rev 54099 : 8219586: CodeHeap State Analytics processes dead nmethods
Reviewed-by: thartmann, eosterlund

   1 /*
   2  * Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2018, 2019 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "code/codeHeapState.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "runtime/safepoint.hpp"
  30 #include "runtime/sweeper.hpp"
  31 
  32 // -------------------------
  33 // |  General Description  |
  34 // -------------------------
  35 // The CodeHeap state analytics are divided in two parts.
  36 // The first part examines the entire CodeHeap and aggregates all
  37 // information that is believed useful/important.
  38 //
  39 // Aggregation condenses the information of a piece of the CodeHeap
  40 // (4096 bytes by default) into an analysis granule. These granules
  41 // contain enough detail to gain initial insight while keeping the
  42 // internal structure sizes in check.
  43 //
  44 // The second part, which consists of several, independent steps,
  45 // prints the previously collected information with emphasis on
  46 // various aspects.
  47 //
  48 // The CodeHeap is a living thing. Therefore, protection against concurrent
  49 // modification (by acquiring the CodeCache_lock) is necessary. It has
  50 // to be provided by the caller of the analysis functions.
  51 // If the CodeCache_lock is not held, the analysis functions may print
  52 // less detailed information or may just do nothing. It is by intention
  53 // that an unprotected invocation is not abnormally terminated.
  54 //
  55 // Data collection and printing is done on an "on request" basis.
  56 // While no request is being processed, there is no impact on performance.
  57 // The CodeHeap state analytics do have some memory footprint.
  58 // The "aggregate" step allocates some data structures to hold the aggregated
  59 // information for later output. These data structures live until they are
  60 // explicitly discarded (function "discard") or until the VM terminates.
  61 // There is one exception: the function "all" does not leave any data
  62 // structures allocated.
  63 //
  64 // Requests for real-time, on-the-fly analysis can be issued via
  65 //   jcmd <pid> Compiler.CodeHeap_Analytics [<function>] [<granularity>]
  66 //
  67 // If you are (only) interested in how the CodeHeap looks like after running
  68 // a sample workload, you can use the command line option
  69 //   -XX:+PrintCodeHeapAnalytics
  70 // It will cause a full analysis to be written to tty. In addition, a full
  71 // analysis will be written the first time a "CodeCache full" condition is
  72 // detected.
  73 //
  74 // The command line option produces output identical to the jcmd function
  75 //   jcmd <pid> Compiler.CodeHeap_Analytics all 4096
  76 // ---------------------------------------------------------------------------------
  77 
  78 // With this declaration macro, it is possible to switch between
  79 //  - direct output into an argument-passed outputStream and
  80 //  - buffered output into a bufferedStream with subsequent flush
  81 //    of the filled buffer to the outputStream.
  82 #define USE_BUFFEREDSTREAM
  83 
  84 // There are instances when composing an output line or a small set of
  85 // output lines out of many tty->print() calls creates significant overhead.
  86 // Writing to a bufferedStream buffer first has a significant advantage:
  87 // It uses noticeably less cpu cycles and reduces (when writing to a
  88 // network file) the required bandwidth by at least a factor of ten. Observed on MacOS.
  89 // That clearly makes up for the increased code complexity.
  90 //
  91 // Conversion of existing code is easy and straightforward, if the code already
  92 // uses a parameterized output destination, e.g. "outputStream st".
  93 //  - rename the formal parameter to any other name, e.g. out_st.
  94 //  - at a suitable place in your code, insert
  95 //      BUFFEREDSTEAM_DECL(buf_st, out_st)
  96 // This will provide all the declarations necessary. After that, all
  97 // buf_st->print() (and the like) calls will be directed to a bufferedStream object.
  98 // Once a block of output (a line or a small set of lines) is composed, insert
  99 //      BUFFEREDSTREAM_FLUSH(termstring)
 100 // to flush the bufferedStream to the final destination out_st. termstring is just
 101 // an arbitrary string (e.g. "\n") which is appended to the bufferedStream before
 102 // being written to out_st. Be aware that the last character written MUST be a '\n'.
 103 // Otherwise, buf_st->position() does not correspond to out_st->position() any longer.
 104 //      BUFFEREDSTREAM_FLUSH_LOCKED(termstring)
 105 // does the same thing, protected by the ttyLocker lock.
 106 //      BUFFEREDSTREAM_FLUSH_IF(termstring, remSize)
 107 // does a flush only if the remaining buffer space is less than remSize.
 108 //
 109 // To activate, #define USE_BUFFERED_STREAM before including this header.
 110 // If not activated, output will directly go to the originally used outputStream
 111 // with no additional overhead.
 112 //
 113 #if defined(USE_BUFFEREDSTREAM)
 114 // All necessary declarations to print via a bufferedStream
 115 // This macro must be placed before any other BUFFEREDSTREAM*
 116 // macro in the function.
 117 #define BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, _capa)       \
 118     ResourceMark         _rm;                                 \
 119     /* _anyst  name of the stream as used in the code */      \
 120     /* _outst  stream where final output will go to   */      \
 121     /* _capa   allocated capacity of stream buffer    */      \
 122     size_t           _nflush = 0;                             \
 123     size_t     _nforcedflush = 0;                             \
 124     size_t      _nsavedflush = 0;                             \
 125     size_t     _nlockedflush = 0;                             \
 126     size_t     _nflush_bytes = 0;                             \
 127     size_t         _capacity = _capa;                         \
 128     bufferedStream   _sstobj(_capa);                          \
 129     bufferedStream*  _sstbuf = &_sstobj;                      \
 130     outputStream*    _outbuf = _outst;                        \
 131     bufferedStream*   _anyst = &_sstobj; /* any stream. Use this to just print - no buffer flush.  */
 132 
 133 // Same as above, but with fixed buffer size.
 134 #define BUFFEREDSTREAM_DECL(_anyst, _outst)                   \
 135     BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, 4*K);
 136 
 137 #define STRINGSTREAM_FLUSH(termString)                    \
 138     _sstbuf->print("%s", termString);                     \
 139     _outbuf->print("%s", _sstbuf->as_string());           \
 140     _sstbuf->reset();
 141 // Flush the buffer contents unconditionally.
 142 // No action if the buffer is empty.
 143 #define BUFFEREDSTREAM_FLUSH(_termString)                     \
 144     if (((_termString) != NULL) && (strlen(_termString) > 0)){\
 145       _sstbuf->print("%s", _termString);                      \
 146     }                                                         \
 147     if (_sstbuf != _outbuf) {                                 \
 148       if (_sstbuf->size() != 0) {                             \
 149         _nforcedflush++; _nflush_bytes += _sstbuf->size();    \
 150         _outbuf->print("%s", _sstbuf->as_string());           \
 151         _sstbuf->reset();                                     \
 152       }                                                       \
 153     }
 154 
 155 #define STRINGSTREAM_FLUSH_LOCKED(termString)             \
 156     { ttyLocker ttyl;/* keep this output block together */\
 157       STRINGSTREAM_FLUSH(termString)                      \
 158 // Flush the buffer contents if the remaining capacity is
 159 // less than the given threshold.
 160 #define BUFFEREDSTREAM_FLUSH_IF(_termString, _remSize)        \
 161     if (((_termString) != NULL) && (strlen(_termString) > 0)){\
 162       _sstbuf->print("%s", _termString);                      \
 163     }                                                         \
 164     if (_sstbuf != _outbuf) {                                 \
 165       if ((_capacity - _sstbuf->size()) < (size_t)(_remSize)){\
 166         _nflush++; _nforcedflush--;                           \
 167         BUFFEREDSTREAM_FLUSH("")                              \
 168       } else {                                                \
 169         _nsavedflush++;                                       \
 170       }                                                       \
 171     }
 172 
 173 // Flush the buffer contents if the remaining capacity is less
 174 // than the calculated threshold (256 bytes + capacity/16)
 175 // That should suffice for all reasonably sized output lines.
 176 #define BUFFEREDSTREAM_FLUSH_AUTO(_termString)                \
 177     BUFFEREDSTREAM_FLUSH_IF(_termString, 256+(_capacity>>4))
 178 
 179 #define BUFFEREDSTREAM_FLUSH_LOCKED(_termString)              \
 180     { ttyLocker ttyl;/* keep this output block together */    \
 181       _nlockedflush++;                                        \
 182       BUFFEREDSTREAM_FLUSH(_termString)                       \
 183     }
 184 
 185 // #define BUFFEREDSTREAM_FLUSH_STAT()                           \
 186 //     if (_sstbuf != _outbuf) {                                 \
 187 //       _outbuf->print_cr("%ld flushes (buffer full), %ld forced, %ld locked, %ld bytes total, %ld flushes saved", _nflush, _nforcedflush, _nlockedflush, _nflush_bytes, _nsavedflush); \
 188 //    }
 189 
 190 #define BUFFEREDSTREAM_FLUSH_STAT()
 191 #else
 192 #define BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, _capa)       \
 193     size_t       _capacity = _capa;                           \
 194     outputStream*  _outbuf = _outst;                          \
 195     outputStream*  _anyst  = _outst;   /* any stream. Use this to just print - no buffer flush.  */
 196 
 197 #define BUFFEREDSTREAM_DECL(_anyst, _outst)                   \
 198     BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, 4*K)
 199 
 200 #define BUFFEREDSTREAM_FLUSH(_termString)                     \
 201     if (((_termString) != NULL) && (strlen(_termString) > 0)){\
 202       _outbuf->print("%s", _termString);                      \
 203     }
 204 
 205 #define BUFFEREDSTREAM_FLUSH_IF(_termString, _remSize)        \
 206     BUFFEREDSTREAM_FLUSH(_termString)
 207 
 208 #define BUFFEREDSTREAM_FLUSH_AUTO(_termString)                \
 209     BUFFEREDSTREAM_FLUSH(_termString)
 210 
 211 #define BUFFEREDSTREAM_FLUSH_LOCKED(_termString)              \
 212     BUFFEREDSTREAM_FLUSH(_termString)
 213 
 214 #define BUFFEREDSTREAM_FLUSH_STAT()
 215 #endif
 216 #define HEX32_FORMAT  "0x%x"  // just a helper format string used below multiple times
 217 
 218 const char  blobTypeChar[] = {' ', 'C', 'N', 'I', 'X', 'Z', 'U', 'R', '?', 'D', 'T', 'E', 'S', 'A', 'M', 'B', 'L' };
 219 const char* blobTypeName[] = {"noType"
 220                              ,     "nMethod (under construction), cannot be observed"
 221                              ,          "nMethod (active)"
 222                              ,               "nMethod (inactive)"
 223                              ,                    "nMethod (deopt)"
 224                              ,                         "nMethod (zombie)"
 225                              ,                              "nMethod (unloaded)"
 226                              ,                                   "runtime stub"
 227                              ,                                        "ricochet stub"
 228                              ,                                             "deopt stub"
 229                              ,                                                  "uncommon trap stub"
 230                              ,                                                       "exception stub"
 231                              ,                                                            "safepoint stub"
 232                              ,                                                                 "adapter blob"
 233                              ,                                                                      "MH adapter blob"
 234                              ,                                                                           "buffer blob"
 235                              ,                                                                                "lastType"
 236                              };
 237 const char* compTypeName[] = { "none", "c1", "c2", "jvmci" };
 238 
 239 // Be prepared for ten different CodeHeap segments. Should be enough for a few years.
 240 const  unsigned int        nSizeDistElements = 31;  // logarithmic range growth, max size: 2**32
 241 const  unsigned int        maxTopSizeBlocks  = 100;
 242 const  unsigned int        tsbStopper        = 2 * maxTopSizeBlocks;
 243 const  unsigned int        maxHeaps          = 10;
 244 static unsigned int        nHeaps            = 0;
 245 static struct CodeHeapStat CodeHeapStatArray[maxHeaps];
 246 
 247 // static struct StatElement *StatArray      = NULL;
 248 static StatElement* StatArray             = NULL;
 249 static int          log2_seg_size         = 0;
 250 static size_t       seg_size              = 0;
 251 static size_t       alloc_granules        = 0;
 252 static size_t       granule_size          = 0;
 253 static bool         segment_granules      = false;
 254 static unsigned int nBlocks_t1            = 0;  // counting "in_use" nmethods only.
 255 static unsigned int nBlocks_t2            = 0;  // counting "in_use" nmethods only.
 256 static unsigned int nBlocks_alive         = 0;  // counting "not_used" and "not_entrant" nmethods only.
 257 static unsigned int nBlocks_dead          = 0;  // counting "zombie" and "unloaded" methods only.

 258 static unsigned int nBlocks_unloaded      = 0;  // counting "unloaded" nmethods only. This is a transient state.
 259 static unsigned int nBlocks_stub          = 0;
 260 
 261 static struct FreeBlk*          FreeArray = NULL;
 262 static unsigned int      alloc_freeBlocks = 0;
 263 
 264 static struct TopSizeBlk*    TopSizeArray = NULL;
 265 static unsigned int   alloc_topSizeBlocks = 0;
 266 static unsigned int    used_topSizeBlocks = 0;
 267 
 268 static struct SizeDistributionElement*  SizeDistributionArray = NULL;
 269 
 270 // nMethod temperature (hotness) indicators.
 271 static int                     avgTemp    = 0;
 272 static int                     maxTemp    = 0;
 273 static int                     minTemp    = 0;
 274 
 275 static unsigned int  latest_compilation_id   = 0;
 276 static volatile bool initialization_complete = false;
 277 
 278 const char* CodeHeapState::get_heapName(CodeHeap* heap) {
 279   if (SegmentedCodeCache) {
 280     return heap->name();
 281   } else {
 282     return "CodeHeap";
 283   }
 284 }
 285 
 286 // returns the index for the heap being processed.
 287 unsigned int CodeHeapState::findHeapIndex(outputStream* out, const char* heapName) {
 288   if (heapName == NULL) {
 289     return maxHeaps;
 290   }
 291   if (SegmentedCodeCache) {
 292     // Search for a pre-existing entry. If found, return that index.
 293     for (unsigned int i = 0; i < nHeaps; i++) {
 294       if (CodeHeapStatArray[i].heapName != NULL && strcmp(heapName, CodeHeapStatArray[i].heapName) == 0) {
 295         return i;
 296       }
 297     }
 298 
 299     // check if there are more code heap segments than we can handle.
 300     if (nHeaps == maxHeaps) {
 301       out->print_cr("Too many heap segments for current limit(%d).", maxHeaps);
 302       return maxHeaps;
 303     }
 304 
 305     // allocate new slot in StatArray.
 306     CodeHeapStatArray[nHeaps].heapName = heapName;
 307     return nHeaps++;
 308   } else {
 309     nHeaps = 1;
 310     CodeHeapStatArray[0].heapName = heapName;
 311     return 0; // This is the default index if CodeCache is not segmented.
 312   }
 313 }
 314 
 315 void CodeHeapState::get_HeapStatGlobals(outputStream* out, const char* heapName) {
 316   unsigned int ix = findHeapIndex(out, heapName);
 317   if (ix < maxHeaps) {
 318     StatArray             = CodeHeapStatArray[ix].StatArray;
 319     seg_size              = CodeHeapStatArray[ix].segment_size;
 320     log2_seg_size         = seg_size == 0 ? 0 : exact_log2(seg_size);
 321     alloc_granules        = CodeHeapStatArray[ix].alloc_granules;
 322     granule_size          = CodeHeapStatArray[ix].granule_size;
 323     segment_granules      = CodeHeapStatArray[ix].segment_granules;
 324     nBlocks_t1            = CodeHeapStatArray[ix].nBlocks_t1;
 325     nBlocks_t2            = CodeHeapStatArray[ix].nBlocks_t2;
 326     nBlocks_alive         = CodeHeapStatArray[ix].nBlocks_alive;
 327     nBlocks_dead          = CodeHeapStatArray[ix].nBlocks_dead;

