1 /*
   2  * Copyright (c) 2012, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.reflect;
  27 
  28 import java.lang.annotation.*;
  29 import java.util.Map;
  30 import java.util.Objects;
  31 import java.util.StringJoiner;
  32 
  33 import jdk.internal.misc.SharedSecrets;
  34 import sun.reflect.annotation.AnnotationParser;
  35 import sun.reflect.annotation.AnnotationSupport;
  36 import sun.reflect.annotation.TypeAnnotationParser;
  37 import sun.reflect.annotation.TypeAnnotation;
  38 import sun.reflect.generics.repository.ConstructorRepository;
  39 
  40 /**
  41  * A shared superclass for the common functionality of {@link Method}
  42  * and {@link Constructor}.
  43  *
  44  * @since 1.8
  45  */
  46 public abstract class Executable extends AccessibleObject
  47     implements Member, GenericDeclaration {
  48     /*
  49      * Only grant package-visibility to the constructor.
  50      */
  51     Executable() {}
  52 
  53     /**
  54      * Accessor method to allow code sharing
  55      */
  56     abstract byte[] getAnnotationBytes();
  57 
  58     /**
  59      * Accessor method to allow code sharing
  60      */
  61     abstract Executable getRoot();
  62 
  63     /**
  64      * Does the Executable have generic information.
  65      */
  66     abstract boolean hasGenericInformation();
  67 
  68     abstract ConstructorRepository getGenericInfo();
  69 
  70     boolean equalParamTypes(Class<?>[] params1, Class<?>[] params2) {
  71         /* Avoid unnecessary cloning */
  72         if (params1.length == params2.length) {
  73             for (int i = 0; i < params1.length; i++) {
  74                 if (params1[i] != params2[i])
  75                     return false;
  76             }
  77             return true;
  78         }
  79         return false;
  80     }
  81 
  82     Annotation[][] parseParameterAnnotations(byte[] parameterAnnotations) {
  83         return AnnotationParser.parseParameterAnnotations(
  84                parameterAnnotations,
  85                SharedSecrets.getJavaLangAccess().
  86                getConstantPool(getDeclaringClass()),
  87                getDeclaringClass());
  88     }
  89 
  90     void printModifiersIfNonzero(StringBuilder sb, int mask, boolean isDefault) {
  91         int mod = getModifiers() & mask;
  92 
  93         if (mod != 0 && !isDefault) {
  94             sb.append(Modifier.toString(mod)).append(' ');
  95         } else {
  96             int access_mod = mod & Modifier.ACCESS_MODIFIERS;
  97             if (access_mod != 0)
  98                 sb.append(Modifier.toString(access_mod)).append(' ');
  99             if (isDefault)
 100                 sb.append("default ");
 101             mod = (mod & ~Modifier.ACCESS_MODIFIERS);
 102             if (mod != 0)
 103                 sb.append(Modifier.toString(mod)).append(' ');
 104         }
 105     }
 106 
 107     String sharedToString(int modifierMask,
 108                           boolean isDefault,
 109                           Class<?>[] parameterTypes,
 110                           Class<?>[] exceptionTypes) {
 111         try {
 112             StringBuilder sb = new StringBuilder();
 113 
 114             printModifiersIfNonzero(sb, modifierMask, isDefault);
 115             specificToStringHeader(sb);
 116             sb.append('(');
 117             StringJoiner sj = new StringJoiner(",");
 118             for (Class<?> parameterType : parameterTypes) {
 119                 sj.add(parameterType.getTypeName());
 120             }
 121             sb.append(sj.toString());
 122             sb.append(')');
 123 
 124             if (exceptionTypes.length > 0) {
 125                 StringJoiner joiner = new StringJoiner(",", " throws ", "");
 126                 for (Class<?> exceptionType : exceptionTypes) {
 127                     joiner.add(exceptionType.getTypeName());
 128                 }
 129                 sb.append(joiner.toString());
 130             }
 131             return sb.toString();
 132         } catch (Exception e) {
 133             return "<" + e + ">";
 134         }
 135     }
 136 
 137     /**
 138      * Generate toString header information specific to a method or
 139      * constructor.
