< prev index next >

src/hotspot/share/code/codeHeapState.cpp

Print this page
rev 54098 : 8217465: [REDO] - Optimize CodeHeap Analytics
Reviewed-by: kvn, thartmann


  61 // structures allocated.
  62 //
  63 // Requests for real-time, on-the-fly analysis can be issued via
  64 //   jcmd <pid> Compiler.CodeHeap_Analytics [<function>] [<granularity>]
  65 //
  66 // If you are (only) interested in how the CodeHeap looks like after running
  67 // a sample workload, you can use the command line option
  68 //   -XX:+PrintCodeHeapAnalytics
  69 // It will cause a full analysis to be written to tty. In addition, a full
  70 // analysis will be written the first time a "CodeCache full" condition is
  71 // detected.
  72 //
  73 // The command line option produces output identical to the jcmd function
  74 //   jcmd <pid> Compiler.CodeHeap_Analytics all 4096
  75 // ---------------------------------------------------------------------------------
  76 
  77 // With this declaration macro, it is possible to switch between
  78 //  - direct output into an argument-passed outputStream and
  79 //  - buffered output into a bufferedStream with subsequent flush
  80 //    of the filled buffer to the outputStream.
  81 #define USE_STRINGSTREAM
  82 #define HEX32_FORMAT  "0x%x"  // just a helper format string used below multiple times
  83 //

  84 // Writing to a bufferedStream buffer first has a significant advantage:
  85 // It uses noticeably less cpu cycles and reduces (when wirting to a
  86 // network file) the required bandwidth by at least a factor of ten.
  87 // That clearly makes up for the increased code complexity.
  88 #if defined(USE_STRINGSTREAM)
  89 #define STRINGSTREAM_DECL(_anyst, _outst)                 \



























  90     /* _anyst  name of the stream as used in the code */  \
  91     /* _outst  stream where final output will go to   */  \
  92     ResourceMark rm;                                      \
  93     bufferedStream   _sstobj(4*K);                        \






  94     bufferedStream*  _sstbuf = &_sstobj;                  \
  95     outputStream*    _outbuf = _outst;                    \
  96     bufferedStream*  _anyst  = &_sstobj; /* any stream. Use this to just print - no buffer flush.  */
  97 




  98 #define STRINGSTREAM_FLUSH(termString)                    \
  99     _sstbuf->print("%s", termString);                     \
 100     _outbuf->print("%s", _sstbuf->as_string());           \
 101     _sstbuf->reset();













 102 
 103 #define STRINGSTREAM_FLUSH_LOCKED(termString)             \
 104     { ttyLocker ttyl;/* keep this output block together */\
 105       STRINGSTREAM_FLUSH(termString)                      \
 106     }
































 107 #else
 108 #define STRINGSTREAM_DECL(_anyst, _outst)                 \

 109     outputStream*  _outbuf = _outst;                      \
 110     outputStream*  _anyst  = _outst;   /* any stream. Use this to just print - no buffer flush.  */
 111 
 112 #define STRINGSTREAM_FLUSH(termString)                    \
 113     _outbuf->print("%s", termString);
 114 
 115 #define STRINGSTREAM_FLUSH_LOCKED(termString)             \
 116     _outbuf->print("%s", termString);













 117 #endif

 118 
 119 const char  blobTypeChar[] = {' ', 'C', 'N', 'I', 'X', 'Z', 'U', 'R', '?', 'D', 'T', 'E', 'S', 'A', 'M', 'B', 'L' };
 120 const char* blobTypeName[] = {"noType"
 121                              ,     "nMethod (under construction)"
 122                              ,          "nMethod (active)"
 123                              ,               "nMethod (inactive)"
 124                              ,                    "nMethod (deopt)"
 125                              ,                         "nMethod (zombie)"
 126                              ,                              "nMethod (unloaded)"
 127                              ,                                   "runtime stub"
 128                              ,                                        "ricochet stub"
 129                              ,                                             "deopt stub"
 130                              ,                                                  "uncommon trap stub"
 131                              ,                                                       "exception stub"
 132                              ,                                                            "safepoint stub"
 133                              ,                                                                 "adapter blob"
 134                              ,                                                                      "MH adapter blob"
 135                              ,                                                                           "buffer blob"
 136                              ,                                                                                "lastType"
 137                              };


 444   unsigned int nBlocks_used    = 0;
 445   unsigned int nBlocks_zomb    = 0;
 446   unsigned int nBlocks_disconn = 0;
 447   unsigned int nBlocks_notentr = 0;
 448 
 449   //---<  max & min of TopSizeArray  >---
 450   //  it is sufficient to have these sizes as 32bit unsigned ints.
 451   //  The CodeHeap is limited in size to 4GB. Furthermore, the sizes
 452   //  are stored in _segment_size units, scaling them down by a factor of 64 (at least).
 453   unsigned int  currMax          = 0;
 454   unsigned int  currMin          = 0;
 455   unsigned int  currMin_ix       = 0;
 456   unsigned long total_iterations = 0;
 457 
 458   bool  done             = false;
 459   const int min_granules = 256;
 460   const int max_granules = 512*K; // limits analyzable CodeHeap (with segment_granules) to 32M..128M
 461                                   // results in StatArray size of 24M (= max_granules * 48 Bytes per element)
 462                                   // For a 1GB CodeHeap, the granule size must be at least 2kB to not violate the max_granles limit.
 463   const char* heapName   = get_heapName(heap);
 464   STRINGSTREAM_DECL(ast, out)
 465 
 466   if (!initialization_complete) {
 467     memset(CodeHeapStatArray, 0, sizeof(CodeHeapStatArray));
 468     initialization_complete = true;
 469 
 470     printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   (general remarks)", NULL);
 471     ast->print_cr("   The code heap analysis function provides deep insights into\n"
 472                   "   the inner workings and the internal state of the Java VM's\n"
 473                   "   code cache - the place where all the JVM generated machine\n"
 474                   "   code is stored.\n"
 475                   "   \n"
 476                   "   This function is designed and provided for support engineers\n"
 477                   "   to help them understand and solve issues in customer systems.\n"
 478                   "   It is not intended for use and interpretation by other persons.\n"
 479                   "   \n");
 480     STRINGSTREAM_FLUSH("")
 481   }
 482   get_HeapStatGlobals(out, heapName);
 483 
 484 
 485   // Since we are (and must be) analyzing the CodeHeap contents under the CodeCache_lock,
 486   // all heap information is "constant" and can be safely extracted/calculated before we
 487   // enter the while() loop. Actually, the loop will only be iterated once.
 488   char*  low_bound     = heap->low_boundary();
 489   size_t size          = heap->capacity();
 490   size_t res_size      = heap->max_capacity();
 491   seg_size             = heap->segment_size();
 492   log2_seg_size        = seg_size == 0 ? 0 : exact_log2(seg_size);  // This is a global static value.
 493 
 494   if (seg_size == 0) {
 495     printBox(ast, '-', "Heap not fully initialized yet, segment size is zero for segment ", heapName);
 496     STRINGSTREAM_FLUSH("")
 497     return;
 498   }
 499 
 500   if (!CodeCache_lock->owned_by_self()) {
 501     printBox(ast, '-', "aggregate function called without holding the CodeCache_lock for ", heapName);
 502     STRINGSTREAM_FLUSH("")
 503     return;
 504   }
 505 
 506   // Calculate granularity of analysis (and output).
 507   //   The CodeHeap is managed (allocated) in segments (units) of CodeCacheSegmentSize.
 508   //   The CodeHeap can become fairly large, in particular in productive real-life systems.
 509   //
 510   //   It is often neither feasible nor desirable to aggregate the data with the highest possible
 511   //   level of detail, i.e. inspecting and printing each segment on its own.
 512   //
 513   //   The granularity parameter allows to specify the level of detail available in the analysis.
 514   //   It must be a positive multiple of the segment size and should be selected such that enough
 515   //   detail is provided while, at the same time, the printed output does not explode.
 516   //
 517   //   By manipulating the granularity value, we enforce that at least min_granules units
 518   //   of analysis are available. We also enforce an upper limit of max_granules units to
 519   //   keep the amount of allocated storage in check.
 520   //
 521   //   Finally, we adjust the granularity such that each granule covers at most 64k-1 segments.
 522   //   This is necessary to prevent an unsigned short overflow while accumulating space information.


 539   granularity = granularity & (~(seg_size - 1));                       // must be multiple of seg_size
 540   if (granularity>>log2_seg_size >= (1L<<sizeof(unsigned short)*8)) {
 541     granularity = ((1L<<(sizeof(unsigned short)*8))-1)<<log2_seg_size; // Limit: (64k-1) * seg_size
 542   }
 543   segment_granules = granularity == seg_size;
 544   size_t granules  = (size + (granularity-1))/granularity;
 545 
 546   printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   (used blocks) for segment ", heapName);
 547   ast->print_cr("   The aggregate step takes an aggregated snapshot of the CodeHeap.\n"
 548                 "   Subsequent print functions create their output based on this snapshot.\n"
 549                 "   The CodeHeap is a living thing, and every effort has been made for the\n"
 550                 "   collected data to be consistent. Only the method names and signatures\n"
 551                 "   are retrieved at print time. That may lead to rare cases where the\n"
 552                 "   name of a method is no longer available, e.g. because it was unloaded.\n");
 553   ast->print_cr("   CodeHeap committed size " SIZE_FORMAT "K (" SIZE_FORMAT "M), reserved size " SIZE_FORMAT "K (" SIZE_FORMAT "M), %d%% occupied.",
 554                 size/(size_t)K, size/(size_t)M, res_size/(size_t)K, res_size/(size_t)M, (unsigned int)(100.0*size/res_size));
 555   ast->print_cr("   CodeHeap allocation segment size is " SIZE_FORMAT " bytes. This is the smallest possible granularity.", seg_size);
 556   ast->print_cr("   CodeHeap (committed part) is mapped to " SIZE_FORMAT " granules of size " SIZE_FORMAT " bytes.", granules, granularity);
 557   ast->print_cr("   Each granule takes " SIZE_FORMAT " bytes of C heap, that is " SIZE_FORMAT "K in total for statistics data.", sizeof(StatElement), (sizeof(StatElement)*granules)/(size_t)K);
 558   ast->print_cr("   The number of granules is limited to %dk, requiring a granules size of at least %d bytes for a 1GB heap.", (unsigned int)(max_granules/K), (unsigned int)(G/max_granules));
 559   STRINGSTREAM_FLUSH("\n")
 560 
 561 
 562   while (!done) {
 563     //---<  reset counters with every aggregation  >---
 564     nBlocks_t1       = 0;
 565     nBlocks_t2       = 0;
 566     nBlocks_alive    = 0;
 567     nBlocks_dead     = 0;
 568     nBlocks_inconstr = 0;
 569     nBlocks_unloaded = 0;
 570     nBlocks_stub     = 0;
 571 
 572     nBlocks_free     = 0;
 573     nBlocks_used     = 0;
 574     nBlocks_zomb     = 0;
 575     nBlocks_disconn  = 0;
 576     nBlocks_notentr  = 0;
 577 
 578     //---<  discard old arrays if size does not match  >---
 579     if (granules != alloc_granules) {


 628       // This is a diagnostic function. It is not supposed to tear down the VM.
 629       if ((char*)h <  low_bound) {
 630         insane = true; ast->print_cr("Sanity check: HeapBlock @%p below low bound (%p)", (char*)h, low_bound);
 631       }
 632       if ((char*)h >  (low_bound + res_size)) {
 633         insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside reserved range (%p)", (char*)h, low_bound + res_size);
 634       }
 635       if ((char*)h >  (low_bound + size)) {
 636         insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside used range (%p)", (char*)h, low_bound + size);
 637       }
 638       if (ix_end   >= granules) {
 639         insane = true; ast->print_cr("Sanity check: end index (%d) out of bounds (" SIZE_FORMAT ")", ix_end, granules);
 640       }
 641       if (size     != heap->capacity()) {
 642         insane = true; ast->print_cr("Sanity check: code heap capacity has changed (" SIZE_FORMAT "K to " SIZE_FORMAT "K)", size/(size_t)K, heap->capacity()/(size_t)K);
 643       }
 644       if (ix_beg   >  ix_end) {
 645         insane = true; ast->print_cr("Sanity check: end index (%d) lower than begin index (%d)", ix_end, ix_beg);
 646       }
 647       if (insane) {
 648         STRINGSTREAM_FLUSH("")
 649         continue;
 650       }
 651 
 652       if (h->free()) {
 653         nBlocks_free++;
 654         freeSpace    += hb_bytelen;
 655         if (hb_bytelen > maxFreeSize) {
 656           maxFreeSize   = hb_bytelen;
 657           maxFreeBlock  = h;
 658         }
 659       } else {
 660         update_SizeDistArray(out, hb_len);
 661         nBlocks_used++;
 662         usedSpace    += hb_bytelen;
 663         CodeBlob* cb  = (CodeBlob*)heap->find_start(h);
 664         if (cb != NULL) {
 665           cbType = get_cbType(cb);
 666           if (cb->is_nmethod()) {
 667             compile_id = ((nmethod*)cb)->compile_id();
 668             comp_lvl   = (CompLevel)((nmethod*)cb)->comp_level();


1017       ast->cr();
1018       ast->print_cr("latest allocated compilation id = %d", latest_compilation_id);
1019       ast->print_cr("highest observed compilation id = %d", highest_compilation_id);
1020       ast->print_cr("Building TopSizeList iterations = %ld", total_iterations);
1021       ast->cr();
1022 
1023       int             reset_val = NMethodSweeper::hotness_counter_reset_val();
1024       double reverse_free_ratio = (res_size > size) ? (double)res_size/(double)(res_size-size) : (double)res_size;
1025       printBox(ast, '-', "Method hotness information at time of this analysis", NULL);
1026       ast->print_cr("Highest possible method temperature:          %12d", reset_val);
1027       ast->print_cr("Threshold for method to be considered 'cold': %12.3f", -reset_val + reverse_free_ratio * NmethodSweepActivity);
1028       if (n_methods > 0) {
1029         avgTemp = hotnessAccumulator/n_methods;
1030         ast->print_cr("min. hotness = %6d", minTemp);
1031         ast->print_cr("avg. hotness = %6d", avgTemp);
1032         ast->print_cr("max. hotness = %6d", maxTemp);
1033       } else {
1034         avgTemp = 0;
1035         ast->print_cr("No hotness data available");
1036       }
1037       STRINGSTREAM_FLUSH("\n")
1038 
1039       // This loop is intentionally printing directly to "out".
1040       // It should not print anything, anyway.
1041       out->print("Verifying collected data...");
1042       size_t granule_segs = granule_size>>log2_seg_size;
1043       for (unsigned int ix = 0; ix < granules; ix++) {
1044         if (StatArray[ix].t1_count   > granule_segs) {
1045           out->print_cr("t1_count[%d]   = %d", ix, StatArray[ix].t1_count);
1046         }
1047         if (StatArray[ix].t2_count   > granule_segs) {
1048           out->print_cr("t2_count[%d]   = %d", ix, StatArray[ix].t2_count);
1049         }
1050         if (StatArray[ix].tx_count   > granule_segs) {
1051           out->print_cr("tx_count[%d]   = %d", ix, StatArray[ix].tx_count);
1052         }
1053         if (StatArray[ix].stub_count > granule_segs) {
1054           out->print_cr("stub_count[%d] = %d", ix, StatArray[ix].stub_count);
1055         }
1056         if (StatArray[ix].dead_count > granule_segs) {
1057           out->print_cr("dead_count[%d] = %d", ix, StatArray[ix].dead_count);