 328     nBlocks_unloaded      = CodeHeapStatArray[ix].nBlocks_unloaded;
 329     nBlocks_stub          = CodeHeapStatArray[ix].nBlocks_stub;
 330     FreeArray             = CodeHeapStatArray[ix].FreeArray;
 331     alloc_freeBlocks      = CodeHeapStatArray[ix].alloc_freeBlocks;
 332     TopSizeArray          = CodeHeapStatArray[ix].TopSizeArray;
 333     alloc_topSizeBlocks   = CodeHeapStatArray[ix].alloc_topSizeBlocks;
 334     used_topSizeBlocks    = CodeHeapStatArray[ix].used_topSizeBlocks;
 335     SizeDistributionArray = CodeHeapStatArray[ix].SizeDistributionArray;
 336     avgTemp               = CodeHeapStatArray[ix].avgTemp;
 337     maxTemp               = CodeHeapStatArray[ix].maxTemp;
 338     minTemp               = CodeHeapStatArray[ix].minTemp;
 339   } else {
 340     StatArray             = NULL;
 341     seg_size              = 0;
 342     log2_seg_size         = 0;
 343     alloc_granules        = 0;
 344     granule_size          = 0;
 345     segment_granules      = false;
 346     nBlocks_t1            = 0;
 347     nBlocks_t2            = 0;
 348     nBlocks_alive         = 0;
 349     nBlocks_dead          = 0;

 350     nBlocks_unloaded      = 0;
 351     nBlocks_stub          = 0;
 352     FreeArray             = NULL;
 353     alloc_freeBlocks      = 0;
 354     TopSizeArray          = NULL;
 355     alloc_topSizeBlocks   = 0;
 356     used_topSizeBlocks    = 0;
 357     SizeDistributionArray = NULL;
 358     avgTemp               = 0;
 359     maxTemp               = 0;
 360     minTemp               = 0;
 361   }
 362 }
 363 
 364 void CodeHeapState::set_HeapStatGlobals(outputStream* out, const char* heapName) {
 365   unsigned int ix = findHeapIndex(out, heapName);
 366   if (ix < maxHeaps) {
 367     CodeHeapStatArray[ix].StatArray             = StatArray;
 368     CodeHeapStatArray[ix].segment_size          = seg_size;
 369     CodeHeapStatArray[ix].alloc_granules        = alloc_granules;
 370     CodeHeapStatArray[ix].granule_size          = granule_size;
 371     CodeHeapStatArray[ix].segment_granules      = segment_granules;
 372     CodeHeapStatArray[ix].nBlocks_t1            = nBlocks_t1;
 373     CodeHeapStatArray[ix].nBlocks_t2            = nBlocks_t2;
 374     CodeHeapStatArray[ix].nBlocks_alive         = nBlocks_alive;
 375     CodeHeapStatArray[ix].nBlocks_dead          = nBlocks_dead;

 376     CodeHeapStatArray[ix].nBlocks_unloaded      = nBlocks_unloaded;
 377     CodeHeapStatArray[ix].nBlocks_stub          = nBlocks_stub;
 378     CodeHeapStatArray[ix].FreeArray             = FreeArray;
 379     CodeHeapStatArray[ix].alloc_freeBlocks      = alloc_freeBlocks;
 380     CodeHeapStatArray[ix].TopSizeArray          = TopSizeArray;
 381     CodeHeapStatArray[ix].alloc_topSizeBlocks   = alloc_topSizeBlocks;
 382     CodeHeapStatArray[ix].used_topSizeBlocks    = used_topSizeBlocks;
 383     CodeHeapStatArray[ix].SizeDistributionArray = SizeDistributionArray;
 384     CodeHeapStatArray[ix].avgTemp               = avgTemp;
 385     CodeHeapStatArray[ix].maxTemp               = maxTemp;
 386     CodeHeapStatArray[ix].minTemp               = minTemp;
 387   }
 388 }
 389 
 390 //---<  get a new statistics array  >---
 391 void CodeHeapState::prepare_StatArray(outputStream* out, size_t nElem, size_t granularity, const char* heapName) {
 392   if (StatArray == NULL) {
 393     StatArray      = new StatElement[nElem];
 394     //---<  reset some counts  >---
 395     alloc_granules = nElem;
 396     granule_size   = granularity;
 397   }
 398 
 399   if (StatArray == NULL) {
 400     //---<  just do nothing if allocation failed  >---
 401     out->print_cr("Statistics could not be collected for %s, probably out of memory.", heapName);
 402     out->print_cr("Current granularity is " SIZE_FORMAT " bytes. Try a coarser granularity.", granularity);
 403     alloc_granules = 0;
 404     granule_size   = 0;
 405   } else {
 406     //---<  initialize statistics array  >---
 407     memset((void*)StatArray, 0, nElem*sizeof(StatElement));
 408   }
 409 }
 410 
 411 //---<  get a new free block array  >---
 412 void CodeHeapState::prepare_FreeArray(outputStream* out, unsigned int nElem, const char* heapName) {
 413   if (FreeArray == NULL) {
 414     FreeArray      = new FreeBlk[nElem];
 415     //---<  reset some counts  >---
 416     alloc_freeBlocks = nElem;
 417   }
 418 
 419   if (FreeArray == NULL) {
 420     //---<  just do nothing if allocation failed  >---
 421     out->print_cr("Free space analysis cannot be done for %s, probably out of memory.", heapName);
 422     alloc_freeBlocks = 0;
 423   } else {
 424     //---<  initialize free block array  >---
 425     memset((void*)FreeArray, 0, alloc_freeBlocks*sizeof(FreeBlk));
 426   }
 427 }
 428 
 429 //---<  get a new TopSizeArray  >---
 430 void CodeHeapState::prepare_TopSizeArray(outputStream* out, unsigned int nElem, const char* heapName) {
 431   if (TopSizeArray == NULL) {
 432     TopSizeArray   = new TopSizeBlk[nElem];
 433     //---<  reset some counts  >---
 434     alloc_topSizeBlocks = nElem;
 435     used_topSizeBlocks  = 0;
 436   }
 437 
 438   if (TopSizeArray == NULL) {
 439     //---<  just do nothing if allocation failed  >---
 440     out->print_cr("Top-%d list of largest CodeHeap blocks can not be collected for %s, probably out of memory.", nElem, heapName);
 441     alloc_topSizeBlocks = 0;
 442   } else {
 443     //---<  initialize TopSizeArray  >---
 444     memset((void*)TopSizeArray, 0, nElem*sizeof(TopSizeBlk));
 445     used_topSizeBlocks  = 0;
 446   }
 447 }
 448 
 449 //---<  get a new SizeDistributionArray  >---
 450 void CodeHeapState::prepare_SizeDistArray(outputStream* out, unsigned int nElem, const char* heapName) {
 451   if (SizeDistributionArray == NULL) {
 452     SizeDistributionArray = new SizeDistributionElement[nElem];
 453   }
 454 
 455   if (SizeDistributionArray == NULL) {
 456     //---<  just do nothing if allocation failed  >---
 457     out->print_cr("Size distribution can not be collected for %s, probably out of memory.", heapName);
 458   } else {
 459     //---<  initialize SizeDistArray  >---
 460     memset((void*)SizeDistributionArray, 0, nElem*sizeof(SizeDistributionElement));
 461     // Logarithmic range growth. First range starts at _segment_size.
 462     SizeDistributionArray[log2_seg_size-1].rangeEnd = 1U;
 463     for (unsigned int i = log2_seg_size; i < nElem; i++) {
 464       SizeDistributionArray[i].rangeStart = 1U << (i     - log2_seg_size);
 465       SizeDistributionArray[i].rangeEnd   = 1U << ((i+1) - log2_seg_size);
 466     }
 467   }
 468 }
 469 
 470 //---<  get a new SizeDistributionArray  >---
 471 void CodeHeapState::update_SizeDistArray(outputStream* out, unsigned int len) {
 472   if (SizeDistributionArray != NULL) {
 473     for (unsigned int i = log2_seg_size-1; i < nSizeDistElements; i++) {
 474       if ((SizeDistributionArray[i].rangeStart <= len) && (len < SizeDistributionArray[i].rangeEnd)) {
 475         SizeDistributionArray[i].lenSum += len;
 476         SizeDistributionArray[i].count++;
 477         break;
 478       }
 479     }
 480   }
 481 }
 482 
 483 void CodeHeapState::discard_StatArray(outputStream* out) {
 484   if (StatArray != NULL) {
 485     delete StatArray;
 486     StatArray        = NULL;
 487     alloc_granules   = 0;
 488     granule_size     = 0;
 489   }
 490 }
 491 
 492 void CodeHeapState::discard_FreeArray(outputStream* out) {
 493   if (FreeArray != NULL) {
 494     delete[] FreeArray;
 495     FreeArray        = NULL;
 496     alloc_freeBlocks = 0;
 497   }
 498 }
 499 
 500 void CodeHeapState::discard_TopSizeArray(outputStream* out) {
 501   if (TopSizeArray != NULL) {
 502     for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) {
 503       if (TopSizeArray[i].blob_name != NULL) {
 504         os::free((void*)TopSizeArray[i].blob_name);
 505       }
 506     }
 507     delete[] TopSizeArray;
 508     TopSizeArray        = NULL;
 509     alloc_topSizeBlocks = 0;
 510     used_topSizeBlocks  = 0;
 511   }
 512 }
 513 
 514 void CodeHeapState::discard_SizeDistArray(outputStream* out) {
 515   if (SizeDistributionArray != NULL) {
 516     delete[] SizeDistributionArray;
 517     SizeDistributionArray = NULL;
 518   }
 519 }
 520 
 521 // Discard all allocated internal data structures.
 522 // This should be done after an analysis session is completed.
 523 void CodeHeapState::discard(outputStream* out, CodeHeap* heap) {
 524   if (!initialization_complete) {
 525     return;
 526   }
 527 
 528   if (nHeaps > 0) {
 529     for (unsigned int ix = 0; ix < nHeaps; ix++) {
 530       get_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName);
 531       discard_StatArray(out);
 532       discard_FreeArray(out);
 533       discard_TopSizeArray(out);
 534       discard_SizeDistArray(out);
 535       set_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName);
 536       CodeHeapStatArray[ix].heapName = NULL;
 537     }
 538     nHeaps = 0;
 539   }
 540 }
 541 
 542 void CodeHeapState::aggregate(outputStream* out, CodeHeap* heap, size_t granularity) {
 543   unsigned int nBlocks_free    = 0;
 544   unsigned int nBlocks_used    = 0;
 545   unsigned int nBlocks_zomb    = 0;
 546   unsigned int nBlocks_disconn = 0;
 547   unsigned int nBlocks_notentr = 0;
 548 
 549   //---<  max & min of TopSizeArray  >---
 550   //  it is sufficient to have these sizes as 32bit unsigned ints.
 551   //  The CodeHeap is limited in size to 4GB. Furthermore, the sizes
 552   //  are stored in _segment_size units, scaling them down by a factor of 64 (at least).
 553   unsigned int  currMax          = 0;
 554   unsigned int  currMin          = 0;
 555   unsigned int  currMin_ix       = 0;
 556   unsigned long total_iterations = 0;
 557 
 558   bool  done             = false;
 559   const int min_granules = 256;
 560   const int max_granules = 512*K; // limits analyzable CodeHeap (with segment_granules) to 32M..128M
 561                                   // results in StatArray size of 24M (= max_granules * 48 Bytes per element)
 562                                   // For a 1GB CodeHeap, the granule size must be at least 2kB to not violate the max_granles limit.
 563   const char* heapName   = get_heapName(heap);
 564   BUFFEREDSTREAM_DECL(ast, out)
 565 
 566   if (!initialization_complete) {
 567     memset(CodeHeapStatArray, 0, sizeof(CodeHeapStatArray));
 568     initialization_complete = true;
 569 
 570     printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   (general remarks)", NULL);
 571     ast->print_cr("   The code heap analysis function provides deep insights into\n"
 572                   "   the inner workings and the internal state of the Java VM's\n"
 573                   "   code cache - the place where all the JVM generated machine\n"
 574                   "   code is stored.\n"
 575                   "   \n"
 576                   "   This function is designed and provided for support engineers\n"
 577                   "   to help them understand and solve issues in customer systems.\n"
 578                   "   It is not intended for use and interpretation by other persons.\n"
 579                   "   \n");
 580     BUFFEREDSTREAM_FLUSH("")
 581   }
 582   get_HeapStatGlobals(out, heapName);
 583 
 584 
 585   // Since we are (and must be) analyzing the CodeHeap contents under the CodeCache_lock,
 586   // all heap information is "constant" and can be safely extracted/calculated before we
 587   // enter the while() loop. Actually, the loop will only be iterated once.
 588   char*  low_bound     = heap->low_boundary();
 589   size_t size          = heap->capacity();
 590   size_t res_size      = heap->max_capacity();
 591   seg_size             = heap->segment_size();
 592   log2_seg_size        = seg_size == 0 ? 0 : exact_log2(seg_size);  // This is a global static value.
 593 
 594   if (seg_size == 0) {
 595     printBox(ast, '-', "Heap not fully initialized yet, segment size is zero for segment ", heapName);
 596     BUFFEREDSTREAM_FLUSH("")
 597     return;
 598   }
 599 
 600   if (!holding_required_locks()) {
 601     printBox(ast, '-', "Must be at safepoint or hold Compile_lock and CodeCache_lock when calling aggregate function for ", heapName);
 602     BUFFEREDSTREAM_FLUSH("")
 603     return;
 604   }
 605 
 606   // Calculate granularity of analysis (and output).
 607   //   The CodeHeap is managed (allocated) in segments (units) of CodeCacheSegmentSize.
 608   //   The CodeHeap can become fairly large, in particular in productive real-life systems.
 609   //
 610   //   It is often neither feasible nor desirable to aggregate the data with the highest possible
 611   //   level of detail, i.e. inspecting and printing each segment on its own.
 612   //
 613   //   The granularity parameter allows to specify the level of detail available in the analysis.
 614   //   It must be a positive multiple of the segment size and should be selected such that enough
 615   //   detail is provided while, at the same time, the printed output does not explode.
 616   //
 617   //   By manipulating the granularity value, we enforce that at least min_granules units
 618   //   of analysis are available. We also enforce an upper limit of max_granules units to
 619   //   keep the amount of allocated storage in check.
 620   //
 621   //   Finally, we adjust the granularity such that each granule covers at most 64k-1 segments.
 622   //   This is necessary to prevent an unsigned short overflow while accumulating space information.
 623   //
 624   assert(granularity > 0, "granularity should be positive.");
 625 
 626   if (granularity > size) {
 627     granularity = size;
 628   }
 629   if (size/granularity < min_granules) {
 630     granularity = size/min_granules;                                   // at least min_granules granules
 631   }
 632   granularity = granularity & (~(seg_size - 1));                       // must be multiple of seg_size
 633   if (granularity < seg_size) {
 634     granularity = seg_size;                                            // must be at least seg_size
 635   }
 636   if (size/granularity > max_granules) {
 637     granularity = size/max_granules;                                   // at most max_granules granules
 638   }
 639   granularity = granularity & (~(seg_size - 1));                       // must be multiple of seg_size
 640   if (granularity>>log2_seg_size >= (1L<<sizeof(unsigned short)*8)) {
 641     granularity = ((1L<<(sizeof(unsigned short)*8))-1)<<log2_seg_size; // Limit: (64k-1) * seg_size
 642   }
 643   segment_granules = granularity == seg_size;
 644   size_t granules  = (size + (granularity-1))/granularity;
 645 
 646   printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   (used blocks) for segment ", heapName);
 647   ast->print_cr("   The aggregate step takes an aggregated snapshot of the CodeHeap.\n"
 648                 "   Subsequent print functions create their output based on this snapshot.\n"
 649                 "   The CodeHeap is a living thing, and every effort has been made for the\n"
 650                 "   collected data to be consistent. Only the method names and signatures\n"
 651                 "   are retrieved at print time. That may lead to rare cases where the\n"
 652                 "   name of a method is no longer available, e.g. because it was unloaded.\n");
 653   ast->print_cr("   CodeHeap committed size " SIZE_FORMAT "K (" SIZE_FORMAT "M), reserved size " SIZE_FORMAT "K (" SIZE_FORMAT "M), %d%% occupied.",
 654                 size/(size_t)K, size/(size_t)M, res_size/(size_t)K, res_size/(size_t)M, (unsigned int)(100.0*size/res_size));
 655   ast->print_cr("   CodeHeap allocation segment size is " SIZE_FORMAT " bytes. This is the smallest possible granularity.", seg_size);
 656   ast->print_cr("   CodeHeap (committed part) is mapped to " SIZE_FORMAT " granules of size " SIZE_FORMAT " bytes.", granules, granularity);
 657   ast->print_cr("   Each granule takes " SIZE_FORMAT " bytes of C heap, that is " SIZE_FORMAT "K in total for statistics data.", sizeof(StatElement), (sizeof(StatElement)*granules)/(size_t)K);
 658   ast->print_cr("   The number of granules is limited to %dk, requiring a granules size of at least %d bytes for a 1GB heap.", (unsigned int)(max_granules/K), (unsigned int)(G/max_granules));
 659   BUFFEREDSTREAM_FLUSH("\n")
 660 
 661 
 662   while (!done) {
 663     //---<  reset counters with every aggregation  >---
 664     nBlocks_t1       = 0;
 665     nBlocks_t2       = 0;
 666     nBlocks_alive    = 0;
 667     nBlocks_dead     = 0;