 140      */
 141     abstract void specificToStringHeader(StringBuilder sb);
 142 
 143     String sharedToGenericString(int modifierMask, boolean isDefault) {
 144         try {
 145             StringBuilder sb = new StringBuilder();
 146 
 147             printModifiersIfNonzero(sb, modifierMask, isDefault);
 148 
 149             TypeVariable<?>[] typeparms = getTypeParameters();
 150             if (typeparms.length > 0) {
 151                 StringJoiner sj = new StringJoiner(",", "<", "> ");
 152                 for(TypeVariable<?> typeparm: typeparms) {
 153                     sj.add(typeparm.getTypeName());
 154                 }
 155                 sb.append(sj.toString());
 156             }
 157 
 158             specificToGenericStringHeader(sb);
 159 
 160             sb.append('(');
 161             StringJoiner sj = new StringJoiner(",");
 162             Type[] params = getGenericParameterTypes();
 163             for (int j = 0; j < params.length; j++) {
 164                 String param = params[j].getTypeName();
 165                 if (isVarArgs() && (j == params.length - 1)) // replace T[] with T...
 166                     param = param.replaceFirst("\\[\\]$", "...");
 167                 sj.add(param);
 168             }
 169             sb.append(sj.toString());
 170             sb.append(')');
 171 
 172             Type[] exceptionTypes = getGenericExceptionTypes();
 173             if (exceptionTypes.length > 0) {
 174                 StringJoiner joiner = new StringJoiner(",", " throws ", "");
 175                 for (Type exceptionType : exceptionTypes) {
 176                     joiner.add(exceptionType.getTypeName());
 177                 }
 178                 sb.append(joiner.toString());
 179             }
 180             return sb.toString();
 181         } catch (Exception e) {
 182             return "<" + e + ">";
 183         }
 184     }
 185 
 186     /**
 187      * Generate toGenericString header information specific to a
 188      * method or constructor.
 189      */
 190     abstract void specificToGenericStringHeader(StringBuilder sb);
 191 
 192     /**
 193      * Returns the {@code Class} object representing the class or interface
 194      * that declares the executable represented by this object.
 195      */
 196     public abstract Class<?> getDeclaringClass();
 197 
 198     /**
 199      * Returns the name of the executable represented by this object.
 200      */
 201     public abstract String getName();
 202 
 203     /**
 204      * Returns the Java language {@linkplain Modifier modifiers} for
 205      * the executable represented by this object.
 206      */
 207     public abstract int getModifiers();
 208 
 209     /**
 210      * Returns an array of {@code TypeVariable} objects that represent the
 211      * type variables declared by the generic declaration represented by this
 212      * {@code GenericDeclaration} object, in declaration order.  Returns an
 213      * array of length 0 if the underlying generic declaration declares no type
 214      * variables.
 215      *
 216      * @return an array of {@code TypeVariable} objects that represent
 217      *     the type variables declared by this generic declaration
 218      * @throws GenericSignatureFormatError if the generic
 219      *     signature of this generic declaration does not conform to
 220      *     the format specified in
 221      *     <cite>The Java&trade; Virtual Machine Specification</cite>
 222      */
 223     public abstract TypeVariable<?>[] getTypeParameters();
 224 
 225     /**
 226      * Returns an array of {@code Class} objects that represent the formal
 227      * parameter types, in declaration order, of the executable
 228      * represented by this object.  Returns an array of length
 229      * 0 if the underlying executable takes no parameters.
 230      *
 231      * @return the parameter types for the executable this object
 232      * represents
 233      */
 234     public abstract Class<?>[] getParameterTypes();
 235 
 236     /**
 237      * Returns the number of formal parameters (whether explicitly
 238      * declared or implicitly declared or neither) for the executable
 239      * represented by this object.
