1 /*
   2  * Copyright (c) 2017, 2020, Red Hat, Inc. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/epsilon/epsilonHeap.hpp"
  27 #include "gc/epsilon/epsilonInitLogger.hpp"
  28 #include "gc/epsilon/epsilonMemoryPool.hpp"
  29 #include "gc/epsilon/epsilonThreadLocalData.hpp"
  30 #include "gc/shared/gcArguments.hpp"
  31 #include "gc/shared/locationPrinter.inline.hpp"
  32 #include "memory/allocation.hpp"
  33 #include "memory/allocation.inline.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "memory/universe.hpp"
  36 #include "runtime/atomic.hpp"
  37 #include "runtime/globals.hpp"
  38 
  39 jint EpsilonHeap::initialize() {
  40   size_t align = HeapAlignment;
  41   size_t init_byte_size = align_up(InitialHeapSize, align);
  42   size_t max_byte_size  = align_up(MaxHeapSize, align);
  43 
  44   // Initialize backing storage
  45   ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, align);
  46   _virtual_space.initialize(heap_rs, init_byte_size);
  47 
  48   MemRegion committed_region((HeapWord*)_virtual_space.low(),          (HeapWord*)_virtual_space.high());
  49   MemRegion  reserved_region((HeapWord*)_virtual_space.low_boundary(), (HeapWord*)_virtual_space.high_boundary());
  50 
  51   initialize_reserved_region(heap_rs);
  52 
  53   _space = new ContiguousSpace();
  54   _space->initialize(committed_region, /* clear_space = */ true, /* mangle_space = */ true);
  55 
  56   // Precompute hot fields
  57   _max_tlab_size = MIN2(CollectedHeap::max_tlab_size(), align_object_size(EpsilonMaxTLABSize / HeapWordSize));
  58   _step_counter_update = MIN2<size_t>(max_byte_size / 16, EpsilonUpdateCountersStep);
  59   _step_heap_print = (EpsilonPrintHeapSteps == 0) ? SIZE_MAX : (max_byte_size / EpsilonPrintHeapSteps);
  60   _decay_time_ns = (int64_t) EpsilonTLABDecayTime * NANOSECS_PER_MILLISEC;
  61 
  62   // Enable monitoring
  63   _monitoring_support = new EpsilonMonitoringSupport(this);
  64   _last_counter_update = 0;
  65   _last_heap_print = 0;
  66 
  67   // Install barrier set
  68   BarrierSet::set_barrier_set(new EpsilonBarrierSet());
  69 
  70   // All done, print out the configuration
  71   EpsilonInitLogger::print();
  72 
  73   return JNI_OK;
  74 }
  75 
  76 void EpsilonHeap::post_initialize() {
  77   CollectedHeap::post_initialize();
  78 }
  79 
  80 void EpsilonHeap::initialize_serviceability() {
  81   _pool = new EpsilonMemoryPool(this);
  82   _memory_manager.add_pool(_pool);
  83 }
  84 
  85 GrowableArray<GCMemoryManager*> EpsilonHeap::memory_managers() {
  86   GrowableArray<GCMemoryManager*> memory_managers(1);
  87   memory_managers.append(&_memory_manager);
  88   return memory_managers;
  89 }
  90 
  91 GrowableArray<MemoryPool*> EpsilonHeap::memory_pools() {
  92   GrowableArray<MemoryPool*> memory_pools(1);
  93   memory_pools.append(_pool);
  94   return memory_pools;
  95 }
  96 
  97 size_t EpsilonHeap::unsafe_max_tlab_alloc(Thread* thr) const {
  98   // Return max allocatable TLAB size, and let allocation path figure out
  99   // the actual allocation size. Note: result should be in bytes.