 668     nBlocks_unloaded = 0;
 669     nBlocks_stub     = 0;
 670 
 671     nBlocks_free     = 0;
 672     nBlocks_used     = 0;
 673     nBlocks_zomb     = 0;
 674     nBlocks_disconn  = 0;
 675     nBlocks_notentr  = 0;
 676 
 677     //---<  discard old arrays if size does not match  >---
 678     if (granules != alloc_granules) {
 679       discard_StatArray(out);
 680       discard_TopSizeArray(out);
 681     }
 682 
 683     //---<  allocate arrays if they don't yet exist, initialize  >---
 684     prepare_StatArray(out, granules, granularity, heapName);
 685     if (StatArray == NULL) {
 686       set_HeapStatGlobals(out, heapName);
 687       return;
 688     }
 689     prepare_TopSizeArray(out, maxTopSizeBlocks, heapName);
 690     prepare_SizeDistArray(out, nSizeDistElements, heapName);
 691 
 692     latest_compilation_id = CompileBroker::get_compilation_id();
 693     unsigned int highest_compilation_id = 0;
 694     size_t       usedSpace     = 0;
 695     size_t       t1Space       = 0;
 696     size_t       t2Space       = 0;
 697     size_t       aliveSpace    = 0;
 698     size_t       disconnSpace  = 0;
 699     size_t       notentrSpace  = 0;
 700     size_t       deadSpace     = 0;

 701     size_t       unloadedSpace = 0;
 702     size_t       stubSpace     = 0;
 703     size_t       freeSpace     = 0;
 704     size_t       maxFreeSize   = 0;
 705     HeapBlock*   maxFreeBlock  = NULL;
 706     bool         insane        = false;
 707 
 708     int64_t hotnessAccumulator = 0;
 709     unsigned int n_methods     = 0;
 710     avgTemp       = 0;
 711     minTemp       = (int)(res_size > M ? (res_size/M)*2 : 1);
 712     maxTemp       = -minTemp;
 713 
 714     for (HeapBlock *h = heap->first_block(); h != NULL && !insane; h = heap->next_block(h)) {
 715       unsigned int hb_len     = (unsigned int)h->length();  // despite being size_t, length can never overflow an unsigned int.
 716       size_t       hb_bytelen = ((size_t)hb_len)<<log2_seg_size;
 717       unsigned int ix_beg     = (unsigned int)(((char*)h-low_bound)/granule_size);
 718       unsigned int ix_end     = (unsigned int)(((char*)h-low_bound+(hb_bytelen-1))/granule_size);
 719       unsigned int compile_id = 0;
 720       CompLevel    comp_lvl   = CompLevel_none;
 721       compType     cType      = noComp;
 722       blobType     cbType     = noType;
 723 
 724       //---<  some sanity checks  >---
 725       // Do not assert here, just check, print error message and return.
 726       // This is a diagnostic function. It is not supposed to tear down the VM.
 727       if ((char*)h <  low_bound) {
 728         insane = true; ast->print_cr("Sanity check: HeapBlock @%p below low bound (%p)", (char*)h, low_bound);
 729       }
 730       if ((char*)h >  (low_bound + res_size)) {
 731         insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside reserved range (%p)", (char*)h, low_bound + res_size);
 732       }
 733       if ((char*)h >  (low_bound + size)) {
 734         insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside used range (%p)", (char*)h, low_bound + size);
 735       }
 736       if (ix_end   >= granules) {
 737         insane = true; ast->print_cr("Sanity check: end index (%d) out of bounds (" SIZE_FORMAT ")", ix_end, granules);
 738       }
 739       if (size     != heap->capacity()) {
 740         insane = true; ast->print_cr("Sanity check: code heap capacity has changed (" SIZE_FORMAT "K to " SIZE_FORMAT "K)", size/(size_t)K, heap->capacity()/(size_t)K);
 741       }
 742       if (ix_beg   >  ix_end) {
 743         insane = true; ast->print_cr("Sanity check: end index (%d) lower than begin index (%d)", ix_end, ix_beg);
 744       }
 745       if (insane) {
 746         BUFFEREDSTREAM_FLUSH("")
 747         continue;
 748       }
 749 
 750       if (h->free()) {
 751         nBlocks_free++;
 752         freeSpace    += hb_bytelen;
 753         if (hb_bytelen > maxFreeSize) {
 754           maxFreeSize   = hb_bytelen;
 755           maxFreeBlock  = h;
 756         }
 757       } else {
 758         update_SizeDistArray(out, hb_len);
 759         nBlocks_used++;
 760         usedSpace    += hb_bytelen;
 761         CodeBlob* cb  = (CodeBlob*)heap->find_start(h);
 762         cbType = get_cbType(cb);  // Will check for cb == NULL and other safety things.
 763         if (cbType != noType) {
 764           const char* blob_name  = os::strdup(cb->name());
 765           unsigned int nm_size   = 0;
 766           int temperature        = 0;
 767           nmethod*  nm = cb->as_nmethod_or_null();
 768           if (nm != NULL) { // no is_readable check required, nm = (nmethod*)cb.
 769             ResourceMark rm;
 770             Method* method = nm->method();
 771             if (nm->is_in_use()) {
 772               blob_name = os::strdup(method->name_and_sig_as_C_string());
 773             }
 774             if (nm->is_not_entrant()) {
 775               blob_name = os::strdup(method->name_and_sig_as_C_string());
 776             }
 777 
 778             nm_size    = nm->total_size();
 779             compile_id = nm->compile_id();
 780             comp_lvl   = (CompLevel)(nm->comp_level());
 781             if (nm->is_compiled_by_c1()) {
 782               cType = c1;
 783             }
 784             if (nm->is_compiled_by_c2()) {
 785               cType = c2;
 786             }
 787             if (nm->is_compiled_by_jvmci()) {
 788               cType = jvmci;
 789             }
 790             switch (cbType) {
 791               case nMethod_inuse: { // only for executable methods!!!
 792                 // space for these cbs is accounted for later.
 793                 temperature = nm->hotness_counter();
 794                 hotnessAccumulator += temperature;
 795                 n_methods++;
 796                 maxTemp = (temperature > maxTemp) ? temperature : maxTemp;
 797                 minTemp = (temperature < minTemp) ? temperature : minTemp;
 798                 break;
 799               }
 800               case nMethod_notused:
 801                 nBlocks_alive++;
 802                 nBlocks_disconn++;
 803                 aliveSpace     += hb_bytelen;
 804                 disconnSpace   += hb_bytelen;
 805                 break;
 806               case nMethod_notentrant:  // equivalent to nMethod_alive
 807                 nBlocks_alive++;
 808                 nBlocks_notentr++;
 809                 aliveSpace     += hb_bytelen;
 810                 notentrSpace   += hb_bytelen;
 811                 break;
 812               case nMethod_unloaded:
 813                 nBlocks_unloaded++;
 814                 unloadedSpace  += hb_bytelen;
 815                 break;
 816               case nMethod_dead:
 817                 nBlocks_dead++;
 818                 deadSpace      += hb_bytelen;
 819                 break;




 820               default:
 821                 break;
 822             }
 823           }
 824 
 825           //------------------------------------------
 826           //---<  register block in TopSizeArray  >---
 827           //------------------------------------------
 828           if (alloc_topSizeBlocks > 0) {
 829             if (used_topSizeBlocks == 0) {
 830               TopSizeArray[0].start       = h;
 831               TopSizeArray[0].blob_name   = blob_name;
 832               TopSizeArray[0].len         = hb_len;
 833               TopSizeArray[0].index       = tsbStopper;
 834               TopSizeArray[0].nm_size     = nm_size;
 835               TopSizeArray[0].temperature = temperature;
 836               TopSizeArray[0].compiler    = cType;
 837               TopSizeArray[0].level       = comp_lvl;
 838               TopSizeArray[0].type        = cbType;
 839               currMax    = hb_len;
 840               currMin    = hb_len;
 841               currMin_ix = 0;
 842               used_topSizeBlocks++;
 843               blob_name  = NULL; // indicate blob_name was consumed
 844             // This check roughly cuts 5000 iterations (JVM98, mixed, dbg, termination stats):
 845             } else if ((used_topSizeBlocks < alloc_topSizeBlocks) && (hb_len < currMin)) {
 846               //---<  all blocks in list are larger, but there is room left in array  >---
 847               TopSizeArray[currMin_ix].index = used_topSizeBlocks;
 848               TopSizeArray[used_topSizeBlocks].start       = h;
 849               TopSizeArray[used_topSizeBlocks].blob_name   = blob_name;
 850               TopSizeArray[used_topSizeBlocks].len         = hb_len;
 851               TopSizeArray[used_topSizeBlocks].index       = tsbStopper;
 852               TopSizeArray[used_topSizeBlocks].nm_size     = nm_size;
 853               TopSizeArray[used_topSizeBlocks].temperature = temperature;
 854               TopSizeArray[used_topSizeBlocks].compiler    = cType;
 855               TopSizeArray[used_topSizeBlocks].level       = comp_lvl;
 856               TopSizeArray[used_topSizeBlocks].type        = cbType;
 857               currMin    = hb_len;
 858               currMin_ix = used_topSizeBlocks;
 859               used_topSizeBlocks++;
 860               blob_name  = NULL; // indicate blob_name was consumed
 861             } else {
 862               // This check cuts total_iterations by a factor of 6 (JVM98, mixed, dbg, termination stats):
 863               //   We don't need to search the list if we know beforehand that the current block size is
 864               //   smaller than the currently recorded minimum and there is no free entry left in the list.
 865               if (!((used_topSizeBlocks == alloc_topSizeBlocks) && (hb_len <= currMin))) {
 866                 if (currMax < hb_len) {
 867                   currMax = hb_len;
 868                 }
 869                 unsigned int i;
 870                 unsigned int prev_i  = tsbStopper;
 871                 unsigned int limit_i =  0;
 872                 for (i = 0; i != tsbStopper; i = TopSizeArray[i].index) {
 873                   if (limit_i++ >= alloc_topSizeBlocks) {
 874                     insane = true; break; // emergency exit
 875                   }
 876                   if (i >= used_topSizeBlocks)  {
 877                     insane = true; break; // emergency exit
 878                   }
 879                   total_iterations++;
 880                   if (TopSizeArray[i].len < hb_len) {
 881                     //---<  We want to insert here, element <i> is smaller than the current one  >---
 882                     if (used_topSizeBlocks < alloc_topSizeBlocks) { // still room for a new entry to insert
 883                       // old entry gets moved to the next free element of the array.
 884                       // That's necessary to keep the entry for the largest block at index 0.
 885                       // This move might cause the current minimum to be moved to another place
 886                       if (i == currMin_ix) {
 887                         assert(TopSizeArray[i].len == currMin, "sort error");
 888                         currMin_ix = used_topSizeBlocks;
 889                       }
 890                       memcpy((void*)&TopSizeArray[used_topSizeBlocks], (void*)&TopSizeArray[i], sizeof(TopSizeBlk));
 891                       TopSizeArray[i].start       = h;
 892                       TopSizeArray[i].blob_name   = blob_name;
 893                       TopSizeArray[i].len         = hb_len;
 894                       TopSizeArray[i].index       = used_topSizeBlocks;
 895                       TopSizeArray[i].nm_size     = nm_size;
 896                       TopSizeArray[i].temperature = temperature;
 897                       TopSizeArray[i].compiler    = cType;
 898                       TopSizeArray[i].level       = comp_lvl;
 899                       TopSizeArray[i].type        = cbType;
 900                       used_topSizeBlocks++;
 901                       blob_name  = NULL; // indicate blob_name was consumed
 902                     } else { // no room for new entries, current block replaces entry for smallest block
 903                       //---<  Find last entry (entry for smallest remembered block)  >---
 904                       // We either want to insert right before the smallest entry, which is when <i>
 905                       // indexes the smallest entry. We then just overwrite the smallest entry.
 906                       // What's more likely:
 907                       // We want to insert somewhere in the list. The smallest entry (@<j>) then falls off the cliff.
 908                       // The element at the insert point <i> takes it's slot. The second-smallest entry now becomes smallest.
 909                       // Data of the current block is filled in at index <i>.
 910                       unsigned int      j  = i;
 911                       unsigned int prev_j  = tsbStopper;
 912                       unsigned int limit_j = 0;
 913                       while (TopSizeArray[j].index != tsbStopper) {
 914                         if (limit_j++ >= alloc_topSizeBlocks) {
 915                           insane = true; break; // emergency exit
 916                         }
 917                         if (j >= used_topSizeBlocks)  {
 918                           insane = true; break; // emergency exit
 919                         }
 920                         total_iterations++;
 921                         prev_j = j;
 922                         j      = TopSizeArray[j].index;
 923                       }
 924                       if (!insane) {
 925                         if (TopSizeArray[j].blob_name != NULL) {
 926                           os::free((void*)TopSizeArray[j].blob_name);
 927                         }
 928                         if (prev_j == tsbStopper) {
 929                           //---<  Above while loop did not iterate, we already are the min entry  >---
 930                           //---<  We have to just replace the smallest entry                      >---
 931                           currMin    = hb_len;
 932                           currMin_ix = j;
 933                           TopSizeArray[j].start       = h;
 934                           TopSizeArray[j].blob_name   = blob_name;
 935                           TopSizeArray[j].len         = hb_len;
 936                           TopSizeArray[j].index       = tsbStopper; // already set!!
 937                           TopSizeArray[i].nm_size     = nm_size;
 938                           TopSizeArray[i].temperature = temperature;
 939                           TopSizeArray[j].compiler    = cType;
 940                           TopSizeArray[j].level       = comp_lvl;
 941                           TopSizeArray[j].type        = cbType;
 942                         } else {
 943                           //---<  second-smallest entry is now smallest  >---
 944                           TopSizeArray[prev_j].index = tsbStopper;
 945                           currMin    = TopSizeArray[prev_j].len;
 946                           currMin_ix = prev_j;
 947                           //---<  previously smallest entry gets overwritten  >---
 948                           memcpy((void*)&TopSizeArray[j], (void*)&TopSizeArray[i], sizeof(TopSizeBlk));
 949                           TopSizeArray[i].start       = h;
 950                           TopSizeArray[i].blob_name   = blob_name;
 951                           TopSizeArray[i].len         = hb_len;
 952                           TopSizeArray[i].index       = j;
 953                           TopSizeArray[i].nm_size     = nm_size;
 954                           TopSizeArray[i].temperature = temperature;
 955                           TopSizeArray[i].compiler    = cType;
 956                           TopSizeArray[i].level       = comp_lvl;
 957                           TopSizeArray[i].type        = cbType;
 958                         }
 959                         blob_name  = NULL; // indicate blob_name was consumed
 960                       } // insane
 961                     }
 962                     break;
 963                   }
 964                   prev_i = i;
 965                 }
 966                 if (insane) {
 967                   // Note: regular analysis could probably continue by resetting "insane" flag.
 968                   out->print_cr("Possible loop in TopSizeBlocks list detected. Analysis aborted.");
 969                   discard_TopSizeArray(out);
 970                 }
 971               }
 972             }
 973           }
 974           if (blob_name != NULL) {
 975             os::free((void*)blob_name);
 976             blob_name = NULL;
 977           }
 978           //----------------------------------------------
 979           //---<  END register block in TopSizeArray  >---
 980           //----------------------------------------------
 981         } else {
 982           nBlocks_zomb++;
 983         }
 984 
 985         if (ix_beg == ix_end) {
 986           StatArray[ix_beg].type = cbType;
 987           switch (cbType) {
 988             case nMethod_inuse:
 989               highest_compilation_id = (highest_compilation_id >= compile_id) ? highest_compilation_id : compile_id;
 990               if (comp_lvl < CompLevel_full_optimization) {
 991                 nBlocks_t1++;
 992                 t1Space   += hb_bytelen;
 993                 StatArray[ix_beg].t1_count++;
 994                 StatArray[ix_beg].t1_space += (unsigned short)hb_len;
 995                 StatArray[ix_beg].t1_age    = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age;
 996               } else {
 997                 nBlocks_t2++;
 998                 t2Space   += hb_bytelen;
 999                 StatArray[ix_beg].t2_count++;
1000                 StatArray[ix_beg].t2_space += (unsigned short)hb_len;
1001                 StatArray[ix_beg].t2_age    = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age;
1002               }
1003               StatArray[ix_beg].level     = comp_lvl;
1004               StatArray[ix_beg].compiler  = cType;
1005               break;