1099           }
1100         }
1101       }
1102       out->print_cr("...done\n\n");
1103     } else {
1104       // insane heap state detected. Analysis data incomplete. Just throw it away.
1105       discard_StatArray(out);
1106       discard_TopSizeArray(out);
1107     }
1108   }
1109 
1110 
1111   done        = false;
1112   while (!done && (nBlocks_free > 0)) {
1113 
1114     printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   (free blocks) for segment ", heapName);
1115     ast->print_cr("   The aggregate step collects information about all free blocks in CodeHeap.\n"
1116                   "   Subsequent print functions create their output based on this snapshot.\n");
1117     ast->print_cr("   Free space in %s is distributed over %d free blocks.", heapName, nBlocks_free);
1118     ast->print_cr("   Each free block takes " SIZE_FORMAT " bytes of C heap for statistics data, that is " SIZE_FORMAT "K in total.", sizeof(FreeBlk), (sizeof(FreeBlk)*nBlocks_free)/K);
1119     STRINGSTREAM_FLUSH("\n")
1120 
1121     //----------------------------------------
1122     //--  Prepare the FreeArray of FreeBlks --
1123     //----------------------------------------
1124 
1125     //---< discard old array if size does not match  >---
1126     if (nBlocks_free != alloc_freeBlocks) {
1127       discard_FreeArray(out);
1128     }
1129 
1130     prepare_FreeArray(out, nBlocks_free, heapName);
1131     if (FreeArray == NULL) {
1132       done = true;
1133       continue;
1134     }
1135 
1136     //----------------------------------------
1137     //--  Collect all FreeBlks in FreeArray --
1138     //----------------------------------------
1139 
1140     unsigned int ix = 0;
1141     FreeBlock* cur  = heap->freelist();
1142 
1143     while (cur != NULL) {
1144       if (ix < alloc_freeBlocks) { // don't index out of bounds if _freelist has more blocks than anticipated
1145         FreeArray[ix].start = cur;
1146         FreeArray[ix].len   = (unsigned int)(cur->length()<<log2_seg_size);
1147         FreeArray[ix].index = ix;
1148       }
1149       cur  = cur->link();
1150       ix++;
1151     }
1152     if (ix != alloc_freeBlocks) {
1153       ast->print_cr("Free block count mismatch. Expected %d free blocks, but found %d.", alloc_freeBlocks, ix);
1154       ast->print_cr("I will update the counter and retry data collection");
1155       STRINGSTREAM_FLUSH("\n")
1156       nBlocks_free = ix;
1157       continue;
1158     }
1159     done = true;
1160   }
1161 
1162   if (!done || (nBlocks_free == 0)) {
1163     if (nBlocks_free == 0) {
1164       printBox(ast, '-', "no free blocks found in ", heapName);
1165     } else if (!done) {
1166       ast->print_cr("Free block count mismatch could not be resolved.");
1167       ast->print_cr("Try to run \"aggregate\" function to update counters");
1168     }
1169     STRINGSTREAM_FLUSH("")
1170 
1171     //---< discard old array and update global values  >---
1172     discard_FreeArray(out);
1173     set_HeapStatGlobals(out, heapName);
1174     return;
1175   }
1176 
1177   //---<  calculate and fill remaining fields  >---
1178   if (FreeArray != NULL) {
1179     // This loop is intentionally printing directly to "out".
1180     // It should not print anything, anyway.
1181     for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
1182       size_t lenSum = 0;
1183       FreeArray[ix].gap = (unsigned int)((address)FreeArray[ix+1].start - ((address)FreeArray[ix].start + FreeArray[ix].len));
1184       for (HeapBlock *h = heap->next_block(FreeArray[ix].start); (h != NULL) && (h != FreeArray[ix+1].start); h = heap->next_block(h)) {
1185         CodeBlob *cb  = (CodeBlob*)(heap->find_start(h));
1186         if ((cb != NULL) && !cb->is_nmethod()) {
1187           FreeArray[ix].stubs_in_gap = true;
1188         }
1189         FreeArray[ix].n_gapBlocks++;
1190         lenSum += h->length()<<log2_seg_size;
1191         if (((address)h < ((address)FreeArray[ix].start+FreeArray[ix].len)) || (h >= FreeArray[ix+1].start)) {
1192           out->print_cr("unsorted occupied CodeHeap block found @ %p, gap interval [%p, %p)", h, (address)FreeArray[ix].start+FreeArray[ix].len, FreeArray[ix+1].start);
1193         }
1194       }
1195       if (lenSum != FreeArray[ix].gap) {
1196         out->print_cr("Length mismatch for gap between FreeBlk[%d] and FreeBlk[%d]. Calculated: %d, accumulated: %d.", ix, ix+1, FreeArray[ix].gap, (unsigned int)lenSum);
1197       }
1198     }
1199   }
1200   set_HeapStatGlobals(out, heapName);
1201 
1202   printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   C O M P L E T E   for segment ", heapName);
1203   STRINGSTREAM_FLUSH("\n")
1204 }
1205 
1206 
1207 void CodeHeapState::print_usedSpace(outputStream* out, CodeHeap* heap) {
1208   if (!initialization_complete) {
1209     return;
1210   }
1211 
1212   const char* heapName   = get_heapName(heap);
1213   get_HeapStatGlobals(out, heapName);
1214 
1215   if ((StatArray == NULL) || (TopSizeArray == NULL) || (used_topSizeBlocks == 0)) {
1216     return;
1217   }
1218   STRINGSTREAM_DECL(ast, out)
1219 
1220   {
1221     printBox(ast, '=', "U S E D   S P A C E   S T A T I S T I C S   for ", heapName);
1222     ast->print_cr("Note: The Top%d list of the largest used blocks associates method names\n"
1223                   "      and other identifying information with the block size data.\n"
1224                   "\n"
1225                   "      Method names are dynamically retrieved from the code cache at print time.\n"
1226                   "      Due to the living nature of the code cache and because the CodeCache_lock\n"
1227                   "      is not continuously held, the displayed name might be wrong or no name\n"
1228                   "      might be found at all. The likelihood for that to happen increases\n"
1229                   "      over time passed between analysis and print step.\n", used_topSizeBlocks);
1230     STRINGSTREAM_FLUSH_LOCKED("\n")
1231   }
1232 
1233   //----------------------------
1234   //--  Print Top Used Blocks --
1235   //----------------------------
1236   {
1237     char*     low_bound = heap->low_boundary();
1238     bool      have_CodeCache_lock = CodeCache_lock->owned_by_self();
1239 
1240     printBox(ast, '-', "Largest Used Blocks in ", heapName);
1241     print_blobType_legend(ast);
1242 
1243     ast->fill_to(51);
1244     ast->print("%4s", "blob");
1245     ast->fill_to(56);
1246     ast->print("%9s", "compiler");
1247     ast->fill_to(66);
1248     ast->print_cr("%6s", "method");
1249     ast->print_cr("%18s %13s %17s %4s %9s  %5s %s",      "Addr(module)      ", "offset", "size", "type", " type lvl", " temp", "Name");
1250     STRINGSTREAM_FLUSH_LOCKED("")
1251 
1252     //---<  print Top Ten Used Blocks  >---
1253     if (used_topSizeBlocks > 0) {
1254       unsigned int printed_topSizeBlocks = 0;
1255       for (unsigned int i = 0; i != tsbStopper; i = TopSizeArray[i].index) {
1256         printed_topSizeBlocks++;
1257         nmethod*           nm = NULL;
1258         const char* blob_name = "unnamed blob or blob name unavailable";
1259         // heap->find_start() is safe. Only works on _segmap.
1260         // Returns NULL or void*. Returned CodeBlob may be uninitialized.
1261         HeapBlock* heapBlock = TopSizeArray[i].start;
1262         CodeBlob*  this_blob = (CodeBlob*)(heap->find_start(heapBlock));
1263         bool    blob_is_safe = blob_access_is_safe(this_blob, NULL);
1264         if (blob_is_safe) {
1265           //---<  access these fields only if we own the CodeCache_lock  >---
1266           if (have_CodeCache_lock) {
1267             blob_name = this_blob->name();
1268             nm        = this_blob->as_nmethod_or_null();
1269           }
1270           //---<  blob address  >---


1308           ast->print("%5d", nm->hotness_counter());
1309           //---<  name and signature  >---
1310           ast->fill_to(67+6);
1311           if (nm->is_not_installed()) {
1312             ast->print(" not (yet) installed method ");
1313           }
1314           if (nm->is_zombie()) {
1315             ast->print(" zombie method ");
1316           }
1317           ast->print("%s", blob_name);
1318         } else {
1319           //---<  block size in hex  >---
1320           ast->print(PTR32_FORMAT, (unsigned int)(TopSizeArray[i].len<<log2_seg_size));
1321           ast->print("(" SIZE_FORMAT_W(4) "K)", (TopSizeArray[i].len<<log2_seg_size)/K);
1322           //---<  no compiler information  >---
1323           ast->fill_to(56);
1324           //---<  name and signature  >---
1325           ast->fill_to(67+6);
1326           ast->print("%s", blob_name);
1327         }
1328         STRINGSTREAM_FLUSH_LOCKED("\n")

1329       }
1330       if (used_topSizeBlocks != printed_topSizeBlocks) {
1331         ast->print_cr("used blocks: %d, printed blocks: %d", used_topSizeBlocks, printed_topSizeBlocks);
1332         STRINGSTREAM_FLUSH("")
1333         for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) {
1334           ast->print_cr("  TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len);
1335           STRINGSTREAM_FLUSH("")
1336         }
1337       }
1338       STRINGSTREAM_FLUSH_LOCKED("\n\n")
1339     }
1340   }
1341 
1342   //-----------------------------
1343   //--  Print Usage Histogram  --
1344   //-----------------------------
1345 
1346   if (SizeDistributionArray != NULL) {
1347     unsigned long total_count = 0;
1348     unsigned long total_size  = 0;
1349     const unsigned long pctFactor = 200;
1350 
1351     for (unsigned int i = 0; i < nSizeDistElements; i++) {
1352       total_count += SizeDistributionArray[i].count;
1353       total_size  += SizeDistributionArray[i].lenSum;
1354     }
1355 
1356     if ((total_count > 0) && (total_size > 0)) {
1357       printBox(ast, '-', "Block count histogram for ", heapName);
1358       ast->print_cr("Note: The histogram indicates how many blocks (as a percentage\n"
1359                     "      of all blocks) have a size in the given range.\n"
1360                     "      %ld characters are printed per percentage point.\n", pctFactor/100);
1361       ast->print_cr("total size   of all blocks: %7ldM", (total_size<<log2_seg_size)/M);
1362       ast->print_cr("total number of all blocks: %7ld\n", total_count);
1363       STRINGSTREAM_FLUSH_LOCKED("")
1364 
1365       ast->print_cr("[Size Range)------avg.-size-+----count-+");
1366       for (unsigned int i = 0; i < nSizeDistElements; i++) {
1367         if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) {
1368           ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): "
1369                     ,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size)
1370                     ,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size)
1371                     );
1372         } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) {
1373           ast->print("[" SIZE_FORMAT_W(5) "K.." SIZE_FORMAT_W(5) "K): "
1374                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K
1375                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K
1376                     );
1377         } else {
1378           ast->print("[" SIZE_FORMAT_W(5) "M.." SIZE_FORMAT_W(5) "M): "
1379                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M
1380                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M
1381                     );
1382         }
1383         ast->print(" %8d | %8d |",
1384                    SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0,
1385                    SizeDistributionArray[i].count);
1386 
1387         unsigned int percent = pctFactor*SizeDistributionArray[i].count/total_count;
1388         for (unsigned int j = 1; j <= percent; j++) {
1389           ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
1390         }
1391         ast->cr();

1392       }
1393       ast->print_cr("----------------------------+----------+\n\n");
1394       STRINGSTREAM_FLUSH_LOCKED("\n")
1395 
1396       printBox(ast, '-', "Contribution per size range to total size for ", heapName);
1397       ast->print_cr("Note: The histogram indicates how much space (as a percentage of all\n"
1398                     "      occupied space) is used by the blocks in the given size range.\n"
1399                     "      %ld characters are printed per percentage point.\n", pctFactor/100);
1400       ast->print_cr("total size   of all blocks: %7ldM", (total_size<<log2_seg_size)/M);
1401       ast->print_cr("total number of all blocks: %7ld\n", total_count);
1402       STRINGSTREAM_FLUSH_LOCKED("")
1403 
1404       ast->print_cr("[Size Range)------avg.-size-+----count-+");
1405       for (unsigned int i = 0; i < nSizeDistElements; i++) {
1406         if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) {
1407           ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): "
1408                     ,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size)
1409                     ,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size)
1410                     );
1411         } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) {
1412           ast->print("[" SIZE_FORMAT_W(5) "K.." SIZE_FORMAT_W(5) "K): "
1413                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K
1414                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K
1415                     );
1416         } else {
1417           ast->print("[" SIZE_FORMAT_W(5) "M.." SIZE_FORMAT_W(5) "M): "
1418                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M
1419                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M
1420                     );
1421         }
1422         ast->print(" %8d | %8d |",
1423                    SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0,
1424                    SizeDistributionArray[i].count);
1425 
1426         unsigned int percent = pctFactor*(unsigned long)SizeDistributionArray[i].lenSum/total_size;
1427         for (unsigned int j = 1; j <= percent; j++) {
1428           ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
1429         }
1430         ast->cr();

1431       }
1432       ast->print_cr("----------------------------+----------+");
1433       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1434     }
1435   }
1436 }
1437 
1438 
1439 void CodeHeapState::print_freeSpace(outputStream* out, CodeHeap* heap) {
1440   if (!initialization_complete) {
1441     return;
1442   }
1443 
1444   const char* heapName   = get_heapName(heap);
1445   get_HeapStatGlobals(out, heapName);
1446 
1447   if ((StatArray == NULL) || (FreeArray == NULL) || (alloc_granules == 0)) {
1448     return;
1449   }
1450   STRINGSTREAM_DECL(ast, out)
1451 
1452   {
1453     printBox(ast, '=', "F R E E   S P A C E   S T A T I S T I C S   for ", heapName);
1454     ast->print_cr("Note: in this context, a gap is the occupied space between two free blocks.\n"
1455                   "      Those gaps are of interest if there is a chance that they become\n"
1456                   "      unoccupied, e.g. by class unloading. Then, the two adjacent free\n"
1457                   "      blocks, together with the now unoccupied space, form a new, large\n"
1458                   "      free block.");
1459     STRINGSTREAM_FLUSH_LOCKED("\n")
1460   }
1461 
1462   {
1463     printBox(ast, '-', "List of all Free Blocks in ", heapName);
1464     STRINGSTREAM_FLUSH_LOCKED("")
1465 
1466     unsigned int ix = 0;
1467     for (ix = 0; ix < alloc_freeBlocks-1; ix++) {
1468       ast->print(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT ",", p2i(FreeArray[ix].start), ix, FreeArray[ix].len);
1469       ast->fill_to(38);
1470       ast->print("Gap[%4d..%4d]: " HEX32_FORMAT " bytes,", ix, ix+1, FreeArray[ix].gap);
1471       ast->fill_to(71);
1472       ast->print("block count: %6d", FreeArray[ix].n_gapBlocks);
1473       if (FreeArray[ix].stubs_in_gap) {
1474         ast->print(" !! permanent gap, contains stubs and/or blobs !!");
1475       }
1476       STRINGSTREAM_FLUSH_LOCKED("\n")

1477     }
1478     ast->print_cr(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT, p2i(FreeArray[ix].start), ix, FreeArray[ix].len);
1479     STRINGSTREAM_FLUSH_LOCKED("\n\n")
1480   }
1481 
1482 
1483   //-----------------------------------------
1484   //--  Find and Print Top Ten Free Blocks --
1485   //-----------------------------------------
1486 
1487   //---<  find Top Ten Free Blocks  >---
1488   const unsigned int nTop = 10;
1489   unsigned int  currMax10 = 0;
1490   struct FreeBlk* FreeTopTen[nTop];
1491   memset(FreeTopTen, 0, sizeof(FreeTopTen));
1492 
1493   for (unsigned int ix = 0; ix < alloc_freeBlocks; ix++) {
1494     if (FreeArray[ix].len > currMax10) {  // larger than the ten largest found so far
1495       unsigned int currSize = FreeArray[ix].len;
1496 
1497       unsigned int iy;
1498       for (iy = 0; iy < nTop && FreeTopTen[iy] != NULL; iy++) {
1499         if (FreeTopTen[iy]->len < currSize) {