 100   return _max_tlab_size * HeapWordSize;
 101 }
 102 
 103 EpsilonHeap* EpsilonHeap::heap() {
 104   return named_heap<EpsilonHeap>(CollectedHeap::Epsilon);
 105 }
 106 
 107 HeapWord* EpsilonHeap::allocate_work(size_t size) {
 108   assert(is_object_aligned(size), "Allocation size should be aligned: " SIZE_FORMAT, size);
 109 
 110   HeapWord* res = _space->par_allocate(size);
 111 
 112   while (res == NULL) {
 113     // Allocation failed, attempt expansion, and retry:
 114     MutexLocker ml(Heap_lock);
 115 
 116     size_t space_left = max_capacity() - capacity();
 117     size_t want_space = MAX2(size, EpsilonMinHeapExpand);
 118 
 119     if (want_space < space_left) {
 120       // Enough space to expand in bulk:
 121       bool expand = _virtual_space.expand_by(want_space);
 122       assert(expand, "Should be able to expand");
 123     } else if (size < space_left) {
 124       // No space to expand in bulk, and this allocation is still possible,
 125       // take all the remaining space:
 126       bool expand = _virtual_space.expand_by(space_left);
 127       assert(expand, "Should be able to expand");
 128     } else {
 129       // No space left:
 130       return NULL;
 131     }
 132 
 133     _space->set_end((HeapWord *) _virtual_space.high());
 134     res = _space->par_allocate(size);
 135   }
 136 
 137   size_t used = _space->used();
 138 
 139   // Allocation successful, update counters
 140   {
 141     size_t last = _last_counter_update;
 142     if ((used - last >= _step_counter_update) && Atomic::cmpxchg(&_last_counter_update, last, used) == last) {
 143       _monitoring_support->update_counters();
 144     }
 145   }
 146 
 147   // ...and print the occupancy line, if needed
 148   {
 149     size_t last = _last_heap_print;
 150     if ((used - last >= _step_heap_print) && Atomic::cmpxchg(&_last_heap_print, last, used) == last) {
 151       print_heap_info(used);
 152       print_metaspace_info();
 153     }
 154   }
 155 
 156   assert(is_object_aligned(res), "Object should be aligned: " PTR_FORMAT, p2i(res));
 157   return res;
 158 }
 159 
 160 HeapWord* EpsilonHeap::allocate_new_tlab(size_t min_size,
 161                                          size_t requested_size,
 162                                          size_t* actual_size) {
 163   Thread* thread = Thread::current();
 164 
 165   // Defaults in case elastic paths are not taken
 166   bool fits = true;
 167   size_t size = requested_size;
 168   size_t ergo_tlab = requested_size;
 169   int64_t time = 0;
 170 
 171   if (EpsilonElasticTLAB) {
 172     ergo_tlab = EpsilonThreadLocalData::ergo_tlab_size(thread);
 173 
 174     if (EpsilonElasticTLABDecay) {
 175       int64_t last_time = EpsilonThreadLocalData::last_tlab_time(thread);
 176       time = (int64_t) os::javaTimeNanos();
 177 
 178       assert(last_time <= time, "time should be monotonic");
 179 
 180       // If the thread had not allocated recently, retract the ergonomic size.
 181       // This conserves memory when the thread had initial burst of allocations,
 182       // and then started allocating only sporadically.
 183       if (last_time != 0 && (time - last_time > _decay_time_ns)) {
 184         ergo_tlab = 0;
 185         EpsilonThreadLocalData::set_ergo_tlab_size(thread, 0);
 186       }
 187     }
 188 
 189     // If we can fit the allocation under current TLAB size, do so.
 190     // Otherwise, we want to elastically increase the TLAB size.
 191     fits = (requested_size <= ergo_tlab);
 192     if (!fits) {
 193       size = (size_t) (ergo_tlab * EpsilonTLABElasticity);
 194     }
 195   }
 196 
 197   // Always honor boundaries
 198   size = clamp(size, min_size, _max_tlab_size);
 199 
 200   // Always honor alignment
 201   size = align_up(size, MinObjAlignment);
 202 
 203   // Check that adjustments did not break local and global invariants
 204   assert(is_object_aligned(size),
 205          "Size honors object alignment: " SIZE_FORMAT, size);
 206   assert(min_size <= size,
 207          "Size honors min size: "  SIZE_FORMAT " <= " SIZE_FORMAT, min_size, size);
 208   assert(size <= _max_tlab_size,
 209          "Size honors max size: "  SIZE_FORMAT " <= " SIZE_FORMAT, size, _max_tlab_size);
 210   assert(size <= CollectedHeap::max_tlab_size(),
 211          "Size honors global max size: "  SIZE_FORMAT " <= " SIZE_FORMAT, size, CollectedHeap::max_tlab_size());
 212 
 213   if (log_is_enabled(Trace, gc)) {
 214     ResourceMark rm;
 215     log_trace(gc)("TLAB size for \"%s\" (Requested: " SIZE_FORMAT "K, Min: " SIZE_FORMAT
 216                           "K, Max: " SIZE_FORMAT "K, Ergo: " SIZE_FORMAT "K) -> " SIZE_FORMAT "K",
 217                   thread->name(),
 218                   requested_size * HeapWordSize / K,
 219                   min_size * HeapWordSize / K,
 220                   _max_tlab_size * HeapWordSize / K,
 221                   ergo_tlab * HeapWordSize / K,
 222                   size * HeapWordSize / K);
 223   }
 224 
 225   // All prepared, let's do it!