1006             case nMethod_alive:
1007               StatArray[ix_beg].tx_count++;
1008               StatArray[ix_beg].tx_space += (unsigned short)hb_len;
1009               StatArray[ix_beg].tx_age    = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age;
1010               StatArray[ix_beg].level     = comp_lvl;
1011               StatArray[ix_beg].compiler  = cType;
1012               break;
1013             case nMethod_dead:
1014             case nMethod_unloaded:
1015               StatArray[ix_beg].dead_count++;
1016               StatArray[ix_beg].dead_space += (unsigned short)hb_len;
1017               break;
1018             default:
1019               // must be a stub, if it's not a dead or alive nMethod
1020               nBlocks_stub++;
1021               stubSpace   += hb_bytelen;
1022               StatArray[ix_beg].stub_count++;
1023               StatArray[ix_beg].stub_space += (unsigned short)hb_len;
1024               break;
1025           }
1026         } else {
1027           unsigned int beg_space = (unsigned int)(granule_size - ((char*)h - low_bound - ix_beg*granule_size));
1028           unsigned int end_space = (unsigned int)(hb_bytelen - beg_space - (ix_end-ix_beg-1)*granule_size);
1029           beg_space = beg_space>>log2_seg_size;  // store in units of _segment_size
1030           end_space = end_space>>log2_seg_size;  // store in units of _segment_size
1031           StatArray[ix_beg].type = cbType;
1032           StatArray[ix_end].type = cbType;
1033           switch (cbType) {
1034             case nMethod_inuse:
1035               highest_compilation_id = (highest_compilation_id >= compile_id) ? highest_compilation_id : compile_id;
1036               if (comp_lvl < CompLevel_full_optimization) {
1037                 nBlocks_t1++;
1038                 t1Space   += hb_bytelen;
1039                 StatArray[ix_beg].t1_count++;
1040                 StatArray[ix_beg].t1_space += (unsigned short)beg_space;
1041                 StatArray[ix_beg].t1_age    = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age;
1042 
1043                 StatArray[ix_end].t1_count++;
1044                 StatArray[ix_end].t1_space += (unsigned short)end_space;
1045                 StatArray[ix_end].t1_age    = StatArray[ix_end].t1_age < compile_id ? compile_id : StatArray[ix_end].t1_age;
1046               } else {
1047                 nBlocks_t2++;
1048                 t2Space   += hb_bytelen;
1049                 StatArray[ix_beg].t2_count++;
1050                 StatArray[ix_beg].t2_space += (unsigned short)beg_space;
1051                 StatArray[ix_beg].t2_age    = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age;
1052 
1053                 StatArray[ix_end].t2_count++;
1054                 StatArray[ix_end].t2_space += (unsigned short)end_space;
1055                 StatArray[ix_end].t2_age    = StatArray[ix_end].t2_age < compile_id ? compile_id : StatArray[ix_end].t2_age;
1056               }
1057               StatArray[ix_beg].level     = comp_lvl;
1058               StatArray[ix_beg].compiler  = cType;
1059               StatArray[ix_end].level     = comp_lvl;
1060               StatArray[ix_end].compiler  = cType;
1061               break;

1062             case nMethod_alive:
1063               StatArray[ix_beg].tx_count++;
1064               StatArray[ix_beg].tx_space += (unsigned short)beg_space;
1065               StatArray[ix_beg].tx_age    = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age;
1066 
1067               StatArray[ix_end].tx_count++;
1068               StatArray[ix_end].tx_space += (unsigned short)end_space;
1069               StatArray[ix_end].tx_age    = StatArray[ix_end].tx_age < compile_id ? compile_id : StatArray[ix_end].tx_age;
1070 
1071               StatArray[ix_beg].level     = comp_lvl;
1072               StatArray[ix_beg].compiler  = cType;
1073               StatArray[ix_end].level     = comp_lvl;
1074               StatArray[ix_end].compiler  = cType;
1075               break;
1076             case nMethod_dead:
1077             case nMethod_unloaded:
1078               StatArray[ix_beg].dead_count++;
1079               StatArray[ix_beg].dead_space += (unsigned short)beg_space;
1080               StatArray[ix_end].dead_count++;
1081               StatArray[ix_end].dead_space += (unsigned short)end_space;
1082               break;
1083             default:
1084               // must be a stub, if it's not a dead or alive nMethod
1085               nBlocks_stub++;
1086               stubSpace   += hb_bytelen;
1087               StatArray[ix_beg].stub_count++;
1088               StatArray[ix_beg].stub_space += (unsigned short)beg_space;
1089               StatArray[ix_end].stub_count++;
1090               StatArray[ix_end].stub_space += (unsigned short)end_space;
1091               break;
1092           }
1093           for (unsigned int ix = ix_beg+1; ix < ix_end; ix++) {
1094             StatArray[ix].type = cbType;
1095             switch (cbType) {
1096               case nMethod_inuse:
1097                 if (comp_lvl < CompLevel_full_optimization) {
1098                   StatArray[ix].t1_count++;
1099                   StatArray[ix].t1_space += (unsigned short)(granule_size>>log2_seg_size);
1100                   StatArray[ix].t1_age    = StatArray[ix].t1_age < compile_id ? compile_id : StatArray[ix].t1_age;
1101                 } else {
1102                   StatArray[ix].t2_count++;
1103                   StatArray[ix].t2_space += (unsigned short)(granule_size>>log2_seg_size);
1104                   StatArray[ix].t2_age    = StatArray[ix].t2_age < compile_id ? compile_id : StatArray[ix].t2_age;
1105                 }
1106                 StatArray[ix].level     = comp_lvl;
1107                 StatArray[ix].compiler  = cType;
1108                 break;

1109               case nMethod_alive:
1110                 StatArray[ix].tx_count++;
1111                 StatArray[ix].tx_space += (unsigned short)(granule_size>>log2_seg_size);
1112                 StatArray[ix].tx_age    = StatArray[ix].tx_age < compile_id ? compile_id : StatArray[ix].tx_age;
1113                 StatArray[ix].level     = comp_lvl;
1114                 StatArray[ix].compiler  = cType;
1115                 break;
1116               case nMethod_dead:
1117               case nMethod_unloaded:
1118                 StatArray[ix].dead_count++;
1119                 StatArray[ix].dead_space += (unsigned short)(granule_size>>log2_seg_size);
1120                 break;
1121               default:
1122                 // must be a stub, if it's not a dead or alive nMethod
1123                 StatArray[ix].stub_count++;
1124                 StatArray[ix].stub_space += (unsigned short)(granule_size>>log2_seg_size);
1125                 break;
1126             }
1127           }
1128         }
1129       }
1130     }
1131     done = true;
1132 
1133     if (!insane) {
1134       // There is a risk for this block (because it contains many print statements) to get
1135       // interspersed with print data from other threads. We take this risk intentionally.
1136       // Getting stalled waiting for tty_lock while holding the CodeCache_lock is not desirable.
1137       printBox(ast, '-', "Global CodeHeap statistics for segment ", heapName);
1138       ast->print_cr("freeSpace        = " SIZE_FORMAT_W(8) "k, nBlocks_free     = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", freeSpace/(size_t)K,     nBlocks_free,     (100.0*freeSpace)/size,     (100.0*freeSpace)/res_size);
1139       ast->print_cr("usedSpace        = " SIZE_FORMAT_W(8) "k, nBlocks_used     = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", usedSpace/(size_t)K,     nBlocks_used,     (100.0*usedSpace)/size,     (100.0*usedSpace)/res_size);
1140       ast->print_cr("  Tier1 Space    = " SIZE_FORMAT_W(8) "k, nBlocks_t1       = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", t1Space/(size_t)K,       nBlocks_t1,       (100.0*t1Space)/size,       (100.0*t1Space)/res_size);
1141       ast->print_cr("  Tier2 Space    = " SIZE_FORMAT_W(8) "k, nBlocks_t2       = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", t2Space/(size_t)K,       nBlocks_t2,       (100.0*t2Space)/size,       (100.0*t2Space)/res_size);
1142       ast->print_cr("  Alive Space    = " SIZE_FORMAT_W(8) "k, nBlocks_alive    = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", aliveSpace/(size_t)K,    nBlocks_alive,    (100.0*aliveSpace)/size,    (100.0*aliveSpace)/res_size);
1143       ast->print_cr("    disconnected = " SIZE_FORMAT_W(8) "k, nBlocks_disconn  = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", disconnSpace/(size_t)K,  nBlocks_disconn,  (100.0*disconnSpace)/size,  (100.0*disconnSpace)/res_size);
1144       ast->print_cr("    not entrant  = " SIZE_FORMAT_W(8) "k, nBlocks_notentr  = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", notentrSpace/(size_t)K,  nBlocks_notentr,  (100.0*notentrSpace)/size,  (100.0*notentrSpace)/res_size);