 240      *
 241      * @return The number of formal parameters for the executable this
 242      * object represents
 243      */
 244     public int getParameterCount() {
 245         throw new AbstractMethodError();
 246     }
 247 
 248     /**
 249      * Returns an array of {@code Type} objects that represent the formal
 250      * parameter types, in declaration order, of the executable represented by
 251      * this object. Returns an array of length 0 if the
 252      * underlying executable takes no parameters.
 253      *
 254      * <p>If a formal parameter type is a parameterized type,
 255      * the {@code Type} object returned for it must accurately reflect
 256      * the actual type parameters used in the source code.
 257      *
 258      * <p>If a formal parameter type is a type variable or a parameterized
 259      * type, it is created. Otherwise, it is resolved.
 260      *
 261      * @return an array of {@code Type}s that represent the formal
 262      *     parameter types of the underlying executable, in declaration order
 263      * @throws GenericSignatureFormatError
 264      *     if the generic method signature does not conform to the format
 265      *     specified in
 266      *     <cite>The Java&trade; Virtual Machine Specification</cite>
 267      * @throws TypeNotPresentException if any of the parameter
 268      *     types of the underlying executable refers to a non-existent type
 269      *     declaration
 270      * @throws MalformedParameterizedTypeException if any of
 271      *     the underlying executable's parameter types refer to a parameterized
 272      *     type that cannot be instantiated for any reason
 273      */
 274     public Type[] getGenericParameterTypes() {
 275         if (hasGenericInformation())
 276             return getGenericInfo().getParameterTypes();
 277         else
 278             return getParameterTypes();
 279     }
 280 
 281     /**
 282      * Behaves like {@code getGenericParameterTypes}, but returns type
 283      * information for all parameters, including synthetic parameters.
 284      */
 285     Type[] getAllGenericParameterTypes() {
 286         final boolean genericInfo = hasGenericInformation();
 287 
 288         // Easy case: we don't have generic parameter information.  In
 289         // this case, we just return the result of
 290         // getParameterTypes().
 291         if (!genericInfo) {
 292             return getParameterTypes();
 293         } else {
 294             final boolean realParamData = hasRealParameterData();
 295             final Type[] genericParamTypes = getGenericParameterTypes();
 296             final Type[] nonGenericParamTypes = getParameterTypes();
 297             final Type[] out = new Type[nonGenericParamTypes.length];
 298             final Parameter[] params = getParameters();
 299             int fromidx = 0;
 300             // If we have real parameter data, then we use the
 301             // synthetic and mandate flags to our advantage.
 302             if (realParamData) {
 303                 for (int i = 0; i < out.length; i++) {
 304                     final Parameter param = params[i];
 305                     if (param.isSynthetic() || param.isImplicit()) {
 306                         // If we hit a synthetic or mandated parameter,
 307                         // use the non generic parameter info.
 308                         out[i] = nonGenericParamTypes[i];
 309                     } else {
 310                         // Otherwise, use the generic parameter info.
 311                         out[i] = genericParamTypes[fromidx];
 312                         fromidx++;
 313                     }
 314                 }
 315             } else {
 316                 // Otherwise, use the non-generic parameter data.
 317                 // Without method parameter reflection data, we have
 318                 // no way to figure out which parameters are
 319                 // synthetic/mandated, thus, no way to match up the
 320                 // indexes.
 321                 return genericParamTypes.length == nonGenericParamTypes.length ?
 322                     genericParamTypes : nonGenericParamTypes;
 323             }
 324             return out;
 325         }
 326     }
 327 
 328     /**
 329      * Returns an array of {@code Parameter} objects that represent
 330      * all the parameters to the underlying executable represented by
 331      * this object.  Returns an array of length 0 if the executable
 332      * has no parameters.
 333      *
 334      * <p>The parameters of the underlying executable do not necessarily
 335      * have unique names, or names that are legal identifiers in the
 336      * Java programming language (JLS 3.8).