1503           FreeTopTen[iy] = &FreeArray[ix];        // insert new free block
1504           if (FreeTopTen[nTop-1] != NULL) {
1505             currMax10 = FreeTopTen[nTop-1]->len;
1506           }
1507           break; // done with this, check next free block
1508         }
1509       }
1510       if (iy >= nTop) {
1511         ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
1512                       currSize, currMax10);
1513         continue;
1514       }
1515       if (FreeTopTen[iy] == NULL) {
1516         FreeTopTen[iy] = &FreeArray[ix];
1517         if (iy == (nTop-1)) {
1518           currMax10 = currSize;
1519         }
1520       }
1521     }
1522   }
1523   STRINGSTREAM_FLUSH_LOCKED("")
1524 
1525   {
1526     printBox(ast, '-', "Top Ten Free Blocks in ", heapName);
1527 
1528     //---<  print Top Ten Free Blocks  >---
1529     for (unsigned int iy = 0; (iy < nTop) && (FreeTopTen[iy] != NULL); iy++) {
1530       ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTen[iy]->index, FreeTopTen[iy]->len);
1531       ast->fill_to(39);
1532       if (FreeTopTen[iy]->index == (alloc_freeBlocks-1)) {
1533         ast->print("last free block in list.");
1534       } else {
1535         ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTen[iy]->gap);
1536         ast->fill_to(63);
1537         ast->print("#blocks (in gap) %d", FreeTopTen[iy]->n_gapBlocks);
1538       }
1539       ast->cr();

1540     }
1541     STRINGSTREAM_FLUSH_LOCKED("\n\n")
1542   }

1543 
1544 
1545   //--------------------------------------------------------
1546   //--  Find and Print Top Ten Free-Occupied-Free Triples --
1547   //--------------------------------------------------------
1548 
1549   //---<  find and print Top Ten Triples (Free-Occupied-Free)  >---
1550   currMax10 = 0;
1551   struct FreeBlk  *FreeTopTenTriple[nTop];
1552   memset(FreeTopTenTriple, 0, sizeof(FreeTopTenTriple));
1553 
1554   for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
1555     // If there are stubs in the gap, this gap will never become completely free.
1556     // The triple will thus never merge to one free block.
1557     unsigned int lenTriple  = FreeArray[ix].len + (FreeArray[ix].stubs_in_gap ? 0 : FreeArray[ix].gap + FreeArray[ix+1].len);
1558     FreeArray[ix].len = lenTriple;
1559     if (lenTriple > currMax10) {  // larger than the ten largest found so far
1560 
1561       unsigned int iy;
1562       for (iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {


1567           FreeTopTenTriple[iy] = &FreeArray[ix];
1568           if (FreeTopTenTriple[nTop-1] != NULL) {
1569             currMax10 = FreeTopTenTriple[nTop-1]->len;
1570           }
1571           break;
1572         }
1573       }
1574       if (iy == nTop) {
1575         ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
1576                       lenTriple, currMax10);
1577         continue;
1578       }
1579       if (FreeTopTenTriple[iy] == NULL) {
1580         FreeTopTenTriple[iy] = &FreeArray[ix];
1581         if (iy == (nTop-1)) {
1582           currMax10 = lenTriple;
1583         }
1584       }
1585     }
1586   }
1587   STRINGSTREAM_FLUSH_LOCKED("")
1588 
1589   {
1590     printBox(ast, '-', "Top Ten Free-Occupied-Free Triples in ", heapName);
1591     ast->print_cr("  Use this information to judge how likely it is that a large(r) free block\n"
1592                   "  might get created by code cache sweeping.\n"
1593                   "  If all the occupied blocks can be swept, the three free blocks will be\n"
1594                   "  merged into one (much larger) free block. That would reduce free space\n"
1595                   "  fragmentation.\n");
1596 
1597     //---<  print Top Ten Free-Occupied-Free Triples  >---
1598     for (unsigned int iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {
1599       ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTenTriple[iy]->index, FreeTopTenTriple[iy]->len);
1600       ast->fill_to(39);
1601       ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTenTriple[iy]->gap);
1602       ast->fill_to(63);
1603       ast->print("#blocks (in gap) %d", FreeTopTenTriple[iy]->n_gapBlocks);
1604       ast->cr();

1605     }
1606     STRINGSTREAM_FLUSH_LOCKED("\n\n")
1607   }

1608 }
1609 
1610 
1611 void CodeHeapState::print_count(outputStream* out, CodeHeap* heap) {
1612   if (!initialization_complete) {
1613     return;
1614   }
1615 
1616   const char* heapName   = get_heapName(heap);
1617   get_HeapStatGlobals(out, heapName);
1618 
1619   if ((StatArray == NULL) || (alloc_granules == 0)) {
1620     return;
1621   }
1622   STRINGSTREAM_DECL(ast, out)
1623 
1624   unsigned int granules_per_line = 32;
1625   char*        low_bound         = heap->low_boundary();
1626 
1627   {
1628     printBox(ast, '=', "B L O C K   C O U N T S   for ", heapName);
1629     ast->print_cr("  Each granule contains an individual number of heap blocks. Large blocks\n"
1630                   "  may span multiple granules and are counted for each granule they touch.\n");
1631     if (segment_granules) {
1632       ast->print_cr("  You have selected granule size to be as small as segment size.\n"
1633                     "  As a result, each granule contains exactly one block (or a part of one block)\n"
1634                     "  or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
1635                     "  Occupied granules show their BlobType character, see legend.\n");
1636       print_blobType_legend(ast);
1637     }
1638     STRINGSTREAM_FLUSH_LOCKED("")
1639   }
1640 
1641   {
1642     if (segment_granules) {
1643       printBox(ast, '-', "Total (all types) count for granule size == segment size", NULL);
1644       STRINGSTREAM_FLUSH_LOCKED("")
1645 
1646       granules_per_line = 128;
1647       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1648         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1649         print_blobType_single(ast, StatArray[ix].type);
1650       }
1651     } else {
1652       printBox(ast, '-', "Total (all tiers) count, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1653       STRINGSTREAM_FLUSH_LOCKED("")
1654 
1655       granules_per_line = 128;
1656       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1657         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1658         unsigned int count = StatArray[ix].t1_count   + StatArray[ix].t2_count   + StatArray[ix].tx_count
1659                            + StatArray[ix].stub_count + StatArray[ix].dead_count;
1660         print_count_single(ast, count);
1661       }
1662     }
1663     STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1664   }
1665 
1666   {
1667     if (nBlocks_t1 > 0) {
1668       printBox(ast, '-', "Tier1 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1669       STRINGSTREAM_FLUSH_LOCKED("")
1670 
1671       granules_per_line = 128;
1672       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1673         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1674         if (segment_granules && StatArray[ix].t1_count > 0) {
1675           print_blobType_single(ast, StatArray[ix].type);
1676         } else {
1677           print_count_single(ast, StatArray[ix].t1_count);
1678         }
1679       }
1680       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1681     } else {
1682       ast->print("No Tier1 nMethods found in CodeHeap.");
1683       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1684     }

1685   }
1686 
1687   {
1688     if (nBlocks_t2 > 0) {
1689       printBox(ast, '-', "Tier2 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1690       STRINGSTREAM_FLUSH_LOCKED("")
1691 
1692       granules_per_line = 128;
1693       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1694         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1695         if (segment_granules && StatArray[ix].t2_count > 0) {
1696           print_blobType_single(ast, StatArray[ix].type);
1697         } else {
1698           print_count_single(ast, StatArray[ix].t2_count);
1699         }
1700       }
1701       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1702     } else {
1703       ast->print("No Tier2 nMethods found in CodeHeap.");
1704       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1705     }

1706   }
1707 
1708   {
1709     if (nBlocks_alive > 0) {
1710       printBox(ast, '-', "not_used/not_entrant/not_installed nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1711       STRINGSTREAM_FLUSH_LOCKED("")
1712 
1713       granules_per_line = 128;
1714       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1715         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1716         if (segment_granules && StatArray[ix].tx_count > 0) {
1717           print_blobType_single(ast, StatArray[ix].type);
1718         } else {
1719           print_count_single(ast, StatArray[ix].tx_count);
1720         }
1721       }
1722       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1723     } else {
1724       ast->print("No not_used/not_entrant nMethods found in CodeHeap.");
1725       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1726     }

1727   }
1728 
1729   {
1730     if (nBlocks_stub > 0) {
1731       printBox(ast, '-', "Stub & Blob count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1732       STRINGSTREAM_FLUSH_LOCKED("")
1733 
1734       granules_per_line = 128;
1735       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1736         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1737         if (segment_granules && StatArray[ix].stub_count > 0) {
1738           print_blobType_single(ast, StatArray[ix].type);
1739         } else {
1740           print_count_single(ast, StatArray[ix].stub_count);
1741         }
1742       }
1743       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1744     } else {
1745       ast->print("No Stubs and Blobs found in CodeHeap.");
1746       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1747     }

1748   }
1749 
1750   {
1751     if (nBlocks_dead > 0) {
1752       printBox(ast, '-', "Dead nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1753       STRINGSTREAM_FLUSH_LOCKED("")
1754 
1755       granules_per_line = 128;
1756       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1757         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1758         if (segment_granules && StatArray[ix].dead_count > 0) {
1759           print_blobType_single(ast, StatArray[ix].type);
1760         } else {
1761           print_count_single(ast, StatArray[ix].dead_count);
1762         }
1763       }
1764       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1765     } else {
1766       ast->print("No dead nMethods found in CodeHeap.");
1767       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1768     }

1769   }
1770 
1771   {
1772     if (!segment_granules) { // Prevent totally redundant printouts
1773       printBox(ast, '-', "Count by tier (combined, no dead blocks): <#t1>:<#t2>:<#s>, 0x0..0xf. '*' indicates >= 16 blocks", NULL);
1774       STRINGSTREAM_FLUSH_LOCKED("")
1775 
1776       granules_per_line = 24;
1777       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1778         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1779 
1780         print_count_single(ast, StatArray[ix].t1_count);
1781         ast->print(":");
1782         print_count_single(ast, StatArray[ix].t2_count);
1783         ast->print(":");
1784         if (segment_granules && StatArray[ix].stub_count > 0) {
1785           print_blobType_single(ast, StatArray[ix].type);
1786         } else {
1787           print_count_single(ast, StatArray[ix].stub_count);
1788         }
1789         ast->print(" ");
1790       }
1791       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1792     }
1793   }
1794 }
1795 
1796 
1797 void CodeHeapState::print_space(outputStream* out, CodeHeap* heap) {
1798   if (!initialization_complete) {
1799     return;
1800   }
1801 
1802   const char* heapName   = get_heapName(heap);
1803   get_HeapStatGlobals(out, heapName);
1804 
1805   if ((StatArray == NULL) || (alloc_granules == 0)) {
1806     return;
1807   }
1808   STRINGSTREAM_DECL(ast, out)
1809 
1810   unsigned int granules_per_line = 32;
1811   char*        low_bound         = heap->low_boundary();
1812 
1813   {
1814     printBox(ast, '=', "S P A C E   U S A G E  &  F R A G M E N T A T I O N   for ", heapName);
1815     ast->print_cr("  The heap space covered by one granule is occupied to a various extend.\n"
1816                   "  The granule occupancy is displayed by one decimal digit per granule.\n");
1817     if (segment_granules) {
1818       ast->print_cr("  You have selected granule size to be as small as segment size.\n"
1819                     "  As a result, each granule contains exactly one block (or a part of one block)\n"
1820                     "  or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
1821                     "  Occupied granules show their BlobType character, see legend.\n");
1822       print_blobType_legend(ast);
1823     } else {
1824       ast->print_cr("  These digits represent a fill percentage range (see legend).\n");
1825       print_space_legend(ast);
1826     }
1827     STRINGSTREAM_FLUSH_LOCKED("")
1828   }
1829 
1830   {
1831     if (segment_granules) {
1832       printBox(ast, '-', "Total (all types) space consumption for granule size == segment size", NULL);
1833       STRINGSTREAM_FLUSH_LOCKED("")
1834 
1835       granules_per_line = 128;
1836       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1837         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1838         print_blobType_single(ast, StatArray[ix].type);
1839       }
1840     } else {
1841       printBox(ast, '-', "Total (all types) space consumption. ' ' indicates empty, '*' indicates full.", NULL);
1842       STRINGSTREAM_FLUSH_LOCKED("")
1843 
1844       granules_per_line = 128;
1845       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1846         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1847         unsigned int space    = StatArray[ix].t1_space   + StatArray[ix].t2_space  + StatArray[ix].tx_space
1848                               + StatArray[ix].stub_space + StatArray[ix].dead_space;
1849         print_space_single(ast, space);
1850       }
1851     }
1852     STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1853   }
1854 
1855   {
1856     if (nBlocks_t1 > 0) {
1857       printBox(ast, '-', "Tier1 space consumption. ' ' indicates empty, '*' indicates full", NULL);
1858       STRINGSTREAM_FLUSH_LOCKED("")
1859 
1860       granules_per_line = 128;
1861       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1862         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1863         if (segment_granules && StatArray[ix].t1_space > 0) {
1864           print_blobType_single(ast, StatArray[ix].type);
1865         } else {
1866           print_space_single(ast, StatArray[ix].t1_space);
1867         }
1868       }
1869       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1870     } else {
1871       ast->print("No Tier1 nMethods found in CodeHeap.");
1872       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1873     }

1874   }
1875 
1876   {
1877     if (nBlocks_t2 > 0) {
1878       printBox(ast, '-', "Tier2 space consumption. ' ' indicates empty, '*' indicates full", NULL);
1879       STRINGSTREAM_FLUSH_LOCKED("")
1880 
1881       granules_per_line = 128;
1882       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1883         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1884         if (segment_granules && StatArray[ix].t2_space > 0) {
1885           print_blobType_single(ast, StatArray[ix].type);
1886         } else {
1887           print_space_single(ast, StatArray[ix].t2_space);
1888         }
1889       }
1890       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1891     } else {
1892       ast->print("No Tier2 nMethods found in CodeHeap.");
1893       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1894     }

1895   }
1896 
1897   {
1898     if (nBlocks_alive > 0) {
1899       printBox(ast, '-', "not_used/not_entrant/not_installed space consumption. ' ' indicates empty, '*' indicates full", NULL);
1900 
1901       granules_per_line = 128;
1902       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1903         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1904         if (segment_granules && StatArray[ix].tx_space > 0) {
1905           print_blobType_single(ast, StatArray[ix].type);
1906         } else {
1907           print_space_single(ast, StatArray[ix].tx_space);
1908         }
1909       }
1910       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1911     } else {
1912       ast->print("No Tier2 nMethods found in CodeHeap.");
1913       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1914     }

1915   }
1916 
1917   {
1918     if (nBlocks_stub > 0) {
1919       printBox(ast, '-', "Stub and Blob space consumption. ' ' indicates empty, '*' indicates full", NULL);
1920       STRINGSTREAM_FLUSH_LOCKED("")
1921 
1922       granules_per_line = 128;
1923       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1924         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1925         if (segment_granules && StatArray[ix].stub_space > 0) {
1926           print_blobType_single(ast, StatArray[ix].type);
1927         } else {
1928           print_space_single(ast, StatArray[ix].stub_space);
1929         }
1930       }
1931       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1932     } else {
1933       ast->print("No Stubs and Blobs found in CodeHeap.");
1934       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1935     }

1936   }
1937 
1938   {
1939     if (nBlocks_dead > 0) {
1940       printBox(ast, '-', "Dead space consumption. ' ' indicates empty, '*' indicates full", NULL);
1941       STRINGSTREAM_FLUSH_LOCKED("")
1942 
1943       granules_per_line = 128;
1944       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1945         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1946         print_space_single(ast, StatArray[ix].dead_space);
1947       }
1948       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1949     } else {
1950       ast->print("No dead nMethods found in CodeHeap.");
1951       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1952     }

1953   }
1954 
1955   {
1956     if (!segment_granules) { // Prevent totally redundant printouts
1957       printBox(ast, '-', "Space consumption by tier (combined): <t1%>:<t2%>:<s%>. ' ' indicates empty, '*' indicates full", NULL);
1958       STRINGSTREAM_FLUSH_LOCKED("")
1959 
1960       granules_per_line = 24;
1961       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1962         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1963 
1964         if (segment_granules && StatArray[ix].t1_space > 0) {
1965           print_blobType_single(ast, StatArray[ix].type);
1966         } else {
1967           print_space_single(ast, StatArray[ix].t1_space);
1968         }
1969         ast->print(":");
1970         if (segment_granules && StatArray[ix].t2_space > 0) {
1971           print_blobType_single(ast, StatArray[ix].type);
1972         } else {
1973           print_space_single(ast, StatArray[ix].t2_space);
1974         }
1975         ast->print(":");
1976         if (segment_granules && StatArray[ix].stub_space > 0) {
1977           print_blobType_single(ast, StatArray[ix].type);
1978         } else {
1979           print_space_single(ast, StatArray[ix].stub_space);
1980         }
1981         ast->print(" ");
1982       }
1983       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")