1145       ast->print_cr("  unloadedSpace  = " SIZE_FORMAT_W(8) "k, nBlocks_unloaded = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", unloadedSpace/(size_t)K, nBlocks_unloaded, (100.0*unloadedSpace)/size, (100.0*unloadedSpace)/res_size);
1146       ast->print_cr("  deadSpace      = " SIZE_FORMAT_W(8) "k, nBlocks_dead     = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", deadSpace/(size_t)K,     nBlocks_dead,     (100.0*deadSpace)/size,     (100.0*deadSpace)/res_size);
1147       ast->print_cr("  stubSpace      = " SIZE_FORMAT_W(8) "k, nBlocks_stub     = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", stubSpace/(size_t)K,     nBlocks_stub,     (100.0*stubSpace)/size,     (100.0*stubSpace)/res_size);
1148       ast->print_cr("ZombieBlocks     = %8d. These are HeapBlocks which could not be identified as CodeBlobs.", nBlocks_zomb);
1149       ast->cr();
1150       ast->print_cr("Segment start          = " INTPTR_FORMAT ", used space      = " SIZE_FORMAT_W(8)"k", p2i(low_bound), size/K);
1151       ast->print_cr("Segment end (used)     = " INTPTR_FORMAT ", remaining space = " SIZE_FORMAT_W(8)"k", p2i(low_bound) + size, (res_size - size)/K);
1152       ast->print_cr("Segment end (reserved) = " INTPTR_FORMAT ", reserved space  = " SIZE_FORMAT_W(8)"k", p2i(low_bound) + res_size, res_size/K);
1153       ast->cr();
1154       ast->print_cr("latest allocated compilation id = %d", latest_compilation_id);
1155       ast->print_cr("highest observed compilation id = %d", highest_compilation_id);
1156       ast->print_cr("Building TopSizeList iterations = %ld", total_iterations);
1157       ast->cr();
1158 
1159       int             reset_val = NMethodSweeper::hotness_counter_reset_val();
1160       double reverse_free_ratio = (res_size > size) ? (double)res_size/(double)(res_size-size) : (double)res_size;
1161       printBox(ast, '-', "Method hotness information at time of this analysis", NULL);
1162       ast->print_cr("Highest possible method temperature:          %12d", reset_val);
1163       ast->print_cr("Threshold for method to be considered 'cold': %12.3f", -reset_val + reverse_free_ratio * NmethodSweepActivity);
1164       if (n_methods > 0) {
1165         avgTemp = hotnessAccumulator/n_methods;
1166         ast->print_cr("min. hotness = %6d", minTemp);
1167         ast->print_cr("avg. hotness = %6d", avgTemp);
1168         ast->print_cr("max. hotness = %6d", maxTemp);
1169       } else {
1170         avgTemp = 0;
1171         ast->print_cr("No hotness data available");
1172       }
1173       BUFFEREDSTREAM_FLUSH("\n")
1174 
1175       // This loop is intentionally printing directly to "out".
1176       // It should not print anything, anyway.
1177       out->print("Verifying collected data...");
1178       size_t granule_segs = granule_size>>log2_seg_size;
1179       for (unsigned int ix = 0; ix < granules; ix++) {
1180         if (StatArray[ix].t1_count   > granule_segs) {
1181           out->print_cr("t1_count[%d]   = %d", ix, StatArray[ix].t1_count);
1182         }
1183         if (StatArray[ix].t2_count   > granule_segs) {
1184           out->print_cr("t2_count[%d]   = %d", ix, StatArray[ix].t2_count);
1185         }
1186         if (StatArray[ix].tx_count   > granule_segs) {
1187           out->print_cr("tx_count[%d]   = %d", ix, StatArray[ix].tx_count);
1188         }
1189         if (StatArray[ix].stub_count > granule_segs) {
1190           out->print_cr("stub_count[%d] = %d", ix, StatArray[ix].stub_count);
1191         }
1192         if (StatArray[ix].dead_count > granule_segs) {
1193           out->print_cr("dead_count[%d] = %d", ix, StatArray[ix].dead_count);
1194         }
1195         if (StatArray[ix].t1_space   > granule_segs) {
1196           out->print_cr("t1_space[%d]   = %d", ix, StatArray[ix].t1_space);
1197         }
1198         if (StatArray[ix].t2_space   > granule_segs) {
1199           out->print_cr("t2_space[%d]   = %d", ix, StatArray[ix].t2_space);
1200         }
1201         if (StatArray[ix].tx_space   > granule_segs) {
1202           out->print_cr("tx_space[%d]   = %d", ix, StatArray[ix].tx_space);
1203         }
1204         if (StatArray[ix].stub_space > granule_segs) {
1205           out->print_cr("stub_space[%d] = %d", ix, StatArray[ix].stub_space);
1206         }
1207         if (StatArray[ix].dead_space > granule_segs) {
1208           out->print_cr("dead_space[%d] = %d", ix, StatArray[ix].dead_space);
1209         }
1210         //   this cast is awful! I need it because NT/Intel reports a signed/unsigned mismatch.
1211         if ((size_t)(StatArray[ix].t1_count+StatArray[ix].t2_count+StatArray[ix].tx_count+StatArray[ix].stub_count+StatArray[ix].dead_count) > granule_segs) {
1212           out->print_cr("t1_count[%d] = %d, t2_count[%d] = %d, tx_count[%d] = %d, stub_count[%d] = %d", ix, StatArray[ix].t1_count, ix, StatArray[ix].t2_count, ix, StatArray[ix].tx_count, ix, StatArray[ix].stub_count);
1213         }
1214         if ((size_t)(StatArray[ix].t1_space+StatArray[ix].t2_space+StatArray[ix].tx_space+StatArray[ix].stub_space+StatArray[ix].dead_space) > granule_segs) {
1215           out->print_cr("t1_space[%d] = %d, t2_space[%d] = %d, tx_space[%d] = %d, stub_space[%d] = %d", ix, StatArray[ix].t1_space, ix, StatArray[ix].t2_space, ix, StatArray[ix].tx_space, ix, StatArray[ix].stub_space);
1216         }
1217       }
1218 
1219       // This loop is intentionally printing directly to "out".
1220       // It should not print anything, anyway.
1221       if (used_topSizeBlocks > 0) {
1222         unsigned int j = 0;
1223         if (TopSizeArray[0].len != currMax) {
1224           out->print_cr("currMax(%d) differs from TopSizeArray[0].len(%d)", currMax, TopSizeArray[0].len);
1225         }
1226         for (unsigned int i = 0; (TopSizeArray[i].index != tsbStopper) && (j++ < alloc_topSizeBlocks); i = TopSizeArray[i].index) {
1227           if (TopSizeArray[i].len < TopSizeArray[TopSizeArray[i].index].len) {
1228             out->print_cr("sort error at index %d: %d !>= %d", i, TopSizeArray[i].len, TopSizeArray[TopSizeArray[i].index].len);
1229           }
1230         }
1231         if (j >= alloc_topSizeBlocks) {
1232           out->print_cr("Possible loop in TopSizeArray chaining!\n  allocBlocks = %d, usedBlocks = %d", alloc_topSizeBlocks, used_topSizeBlocks);
1233           for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) {
1234             out->print_cr("  TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len);
1235           }
1236         }
1237       }
1238       out->print_cr("...done\n\n");
1239     } else {
1240       // insane heap state detected. Analysis data incomplete. Just throw it away.
1241       discard_StatArray(out);
1242       discard_TopSizeArray(out);
1243     }
1244   }
1245 
1246 
1247   done        = false;
1248   while (!done && (nBlocks_free > 0)) {
1249 
1250     printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   (free blocks) for segment ", heapName);
1251     ast->print_cr("   The aggregate step collects information about all free blocks in CodeHeap.\n"
1252                   "   Subsequent print functions create their output based on this snapshot.\n");
1253     ast->print_cr("   Free space in %s is distributed over %d free blocks.", heapName, nBlocks_free);
1254     ast->print_cr("   Each free block takes " SIZE_FORMAT " bytes of C heap for statistics data, that is " SIZE_FORMAT "K in total.", sizeof(FreeBlk), (sizeof(FreeBlk)*nBlocks_free)/K);
1255     BUFFEREDSTREAM_FLUSH("\n")
1256 
1257     //----------------------------------------
1258     //--  Prepare the FreeArray of FreeBlks --
1259     //----------------------------------------
1260 
1261     //---< discard old array if size does not match  >---
1262     if (nBlocks_free != alloc_freeBlocks) {
1263       discard_FreeArray(out);
1264     }
1265 
1266     prepare_FreeArray(out, nBlocks_free, heapName);
1267     if (FreeArray == NULL) {
1268       done = true;
1269       continue;
1270     }
1271 
1272     //----------------------------------------
1273     //--  Collect all FreeBlks in FreeArray --
1274     //----------------------------------------
1275 
1276     unsigned int ix = 0;
1277     FreeBlock* cur  = heap->freelist();
1278 
1279     while (cur != NULL) {
1280       if (ix < alloc_freeBlocks) { // don't index out of bounds if _freelist has more blocks than anticipated
1281         FreeArray[ix].start = cur;
1282         FreeArray[ix].len   = (unsigned int)(cur->length()<<log2_seg_size);
1283         FreeArray[ix].index = ix;
1284       }
1285       cur  = cur->link();
1286       ix++;
1287     }
1288     if (ix != alloc_freeBlocks) {
1289       ast->print_cr("Free block count mismatch. Expected %d free blocks, but found %d.", alloc_freeBlocks, ix);
1290       ast->print_cr("I will update the counter and retry data collection");
1291       BUFFEREDSTREAM_FLUSH("\n")
1292       nBlocks_free = ix;
1293       continue;
1294     }
1295     done = true;
1296   }
1297 
1298   if (!done || (nBlocks_free == 0)) {
1299     if (nBlocks_free == 0) {
1300       printBox(ast, '-', "no free blocks found in ", heapName);
1301     } else if (!done) {
1302       ast->print_cr("Free block count mismatch could not be resolved.");
1303       ast->print_cr("Try to run \"aggregate\" function to update counters");
1304     }
1305     BUFFEREDSTREAM_FLUSH("")
1306 
1307     //---< discard old array and update global values  >---
1308     discard_FreeArray(out);
1309     set_HeapStatGlobals(out, heapName);
1310     return;
1311   }
1312 
1313   //---<  calculate and fill remaining fields  >---
1314   if (FreeArray != NULL) {
1315     // This loop is intentionally printing directly to "out".
1316     // It should not print anything, anyway.
1317     for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
1318       size_t lenSum = 0;
1319       FreeArray[ix].gap = (unsigned int)((address)FreeArray[ix+1].start - ((address)FreeArray[ix].start + FreeArray[ix].len));
1320       for (HeapBlock *h = heap->next_block(FreeArray[ix].start); (h != NULL) && (h != FreeArray[ix+1].start); h = heap->next_block(h)) {
1321         CodeBlob *cb  = (CodeBlob*)(heap->find_start(h));
1322         if ((cb != NULL) && !cb->is_nmethod()) { // checks equivalent to those in get_cbType()
1323           FreeArray[ix].stubs_in_gap = true;
1324         }
1325         FreeArray[ix].n_gapBlocks++;
1326         lenSum += h->length()<<log2_seg_size;
1327         if (((address)h < ((address)FreeArray[ix].start+FreeArray[ix].len)) || (h >= FreeArray[ix+1].start)) {
1328           out->print_cr("unsorted occupied CodeHeap block found @ %p, gap interval [%p, %p)", h, (address)FreeArray[ix].start+FreeArray[ix].len, FreeArray[ix+1].start);
1329         }
1330       }
1331       if (lenSum != FreeArray[ix].gap) {
1332         out->print_cr("Length mismatch for gap between FreeBlk[%d] and FreeBlk[%d]. Calculated: %d, accumulated: %d.", ix, ix+1, FreeArray[ix].gap, (unsigned int)lenSum);
1333       }
1334     }
1335   }
1336   set_HeapStatGlobals(out, heapName);
1337 
1338   printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   C O M P L E T E   for segment ", heapName);
1339   BUFFEREDSTREAM_FLUSH("\n")
1340 }
1341 
1342 
1343 void CodeHeapState::print_usedSpace(outputStream* out, CodeHeap* heap) {
1344   if (!initialization_complete) {
1345     return;
1346   }
1347 
1348   const char* heapName   = get_heapName(heap);
1349   get_HeapStatGlobals(out, heapName);
1350 
1351   if ((StatArray == NULL) || (TopSizeArray == NULL) || (used_topSizeBlocks == 0)) {
1352     return;
1353   }
1354   BUFFEREDSTREAM_DECL(ast, out)
1355 
1356   {
1357     printBox(ast, '=', "U S E D   S P A C E   S T A T I S T I C S   for ", heapName);
1358     ast->print_cr("Note: The Top%d list of the largest used blocks associates method names\n"
1359                   "      and other identifying information with the block size data.\n"
1360                   "\n"
1361                   "      Method names are dynamically retrieved from the code cache at print time.\n"
1362                   "      Due to the living nature of the code cache and because the CodeCache_lock\n"
1363                   "      is not continuously held, the displayed name might be wrong or no name\n"
1364                   "      might be found at all. The likelihood for that to happen increases\n"
1365                   "      over time passed between analysis and print step.\n", used_topSizeBlocks);
1366     BUFFEREDSTREAM_FLUSH_LOCKED("\n")
1367   }
1368 
1369   //----------------------------
1370   //--  Print Top Used Blocks --
1371   //----------------------------
1372   {
1373     char*     low_bound  = heap->low_boundary();

1374 
1375     printBox(ast, '-', "Largest Used Blocks in ", heapName);
1376     print_blobType_legend(ast);
1377 
1378     ast->fill_to(51);
1379     ast->print("%4s", "blob");
1380     ast->fill_to(56);
1381     ast->print("%9s", "compiler");
1382     ast->fill_to(66);
1383     ast->print_cr("%6s", "method");
1384     ast->print_cr("%18s %13s %17s %4s %9s  %5s %s",      "Addr(module)      ", "offset", "size", "type", " type lvl", " temp", "Name");
1385     BUFFEREDSTREAM_FLUSH_LOCKED("")
1386 
1387     //---<  print Top Ten Used Blocks  >---
1388     if (used_topSizeBlocks > 0) {
1389       unsigned int printed_topSizeBlocks = 0;
1390       for (unsigned int i = 0; i != tsbStopper; i = TopSizeArray[i].index) {
1391         printed_topSizeBlocks++;
1392         if (TopSizeArray[i].blob_name == NULL) {
1393           TopSizeArray[i].blob_name = os::strdup("unnamed blob or blob name unavailable");
1394         }
1395         // heap->find_start() is safe. Only works on _segmap.
1396         // Returns NULL or void*. Returned CodeBlob may be uninitialized.
1397         HeapBlock* heapBlock = TopSizeArray[i].start;
1398         CodeBlob*  this_blob = (CodeBlob*)(heap->find_start(heapBlock));
1399         if (this_blob != NULL) {

1400           //---<  access these fields only if we own the CodeCache_lock  >---




1401           //---<  blob address  >---
1402           ast->print(INTPTR_FORMAT, p2i(this_blob));
1403           ast->fill_to(19);
1404           //---<  blob offset from CodeHeap begin  >---
1405           ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound));
1406           ast->fill_to(33);
1407         } else {
1408           //---<  block address  >---
1409           ast->print(INTPTR_FORMAT, p2i(TopSizeArray[i].start));
1410           ast->fill_to(19);
1411           //---<  block offset from CodeHeap begin  >---
1412           ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)TopSizeArray[i].start-low_bound));
1413           ast->fill_to(33);
1414         }
1415 
1416         //---<  print size, name, and signature (for nMethods)  >---
1417         bool is_nmethod = TopSizeArray[i].nm_size > 0;
1418         if (is_nmethod) {









1419           //---<  nMethod size in hex  >---
1420           ast->print(PTR32_FORMAT, TopSizeArray[i].nm_size);
1421           ast->print("(" SIZE_FORMAT_W(4) "K)", TopSizeArray[i].nm_size/K);

1422           ast->fill_to(51);
1423           ast->print("  %c", blobTypeChar[TopSizeArray[i].type]);
1424           //---<  compiler information  >---
1425           ast->fill_to(56);
1426           ast->print("%5s %3d", compTypeName[TopSizeArray[i].compiler], TopSizeArray[i].level);
1427           //---<  method temperature  >---
1428           ast->fill_to(67);
1429           ast->print("%5d", TopSizeArray[i].temperature);
1430           //---<  name and signature  >---
1431           ast->fill_to(67+6);
1432           if (TopSizeArray[i].type == nMethod_dead) {