 337      *
 338      * @throws MalformedParametersException if the class file contains
 339      * a MethodParameters attribute that is improperly formatted.
 340      * @return an array of {@code Parameter} objects representing all
 341      * the parameters to the executable this object represents.
 342      */
 343     public Parameter[] getParameters() {
 344         // TODO: This may eventually need to be guarded by security
 345         // mechanisms similar to those in Field, Method, etc.
 346         //
 347         // Need to copy the cached array to prevent users from messing
 348         // with it.  Since parameters are immutable, we can
 349         // shallow-copy.
 350         return privateGetParameters().clone();
 351     }
 352 
 353     private Parameter[] synthesizeAllParams() {
 354         final int realparams = getParameterCount();
 355         final Parameter[] out = new Parameter[realparams];
 356         for (int i = 0; i < realparams; i++)
 357             // TODO: is there a way to synthetically derive the
 358             // modifiers?  Probably not in the general case, since
 359             // we'd have no way of knowing about them, but there
 360             // may be specific cases.
 361             out[i] = new Parameter("arg" + i, 0, this, i);
 362         return out;
 363     }
 364 
 365     private void verifyParameters(final Parameter[] parameters) {
 366         final int mask = Modifier.FINAL | Modifier.SYNTHETIC | Modifier.MANDATED;
 367 
 368         if (getParameterTypes().length != parameters.length)
 369             throw new MalformedParametersException("Wrong number of parameters in MethodParameters attribute");
 370 
 371         for (Parameter parameter : parameters) {
 372             final String name = parameter.getRealName();
 373             final int mods = parameter.getModifiers();
 374 
 375             if (name != null) {
 376                 if (name.isEmpty() || name.indexOf('.') != -1 ||
 377                     name.indexOf(';') != -1 || name.indexOf('[') != -1 ||
 378                     name.indexOf('/') != -1) {
 379                     throw new MalformedParametersException("Invalid parameter name \"" + name + "\"");
 380                 }
 381             }
 382 
 383             if (mods != (mods & mask)) {
 384                 throw new MalformedParametersException("Invalid parameter modifiers");
 385             }
 386         }
 387     }
 388 
 389     private Parameter[] privateGetParameters() {
 390         // Use tmp to avoid multiple writes to a volatile.
 391         Parameter[] tmp = parameters;
 392 
 393         if (tmp == null) {
 394 
 395             // Otherwise, go to the JVM to get them
 396             try {
 397                 tmp = getParameters0();
 398             } catch(IllegalArgumentException e) {
 399                 // Rethrow ClassFormatErrors
 400                 throw new MalformedParametersException("Invalid constant pool index");
 401             }
 402 
 403             // If we get back nothing, then synthesize parameters
 404             if (tmp == null) {
 405                 hasRealParameterData = false;
 406                 tmp = synthesizeAllParams();
 407             } else {
 408                 hasRealParameterData = true;
 409                 verifyParameters(tmp);
 410             }
 411 
 412             parameters = tmp;
 413         }
 414 
 415         return tmp;
 416     }
 417 
 418     boolean hasRealParameterData() {
 419         // If this somehow gets called before parameters gets
 420         // initialized, force it into existence.
 421         if (parameters == null) {
 422             privateGetParameters();
 423         }
 424         return hasRealParameterData;
 425     }
 426 
 427     private transient volatile boolean hasRealParameterData;
 428     private transient volatile Parameter[] parameters;
 429 
 430     private native Parameter[] getParameters0();
 431     native byte[] getTypeAnnotationBytes0();
 432 
 433     // Needed by reflectaccess
 434     byte[] getTypeAnnotationBytes() {
 435         return getTypeAnnotationBytes0();
 436     }
 437 
 438     /**
 439      * Returns an array of {@code Class} objects that represent the
 440      * types of exceptions declared to be thrown by the underlying
 441      * executable represented by this object.  Returns an array of
 442      * length 0 if the executable declares no exceptions in its {@code
 443      * throws} clause.