1984     }
1985   }
1986 }
1987 
1988 void CodeHeapState::print_age(outputStream* out, CodeHeap* heap) {
1989   if (!initialization_complete) {
1990     return;
1991   }
1992 
1993   const char* heapName   = get_heapName(heap);
1994   get_HeapStatGlobals(out, heapName);
1995 
1996   if ((StatArray == NULL) || (alloc_granules == 0)) {
1997     return;
1998   }
1999   STRINGSTREAM_DECL(ast, out)
2000 
2001   unsigned int granules_per_line = 32;
2002   char*        low_bound         = heap->low_boundary();
2003 
2004   {
2005     printBox(ast, '=', "M E T H O D   A G E   by CompileID for ", heapName);
2006     ast->print_cr("  The age of a compiled method in the CodeHeap is not available as a\n"
2007                   "  time stamp. Instead, a relative age is deducted from the method's compilation ID.\n"
2008                   "  Age information is available for tier1 and tier2 methods only. There is no\n"
2009                   "  age information for stubs and blobs, because they have no compilation ID assigned.\n"
2010                   "  Information for the youngest method (highest ID) in the granule is printed.\n"
2011                   "  Refer to the legend to learn how method age is mapped to the displayed digit.");
2012     print_age_legend(ast);
2013     STRINGSTREAM_FLUSH_LOCKED("")
2014   }
2015 
2016   {
2017     printBox(ast, '-', "Age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2018     STRINGSTREAM_FLUSH_LOCKED("")
2019 
2020     granules_per_line = 128;
2021     for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2022       print_line_delim(out, ast, low_bound, ix, granules_per_line);
2023       unsigned int age1      = StatArray[ix].t1_age;
2024       unsigned int age2      = StatArray[ix].t2_age;
2025       unsigned int agex      = StatArray[ix].tx_age;
2026       unsigned int age       = age1 > age2 ? age1 : age2;
2027       age       = age > agex ? age : agex;
2028       print_age_single(ast, age);
2029     }
2030     STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")

2031   }
2032 
2033   {
2034     if (nBlocks_t1 > 0) {
2035       printBox(ast, '-', "Tier1 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2036       STRINGSTREAM_FLUSH_LOCKED("")
2037 
2038       granules_per_line = 128;
2039       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2040         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2041         print_age_single(ast, StatArray[ix].t1_age);
2042       }
2043       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
2044     } else {
2045       ast->print("No Tier1 nMethods found in CodeHeap.");
2046       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
2047     }

2048   }
2049 
2050   {
2051     if (nBlocks_t2 > 0) {
2052       printBox(ast, '-', "Tier2 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2053       STRINGSTREAM_FLUSH_LOCKED("")
2054 
2055       granules_per_line = 128;
2056       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2057         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2058         print_age_single(ast, StatArray[ix].t2_age);
2059       }
2060       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
2061     } else {
2062       ast->print("No Tier2 nMethods found in CodeHeap.");
2063       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
2064     }

2065   }
2066 
2067   {
2068     if (nBlocks_alive > 0) {
2069       printBox(ast, '-', "not_used/not_entrant/not_installed age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2070       STRINGSTREAM_FLUSH_LOCKED("")
2071 
2072       granules_per_line = 128;
2073       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2074         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2075         print_age_single(ast, StatArray[ix].tx_age);
2076       }
2077       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
2078     } else {
2079       ast->print("No Tier2 nMethods found in CodeHeap.");
2080       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
2081     }

2082   }
2083 
2084   {
2085     if (!segment_granules) { // Prevent totally redundant printouts
2086       printBox(ast, '-', "age distribution by tier <a1>:<a2>. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2087       STRINGSTREAM_FLUSH_LOCKED("")
2088 
2089       granules_per_line = 32;
2090       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2091         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2092         print_age_single(ast, StatArray[ix].t1_age);
2093         ast->print(":");
2094         print_age_single(ast, StatArray[ix].t2_age);
2095         ast->print(" ");
2096       }
2097       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")

2098     }
2099   }
2100 }
2101 
2102 
2103 void CodeHeapState::print_names(outputStream* out, CodeHeap* heap) {
2104   if (!initialization_complete) {
2105     return;
2106   }
2107 
2108   const char* heapName   = get_heapName(heap);
2109   get_HeapStatGlobals(out, heapName);
2110 
2111   if ((StatArray == NULL) || (alloc_granules == 0)) {
2112     return;
2113   }
2114   STRINGSTREAM_DECL(ast, out)
2115 
2116   unsigned int granules_per_line   = 128;
2117   char*        low_bound           = heap->low_boundary();
2118   CodeBlob*    last_blob           = NULL;
2119   bool         name_in_addr_range  = true;
2120   bool         have_CodeCache_lock = CodeCache_lock->owned_by_self();
2121 
2122   //---<  print at least 128K per block (i.e. between headers)  >---
2123   if (granules_per_line*granule_size < 128*K) {
2124     granules_per_line = (unsigned int)((128*K)/granule_size);
2125   }
2126 
2127   printBox(ast, '=', "M E T H O D   N A M E S   for ", heapName);
2128   ast->print_cr("  Method names are dynamically retrieved from the code cache at print time.\n"
2129                 "  Due to the living nature of the code heap and because the CodeCache_lock\n"
2130                 "  is not continuously held, the displayed name might be wrong or no name\n"
2131                 "  might be found at all. The likelihood for that to happen increases\n"
2132                 "  over time passed between aggregtion and print steps.\n");
2133   STRINGSTREAM_FLUSH_LOCKED("")
2134 
2135   for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2136     //---<  print a new blob on a new line  >---
2137     if (ix%granules_per_line == 0) {
2138       if (!name_in_addr_range) {
2139         ast->print_cr("No methods, blobs, or stubs found in this address range");
2140       }
2141       name_in_addr_range = false;
2142 
2143       size_t end_ix = (ix+granules_per_line <= alloc_granules) ? ix+granules_per_line : alloc_granules;
2144       ast->cr();
2145       ast->print_cr("--------------------------------------------------------------------");
2146       ast->print_cr("Address range [" INTPTR_FORMAT "," INTPTR_FORMAT "), " SIZE_FORMAT "k", p2i(low_bound+ix*granule_size), p2i(low_bound + end_ix*granule_size), (end_ix - ix)*granule_size/(size_t)K);
2147       ast->print_cr("--------------------------------------------------------------------");
2148       STRINGSTREAM_FLUSH_LOCKED("")
2149     }
2150     // Only check granule if it contains at least one blob.
2151     unsigned int nBlobs  = StatArray[ix].t1_count   + StatArray[ix].t2_count + StatArray[ix].tx_count +
2152                            StatArray[ix].stub_count + StatArray[ix].dead_count;
2153     if (nBlobs > 0 ) {
2154     for (unsigned int is = 0; is < granule_size; is+=(unsigned int)seg_size) {
2155       // heap->find_start() is safe. Only works on _segmap.
2156       // Returns NULL or void*. Returned CodeBlob may be uninitialized.
2157       char*     this_seg  = low_bound + ix*granule_size + is;
2158       CodeBlob* this_blob = (CodeBlob*)(heap->find_start(this_seg));
2159       bool   blob_is_safe = blob_access_is_safe(this_blob, NULL);
2160       // blob could have been flushed, freed, and merged.
2161       // this_blob < last_blob is an indicator for that.
2162       if (blob_is_safe && (this_blob > last_blob)) {
2163         last_blob          = this_blob;
2164 
2165         //---<  get type and name  >---
2166         blobType       cbType = noType;
2167         if (segment_granules) {
2168           cbType = (blobType)StatArray[ix].type;


2176         //---<  access these fields only if we own the CodeCache_lock  >---
2177         const char* blob_name = "<unavailable>";
2178         nmethod*           nm = NULL;
2179         if (have_CodeCache_lock) {
2180           blob_name = this_blob->name();
2181           nm        = this_blob->as_nmethod_or_null();
2182           // this_blob->name() could return NULL if no name was given to CTOR. Inlined, maybe invisible on stack
2183           if ((blob_name == NULL) || !os::is_readable_pointer(blob_name)) {
2184             blob_name = "<unavailable>";
2185           }
2186         }
2187 
2188         //---<  print table header for new print range  >---
2189         if (!name_in_addr_range) {
2190           name_in_addr_range = true;
2191           ast->fill_to(51);
2192           ast->print("%9s", "compiler");
2193           ast->fill_to(61);
2194           ast->print_cr("%6s", "method");
2195           ast->print_cr("%18s %13s %17s %9s  %5s %18s  %s", "Addr(module)      ", "offset", "size", " type lvl", " temp", "blobType          ", "Name");
2196           STRINGSTREAM_FLUSH_LOCKED("")
2197         }
2198 
2199         //---<  print line prefix (address and offset from CodeHeap start)  >---
2200         ast->print(INTPTR_FORMAT, p2i(this_blob));
2201         ast->fill_to(19);
2202         ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound));
2203         ast->fill_to(33);
2204 
2205         // access nmethod and Method fields only if we own the CodeCache_lock.
2206         // This fact is implicitly transported via nm != NULL.
2207         if (CompiledMethod::nmethod_access_is_safe(nm)) {
2208           Method* method = nm->method();
2209           ResourceMark rm;
2210           //---<  collect all data to locals as quickly as possible  >---
2211           unsigned int total_size = nm->total_size();
2212           int          hotness    = nm->hotness_counter();
2213           bool         get_name   = (cbType == nMethod_inuse) || (cbType == nMethod_notused);
2214           //---<  nMethod size in hex  >---
2215           ast->print(PTR32_FORMAT, total_size);
2216           ast->print("(" SIZE_FORMAT_W(4) "K)", total_size/K);


2232             Symbol* methName  = method->name();
2233             const char*   methNameS = (methName == NULL) ? NULL : methName->as_C_string();
2234             methNameS = (methNameS == NULL) ? "<method name unavailable>" : methNameS;
2235             Symbol* methSig   = method->signature();
2236             const char*   methSigS  = (methSig  == NULL) ? NULL : methSig->as_C_string();
2237             methSigS  = (methSigS  == NULL) ? "<method signature unavailable>" : methSigS;
2238             ast->print("%s", methNameS);
2239             ast->print("%s", methSigS);
2240           } else {
2241             ast->print("%s", blob_name);
2242           }
2243         } else if (blob_is_safe) {
2244           ast->fill_to(62+6);
2245           ast->print("%s", blobTypeName[cbType]);
2246           ast->fill_to(82+6);
2247           ast->print("%s", blob_name);
2248         } else {
2249           ast->fill_to(62+6);
2250           ast->print("<stale blob>");
2251         }
2252         STRINGSTREAM_FLUSH_LOCKED("\n")

2253       } else if (!blob_is_safe && (this_blob != last_blob) && (this_blob != NULL)) {
2254         last_blob          = this_blob;
2255         STRINGSTREAM_FLUSH_LOCKED("\n")
2256       }
2257     }
2258     } // nBlobs > 0
2259   }
2260   STRINGSTREAM_FLUSH_LOCKED("\n\n")
2261 }
2262 
2263 
2264 void CodeHeapState::printBox(outputStream* ast, const char border, const char* text1, const char* text2) {
2265   unsigned int lineLen = 1 + 2 + 2 + 1;
2266   char edge, frame;
2267 
2268   if (text1 != NULL) {
2269     lineLen += (unsigned int)strlen(text1); // text1 is much shorter than MAX_INT chars.
2270   }
2271   if (text2 != NULL) {
2272     lineLen += (unsigned int)strlen(text2); // text2 is much shorter than MAX_INT chars.
2273   }
2274   if (border == '-') {
2275     edge  = '+';
2276     frame = '|';
2277   } else {
2278     edge  = border;
2279     frame = border;
2280   }


2377     if (ix > 0) {
2378       ast->print("|");
2379     }
2380     ast->cr();
2381     assert(out == ast, "must use the same stream!");
2382 
2383     ast->print(INTPTR_FORMAT, p2i(low_bound + ix*granule_size));
2384     ast->fill_to(19);
2385     ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
2386   }
2387 }
2388 
2389 void CodeHeapState::print_line_delim(outputStream* out, bufferedStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) {
2390   assert(out != ast, "must not use the same stream!");
2391   if (ix % gpl == 0) {
2392     if (ix > 0) {
2393       ast->print("|");
2394     }
2395     ast->cr();
2396 
2397     { // can't use STRINGSTREAM_FLUSH_LOCKED("") here.




2398       ttyLocker ttyl;
2399       out->print("%s", ast->as_string());
2400       ast->reset();
2401     }
2402 
2403     ast->print(INTPTR_FORMAT, p2i(low_bound + ix*granule_size));
2404     ast->fill_to(19);
2405     ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
2406   }
2407 }
2408 
2409 CodeHeapState::blobType CodeHeapState::get_cbType(CodeBlob* cb) {
2410   if ((cb != NULL) && os::is_readable_pointer(cb)) {
2411     if (cb->is_runtime_stub())                return runtimeStub;
2412     if (cb->is_deoptimization_stub())         return deoptimizationStub;
2413     if (cb->is_uncommon_trap_stub())          return uncommonTrapStub;
2414     if (cb->is_exception_stub())              return exceptionStub;
2415     if (cb->is_safepoint_stub())              return safepointStub;
2416     if (cb->is_adapter_blob())                return adapterBlob;
2417     if (cb->is_method_handles_adapter_blob()) return mh_adapterBlob;