1433             ast->print(" zombie method ");
1434           }
1435           ast->print("%s", TopSizeArray[i].blob_name);
1436         } else {
1437           //---<  block size in hex  >---
1438           ast->print(PTR32_FORMAT, (unsigned int)(TopSizeArray[i].len<<log2_seg_size));
1439           ast->print("(" SIZE_FORMAT_W(4) "K)", (TopSizeArray[i].len<<log2_seg_size)/K);
1440           //---<  no compiler information  >---
1441           ast->fill_to(56);
1442           //---<  name and signature  >---
1443           ast->fill_to(67+6);
1444           ast->print("%s", TopSizeArray[i].blob_name);
1445         }
1446         ast->cr();
1447         BUFFEREDSTREAM_FLUSH_AUTO("")
1448       }
1449       if (used_topSizeBlocks != printed_topSizeBlocks) {
1450         ast->print_cr("used blocks: %d, printed blocks: %d", used_topSizeBlocks, printed_topSizeBlocks);
1451         for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) {
1452           ast->print_cr("  TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len);
1453           BUFFEREDSTREAM_FLUSH_AUTO("")
1454         }
1455       }
1456       BUFFEREDSTREAM_FLUSH("\n\n")
1457     }
1458   }
1459 
1460   //-----------------------------
1461   //--  Print Usage Histogram  --
1462   //-----------------------------
1463 
1464   if (SizeDistributionArray != NULL) {
1465     unsigned long total_count = 0;
1466     unsigned long total_size  = 0;
1467     const unsigned long pctFactor = 200;
1468 
1469     for (unsigned int i = 0; i < nSizeDistElements; i++) {
1470       total_count += SizeDistributionArray[i].count;
1471       total_size  += SizeDistributionArray[i].lenSum;
1472     }
1473 
1474     if ((total_count > 0) && (total_size > 0)) {
1475       printBox(ast, '-', "Block count histogram for ", heapName);
1476       ast->print_cr("Note: The histogram indicates how many blocks (as a percentage\n"
1477                     "      of all blocks) have a size in the given range.\n"
1478                     "      %ld characters are printed per percentage point.\n", pctFactor/100);
1479       ast->print_cr("total size   of all blocks: %7ldM", (total_size<<log2_seg_size)/M);
1480       ast->print_cr("total number of all blocks: %7ld\n", total_count);
1481       BUFFEREDSTREAM_FLUSH_LOCKED("")
1482 
1483       ast->print_cr("[Size Range)------avg.-size-+----count-+");
1484       for (unsigned int i = 0; i < nSizeDistElements; i++) {
1485         if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) {
1486           ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): "
1487                     ,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size)
1488                     ,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size)
1489                     );
1490         } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) {
1491           ast->print("[" SIZE_FORMAT_W(5) "K.." SIZE_FORMAT_W(5) "K): "
1492                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K
1493                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K
1494                     );
1495         } else {
1496           ast->print("[" SIZE_FORMAT_W(5) "M.." SIZE_FORMAT_W(5) "M): "
1497                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M
1498                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M
1499                     );
1500         }
1501         ast->print(" %8d | %8d |",
1502                    SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0,
1503                    SizeDistributionArray[i].count);
1504 
1505         unsigned int percent = pctFactor*SizeDistributionArray[i].count/total_count;
1506         for (unsigned int j = 1; j <= percent; j++) {
1507           ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
1508         }
1509         ast->cr();
1510         BUFFEREDSTREAM_FLUSH_AUTO("")
1511       }
1512       ast->print_cr("----------------------------+----------+");
1513       BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1514 
1515       printBox(ast, '-', "Contribution per size range to total size for ", heapName);
1516       ast->print_cr("Note: The histogram indicates how much space (as a percentage of all\n"
1517                     "      occupied space) is used by the blocks in the given size range.\n"
1518                     "      %ld characters are printed per percentage point.\n", pctFactor/100);
1519       ast->print_cr("total size   of all blocks: %7ldM", (total_size<<log2_seg_size)/M);
1520       ast->print_cr("total number of all blocks: %7ld\n", total_count);
1521       BUFFEREDSTREAM_FLUSH_LOCKED("")
1522 
1523       ast->print_cr("[Size Range)------avg.-size-+----count-+");
1524       for (unsigned int i = 0; i < nSizeDistElements; i++) {
1525         if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) {
1526           ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): "
1527                     ,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size)
1528                     ,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size)
1529                     );
1530         } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) {
1531           ast->print("[" SIZE_FORMAT_W(5) "K.." SIZE_FORMAT_W(5) "K): "
1532                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K
1533                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K
1534                     );
1535         } else {
1536           ast->print("[" SIZE_FORMAT_W(5) "M.." SIZE_FORMAT_W(5) "M): "
1537                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M
1538                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M
1539                     );
1540         }
1541         ast->print(" %8d | %8d |",
1542                    SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0,
1543                    SizeDistributionArray[i].count);
1544 
1545         unsigned int percent = pctFactor*(unsigned long)SizeDistributionArray[i].lenSum/total_size;
1546         for (unsigned int j = 1; j <= percent; j++) {
1547           ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
1548         }
1549         ast->cr();
1550         BUFFEREDSTREAM_FLUSH_AUTO("")
1551       }
1552       ast->print_cr("----------------------------+----------+");
1553       BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1554     }
1555   }
1556 }
1557 
1558 
1559 void CodeHeapState::print_freeSpace(outputStream* out, CodeHeap* heap) {
1560   if (!initialization_complete) {
1561     return;
1562   }
1563 
1564   const char* heapName   = get_heapName(heap);
1565   get_HeapStatGlobals(out, heapName);
1566 
1567   if ((StatArray == NULL) || (FreeArray == NULL) || (alloc_granules == 0)) {
1568     return;
1569   }
1570   BUFFEREDSTREAM_DECL(ast, out)
1571 
1572   {
1573     printBox(ast, '=', "F R E E   S P A C E   S T A T I S T I C S   for ", heapName);
1574     ast->print_cr("Note: in this context, a gap is the occupied space between two free blocks.\n"
1575                   "      Those gaps are of interest if there is a chance that they become\n"
1576                   "      unoccupied, e.g. by class unloading. Then, the two adjacent free\n"
1577                   "      blocks, together with the now unoccupied space, form a new, large\n"
1578                   "      free block.");
1579     BUFFEREDSTREAM_FLUSH_LOCKED("\n")
1580   }
1581 
1582   {
1583     printBox(ast, '-', "List of all Free Blocks in ", heapName);
1584 
1585     unsigned int ix = 0;
1586     for (ix = 0; ix < alloc_freeBlocks-1; ix++) {
1587       ast->print(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT ",", p2i(FreeArray[ix].start), ix, FreeArray[ix].len);
1588       ast->fill_to(38);
1589       ast->print("Gap[%4d..%4d]: " HEX32_FORMAT " bytes,", ix, ix+1, FreeArray[ix].gap);
1590       ast->fill_to(71);
1591       ast->print("block count: %6d", FreeArray[ix].n_gapBlocks);
1592       if (FreeArray[ix].stubs_in_gap) {
1593         ast->print(" !! permanent gap, contains stubs and/or blobs !!");
1594       }
1595       ast->cr();
1596       BUFFEREDSTREAM_FLUSH_AUTO("")
1597     }
1598     ast->print_cr(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT, p2i(FreeArray[ix].start), ix, FreeArray[ix].len);
1599     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
1600   }
1601 
1602 
1603   //-----------------------------------------
1604   //--  Find and Print Top Ten Free Blocks --
1605   //-----------------------------------------
1606 
1607   //---<  find Top Ten Free Blocks  >---
1608   const unsigned int nTop = 10;
1609   unsigned int  currMax10 = 0;
1610   struct FreeBlk* FreeTopTen[nTop];
1611   memset(FreeTopTen, 0, sizeof(FreeTopTen));
1612 
1613   for (unsigned int ix = 0; ix < alloc_freeBlocks; ix++) {
1614     if (FreeArray[ix].len > currMax10) {  // larger than the ten largest found so far
1615       unsigned int currSize = FreeArray[ix].len;
1616 
1617       unsigned int iy;
1618       for (iy = 0; iy < nTop && FreeTopTen[iy] != NULL; iy++) {
1619         if (FreeTopTen[iy]->len < currSize) {
1620           for (unsigned int iz = nTop-1; iz > iy; iz--) { // make room to insert new free block
1621             FreeTopTen[iz] = FreeTopTen[iz-1];
1622           }
1623           FreeTopTen[iy] = &FreeArray[ix];        // insert new free block
1624           if (FreeTopTen[nTop-1] != NULL) {
1625             currMax10 = FreeTopTen[nTop-1]->len;
1626           }
1627           break; // done with this, check next free block
1628         }
1629       }
1630       if (iy >= nTop) {
1631         ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
1632                       currSize, currMax10);
1633         continue;
1634       }
1635       if (FreeTopTen[iy] == NULL) {
1636         FreeTopTen[iy] = &FreeArray[ix];
1637         if (iy == (nTop-1)) {
1638           currMax10 = currSize;
1639         }
1640       }
1641     }
1642   }
1643   BUFFEREDSTREAM_FLUSH_AUTO("")
1644 
1645   {
1646     printBox(ast, '-', "Top Ten Free Blocks in ", heapName);
1647 
1648     //---<  print Top Ten Free Blocks  >---
1649     for (unsigned int iy = 0; (iy < nTop) && (FreeTopTen[iy] != NULL); iy++) {
1650       ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTen[iy]->index, FreeTopTen[iy]->len);
1651       ast->fill_to(39);
1652       if (FreeTopTen[iy]->index == (alloc_freeBlocks-1)) {
1653         ast->print("last free block in list.");
1654       } else {
1655         ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTen[iy]->gap);
1656         ast->fill_to(63);
1657         ast->print("#blocks (in gap) %d", FreeTopTen[iy]->n_gapBlocks);
1658       }
1659       ast->cr();
1660       BUFFEREDSTREAM_FLUSH_AUTO("")
1661     }
1662   }
1663   BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
1664 
1665 
1666   //--------------------------------------------------------
1667   //--  Find and Print Top Ten Free-Occupied-Free Triples --
1668   //--------------------------------------------------------
1669 
1670   //---<  find and print Top Ten Triples (Free-Occupied-Free)  >---
1671   currMax10 = 0;
1672   struct FreeBlk  *FreeTopTenTriple[nTop];
1673   memset(FreeTopTenTriple, 0, sizeof(FreeTopTenTriple));
1674 
1675   for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
1676     // If there are stubs in the gap, this gap will never become completely free.
1677     // The triple will thus never merge to one free block.
1678     unsigned int lenTriple  = FreeArray[ix].len + (FreeArray[ix].stubs_in_gap ? 0 : FreeArray[ix].gap + FreeArray[ix+1].len);
1679     FreeArray[ix].len = lenTriple;
1680     if (lenTriple > currMax10) {  // larger than the ten largest found so far
1681 
1682       unsigned int iy;
1683       for (iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {
1684         if (FreeTopTenTriple[iy]->len < lenTriple) {
1685           for (unsigned int iz = nTop-1; iz > iy; iz--) {
1686             FreeTopTenTriple[iz] = FreeTopTenTriple[iz-1];
1687           }
1688           FreeTopTenTriple[iy] = &FreeArray[ix];
1689           if (FreeTopTenTriple[nTop-1] != NULL) {
1690             currMax10 = FreeTopTenTriple[nTop-1]->len;
1691           }
1692           break;
1693         }
1694       }
1695       if (iy == nTop) {
1696         ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
1697                       lenTriple, currMax10);
1698         continue;
1699       }
1700       if (FreeTopTenTriple[iy] == NULL) {
1701         FreeTopTenTriple[iy] = &FreeArray[ix];
1702         if (iy == (nTop-1)) {
1703           currMax10 = lenTriple;
1704         }
1705       }
1706     }
1707   }
1708   BUFFEREDSTREAM_FLUSH_AUTO("")
1709 
1710   {
1711     printBox(ast, '-', "Top Ten Free-Occupied-Free Triples in ", heapName);
1712     ast->print_cr("  Use this information to judge how likely it is that a large(r) free block\n"
1713                   "  might get created by code cache sweeping.\n"
1714                   "  If all the occupied blocks can be swept, the three free blocks will be\n"
1715                   "  merged into one (much larger) free block. That would reduce free space\n"
1716                   "  fragmentation.\n");
1717 
1718     //---<  print Top Ten Free-Occupied-Free Triples  >---
1719     for (unsigned int iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {
1720       ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTenTriple[iy]->index, FreeTopTenTriple[iy]->len);
1721       ast->fill_to(39);
1722       ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTenTriple[iy]->gap);
1723       ast->fill_to(63);
1724       ast->print("#blocks (in gap) %d", FreeTopTenTriple[iy]->n_gapBlocks);
1725       ast->cr();
1726       BUFFEREDSTREAM_FLUSH_AUTO("")
1727     }
1728   }
1729   BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
1730 }
1731 
1732 
1733 void CodeHeapState::print_count(outputStream* out, CodeHeap* heap) {
1734   if (!initialization_complete) {
1735     return;
1736   }
1737 
1738   const char* heapName   = get_heapName(heap);
1739   get_HeapStatGlobals(out, heapName);
1740 
1741   if ((StatArray == NULL) || (alloc_granules == 0)) {
1742     return;
1743   }
1744   BUFFEREDSTREAM_DECL(ast, out)
1745 
1746   unsigned int granules_per_line = 32;
1747   char*        low_bound         = heap->low_boundary();
1748 
1749   {
1750     printBox(ast, '=', "B L O C K   C O U N T S   for ", heapName);
1751     ast->print_cr("  Each granule contains an individual number of heap blocks. Large blocks\n"
1752                   "  may span multiple granules and are counted for each granule they touch.\n");
1753     if (segment_granules) {
1754       ast->print_cr("  You have selected granule size to be as small as segment size.\n"
1755                     "  As a result, each granule contains exactly one block (or a part of one block)\n"
1756                     "  or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
1757                     "  Occupied granules show their BlobType character, see legend.\n");
1758       print_blobType_legend(ast);
1759     }
1760     BUFFEREDSTREAM_FLUSH_LOCKED("")
1761   }
1762 
1763   {
1764     if (segment_granules) {
1765       printBox(ast, '-', "Total (all types) count for granule size == segment size", NULL);
1766 
1767       granules_per_line = 128;
1768       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1769         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1770         print_blobType_single(ast, StatArray[ix].type);
1771       }
1772     } else {
1773       printBox(ast, '-', "Total (all tiers) count, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1774 
1775       granules_per_line = 128;
1776       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1777         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1778         unsigned int count = StatArray[ix].t1_count   + StatArray[ix].t2_count   + StatArray[ix].tx_count
1779                            + StatArray[ix].stub_count + StatArray[ix].dead_count;
1780         print_count_single(ast, count);
1781       }
1782     }
1783     BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n")
1784   }
1785 
1786   {
1787     if (nBlocks_t1 > 0) {
1788       printBox(ast, '-', "Tier1 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1789 
1790       granules_per_line = 128;
1791       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1792         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1793         if (segment_granules && StatArray[ix].t1_count > 0) {
1794           print_blobType_single(ast, StatArray[ix].type);
1795         } else {
1796           print_count_single(ast, StatArray[ix].t1_count);
1797         }
1798       }
1799       ast->print("|");
1800     } else {
1801       ast->print("No Tier1 nMethods found in CodeHeap.");
1802     }
1803     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1804   }
1805 
1806   {
1807     if (nBlocks_t2 > 0) {
1808       printBox(ast, '-', "Tier2 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1809 
1810       granules_per_line = 128;
1811       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1812         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1813         if (segment_granules && StatArray[ix].t2_count > 0) {
1814           print_blobType_single(ast, StatArray[ix].type);
1815         } else {
1816           print_count_single(ast, StatArray[ix].t2_count);
1817         }
1818       }
1819       ast->print("|");
1820     } else {
1821       ast->print("No Tier2 nMethods found in CodeHeap.");
1822     }
1823     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1824   }
1825 
1826   {
1827     if (nBlocks_alive > 0) {
1828       printBox(ast, '-', "not_used/not_entrant/not_installed nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1829 
1830       granules_per_line = 128;
1831       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1832         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1833         if (segment_granules && StatArray[ix].tx_count > 0) {
1834           print_blobType_single(ast, StatArray[ix].type);
1835         } else {
1836           print_count_single(ast, StatArray[ix].tx_count);
1837         }
1838       }
1839       ast->print("|");
1840     } else {
1841       ast->print("No not_used/not_entrant nMethods found in CodeHeap.");
1842     }
1843     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1844   }
1845 
1846   {
1847     if (nBlocks_stub > 0) {
1848       printBox(ast, '-', "Stub & Blob count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1849 
1850       granules_per_line = 128;
1851       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1852         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1853         if (segment_granules && StatArray[ix].stub_count > 0) {
1854           print_blobType_single(ast, StatArray[ix].type);
1855         } else {
1856           print_count_single(ast, StatArray[ix].stub_count);
1857         }
1858       }
1859       ast->print("|");
1860     } else {
1861       ast->print("No Stubs and Blobs found in CodeHeap.");
1862     }
1863     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1864   }
1865 
1866   {
1867     if (nBlocks_dead > 0) {
1868       printBox(ast, '-', "Dead nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1869 
1870       granules_per_line = 128;
1871       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1872         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1873         if (segment_granules && StatArray[ix].dead_count > 0) {
1874           print_blobType_single(ast, StatArray[ix].type);
1875         } else {
1876           print_count_single(ast, StatArray[ix].dead_count);
1877         }
1878       }
1879       ast->print("|");
1880     } else {
1881       ast->print("No dead nMethods found in CodeHeap.");
1882     }
1883     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1884   }
1885 
1886   {
1887     if (!segment_granules) { // Prevent totally redundant printouts
1888       printBox(ast, '-', "Count by tier (combined, no dead blocks): <#t1>:<#t2>:<#s>, 0x0..0xf. '*' indicates >= 16 blocks", NULL);
1889 
1890       granules_per_line = 24;
1891       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1892         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1893 
1894         print_count_single(ast, StatArray[ix].t1_count);
1895         ast->print(":");
1896         print_count_single(ast, StatArray[ix].t2_count);
1897         ast->print(":");
1898         if (segment_granules && StatArray[ix].stub_count > 0) {
1899           print_blobType_single(ast, StatArray[ix].type);
1900         } else {
1901           print_count_single(ast, StatArray[ix].stub_count);
1902         }
1903         ast->print(" ");
1904       }
1905       BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n")
1906     }
1907   }
1908 }
1909 
1910 
1911 void CodeHeapState::print_space(outputStream* out, CodeHeap* heap) {
1912   if (!initialization_complete) {
1913     return;
1914   }
1915 
1916   const char* heapName   = get_heapName(heap);
1917   get_HeapStatGlobals(out, heapName);
1918 
1919   if ((StatArray == NULL) || (alloc_granules == 0)) {
1920     return;
1921   }
1922   BUFFEREDSTREAM_DECL(ast, out)
1923 
1924   unsigned int granules_per_line = 32;
1925   char*        low_bound         = heap->low_boundary();
1926 
1927   {
1928     printBox(ast, '=', "S P A C E   U S A G E  &  F R A G M E N T A T I O N   for ", heapName);
1929     ast->print_cr("  The heap space covered by one granule is occupied to a various extend.\n"
1930                   "  The granule occupancy is displayed by one decimal digit per granule.\n");
1931     if (segment_granules) {
1932       ast->print_cr("  You have selected granule size to be as small as segment size.\n"
1933                     "  As a result, each granule contains exactly one block (or a part of one block)\n"
1934                     "  or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
1935                     "  Occupied granules show their BlobType character, see legend.\n");
1936       print_blobType_legend(ast);
1937     } else {
1938       ast->print_cr("  These digits represent a fill percentage range (see legend).\n");
1939       print_space_legend(ast);
1940     }
1941     BUFFEREDSTREAM_FLUSH_LOCKED("")
1942   }
1943 
1944   {
1945     if (segment_granules) {
1946       printBox(ast, '-', "Total (all types) space consumption for granule size == segment size", NULL);
1947 
1948       granules_per_line = 128;
1949       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1950         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1951         print_blobType_single(ast, StatArray[ix].type);
1952       }
1953     } else {
1954       printBox(ast, '-', "Total (all types) space consumption. ' ' indicates empty, '*' indicates full.", NULL);
1955 
1956       granules_per_line = 128;
1957       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1958         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1959         unsigned int space    = StatArray[ix].t1_space   + StatArray[ix].t2_space  + StatArray[ix].tx_space
1960                               + StatArray[ix].stub_space + StatArray[ix].dead_space;
1961         print_space_single(ast, space);
1962       }
1963     }
1964     BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n")
1965   }
1966 
1967   {
1968     if (nBlocks_t1 > 0) {
1969       printBox(ast, '-', "Tier1 space consumption. ' ' indicates empty, '*' indicates full", NULL);
1970 
1971       granules_per_line = 128;
