadLocalData::set_ergo_tlab_size(thread, 0); } } // If we can fit the allocation under current TLAB size, do so. // Otherwise, we want to elastically increase the TLAB size. fits = (requested_size <= ergo_tlab); if (!fits) { size = (size_t) (ergo_tlab * EpsilonTLABElasticity); } } // Always honor boundaries size = clamp(size, min_size, _max_tlab_size); // Always honor alignment size = align_up(size, MinObjAlignment); // Check that adjustments did not break local and global invariants assert(is_object_aligned(size), "Size honors object alignment: " SIZE_FORMAT, size); assert(min_size <= size, "Size honors min size: " SIZE_FORMAT " <= " SIZE_FORMAT, min_size, size); assert(size <= _max_tlab_size, "Size honors max size: " SIZE_FORMAT " <= " SIZE_FORMAT, size, _max_tlab_size); assert(size <= CollectedHeap::max_tlab_size(), "Size honors global max size: " SIZE_FORMAT " <= " SIZE_FORMAT, size, CollectedHeap::max_tlab_size()); if (log_is_enabled(Trace, gc)) { ResourceMark rm; log_trace(gc)("TLAB size for \"%s\" (Requested: " SIZE_FORMAT "K, Min: " SIZE_FORMAT "K, Max: " SIZE_FORMAT "K, Ergo: " SIZE_FORMAT "K) -> " SIZE_FORMAT "K", thread->name(), requested_size * HeapWordSize / K, min_size * HeapWordSize / K, _max_tlab_size * HeapWordSize / K, ergo_tlab * HeapWordSize / K, size * HeapWordSize / K); } // All prepared, let's do it! HeapWord* res = allocate_work(size); if (res != NULL) { // Allocation successful *actual_size = size; if (EpsilonElasticTLABDecay) { EpsilonThreadLocalData::set_last_tlab_time(thread, time); } if (EpsilonElasticTLAB && !fits) { // If we requested expansion, this is our new ergonomic TLAB size EpsilonThreadLocalData::set_ergo_tlab_size(thread, size); } } else { // Allocation failed, reset ergonomics to try and fit smaller TLABs if (EpsilonElasticTLAB) { EpsilonThreadLocalData::set_ergo_tlab_size(thread, 0); } } return res; } HeapWord* EpsilonHeap::mem_allocate(size_t size, bool *gc_overhead_limit_was_exceeded) { *gc_overhead_limit_was_exceeded = false; return allocate_work(size); } void EpsilonHeap::collect(GCCause::Cause cause) { switch (cause) { case GCCause::_metadata_GC_threshold: case GCCause::_metadata_GC_clear_soft_refs: // Receiving these causes means the VM itself entered the safepoint for metadata collection. // While Epsilon does not do GC, it has to perform sizing adjustments, otherwise we would // re-enter the safepoint again very soon. assert(SafepointSynchronize::is_at_safepoint(), "Expected at safepoint"); log_info(gc)("GC request for \"%s\" is handled", GCCause::to_string(cause)); MetaspaceGC::compute_new_size(); print_metaspace_info(); break; default: log_info(gc)("GC request for \"%s\" is ignored", GCCause::to_string(cause)); } _monitoring_support->update_counters(); } void EpsilonHeap::do_full_collection(bool clear_all_soft_refs) { collect(gc_cause()); } void EpsilonHeap::object_iterate(ObjectClosure *cl) { _space->object_iterate(cl); } // No workGang for EpsilonHeap, work serially with thread 0 void EpsilonHeap::run_task(AbstractGangTask* task) { task->work(0); } void EpsilonHeap::print_on(outputStream *st) const { st->print_cr("Epsilon Heap"); // Cast away constness: ((VirtualSpace)_virtual_space).print_on(st); if (_space != NULL) { st->print_cr("Allocation space:"); _space->print_on(st); } MetaspaceUtils::print_on(st); } bool EpsilonHeap::print_location(outputStream* st, void* addr) const { return BlockLocationPrinter::print_location(st, addr); } void EpsilonHeap::print_tracing_info() const { print_heap_info(used()); print_metaspace_info(); } void EpsilonHeap::print_heap_info(size_t used) const { size_t reserved = max_capacity(); size_t committed = capacity(); if (reserved != 0) { log_info(gc)("Heap: " SIZE_FORMAT "%s reserved, " SIZE_FORMAT "%s (%.2f%%) committed, " SIZE_FORMAT "%s (%.2f%%) used", byte_size_in_proper_unit(reserved), proper_unit_for_byte_size(reserved), byte_size_in_proper_unit(committed), proper_unit_for_byte_size(committed), committed * 100.0 / reserved, byte_size_in_proper_unit(used), proper_unit_for_byte_size(used), used * 100.0 / reserved); } else { log_info(gc)("Heap: no reliable data"); } } void EpsilonHeap::print_metaspace_info() const { size_t reserved = MetaspaceUtils::reserved_bytes(); size_t committed = MetaspaceUtils::committed_bytes(); size_t used = MetaspaceUtils::used_bytes(); if (reserved != 0) { log_info(gc, metaspace)("Metaspace: " SIZE_FORMAT "%s reserved, " SIZE_FORMAT "%s (%.2f%%) committed, " SIZE_FORMAT "%s (%.2f%%) used", byte_size_in_proper_unit(reserved), proper_unit_for_byte_size(reserved), byte_size_in_proper_unit(committed), proper_unit_for_byte_size(committed), committed * 100.0 / reserved, byte_size_in_proper_unit(used), proper_unit_for_byte_size(used), used * 100.0 / reserved); } else { log_info(gc, metaspace)("Metaspace: no reliable data"); } }