  61 // structures allocated.
  62 //
  63 // Requests for real-time, on-the-fly analysis can be issued via
  64 //   jcmd <pid> Compiler.CodeHeap_Analytics [<function>] [<granularity>]
  65 //
  66 // If you are (only) interested in how the CodeHeap looks like after running
  67 // a sample workload, you can use the command line option
  68 //   -XX:+PrintCodeHeapAnalytics
  69 // It will cause a full analysis to be written to tty. In addition, a full
  70 // analysis will be written the first time a "CodeCache full" condition is
  71 // detected.
  72 //
  73 // The command line option produces output identical to the jcmd function
  74 //   jcmd <pid> Compiler.CodeHeap_Analytics all 4096
  75 // ---------------------------------------------------------------------------------
  76 
  77 // With this declaration macro, it is possible to switch between
  78 //  - direct output into an argument-passed outputStream and
  79 //  - buffered output into a bufferedStream with subsequent flush
  80 //    of the filled buffer to the outputStream.
  81 #define USE_BUFFEREDSTREAM
  82 
  83 // There are instances when composing an output line or a small set of
  84 // output lines out of many tty->print() calls creates significant overhead.
  85 // Writing to a bufferedStream buffer first has a significant advantage:
  86 // It uses noticeably less cpu cycles and reduces (when writing to a
  87 // network file) the required bandwidth by at least a factor of ten. Observed on MacOS.
  88 // That clearly makes up for the increased code complexity.
  89 //
  90 // Conversion of existing code is easy and straightforward, if the code already
  91 // uses a parameterized output destination, e.g. "outputStream st".
  92 //  - rename the formal parameter to any other name, e.g. out_st.
  93 //  - at a suitable place in your code, insert
  94 //      BUFFEREDSTEAM_DECL(buf_st, out_st)
  95 // This will provide all the declarations necessary. After that, all
  96 // buf_st->print() (and the like) calls will be directed to a bufferedStream object.
  97 // Once a block of output (a line or a small set of lines) is composed, insert
  98 //      BUFFEREDSTREAM_FLUSH(termstring)
  99 // to flush the bufferedStream to the final destination out_st. termstring is just
 100 // an arbitrary string (e.g. "\n") which is appended to the bufferedStream before
 101 // being written to out_st. Be aware that the last character written MUST be a '\n'.
 102 // Otherwise, buf_st->position() does not correspond to out_st->position() any longer.
 103 //      BUFFEREDSTREAM_FLUSH_LOCKED(termstring)
 104 // does the same thing, protected by the ttyLocker lock.
 105 //      BUFFEREDSTREAM_FLUSH_IF(termstring, remSize)
 106 // does a flush only if the remaining buffer space is less than remSize.
 107 //
 108 // To activate, #define USE_BUFFERED_STREAM before including this header.
 109 // If not activated, output will directly go to the originally used outputStream
 110 // with no additional overhead.
 111 //
 112 #if defined(USE_BUFFEREDSTREAM)
 113 // All necessary declarations to print via a bufferedStream
 114 // This macro must be placed before any other BUFFEREDSTREAM*
 115 // macro in the function.
 116 #define BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, _capa)       \
 117     ResourceMark         _rm;                                 \
 118     /* _anyst  name of the stream as used in the code */      \
 119     /* _outst  stream where final output will go to   */      \
 120     /* _capa   allocated capacity of stream buffer    */      \
 121     size_t           _nflush = 0;                             \
 122     size_t     _nforcedflush = 0;                             \
 123     size_t      _nsavedflush = 0;                             \
 124     size_t     _nlockedflush = 0;                             \
 125     size_t     _nflush_bytes = 0;                             \
 126     size_t         _capacity = _capa;                         \
 127     bufferedStream   _sstobj(_capa);                          \
 128     bufferedStream*  _sstbuf = &_sstobj;                      \
 129     outputStream*    _outbuf = _outst;                        \
 130     bufferedStream*   _anyst = &_sstobj; /* any stream. Use this to just print - no buffer flush.  */
 131 
 132 // Same as above, but with fixed buffer size.
 133 #define BUFFEREDSTREAM_DECL(_anyst, _outst)                   \
 134     BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, 4*K);
 135 
 136 #define STRINGSTREAM_FLUSH(termString)                    \
 137     _sstbuf->print("%s", termString);                     \
 138     _outbuf->print("%s", _sstbuf->as_string());           \
 139     _sstbuf->reset();
 140 // Flush the buffer contents unconditionally.
 141 // No action if the buffer is empty.
 142 #define BUFFEREDSTREAM_FLUSH(_termString)                     \
 143     if (((_termString) != NULL) && (strlen(_termString) > 0)){\
 144       _sstbuf->print("%s", _termString);                      \
 145     }                                                         \
 146     if (_sstbuf != _outbuf) {                                 \
 147       if (_sstbuf->size() != 0) {                             \
 148         _nforcedflush++; _nflush_bytes += _sstbuf->size();    \
 149         _outbuf->print("%s", _sstbuf->as_string());           \
 150         _sstbuf->reset();                                     \
 151       }                                                       \
 152     }
 153 
 154 #define STRINGSTREAM_FLUSH_LOCKED(termString)             \
 155     { ttyLocker ttyl;/* keep this output block together */\
 156       STRINGSTREAM_FLUSH(termString)                      \
 157 // Flush the buffer contents if the remaining capacity is
 158 // less than the given threshold.
 159 #define BUFFEREDSTREAM_FLUSH_IF(_termString, _remSize)        \
 160     if (((_termString) != NULL) && (strlen(_termString) > 0)){\
 161       _sstbuf->print("%s", _termString);                      \
 162     }                                                         \
 163     if (_sstbuf != _outbuf) {                                 \
 164       if ((_capacity - _sstbuf->size()) < (size_t)(_remSize)){\
 165         _nflush++; _nforcedflush--;                           \
 166         BUFFEREDSTREAM_FLUSH("")                              \
 167       } else {                                                \
 168         _nsavedflush++;                                       \
 169       }                                                       \
 170     }
 171 
 172 // Flush the buffer contents if the remaining capacity is less
 173 // than the calculated threshold (256 bytes + capacity/16)
 174 // That should suffice for all reasonably sized output lines.
 175 #define BUFFEREDSTREAM_FLUSH_AUTO(_termString)                \
 176     BUFFEREDSTREAM_FLUSH_IF(_termString, 256+(_capacity>>4))
 177 
 178 #define BUFFEREDSTREAM_FLUSH_LOCKED(_termString)              \
 179     { ttyLocker ttyl;/* keep this output block together */    \
 180       _nlockedflush++;                                        \
 181       BUFFEREDSTREAM_FLUSH(_termString)                       \
 182     }
 183 
 184 // #define BUFFEREDSTREAM_FLUSH_STAT()                           \
 185 //     if (_sstbuf != _outbuf) {                                 \
 186 //       _outbuf->print_cr("%ld flushes (buffer full), %ld forced, %ld locked, %ld bytes total, %ld flushes saved", _nflush, _nforcedflush, _nlockedflush, _nflush_bytes, _nsavedflush); \
 187 //    }
 188 
 189 #define BUFFEREDSTREAM_FLUSH_STAT()
 190 #else
 191 #define BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, _capa)       \
 192     size_t       _capacity = _capa;                           \
 193     outputStream*  _outbuf = _outst;                          \
 194     outputStream*  _anyst  = _outst;   /* any stream. Use this to just print - no buffer flush.  */
 195 
 196 #define BUFFEREDSTREAM_DECL(_anyst, _outst)                   \
 197     BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, 4*K)
 198 
 199 #define BUFFEREDSTREAM_FLUSH(_termString)                     \
 200     if (((_termString) != NULL) && (strlen(_termString) > 0)){\
 201       _outbuf->print("%s", _termString);                      \
 202     }
 203 
 204 #define BUFFEREDSTREAM_FLUSH_IF(_termString, _remSize)        \
 205     BUFFEREDSTREAM_FLUSH(_termString)
 206 
 207 #define BUFFEREDSTREAM_FLUSH_AUTO(_termString)                \
 208     BUFFEREDSTREAM_FLUSH(_termString)
 209 
 210 #define BUFFEREDSTREAM_FLUSH_LOCKED(_termString)              \
 211     BUFFEREDSTREAM_FLUSH(_termString)
 212 
 213 #define BUFFEREDSTREAM_FLUSH_STAT()
 214 #endif
 215 #define HEX32_FORMAT  "0x%x"  // just a helper format string used below multiple times
 216 
 217 const char  blobTypeChar[] = {' ', 'C', 'N', 'I', 'X', 'Z', 'U', 'R', '?', 'D', 'T', 'E', 'S', 'A', 'M', 'B', 'L' };
 218 const char* blobTypeName[] = {"noType"
 219                              ,     "nMethod (under construction)"
 220                              ,          "nMethod (active)"
 221                              ,               "nMethod (inactive)"
 222                              ,                    "nMethod (deopt)"
 223                              ,                         "nMethod (zombie)"
 224                              ,                              "nMethod (unloaded)"
 225                              ,                                   "runtime stub"
 226                              ,                                        "ricochet stub"
 227                              ,                                             "deopt stub"
 228                              ,                                                  "uncommon trap stub"
 229                              ,                                                       "exception stub"
 230                              ,                                                            "safepoint stub"
 231                              ,                                                                 "adapter blob"
 232                              ,                                                                      "MH adapter blob"
 233                              ,                                                                           "buffer blob"
 234                              ,                                                                                "lastType"
 235                              };


 542   unsigned int nBlocks_used    = 0;
 543   unsigned int nBlocks_zomb    = 0;
 544   unsigned int nBlocks_disconn = 0;
 545   unsigned int nBlocks_notentr = 0;
 546 
 547   //---<  max & min of TopSizeArray  >---
 548   //  it is sufficient to have these sizes as 32bit unsigned ints.
 549   //  The CodeHeap is limited in size to 4GB. Furthermore, the sizes
 550   //  are stored in _segment_size units, scaling them down by a factor of 64 (at least).
 551   unsigned int  currMax          = 0;
 552   unsigned int  currMin          = 0;
 553   unsigned int  currMin_ix       = 0;
 554   unsigned long total_iterations = 0;
 555 
 556   bool  done             = false;
 557   const int min_granules = 256;
 558   const int max_granules = 512*K; // limits analyzable CodeHeap (with segment_granules) to 32M..128M
 559                                   // results in StatArray size of 24M (= max_granules * 48 Bytes per element)
 560                                   // For a 1GB CodeHeap, the granule size must be at least 2kB to not violate the max_granles limit.
 561   const char* heapName   = get_heapName(heap);
 562   BUFFEREDSTREAM_DECL(ast, out)
 563 
 564   if (!initialization_complete) {
 565     memset(CodeHeapStatArray, 0, sizeof(CodeHeapStatArray));
 566     initialization_complete = true;
 567 
 568     printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   (general remarks)", NULL);
 569     ast->print_cr("   The code heap analysis function provides deep insights into\n"
 570                   "   the inner workings and the internal state of the Java VM's\n"
 571                   "   code cache - the place where all the JVM generated machine\n"
 572                   "   code is stored.\n"
 573                   "   \n"
 574                   "   This function is designed and provided for support engineers\n"
 575                   "   to help them understand and solve issues in customer systems.\n"
 576                   "   It is not intended for use and interpretation by other persons.\n"
 577                   "   \n");
 578     BUFFEREDSTREAM_FLUSH("")
 579   }
 580   get_HeapStatGlobals(out, heapName);
 581 
 582 
 583   // Since we are (and must be) analyzing the CodeHeap contents under the CodeCache_lock,
 584   // all heap information is "constant" and can be safely extracted/calculated before we
 585   // enter the while() loop. Actually, the loop will only be iterated once.
 586   char*  low_bound     = heap->low_boundary();
 587   size_t size          = heap->capacity();
 588   size_t res_size      = heap->max_capacity();
 589   seg_size             = heap->segment_size();
 590   log2_seg_size        = seg_size == 0 ? 0 : exact_log2(seg_size);  // This is a global static value.
 591 
 592   if (seg_size == 0) {
 593     printBox(ast, '-', "Heap not fully initialized yet, segment size is zero for segment ", heapName);
 594     BUFFEREDSTREAM_FLUSH("")
 595     return;
 596   }
 597 
 598   if (!CodeCache_lock->owned_by_self()) {
 599     printBox(ast, '-', "aggregate function called without holding the CodeCache_lock for ", heapName);
 600     BUFFEREDSTREAM_FLUSH("")
 601     return;
 602   }
 603 
 604   // Calculate granularity of analysis (and output).
 605   //   The CodeHeap is managed (allocated) in segments (units) of CodeCacheSegmentSize.
 606   //   The CodeHeap can become fairly large, in particular in productive real-life systems.
 607   //
 608   //   It is often neither feasible nor desirable to aggregate the data with the highest possible
 609   //   level of detail, i.e. inspecting and printing each segment on its own.
 610   //
 611   //   The granularity parameter allows to specify the level of detail available in the analysis.
 612   //   It must be a positive multiple of the segment size and should be selected such that enough
 613   //   detail is provided while, at the same time, the printed output does not explode.
 614   //
 615   //   By manipulating the granularity value, we enforce that at least min_granules units
 616   //   of analysis are available. We also enforce an upper limit of max_granules units to
 617   //   keep the amount of allocated storage in check.
 618   //
 619   //   Finally, we adjust the granularity such that each granule covers at most 64k-1 segments.
 620   //   This is necessary to prevent an unsigned short overflow while accumulating space information.


 637   granularity = granularity & (~(seg_size - 1));                       // must be multiple of seg_size
 638   if (granularity>>log2_seg_size >= (1L<<sizeof(unsigned short)*8)) {
 639     granularity = ((1L<<(sizeof(unsigned short)*8))-1)<<log2_seg_size; // Limit: (64k-1) * seg_size
 640   }
 641   segment_granules = granularity == seg_size;
 642   size_t granules  = (size + (granularity-1))/granularity;
 643 
 644   printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   (used blocks) for segment ", heapName);
 645   ast->print_cr("   The aggregate step takes an aggregated snapshot of the CodeHeap.\n"
 646                 "   Subsequent print functions create their output based on this snapshot.\n"
 647                 "   The CodeHeap is a living thing, and every effort has been made for the\n"
 648                 "   collected data to be consistent. Only the method names and signatures\n"
 649                 "   are retrieved at print time. That may lead to rare cases where the\n"
 650                 "   name of a method is no longer available, e.g. because it was unloaded.\n");
 651   ast->print_cr("   CodeHeap committed size " SIZE_FORMAT "K (" SIZE_FORMAT "M), reserved size " SIZE_FORMAT "K (" SIZE_FORMAT "M), %d%% occupied.",
 652                 size/(size_t)K, size/(size_t)M, res_size/(size_t)K, res_size/(size_t)M, (unsigned int)(100.0*size/res_size));
 653   ast->print_cr("   CodeHeap allocation segment size is " SIZE_FORMAT " bytes. This is the smallest possible granularity.", seg_size);
 654   ast->print_cr("   CodeHeap (committed part) is mapped to " SIZE_FORMAT " granules of size " SIZE_FORMAT " bytes.", granules, granularity);
 655   ast->print_cr("   Each granule takes " SIZE_FORMAT " bytes of C heap, that is " SIZE_FORMAT "K in total for statistics data.", sizeof(StatElement), (sizeof(StatElement)*granules)/(size_t)K);
 656   ast->print_cr("   The number of granules is limited to %dk, requiring a granules size of at least %d bytes for a 1GB heap.", (unsigned int)(max_granules/K), (unsigned int)(G/max_granules));
 657   BUFFEREDSTREAM_FLUSH("\n")
 658 
 659 
 660   while (!done) {
 661     //---<  reset counters with every aggregation  >---
 662     nBlocks_t1       = 0;
 663     nBlocks_t2       = 0;
 664     nBlocks_alive    = 0;
 665     nBlocks_dead     = 0;
 666     nBlocks_inconstr = 0;
 667     nBlocks_unloaded = 0;
 668     nBlocks_stub     = 0;
 669 
 670     nBlocks_free     = 0;
 671     nBlocks_used     = 0;
 672     nBlocks_zomb     = 0;
 673     nBlocks_disconn  = 0;
 674     nBlocks_notentr  = 0;
 675 
 676     //---<  discard old arrays if size does not match  >---
 677     if (granules != alloc_granules) {


 726       // This is a diagnostic function. It is not supposed to tear down the VM.
 727       if ((char*)h <  low_bound) {
 728         insane = true; ast->print_cr("Sanity check: HeapBlock @%p below low bound (%p)", (char*)h, low_bound);
 729       }
 730       if ((char*)h >  (low_bound + res_size)) {
 731         insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside reserved range (%p)", (char*)h, low_bound + res_size);
 732       }
 733       if ((char*)h >  (low_bound + size)) {
 734         insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside used range (%p)", (char*)h, low_bound + size);
 735       }
 736       if (ix_end   >= granules) {
 737         insane = true; ast->print_cr("Sanity check: end index (%d) out of bounds (" SIZE_FORMAT ")", ix_end, granules);
 738       }
 739       if (size     != heap->capacity()) {
 740         insane = true; ast->print_cr("Sanity check: code heap capacity has changed (" SIZE_FORMAT "K to " SIZE_FORMAT "K)", size/(size_t)K, heap->capacity()/(size_t)K);
 741       }
 742       if (ix_beg   >  ix_end) {
 743         insane = true; ast->print_cr("Sanity check: end index (%d) lower than begin index (%d)", ix_end, ix_beg);
 744       }
 745       if (insane) {
 746         BUFFEREDSTREAM_FLUSH("")
 747         continue;
 748       }
 749 
 750       if (h->free()) {
 751         nBlocks_free++;
 752         freeSpace    += hb_bytelen;
 753         if (hb_bytelen > maxFreeSize) {
 754           maxFreeSize   = hb_bytelen;
 755           maxFreeBlock  = h;
 756         }
 757       } else {
 758         update_SizeDistArray(out, hb_len);
 759         nBlocks_used++;
 760         usedSpace    += hb_bytelen;
 761         CodeBlob* cb  = (CodeBlob*)heap->find_start(h);
 762         if (cb != NULL) {
 763           cbType = get_cbType(cb);
 764           if (cb->is_nmethod()) {
 765             compile_id = ((nmethod*)cb)->compile_id();
 766             comp_lvl   = (CompLevel)((nmethod*)cb)->comp_level();