 444      *
 445      * @return the exception types declared as being thrown by the
 446      * executable this object represents
 447      */
 448     public abstract Class<?>[] getExceptionTypes();
 449 
 450     /**
 451      * Returns an array of {@code Type} objects that represent the
 452      * exceptions declared to be thrown by this executable object.
 453      * Returns an array of length 0 if the underlying executable declares
 454      * no exceptions in its {@code throws} clause.
 455      *
 456      * <p>If an exception type is a type variable or a parameterized
 457      * type, it is created. Otherwise, it is resolved.
 458      *
 459      * @return an array of Types that represent the exception types
 460      *     thrown by the underlying executable
 461      * @throws GenericSignatureFormatError
 462      *     if the generic method signature does not conform to the format
 463      *     specified in
 464      *     <cite>The Java&trade; Virtual Machine Specification</cite>
 465      * @throws TypeNotPresentException if the underlying executable's
 466      *     {@code throws} clause refers to a non-existent type declaration
 467      * @throws MalformedParameterizedTypeException if
 468      *     the underlying executable's {@code throws} clause refers to a
 469      *     parameterized type that cannot be instantiated for any reason
 470      */
 471     public Type[] getGenericExceptionTypes() {
 472         Type[] result;
 473         if (hasGenericInformation() &&
 474             ((result = getGenericInfo().getExceptionTypes()).length > 0))
 475             return result;
 476         else
 477             return getExceptionTypes();
 478     }
 479 
 480     /**
 481      * Returns a string describing this {@code Executable}, including
 482      * any type parameters.
 483      * @return a string describing this {@code Executable}, including
 484      * any type parameters
 485      */
 486     public abstract String toGenericString();
 487 
 488     /**
 489      * Returns {@code true} if this executable was declared to take a
 490      * variable number of arguments; returns {@code false} otherwise.
 491      *
 492      * @return {@code true} if an only if this executable was declared
 493      * to take a variable number of arguments.
 494      */
 495     public boolean isVarArgs()  {
 496         return (getModifiers() & Modifier.VARARGS) != 0;
 497     }
 498 
 499     /**
 500      * Returns {@code true} if this executable is a synthetic
 501      * construct; returns {@code false} otherwise.
 502      *
 503      * @return true if and only if this executable is a synthetic
 504      * construct as defined by
 505      * <cite>The Java&trade; Language Specification</cite>.
 506      * @jls 13.1 The Form of a Binary
 507      */
 508     public boolean isSynthetic() {
 509         return Modifier.isSynthetic(getModifiers());
 510     }
 511 
 512     /**
 513      * Returns an array of arrays of {@code Annotation}s that
 514      * represent the annotations on the formal parameters, in
 515      * declaration order, of the {@code Executable} represented by
 516      * this object.  Synthetic and mandated parameters (see
 517      * explanation below), such as the outer "this" parameter to an
 518      * inner class constructor will be represented in the returned
 519      * array.  If the executable has no parameters (meaning no formal,
 520      * no synthetic, and no mandated parameters), a zero-length array
 521      * will be returned.  If the {@code Executable} has one or more
 522      * parameters, a nested array of length zero is returned for each
 523      * parameter with no annotations. The annotation objects contained
 524      * in the returned arrays are serializable.  The caller of this
 525      * method is free to modify the returned arrays; it will have no
 526      * effect on the arrays returned to other callers.
 527      *
 528      * A compiler may add extra parameters that are implicitly
 529      * declared in source ("mandated"), as well as parameters that
 530      * are neither implicitly nor explicitly declared in source
 531      * ("synthetic") to the parameter list for a method.  See {@link
 532      * java.lang.reflect.Parameter} for more information.