1972       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1973         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1974         if (segment_granules && StatArray[ix].t1_space > 0) {
1975           print_blobType_single(ast, StatArray[ix].type);
1976         } else {
1977           print_space_single(ast, StatArray[ix].t1_space);
1978         }
1979       }
1980       ast->print("|");
1981     } else {
1982       ast->print("No Tier1 nMethods found in CodeHeap.");
1983     }
1984     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1985   }
1986 
1987   {
1988     if (nBlocks_t2 > 0) {
1989       printBox(ast, '-', "Tier2 space consumption. ' ' indicates empty, '*' indicates full", NULL);
1990 
1991       granules_per_line = 128;
1992       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1993         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1994         if (segment_granules && StatArray[ix].t2_space > 0) {
1995           print_blobType_single(ast, StatArray[ix].type);
1996         } else {
1997           print_space_single(ast, StatArray[ix].t2_space);
1998         }
1999       }
2000       ast->print("|");
2001     } else {
2002       ast->print("No Tier2 nMethods found in CodeHeap.");
2003     }
2004     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2005   }
2006 
2007   {
2008     if (nBlocks_alive > 0) {
2009       printBox(ast, '-', "not_used/not_entrant/not_installed space consumption. ' ' indicates empty, '*' indicates full", NULL);
2010 
2011       granules_per_line = 128;
2012       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2013         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2014         if (segment_granules && StatArray[ix].tx_space > 0) {
2015           print_blobType_single(ast, StatArray[ix].type);
2016         } else {
2017           print_space_single(ast, StatArray[ix].tx_space);
2018         }
2019       }
2020       ast->print("|");
2021     } else {
2022       ast->print("No Tier2 nMethods found in CodeHeap.");
2023     }
2024     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2025   }
2026 
2027   {
2028     if (nBlocks_stub > 0) {
2029       printBox(ast, '-', "Stub and Blob space consumption. ' ' indicates empty, '*' indicates full", NULL);
2030 
2031       granules_per_line = 128;
2032       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2033         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2034         if (segment_granules && StatArray[ix].stub_space > 0) {
2035           print_blobType_single(ast, StatArray[ix].type);
2036         } else {
2037           print_space_single(ast, StatArray[ix].stub_space);
2038         }
2039       }
2040       ast->print("|");
2041     } else {
2042       ast->print("No Stubs and Blobs found in CodeHeap.");
2043     }
2044     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2045   }
2046 
2047   {
2048     if (nBlocks_dead > 0) {
2049       printBox(ast, '-', "Dead space consumption. ' ' indicates empty, '*' indicates full", NULL);
2050 
2051       granules_per_line = 128;
2052       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2053         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2054         print_space_single(ast, StatArray[ix].dead_space);
2055       }
2056       ast->print("|");
2057     } else {
2058       ast->print("No dead nMethods found in CodeHeap.");
2059     }
2060     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2061   }
2062 
2063   {
2064     if (!segment_granules) { // Prevent totally redundant printouts
2065       printBox(ast, '-', "Space consumption by tier (combined): <t1%>:<t2%>:<s%>. ' ' indicates empty, '*' indicates full", NULL);
2066 
2067       granules_per_line = 24;
2068       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2069         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2070 
2071         if (segment_granules && StatArray[ix].t1_space > 0) {
2072           print_blobType_single(ast, StatArray[ix].type);
2073         } else {
2074           print_space_single(ast, StatArray[ix].t1_space);
2075         }
2076         ast->print(":");
2077         if (segment_granules && StatArray[ix].t2_space > 0) {
2078           print_blobType_single(ast, StatArray[ix].type);
2079         } else {
2080           print_space_single(ast, StatArray[ix].t2_space);
2081         }
2082         ast->print(":");
2083         if (segment_granules && StatArray[ix].stub_space > 0) {
2084           print_blobType_single(ast, StatArray[ix].type);
2085         } else {
2086           print_space_single(ast, StatArray[ix].stub_space);
2087         }
2088         ast->print(" ");
2089       }
2090       ast->print("|");
2091       BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2092     }
2093   }
2094 }
2095 
2096 void CodeHeapState::print_age(outputStream* out, CodeHeap* heap) {
2097   if (!initialization_complete) {
2098     return;
2099   }
2100 
2101   const char* heapName   = get_heapName(heap);
2102   get_HeapStatGlobals(out, heapName);
2103 
2104   if ((StatArray == NULL) || (alloc_granules == 0)) {
2105     return;
2106   }
2107   BUFFEREDSTREAM_DECL(ast, out)
2108 
2109   unsigned int granules_per_line = 32;
2110   char*        low_bound         = heap->low_boundary();
2111 
2112   {
2113     printBox(ast, '=', "M E T H O D   A G E   by CompileID for ", heapName);
2114     ast->print_cr("  The age of a compiled method in the CodeHeap is not available as a\n"
2115                   "  time stamp. Instead, a relative age is deducted from the method's compilation ID.\n"
2116                   "  Age information is available for tier1 and tier2 methods only. There is no\n"
2117                   "  age information for stubs and blobs, because they have no compilation ID assigned.\n"
2118                   "  Information for the youngest method (highest ID) in the granule is printed.\n"
2119                   "  Refer to the legend to learn how method age is mapped to the displayed digit.");
2120     print_age_legend(ast);
2121     BUFFEREDSTREAM_FLUSH_LOCKED("")
2122   }
2123 
2124   {
2125     printBox(ast, '-', "Age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2126 
2127     granules_per_line = 128;
2128     for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2129       print_line_delim(out, ast, low_bound, ix, granules_per_line);
2130       unsigned int age1      = StatArray[ix].t1_age;
2131       unsigned int age2      = StatArray[ix].t2_age;
2132       unsigned int agex      = StatArray[ix].tx_age;
2133       unsigned int age       = age1 > age2 ? age1 : age2;
2134       age       = age > agex ? age : agex;
2135       print_age_single(ast, age);
2136     }
2137     ast->print("|");
2138     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2139   }
2140 
2141   {
2142     if (nBlocks_t1 > 0) {
2143       printBox(ast, '-', "Tier1 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2144 
2145       granules_per_line = 128;
2146       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2147         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2148         print_age_single(ast, StatArray[ix].t1_age);
2149       }
2150       ast->print("|");
2151     } else {
2152       ast->print("No Tier1 nMethods found in CodeHeap.");
2153     }
2154     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2155   }
2156 
2157   {
2158     if (nBlocks_t2 > 0) {
2159       printBox(ast, '-', "Tier2 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2160 
2161       granules_per_line = 128;
2162       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2163         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2164         print_age_single(ast, StatArray[ix].t2_age);
2165       }
2166       ast->print("|");
2167     } else {
2168       ast->print("No Tier2 nMethods found in CodeHeap.");
2169     }
2170     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2171   }
2172 
2173   {
2174     if (nBlocks_alive > 0) {
2175       printBox(ast, '-', "not_used/not_entrant/not_installed age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2176 
2177       granules_per_line = 128;
2178       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2179         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2180         print_age_single(ast, StatArray[ix].tx_age);
2181       }
2182       ast->print("|");
2183     } else {
2184       ast->print("No Tier2 nMethods found in CodeHeap.");
2185     }
2186     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2187   }
2188 
2189   {
2190     if (!segment_granules) { // Prevent totally redundant printouts
2191       printBox(ast, '-', "age distribution by tier <a1>:<a2>. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2192 
2193       granules_per_line = 32;
2194       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2195         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2196         print_age_single(ast, StatArray[ix].t1_age);
2197         ast->print(":");
2198         print_age_single(ast, StatArray[ix].t2_age);
2199         ast->print(" ");
2200       }
2201       ast->print("|");
2202       BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2203     }
2204   }
2205 }
2206 
2207 
2208 void CodeHeapState::print_names(outputStream* out, CodeHeap* heap) {
2209   if (!initialization_complete) {
2210     return;
2211   }
2212 
2213   const char* heapName   = get_heapName(heap);
2214   get_HeapStatGlobals(out, heapName);
2215 
2216   if ((StatArray == NULL) || (alloc_granules == 0)) {
2217     return;
2218   }
2219   BUFFEREDSTREAM_DECL(ast, out)
2220 
2221   unsigned int granules_per_line   = 128;
2222   char*        low_bound           = heap->low_boundary();
2223   CodeBlob*    last_blob           = NULL;
2224   bool         name_in_addr_range  = true;
2225   bool         have_locks          = holding_required_locks();
2226 
2227   //---<  print at least 128K per block (i.e. between headers)  >---
2228   if (granules_per_line*granule_size < 128*K) {
2229     granules_per_line = (unsigned int)((128*K)/granule_size);
2230   }
2231 
2232   printBox(ast, '=', "M E T H O D   N A M E S   for ", heapName);
2233   ast->print_cr("  Method names are dynamically retrieved from the code cache at print time.\n"
2234                 "  Due to the living nature of the code heap and because the CodeCache_lock\n"
2235                 "  is not continuously held, the displayed name might be wrong or no name\n"
2236                 "  might be found at all. The likelihood for that to happen increases\n"
2237                 "  over time passed between aggregation and print steps.\n");
2238   BUFFEREDSTREAM_FLUSH_LOCKED("")
2239 
2240   for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2241     //---<  print a new blob on a new line  >---
2242     if (ix%granules_per_line == 0) {
2243       if (!name_in_addr_range) {
2244         ast->print_cr("No methods, blobs, or stubs found in this address range");
2245       }
2246       name_in_addr_range = false;
2247 
2248       size_t end_ix = (ix+granules_per_line <= alloc_granules) ? ix+granules_per_line : alloc_granules;
2249       ast->cr();
2250       ast->print_cr("--------------------------------------------------------------------");
2251       ast->print_cr("Address range [" INTPTR_FORMAT "," INTPTR_FORMAT "), " SIZE_FORMAT "k", p2i(low_bound+ix*granule_size), p2i(low_bound + end_ix*granule_size), (end_ix - ix)*granule_size/(size_t)K);
2252       ast->print_cr("--------------------------------------------------------------------");
2253       BUFFEREDSTREAM_FLUSH_AUTO("")
2254     }
2255     // Only check granule if it contains at least one blob.
2256     unsigned int nBlobs  = StatArray[ix].t1_count   + StatArray[ix].t2_count + StatArray[ix].tx_count +
2257                            StatArray[ix].stub_count + StatArray[ix].dead_count;
2258     if (nBlobs > 0 ) {
2259     for (unsigned int is = 0; is < granule_size; is+=(unsigned int)seg_size) {
2260       // heap->find_start() is safe. Only works on _segmap.
2261       // Returns NULL or void*. Returned CodeBlob may be uninitialized.
2262       char*     this_seg  = low_bound + ix*granule_size + is;
2263       CodeBlob* this_blob = (CodeBlob*)(heap->find_start(this_seg));
2264       bool   blob_is_safe = blob_access_is_safe(this_blob);
2265       // blob could have been flushed, freed, and merged.
2266       // this_blob < last_blob is an indicator for that.
2267       if (blob_is_safe && (this_blob > last_blob)) {
2268         last_blob          = this_blob;
2269 
2270         //---<  get type and name  >---
2271         blobType       cbType = noType;
2272         if (segment_granules) {
2273           cbType = (blobType)StatArray[ix].type;
2274         } else {
2275           //---<  access these fields only if we own the CodeCache_lock  >---
2276           if (have_locks) {
2277             cbType = get_cbType(this_blob);
2278           }
2279         }
2280 
2281         //---<  access these fields only if we own the CodeCache_lock  >---
2282         const char* blob_name = "<unavailable>";
2283         nmethod*           nm = NULL;
2284         if (have_locks) {
2285           blob_name = this_blob->name();
2286           nm        = this_blob->as_nmethod_or_null();
2287           // this_blob->name() could return NULL if no name was given to CTOR. Inlined, maybe invisible on stack
2288           if (blob_name == NULL) {
2289             blob_name = "<unavailable>";
2290           }
2291         }
2292 
2293         //---<  print table header for new print range  >---
2294         if (!name_in_addr_range) {
2295           name_in_addr_range = true;
2296           ast->fill_to(51);
2297           ast->print("%9s", "compiler");
2298           ast->fill_to(61);
2299           ast->print_cr("%6s", "method");
2300           ast->print_cr("%18s %13s %17s %9s  %5s %18s  %s", "Addr(module)      ", "offset", "size", " type lvl", " temp", "blobType          ", "Name");
2301           BUFFEREDSTREAM_FLUSH_AUTO("")
2302         }
2303 
2304         //---<  print line prefix (address and offset from CodeHeap start)  >---
2305         ast->print(INTPTR_FORMAT, p2i(this_blob));
2306         ast->fill_to(19);
2307         ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound));
2308         ast->fill_to(33);
2309 
2310         // access nmethod and Method fields only if we own the CodeCache_lock.
2311         // This fact is implicitly transported via nm != NULL.
2312         if (nmethod_access_is_safe(nm)) {
2313           Method* method = nm->method();
2314           ResourceMark rm;
2315           //---<  collect all data to locals as quickly as possible  >---
2316           unsigned int total_size = nm->total_size();
2317           int          hotness    = nm->hotness_counter();
2318           bool         get_name   = (cbType == nMethod_inuse) || (cbType == nMethod_notused);
2319           //---<  nMethod size in hex  >---
2320           ast->print(PTR32_FORMAT, total_size);
2321           ast->print("(" SIZE_FORMAT_W(4) "K)", total_size/K);
2322           //---<  compiler information  >---
2323           ast->fill_to(51);
2324           ast->print("%5s %3d", compTypeName[StatArray[ix].compiler], StatArray[ix].level);
2325           //---<  method temperature  >---
2326           ast->fill_to(62);
2327           ast->print("%5d", hotness);
2328           //---<  name and signature  >---
2329           ast->fill_to(62+6);
2330           ast->print("%s", blobTypeName[cbType]);
2331           ast->fill_to(82+6);
2332           if (cbType == nMethod_dead) {
2333             ast->print("%14s", " zombie method");
2334           }
2335 
2336           if (get_name) {
2337             Symbol* methName  = method->name();
2338             const char*   methNameS = (methName == NULL) ? NULL : methName->as_C_string();
2339             methNameS = (methNameS == NULL) ? "<method name unavailable>" : methNameS;
2340             Symbol* methSig   = method->signature();
2341             const char*   methSigS  = (methSig  == NULL) ? NULL : methSig->as_C_string();
2342             methSigS  = (methSigS  == NULL) ? "<method signature unavailable>" : methSigS;
2343             ast->print("%s", methNameS);
2344             ast->print("%s", methSigS);
2345           } else {
2346             ast->print("%s", blob_name);
2347           }
2348         } else if (blob_is_safe) {
2349           ast->fill_to(62+6);
2350           ast->print("%s", blobTypeName[cbType]);
2351           ast->fill_to(82+6);
2352           ast->print("%s", blob_name);
2353         } else {
2354           ast->fill_to(62+6);
2355           ast->print("<stale blob>");
2356         }
2357         ast->cr();
2358         BUFFEREDSTREAM_FLUSH_AUTO("")
2359       } else if (!blob_is_safe && (this_blob != last_blob) && (this_blob != NULL)) {
2360         last_blob          = this_blob;
2361       }
2362     }
2363     } // nBlobs > 0
2364   }
2365   BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
2366 }
2367 
2368 
2369 void CodeHeapState::printBox(outputStream* ast, const char border, const char* text1, const char* text2) {
2370   unsigned int lineLen = 1 + 2 + 2 + 1;
2371   char edge, frame;
2372 
2373   if (text1 != NULL) {
2374     lineLen += (unsigned int)strlen(text1); // text1 is much shorter than MAX_INT chars.
2375   }
2376   if (text2 != NULL) {
2377     lineLen += (unsigned int)strlen(text2); // text2 is much shorter than MAX_INT chars.
2378   }
2379   if (border == '-') {
2380     edge  = '+';
2381     frame = '|';
2382   } else {
2383     edge  = border;
2384     frame = border;
2385   }
2386 
2387   ast->print("%c", edge);
2388   for (unsigned int i = 0; i < lineLen-2; i++) {
2389     ast->print("%c", border);
2390   }
2391   ast->print_cr("%c", edge);
2392 
2393   ast->print("%c  ", frame);
2394   if (text1 != NULL) {
2395     ast->print("%s", text1);
2396   }
2397   if (text2 != NULL) {
2398     ast->print("%s", text2);
2399   }
2400   ast->print_cr("  %c", frame);
2401 
2402   ast->print("%c", edge);
2403   for (unsigned int i = 0; i < lineLen-2; i++) {
2404     ast->print("%c", border);
2405   }
2406   ast->print_cr("%c", edge);
2407 }
2408 
2409 void CodeHeapState::print_blobType_legend(outputStream* out) {
2410   out->cr();
2411   printBox(out, '-', "Block types used in the following CodeHeap dump", NULL);
2412   for (int type = noType; type < lastType; type += 1) {
2413     out->print_cr("  %c - %s", blobTypeChar[type], blobTypeName[type]);
2414   }
2415   out->print_cr("  -----------------------------------------------------");
2416   out->cr();
2417 }
2418 
2419 void CodeHeapState::print_space_legend(outputStream* out) {
2420   unsigned int indicator = 0;
2421   unsigned int age_range = 256;
2422   unsigned int range_beg = latest_compilation_id;
2423   out->cr();
2424   printBox(out, '-', "Space ranges, based on granule occupancy", NULL);
2425   out->print_cr("    -   0%% == occupancy");
2426   for (int i=0; i<=9; i++) {
2427     out->print_cr("  %d - %3d%% < occupancy < %3d%%", i, 10*i, 10*(i+1));
2428   }
2429   out->print_cr("  * - 100%% == occupancy");
2430   out->print_cr("  ----------------------------------------------");
2431   out->cr();
2432 }
2433 
2434 void CodeHeapState::print_age_legend(outputStream* out) {
2435   unsigned int indicator = 0;
2436   unsigned int age_range = 256;
2437   unsigned int range_beg = latest_compilation_id;
2438   out->cr();
2439   printBox(out, '-', "Age ranges, based on compilation id", NULL);
2440   while (age_range > 0) {
2441     out->print_cr("  %d - %6d to %6d", indicator, range_beg, latest_compilation_id - latest_compilation_id/age_range);
2442     range_beg = latest_compilation_id - latest_compilation_id/age_range;
2443     age_range /= 2;
2444     indicator += 1;
2445   }
2446   out->print_cr("  -----------------------------------------");
2447   out->cr();
2448 }
2449 
2450 void CodeHeapState::print_blobType_single(outputStream* out, u2 /* blobType */ type) {
2451   out->print("%c", blobTypeChar[type]);
2452 }
2453 
2454 void CodeHeapState::print_count_single(outputStream* out, unsigned short count) {
2455   if (count >= 16)    out->print("*");
2456   else if (count > 0) out->print("%1.1x", count);
2457   else                out->print(" ");
2458 }
2459 
2460 void CodeHeapState::print_space_single(outputStream* out, unsigned short space) {
2461   size_t  space_in_bytes = ((unsigned int)space)<<log2_seg_size;
2462   char    fraction       = (space == 0) ? ' ' : (space_in_bytes >= granule_size-1) ? '*' : char('0'+10*space_in_bytes/granule_size);
2463   out->print("%c", fraction);
2464 }
2465 
2466 void CodeHeapState::print_age_single(outputStream* out, unsigned int age) {
2467   unsigned int indicator = 0;
2468   unsigned int age_range = 256;
2469   if (age > 0) {
2470     while ((age_range > 0) && (latest_compilation_id-age > latest_compilation_id/age_range)) {
2471       age_range /= 2;
2472       indicator += 1;
2473     }
2474     out->print("%c", char('0'+indicator));
2475   } else {
2476     out->print(" ");
2477   }
2478 }
2479 
2480 void CodeHeapState::print_line_delim(outputStream* out, outputStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) {
2481   if (ix % gpl == 0) {
2482     if (ix > 0) {
2483       ast->print("|");
2484     }
2485     ast->cr();
2486     assert(out == ast, "must use the same stream!");
2487 
2488     ast->print(INTPTR_FORMAT, p2i(low_bound + ix*granule_size));
2489     ast->fill_to(19);
2490     ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
2491   }
2492 }
2493 
2494 void CodeHeapState::print_line_delim(outputStream* out, bufferedStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) {
2495   assert(out != ast, "must not use the same stream!");
2496   if (ix % gpl == 0) {
2497     if (ix > 0) {
2498       ast->print("|");
2499     }
2500     ast->cr();
2501 
2502     // can't use BUFFEREDSTREAM_FLUSH_IF("", 512) here.
2503     // can't use this expression. bufferedStream::capacity() does not exist.
2504     // if ((ast->capacity() - ast->size()) < 512) {
2505     // Assume instead that default bufferedStream capacity (4K) was used.
2506     if (ast->size() > 3*K) {
2507       ttyLocker ttyl;
2508       out->print("%s", ast->as_string());
2509       ast->reset();
2510     }
2511 
2512     ast->print(INTPTR_FORMAT, p2i(low_bound + ix*granule_size));
2513     ast->fill_to(19);
2514     ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
2515   }
2516 }
2517 
2518 // Find out which blob type we have at hand.
2519 // Return "noType" if anything abnormal is detected.
2520 CodeHeapState::blobType CodeHeapState::get_cbType(CodeBlob* cb) {
2521   if (cb != NULL) {
2522     if (cb->is_runtime_stub())                return runtimeStub;
2523     if (cb->is_deoptimization_stub())         return deoptimizationStub;
2524     if (cb->is_uncommon_trap_stub())          return uncommonTrapStub;
2525     if (cb->is_exception_stub())              return exceptionStub;
2526     if (cb->is_safepoint_stub())              return safepointStub;
2527     if (cb->is_adapter_blob())                return adapterBlob;
2528     if (cb->is_method_handles_adapter_blob()) return mh_adapterBlob;
2529     if (cb->is_buffer_blob())                 return bufferBlob;
2530 
2531     //---<  access these fields only if we own CodeCache_lock and Compile_lock  >---
2532     // Should be ensured by caller. aggregate() and print_names() do that.
2533     if (holding_required_locks()) {
2534       nmethod*  nm = cb->as_nmethod_or_null();
2535       if (nm != NULL) { // no is_readable check required, nm = (nmethod*)cb.