1115       ast->cr();
1116       ast->print_cr("latest allocated compilation id = %d", latest_compilation_id);
1117       ast->print_cr("highest observed compilation id = %d", highest_compilation_id);
1118       ast->print_cr("Building TopSizeList iterations = %ld", total_iterations);
1119       ast->cr();
1120 
1121       int             reset_val = NMethodSweeper::hotness_counter_reset_val();
1122       double reverse_free_ratio = (res_size > size) ? (double)res_size/(double)(res_size-size) : (double)res_size;
1123       printBox(ast, '-', "Method hotness information at time of this analysis", NULL);
1124       ast->print_cr("Highest possible method temperature:          %12d", reset_val);
1125       ast->print_cr("Threshold for method to be considered 'cold': %12.3f", -reset_val + reverse_free_ratio * NmethodSweepActivity);
1126       if (n_methods > 0) {
1127         avgTemp = hotnessAccumulator/n_methods;
1128         ast->print_cr("min. hotness = %6d", minTemp);
1129         ast->print_cr("avg. hotness = %6d", avgTemp);
1130         ast->print_cr("max. hotness = %6d", maxTemp);
1131       } else {
1132         avgTemp = 0;
1133         ast->print_cr("No hotness data available");
1134       }
1135       BUFFEREDSTREAM_FLUSH("\n")
1136 
1137       // This loop is intentionally printing directly to "out".
1138       // It should not print anything, anyway.
1139       out->print("Verifying collected data...");
1140       size_t granule_segs = granule_size>>log2_seg_size;
1141       for (unsigned int ix = 0; ix < granules; ix++) {
1142         if (StatArray[ix].t1_count   > granule_segs) {
1143           out->print_cr("t1_count[%d]   = %d", ix, StatArray[ix].t1_count);
1144         }
1145         if (StatArray[ix].t2_count   > granule_segs) {
1146           out->print_cr("t2_count[%d]   = %d", ix, StatArray[ix].t2_count);
1147         }
1148         if (StatArray[ix].tx_count   > granule_segs) {
1149           out->print_cr("tx_count[%d]   = %d", ix, StatArray[ix].tx_count);
1150         }
1151         if (StatArray[ix].stub_count > granule_segs) {
1152           out->print_cr("stub_count[%d] = %d", ix, StatArray[ix].stub_count);
1153         }
1154         if (StatArray[ix].dead_count > granule_segs) {
1155           out->print_cr("dead_count[%d] = %d", ix, StatArray[ix].dead_count);


1197           }
1198         }
1199       }
1200       out->print_cr("...done\n\n");
1201     } else {
1202       // insane heap state detected. Analysis data incomplete. Just throw it away.
1203       discard_StatArray(out);
1204       discard_TopSizeArray(out);
1205     }
1206   }
1207 
1208 
1209   done        = false;
1210   while (!done && (nBlocks_free > 0)) {
1211 
1212     printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   (free blocks) for segment ", heapName);
1213     ast->print_cr("   The aggregate step collects information about all free blocks in CodeHeap.\n"
1214                   "   Subsequent print functions create their output based on this snapshot.\n");
1215     ast->print_cr("   Free space in %s is distributed over %d free blocks.", heapName, nBlocks_free);
1216     ast->print_cr("   Each free block takes " SIZE_FORMAT " bytes of C heap for statistics data, that is " SIZE_FORMAT "K in total.", sizeof(FreeBlk), (sizeof(FreeBlk)*nBlocks_free)/K);
1217     BUFFEREDSTREAM_FLUSH("\n")
1218 
1219     //----------------------------------------
1220     //--  Prepare the FreeArray of FreeBlks --
1221     //----------------------------------------
1222 
1223     //---< discard old array if size does not match  >---
1224     if (nBlocks_free != alloc_freeBlocks) {
1225       discard_FreeArray(out);
1226     }
1227 
1228     prepare_FreeArray(out, nBlocks_free, heapName);
1229     if (FreeArray == NULL) {
1230       done = true;
1231       continue;
1232     }
1233 
1234     //----------------------------------------
1235     //--  Collect all FreeBlks in FreeArray --
1236     //----------------------------------------
1237 
1238     unsigned int ix = 0;
1239     FreeBlock* cur  = heap->freelist();
1240 
1241     while (cur != NULL) {
1242       if (ix < alloc_freeBlocks) { // don't index out of bounds if _freelist has more blocks than anticipated
1243         FreeArray[ix].start = cur;
1244         FreeArray[ix].len   = (unsigned int)(cur->length()<<log2_seg_size);
1245         FreeArray[ix].index = ix;
1246       }
1247       cur  = cur->link();
1248       ix++;
1249     }
1250     if (ix != alloc_freeBlocks) {
1251       ast->print_cr("Free block count mismatch. Expected %d free blocks, but found %d.", alloc_freeBlocks, ix);
1252       ast->print_cr("I will update the counter and retry data collection");
1253       BUFFEREDSTREAM_FLUSH("\n")
1254       nBlocks_free = ix;
1255       continue;
1256     }
1257     done = true;
1258   }
1259 
1260   if (!done || (nBlocks_free == 0)) {
1261     if (nBlocks_free == 0) {
1262       printBox(ast, '-', "no free blocks found in ", heapName);
1263     } else if (!done) {
1264       ast->print_cr("Free block count mismatch could not be resolved.");
1265       ast->print_cr("Try to run \"aggregate\" function to update counters");
1266     }
1267     BUFFEREDSTREAM_FLUSH("")
1268 
1269     //---< discard old array and update global values  >---
1270     discard_FreeArray(out);
1271     set_HeapStatGlobals(out, heapName);
1272     return;
1273   }
1274 
1275   //---<  calculate and fill remaining fields  >---
1276   if (FreeArray != NULL) {
1277     // This loop is intentionally printing directly to "out".
1278     // It should not print anything, anyway.
1279     for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
1280       size_t lenSum = 0;
1281       FreeArray[ix].gap = (unsigned int)((address)FreeArray[ix+1].start - ((address)FreeArray[ix].start + FreeArray[ix].len));
1282       for (HeapBlock *h = heap->next_block(FreeArray[ix].start); (h != NULL) && (h != FreeArray[ix+1].start); h = heap->next_block(h)) {
1283         CodeBlob *cb  = (CodeBlob*)(heap->find_start(h));
1284         if ((cb != NULL) && !cb->is_nmethod()) {
1285           FreeArray[ix].stubs_in_gap = true;
1286         }
1287         FreeArray[ix].n_gapBlocks++;
1288         lenSum += h->length()<<log2_seg_size;
1289         if (((address)h < ((address)FreeArray[ix].start+FreeArray[ix].len)) || (h >= FreeArray[ix+1].start)) {
1290           out->print_cr("unsorted occupied CodeHeap block found @ %p, gap interval [%p, %p)", h, (address)FreeArray[ix].start+FreeArray[ix].len, FreeArray[ix+1].start);
1291         }
1292       }
1293       if (lenSum != FreeArray[ix].gap) {
1294         out->print_cr("Length mismatch for gap between FreeBlk[%d] and FreeBlk[%d]. Calculated: %d, accumulated: %d.", ix, ix+1, FreeArray[ix].gap, (unsigned int)lenSum);
1295       }
1296     }
1297   }
1298   set_HeapStatGlobals(out, heapName);
1299 
1300   printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   C O M P L E T E   for segment ", heapName);
1301   BUFFEREDSTREAM_FLUSH("\n")
1302 }
1303 
1304 
1305 void CodeHeapState::print_usedSpace(outputStream* out, CodeHeap* heap) {
1306   if (!initialization_complete) {
1307     return;
1308   }
1309 
1310   const char* heapName   = get_heapName(heap);
1311   get_HeapStatGlobals(out, heapName);
1312 
1313   if ((StatArray == NULL) || (TopSizeArray == NULL) || (used_topSizeBlocks == 0)) {
1314     return;
1315   }
1316   BUFFEREDSTREAM_DECL(ast, out)
1317 
1318   {
1319     printBox(ast, '=', "U S E D   S P A C E   S T A T I S T I C S   for ", heapName);
1320     ast->print_cr("Note: The Top%d list of the largest used blocks associates method names\n"
1321                   "      and other identifying information with the block size data.\n"
1322                   "\n"
1323                   "      Method names are dynamically retrieved from the code cache at print time.\n"
1324                   "      Due to the living nature of the code cache and because the CodeCache_lock\n"
1325                   "      is not continuously held, the displayed name might be wrong or no name\n"
1326                   "      might be found at all. The likelihood for that to happen increases\n"
1327                   "      over time passed between analysis and print step.\n", used_topSizeBlocks);
1328     BUFFEREDSTREAM_FLUSH_LOCKED("\n")
1329   }
1330 
1331   //----------------------------
1332   //--  Print Top Used Blocks --
1333   //----------------------------
1334   {
1335     char*     low_bound = heap->low_boundary();
1336     bool      have_CodeCache_lock = CodeCache_lock->owned_by_self();
1337 
1338     printBox(ast, '-', "Largest Used Blocks in ", heapName);
1339     print_blobType_legend(ast);
1340 
1341     ast->fill_to(51);
1342     ast->print("%4s", "blob");
1343     ast->fill_to(56);
1344     ast->print("%9s", "compiler");
1345     ast->fill_to(66);
1346     ast->print_cr("%6s", "method");
1347     ast->print_cr("%18s %13s %17s %4s %9s  %5s %s",      "Addr(module)      ", "offset", "size", "type", " type lvl", " temp", "Name");
1348     BUFFEREDSTREAM_FLUSH_LOCKED("")
1349 
1350     //---<  print Top Ten Used Blocks  >---
1351     if (used_topSizeBlocks > 0) {
1352       unsigned int printed_topSizeBlocks = 0;
1353       for (unsigned int i = 0; i != tsbStopper; i = TopSizeArray[i].index) {
1354         printed_topSizeBlocks++;
1355         nmethod*           nm = NULL;
1356         const char* blob_name = "unnamed blob or blob name unavailable";
1357         // heap->find_start() is safe. Only works on _segmap.
1358         // Returns NULL or void*. Returned CodeBlob may be uninitialized.
1359         HeapBlock* heapBlock = TopSizeArray[i].start;
1360         CodeBlob*  this_blob = (CodeBlob*)(heap->find_start(heapBlock));
1361         bool    blob_is_safe = blob_access_is_safe(this_blob, NULL);
1362         if (blob_is_safe) {
1363           //---<  access these fields only if we own the CodeCache_lock  >---
1364           if (have_CodeCache_lock) {
1365             blob_name = this_blob->name();
1366             nm        = this_blob->as_nmethod_or_null();
1367           }
1368           //---<  blob address  >---


1406           ast->print("%5d", nm->hotness_counter());
1407           //---<  name and signature  >---
1408           ast->fill_to(67+6);
1409           if (nm->is_not_installed()) {
1410             ast->print(" not (yet) installed method ");
1411           }
1412           if (nm->is_zombie()) {
1413             ast->print(" zombie method ");
1414           }
1415           ast->print("%s", blob_name);
1416         } else {
1417           //---<  block size in hex  >---
1418           ast->print(PTR32_FORMAT, (unsigned int)(TopSizeArray[i].len<<log2_seg_size));
1419           ast->print("(" SIZE_FORMAT_W(4) "K)", (TopSizeArray[i].len<<log2_seg_size)/K);
1420           //---<  no compiler information  >---
1421           ast->fill_to(56);
1422           //---<  name and signature  >---
1423           ast->fill_to(67+6);
1424           ast->print("%s", blob_name);
1425         }
1426         ast->cr();
1427         BUFFEREDSTREAM_FLUSH_AUTO("")
1428       }
1429       if (used_topSizeBlocks != printed_topSizeBlocks) {
1430         ast->print_cr("used blocks: %d, printed blocks: %d", used_topSizeBlocks, printed_topSizeBlocks);

1431         for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) {
1432           ast->print_cr("  TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len);
1433           BUFFEREDSTREAM_FLUSH_AUTO("")
1434         }
1435       }
1436       BUFFEREDSTREAM_FLUSH("\n\n")
1437     }
1438   }
1439 
1440   //-----------------------------
1441   //--  Print Usage Histogram  --
1442   //-----------------------------
1443 
1444   if (SizeDistributionArray != NULL) {
1445     unsigned long total_count = 0;
1446     unsigned long total_size  = 0;
1447     const unsigned long pctFactor = 200;
1448 
1449     for (unsigned int i = 0; i < nSizeDistElements; i++) {
1450       total_count += SizeDistributionArray[i].count;
1451       total_size  += SizeDistributionArray[i].lenSum;
1452     }
1453 
1454     if ((total_count > 0) && (total_size > 0)) {
1455       printBox(ast, '-', "Block count histogram for ", heapName);
1456       ast->print_cr("Note: The histogram indicates how many blocks (as a percentage\n"
1457                     "      of all blocks) have a size in the given range.\n"
1458                     "      %ld characters are printed per percentage point.\n", pctFactor/100);
1459       ast->print_cr("total size   of all blocks: %7ldM", (total_size<<log2_seg_size)/M);
1460       ast->print_cr("total number of all blocks: %7ld\n", total_count);
1461       BUFFEREDSTREAM_FLUSH_LOCKED("")
1462 
1463       ast->print_cr("[Size Range)------avg.-size-+----count-+");
1464       for (unsigned int i = 0; i < nSizeDistElements; i++) {
1465         if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) {
1466           ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): "
1467                     ,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size)
1468                     ,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size)
1469                     );
1470         } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) {
1471           ast->print("[" SIZE_FORMAT_W(5) "K.." SIZE_FORMAT_W(5) "K): "
1472                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K
1473                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K
1474                     );
1475         } else {
1476           ast->print("[" SIZE_FORMAT_W(5) "M.." SIZE_FORMAT_W(5) "M): "
1477                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M
1478                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M
1479                     );
1480         }
1481         ast->print(" %8d | %8d |",
1482                    SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0,
1483                    SizeDistributionArray[i].count);
1484 
1485         unsigned int percent = pctFactor*SizeDistributionArray[i].count/total_count;
1486         for (unsigned int j = 1; j <= percent; j++) {
1487           ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
1488         }
1489         ast->cr();
1490         BUFFEREDSTREAM_FLUSH_AUTO("")
1491       }
1492       ast->print_cr("----------------------------+----------+");
1493       BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1494 
1495       printBox(ast, '-', "Contribution per size range to total size for ", heapName);
1496       ast->print_cr("Note: The histogram indicates how much space (as a percentage of all\n"
1497                     "      occupied space) is used by the blocks in the given size range.\n"
1498                     "      %ld characters are printed per percentage point.\n", pctFactor/100);
1499       ast->print_cr("total size   of all blocks: %7ldM", (total_size<<log2_seg_size)/M);
1500       ast->print_cr("total number of all blocks: %7ld\n", total_count);
1501       BUFFEREDSTREAM_FLUSH_LOCKED("")
1502 
1503       ast->print_cr("[Size Range)------avg.-size-+----count-+");
1504       for (unsigned int i = 0; i < nSizeDistElements; i++) {
1505         if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) {
1506           ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): "
1507                     ,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size)
1508                     ,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size)
1509                     );
1510         } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) {
1511           ast->print("[" SIZE_FORMAT_W(5) "K.." SIZE_FORMAT_W(5) "K): "
1512                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K
1513                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K
1514                     );
1515         } else {
1516           ast->print("[" SIZE_FORMAT_W(5) "M.." SIZE_FORMAT_W(5) "M): "
1517                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M
1518                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M
1519                     );
1520         }
1521         ast->print(" %8d | %8d |",
1522                    SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0,
1523                    SizeDistributionArray[i].count);
1524 
1525         unsigned int percent = pctFactor*(unsigned long)SizeDistributionArray[i].lenSum/total_size;
1526         for (unsigned int j = 1; j <= percent; j++) {
1527           ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
1528         }
1529         ast->cr();
1530         BUFFEREDSTREAM_FLUSH_AUTO("")
1531       }
1532       ast->print_cr("----------------------------+----------+");
1533       BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1534     }
1535   }
1536 }
1537 
1538 
1539 void CodeHeapState::print_freeSpace(outputStream* out, CodeHeap* heap) {
1540   if (!initialization_complete) {
1541     return;
1542   }
1543 
1544   const char* heapName   = get_heapName(heap);
1545   get_HeapStatGlobals(out, heapName);
1546 
1547   if ((StatArray == NULL) || (FreeArray == NULL) || (alloc_granules == 0)) {
1548     return;
1549   }
1550   BUFFEREDSTREAM_DECL(ast, out)
1551 
1552   {
1553     printBox(ast, '=', "F R E E   S P A C E   S T A T I S T I C S   for ", heapName);
1554     ast->print_cr("Note: in this context, a gap is the occupied space between two free blocks.\n"
1555                   "      Those gaps are of interest if there is a chance that they become\n"
1556                   "      unoccupied, e.g. by class unloading. Then, the two adjacent free\n"
1557                   "      blocks, together with the now unoccupied space, form a new, large\n"
1558                   "      free block.");
1559     BUFFEREDSTREAM_FLUSH_LOCKED("\n")
1560   }
1561 
1562   {
1563     printBox(ast, '-', "List of all Free Blocks in ", heapName);