 226   HeapWord* res = allocate_work(size);
 227 
 228   if (res != NULL) {
 229     // Allocation successful
 230     *actual_size = size;
 231     if (EpsilonElasticTLABDecay) {
 232       EpsilonThreadLocalData::set_last_tlab_time(thread, time);
 233     }
 234     if (EpsilonElasticTLAB && !fits) {
 235       // If we requested expansion, this is our new ergonomic TLAB size
 236       EpsilonThreadLocalData::set_ergo_tlab_size(thread, size);
 237     }
 238   } else {
 239     // Allocation failed, reset ergonomics to try and fit smaller TLABs
 240     if (EpsilonElasticTLAB) {
 241       EpsilonThreadLocalData::set_ergo_tlab_size(thread, 0);
 242     }
 243   }
 244 
 245   return res;
 246 }
 247 
 248 HeapWord* EpsilonHeap::mem_allocate(size_t size, bool *gc_overhead_limit_was_exceeded) {
 249   *gc_overhead_limit_was_exceeded = false;
 250   return allocate_work(size);
 251 }
 252 
 253 void EpsilonHeap::collect(GCCause::Cause cause) {
 254   switch (cause) {
 255     case GCCause::_metadata_GC_threshold:
 256     case GCCause::_metadata_GC_clear_soft_refs:
 257       // Receiving these causes means the VM itself entered the safepoint for metadata collection.
 258       // While Epsilon does not do GC, it has to perform sizing adjustments, otherwise we would
 259       // re-enter the safepoint again very soon.
 260 
 261       assert(SafepointSynchronize::is_at_safepoint(), "Expected at safepoint");
 262       log_info(gc)("GC request for \"%s\" is handled", GCCause::to_string(cause));
 263       MetaspaceGC::compute_new_size();
 264       print_metaspace_info();
 265       break;
 266     default:
 267       log_info(gc)("GC request for \"%s\" is ignored", GCCause::to_string(cause));
 268   }
 269   _monitoring_support->update_counters();
 270 }
 271 
 272 void EpsilonHeap::do_full_collection(bool clear_all_soft_refs) {
 273   collect(gc_cause());
 274 }
 275 
 276 void EpsilonHeap::object_iterate(ObjectClosure *cl) {
 277   _space->object_iterate(cl);
 278 }
 279 
 280 void EpsilonHeap::print_on(outputStream *st) const {
 281   st->print_cr("Epsilon Heap");
 282 
 283   // Cast away constness:
 284   ((VirtualSpace)_virtual_space).print_on(st);
 285 
 286   if (_space != NULL) {
 287     st->print_cr("Allocation space:");
 288     _space->print_on(st);
 289   }
 290 
 291   MetaspaceUtils::print_on(st);
 292 }
 293 
 294 bool EpsilonHeap::print_location(outputStream* st, void* addr) const {
 295   return BlockLocationPrinter<EpsilonHeap>::print_location(st, addr);
 296 }
 297 
 298 void EpsilonHeap::print_tracing_info() const {
 299   print_heap_info(used());
 300   print_metaspace_info();
 301 }
 302 
 303 void EpsilonHeap::print_heap_info(size_t used) const {
 304   size_t reserved  = max_capacity();
 305   size_t committed = capacity();
 306 
 307   if (reserved != 0) {
 308     log_info(gc)("Heap: " SIZE_FORMAT "%s reserved, " SIZE_FORMAT "%s (%.2f%%) committed, "
 309                  SIZE_FORMAT "%s (%.2f%%) used",
 310             byte_size_in_proper_unit(reserved),  proper_unit_for_byte_size(reserved),
 311             byte_size_in_proper_unit(committed), proper_unit_for_byte_size(committed),
 312             committed * 100.0 / reserved,
 313             byte_size_in_proper_unit(used),      proper_unit_for_byte_size(used),
 314             used * 100.0 / reserved);
 315   } else {
 316     log_info(gc)("Heap: no reliable data");
 317   }
 318 }
 319 
 320 void EpsilonHeap::print_metaspace_info() const {
 321   size_t reserved  = MetaspaceUtils::reserved_bytes();
 322   size_t committed = MetaspaceUtils::committed_bytes();
 323   size_t used      = MetaspaceUtils::used_bytes();
 324 
 325   if (reserved != 0) {
 326     log_info(gc, metaspace)("Metaspace: " SIZE_FORMAT "%s reserved, " SIZE_FORMAT "%s (%.2f%%) committed, "
 327                             SIZE_FORMAT "%s (%.2f%%) used",
 328             byte_size_in_proper_unit(reserved),  proper_unit_for_byte_size(reserved),
 329             byte_size_in_proper_unit(committed), proper_unit_for_byte_size(committed),
 330             committed * 100.0 / reserved,
 331             byte_size_in_proper_unit(used),      proper_unit_for_byte_size(used),
 332             used * 100.0 / reserved);
 333   } else {
 334     log_info(gc, metaspace)("Metaspace: no reliable data");
 335   }
 336 }