 533      *
 534      * @see java.lang.reflect.Parameter
 535      * @see java.lang.reflect.Parameter#getAnnotations
 536      * @return an array of arrays that represent the annotations on
 537      *    the formal and implicit parameters, in declaration order, of
 538      *    the executable represented by this object
 539      */
 540     public abstract Annotation[][] getParameterAnnotations();
 541 
 542     Annotation[][] sharedGetParameterAnnotations(Class<?>[] parameterTypes,
 543                                                  byte[] parameterAnnotations) {
 544         int numParameters = parameterTypes.length;
 545         if (parameterAnnotations == null)
 546             return new Annotation[numParameters][0];
 547 
 548         Annotation[][] result = parseParameterAnnotations(parameterAnnotations);
 549 
 550         if (result.length != numParameters)
 551             handleParameterNumberMismatch(result.length, numParameters);
 552         return result;
 553     }
 554 
 555     abstract void handleParameterNumberMismatch(int resultLength, int numParameters);
 556 
 557     /**
 558      * {@inheritDoc}
 559      * @throws NullPointerException  {@inheritDoc}
 560      */
 561     public <T extends Annotation> T getAnnotation(Class<T> annotationClass) {
 562         Objects.requireNonNull(annotationClass);
 563         return annotationClass.cast(declaredAnnotations().get(annotationClass));
 564     }
 565 
 566     /**
 567      * {@inheritDoc}
 568      * @throws NullPointerException {@inheritDoc}
 569      */
 570     @Override
 571     public <T extends Annotation> T[] getAnnotationsByType(Class<T> annotationClass) {
 572         Objects.requireNonNull(annotationClass);
 573 
 574         return AnnotationSupport.getDirectlyAndIndirectlyPresent(declaredAnnotations(), annotationClass);
 575     }
 576 
 577     /**
 578      * {@inheritDoc}
 579      */
 580     public Annotation[] getDeclaredAnnotations()  {
 581         return AnnotationParser.toArray(declaredAnnotations());
 582     }
 583 
 584     private transient volatile Map<Class<? extends Annotation>, Annotation> declaredAnnotations;
 585 
 586     private Map<Class<? extends Annotation>, Annotation> declaredAnnotations() {
 587         Map<Class<? extends Annotation>, Annotation> declAnnos;
 588         if ((declAnnos = declaredAnnotations) == null) {
 589             synchronized (this) {
 590                 if ((declAnnos = declaredAnnotations) == null) {
 591                     Executable root = getRoot();
 592                     if (root != null) {
 593                         declAnnos = root.declaredAnnotations();
 594                     } else {
 595                         declAnnos = AnnotationParser.parseAnnotations(
 596                                 getAnnotationBytes(),
 597                                 SharedSecrets.getJavaLangAccess().
 598                                         getConstantPool(getDeclaringClass()),
 599                                 getDeclaringClass()
 600                         );
 601                     }
 602                     declaredAnnotations = declAnnos;
 603                 }
 604             }
 605         }
 606         return declAnnos;
 607     }
 608 
 609     /**
 610      * Returns an {@code AnnotatedType} object that represents the use of a type to
 611      * specify the return type of the method/constructor represented by this
 612      * Executable.
 613      *
 614      * If this {@code Executable} object represents a constructor, the {@code
 615      * AnnotatedType} object represents the type of the constructed object.
 616      *
 617      * If this {@code Executable} object represents a method, the {@code
 618      * AnnotatedType} object represents the use of a type to specify the return
 619      * type of the method.
 620      *
 621      * @return an object representing the return type of the method
 622      * or constructor represented by this {@code Executable}
 623      */
 624     public abstract AnnotatedType getAnnotatedReturnType();
 625 
 626     /* Helper for subclasses of Executable.
 627      *
 628      * Returns an AnnotatedType object that represents the use of a type to
 629      * specify the return type of the method/constructor represented by this
 630      * Executable.