1564 
1565     unsigned int ix = 0;
1566     for (ix = 0; ix < alloc_freeBlocks-1; ix++) {
1567       ast->print(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT ",", p2i(FreeArray[ix].start), ix, FreeArray[ix].len);
1568       ast->fill_to(38);
1569       ast->print("Gap[%4d..%4d]: " HEX32_FORMAT " bytes,", ix, ix+1, FreeArray[ix].gap);
1570       ast->fill_to(71);
1571       ast->print("block count: %6d", FreeArray[ix].n_gapBlocks);
1572       if (FreeArray[ix].stubs_in_gap) {
1573         ast->print(" !! permanent gap, contains stubs and/or blobs !!");
1574       }
1575       ast->cr();
1576       BUFFEREDSTREAM_FLUSH_AUTO("")
1577     }
1578     ast->print_cr(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT, p2i(FreeArray[ix].start), ix, FreeArray[ix].len);
1579     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
1580   }
1581 
1582 
1583   //-----------------------------------------
1584   //--  Find and Print Top Ten Free Blocks --
1585   //-----------------------------------------
1586 
1587   //---<  find Top Ten Free Blocks  >---
1588   const unsigned int nTop = 10;
1589   unsigned int  currMax10 = 0;
1590   struct FreeBlk* FreeTopTen[nTop];
1591   memset(FreeTopTen, 0, sizeof(FreeTopTen));
1592 
1593   for (unsigned int ix = 0; ix < alloc_freeBlocks; ix++) {
1594     if (FreeArray[ix].len > currMax10) {  // larger than the ten largest found so far
1595       unsigned int currSize = FreeArray[ix].len;
1596 
1597       unsigned int iy;
1598       for (iy = 0; iy < nTop && FreeTopTen[iy] != NULL; iy++) {
1599         if (FreeTopTen[iy]->len < currSize) {


1603           FreeTopTen[iy] = &FreeArray[ix];        // insert new free block
1604           if (FreeTopTen[nTop-1] != NULL) {
1605             currMax10 = FreeTopTen[nTop-1]->len;
1606           }
1607           break; // done with this, check next free block
1608         }
1609       }
1610       if (iy >= nTop) {
1611         ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
1612                       currSize, currMax10);
1613         continue;
1614       }
1615       if (FreeTopTen[iy] == NULL) {
1616         FreeTopTen[iy] = &FreeArray[ix];
1617         if (iy == (nTop-1)) {
1618           currMax10 = currSize;
1619         }
1620       }
1621     }
1622   }
1623   BUFFEREDSTREAM_FLUSH_AUTO("")
1624 
1625   {
1626     printBox(ast, '-', "Top Ten Free Blocks in ", heapName);
1627 
1628     //---<  print Top Ten Free Blocks  >---
1629     for (unsigned int iy = 0; (iy < nTop) && (FreeTopTen[iy] != NULL); iy++) {
1630       ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTen[iy]->index, FreeTopTen[iy]->len);
1631       ast->fill_to(39);
1632       if (FreeTopTen[iy]->index == (alloc_freeBlocks-1)) {
1633         ast->print("last free block in list.");
1634       } else {
1635         ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTen[iy]->gap);
1636         ast->fill_to(63);
1637         ast->print("#blocks (in gap) %d", FreeTopTen[iy]->n_gapBlocks);
1638       }
1639       ast->cr();
1640       BUFFEREDSTREAM_FLUSH_AUTO("")
1641     }

1642   }
1643   BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
1644 
1645 
1646   //--------------------------------------------------------
1647   //--  Find and Print Top Ten Free-Occupied-Free Triples --
1648   //--------------------------------------------------------
1649 
1650   //---<  find and print Top Ten Triples (Free-Occupied-Free)  >---
1651   currMax10 = 0;
1652   struct FreeBlk  *FreeTopTenTriple[nTop];
1653   memset(FreeTopTenTriple, 0, sizeof(FreeTopTenTriple));
1654 
1655   for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
1656     // If there are stubs in the gap, this gap will never become completely free.
1657     // The triple will thus never merge to one free block.
1658     unsigned int lenTriple  = FreeArray[ix].len + (FreeArray[ix].stubs_in_gap ? 0 : FreeArray[ix].gap + FreeArray[ix+1].len);
1659     FreeArray[ix].len = lenTriple;
1660     if (lenTriple > currMax10) {  // larger than the ten largest found so far
1661 
1662       unsigned int iy;
1663       for (iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {


1668           FreeTopTenTriple[iy] = &FreeArray[ix];
1669           if (FreeTopTenTriple[nTop-1] != NULL) {
1670             currMax10 = FreeTopTenTriple[nTop-1]->len;
1671           }
1672           break;
1673         }
1674       }
1675       if (iy == nTop) {
1676         ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
1677                       lenTriple, currMax10);
1678         continue;
1679       }
1680       if (FreeTopTenTriple[iy] == NULL) {
1681         FreeTopTenTriple[iy] = &FreeArray[ix];
1682         if (iy == (nTop-1)) {
1683           currMax10 = lenTriple;
1684         }
1685       }
1686     }
1687   }
1688   BUFFEREDSTREAM_FLUSH_AUTO("")
1689 
1690   {
1691     printBox(ast, '-', "Top Ten Free-Occupied-Free Triples in ", heapName);
1692     ast->print_cr("  Use this information to judge how likely it is that a large(r) free block\n"
1693                   "  might get created by code cache sweeping.\n"
1694                   "  If all the occupied blocks can be swept, the three free blocks will be\n"
1695                   "  merged into one (much larger) free block. That would reduce free space\n"
1696                   "  fragmentation.\n");
1697 
1698     //---<  print Top Ten Free-Occupied-Free Triples  >---
1699     for (unsigned int iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {
1700       ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTenTriple[iy]->index, FreeTopTenTriple[iy]->len);
1701       ast->fill_to(39);
1702       ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTenTriple[iy]->gap);
1703       ast->fill_to(63);
1704       ast->print("#blocks (in gap) %d", FreeTopTenTriple[iy]->n_gapBlocks);
1705       ast->cr();
1706       BUFFEREDSTREAM_FLUSH_AUTO("")
1707     }

1708   }
1709   BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
1710 }
1711 
1712 
1713 void CodeHeapState::print_count(outputStream* out, CodeHeap* heap) {
1714   if (!initialization_complete) {
1715     return;
1716   }
1717 
1718   const char* heapName   = get_heapName(heap);
1719   get_HeapStatGlobals(out, heapName);
1720 
1721   if ((StatArray == NULL) || (alloc_granules == 0)) {
1722     return;
1723   }
1724   BUFFEREDSTREAM_DECL(ast, out)
1725 
1726   unsigned int granules_per_line = 32;
1727   char*        low_bound         = heap->low_boundary();
1728 
1729   {
1730     printBox(ast, '=', "B L O C K   C O U N T S   for ", heapName);
1731     ast->print_cr("  Each granule contains an individual number of heap blocks. Large blocks\n"
1732                   "  may span multiple granules and are counted for each granule they touch.\n");
1733     if (segment_granules) {
1734       ast->print_cr("  You have selected granule size to be as small as segment size.\n"
1735                     "  As a result, each granule contains exactly one block (or a part of one block)\n"
1736                     "  or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
1737                     "  Occupied granules show their BlobType character, see legend.\n");
1738       print_blobType_legend(ast);
1739     }
1740     BUFFEREDSTREAM_FLUSH_LOCKED("")
1741   }
1742 
1743   {
1744     if (segment_granules) {
1745       printBox(ast, '-', "Total (all types) count for granule size == segment size", NULL);

1746 
1747       granules_per_line = 128;
1748       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1749         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1750         print_blobType_single(ast, StatArray[ix].type);
1751       }
1752     } else {
1753       printBox(ast, '-', "Total (all tiers) count, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);

1754 
1755       granules_per_line = 128;
1756       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1757         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1758         unsigned int count = StatArray[ix].t1_count   + StatArray[ix].t2_count   + StatArray[ix].tx_count
1759                            + StatArray[ix].stub_count + StatArray[ix].dead_count;
1760         print_count_single(ast, count);
1761       }
1762     }
1763     BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n")
1764   }
1765 
1766   {
1767     if (nBlocks_t1 > 0) {
1768       printBox(ast, '-', "Tier1 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);

1769 
1770       granules_per_line = 128;
1771       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1772         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1773         if (segment_granules && StatArray[ix].t1_count > 0) {
1774           print_blobType_single(ast, StatArray[ix].type);
1775         } else {
1776           print_count_single(ast, StatArray[ix].t1_count);
1777         }
1778       }
1779       ast->print("|");
1780     } else {
1781       ast->print("No Tier1 nMethods found in CodeHeap.");

1782     }
1783     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1784   }
1785 
1786   {
1787     if (nBlocks_t2 > 0) {
1788       printBox(ast, '-', "Tier2 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);

1789 
1790       granules_per_line = 128;
1791       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1792         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1793         if (segment_granules && StatArray[ix].t2_count > 0) {
1794           print_blobType_single(ast, StatArray[ix].type);
1795         } else {
1796           print_count_single(ast, StatArray[ix].t2_count);
1797         }
1798       }
1799       ast->print("|");
1800     } else {
1801       ast->print("No Tier2 nMethods found in CodeHeap.");

1802     }
1803     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1804   }
1805 
1806   {
1807     if (nBlocks_alive > 0) {
1808       printBox(ast, '-', "not_used/not_entrant/not_installed nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);

1809 
1810       granules_per_line = 128;
1811       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1812         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1813         if (segment_granules && StatArray[ix].tx_count > 0) {
1814           print_blobType_single(ast, StatArray[ix].type);
1815         } else {
1816           print_count_single(ast, StatArray[ix].tx_count);
1817         }
1818       }
1819       ast->print("|");
1820     } else {
1821       ast->print("No not_used/not_entrant nMethods found in CodeHeap.");

1822     }
1823     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1824   }
1825 
1826   {
1827     if (nBlocks_stub > 0) {
1828       printBox(ast, '-', "Stub & Blob count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);

1829 
1830       granules_per_line = 128;
1831       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1832         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1833         if (segment_granules && StatArray[ix].stub_count > 0) {
1834           print_blobType_single(ast, StatArray[ix].type);
1835         } else {
1836           print_count_single(ast, StatArray[ix].stub_count);
1837         }
1838       }
1839       ast->print("|");
1840     } else {
1841       ast->print("No Stubs and Blobs found in CodeHeap.");

1842     }
1843     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1844   }
1845 
1846   {
1847     if (nBlocks_dead > 0) {
1848       printBox(ast, '-', "Dead nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);

1849 
1850       granules_per_line = 128;
1851       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1852         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1853         if (segment_granules && StatArray[ix].dead_count > 0) {
1854           print_blobType_single(ast, StatArray[ix].type);
1855         } else {
1856           print_count_single(ast, StatArray[ix].dead_count);
1857         }
1858       }
1859       ast->print("|");
1860     } else {
1861       ast->print("No dead nMethods found in CodeHeap.");

1862     }
1863     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1864   }
1865 
1866   {
1867     if (!segment_granules) { // Prevent totally redundant printouts
1868       printBox(ast, '-', "Count by tier (combined, no dead blocks): <#t1>:<#t2>:<#s>, 0x0..0xf. '*' indicates >= 16 blocks", NULL);

1869 
1870       granules_per_line = 24;
1871       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1872         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1873 
1874         print_count_single(ast, StatArray[ix].t1_count);
1875         ast->print(":");
1876         print_count_single(ast, StatArray[ix].t2_count);
1877         ast->print(":");
1878         if (segment_granules && StatArray[ix].stub_count > 0) {
1879           print_blobType_single(ast, StatArray[ix].type);
1880         } else {
1881           print_count_single(ast, StatArray[ix].stub_count);
1882         }
1883         ast->print(" ");
1884       }
1885       BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n")
1886     }
1887   }
1888 }
1889 
1890 
1891 void CodeHeapState::print_space(outputStream* out, CodeHeap* heap) {
1892   if (!initialization_complete) {
1893     return;
1894   }
1895 
1896   const char* heapName   = get_heapName(heap);
1897   get_HeapStatGlobals(out, heapName);
1898 
1899   if ((StatArray == NULL) || (alloc_granules == 0)) {
1900     return;
1901   }
1902   BUFFEREDSTREAM_DECL(ast, out)
1903 
1904   unsigned int granules_per_line = 32;
1905   char*        low_bound         = heap->low_boundary();
1906 
1907   {
1908     printBox(ast, '=', "S P A C E   U S A G E  &  F R A G M E N T A T I O N   for ", heapName);
1909     ast->print_cr("  The heap space covered by one granule is occupied to a various extend.\n"
1910                   "  The granule occupancy is displayed by one decimal digit per granule.\n");
1911     if (segment_granules) {
1912       ast->print_cr("  You have selected granule size to be as small as segment size.\n"
1913                     "  As a result, each granule contains exactly one block (or a part of one block)\n"
1914                     "  or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
1915                     "  Occupied granules show their BlobType character, see legend.\n");
1916       print_blobType_legend(ast);
1917     } else {
1918       ast->print_cr("  These digits represent a fill percentage range (see legend).\n");
1919       print_space_legend(ast);
1920     }
1921     BUFFEREDSTREAM_FLUSH_LOCKED("")
1922   }
1923 
1924   {
1925     if (segment_granules) {
1926       printBox(ast, '-', "Total (all types) space consumption for granule size == segment size", NULL);

1927 
1928       granules_per_line = 128;
1929       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1930         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1931         print_blobType_single(ast, StatArray[ix].type);
1932       }
1933     } else {
1934       printBox(ast, '-', "Total (all types) space consumption. ' ' indicates empty, '*' indicates full.", NULL);

1935 
1936       granules_per_line = 128;
1937       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1938         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1939         unsigned int space    = StatArray[ix].t1_space   + StatArray[ix].t2_space  + StatArray[ix].tx_space
1940                               + StatArray[ix].stub_space + StatArray[ix].dead_space;
1941         print_space_single(ast, space);
1942       }
1943     }
1944     BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n")
1945   }
1946 
1947   {
1948     if (nBlocks_t1 > 0) {
1949       printBox(ast, '-', "Tier1 space consumption. ' ' indicates empty, '*' indicates full", NULL);

1950 
1951       granules_per_line = 128;
1952       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1953         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1954         if (segment_granules && StatArray[ix].t1_space > 0) {
1955           print_blobType_single(ast, StatArray[ix].type);
1956         } else {
1957           print_space_single(ast, StatArray[ix].t1_space);
1958         }
1959       }
1960       ast->print("|");
1961     } else {
1962       ast->print("No Tier1 nMethods found in CodeHeap.");

1963     }
1964     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1965   }
1966 
1967   {
1968     if (nBlocks_t2 > 0) {
1969       printBox(ast, '-', "Tier2 space consumption. ' ' indicates empty, '*' indicates full", NULL);

1970 
1971       granules_per_line = 128;
1972       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1973         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1974         if (segment_granules && StatArray[ix].t2_space > 0) {
1975           print_blobType_single(ast, StatArray[ix].type);
1976         } else {
1977           print_space_single(ast, StatArray[ix].t2_space);
1978         }
1979       }
1980       ast->print("|");
1981     } else {
1982       ast->print("No Tier2 nMethods found in CodeHeap.");