2536         if (nm->is_zombie())        return nMethod_dead;
2537         if (nm->is_unloaded())      return nMethod_unloaded;
2538         if (nm->is_in_use())        return nMethod_inuse;
2539         if (nm->is_alive() && !(nm->is_not_entrant()))   return nMethod_notused;
2540         if (nm->is_alive())         return nMethod_alive;
2541         return nMethod_dead;
2542       }
2543     }
2544   }
2545   return noType;
2546 }
2547 
2548 // make sure the blob at hand is not garbage.
2549 bool CodeHeapState::blob_access_is_safe(CodeBlob* this_blob) {
2550   return (this_blob != NULL) && // a blob must have been found, obviously

2551          (this_blob->header_size() >= 0) &&
2552          (this_blob->relocation_size() >= 0) &&
2553          ((address)this_blob + this_blob->header_size() == (address)(this_blob->relocation_begin())) &&
2554          ((address)this_blob + CodeBlob::align_code_offset(this_blob->header_size() + this_blob->relocation_size()) == (address)(this_blob->content_begin()));
2555 }
2556 
2557 // make sure the nmethod at hand (and the linked method) is not garbage.
2558 bool CodeHeapState::nmethod_access_is_safe(nmethod* nm) {
2559   Method* method = (nm == NULL) ? NULL : nm->method(); // nm->method() was found to be uninitialized, i.e. != NULL, but invalid.
2560   return (nm != NULL) && (method != NULL) && nm->is_alive() && (method->signature() != NULL);
2561 }
2562 
2563 bool CodeHeapState::holding_required_locks() {
2564   return SafepointSynchronize::is_at_safepoint() ||
2565         (CodeCache_lock->owned_by_self() && Compile_lock->owned_by_self());
2566 }
--- EOF ---