 631      */
 632     AnnotatedType getAnnotatedReturnType0(Type returnType) {
 633         return TypeAnnotationParser.buildAnnotatedType(getTypeAnnotationBytes0(),
 634                 SharedSecrets.getJavaLangAccess().
 635                         getConstantPool(getDeclaringClass()),
 636                 this,
 637                 getDeclaringClass(),
 638                 returnType,
 639                 TypeAnnotation.TypeAnnotationTarget.METHOD_RETURN);
 640     }
 641 
 642     /**
 643      * Returns an {@code AnnotatedType} object that represents the use of a
 644      * type to specify the receiver type of the method/constructor represented
 645      * by this {@code Executable} object.
 646      *
 647      * The receiver type of a method/constructor is available only if the
 648      * method/constructor has a receiver parameter (JLS 8.4.1). If this {@code
 649      * Executable} object <em>represents an instance method or represents a
 650      * constructor of an inner member class</em>, and the
 651      * method/constructor <em>either</em> has no receiver parameter or has a
 652      * receiver parameter with no annotations on its type, then the return
 653      * value is an {@code AnnotatedType} object representing an element with no
 654      * annotations.
 655      *
 656      * If this {@code Executable} object represents a static method or
 657      * represents a constructor of a top level, static member, local, or
 658      * anonymous class, then the return value is null.
 659      *
 660      * @return an object representing the receiver type of the method or
 661      * constructor represented by this {@code Executable} or {@code null} if
 662      * this {@code Executable} can not have a receiver parameter
 663      */
 664     public AnnotatedType getAnnotatedReceiverType() {
 665         if (Modifier.isStatic(this.getModifiers()))
 666             return null;
 667         return TypeAnnotationParser.buildAnnotatedType(getTypeAnnotationBytes0(),
 668                 SharedSecrets.getJavaLangAccess().
 669                         getConstantPool(getDeclaringClass()),
 670                 this,
 671                 getDeclaringClass(),
 672                 getDeclaringClass(),
 673                 TypeAnnotation.TypeAnnotationTarget.METHOD_RECEIVER);
 674     }
 675 
 676     /**
 677      * Returns an array of {@code AnnotatedType} objects that represent the use
 678      * of types to specify formal parameter types of the method/constructor
 679      * represented by this Executable. The order of the objects in the array
 680      * corresponds to the order of the formal parameter types in the
 681      * declaration of the method/constructor.
 682      *
 683      * Returns an array of length 0 if the method/constructor declares no
 684      * parameters.
 685      *
 686      * @return an array of objects representing the types of the
 687      * formal parameters of the method or constructor represented by this
 688      * {@code Executable}
 689      */
 690     public AnnotatedType[] getAnnotatedParameterTypes() {
 691         return TypeAnnotationParser.buildAnnotatedTypes(getTypeAnnotationBytes0(),
 692                 SharedSecrets.getJavaLangAccess().
 693                         getConstantPool(getDeclaringClass()),
 694                 this,
 695                 getDeclaringClass(),
 696                 getAllGenericParameterTypes(),
 697                 TypeAnnotation.TypeAnnotationTarget.METHOD_FORMAL_PARAMETER);
 698     }
 699 
 700     /**
 701      * Returns an array of {@code AnnotatedType} objects that represent the use
 702      * of types to specify the declared exceptions of the method/constructor
 703      * represented by this Executable. The order of the objects in the array
 704      * corresponds to the order of the exception types in the declaration of
 705      * the method/constructor.
 706      *
 707      * Returns an array of length 0 if the method/constructor declares no
 708      * exceptions.
 709      *
 710      * @return an array of objects representing the declared
 711      * exceptions of the method or constructor represented by this {@code
 712      * Executable}
 713      */
 714     public AnnotatedType[] getAnnotatedExceptionTypes() {
 715         return TypeAnnotationParser.buildAnnotatedTypes(getTypeAnnotationBytes0(),
 716                 SharedSecrets.getJavaLangAccess().
 717                         getConstantPool(getDeclaringClass()),
 718                 this,
 719                 getDeclaringClass(),
 720                 getGenericExceptionTypes(),
 721                 TypeAnnotation.TypeAnnotationTarget.THROWS);
 722     }
 723 
 724 }