1983     }
1984     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1985   }
1986 
1987   {
1988     if (nBlocks_alive > 0) {
1989       printBox(ast, '-', "not_used/not_entrant/not_installed space consumption. ' ' indicates empty, '*' indicates full", NULL);
1990 
1991       granules_per_line = 128;
1992       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1993         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1994         if (segment_granules && StatArray[ix].tx_space > 0) {
1995           print_blobType_single(ast, StatArray[ix].type);
1996         } else {
1997           print_space_single(ast, StatArray[ix].tx_space);
1998         }
1999       }
2000       ast->print("|");
2001     } else {
2002       ast->print("No Tier2 nMethods found in CodeHeap.");

2003     }
2004     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2005   }
2006 
2007   {
2008     if (nBlocks_stub > 0) {
2009       printBox(ast, '-', "Stub and Blob space consumption. ' ' indicates empty, '*' indicates full", NULL);

2010 
2011       granules_per_line = 128;
2012       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2013         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2014         if (segment_granules && StatArray[ix].stub_space > 0) {
2015           print_blobType_single(ast, StatArray[ix].type);
2016         } else {
2017           print_space_single(ast, StatArray[ix].stub_space);
2018         }
2019       }
2020       ast->print("|");
2021     } else {
2022       ast->print("No Stubs and Blobs found in CodeHeap.");

2023     }
2024     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2025   }
2026 
2027   {
2028     if (nBlocks_dead > 0) {
2029       printBox(ast, '-', "Dead space consumption. ' ' indicates empty, '*' indicates full", NULL);

2030 
2031       granules_per_line = 128;
2032       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2033         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2034         print_space_single(ast, StatArray[ix].dead_space);
2035       }
2036       ast->print("|");
2037     } else {
2038       ast->print("No dead nMethods found in CodeHeap.");

2039     }
2040     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2041   }
2042 
2043   {
2044     if (!segment_granules) { // Prevent totally redundant printouts
2045       printBox(ast, '-', "Space consumption by tier (combined): <t1%>:<t2%>:<s%>. ' ' indicates empty, '*' indicates full", NULL);

2046 
2047       granules_per_line = 24;
2048       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2049         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2050 
2051         if (segment_granules && StatArray[ix].t1_space > 0) {
2052           print_blobType_single(ast, StatArray[ix].type);
2053         } else {
2054           print_space_single(ast, StatArray[ix].t1_space);
2055         }
2056         ast->print(":");
2057         if (segment_granules && StatArray[ix].t2_space > 0) {
2058           print_blobType_single(ast, StatArray[ix].type);
2059         } else {
2060           print_space_single(ast, StatArray[ix].t2_space);
2061         }
2062         ast->print(":");
2063         if (segment_granules && StatArray[ix].stub_space > 0) {
2064           print_blobType_single(ast, StatArray[ix].type);
2065         } else {
2066           print_space_single(ast, StatArray[ix].stub_space);
2067         }
2068         ast->print(" ");
2069       }
2070       ast->print("|");
2071       BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2072     }
2073   }
2074 }
2075 
2076 void CodeHeapState::print_age(outputStream* out, CodeHeap* heap) {
2077   if (!initialization_complete) {
2078     return;
2079   }
2080 
2081   const char* heapName   = get_heapName(heap);
2082   get_HeapStatGlobals(out, heapName);
2083 
2084   if ((StatArray == NULL) || (alloc_granules == 0)) {
2085     return;
2086   }
2087   BUFFEREDSTREAM_DECL(ast, out)
2088 
2089   unsigned int granules_per_line = 32;
2090   char*        low_bound         = heap->low_boundary();
2091 
2092   {
2093     printBox(ast, '=', "M E T H O D   A G E   by CompileID for ", heapName);
2094     ast->print_cr("  The age of a compiled method in the CodeHeap is not available as a\n"
2095                   "  time stamp. Instead, a relative age is deducted from the method's compilation ID.\n"
2096                   "  Age information is available for tier1 and tier2 methods only. There is no\n"
2097                   "  age information for stubs and blobs, because they have no compilation ID assigned.\n"
2098                   "  Information for the youngest method (highest ID) in the granule is printed.\n"
2099                   "  Refer to the legend to learn how method age is mapped to the displayed digit.");
2100     print_age_legend(ast);
2101     BUFFEREDSTREAM_FLUSH_LOCKED("")
2102   }
2103 
2104   {
2105     printBox(ast, '-', "Age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);

2106 
2107     granules_per_line = 128;
2108     for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2109       print_line_delim(out, ast, low_bound, ix, granules_per_line);
2110       unsigned int age1      = StatArray[ix].t1_age;
2111       unsigned int age2      = StatArray[ix].t2_age;
2112       unsigned int agex      = StatArray[ix].tx_age;
2113       unsigned int age       = age1 > age2 ? age1 : age2;
2114       age       = age > agex ? age : agex;
2115       print_age_single(ast, age);
2116     }
2117     ast->print("|");
2118     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2119   }
2120 
2121   {
2122     if (nBlocks_t1 > 0) {
2123       printBox(ast, '-', "Tier1 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);

2124 
2125       granules_per_line = 128;
2126       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2127         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2128         print_age_single(ast, StatArray[ix].t1_age);
2129       }
2130       ast->print("|");
2131     } else {
2132       ast->print("No Tier1 nMethods found in CodeHeap.");

2133     }
2134     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2135   }
2136 
2137   {
2138     if (nBlocks_t2 > 0) {
2139       printBox(ast, '-', "Tier2 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);

2140 
2141       granules_per_line = 128;
2142       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2143         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2144         print_age_single(ast, StatArray[ix].t2_age);
2145       }
2146       ast->print("|");
2147     } else {
2148       ast->print("No Tier2 nMethods found in CodeHeap.");

2149     }
2150     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2151   }
2152 
2153   {
2154     if (nBlocks_alive > 0) {
2155       printBox(ast, '-', "not_used/not_entrant/not_installed age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);

2156 
2157       granules_per_line = 128;
2158       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2159         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2160         print_age_single(ast, StatArray[ix].tx_age);
2161       }
2162       ast->print("|");
2163     } else {
2164       ast->print("No Tier2 nMethods found in CodeHeap.");

2165     }
2166     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2167   }
2168 
2169   {
2170     if (!segment_granules) { // Prevent totally redundant printouts
2171       printBox(ast, '-', "age distribution by tier <a1>:<a2>. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);

2172 
2173       granules_per_line = 32;
2174       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2175         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2176         print_age_single(ast, StatArray[ix].t1_age);
2177         ast->print(":");
2178         print_age_single(ast, StatArray[ix].t2_age);
2179         ast->print(" ");
2180       }
2181       ast->print("|");
2182       BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2183     }
2184   }
2185 }
2186 
2187 
2188 void CodeHeapState::print_names(outputStream* out, CodeHeap* heap) {
2189   if (!initialization_complete) {
2190     return;
2191   }
2192 
2193   const char* heapName   = get_heapName(heap);
2194   get_HeapStatGlobals(out, heapName);
2195 
2196   if ((StatArray == NULL) || (alloc_granules == 0)) {
2197     return;
2198   }
2199   BUFFEREDSTREAM_DECL(ast, out)
2200 
2201   unsigned int granules_per_line   = 128;
2202   char*        low_bound           = heap->low_boundary();
2203   CodeBlob*    last_blob           = NULL;
2204   bool         name_in_addr_range  = true;
2205   bool         have_CodeCache_lock = CodeCache_lock->owned_by_self();
2206 
2207   //---<  print at least 128K per block (i.e. between headers)  >---
2208   if (granules_per_line*granule_size < 128*K) {
2209     granules_per_line = (unsigned int)((128*K)/granule_size);
2210   }
2211 
2212   printBox(ast, '=', "M E T H O D   N A M E S   for ", heapName);
2213   ast->print_cr("  Method names are dynamically retrieved from the code cache at print time.\n"
2214                 "  Due to the living nature of the code heap and because the CodeCache_lock\n"
2215                 "  is not continuously held, the displayed name might be wrong or no name\n"
2216                 "  might be found at all. The likelihood for that to happen increases\n"
2217                 "  over time passed between aggregtion and print steps.\n");
2218   BUFFEREDSTREAM_FLUSH_LOCKED("")
2219 
2220   for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2221     //---<  print a new blob on a new line  >---
2222     if (ix%granules_per_line == 0) {
2223       if (!name_in_addr_range) {
2224         ast->print_cr("No methods, blobs, or stubs found in this address range");
2225       }
2226       name_in_addr_range = false;
2227 
2228       size_t end_ix = (ix+granules_per_line <= alloc_granules) ? ix+granules_per_line : alloc_granules;
2229       ast->cr();
2230       ast->print_cr("--------------------------------------------------------------------");
2231       ast->print_cr("Address range [" INTPTR_FORMAT "," INTPTR_FORMAT "), " SIZE_FORMAT "k", p2i(low_bound+ix*granule_size), p2i(low_bound + end_ix*granule_size), (end_ix - ix)*granule_size/(size_t)K);
2232       ast->print_cr("--------------------------------------------------------------------");
2233       BUFFEREDSTREAM_FLUSH_AUTO("")
2234     }
2235     // Only check granule if it contains at least one blob.
2236     unsigned int nBlobs  = StatArray[ix].t1_count   + StatArray[ix].t2_count + StatArray[ix].tx_count +
2237                            StatArray[ix].stub_count + StatArray[ix].dead_count;
2238     if (nBlobs > 0 ) {
2239     for (unsigned int is = 0; is < granule_size; is+=(unsigned int)seg_size) {
2240       // heap->find_start() is safe. Only works on _segmap.
2241       // Returns NULL or void*. Returned CodeBlob may be uninitialized.
2242       char*     this_seg  = low_bound + ix*granule_size + is;
2243       CodeBlob* this_blob = (CodeBlob*)(heap->find_start(this_seg));
2244       bool   blob_is_safe = blob_access_is_safe(this_blob, NULL);
2245       // blob could have been flushed, freed, and merged.
2246       // this_blob < last_blob is an indicator for that.
2247       if (blob_is_safe && (this_blob > last_blob)) {
2248         last_blob          = this_blob;
2249 
2250         //---<  get type and name  >---
2251         blobType       cbType = noType;
2252         if (segment_granules) {
2253           cbType = (blobType)StatArray[ix].type;


2261         //---<  access these fields only if we own the CodeCache_lock  >---
2262         const char* blob_name = "<unavailable>";
2263         nmethod*           nm = NULL;
2264         if (have_CodeCache_lock) {
2265           blob_name = this_blob->name();
2266           nm        = this_blob->as_nmethod_or_null();
2267           // this_blob->name() could return NULL if no name was given to CTOR. Inlined, maybe invisible on stack
2268           if ((blob_name == NULL) || !os::is_readable_pointer(blob_name)) {
2269             blob_name = "<unavailable>";
2270           }
2271         }
2272 
2273         //---<  print table header for new print range  >---
2274         if (!name_in_addr_range) {
2275           name_in_addr_range = true;
2276           ast->fill_to(51);
2277           ast->print("%9s", "compiler");
2278           ast->fill_to(61);
2279           ast->print_cr("%6s", "method");
2280           ast->print_cr("%18s %13s %17s %9s  %5s %18s  %s", "Addr(module)      ", "offset", "size", " type lvl", " temp", "blobType          ", "Name");
2281           BUFFEREDSTREAM_FLUSH_AUTO("")
2282         }
2283 
2284         //---<  print line prefix (address and offset from CodeHeap start)  >---
2285         ast->print(INTPTR_FORMAT, p2i(this_blob));
2286         ast->fill_to(19);
2287         ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound));
2288         ast->fill_to(33);
2289 
2290         // access nmethod and Method fields only if we own the CodeCache_lock.
2291         // This fact is implicitly transported via nm != NULL.
2292         if (CompiledMethod::nmethod_access_is_safe(nm)) {
2293           Method* method = nm->method();
2294           ResourceMark rm;
2295           //---<  collect all data to locals as quickly as possible  >---
2296           unsigned int total_size = nm->total_size();
2297           int          hotness    = nm->hotness_counter();
2298           bool         get_name   = (cbType == nMethod_inuse) || (cbType == nMethod_notused);
2299           //---<  nMethod size in hex  >---
2300           ast->print(PTR32_FORMAT, total_size);
2301           ast->print("(" SIZE_FORMAT_W(4) "K)", total_size/K);


2317             Symbol* methName  = method->name();
2318             const char*   methNameS = (methName == NULL) ? NULL : methName->as_C_string();
2319             methNameS = (methNameS == NULL) ? "<method name unavailable>" : methNameS;
2320             Symbol* methSig   = method->signature();
2321             const char*   methSigS  = (methSig  == NULL) ? NULL : methSig->as_C_string();
2322             methSigS  = (methSigS  == NULL) ? "<method signature unavailable>" : methSigS;
2323             ast->print("%s", methNameS);
2324             ast->print("%s", methSigS);
2325           } else {
2326             ast->print("%s", blob_name);
2327           }
2328         } else if (blob_is_safe) {
2329           ast->fill_to(62+6);
2330           ast->print("%s", blobTypeName[cbType]);
2331           ast->fill_to(82+6);
2332           ast->print("%s", blob_name);
2333         } else {
2334           ast->fill_to(62+6);
2335           ast->print("<stale blob>");
2336         }
2337         ast->cr();
2338         BUFFEREDSTREAM_FLUSH_AUTO("")
2339       } else if (!blob_is_safe && (this_blob != last_blob) && (this_blob != NULL)) {
2340         last_blob          = this_blob;

2341       }
2342     }
2343     } // nBlobs > 0
2344   }
2345   BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
2346 }
2347 
2348 
2349 void CodeHeapState::printBox(outputStream* ast, const char border, const char* text1, const char* text2) {
2350   unsigned int lineLen = 1 + 2 + 2 + 1;
2351   char edge, frame;
2352 
2353   if (text1 != NULL) {
2354     lineLen += (unsigned int)strlen(text1); // text1 is much shorter than MAX_INT chars.
2355   }
2356   if (text2 != NULL) {
2357     lineLen += (unsigned int)strlen(text2); // text2 is much shorter than MAX_INT chars.
2358   }
2359   if (border == '-') {
2360     edge  = '+';
2361     frame = '|';
2362   } else {
2363     edge  = border;
2364     frame = border;
2365   }


2462     if (ix > 0) {
2463       ast->print("|");
2464     }
2465     ast->cr();
2466     assert(out == ast, "must use the same stream!");
2467 
2468     ast->print(INTPTR_FORMAT, p2i(low_bound + ix*granule_size));
2469     ast->fill_to(19);
2470     ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
2471   }
2472 }
2473 
2474 void CodeHeapState::print_line_delim(outputStream* out, bufferedStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) {
2475   assert(out != ast, "must not use the same stream!");
2476   if (ix % gpl == 0) {
2477     if (ix > 0) {
2478       ast->print("|");
2479     }
2480     ast->cr();
2481 
2482     // can't use BUFFEREDSTREAM_FLUSH_IF("", 512) here.
2483     // can't use this expression. bufferedStream::capacity() does not exist.
2484     // if ((ast->capacity() - ast->size()) < 512) {
2485     // Assume instead that default bufferedStream capacity (4K) was used.
2486     if (ast->size() > 3*K) {
2487       ttyLocker ttyl;
2488       out->print("%s", ast->as_string());
2489       ast->reset();
2490     }
2491 
2492     ast->print(INTPTR_FORMAT, p2i(low_bound + ix*granule_size));
2493     ast->fill_to(19);
2494     ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
2495   }
2496 }
2497 
2498 CodeHeapState::blobType CodeHeapState::get_cbType(CodeBlob* cb) {
2499   if ((cb != NULL) && os::is_readable_pointer(cb)) {
2500     if (cb->is_runtime_stub())                return runtimeStub;
2501     if (cb->is_deoptimization_stub())         return deoptimizationStub;
2502     if (cb->is_uncommon_trap_stub())          return uncommonTrapStub;
2503     if (cb->is_exception_stub())              return exceptionStub;
2504     if (cb->is_safepoint_stub())              return safepointStub;
2505     if (cb->is_adapter_blob())                return adapterBlob;
2506     if (cb->is_method_handles_adapter_blob()) return mh_adapterBlob;


< prev index next >